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I OVERVIEW
 

Current Urban Digital Twins (UDTs) face several challenges. For instance, scaling Digital Twin 
systems to manage complex urban environments is difficult. It requires integrating multiple 
systems and data sources into a cohesive model, which is both complex and resource-intensive. 
Additionally, data interoperability and system integration remain areas that need further 
exploration. Managing diverse data sources, achieving real-time data processing, and ensuring 
system scalability and security are all challenging due to the lack of standardized protocols.

The Urban Digital Twin Interoperability Pilot Project (UDTIP) aimed to create a functional UDT 
ecosystem by developing and integrating various modules. The project focused on addressing 
challenges related to spatial information interoperability and promoting the portability and 
reuse of UDT modules. The pilot was divided into several technical objectives, each with 
specific deliverables, to demonstrate the value of interoperability to external stakeholders. Key 
components of the project and their deliverables include:

1. Noise Modelling Interoperability (D100): Created a prototype API and workflow 
for noise simulation within a UDT, integrating IoT sensor data and 3D built 
environment models. It used CityGML building models and GML street models, 
and included the conversion of BIM/CAD data to CityGML 2.0, traffic profiles 
to synthetic noise data, and the direct integration of noise sensor data using the 
SensorThings API standard. The OpeNoise tool within QGIS was used to evaluate 
noise levels at different times of day and at various altitudes.

2. Camera Imagery Interoperability (D101): Enabled interoperability of camera 
imagery for machine learning (ML) workflows. This involved preparing geo-
referenced camera images from multiple sensor types, maintaining essential 
metadata including GeoPose 1.0, and trajectories documented. FFMPEG was 
used for video frame sampling, and INS metadata was synchronized with camera 
imagery. INS data was then converted into GeoPose format.

3. Geo-AI Analysis Interoperability (D102): Designed a prototype API and workflow 
for ML-driven image-based object detection within a UDT. It used input imagery 
formats and metadata adopted by D101 and utilized the TrainingDML standard 
for training data and metadata outputs. This included the creation of a TDML-
AI pipeline for processing GeoPose data, exploring methods for labeling and 
annotating images using manual annotation and OSM datasets, and developing a 
system for classifying road surface types. Machine learning models were applied 
to the RTK dataset, and the deliverable also designed an API to label and classify 
road types using OGC API standards.

4. Inter-Module Interoperability (D103): Designed API and OGC standards-
enabled data flows between UDT modules. A prototype for data exchange 
between different UDT modules was developed. OGC API-Features was used 
for training data and Geo-AI inference results, OGC API-Tiles provided a raster 
tile data access interface, and OGC API-3D GeoVolumes provided interfaces for 
accessing 3D data. The use of OGC API Collections was expanded to include 
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noise simulation and TrainDML imagery. The data server was implemented using 
Node.js and Express.js.

5. Visualization (D104): Produced a visualization of the project’s results to show 
the value of interoperability. The Cesium JS framework was used to integrate 
urban noise data from OGC API services. The visualization client combines 
various geospatial data formats, including CityGML building models, GeoTiff DEM 
models, 3D noise data, and ground noise data. The client uses a static website 
architecture with HTML, JavaScript, and CSS.

6. Stakeholder Engagement (D105): Engagemed the community to ensure project 
outcomes were fit for purpose and aligned with real user needs4. Stakeholders 
included the Land and Housing Agency of Korea (LH) as sponsors, the UN 
as a user, and various teams responsible for developing the functionalities as 
participants. The Open Geospatial Consortium (OGC) coordinated both the 
sponsors and the participants.

The UDTIP’s overall architecture is divided into two sections: one supporting noise analysis 
and the other supporting object detection/classification using Geo-AI. The project used OGC 
standards to test and evaluate interoperability between modules, with interfaces for both the 
noise analysis and Geo-AI systems based on OGC APIs. This project’s findings, including the 
challenges and solutions, contribute to the advancement of urban systems towards the digital 
twin ideal. The use of OGC standards highlighted their role in enabling interoperability and data 
sharing across diverse systems.

I I EXECUTIVE SUMMARY
 

This initiative addresses the challenges of data interoperability and multi-system integration 
within Urban Digital Twins (UDTs). It explores the development and interoperability of various 
modules within an Urban Digital Twin (UDT) framework, leveraging OGC standards to enable 
seamless data exchange and communication.

The effort focuses on two key applications: noise modeling and Geo-AI analysis.

For noise modeling, the program utilizes 3D city models in CityGML format, traffic profiles, 
and noise sensor readings. This data is used to simulate and visualize noise levels in urban 
environments, supporting urban planning and management decisions aimed at mitigating noise 
pollution.

For Geo-AI analysis, the undertaking processes camera imagery, INS metadata, and labeled 
training data. This data is converted into formats such as GeoPose and TrainingDML to support 
machine learning tasks like object detection (e.g., identifying obstacles or illegal dumping) and 
road surface classification.

The initiative employs various OGC APIs for data access and processing, ensuring 
interoperability across modules. Key outcomes include the development of prototype APIs, 
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workflows, and visualization tools that demonstrate the value of OGC standards in building a 
robust and interoperable UDT ecosystem.

This project also emphasizes the importance of stakeholder engagement, involving sponsors 
such as the Land and Housing Agency of Korea and user groups like the United Nations, to 
ensure the practical relevance of the UDT applications.

Although the current focus is on two applications, the framework is designed to be extensible, 
allowing for additional or alternative applications in the future and aims to serve as a reference 
framework for building UDTs using OGC standards.

I I I KEYWORDS
 

The following are keywords to be used by search engines and document catalogues.

Urban Digital Twin, Interoperability, OGC Standards, CityGML, GeoPose, TrainDML, OGC APIs, 
Noise Modeling, Geo-AI, 3D Visualization, Urban Analytics

IV FUTURE OUTLOOK
 

The Urban Digital Twin Interoperability Pilot Project (UDTIP), with its focus on noise modeling 
and Geo-AI analysis using OGC standards, has a promising future with broad applications across 
diverse fields. The successful integration of various modules within the UDT framework lays a 
strong foundation for expansion into areas critical to smart city development and beyond.

UDTs can provide dynamic insights into urban challenges, including—but not limited to—climate 
change, urban mobility, and critical infrastructure development. For example, integrating ground-
based sensors with satellite imagery can enhance our understanding of the urban heat island 
(UHI) effects caused by urban intensification. Additionally, real-time modeling, simulation, and 
predictive analytics can be incorporated into UDTs to improve urban traffic flow and overall 
mobility within cities and regions. The integration of multi-dimensional data (2D, 3D, and real-
time) within UDTs also enables utility providers to better manage both underground and above-
ground assets, ultimately improving service delivery to communities.

Urban health applications can also benefit significantly from UDT capabilities. Noise pollution
—a key focus of the project—is a known contributor to health issues such as stress, sleep 
disturbances, and cardiovascular problems. By modeling and visualizing noise levels across urban 
landscapes, city planners can identify hotspots and implement mitigation strategies, ultimately 
improving public health outcomes. Furthermore, the project’s emphasis on Geo-AI analysis 
of camera imagery can be extended to monitor environmental factors like air quality, detect 
potential health hazards such as illegal dumping sites, and assist in crowd management during 
public health emergencies.
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The UDT framework also holds considerable potential for natural disaster preparedness and 
response. By integrating real-time sensor data from various sources, UDTs can provide dynamic 
insights into evolving situations during floods, earthquakes, or other disasters. This includes 
monitoring rising water levels, identifying structurally compromised areas, and tracking the 
movement of people and emergency response teams. The visualization tools developed through 
the project can be instrumental in communicating these insights to decision-makers and first 
responders, enabling more effective and timely interventions.

Moreover, the interoperability aspect of UDTs—facilitated by OGC standards—is particularly 
relevant for the advancement of autonomous vehicles. Accurate and up-to-date information 
about the urban environment is essential for safe and efficient navigation. UDTs can provide 
this information by integrating data from traffic cameras, road sensors, and weather stations. 
The project’s work on Geo-AI analysis, particularly in road surface classification, can further 
enhance the perception capabilities of autonomous vehicles, allowing them to adapt to varying 
road conditions and potential hazards.

With its emphasis on open standards and interoperability, the UDTIP sets the stage for future 
innovations that can transform how we understand, manage, and interact with our increasingly 
complex urban environments.

V VALUE PROPOSITION
 

The value proposition of the UDTIP lies in its ability to integrate diverse urban data and 
functionalities to create a comprehensive and interoperable digital twin ecosystem. The project 
focuses on developing mechanisms for inter-module interoperability using OGC standards, 
which allow for the seamless exchange of data, metadata, and code between different modules, 
promoting portability and reuse across various urban applications. By applying OGC standards, 
the project enables the integration of various data, including 3D city models and AI-driven 
analysis. This integration facilitates a holistic understanding of urban environments and supports 
the development of a unified platform for accessing and managing diverse geospatial data, 
eliminating the need to retrieve data from multiple sources. This interoperability is crucial for 
addressing challenges in areas such as noise pollution and object detection in smart cities, 
providing a robust platform for urban planning, management, and analysis.
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1 INTRODUCTION
 

A digital twin is, in essence, a 6D (three spatial axes, one phenomenon time axis, one valid 
time axis, one “what-if” axis) geospatial model of a portion and aspect of the biophysical-social 
world, combined with one or more workflows that set or update the objects and attributes 
of the model. A digital twin is a digital representation of an aspect of the real world that 
mirrors its counterpart’s changes in reality. An Urban Digital Twin (UDT) is thus an approach to 
understanding the characteristics and processes of a built environment at the scale of a city.

The real-world interfaces (sensors, surveys) may or may not themselves form part of the model. 
The available output of the digital twin is any information contained within the model itself.

As a technological ideal, digital twins present a number of challenges, particularly in terms of 
spatial information interoperability. Two challenges have been addressed but not yet solved 
through OGC initiatives and standardization:

A digital twin requires the integration of persistent information—such as digital models of 
buildings and urban infrastructure—with dynamic information, such as the trajectories of people 
and vehicles or environmental properties like noise or air quality. The 3D-IoT Pilot conducted 
by OGC with support from LH explored several approaches to accomplishing this integration 
through the use of OGC standards and interoperability architectures. The persistent and 
dynamic information elements typically derive from different sources, managed by different 
communities using different systems. Timely integration of these elements is both a technical 
and semantic challenge—for example, ensuring that a given sensor provides accurate and timely 
estimates for a particular property of a specific persistent feature, such as a street intersection 
or building hallway.

It is not feasible for a single digital twin to represent the entire appearance and behavior of the 
real world. To provide a broader and more accurate representation, it is necessary for individual 
digital twin models and systems to interoperate—to exchange information with each other as 
well as with systems that provide sensor observations and/or analytical processing. In order to 
coordinate these interchanges, the coordination of digital twin systems needs to be based on 
a common spatial-temporal framework. This framework must align the persistent elements of 
each twin as well as the sensors and other sources of dynamic information. Issues addressed in 
OGC Testbeds include APIs for system-to-system interchange of dynamic information, services 
for discovery across distributed systems, and standardization of training data across multiple 
machine learning models.

Existing OGC APIs do not directly address all the requirements posed by digital twin 
interoperability needs. However, the formulation of OGC API elements as “building blocks” 
presents the opportunity to assemble existing API building blocks into a more appropriate 
“Digital Twin API” interface specifically directed at those needs. The specification and 
prototyping of such an interface would be a valuable contribution to the advancement of urban 
systems toward the digital twin ideal.
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1.1. Aims
 

The aim of the Urban Digital Twin Interoperability Pilot Project (UDTIP) is to demonstrate and 
improve the interoperability of different modules within an Urban Digital Twin (UDT) ecosystem 
using OGC standards.

1.2. Objectives
 

1. Technical Objective 1: Urban traffic noise modeling to support urban planning 
and management The ability to generate predictive noise models based on traffic 
patterns and/or historical traffic and noise data will enable the use of digital twins 
in various aspects of urban planning and city management. Relevant applications 
include the design and management of road networks, placement of traffic 
control mechanisms, e.g., lights and detours, management of traffic volume by 
vehicle type, e.g., passenger cars, buses, and trucks, and road pavement typ, e.g., 
asphalt and concrete, and the planning of locations of buildings and siting of 
public facilities where noise levels should be considered. Participants working on 
this deliverable (D100) will produce a design of a prototype API, OGC standards-
enabled workflow to facilitate reusable and reproducible execution of a noise 
simulation integrating IoT sensor data, and 3D built environment models within 
an Urban Digital Twin. (D100) This deliverable will include documentation of the 
workflow carried out for the following tasks:

a) Production of a parametric urban 3D noise model and supporting 
workflow

i) The noise model and workflow will incorporate 3D city models, 
provided by the sponsors, typical of those used in the planning 
phase of a Smart City

ii) The noise modeling workflow will include the conversion of 
estimated traffic profiles to synthetic noise data, providing a 
mechanism for use of traffic profile data as an input. Samples of 
data were provided by the sponsors.

b) Integration of the noise model and 3D city model within a Digital Twin 
Platform capable of:

i) Receiving updates to the 3D-built environment model

ii) Receiving noise levels and additional data at given points

iii) Communicating with the urban noise analysis module
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iv) Providing analysis results to the visualization module described in 
Technical Objective 4 (D104)

v) Exchanging data and interoperating with the UDT described 
in Technical Objective 2 (D101/D102) using the mechanism 
described in Technical Objective 3 (D103)

2. Technical Objective 2: Detection and identification of unwanted objects 
(obstacles and unauthorized dumping) and road surface classification in 
SmartCity contexts (D101 and D102) The ability to use sensors and cameras 
to support the management of built-up environments is critical to the ongoing 
operations of Smart Cities. In the context of cities, it is essential to detect 
obstacles to mobility. While systems to alert people to the presence of alterations 
to road vehicle mobility, including the cause, are operational, the detection 
of unwanted objects acting as obstacles to active transport (walking, jogging, 
cycling) is not well developed. Equally, the capability to detect unwanted objects, 
including illegal trash dumps and abandoned objects, is under-developed. The 
participants on these deliverables will collaborate to develop a prototype system 
and supporting workflow to:

a) Enable Camera Imagery Interoperability (D101) for training / testing / 
validation for ML workflows (D101). The prototype system and workflow 
must allow Geo-Referenced Camera Images produced by multiple sensor 
types (those typically used to capture images or video of moving vehicles) 
to be prepared for use in ML feature detection and scene understanding 
workflows. The multi-source image sets are expected to maintain 
essential metadata to enable traceability. Essential metadata for this 
deliverable includes the camera position and Field of View (FoV), as well 
as the trajectories of the camera, properly documented and aligned with 
the required spatial-temporal framework.

b) Enable Geo-AI Analysis Interoperability (D102). Design a prototype 
API and OGC standards-enabled workflow to enable reusable and 
reproducible execution of an ML-driven, image-based object detection 
within an Urban Digital Twin. The focus of the ML training should support 
the overall technical objective. The ML-driven system should, wherever 
possible, use the input imagery formats and metadata formulations 
developed by the D101 participants. The training data and metadata 
outputs should be provided following the TDML: Training DML for AI 
Standard.

c) The outputs of D101 and D102 should be interoperable with the 
Urban Digital Twin described in Technical Objective 1 (D100) using the 
mechanism described in Technical Objective 3 (D103)

3. Technical Objective 3: Inter-module Interoperability to support portability and 
reuse for diverse UDT applications (D103). Enabling the creation of Urban Digital 
Twins for a range of specific applications and promoting portability and reuse 
of their modules requires development of explicit mechanisms for UDT module 
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interoperability, enabled by standards. The participants working on this technical 
objective will collaborate with those on D100, D101 and D102 to deliver:

a) Inter-module Interoperability (D103). Design of a prototype for API- 
and OGC standards-enabled data flows between Digital Twin modules 
built for different applications, using the two applications in this pilot as 
example use cases.

b) The participants working on this deliverable are responsible for 
developing the functionality to coordinate the exchange of data, 
metadata, and code as required between the data, analytic, and 
visualization modules produced for the UDTIP.

c) Participants working on this deliverable are expected to report on any 
limits of OGC standards for supporting this application within their Report 
contribution. Planning for generalized UDT interoperability beyond the 
specific use cases in this Pilot is encouraged.

4. Technical Objective 4: Communication and Engagement with the community 
of practice involved in designing, developing, operating, and using urban digital 
twins is essential to ensuring the outcomes of the Pilot are fit for purpose, well 
aligned with real user needs, and have a path to take. The participants working on 
this technical objective will collaborate with all other participants to:

a) Produce a Visualization (D104) of results to convey the value of 
interoperability to external stakeholders.

b) Lead Stakeholder Engagement (D105). Active engagement throughout 
the Pilot process is expected with the Land and Housing Agency of Korea, 
the United Nations Global Service Centre, and the wider stakeholder 
community. The Participant organizations are expected to gather 
information on their priorities and requirements, as users, and engage 
with them through evaluation of prototypes. Communities engaged 
may include a range of organizations interested in digital technologies 
for urban planning and management, organizations using urban digital 
twins, and organizations developing digital twins in other contexts. This 
engagement could take the form of user needs assessments, paper-based 
design workshops, prototype reviews, or other activities.
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Figure 1 — Technical Objectives and Deliverables
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2 TOPICS
 

2.1. Noise-Modeling Interoperability
 

Figure 2 — Workflow for Noise Modeling Data Integration with 3D City Models

The goal of D100 is to integrate information related to noise modeling and define a data 
structure and format applicable in digital twins. This project provides interoperability through 3D 
Tiles, enabling bidirectional use of CityGMLdata (including urban planning/design information), 
DEM, and noise prediction modeler outputs.

The noise modeling interoperability implementation is comprised of three key components:

The advancement of digital twin technology is moving beyond simple 3D visualization of 
buildings and terrain, requiring the integration of diverse sensor data and analysis results. This 
report outlines the interoperability framework for applicable OGC standards in noise modeling, 
preparing CityGML Dataset for noise visualization and illustrating the noise impact on 3D 
Buildings. Focusing on key components, this section highlights the data inputs and outputs, 
visualization techniques, and analysis outcomes. This initiative highlights the value of digital 
twins for urban planning by integrating urban traffic noise prediction analysis with 3D noise 
impact on buildings.
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Figure 3 — Software Configuration

2.1.1. CityGML building model

Sample data corresponding to road noise sources, including 3D objects such as buildings and 
their engineering properties necessary for noise prediction, are provided in CityGML, which 
features a Level of Detail 1 (LOD1) representation with accurate information on individual 
building heights. The sample data was generated based on urban planning drawings for the 
planning phase for Wangsuk District 2 in Namyangju, Gyeonggi-do, South Korea, a government-
approved urban development project. Each building is modeled to its correct absolute height, 
referencing a Digital Elevation Model (DEM) also produced by Gaia3D. Before its use, the 
CityGML building model undergoes validation for geometrical accuracy using CityDoctor, a free 
software tool designed for quality checks of 3D city models in CityGML format.

2.1.2. GML street model

The GML street model consists of polyline geometries representing road segments. Along with 
the road segment geometries, the model includes relevant properties necessary for calculating 
noise levels for each segment using the OpeNoise Map plugin in QGIS. These properties include: 
the number of lanes, number of small vehicles per hour at day, number of large vehicles per hour 
at day, number of small vehicles per hour at night, number of large vehicles per hour at night, 
speed of small vehicles at day, speed of large vehicles at day, speed of small vehicles at night, 
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speed of large vehicles at night, surface status code, applied additional noise reduction method 
and noise reduction effect by the method.

2.1.3. Noise Modeling

Figure 4 — Noise Analysis Workflow

The noise modeling was primarily conducted using data from the CityGML building model and 
the GML street model. These datasets provided the essential spatial information to develop 
a foundational noise propagation model using the OpeNoise tool. The OpeNoise model as 
integrated in QGIS was employed to evaluate noise levels across two times of day: day and 
night. By leveraging the CityGML city model for accurate spatial representation and the road 
network data, the OpeNoise tool was able to compute noise levels effectively for both day 
and night conditions. In this model, synthetic data was used with the assumption that the 
noise source from all road surfaces is the same. In this model, synthetic data was used with the 
assumption that the noise source from all road surfaces is uniform. We approximated a noise 
level of 65 dB during the day and 40 dB at night. This estimation was used as a stand-in for 
actual sensor data, which will be integrated in future work. It is indeed possible to incorporate 
real noise sensor data by feeding actual measurements into the model and interpolating them 
from the street polygons (or other noise source geometry). In the current work, we had no 
real sensor data available, so we consulted literature to apply uniform noise source values—
one for daytime and one for nighttime. However, the noise model is capable of much more 
detailed simulations by integrating accurate traffic data, varying noise source intensities, and 
real-time sensor inputs, among other possible refinements. The noise levels were computed by 
incorporating environmental factors into the model. Key inputs for the noise model included 
synthetic noise levels for roads, assuming uniform noise sources. The tool utilized these inputs 
to simulate the propagation of noise from roads to the surrounding urban environment, factoring 
in reflections, diffractions, and absorption by building facades as represented in the CityGML 
model.
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The noise modeling used data from the CityGML and GML models to simulate noise 
propagation. The OpeNoise tool in QGIS was employed to calculate noise levels, incorporating 
environmental factors like reflections, diffractions, and absorptions. Noise was assessed at 
ground level and elevations of 20m, 40m, 60m, and 80m above the terrain.

It is possible to perform noise calculations per floor level by leveraging additional attributes 
available in the CityGML dataset, such as storeysAboveGround and measuredHeight. These 
attributes make it feasible to calculate the height of each floor and generate a noise receiver 
grid for every level of a building. However, because this process increases the complexity and 
duration of data preparation, a simplified approach was used by calculating noise at specific 
height levels rather than per floor.

Noise levels for roads were approximated at 65 dB during the day and 40 dB at night. Synthetic 
data was used as a placeholder for actual sensor readings. Future plans include integrating real 
sensor data for improved accuracy. It is indeed possible to incorporate real noise sensor data by 
feeding actual measurements into the model and interpolating them from the street polygons (or 
other noise source geometry).

2.1.4. Visualization

Visualization plays a critical role in understanding noise distribution and supporting urban 
planning. The following techniques and tools were used:

1. Cesium.js An open-source rendering engine was employed to visualize:

• 3D Tiles for building data

• Quantized Mesh for terrain data, chosen for its high-resolution capability

• Noise analysis results as independent 3D objects

2. Data Conversion Custom modules were developed for converting:

• CityGML to 3D Tiles

• GeoTiff terrain data to Quantized Mesh

• Noise Modeler outputs to 3D Tiles
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Figure 5 — Quantized Mesh Visualized in Cesium

2.1.5. Analysis Results

The analysis results were visualized as independent layers, enhancing clarity and accessibility. 
Key features include:

1. Noise Propagation 
Noise meshes were generated to represent spatial and temporal variations. 
These meshes were developed to ensure interoperability across platforms, 
leveraging the 3D Tiles format for seamless integration with digital twin 
environments.

2. Legend Configuration 
The legend categorizes noise levels for intuitive understanding, configured based 
on criteria detailed in the project documentation to represent various noise 
thresholds effectively.
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Figure 6 — Noise Analysis Legend

2.1.6. Conclusion

This holistic approach integrates advanced visualization and modeling techniques, supporting 
urban planning and design by providing meaningful analysis into noise propagation in urban 
environments.

Figure 7 — Noise Analysis Results on OSM in Cesium
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2.2. Camera Imagery Interoperability
 

Figure 8 — Data Collection and Preprocessing Workflow

Open-source applications are utilized on an in-vehicle mobile phone to synchronously collect 
video, IMU, and GNSS data. The collected data, after preprocessing and annotation, can be 
converted into TDML format to enhance interoperability with other modules.

Camera imagery interoperability is centered on establishing interoperability between camera 
imagery and Inertial Navigation System (INS) metadata, which includes position and orientation 
information in relation to a specific frame of reference. This integration is pivotal for merging 
visual data with spatial positioning, thereby enhancing the accuracy and utility of urban digital 
twin systems. This deliverable seeks to bridge the gap between disparate geographical data 
sources and create a cohesive and actionable dataset. The resultant integration of camera 
imagery and INS metadata as GeoPose facilitates a higher degree of interoperability. The 
structured approach includes comprehensive data collection, precise sampling, meticulous 
processing, synchronization, and conversion, which culminates in a thorough validation of 
results. This then supports the D102 deliverable, which aims to leverage the processed data for 
advanced Geo-AI analysis.
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Figure 9 — D101 to D102 Workflow

Figure 9 is a strategic outline detailing the integration of Camera Imagery Interoperability 
(D101) and Geo-AI Analysis Interoperability (D102) within Urban Digital Twin systems, enabling 
seamless data processing, synchronization, and machine learning-based object detection for 
smart city applications.

2.2.1. Data Acquisition

The goal of data acquisition is to capture high-quality imagery and sensor data with GeoPose 
information to generate geo-referenced training datasets. This process was implemented using 
an on-board mobile phone and open-source software, ensuring transparency and flexibility.

Imagery was collected using smartphone cameras in Red-Green-Blue (RGB) format at varying 
resolutions—1080×1080 pixels at 1.0 Hz and 1920×1080 pixels at 30 Hz—ensuring both 
detailed accuracy and real-time capture. To enhance spatial and positional precision, additional 
sensor data was collected, including:

• Global Navigation Satellite System (GNSS) Data: Provided latitude, longitude, and altitude 
for precise georeferencing.

• Inertial Measurement Unit (IMU) Data: Included gravimeter, magnetometer, and 
accelerometer readings, supporting both Yaw-Pitch-Roll (YPR) and quaternion encoding 
schemes for orientation tracking.

• Mobile Phone Recording Data: Utilized for timestamp synchronization through screen 
recordings.
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Data acquisition was conducted using Sensor Logger, an open-source cross-platform application 
available for both Android and iOS platforms, ensuring transparency and flexibility for 
customization. Detailed measurement units and their interpretations can be found here: Sensor 
Logger Units Reference.

Pre-existing datasets were also integrated to enhance the analysis, including:

• HillyFields Bubble Dataset: Offers front and rear video footage from StreetDrone (car) 
with precise INS metadata for environmental and spatial analysis.

• KITTI-360 Dataset: A widely utilized dataset in autonomous driving research, comprising 
over 320,000 images and sensor data for tasks such as object detection and 3D tracking.

Field tests were conducted on open roads in Wuhan to validate the workflow and data 
acquisition methods. For detailed description and specification of used tools and dataset, refer 
to the annexes of UCF and WHU.

2.2.2. Data Processing

The FFMPEG, a popular open-source command-line toolbox, was employed as a cross-platform 
toolbox for frame extraction to sample frames at specific intervals to balance detail and 
processing load.

2.2.3. Video Frames Sampling

FFMPEG was leveraged to manipulate, convert, and stream multimedia content. FFMPEG 
was specifically employed for video frame sampling, extracting frames from a video at regular 
intervals or a predefined frame rate.

This extracted video frames at a specific rate to create training datasets, analyze video content, 
and synchronize with data sources such as INS metadata.

2.2.4. INS Metadata Preprocessing

Data cleaning and filtering eliminates noise and irrelevant information, ensuring compatibility 
with GeoPose conversion. Key steps include:

• Performing feature extraction by selecting and transforming columns as needed

• Addressing missing data by implementing strategies to manage gaps and inconsistencies in 
the metadata

• Converting epoch time to date-time format

• Calibrating the frequencies of location and orientation data

• Down sampling to eliminate redundant data
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This enhances the processing efficiency and prevents overfitting during the training phase of 
deliverable D102.

Location and orientation data were synchronized with camera imagery using timestamps, and 
GPS time has been incorporated in the generation of the resultant GeoPose.

2.2.5. Synchronization

Camera imagery was aligned with the INS metadata by referencing timestamps to ensure 
precise synchronization between video and metadata. Each frame instance was represented 
as a georeferenced image, linking the image with its corresponding positional and orientation 
data from the INS system. For a detailed explanation with visual representation, refer to the
technical specifications.

2.2.6. Convert INS data into GeoPose

The refined INS metadata was converted via script into the GeoPose standard in JSON format, 
specifically adhering to the GeoPose.Composite.Sequence.Series.Regular standardization target. 
This conversion employs Latitude (deg), Longitude (deg), and Altitude (m) for positional encoding 
and supports both Yaw, Pitch, and Roll (YPR) and quaternions encoding scheme for measuring 
orientation.

2.2.6.1. Data Preprocessing

The collected data need to be preprocessed before being fed into the subsequent process. The 
purpose of data preprocessing is to temporally align the collected data, extract frames from 
videos, and convert raw data into the required format.

The workflow of data preprocessing is shown in Figure 10. It contains three main stages: frame 
extraction, IMU conversion and frame match. The result of the preprocessing is that the data 
collected by different software will be sampled to a frequency of 1 Hz and provide an unlabeled 
dataset with geopose data in the TrainingDML-AI format.
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Figure 10 — Workflow of Data Preprocessing

2.2.6.1.1. Frame Extraction

The temporal synchronization pipeline addresses timestamp absence in primary video streams 
captured by OpenCameraSensors through auxiliary screen recordings. The workflow implements 
cross-modal frame alignment as follows:

Synchronization Protocol

1. Frame Extraction

• Decode primary (sensor) and auxiliary (screen) videos via OpenCV

• Maintain native resolution: Primary @ 30Hz (33ms/frame), Auxiliary @ system 
refresh rate

2. Timestamp Anchoring

• Manual visual matching: Identify identical frames across video sources

• Apply temporal transfer: Assign auxiliary frame’s system-clock timestamp to 
corresponding primary frame

• Calculate sub-frame precision: Leverage 30Hz sampling to resolve 
timestamps with ±16ms accuracy

3. Output Preparation
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• Preserve traceability: Log frame-source relationships in metadata

2.2.6.1.2. IMU Conversion

The purpose of IMU conversion is to convert the collected IMU data into geopose. The IMU 
data collected by the OpenCameraSensors includes the accelerometer data, gyroscope data, 
and magnetometer data, each with a timestamp. Note that the three data don’t have the same 
frequency and start time, so they should be pre-processed using algorithms such as the Kalman 
filter, converted to 30Hz geopose data for subsequent processing. As it is not the main research 
focus of this pilot, the algorithm for converting IMU data to geopose will not be elaborated 
here. The converted data is encoded in xml format, using x, y, z, w to represent the pose of the 
camera, each pose records a timestamp of the boot time since the mobile phone was booted.

2.2.6.1.3. Frame Match

This phase focuses on temporal frame synchronization and dataset preparation for subsequent 
annotation. The primary deliverables include georeferenced image sequences with synchronized 
GeoPose data. The workflow comprises the following key operations:

1. Time Synchronization

• Manual calibration of the time offset between device boot time and local 
time

• Automatic timestamp adjustment for IMU data using application-generated 
frame timestamps

2. Data Sampling

• Downsampling all sensor streams to 1Hz through temporal alignment

• Selection criteria: Frames and GeoPose data points temporally closest to 
GNSS sampling points

3. Output Configuration

• Final dataset frequency locked to 1Hz (determined by GNSS sensor’s 
sampling rate)

• Modular GNSS hardware support enabling potential upgrades for higher-
frequency collection

The preprocessed output follows the TrainingDML-AI specification, structured as:

• Frame sequences organized chronologically
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• JSON-formatted metadata containing:

• System identification parameters

• Asset descriptors (name/quantity)

• GeoPose coordinates (Basic-Quaternion format)

• Extensible TDML architecture allowing label integration during annotation

2.2.6.2. Data Labeling

In annotation stage, Label Studio, an open-source labeling tool, is used to enable collaborative 
labeling of data. The annotation can be exported in JSON format, so that it can be converted 
into TDML format.

2.2.7. TDML Format Conversion

Training data must be converted into the TDML-AI format to ensure interoperability between 
modules. In accordance with D101 specifications, GeoPose data has been integrated as an 
extension within the TDML encoding framework. A dedicated Python script has been developed 
to systematically transform metadata, GeoPose data, and label information into the standardized 
TDML format. The conversion process requires:

1. Metadata and label data to be converted into JSON format in compliance with 
the OGC TDML-AI Part 1 standard

2. GeoPose data to be formatted using the Basic-Quaternion representation, aligned 
with the OGC GeoPose 1.0 Data Exchange Standard

3. All converted GeoPose data to be stored alongside corresponding image 
metadata

2.3. Geo-AI Analysis Interoperability
 

2.3.1. TDML-AI Pipeline Creation and GeoPose Standard Enhancement

GeoPose data, based on video and sensor data, provides a structured representation of the 
position and orientation of each video frame in space. However, this data must often be 
converted into formats such as TDML-AI for broader use in machine learning (ML) models and 
AI training pipelines. The project aimed to streamline the process of converting and labeling 
GeoPose data to enhance the accuracy of geospatial data labeling and metadata creation.
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Various methods were explored for labeling and annotating images that were extracted from 
video component of the source dataset. This was broken into two parts:

1. Create a proof-of-concept for labeling images

2. Manually annotate road surfaces within images

The produced proof-of-concept demonstrates that it may not be feasible to rely on OSM APIs 
for frequent, consecutive data retrieval due to rate limits. Although downloaded OSM datasets 
were a valuable alternative, the process to use them could benefit from automated acquisition 
and processing.

For detailed steps for the methodology, see the pipeline methodology in the technical annex.

2.3.1.1. TDML-AI File Creation

GeoPose data is converted to the TDML-AI format by reviewing OGC documentation, 
aggregating internal and exported annotation data, synthesizing it into a TDML-AI dataset, and 
validating compliance with OGC requirements.

2.3.1.2. Working with GeoPose Data

Latitude and longitude information had been extracted GeoPose data previously, but this 
process is cumbersome due to the data’s encoding structure.

2.3.1.2.1. Manual Image Annotation

Bounding boxes were drawn around specific objects such as roads and grass, and annotations 
were exported in COCO format, which supported both bounding boxes and precise 
segmentation.

2.3.1.2.2. Performance Testing on GeoPose Metadata Extraction

Both array-based encoding (strategy 1) and object encoding (strategy 2) significantly 
outperformed the current method of encoding parameters as string in the GeoPose standard. 
They were roughly 4-7 times faster in extracting latitude and longitude data across various test 
configurations.

2.3.2. Image Machine Learning to Classify Road Surface Types

The automatic classification of road types and conditions is a critical task due to the limitations 
of human-involved solutions, which are not only costly but also time-intensive. Image-based 
machine learning approaches present a promising alternative by automating the identification 
of road types efficiently. For any given image of a road surface, a classification model can be 
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designed to predict the surface type, offering a streamlined and scalable solution for road 
condition analysis.

This classification task represents a typical supervised learning problem. Due to an initial lack 
of a pre-prepared, labeled dataset tailored to the project’s need, as an interim measure, a public 
dataset was used to facilitate the development of the classification model until project-specific 
data could be collected. To evaluate potential solutions, various machine learning models were 
considered, with ResNet50 and InceptionV3 ultimately selected for their widespread use and 
demonstrated effectiveness in similar tasks.

2.3.2.1. Working with Public Datasets

The project began with the Road Traversing Knowledge (RTK) dataset, a public resource 
designed for road surface classification using images captured by low-cost cameras. The dataset 
includes approximately 43 minutes of video footage, equivalent to 77,547 image frames, 
collected in a developing country context. These images represent three road surface types: 
asphalt, paved, and unpaved, each of which is further subdivided into two or three condition-
specific classes.

To prepare the RTK dataset for modeling, images were divided into training (80%, 29,283 
images), validation (10%, 6,066 images), and test (10%, 6,066 images) sets. Preprocessing steps 
included cropping the bottom two-thirds of each image to focus on road surfaces and resizing 
images to meet the input requirements for the selected models (224×224 pixels for ResNet50 
and 299×299 pixels for InceptionV3).

Experimental results highlighted the strengths and limitations of the models. ResNet50 
demonstrated near-perfect accuracy in identifying the asphalt class and high accuracy for the 
paved class. However, it struggled with distinguishing between paved and unpaved surfaces, 
an issue that stemmed from the visual similarity between these classes in the RTK dataset. 
InceptionV3 exhibited similar trends, reinforcing the difficulty of differentiating paved and 
unpaved surfaces using the given dataset.

2.3.2.2. Observations from Initial Work

The classification of Asphalt surfaces was highly accurate, but significant errors occurred in 
detecting the Unpaved class due to the overlap in appearance between Paved and Unpaved 
images within the RTK dataset. These challenges underscored the need for careful preparation 
of datasets and clear definitions of road surface types to improve model performance. For 
practical applications, such as those supporting United Nations missions, datasets had to be 
personally collected to better reflect real-world conditions.

The datasets from the UN Global Service Center revealed notable differences compared to the 
RTK images, particularly in the Unpaved class, which encompassed a broader range of surfaces 
such as gravel, rock, dirt, and sand. Consequently, the project adopted a three-class definition—
Asphalt, Paved (e.g., cement), and Unpaved (including all other surfaces)—to better align with the 
variability observed in real-world road conditions.
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2.3.3. Interoperability Framework Design

Figure 11 — Geo-AI API Design

The Geospatial Situation Awareness Platform begins with dashboard camera images that 
capture the surrounding environment, incorporating GeoPose, TDML, and image metadata. The 
GeoAI API pipeline processes this data by extracting spatial information, classifying road types 
using machine learning models, and appending GeoPose metadata for persistence. Finally, the 
processed data is integrated into the visualization module, enhancing geospatial awareness and 
supporting informed decision-making.

To extend the current road type classification system and address existing challenges, the 
development of a Geo-AI analysis interoperability framework takes priority. This effort, see the
Helyx API structure, involves designing a prototype API and enabling workflows compliant with 
OGC standards. The framework creates a reusable and reproducible machine learning (ML)-
driven object detection system integrated within an Urban Digital Twin. By aligning ML training 
objectives with overarching technical goals, this system leverages input imagery formats and 
metadata developed by D101 participants. Additionally, the output training data and metadata 
follow the Training DML standard, ensuring consistency and compatibility across applications.
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2.3.3.1. Requirements Analysis

The API focuses on providing flexible and reusable capabilities within the OGC API Standards 
framework. It enables the labeling and classification of road types and conditions based on 
supplied input images. Leveraging OGC API Processes, the API streamlines workflows for pre-
processing, image classification, and post-processing of data. Comprehensive documentation 
of steps and parameters forms an integral part of the API design, ensuring transparency and 
reproducibility in its operation. To minimize discrepancies, a stable process ensures consistent 
results for identical data inputs across multiple executions. Furthermore, the integration of 
GeoPose and Training DML data collection and transmission ensures continuity and alignment 
throughout the classification process.

2.3.3.2. Technical Design

To promote reproducibility and cross-platform functionality, development takes place within 
Docker containers. These containers host the required environment, with dependencies such 
as Torchvision, Flask, and Swagger installed and managed through Dockerfiles. This approach 
facilitates an automated and repeatable deployment process suitable for both testing and 
production environments.

The API supports pre-trained models to ensure seamless classification of input data without 
requiring real-time model training. Collected training data, formatted in TDML, converts into 
PyTorch datasets to support model training and evaluation. This architecture emphasizes 
modularity, enabling the integration of new datasets or models without disrupting the system’s 
foundational design.

2.3.3.3. Deployment Considerations

The API deploys in an Azure-hosted environment with exposed endpoints accessible to 
other components within the Urban Digital Twin project. These endpoints facilitate seamless 
interaction between systems, enhancing collaboration and interoperability. To optimize data 
handling and minimize bandwidth demands, the system explores using Amazon S3 buckets 
for storing temporary or returned data and images. This approach balances efficiency with 
scalability, ensuring robust and accessible system performance across diverse user scenarios.

2.3.3.4. API Design/Endpoint Overview

Geospatial Situation Awareness Platform:

• Begins with Images from dashboard cameras that capture the surrounding environment.

• This data, including GeoPose, TDML, and image metadata, flows into the GeoAI API 
pipeline.
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GeoAI API Pipeline:

• Parsing TDML & GeoPose Data: Extracts spatial information and associated image 
metadata necessary for further processing.

• Image Classification: Determines the road type (e.g., asphalt, concrete, unpaved) using 
machine learning models, as shown in the API’s image classification capabilities.

• Appending GeoAI Classification Results: The classified data, along with GeoPose 
metadata, is appended and persists for further use.

Output & Visualization:

• The processed GeoPose and road classification data are made available to the visualization 
module, enhancing geospatial awareness and decision-making.

2.4. Inter-module Interoperability
 

Figure 12 — Inter-module Interoperability Workflow

Multiple OGC API-compliant data interfaces based on the deliverables’ data provide interactive 
services for the deliverables.
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2.4.1. OGC API-Features

Deliverable D103 provides both training data/datasets interfaces and Geo-AI inference result 
interfaces conforming to the OGC API-Features, which provides access to the training dataset 
through network for D102 model training and testing, and D104 visualization.

Specifically, the endpoint of OGC API-Features provides web access to training data and labels. 
The format of the training dataset is encoded according to the encoding schema of the TDML 
standard, and the GeoPose data is expanded into the meta-information of the image data. At the 
same time, two data management methods are provided: data bypass and storing data in local 
server.

2.4.2. OGC API-Tiles

A raster tile data access interface conforming to the OGC API-Tiles is provided to D104 for 
ground noise data visualization.

2.4.3. OGC API-3D GeoVolumes

The D103 provides interfaces to access 3D data conforming to OGC API-3D GeoVolumes for 
D104 visualization. Formats of accessible 3D data include 3D Terrain, 3D Building Model and 
GLB format data with geo references.

2.4.4. Interoperability Implementation

The inter-module interoperability implementation utilizes OGC API standards, specifically 
the GeoVolumes API. This development builds upon previous use cases that are implemented 
by WiTech, including the OGC Container and Tiles Pilot (2020), the OGC Interoperable 
Simulation and Gaming Sprint (2020-2021), and OGC Testbed-18: Building Energy Spatial 
Data Interoperability. These initiatives have enabled the delivery of various 3D geospatial data 
formats across multiple client implementations.

The CityGML building model, as described in Clause 2.1, is converted to 3D Tiles using Feature 
Manipulation Engine software and hosted on WiTech’s GeoVolumes server. Additionally, the 
Digital Elevation Model (DEM) from Gaia3D, provided in GeoTIFF format, is converted to a 
quantized mesh format using the Cesium Terrain Builder developed by TUMunich and is also 
hosted on the GeoVolumes server. The noise modeling results from the OpeNoise Map plugin 
for QGIS is converted to a point cloud and, subsequently, to 3DTiles (point cloud format) before 
hosting it on OGC APIs collection services.

In this pilot, the use of the OGC API Collections was expanded to include not only 3D geospatial 
data but also noise simulation data and Training DML imagery data within the same service 
platform. By doing so, the versatility of the OGC API standards in handling diverse data types 
is demonstrated. The noise simulation results from the OpeNoise Map plugin for QGIS were 
integrated alongside the 3D collections, enabling comprehensive environmental analyses. 
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Additionally, the Training DML imagery data was incorporated into the platform, facilitating 
enhanced visualizations and interoperability across different client implementations. This unified 
approach underscores the scalability of the GeoVolumes server and the effectiveness of OGC 
APIs in delivering a wide range of geospatial data formats.

The service is designed to comply with the OGC API-Common foundation resources, which 
include a landing page, conformance declaration, and collections. As part of the OGC API family 
of standards, it facilitates easy sharing, consumption, and filtering of 3D geospatial resources 
via the web using defined resource-centric APIs. Instead of accessing geo-data from various 
vendors, users can leverage the API to manage data heterogeneity and access resources from a 
single source. An overview of the OGC API resource path is provided in the Annex.

The data server has been implemented using Node.js and the Express.js web framework and is 
publicly available. This implementation adheres to the development and design guidelines of the 
OGC API architecture. The services provided by WiTech and WHU have been deployed and are 
publicly accessible.

2.5. Visualization
 

Figure 13 — Visualizing Noise Modeling Results in A Digital Twin Environment

Visualizing the noise modeling results in a digital twin environment plays a crucial role in 
maximizing the understanding and utilization of noise analysis data. Visualization provides 
an intuitive grasp of spatial distribution and temporal changes in noise, supporting important 
decision-making processes in urban planning and design. This project uses Cesium.js, an 
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open-source tool, for rendering. Building data is visualized in 3D Tiles format, while terrain is 
visualized in Quantized Mesh, supported by Cesium.

The 3D visualization client developed by WiTech effectively leverages the Cesium JS framework 
to integrate urban noise data from OGC API services, particularly derived from Deliverable 
D103. This client seamlessly combines various geospatial data formats, enhancing its capability 
to provide detailed visualizations. The key components include:

1. CityGML Building Model: Utilizes the Gaia3D data in 3DTiles format for rendering 
detailed 3D representations of urban structures.

2. GeoTiff DEM Model: Incorporates a Digital Elevation Model (DEM) from Gaia3D 
in Quantised Mesh format, enabling realistic terrain visualization.

3. 3D Noise Data: Integrates noise data from the OpeNoise Map plugin of QGIS, 
presented in 3DTiles (Point Cloud) format for an accurate portrayal of noise 
dispersion in three dimensions.

4. Ground Noise Data: Utilizes raster tiles from the OpeNoise Map plugin, providing 
a comprehensive view of ground-level noise across the urban landscape.

This combination allows for an immersive exploration of urban environments, facilitating analysis 
and decision-making related to noise pollution and its impacts on urban planning.

The client adopts a straightforward static website architecture, utilizing HTML, JavaScript, and 
CSS. This lightweight design approach ensures several advantages:

1. Accessibility: The static structure allows for easy access across different devices 
and platforms, enabling users to visualize data without complex setups.

2. Ease of Use: The simplicity of the design facilitates intuitive navigation, making it 
user-friendly for both technical and non-technical users.

3. Performance: By leveraging a lightweight framework, the client ensures quick 
loading times and efficient rendering of 3D models, enhancing the overall user 
experience.

The combination of CesiumJS with a clean web architecture promotes effective visualization 
of urban noise data while prioritizing accessibility and usability. The 3D visualization client is 
available online. This implementation not only visualizes urban noise analysis within the digital 
twin but also showcases the value of OGC service interoperability to external stakeholders. 
By leveraging integrated geospatial systems, the client provides actionable insights through 
intuitive and effective visual representation. This work highlights the potential of interoperable 
OGC standards to advance urban planning and analysis through enhanced data visualization 
capabilities.
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2.6. Stakeholder Engagement
 

2.6.1. Overview

The purpose of this project is to integrate various functionalities into an ecosystem of Urban 
Digital Twin. When building an urban digital twin, the integration of multiple modules is 
essential and the interoperability between each module, therefore plays a crucial role. To test 
and evaluate this interoperability, OGC standards are applied through the Urban Digital Twin 
Interoperability Pilot Project (UDTIP). Multiple stakeholders are participating in this UDTIP as 
shown in Figure 14.

Figure 14 — Stakeholders

Stakeholders are broadly divided into three categories: Sponsors or User Groups, Participants 
or Developer Groups including OGC coordinating both groups, and Potential Stakeholders. The 
roles of each group can be summarized as follows:

• Sponsor: This group sponsors the project, specifies deliverables and requirements, and is 
responsible for reviewing the outcomes of the UDTIP. LH has been a central organization 
in adopting and utilizing urban digital twins in Korea. Although not a sponsor, the UN 
is included among the users. The UN participates as a user in this pilot project with a 
particular need for urban digital twin functionalities centered on its UN Camps.

• Participants: This group consists of teams responsible for developing all the functionalities 
of the UDTIP and submitting the final deliverables. It is highly recommended to provide 
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the deliverables as open source software. The table below summaries the teams for each 
deliverable.

 
Table 1 — UDTIP Participants and Respective Deliverables

 DELIVERABLES TEAM

D001 Engineering Report
UCF (University of Central Florida, USA), HSR+ (Health 
Service Research, USA)

D100 Noise Modeling Interoperability WiTech (Germany), Gaia3D (Korea)

D101 Camera Imagery Interoperability UCF, WHU(Wuhan University, China)

D102 Geo-AI Analysis Interoperability Helyx (UK), PNU (Pusan National Univ. Korea)

D103 Inter-Module Interoperability WHU, WiTech

D104 Visualization Gaia3D, WiTech

D105 Stakeholder Engagement PNU

• Potential stakeholders: The outcomes of UDTIP can be used as a reference for other 
Urban Digital Twin projects. Any stakeholders involved in future projects aiming to build 
Urban Digital Twins based on OGC standards can potentially benefit from these outcomes. 
In particular, since UDTIP has been developed primarily using open-source technology, it 
offers high scalability. Organizations with broad user bases, such as the UN, are supposed 
as key potential stakeholders for this project.

2.6.2. System Architecture and Interfaces between Components

The overall structure of the system is depicted by Figure 15, where it is divided into two 
sections: one supporting Noise Analysis and the other supporting object detection/classification 
by Geo-AI.
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Figure 15 — Architecture

The Noise Analysis system, as shown in Figure 16, is primarily composed of the following 
components: a Data Collection Module, an Urban Noise Analysis Module, a Visualization 
Module, and the UDTIP Platform, which manages the interfaces between these modules. The 
pipeline and corresponding interfaces are summarized as follows:

Figure 16 — Interfaces for Noise Modeling Subsystem
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1. The Data Collection Module provides a 3D data model of the test site and a 
traffic profile in CityGML 2.0 data, then transmits it to the UDTIP Platform. The 
interface for this transmission uses OGC API to transfer the CityGML data.

2. The UDTIP Platform forwards the received data to the Noise Analysis Module. 
The interface for this step also uses the OGC API.

3. The Noise Analysis Module converts the analysis results into a format suitable for 
visualization (such as 3D tiles) and sends them back to the UDTIP Platform.

4. The UDTIP Platform then bypasses the visualization information received from 
the Noise Analysis Module to the Visualization Module. For detailed information 
on the interfaces required in the above process, please refer to Clause 2.4.

Figure 17 — Interfaces for GeoAI

The Geo-AI functionalities, as shown in Figure 17, consist of a Data Collection Module for 
gathering labeled training data from camera images, a Geo-AI Analysis Module that performs 
deep learning to detect objects, a Visualization Module to display analyzed results, and the 
UDTIP Platform, which manages the interfaces among these components. The operational 
pipeline is similar to that of Noise Analysis and can be summarized as following:

1. Data Collection Module: Images are first captured from on-site cameras using 
smartphones mounted on vehicles. The images are labeled, and data including 
GeoPose (containing image data, geo-references, location, and FoV) along with 
Training DML data (for labeling) are sent to the UDTIP Platform.

2. The UDTIP Platform forwards the data received from the Data Collection Module 
to the Geo-AI Analysis Module.

3. The Geo-AI Module detects or classifies objects and sends the detected object 
information with geo-referenced data back to the UDTIP Platform.
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4. Finally, the UDTIP Platform transmits the visualization data from the Geo-AI 
Module to the Visualization Module. The interfaces required in this process are 
based on OGC API, with further details available in the description of D103.

2.6.3. Requirements and Inputs from Sponsors

The sponsor of this pilot project is LH (Korea Land and Housing Corporation), a national 
corporation responsible for urban planning and new town construction. Since urban planning is 
its primary business, a Digital Twin is a crucial system for LH. With recent advancements in IT 
technology, creating a virtual city, especially an Urban Digital Twin as well as physical cities has 
become a critical task for LH. Therefore, this pilot project to build an Urban Digital Twin based 
on OGC standards holds significant importance for LH.

The main expectation of this pilot project from LH is to create a reference model for building an 
Urban Digital Twin based on OGC standards. Two major aspects were considered in this regard. 
The first aspect is to provide a geospatial framework for the Urban Digital Twin by developing 
a noise analysis function based on a 3D city model. The second aspect is to incorporate recent 
progress of Geo-AI technologies and specifically a function for the classification and analysis 
of road conditions. The goal is to build a Digital Twin based on OGC standards and validate 
the interoperability supporting these two applications. The specific objectives are outlined as 
follows;

• Develop a Pilot plan to implement digital twin interoperability scenarios and a supporting 
standard digital twin API for Urban noise analysis and Situational analysis of geo-
referenced still and moving imagery for use cases

• Prototyping open standard interfaces for:

1. Data collection from the real world to an Urban Digital Twin

2. Data exchanges between UDTIP and analytic processes

3. Presentation of analytic processing results

• Collaboratively exploring best tools and representations through co-design with scientists, 
technology developers, and decision makers to develop, test, and validate advanced 
interoperability and integration methods for Urban Digital Twins.

2.6.3.1. Functional Requirements and Inputs for Noise Analysis

As noise is a critical factor in urban planning, the sponsor requests the function to analyze noise 
level in urban area as below;

• Estimate noise level at any given point considering the traffic conditions such

1. noise level at any point at surface
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2. noise level at any point of given height

3. noise level on building wall surface

• Visualization of noise level via web portal in 3D

In order to carry out the functions above, LH provided the following data for input;

• 3D City Model: CityGML with LoD 1 and 2 including mainly buildings, generated from 
urban planning profile

• Terrain Data: OGC GeoTIFF

• Traffic Profile

These data sets were generated by Gaia3D from the raw data and urban planning profile.

2.6.3.2. Functional Requirements and Inputs for Geo-AI

The required functions for Geo-AI applications involve the classification and analysis of road 
surfaces. Specifically, this includes detecting objects such as road surface materials, damage 
conditions, and dumping objects on roads. The classification of road surface material follows 
the standards of OpenStreetMap, which has been heavily used as base map by the UN. The 
detail requirements and road surface classification are explained in Annex C. The application 
site for this pilot project has been designated as the UN VMC (Verification Mission in Colombia) 
camp. Due to constraints of resources, the project has initially categorized road surfaces into the 
following three types.

• Asphalt Road

• Paved Road

• Unpaved Road

A deep learning model is trained using a set of labeled image data. When camera images or 
videos collected from mission vehicle are provided with geo-reference data, the pre-trained 
model is applied to classify the data in real-time into the three categories mentioned above. 
The results are then visualized on a map. For these functionalities, input data was provided 
with the cooperation of the UN VMC and the UNGSC (UN Global Service Center). Specifically, 
they supplied training data with labeled geo-referenced image data. Although the classification 
of road surface for this pilot project is limited, it may be easily extended to cover more detail 
categories if the corresponding training data set would be provided.
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3 OUTLOOK
 

The application of noise modeling using CityGML building and road network data has 
provided foundational insights into noise propagation in urban environments. Leveraging the 
OpenNoise tool integrated with QGIS, simulations for day and night scenarios offer a baseline 
understanding of noise impacts across time and elevation. Future advancements should focus 
on integrating real-world sensor data to refine noise source estimations and incorporating 
additional factors such as road surface characteristics, traffic volume, and vehicle speed. 
Expanding the model’s capacity to simulate diverse environmental conditions and employing 
adaptive methodologies for multi-elevation analysis will further enhance its utility for urban 
planning. This iterative approach supports more precise noise assessments, enabling effective 
mitigation strategies and fostering sustainable urban development.

The successful implementation of D101 has established a robust framework for capturing and 
preprocessing geopose-referenced imagery datasets. This interoperability supports downstream 
modules such as Geo-AI model training (D102) and visualization (D104). Future efforts should 
focus on enhancing data acquisition through higher-resolution sensors and more precise 
timestamp synchronization techniques. Expanding the adaptability of the TDML-AI format 
to incorporate evolving standards will streamline module interoperability and improve cross-
platform collaboration. Continued automation of labeling and processing workflows will be 
critical to maintaining scalability and efficiency.

A key priority moving forward is to establish clear and definitive criteria for classifying road 
surface types, ensuring team consensus on the precise definitions of “Paved” and “Unpaved.” 
This alignment is essential for consistency in data interpretation and application. While awaiting 
a labeled dataset from the UN, the team will focus on developing models using public datasets 
and generating synthetic data samples based on the agreed-upon class definitions. Additionally, 
the input and output modules of the classification model will be designed to comply with 
interoperability standards, enabling seamless integration and data exchange with broader 
systems. These steps will enhance the model’s applicability and readiness for deployment in real-
world scenarios.

The adoption of OGC API standards across modules highlights a scalable approach to inter-
module data exchange, particularly in the distribution and visualization of training datasets. By 
integrating OGC API-Features, API-Tiles, and API-3D GeoVolumes, D103 effectively bridges 
the gap between training data and inference visualization, ensuring compatibility and seamless 
access to diverse data types. Future efforts should focus on enhancing data encoding schemas 
and implementing real-time data management techniques—such as dynamic bypassing and 
distributed server networks—to strengthen system resilience and expand interoperability across 
varied operational contexts.

The integration of visualization tools into digital twin environments has proven instrumental 
in enhancing the interpretability and utility of noise modeling data for urban planning. By 
leveraging 3D Tiles and Quantized Mesh formats, the project ensures efficient, high-resolution 
rendering of complex urban and terrain data while maintaining compliance with interoperability 
standards. Future advancements should focus on refining real-time data handling capabilities to 
address dynamic urban scenarios. Developing sophisticated visualization techniques—such as 
adaptive rendering based on user interaction or advanced noise analysis legends—will further 
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enhance decision-making processes. Expanding support for additional data formats and open-
source visualization tools will also contribute to the robustness and scalability of the system.

Stakeholder engagement remains pivotal in the development and implementation of Urban 
Digital Twin Interoperability Pilot Projects (UDTIP). By categorizing stakeholders into Sponsors, 
Users, and Participants, this initiative fosters collaborative innovation, aligning diverse expertise 
to achieve module interoperability. Sponsors—such as LH and the UN—provide critical user 
insights and strategic requirements, while developer groups ensure the technical realization of 
deliverables, often contributing as open-source projects. Sustaining this engagement model is 
essential for refining interoperability pipelines, enhancing real-world testing environments, and 
adapting to evolving user needs. Expanding participation to include additional user scenarios
—such as emergency response and urban resilience—and fostering stronger feedback loops 
between Sponsors and Participants will strengthen the project’s applicability. This collaborative 
ecosystem offers a robust foundation for advancing urban digital twin applications globally.

This series of Urban Digital Twin (UDT) pilots demonstrates the transformative potential of this 
technology for cities and their residents. We recommend incorporating healthcare use cases 
in future pilots to highlight UDT’s ability to revolutionize urban healthcare. This is especially 
relevant in Korea, where health expenditure surged by 208,900% between 1970 and 2022, with 
healthcare accounting for 13.6% of general government spending in 2022.

The healthcare industry stands to benefit from enhanced operational efficiency, improved health 
outcomes, and reduced costs through real-time visibility and what-if analysis of resources, 
hospital bed occupancy, device availability, and patient flow. Key applications include remote 
patient monitoring, personalized medicine, and chronic disease management—enabling more 
proactive, data-driven healthcare decisions.

Furthermore, integrating healthcare with broader UDT applications—such as urban noise 
monitoring and situational imagery analysis—can help mitigate health risks while maximizing 
existing investments. This approach also engages a broader community within the digital twin 
ecosystem, unlocking greater value from UDT initiatives.

We encourage the Land & Housing Corporation to explore healthcare use cases and extract 
health-related insights from non-health pilots, while also surveying the Korean healthcare sector 
for potential industry applications. More details are provided in Annex B.

3.1. Collaboration between OGC, OSGeo, and UN
 

The outcomes of UDTIP can be used as a reference for other Urban Digital Twin projects. 
Therefore, any stakeholders involved in future projects aiming to build Urban Digital Twins 
based on OGC standards can potentially benefit from these outcomes. In particular, since UDTIP 
has been developed primarily using open-source technology, it offers high extensibility. The 
availability of the open source software used or developed by the project is summarized in
Annex D. Organizations with broad user bases, such as the UN, are supposed as key potential 
stakeholders for this project.

A strategy to implement international cooperation is presented in this section. A simplified 
representation of these strategies is shown in the following Figure 18. The international 
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organizations mentioned in this figure are all multilateral in nature and possess significant 
recognition and influence. First, the UN Open GIS Initiative plays a key role in connecting 
the large-scale demand of the United Nations with open GIS software technology. OGC and 
OSGeo (Open Source Geospatial Foundation) are the most important international organizations 
responsible for the development of open spatial information technology serving as key suppliers. 
Facilitating cooperation among these three international organizations is a crucial strategy 
for international collaboration in spatial information. This aligns with the comprehensive 
cooperation strategy between demand and supply entities.

Figure 18 — Collaboration between OGC, OSGeo, and UN

The relationships and roles of these organizations can be summarized as shown in the figure 
below. First, the OGC provides the foundation of open spatial information technology for 
standards. Based on this foundation, OSGeo develops open-source spatial information software. 
The developed software is then applied to various UN projects and related agencies through the 
UN Open GIS Initiative. The role of the UN Open GIS Initiative is extensive. Its primary role is 
to supply open-source software required by the UN, but ultimately, it aims to build and manage 
a community encompassing UN-affiliated organizations and international activities connected 
to the UN. This community is closely related with the development of human capacity for the 
effective and sustainable use of open-source software.

Figure 19 — Roles of OGC, OSGeo, and UN
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Providing open geospatial information solutions to the UN or developing countries is an 
important strategy. Either existing open spatial information software can be provided or new 
solutions can be developed through international cooperation when necessary. An international 
cooperation in open spatial information aims to support the installation and deployment of 
these solutions for the use by the UN or developing countries and to establish its sustainability. 
The most crucial point to consider is that the goal should not merely be to deliver a single 
solution to the target UN organization or country, but rather to provide a comprehensive 
ecosystem. Offering just a single solution makes it difficult to ensure sustainability. It is desirable 
to provide a solution that also includes human capacity-building and institutional support. 
While previously developed solutions have used traditional technologies, additional work is 
required to apply emerging technologies as open solutions. For instance, there is a high demand 
for technologies such as Geo-AI spatial information, digital twins for urban environments, and 
IoT-based situational awareness technologies. Although individual technologies have been 
developed, there is still a challenge of geospatial information solutions that can fully apply 
them to the fields. These gaps can be addressed through an international cooperation between 
three organizations – OGC, OSGeo, and UN Open GIS initiative as described earlier. A detailed 
strategy for development is illustrated in the figure below;

Figure 20 — Roadmap of Collaboration

• Step 1 — Standard-Based System Integration Development: Typically, solutions are 
developed by integrating multiple components where OGC standards play a crucial 
role. Integration development can be facilitated through COSI (Collaborative Solutions 
and Innovation Program) under OGC. This program collaborates on the development of 
integrated systems using OGC geospatial standards.

• Step 2 – Open-Source Project Organization: While the results developed through OGC’s 
COSI are often one-time outcomes, we need to transform them to sustainable structures. 
The Incubation project under OSGeo may serve this purpose. This project helps to 
establish a technical community for ensuring the sustainability of open-source solutions. 
Once a solution has graduated from OSGeo’s Incubation project, it is considered to have 
an established sustainable international community capable of managing it.

• Step 3 — Field Application: Once a technically sustainable solution is created through 
OSGeo, the role of building an ecosystem for field application may be handled by the UN 
Open GIS Initiative. This initiative’s Working Groups, such as WG 1 for hybrid architecture, 
WG 2 for capacity building, and WG 5 for Geo-AI may be responsible for providing 
technical support and capacity-building training for field implementation.

• Step 4 — Building and Operating an International Community: For the sustainable 
and expansible applications of open geospatial solutions deployed in the field, the 
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organizational resources such as UN-GGIM can be utilized. Since this organization involves 
the largest number of stakeholders related to geospatial information, it is the most suitable 
body to support the expanded application of developed solutions.

This process is primarily designed for newly developed open spatial information solutions but 
can also be applied to existing ones. For instance, if a solution has already been developed and 
is being used within the UN, it can be enhanced by establishing a robust technical community 
through Step 2 and expanding its reach through Step 4.

3.1.1. Extensibility

The Geo-AI application implemented in this project is limited to the classification of road 
surfaces into three categories: asphalt, paved, and unpaved, due to the constraints in collecting 
training data within the given timeframe. However, in real-world applications, road surfaces 
can be classified into more types. Additionally, the Geo-AI function can be expanded to not 
only classify different types of road surfaces but also to identify the types and severity of 
road surface damage, as well as detect objects on the road such as dumped objects along the 
roadside. Extending the capabilities of Geo-AI can be easily achieved by TrainDML for AI, an 
OGC standard used in this pilot project. The method on how to extend TrainDML for AI is 
explained in TrainDML for AI.
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4 SECURITY, PRIVACY AND ETHICAL
CONSIDERATIONS
 

During the course of this project, a thorough review was conducted to identify any potential 
security, privacy, and ethical concerns. After careful evaluation, it was determined that none of 
these considerations were relevant to the scope and nature of this project. Therefore, no specific 
measures or actions were required in these areas.
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A ANNEX A
(NORMATIVE)
TECHNICAL DETAILS
 

A.1. Annex for D100
 

A.1.1. D100 — WiTech Noise Analysis Workflow

Figure A.1 — Noise Analysis Workflow

Noise modeling was conducted using CityGML building and GML street models to develop a 
foundational noise propagation model with the OpeNoise tool integrated into QGIS. The model 
simulated day and night noise levels using synthetic data, assuming uniform noise sources from 
road surfaces, while factoring in environmental interactions such as reflections and diffractions. 
To enhance accuracy, future work will integrate real-world sensor data and consider variables 
like traffic volume, speed, and surface characteristics for more precise noise assessments across 
different urban elevations.
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A.1.2. D100 — Gaia3D

The source data of CityGML data is the urban planning data of Wangsuk District 2, Namyangju, 
Korea, which is the result of LH’s past urban planning work and was provided by the sponsor, 
LH. The data consisted of building layout plans, plan elevations (future terrain), and detailed 
drawings, which were provided in SHP, GeoTIFF (DEM), and DXF formats for the building 
layout plans and detailed drawings. The SHP files were first processed into GeoJSON with 
only the height (distance between top and bottom planes) as an attribute, which is necessary 
for converting them into three-dimensional objects, and the DXF files were first processed 
into GeoJSON by extracting the geometry of the roads and combining it with the attributes 
related to road noise sources recorded in the environmental impact assessment report of the 
city plan, all of which were done manually. The GeoJSON files from the first round of processing 
were converted to CityGML using FME software. The building layout plan GeoJSON file was 
combined with the DEM and converted to CityGML with absolute heights, and Createch, a 
company specializing in noise analysis provided feedback on the results of combining the road 
noise source GeoJSON and DEM, and based on this, a second GeoJSON with three-dimensional 
information was created and converted to CityGML using FME. (The building layout plan and 
road noise source GeoJSON and DEM were provided to Createch as inputs for noise analysis).

1. Work with FME (ETL)

a) Creating Building.gml

Figure A.2

FME data conversion process

b) Creating noiseSources.gml

Figure A.3

FME data conversion process

2. CityGML Properties

a) Building

i) Description

• Format: CityGML
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• EPSG:5186

• Destination: Wangsuk 2 District, Namyangju, South Korea

b) Noise Sources

i) Description

• Format: CityGML

• EPSG:5186

• Destination: Wangsuk 2 District, Namyangju, South Korea

• The noise sources used in this study are limited to road noise 
ources. This is because the target area, Wangsuk 2 District, 
Namyangju, is a new city, and the analysis was based on data 
generated only during the planning stage. In fact, there are 
various types of noise sources such as airplanes and subways, 
but only road noise data was processed in this project.

• Road noise sources were defined and deployed at a low level 
compared to the existing CityGML-based structure. This 
was chosen to increase data usability and interoperability by 
clearly and simply defining the necessary information

ii) Road Width

• Property name: width

• Property type: double

• Description and units: Represents the width of the road in 
meters.

• Example value: 10

iii) Number of Lanes

• Property name: number of lanes

• Property type: int

• Description and units: Indicates the number of lanes that exist 
on the road.

• Example value: 3

iv) Number of Small Vehicles per Hour at Day

• Property name: number of small vehicles per hour at day
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• Property type: int

• Description and units: The number of small vehicles that pass 
the road per hour during daylight hours (vehicles/hour).

• Example value: 181

v) Number of Large Vehicles per Hour at Day

• Property name: number of large vehicles per hour at day

• Property type: int

• Description: Represents the number of heavy vehicles passing 
the road per hour during the daytime.

• Example value: 9

vi) Number of Small Vehicles per Hour at Night

• Property name: number of small vehicles per hour at night

• Property type: int

• Description: Represents the number of small vehicles passing 
through the road per hour at night.

• Example value: 60

vii) Number of Large Vehicles per Hour at Night

• Property name: number of large vehicles per hour at night

• Property type: int

• Description: Represents the number of heavy vehicles passing 
through the road per hour at night.

• Example value: 3

viii) Speed of Small Vehicles at Day

• Property name: speed of small vehicles at day

• Property type: double

• Description: Represents the average speed of small vehicles in 
km/h during the daytime.

• Example value: 30
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ix) Speed of Large Vehicles at Day

• Property name: speed of large vehicles at day

• Property type: double

• Description: Represents the average speed of heavy vehicles 
in km/h during the daytime.

• Example value: 30

x) Speed of Small Vehicles at Night

• Property name: speed of small vehicles at night

• Property type: double

• Description and units: The average speed of small vehicles at 
night, in km/h.

• Example value: 30

xi) Speed of Large Vehicles at Night

• Property name: speed of large vehicles at night

• Property type: double

• Description and units: The average speed of heavy vehicles at 
night, in km/h.

• Example value: 30

xii) Surface status code

• Property name: surface status code

• Property type: int

• Description and units: A code indicating the pavement 
condition of the road. (No units)

• 0: Flawless sandy asphalt, asphalt concrete, mastic asphalt

• 1: Concrete, sandy asphalt with imperfections

• 2: Packaging with a flat surface

• 3: Other Packaging

• Example values: one of 0, 1, 2, or 3
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xiii) Applied Additional Noise Reduction Method

• Property name: applied additional noise reduction method

• Property type: string

• Description: Description of noise reduction methods, if any, 
that are not applied in the noise modeler.

• Example value: Apply a road paving method developed by 
company YYY in 202X.

xiv) Noise Reduction Effect by the Method

• Property Name: Noise reduction effect by the method

• Property type: double

• Description and units: The noise reduction effect in decibels 
(dB) due to the applied noise reduction method.

• Example value: 15

c) DEM (merged_dem_trimmed in GeoTiFF)

i) Description

• Format: GeoTiFF

• Terrain data was originally intended to be provided in

• CityGML format, but due to the large size of the data, the

• data was provided in GeoTiF at 1m, 5m, and 10m resolution.

• Source data (GeoTiff) from TINRelief5.

A.1.2.1. Building Data

Building data from CityGML was converted into 3D Tiles format using a custom-built conversion 
module. Below is an example of the converted and visualized building data.
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Figure A.4 — Visualization of the Generated 3D Tiles in Cesium

Figure A.5 — Visualization of the Generated 3D Tiles in Cesium

A.1.2.2. Terrain Data

A custom-built module was developed to convert the GeoTiff terrain data into Quantized Mesh 
format, and the results are as follows.
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Figure A.6 — Visualization of the Generated 3D Tiles in Cesium

Figure A.7 — Visualization of the Generated 3D Tiles in Cesium
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A.2. Annex for D101
 

A.2.1. D101 — UCF Roadmap

A.2.1.1. Development framework

This framework is developed to achieve camera imagery and Geo-AI analysis interoperability 
within the context of Smart Cities. The workflow diagram is divided into two major components:

• D101 — Camera Imagery Interoperability: This phase focuses on data acquisition and 
processing using cameras and INS (Inertial Navigation System) capture. The raw data 
collected undergoes systematic processing, including video frame sampling, preprocessing 
of INS metadata, synchronization, and conversion into the GeoPose standard in JSON 
format. This ensures that the imagery is geo-referenced and ready for machine learning 
workflows.

• D102 — Geo-AI Analysis Interoperability: The processed data from D101 serves as the 
input for this phase. Key tasks include developing a frame labeling tool and converting 
the processed dataset into the TrainDML standard. The dataset is then used for training, 
testing, and validation in machine learning workflows aimed at image-based object 
detection. This phase supports the development of ML-driven solutions for detecting 
unwanted objects in urban environments.

Figure A.8 — D101 to D102 Workflow
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A.2.2. D101 — UCF Technical Specifications

A.2.2.1. Data Acquisition Methods

Investigated various geospatial camera imagery applications and datasets, including G-Meter, IP 
Webcam Pro, NUS Global Streetscapes and the Road Damage Dataset, to assess their suitability 
for our requirements. The custom build acquisition uses Sensor Logger application that captures 
images in .jpg format, and positioning and orientation data in terms of latitude, longitude, 
altitude, radians (pitch, roll, yaw), and quaternions (qx, qy, qz, and qw).

Where,

• altitude, is in meters as a height above the WGS84 ellipsoid.

• latitude, in degrees. Positive values are north of the equator (-90 to 90)

• longitude, in degrees. Positive values are east of the meridian line (-180 to 180)

 
Table A.1 — Technical Specifications

ACQUISITION METHOD DESCRIPTION FREQUENCY/FRAME RATE

Custom Build
Images: 1798 samples 
INS: 1805 samples

1 Hz 
1 Hz

Hillyfields Bubble: Run 3
Video: 05:35 mm:ss 
INS: 33601 samples

4.91 fps 
100 fps

Kitti-360
Images: 320k 
INS: 4×83,000

10 fps 
10 fps

A.2.2.2. Video Frame Sampling

A.2.2.2.1. Command Line Instructions for Extracting Video Frames

The command used in FFMPEG to extract frames is as follows:

ffmpeg -i input_video.avi -vf fps=<NO. of images>/<per no. of seconds> img%0
<padding No. of digits>d.jpg

Listing A.1

OR
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ffmpeg -i <input_video> -vf fps=<frames_per_second> <output_pattern>

Listing A.2

• <input_video>: The path to the input video file.

• <frames_per_second>: The rate at which frames should be extracted. This can be 
specified as a ratio (e.g., 1/1 for one frame per second).

• <output_pattern>: The pattern for naming the output image files. The %0<padding No.
 of digits>d is used to define the format and padding for the output image filenames.

A.2.2.2.2. FFMPEG Command-line Interface (CLI)

Figure A.9 — FFMPEG Command-line Interface

A.2.2.3. Synchronization

A.2.2.3.1. Video-INS Spatial Synchronization

The image depicts the process of synchronizing video frames and INS metadata, where each has 
a different frame rate (FPS). A synchronization technique aligns the time-stamped INS metadata 
with the corresponding video frames. The result is a georeferenced training sample or frame 
instance, combining visual imagery with accurate spatial data for use in urban digital twin models 
or AI-based analysis.

OPEN GEOSPATIAL CONSORTIUM 24-067R1 54



Figure A.10 — Synchronization of Video and INS Data for Accurate Spatial Analysis

A.2.2.4. Applicable OGC Standard — GeoPose 1.0

A.2.2.4.1. Standardization Targets

Used GeoPose.Composite.Sequence.Series.Regular standardization target to ensure consistent 
encoding of positional and orientation data for interoperability.

Figure A.11 — GeoPose Standardization Targets
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A.2.2.5. GeoPose Standard Conversion

Figure A.12 — GeoPose of Hillyfields Dataset for Run-3
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A.2.3. D101 — Wuhan Camera Interoperability

Figure A.13 — Workflow for D101

D101 is responsible for collecting imagery data with geopose information, which is constructed 
as a training dataset after data preprocessing and data labeling. The training dataset can be used 
for D102 Geo-AI Analysis Interoperability and D104 Visualization. The workflow of D101 is 
shown in figure Workflow for D101.

A.2.3.1. Data Capturing Tool Usage Guide

This chapter will guide you through the process of using data capturing tools to collect data for 
UDTIP.

A.2.3.1.1. Applications Installation

Two applications are used in this chapter. The first one is the GPS Logger. It is used to capture 
GNSS data, and can be installed through Google Play. Make sure this app can run in the 
background. The second app is OpenCamera-Sensors. It is an open-source app and the latest 
apk can be downloaded from GitHub releases.

For both apps, the appropriate permissions should be granted.
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A.2.3.1.2. Application Settings

For OpenCamera-Sensors, accelerpmeter, gyroscope and magnetometer should be enabled and 
the video resolution should be set to Full HD (1920×1080).

A.2.3.1.3. Data Capturing

1. Start recording GNSS Data with GPS Logger.

2. Use the screen recording function that comes with your phone to record your 
screen. It need to be set to 30 fps before recording.

3. Start recording video and IMU data using the OpenCamera-Sensors.

4. Show a clock in front of the camera and stay at least five seconds. This will help 
align the timestamps during data preprocessing.

Figure A.14

A.2.3.1.4. Data Export

• GPS Logger: You can check the recorded trajectories in the trajectory list. And it can be 
exported in kml and gpx format.
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Figure A.15

• Screen Record: The screen recorded video needs to be exported.

• OpenCamera-Sensors: Connect the phone to the PC and export the data from the phone. 
Get data from “DCIM/OpenCamera”.

Figure A.16
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And in this dictionary, export both the video and IMU data.

Figure A.17

A.2.3.2. Data Preprocessing

The collected data need to be preprocessed before being fed into the subsequent process. The 
purpose of data preprocessing is to temporally align the collected data, extract frames from 
videos, and convert raw data into the required format.

The workflow of data preprocessing is shown below. It contains three main stages: frame 
extraction, IMU conversion and frame match. The result of the preprocessing is that the data 
collected by different software will be sampled to a frequency of 1 Hz and provide an unlabeled 
dataset with geopose data in the TrainingDML-AI format.

OPEN GEOSPATIAL CONSORTIUM 24-067R1 60



Figure A.18 — Workflow of Data Preprocessing

A.2.3.2.1. Frame Extraction

Video captured by OpenCameraSensors (main video) doesn’t have any timestamps. To solve this 
problem, screen recording video (support video) is saved to calculate the timestamp for them. 
Specifically, firstly, videos would be cut into frames (main frames and support frames) using 
OpenCV. Then the same frame could be found manually. The timestamp on the support frame 
could be referred as the timestamp for same frame in main frames. Since the main video are 
collected in 30Hz, precise timestamps could be calculated for main frames. It should be noted 
that the timestamp in this stage is the local time. Main frames with timestamp could be used in 
subsequent processes.

A.2.3.2.2. IMU Conversion

The purpose of IMU conversion is to convert the collected IMU data into geopose. The IMU 
data collected by the OpenCameraSensors includes the accelerometer data, gyroscope data, 
and magnetometer data, each with a timestamp. Note that the three data don’t have the same 
frequency and start time, so they should be pre-processed using algorithms such as the Kalman 
filter, converted to 30Hz geopose data for subsequent processing. As it is not the main research 
focus of this pilot, the algorithm for converting IMU data to geopose will not be elaborated 
here. The converted data is encoded in xml format, using x, y, z, w to represent the pose of the 
camera, each pose records a timestamp of the boot time since the mobile phone was booted.
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A.2.3.2.3. Frame Match

This stage aims to match frames, and prepare ready-to-label dataset. The result of this stage is 
images with geopose data. The manual work required at this stage is to calculate the difference 
between the boot time and the local time. This can be done by the frames, which has boot 
timestamp, provided by the app. Then the time in IMU data according to this interpolated value. 
The next step is to sample all the data to a frequency of 1Hz. To simplify the process, the frames 
and geopose data closest to the sampling time of the GNSS data are selected. Therefore, the 
output data has a frequency of 1Hz, which is the same as the lowest of all the data sampled, 
i.e., the GNSS data. The GNSS data collector can be changed if the sampling frequency needs 
to be increased to obtain higher accuracy data. The result of preprocessing will be provided as 
an unlabeled dataset in TrainingDML-AI format. Frames will be organized into frame sequences. 
Metadata including identification, name, amount and geopose data will be recorded in JSON 
format, and because of the extensibility of TDML, labels can be extended into it after the 
annotation.

A.2.3.3. Data Labeling

In annotation stage, Label Studio, an open-source labeling tool, is used to enable collaborative 
labeling of data. The annotation can be exported in JSON format, so that it can be converted 
into TDML format.

A.2.3.4. TrainDML Conversion

The collected data and annotations need to be converted into the TDML format to enable 
interoperability. Specifically, the TDML-format dataset markup files are encoded in JSON format, 
which include:

• Dataset metadata: The dataset metadata includes information such as the id, name, 
dataset size, data provider, created time, and bands.

• Task information: The task information records the tasks for which the dataset can 
be used. In UDTIP, based on the requirements of Geo-AI tasks and the format of data 
annotation, tasks can be either scene classification tasks (scene-level) or semantic 
segmentation tasks (pixel-level).

• Per-image metadata: The metadata for each image includes the image’s id, URL, collection 
time, and geopose. According to the needs of the pilot, geopose is added as an attribute 
to the metadata. Since it is not defined in the TDML standard, it is incorporated into the 
image’s metadata in accordance with the Basic-Quaternion in Geopose 1.0 Data Exchange 
Standard encoding.

• Annotation details: The annotation information includes two aspects: the dataset’s 
category codelist and the annotation results for each image. The codelist is encoded as an 
attribute of the dataset and can be extended according to the task requirements. For this 
pilot, possible categories include: Paved Road, Asphalt Road, Concrete Road, Gravel Road, 
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Dirt Road, and Unpaved Road.The labels defined in the codelist can be referenced in the 
data labels and serve as the annotations for the images.

A demonstration of the TDML conversion result is as follows:

{ 
    "type": "AI_EOTrainingDataset",
    "id": "D101_example",
    "name": "D101_example",
    "description": "Example dataset for UDTIP D101.",
    "version": "1.0",
    "amountOfTrainingData": 47,
    "createdTime": "2025-01-01",
    "providers": [ 
        "UDTIP" 
    ],
    "bands": [ 
        { 
            "name": [ 
                { 
                    "code": "red" 
                } 
            ] 
        },
        { 
            "name": [ 
                { 
                    "code": "green" 
                } 
            ] 
        },
        { 
            "name": [ 
                { 
                    "code": "blue" 
                } 
            ] 
        } 
    ],

    "classes": [ 
        { 
            "key": "Paved Road",
            "value": null 
        },
        { 
            "key": "Unpaved Road",
            "value": null 
        },
        { 
            "key": "Asphalt Road",
            "value": null 
        } 
    ],
    "numberOfClasses": 3,

    "tasks": [ 
        { 
            "type": "AI_EOTask",
            "id": "whu_example",
            "taskType": "Scene Classification" 
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        } 
    ],
    "data": [ 
        { 
            "type": "AI_EOTrainingData",
            "id": "road_0000",
            "dataURL": [ 
                "dataset/frame_0000.jpg" 
            ],
            "dataTime": "2024-12-01",
            "geopose": { 
                "position": { 
                    "lon": 114.35413057,
                    "lat": 30.53005352,
                    "h": 19.744 
                },
                "quaternion": { 
                    "x": -0.6948143326140601,
                    "y": -0.17674656664355012,
                    "z": 0.6955324418081127,
                    "w": -0.04720505021965216 
                } 
            },
            "labels": [ 
                { 
                    "type": "AI_SceneLabel",
                    "class": "Asphalt Road" 
                } 
            ] 
        },
        ... 
    ]
}

Listing A.3 — Example - TDML Conversion Result

A.3. Annex for D102
 

A.3.1. D102 — UCF TDML-AI Pipeline Methodology

The proof-of-concept labeling followed these steps:

1. Evaluate the retrieval of OpenStreetMap (OSM) data via APIs, such as Overpass 
and Nominatim, were evaluated.

a) Position data from GeoPose data could be used as query parameters to 
perform reverse geocoding.

b) The returned data contained OSM data about that specific location, such 
as road classification.
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c) The retrieved classification could be used as a label for the image the 
position data corresponded to.

2. Use downloaded OSM datasets from Geofabrik for deeper analysis.

a) The datasets contained shape files were specific to a region and organized 
by map feature.

b) Use dataset on region’s roads to cross-reference GeoPose location data. 
This process was similar to reverse geocoding but returned data specific 
to roads within the dataset’s respective region.

c) Use road classification from returned data to label images.

Manually annotating images followed these steps: . Evaluate multiple labeling platforms: Label 
Studio, SuperAnnotate, Computer Vision Annotation Tool (CVAT) . Label images using CVAT’s 
magic wand tool. This tool automatically generated bounding boxes around visually similar 
objects. . Export annotation data of labeled images in COCO 1.0 dataset format.

Facilitate the conversion of GeoPose data into the TDML-AI format followed these steps: . 
Reviewed OGC’s documentation, which provided foundational understanding and examples for 
encoding data into JSON formats, based on the TDML-AI standard. . Aggregated all data that 
would be used inputs. GeoPose data was created internally, annotation data was exported from 
CVAT and dataset metadata was written manually. . Created TDML-AI dataset by synthesizing 
data from all inputs. . Validated the created TDML-AI dataset to ensure it met all requirements 
outlined by OGC.

Figure A.19 — Geopose to TDML-AI Pipeline

Testing Specifications for GeoPose Data To evaluate performance improvements that could 
be realized through revising the encoding format for more efficient data extraction, extensive 
testing was performed:

Testing Environment
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OS: Linux (Google Colab)
Processor: x86_64
Python version: 3.10.12

Test Parameters

num_runs: Number of rounds of testing.
num_iterations: Number of executions within each round.

Test Strategies (i.e. methods for structuring GeoPose frame parameters)

• String (current way of encoding parameters)

• Arrays (abstracting the translation and rotation parameters into arrays of values)

• Nested Object (abstracting every parameter value into its own key)

Test Steps

1. Encode a single set of parameters in each strategy

2. Under each strategy, execute code that extracts the latitude and longitude 
parameters a number of times equal to num_iterations.

3. Repeat the prior step a number of times equal to num_runs

4. Adjust test parameters and repeat steps 2 and 3

 
Table A.2 — Test Results

ITERATIONS RUNS
STRATEGY 1 SPEED 
INCREASE (TIMES 
FASTER)

STRATEGY 2 SPEED 
INCREASE (TIMES 
FASTER)

1,000 5 6.98 4.92

10,000 5 7.18 6.31

10,000 10 7.64 6.76

100,000 5 4.02 3.81
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Figure A.20 — Execution Times JSON

A.3.2. D102 — Wuhan Data Labeling Guide

1. Install and start the Label Studio (If there is already an instance, skip this step)

Figure A.21

a) Install: pip install label-studio

b) Start: label-studio start
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c) Open Label Studio at http://localhost:8080.

2. Sign up with an email address and password that you create.

3. Create a project (Skip this step if the project has been created)

a) Name the project.

Figure A.22

b) Import your imagery data.

Figure A.23

c) Choose a label format (Classification task is chosen here as an example).
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Figure A.24

d) Add label choices for the project, and save it.

Figure A.25

4. Start labeling

Figure A.26

a) Select a label for each image.
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Figure A.27

b) Export the result

Figure A.28

c) After all of the images are labeled, you can export your label data from 
the Label Studio.

Figure A.29
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d) It is recommended to be exported in JSON format, and we can convert 
the labels from JSON format to TDML format.

A.3.3. D102 — USC

A.3.3.1. Purpose of Geo-AI for Classification of Road Surface Types

As an example of Geo-AI analysis in D102, we developed an image machine learning model to 
automatically classify road types. For a given geo-referenced image dataset, the classification 
model generates a prediction of road surface types in three classes — Asphalt, Paved, and 
Unpaved.

A.3.3.2. Geo-AI Pipeline

Figure A.30 — Geo-AI Pipeline in D102

Geo-AI analysis follows input/output standard as defined in the OGC GeoPose and TDML. 
Geo-AI module reads an image with corresponding geo-coordinates in the standard form. 
Then, the image is analyzed by a classification model (e.g., road type classifier in this report but 
any other analysis module can be implemented and applied). Analysis result is stored with the 
corresponding geo-coordinates in TDML format.

We used a public dataset, the Road Traversing Knowledge (RTK) Dataset, for road type 
classification modeling, which include labels as the same way we target; Asphalt, Paved, and 
Unpaved. Additionally, we utilized a set of images collected from Internet to augment the 
dataset. The image dataset were captured from low-cost cameras such as smartphones. The 
labelled image dataset was divided into training, evaluation, and test dataset for supervised 
learning.
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Table A.3 — Example of Road Surface Types

<Asphalt> <Paved> <Unpaved>

Multiple deep learning models were applied and evaluated: ResNet50, ResNet1-v2, InceptionV3, 
DenseNet121, and EfficientNet_b0. For evaluation, a larger and diverse road surface test dataset 
was used with varied backgrounds (2506 images per each class). Our experimental results 
demonstrated that ResNet-based models performed strongly across all metrics. ResNet-based 
models are designed to handle deep networks using residual connections to avoid problems 
such as vanishing gradients. This allows them to effectively learn both simple and complex 
patterns. In the road surface type classification dataset, not only color but also texture-based 
features (cracks, granularity, wear, etc.) are important factors and ResNet-based models work 
well with those factors.

 
Table A.4 — Experimental Results of Various Models
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A.3.3.3. Geo-AI Result Visualization

Geo-AI analysis follows standard input/output as defined in OGC GeoPose and TDML. The 
actual locations of the images in RTK dataset are not known but the overall route where the 
images were captured is reported in1. So, we generated synthetic locations of test images. To 
match the number of images in the test dataset, corresponding points along the road network 
were sampled. Each sampled point was assigned a location based on the class label of the 
corresponding image in the dataset. Classification results are shown using colored dots: Blue — 
Paved, Yellow — Unpaved, and Red — Asphalt.

Figure A.31 — Visualization of Road Type Classification Results

1Rateke, T., Justen, K. A., & Von Wangenheim, A. (2019). Road surface classification with images captured 
from low-cost camera-road traversing knowledge (rtk) dataset. Revista de Informática Teórica e Aplicada, 
26(3), 50-64.
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A.3.4. D102 — Helyx

A.3.4.1. Helyx Road Classification API Overview

Figure A.32 — Road Classification API Endpoint Overview

The API developed for this part of D102 enables the management of trained Machine Learning 
models used to classify road surfaces through the use of Image Classification.

Users can load models, interact with uploaded models, and conduct inference on images 
supplemented with TDML and GeoPose data to retrieve a prediction and confidence of the road 
surface type.

A.3.4.2. Model Training

At first, a model with custom weights was trained. The training process involved two distinct 
architectures: SimpleCNN and EnhancedCNN (ResNet50). Each model was designed to classify 
road surface types such as asphalt, concrete, and unpaved roads.

SimpleCNN Architecture
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The SimpleCNN model is a lightweight convolutional neural network (CNN) designed for 
efficient road surface classification. It consists of:

• Three convolutional layers with increasing filter sizes (16, 32, and 64 filters) to extract 
spatial features from the input images.

• ReLU activation functions after each convolutional layer to introduce non-linearity.

• Max pooling layers to reduce the spatial dimensions and retain essential features.

• A fully connected classifier with two linear layers:

• The first linear layer maps extracted features to a 128-unit hidden layer with ReLU 
activation and dropout (to prevent overfitting).

• The final layer maps to three output classes (asphalt, concrete, and unpaved), 
producing logits for classification.

• This model was trained using the cross-entropy loss function and optimized with Adam 
to adjust the model’s weights. Due to its simple structure, SimpleCNN is efficient but 
may struggle with complex variations in road textures.

EnhancedCNN Architecture (ResNet50-based)

To improve classification accuracy, a more advanced architecture based on ResNet50 was also 
trained. EnhancedCNN is a fine-tuned version of ResNet50, leveraging pre-trained weights on 
ImageNet to capture richer feature representations. The ResNet50 backbone consists of 50 
layers, including residual blocks that enable deeper training without vanishing gradients.

The original fully connected layer was replaced with:

• A 128-unit dense layer with batch normalization, ReLU activation, and dropout to improve 
generalization.

• A final output layer that maps features to the three surface types.

This model benefits from ResNet50’s deep feature extraction, allowing it to distinguish fine 
details in road textures. However, it requires more computational resources compared to 
SimpleCNN.

Training Process

Both models were trained on a dataset of road surface images with corresponding labels. The 
training process included:

Data Preprocessing

• Images were resized to 224×224 pixels to match model input requirements.

• Data augmentation (random rotations, flips, and brightness adjustments) was applied to 
improve model robustness.
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• Images were normalized to a [0,1] range for better convergence.

Hyperparameters

• Batch size: 32

• Learning rate: 0.001 (adjusted with decay)

• Optimizer: Adam

• Loss function: Cross-entropy loss

• Number of epochs: 20 (with early stopping based on validation loss)

Evaluation Metrics

• Accuracy: Measures how often the model correctly classifies a road surface type.

• Precision & Recall: Helps assess the model’s ability to distinguish between similar surfaces.

• Confusion Matrix: Visualises classification performance across categories.

Results & Observations

SimpleCNN performed well on clear, well-lit road images but struggled with complex surfaces 
and shadows.

EnhancedCNN achieved higher accuracy due to deep feature extraction but required more 
memory and computation time.

Both models were evaluated on a separate test set, and their performance was logged to track 
improvements over time.

OPEN GEOSPATIAL CONSORTIUM 24-067R1 76



Figure A.33 — Predictions run on 15 Road Surface Images

A.3.4.3. API Endpoints

The Road Surface Classification API provides a set of RESTful endpoints designed for model 
management, inference execution, and performance monitoring. These endpoints allow users to 
upload, enable, and disable machine learning models, as well as run predictions on road images. 
Below is a detailed explanation of each endpoint, its purpose, and how it functions.

A.3.4.3.1. Model Management Endpoints

These endpoints allow users to manage machine learning models within the system, including 
uploading new models, enabling or disabling them, and retrieving model information.

Figure A.34 — Upload a Model

• Endpoint:

• POST /models/upload
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• Description:

• Allows users to upload a .pth model file to the system. The API automatically detects 
the model architecture and stores the model in the archive directory.

• Request:

• uploaded_file: The .pth file containing the trained model weights.

• Response:

• A confirmation message along with the detected model architecture.

• Example Usage:

• A user uploads a model file called simple_model.pth, and the API identifies it as a 
SimpleCNN model.

Figure A.35 — Enable a Model

• Endpoint:

• POST /models/enable/{model_name}

• Description:

• Moves a model from the archive to the active models directory, making it available for 
inference.

• Request:

• model_name:

• The name of the model to enable (without .pth extension).

• Response:

• A message confirming that the model is now active.

• Example Usage:

• A user enables simple_model, allowing it to be used for inference.
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Figure A.36 — List Models

• Endpoint:

• GET /models

• Description:

• Retrieves a list of all active models available for inference.

• Response:

• A JSON object containing the names of active models.

• Example Usage:

• A user checks which models are currently available for inference.

Figure A.37 — Get Model Metadata

• Endpoint:

• GET /models/metadata/{model_name}

• Description:

• Retrieves detailed information about a specific model, including its architecture, 
number of parameters, and file size.

• Request:

• model_name: The name of the model.

• Response:

• A JSON object containing metadata about the model.

• Example Usage:
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• A user queries simple_model and receives its architecture (SimpleCNN), the number of 
trainable parameters, and file size.

Figure A.38 — Load a Model

• Endpoint:

• GET /models/load/{model_name}

• Description:

• Loads a model into memory for inference.

• Request:

• model_name: The name of the model to load.

• Response:

• A message confirming that the model has been loaded.

• Example Usage:

• Before running inference, a user loads enhanced_model into memory.

A.3.4.3.2. Inference Endpoints

These endpoints allow users to perform image classification using the active model.

Figure A.39 — Run Inference on a Single Image

• Endpoint:

OPEN GEOSPATIAL CONSORTIUM 24-067R1 80



• POST /inference/execution

• Description:

• Runs inference on a single image, predicting the type of road surface.

• Request:

• json_string: A JSON-formatted string containing metadata about the image.

• image: The uploaded image file.

• Response:

• The original JSON data with an appended prediction and confidence score.

• Example Usage:

• A user uploads asphalt_road.jpg, and the API classifies it as “asphalt” with a confidence 
of 95%.

Figure A.40 — Run Batch Inference on Multiple Images

• Endpoint:

• POST /inference/batch_execution

• Description:

• Runs inference on multiple images at once, allowing efficient classification of large 
datasets.

• Request:

• json_string: JSON metadata for multiple images.
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• images: A list of uploaded image files.

• Response:

• A JSON object containing predictions and confidence scores for each image.

• Example Usage:

• A user submits 10 images of different roads, and the API returns a classification for 
each.

A.3.4.3.3. Performance & Logging Endpoints

Figure A.41 — Retrieve Performance Metrics

• Endpoint:

• GET /performance

• Description:

• Returns performance statistics such as inference time and memory usage.

• Response:

• JSON object with last inference time and memory usage.

• Example Usage:

• A user checks how fast the model processes images and how much memory it 
consumes.

Figure A.42 — Retrieve Job History

• Endpoint:

• GET /jobs/history

• Description:

OPEN GEOSPATIAL CONSORTIUM 24-067R1 82



• Retrieves a log of previous API requests, including timestamps, endpoints called, and 
responses.

• Optional Parameter:

• limit: (Optional) The number of recent job history entries to retrieve.

• Response:

• A JSON object containing past API calls.

• Example Usage:

• A user reviews past inference requests to track which images were classified.

A.4. Annex for D103
 

A.4.1. D103 — WiTech Inter-module Interoperability

An overview of the OGC API resource path is provided:

 
Table A.5 — The path and result from the OGC API resources.

Resource Path Result

Landing Page / Landing page in JSON or HTML

Conformance 
declaration

/conformance Conformance in JSON

API definition /api API definition in JSON

Collection /collections All Collections in JSON/HTML

Collection (with 
bbox)

/collections?bbox=[bbox]
Filtered collections in JSON/HTML matching the 
bounding box [bbox]

Container /collections/[container_id] Collections of [container_id] in JSON

Container (with 
bbox)

/collections/[container_id]?bbox=
[bbox]

Filtered Collections of [container_id] in JSON matching 
the bounding box [bbox]

Resources
/collections/[container_id]/
[resource_format]

Data resources of [container_id] in the requested 
formats
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The data server has been implemented using Node.js and the Express.js web framework and is 
publicly available. This implementation adheres to the development and design guidelines of the 
OGC API architecture. The service is deployed and can be accessed publicly.

Figure A.43 — OGC API

A.4.2. D103 — Wuhan University Inter-module Interoperability

Based on the output data and the required input data of deliverables, interfaces following OGC 
API standards were implemented. The workflow of D103 is shown below.
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Figure A.44 — Workflow for D103

The back end was implemented using Python with Flask. The front end was secondary 
developmed from open-source project. The service is deployed locally and can be accessed 
publicly.

A.5. Annex for D104
 

A.5.1. D104 — Gaia3D

Visualizing the noise modeling results in a digital twin environment plays a crucial role in 
maximizing the understanding and utilization of noise analysis data. Visualization provides 
an intuitive grasp of spatial distribution and temporal changes in noise, supporting important 
decision-making processes in urban planning and design.

This project uses Cesium.js, an open-source tool, for rendering. Building data is visualized in 3D 
Tiles format, while terrain is visualized in Quantized Mesh, supported by Cesium.

This visualization approach efficiently handles large-scale data and supports the representation 
of real-time changes in noise levels. 3D Tiles facilitate rapid rendering of complex urban models, 
and Quantized Mesh is suitable for high-resolution terrain data visualization.
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A.5.1.1. Software Configuration

The visualization part of this project was implemented as a simple web service system. The data 
and software used are as follows (3D Tiles & 3D Terrain maker was developed in-house)

Figure A.45 — D104 Software Configuration

A.5.1.2. Data Conversion and Visualization Results

The building data and noise prediction analysis results entered in CityGML were converted into 
3D Tiles, and the terrain data, GeoTiff, was converted into a Quantized Mesh supported by 
Cesium to enable visualization in Cesium, and the detailed results of each data visualization are 
as follows.

A.5.1.2.1. Building Data

Building data from CityGML was converted into 3D Tiles format using a custom-built conversion 
module. Below is an example of the converted and visualized building data.
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Figure A.46 — The visualization of the generated 3D Tiles in Cesium

Figure A.47 — The visualization of the results in QGIS along with OSM

A.5.1.3. Terrain Data

A custom-built module was developed to convert the GeoTiff terrain data into Quantized Mesh 
format, and the results are as follows.
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Figure A.48

Figure A.49
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Figure A.50

Quantized mesh visualized in Cesium (from top to bottom: terrain visualized with OSM, terrain 
visualized with wireframe, terrain visualized with building 3D Tiles)

A.5.1.4. Noise Analysis Results

A custom-built module was developed and applied to parse the output of the Noise Modeler 
used in this project and convert it into GLB format. The generated GLB was then repacked into 
3D Tiles using the converter developed in section 2.3.2. The visualization of the result in Cesium 
is as follows.
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Figure A.51 — Noise analysis results converted to 3D Tiles and visualized in Cesium

A.5.1.5. Visualization

The open-source Cesium.js was used as the front-end visualization engine, and web-based 
visualization data formats such as 3D Tiles and Cesium Quantized Mesh were utilized.

The noise prediction results were visualized as separate, independent 3D objects, rather than 
applying them as texture materials to building data.

Figure A.52 — Noise analysis results visualized on top of OSM with terrain/buildings in Cesium
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A.5.1.6. Legend

The legend for the noise analysis was configured based on the criteria outlined below.

Figure A.53 — Legend in Noise Analysis

A.5.1.7. Converting CityGML into 3D Tiles

We converted the CityGML sample files into 3D Tiles by adding the ability to handle CityGML 
3.0 files to the 3D Tiles creation tool developed by Gaia3D. (The 3D Tiles creation tool is open 
source and available at https://github.com/Gaia3D/mago-3d-tiler)

The schematic process flow for converting CityGML to 3D Tiles in this tool is as follows
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Figure A.54

1) read CityGML

2) extract all geometry types Extract all visible three-dimensional objects from the digital twin.

3-1) tessellation

CityGML uses polygons to describe surfaces, and the task of breaking up the polygons and 
converting them into a list of triangles for GPU rendering is done.

Figure A.55 — Example of a tessellation.

*Image source: https://en.wikipedia.org/wiki/Polygon_triangulation

3-2) allocate colors to each 3D object 
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To colorize three-dimensional objects according to their logical division, it extracts information 
about each object type and applies its own color assignment rules.

4) allocate 3D objects into Tiles 
Categorize three-dimensional objects by size and assign them to tiles of the appropriate depth. 
When creating CityGML as 3D Tiles, we create a tileset that is ‘additive’, meaning that we do not 
allow duplicates and ensure that any three-dimensional object has only one tile that it belongs 
to.

5) build VBO with batching & write 
In order to finally write to the 3D Tiles, they are processed into Vertex Buffer Objects (VBOs). 
At this point, a “stitching” operation is performed to combine the VBOs of all the 3D objects into 
a single mesh.

A.5.1.8. Converting DEM to Quantized Mesh specification

We developed a tool to convert DEM (GeoTIFF) to Quantized Mesh specification, a service 
format for 3D terrain visualization in CesiumJS published by Cesium.

*The tool is called mago 3DTerrainer, and as of the time of writing this ER, we are working on 
cleaning up the source code for the tool and plan to release it as open source before the end of 
this project.

*About Quantized Mesh: https://github.com/CesiumGS/quantizedmesh Quantized Mesh is a 
specification that has the same logical hierarchy as a tile pyramid made from 2D gridded data, 
except that each tile is assigned a 3D mesh data set of vertices/triangles instead of a 2D raster 
of pixels.

In our tool, we generated a terrain mesh in the form of RTIN (Right-Triangulated Irregular 
Network) based on GeoTIFF, assigned it to each tile of the tile pyramid, and saved the tiles as a 
Quantized Mesh specification. The bounding area and hierarchy of the tile pyramid applied in 
this tool are borrowed from OGC’s GlobalCRS84Scale. (https://docs.ogc.org/is/17-083r4/17-
083r4.html#toc43)
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*Image source: https://www.sciencedirect.com/science/article/pii/S0895717708001040

Figure A.56

Figure A.57

A realistic view of a single Quantized Mesh tile generated with mago 3DTerrainer. Triangles are 
given a random color to differentiate between them
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A.5.1.9. Noise Modeling

1. Noise modeler

a) Noise modeler

To obtain noise prediction analysis results, we delivered two GeoJSON 
files and a GeoTiFF of the primary workpiece mentioned in Annex A.1 
to Createch, Inc. (Haeundae-gu, Busan, Republic of Korea, http://www.
createch.co.kr/en/), which is collaborating with us to combine digital 
twins and noise prediction results, as input materials, and Createch 
analyzed the results using its specialized noise prediction analysis tool 
“ENPro, indoor outdoor environment noise simulation S/W” and provided 
us with the analysis results along with specification information. The 
noise prediction model information supported by the specialized noise 
prediction analysis tool is as follows. ISO-9613-1:1993 Acoustics — 
Attenuation of sound during propagation outdoors Part 1: Calculation 
of the absorption of sound by the atmosphere (https://www.iso.org/
standard/17426.html) ISO-9613-2:1996 — Attenuation of sound during 
propagation outdoors Part 2: General method of calculation (https://www.
iso.org/standard/20649.html) * Part 2 is now ISO-9613-2:2024 (https://
www.iso.org/standard/74047.html), Edition 2 has been published and 
2:1996 is deprecated.

b) Noise modeler’s output structure and conversion to 3D Tiles Noise 
modeler uses DEM (digital elevation model), building data, and noise 
source data as input data, places noise prediction points on the ground 
and building surface, and predicts noise at each noise prediction point. 
The noise prediction results are provided in the form of a list organized by 
each receiving point.

It also provides information about the rectangular network, which is a 
set of four noise estimation points that form a square. Each square is 
divided into two triangles, resulting in a triangular network with a noise 
prediction value assigned to each vertex. The final converted triangulation 
can be converted to a 3D mesh in the form of a heatmap by applying 
color assignment rules to it. The process is illustrated below
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Figure A.58 — Output structure of the noise modeler

Figure A.59 — Converting the quadrangular network to 3D mesh

Figure A.60 — Legend in Noise Analysis

*Image source: https://www.electronicshub.org/noise-level-decibels-chart/ The final converted 
3D mesh was converted to glTF and then converted to 3D Tiles using a homegrown 3D Tiles 
creation tool described in [Annex A.2].

OPEN GEOSPATIAL CONSORTIUM 24-067R1 96

https://www.electronicshub.org/noise-level-decibels-chart/


A.5.2. D104 — WiTech

WiTech’s 3D visualization client (https://project-udtip-2024.vercel.app/) effectively leverages 
the Cesium JS framework to integrate urban noise data from OGC API services, particularly 
derived from Deliverable D103. This client seamlessly combines various geospatial data formats, 
enhancing its capability to provide detailed visualizations.

Figure A.61 — WiTech UDTIP Client Visualizing 3D City Model with 3D Multi-Level Noise Data

Figure A.62 — WiTech UDTIP Client Visualizing 3D City Model with Ground-Level Noise Data
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Figure A.63 — WiTech UDTIP Client Visualizaing 
3D City Model with Noise Simulated on 3D Model
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B ANNEX B
(NORMATIVE)
HEALTH SERVICE RESEARCH
 

B.1. Health Use Cases for Urban Digital Twins
 

B.1.1. Introduction

Digital twins represent a groundbreaking innovation in the realm of technology, enabling 
the creation of precise, dynamic virtual models that mirror physical entities. From individual 
components of a building to entire cities, digital twins integrate real-time data, advanced 
analytics, and visualization tools to simulate and optimize the performance of physical systems. 
Originally rooted in manufacturing and engineering, the application of digital twins has 
expanded into various sectors, including urban planning, healthcare, and environmental 
management. As cities become increasingly complex and interconnected, and as cities house 
more and more of the global population, the role of digital twins in enhancing operational 
efficiency, decision-making, and predictive analysis is becoming indispensable.

In the rapidly evolving landscape of urban development, digital twins have emerged as a 
revolutionary tool to model, simulate, and optimize the intricate systems that constitute modern 
cities.

This pilot, funded by the Land and Housing Corporation (LH) in Korea and the United Nations 
(UN) and managed by the Open Geospatial Consortium (OGC), explores both multiple use cases 
for digital twins within urban environments, as well as the integration between use cases. Also 
explored is the application of digital twins to healthcare, and the extraction from non-health use 
cases of data supporting healthcare decision makers in improving public health and healthcare 
delivery.

B.1.2. Defining a Digital Twin

A digital twin consists of several key components that work together to create a virtual 
representation of a physical object, system, or process flow (called here ‘entity’ for simplicity) 
that can be small, such as a single floor of a building or component of an HVAC system, and as 
large and complex as an entire city.

The components of a Digital Twin include:
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1. Data Collection: Sensors and Internet-of-Things (IoT) devices to collect real-time 
data from the entity, including operational metrics, environmental conditions, and 
other relevant information.

2. Data Integration: The process of aggregating, processing, and integrating data 
from various sources (e.g., multiple sensors and devices). This may involve data 
cleaning, transformation, and storage, and must ensure the data is consistent and 
usable.

3. Communication Interface: The connection between the entity and its digital twin. 
This interface ensures continuous data flow between the two, allowing the digital 
twin to stay updated with real-time information.

4. ML/AI: Advanced machine learning and artificial intelligence algorithms, 
analytics, simulation tools, and models used to analyze the collected data, predict 
outcomes, and optimize performance. These tools help in understanding the 
behavior of the entity under different conditions.

5. Visualization: Tools and platforms that provide a visual representation of the 
digital twin. This may include dashboards, 3D models, and augmented or virtual 
reality interfaces to help users “see” and interact with the digital twin.

6. User Interface: The actual mechanism by which users interact with the digital 
twin. This can be integrated with the systems providing visualization of the digital 
twin.

7. Feedback Loop: The mechanism that allows the digital twin to influence the 
entity. Based on the analysis and insights generated, actions can be taken to 
adjust or optimize the real-world entity. While not necessary, this component 
helps ensure any changes are reflected in the digital twin and should be 
considered for later phases or generations of the digital twin.

8. Security and Privacy: Measures to ensure that data and control/commands 
exchanged between the entity and its digital twin is secure and that privacy 
is maintained. This includes encryption, authentication, and access control 
mechanisms.

These components collectively enable the digital twin to provide representation, monitoring, 
operational analysis, scenario or what-if analysis of outputs based on different inputs into the 
entity, and the optimization of the underlying real-world entity in real-time.

B.1.3. Digital Twin Use Cases for Cities

A city-wide Digital Twin can serve as an integrated platform for up-to-date location-aware data, 
process-based modeling, and visualization with detailed and interconnected representations 
of every aspect of city life – including its transportation systems, lighting, waste management, 
public services and resources, healthcare infrastructure and facilities, and more. Specific areas 
where digital twins can provide value to urban environments include and are not limited to:
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• Urban Mobility: including use cases of Traffic Management, Public Transit, Ride Share, 
Micro-Mobility, as well as Drones and Autonomous Vehicles (land, air, and water).

• Urban Climate: including use cases of Air Quality/Pollution monitoring, Urban Heat, Tree 
Canopy, Environmental Factors, Sustainability, Energy Efficiency, and supporting and 
tracking Decarbonization efforts.

• Urban Infrastructure: including use cases related to the management and operations 
of Building, Transportation Systems, Utilities, Energy, Energy Grid Resilience, 
Telecommunications, Data Networks, 5G, Sensors, IoT, IoMT, and Underground Networks.

• Urban Operations: including use cases related to Urban Planning, Waste Management, 
Water Management, Lighting Systems, Noise, Public Works, Public Safety, Disaster 
Management and Emergency Response.

• Governance: including use cases related to Budgeting and Funding, Commerce and 
Economic Development, Land Use, Real Estate Property Management, Construction 
Approval, Heritage Preservation Public Policy, and Citizen Engagement.

• Digital: including use cases related to the management and operations of Data Networks, 
Big Data, Cloud Infrastructure, Edge Infrastructure, AI/ML, 5G, Sensors, IoT, IoMT, and 
Cybersecurity.

As can be seen, these categories are not mutually exclusive and do overlap. As an example, an 
Urban Mobility-focused use case described below provides value to many areas:

B.1.3.1. Urban Mobility

Urban digital twin (UDT) technology visually simplifies complex city processes and ensure the 
systemic impact of planning decisions can be predicted and therefore enables fine-tuning of 
those decisions before implementation. Further, the sensor infrastructure of UDTs fuel real-
time intelligence gathering and support decision making, while Artificial Intelligence (AI), with its 
ability to reason over vast quantities of Big Data, can uncover deep insights and augment human 
expertise helping inform better policy and the improved delivery of key public services.

Universal Design and Accessibility

Leveraging universal design and accessibility for workflow optimization is an example. 
UDTs leverage AI to enhance workflows for surveying, documenting, and modeling public 
infrastructure in a manner that identifies and addresses accessibility challenges.

• Geospatial and Reality Capture: Technologies like aerial photogrammetry and ground 
photography provide detailed, accurate representations of public spaces. These tools are 
instrumental in assessing and improving accessibility features such as ramps, crosswalks, 
and parking spaces.

• Accessibility Planning: Detailed digital models of pedestrian access routes and public 
spaces help in designing and positioning features like curb ramps, crosswalks, and transit 
stops. For example:
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• Sidewalks and Shared-Use Paths: Digital twins aid in planning and optimizing these 
pathways to ensure they meet accessibility standards and are navigable for all users, 
including those with mobility impairments.

• Crosswalks: Implementation of detectable warning surfaces on curb ramps enhances 
safety for visually impaired pedestrians and improves overall crosswalk design.

• Transit Stops: Digital models help ensure that transit stops are designed with 
accessibility in mind, including proper sizing and positioning of both sidewalk-level and 
elevated boarding platforms.

• Parking Areas: Virtual measurements of parking spaces ensure that they are 
appropriately sized and strategically located to facilitate easy access from vehicles to 
sidewalks.

Integrating these technologies meets the needs of a broad coalition of users within a city 
ecosystem including City Planners, Engineers, and Architects, Public Service Departments, as 
well as Policymakers. And further, serve city residents, labor force, and tourists by creating more 
inclusive and functional urban environments, by ensuring that infrastructure is accessible to 
everyone and that planning decisions are data-driven and well-informed. There is also research 
suggesting that well-planned communities are both safer and lead to higher home values [10, 
11].

B.1.4. Digital Twins in Healthcare

A digital twin in healthcare is a dynamic, real-time digital representation of a patient, medical 
device, medical facility (e.g., an individual ward or entire hospital), or healthcare process 
that mirrors its physical counterpart. By integrating real-time data from various sources 
potentially including electronic health records (EHRs), wearable devices, medical imaging, 
building information management (BIM) systems, and IoT and IoMT sensors, the digital twin 
provides a comprehensive view of the entity allowing for continuous monitoring, predictive 
analytics, resource allocation, and personalized healthcare with the goal of improving patient 
outcomes, operational efficiency, cost containment, and decision-making.

Key characteristics of a healthcare digital twin are listed below, and it should be noted that the 
use case plays a role in what characteristics must be included. For instance, a patient care use 
case involves additional characteristics.

1. Data Integration: To be most effective, the digital twin must present decision 
makers with the most current data available.

2. Predictive Analytics: Advanced ML/AI algorithms can help predict disease 
progression, potential complications, the impact of interventions, outcomes, as 
well as enable what-if analysis.

3. Simulation and Modeling: Allows healthcare professionals to simulate treatment 
plans or administrative decisions, optimizing care plans, resource allocation, and 
operational efficiency.
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4. Operational Efficiency: Enhances the management of healthcare facilities by 
monitoring the utilization of resources such as hospital beds, medical equipment, 
and staff, improving workflow and reducing inefficiencies.

5. Decision Support: Provides healthcare providers with actionable insights and 
recommendations, supporting clinical decision-making across a targeted or 
comprehensive decision space.

B.1.4.1. Patient Care

Patient care use cases involve additional characteristics.

1. Patient-Centric: To support decisions involving patient care, the digital twin must 
provide a holistic view of an individual patient’s health status, including medical 
history, current conditions, treatments, and responses to interventions.

2. Remote Monitoring: Particularly essential for those with chronic conditions or 
post-operative needs, remote monitoring supports continuous monitoring of 
patients medication adherence, vital signs, and other health metrics by ingesting 
input from medical devices and wearables.

3. Personalized Medicine: Tailor treatments and interventions to the unique 
characteristics and needs of each patient, improving care efficacy.

With these characteristics defined, the full range of health use cases can be supported either as 
a stand-along digital twin or as components of a large urban digital twin.

B.1.4.2. Health Use Case for an Urban Digital Twin

As recognized in the Call for Proposals to the Urban Digital Twin Infrastructure Pilot 2024, 
“Innovations in the planning, design and management of urban environments are essential to 
enable their residents to live healthier, safer, happier lives.”

A Digital Twin in the healthcare space can provide shared visibility into the status, location, and 
utilization of healthcare resources including but not limited to:

• Hospital beds by bed type (Emergency Room, Observation, Admission, Critical Care, etc.)

• Medical facility (hospital, clinic, surgical center, operating rooms, etc.) and occupancy

• Medical devices (e.g., MRIs, ventilators)

• Medical supplies (e.g., PPE, intravenous saline)

• Staffing (across all patient-facing clinical positions)

• Ambulances
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• Climate and environmental factors known to impact patient health such as air pollution 
and heat

A UDT with health use cases can also support the remote monitoring of a wide variety of 
patients who may no longer require hospitalization but will still benefit from a heightened level 
of care within their homes.

The data from IoT and IoMT sensors that underlie the UDT can be leveraged to build health 
applications allowing for faster recognition of and response to emerging health risks, whether 
social, clinical, climate-induced, or environmental, at both the population level and at the 
individual patient level.

These applications can both improve health outcomes and reduce overall healthcare costs. For 
example:

• Air Quality Impacts on At-risk Patients: Patients with asthma, COPD, or other respiratory 
conditions can be advised on specific and granular areas to avoid during days and times 
of poor air quality. Additionally, patient health education materials and efforts can be 
directed towards at-risk populations using the same data.

• Operational Efficiency: By tracking bed occupancy, or more general medical facility 
utilization, patient transfer through the healthcare system can be streamlined. Visibility 
into hospital/health facility status will also aid disaster response scenarios. Perhaps more 
importantly, the sources of inefficiency in the healthcare system that hampers patient 
flow can be identified — enabling solutions to improve the pathways of care and patient 
throughput.

• Medical Inventory and Supply Chain Management: Leveraging IoMT sensors to track 
medical supply levels, current staffing, staff training, skill set, and experience, as well as 
current medical device utilization/availability – ambulances can be routed toward the 
facilities where patients will experience the shortest wait times and receive the best care.

• Remote Patient Monitoring: Monitoring of patients discharged from hospital or medical 
facility care on a continuous or periodic basis.

• Chronic Disease Management: Continuous monitoring and management of chronic 
conditions such as diabetes, hypertension, and heart disease, along with potential 
environmental stressors.

• Surgical Planning: Preoperative simulation and planning to optimize surgical process and 
outcomes.

• Patient Monitoring: Remote monitoring of patients outside of the hospital (e.g., in their 
homes or workplace), reducing hospital admissions and utilization and freeing beds for 
those who need acute care.

• Facility Management: Optimization of hospital operations, process flow, resource 
utilization, and emergency response.

The most exciting aspect of a health digital twin is its ability to enable What-If analysis on 
clinical and social mitigation strategies to assess in advance their effect on health outcomes. 
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Anticipating the degree of success (or failure) of mitigation strategies and tweaking them 
through a digital twin helps both ensure the efficiency and effectiveness of such efforts in 
improving patient outcomes and overall population health, as well as reduce overall healthcare 
spending.

This is important as between 1970 and 2022, health expenditure increased an astronomical 
208,900% [1]. Healthcare represents the highest proportion of Korea’s general government 
expenditure (GGE) at 13.6% in 2022 [2].

B.1.4.3. Remote Patient Monitoring

A digital twin can serve as a powerful tool in healthcare to integrate broad sets of data in real-
time or near real-time, perform advanced analytics, enable planning and what-if analysis with 
the goal of enhancing patient care, support personalized medicine, and streamlining operations 
ultimately leading to increased quality and better health outcomes while lowering costs.

An essential use case is remote patient monitoring – as in-patient care at a hospital facility 
is expensive and often provides a higher level of service than is required. In other words, as 
patients recover from illness, trauma, or surgery, they may no longer require hospitalization but 
would benefit from a lesser level of medical attention. In addition, seniors, the chronically ill, at-
risk individuals, and those who require sub-acute care may well need medical attention, but not 
hospitalization. Remote patient monitoring involves a medical team tracking any or all personal 
electronic devices, wearables, at-home environmental building sensors, camera feeds, as well as 
community and environmental sensors, to provide remote care. Such care can include but is not 
limited to:

• Turning on/off lights, water, gas

• Raising/lowering room temperature

• Tracking medication compliance

• Updating medication dosages

• Dispatching emergency response as needed

This provides those individuals with the needed care without separation from their families and 
confinement to medical homes or assisted living facilities. It also frees up hospital beds for more 
critical patients.

B.1.4.3.1. Technical and Operational Requirements

The technical and operational requirements for remote patient monitoring include [19, 20, 21, 
22, 23]:

1. Devices and Connectivity: RPM involves various medical devices like blood 
pressure monitors, pulse oximeters, as well as consumer electronic devices 
such as weight scales, step monitors, and smart watch – all transmitting data to 
healthcare providers. Devices should be able to support real-time or near-real-
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time data transmission, often via wireless or Bluetooth technology. While not all 
metrics are required in real-time, but the capacity to know the current patient 
status is important. It’s essential that these devices are easy for patients to use 
and have reliable connectivity to function effectively.

2. Data Security and Privacy: RPM systems must comply with HIPAA and other data 
protection regulations. This includes encrypted data transmission, secure cloud 
storage, and stringent access controls to protect patient information.

3. Integration with Health Systems: The data collected from RPM devices needs 
to integrate smoothly with existing Electronic Health Records (EHR) and other 
clinical data systems. This ensures that healthcare providers can easily access, 
monitor, and analyze patient data, enabling timely intervention.

4. Training and Support: Providers, patients, as well as their caregivers will need 
training on how to use RPM devices and interpret the data. A remote patient 
monitoring scenario should be selected only once all parties are confident in 
their ability to correctly operate the monitoring equipment at all times, and that 
technical support is available if needed.

5. Billing and Reimbursement: Understanding billing codes (e.g., CPT 99453-99458) 
is critical to ensure the proper documentation and compliance with regulations to 
receive reimbursement and maintain the financial viability of RPM programs.

B.1.4.3.2. Workflow

A possible workflow for a remote patient monitoring use case can be the following:

1. Patient Enrollment: Patients are identified and enrolled based on eligibility, and 
appropriate monitoring devices are selected.

2. Device Setup: Devices are set up, and providers, patients, and caregivers are 
trained to use them, ensuring proper data transmission.

3. Data Collection and Transmission: Patients regularly use the devices, and health 
data is automatically sent to healthcare providers.

4. Data Review and Alerts: Data is analyzed; alerts are generated for abnormal 
readings, and providers review trends.

5. Patient Engagement and Follow-Up: Providers communicate with patients to 
discuss data and adjust care plans as needed.

6. Billing and Reimbursement: Healthcare providers document data reviews for 
billing purposes.

7. Ongoing Monitoring: Continuous data collection and monitoring, with 
adjustments made as needed.
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While a remote patient monitoring system can be independent of a UDT, integration would 
provide access to a broader set of devices and sensors making the program more effective 
overall, as well as simplifying the inclusion and support for a larger number of patients.

B.1.4.3.3. Similarities with Traditional UDT Use Cases

There are, for example, opportunities to leverage the camera systems and sensors used 
to enhance mobility within an urban environment to also inform remotely monitor patient 
solutions. Cameras as well as traffic light and other roadway sensors can be used to guide 
emergency medical technicians (EMTs) to reach and transport at-risk patients requiring medical 
intervention.

Sensors in and around patient habitats used to monitor for potential exposure to harmful air 
quality and excessing heat can also inform broader city-wide efforts keep abreast of these 
considerations.

B.1.4.4. Existing Health Digital Twins

There are several implementations and ongoing projects of health digital twins. These initiatives 
highlight the potential of digital twins to transform healthcare by improving patient outcomes, 
enhancing operational efficiency, and supporting personalized medicine. Some notable examples 
include:

1. Philips’ Digital Twin for Heart Disease [3]:

• Implementation: Philips has developed a digital twin model for the heart, 
which simulates cardiac function and predicts the impact of various 
treatments on heart disease patients.

• Purpose: To help cardiologists tailor treatments and interventions to 
individual patients, improving the management of heart conditions and 
optimizing treatment plans.

2. Siemens Healthineers’ Digital Twin Technology [4]:

• Implementation: Siemens Healthineers is developing digital twin technology 
to model facilities and processes to pilot solutions in a virtual environment 
before applying the real world.

• Purpose: To enhance and improve hospital and medical facility operational 
practices.

3. Dassault Systèmes’ Living Heart Project [5]:

• Implementation: Dassault Systèmes has created a highly detailed digital twin 
of the human heart through its Living Heart Project.
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• Purpose: To advance cardiovascular science, improve the design of medical 
devices, and support the development of personalized treatments for heart 
disease.

4. Boston Children’s Hospital’s Digital Twin for Pediatric Care [12]:

• Implementation: Boston Children’s Hospital is developing digital twins to 
model and simulate the health conditions of pediatric patients.

• Purpose: To optimize treatment strategies, improve surgical planning, and 
enhance patient monitoring, particularly for children with complex medical 
conditions.

5. GE Healthcare’s Digital Twin for Hospital Operations [13]:

• Implementation: GE Healthcare has implemented digital twin technology to 
model hospital operations and workflows.

• Purpose: To optimize resource utilization, streamline patient flow, and 
improve overall hospital efficiency, particularly in managing patient 
admissions, discharges, and bed occupancy.

6. Mayo Clinic’s Digital Twin for Predictive Health [14, 15]:

• Implementation: Mayo Clinic is leveraging digital twins to predict patient 
outcomes and personalize treatment plans.

• Purpose: To improve the management of chronic diseases, enhance surgical 
outcomes, and support the development of new therapies through advanced 
simulation and modeling.

7. Microsoft’s Project Premonition [16]:

• Implementation: Microsoft’s Project Premonition uses digital twin technology 
to model and predict the spread of infectious diseases.

• Purpose: To improve disease surveillance, enhance public health response, 
and support the development of strategies to mitigate the impact of 
outbreaks.

These implementations demonstrate the diverse applications of digital twin technology in 
healthcare ranging from diagnosis and personalized patient care planning to operational 
efficiency and disease prevention. As the technology continues to evolve, more healthcare 
organizations are expected to adopt digital twins in one or more of these areas to enhance their 
capabilities and improve outcomes.
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B.1.4.5. Defining a Health Digital Twin

For a health digital twin to be effective, it must provide a comprehensive understanding of 
the physical entity being represented, the data sources, the intended applications, and the 
technological infrastructure. The key details needed to define a health digital twin include:

1. Objective and Scope:

• Objective: Clearly define the purpose of the digital twin, such as improving 
patient outcomes, enhancing diagnostic accuracy, or optimizing hospital 
operations.

• Scope: Determine the specific aspects of healthcare to be modeled (e.g., 
patient flow within a medical facility or across the care continuum, medical 
device utilization, healthcare facility operation).

2. Physical Entity Description:

• Entity: Specify what the digital twin will represent (e.g., a patient, a 
medical device, an operating room, an entire hospital) along with its 
attributes, characteristics and, behaviors (e.g., patient demographics, device 
specifications, facility layout).

3. Data Sources:

• Real-Time Data: Identify sensors, IoT/IoMT devices, and other data sources 
(e.g., wearable health monitors, medical imaging devices).

• Historical Data: Include electronic health records (EHRs), medical histories, 
and previous treatment data.

• Environmental Data: Incorporate data on environmental factors impacting 
health (e.g., air quality, weather conditions).

4. Data Integration and Management:

• Data Aggregation: Plan for collecting and aggregating data from multiple 
sources.

• Data Storage: Determine how data will be stored and managed (e.g., cloud 
storage, databases).

• Data Quality: Ensure data accuracy, completeness, and timeliness.

5. Modeling and Simulation:

• Digital Model: Develop a virtual model that accurately represents the 
physical entity.
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• Simulation: Use advanced algorithms and machine learning to simulate 
behaviors and predict outcomes.

6. Analytics and Insights:

• Analytics Tools: Identify tools and platforms for analyzing data (e.g., machine 
learning algorithms, predictive analytics).

• Insights: Determine the types of insights needed (e.g., predictive health 
outcomes, operational efficiencies, what-if analysis).

7. Visualization and Interaction:

• Visualization Tools: Choose tools for visualizing the digital twin (e.g., 3D 
models, dashboards).

• User Interface: Design an interface for users, including healthcare 
professionals and patients, to interact with the digital twin.

8. Communication Interface:

• Connectivity: Ensure reliable data communication between the physical 
entity and the digital twin.

• Protocols: Define communication protocols and standards (e.g., HL7, FHIR).

9. Feedback Loop:

• Actionable Insights: Develop mechanisms for the digital twin to provide 
actionable insights and recommendations.

• Implementation: Plan for implementing strategic or operational tactics and 
practices developed in the digital twin into the physical entity (e.g., adjusting 
treatment plans, optimizing resource allocation).

10. Security and Privacy:

• Data Security: Implement measures to protect data integrity and 
confidentiality (e.g., encryption, access controls).

• Compliance: Ensure compliance with healthcare regulations and standards 
(e.g., HIPAA, GDPR).

11. Stakeholder Involvement:

• Stakeholders: Identify key stakeholders (e.g., healthcare providers, patients, 
administrators).
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• Collaboration: Plan for stakeholder collaboration and input throughout the 
development process.

12. Evaluation and Refinement:

• Performance Metrics: Define metrics to evaluate the digital twin’s 
performance and effectiveness.

• Continuous Improvement: Develop a plan for continuous monitoring, 
evaluation, and refinement of the digital twin.

The above details provide for a well-defined health digital twin that accurately represents the 
physical entity and provides valuable insights to improve healthcare outcomes and quality as 
well as lower costs.

Extracting data relevant to health applications expands the value of an UDT use case – providing 
further justification for the resource (e.g., funding, infrastructure, etc.) requirements for 
designing and deploying the use case. In addition, it expands the user community for the UDT 
overall.

B.1.5. Integration with Urban Digital Twin Use Cases

Health use cases also integrate with traditional UDT use cases – reflecting the overlap between 
health considerations and most other issues and challenges impacting human society. For 
instance, there is overlap between health concerns and both the urban noise analysis and 
situational analysis of geo-referenced still and moving imagery use cases included in the current 
UDTIP pilot. Incorporating health needs expands the applicability of traditional use cases to the 
community and to daily life.

While the domains are different, there are similarities in the process and information required to 
build a health-focused and traditional use case.

B.1.5.1. Urban Noise Analysis

This use case aims to support urban planning and management aimed at mitigating traffic noise. 
One of the reasons for mitigating traffic noise is the impact excess or constant noise can have on 
quality of life and residential property values. Noise can also have deleterious effects on health 
outcomes.

B.1.5.2. Specific Health Applications

Exposure to loud and prolonged noises can have health implications. Data on noise levels within 
a city and in and around residential areas can help identify correlations with health issues such 
as sleep disturbances, cardiovascular problems, stress levels, mental health, and post-trauma 
or post-operative recovery, informing public health interventions, treatment plans, and patient 
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care. This can lead to the creation of quiet zones or noise-reduction programs near and around 
residential areas, schools, and medical facilities promoting better health and well-being. In 
addition, hospitals, rehabilitation care facilities, and post-operative recovery centers can be 
located within quiet zones so healthcare outcomes are not impacted by noise levels.

As such, an UDT can use noise analysis from across the city to both study the impact of noise 
pollution on public health, as well as guide urban planning and policy decisions to mitigate 
its adverse effects. For example, identifying areas with high noise pollution and poor health 
outcomes can guide efforts to either remove or mitigate the noise (e.g., through the creation of 
sound barriers), or by moving the adversely impacted facilities.

Such solutions may help lower nationwide healthcare spending. In 2022, health spending in 
South Korea amounted to approximately 209 Trillion KRW, representing an increase from the 
previous year and continuing a trend of annual growth [3].

The Urban Noise analysis is expected to result in a 3D heat map for a city — with more noisy 
regions of the city appearing darker and taller, while less noisy/more quiet places resolving as 
lighter and shorter or flatter. This data can be resolved to 2D input that can be ingested into our 
health risk indices. Specifically, data on the average and maximum noise level by region of the 
city is of most interest.

B.1.5.3. Situational Analysis of Geo-Referenced Still and Moving Imagery

This use case involves the detection and identification of unwanted objects throughout a city 
environment. There are numerous potential health applications of such information.

B.1.5.3.1. Public Health Management:

• Disease Spread Tracking: Geo-referenced imagery can track population movement and 
density, helping to model and predict the spread of infectious diseases in urban areas.

• Health Infrastructure Utilization: Imagery analysis along with geolocation analysis can 
monitor the usage patterns of healthcare facilities, helping to optimize resource allocation, 
placement, as well as identify areas needing additional support.

B.1.5.3.2. Environmental Health:

• Monitoring Environmental Changes: Leveraging imagery, digital twins can allow for what-if 
analysis on changes in the urban environment, such as deforestation, water levels, and air 
quality, to assess and inform policies to mitigate any potential negative impacts on health 
outcomes.For instance, a digital twin can allow for designing city landscapes where trees 
can be used to create shaded areas shielding residents from UV radiation and consequent 
health impacts, as has been modeled in Seoul, Korea [8].
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B.1.5.3.3. Emergency Response and Disaster Management:

• Real-Time Situational Awareness: Digital twins can enable integration of real-time data 
for situational analysis during emergencies, helping responders to assess damage, identify 
affected areas, and allocate resources more effectively.

• Evacuation and Rescue Operations: Digital Twins can aid planning for recovery operations 
as well help build evacuation plans and guide rescue operations by providing up-to-date 
information on road and infrastructure conditions, crowd locations, and safe routes.

B.1.5.4. Specific Health Applications

In disaster response scenarios, real-time information on accessibility of roadways and 
transportation networks is critical for evacuation efforts and medical supply routing. The 
analysis of still and moving imagery performed in this pilot effort along with maps of existing 
roadways and transportation networks can be leveraged to supply this information.

Data on transportation networks can be sourced from public sources such as departments of 
transportation as well as international organizations such as Open Street Maps. Citizen science 
approaches to real-time, on-the-ground, data collection through mobile phones can also be 
effective.

The images in such scenarios can be located through GeoPose and potentially through 
embeddings in images. For instance, imagery of fallen trees or other debris blocking a roadway 
can be located on a map so first responders and evacuating residents avoid the impacted route 
until road crews are able to clear the obstruction.

When fed into a routing engine, the updating of evacuation routes can be updated in real-time. 
This can speed and streamline the overall evacuation process as it is known that damage to 
transportation networks affects accessibility and travel time during the emergency response [9].

B.1.5.5. OGC Standards Supporting Interoperability

Interoperability refers to an Urban Digital Twin’s ability to seamlessly integrate and communicate 
with other systems, software, devices, and data sources. It involves establishing standardized 
protocols, interfaces, and data formats to enable the exchange of information and actions 
between different components of the overall UDT ecosystem. Interoperability is crucial because 
it allows for the integration of diverse data sources, sensors, IoT and IoMT devices, and software 
applications that contribute to the UDT’s functionality. Further, it enables the Digital Twin to 
receive data inputs from various sources, such as building automation systems, sensors, weather 
stations, or maintenance databases, and to provide data outputs to other systems for further 
analysis or control.

The following standards play a role in enabling interoperability among UDTs across use cases 
and the systems they support.
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• CityGML — City Geography Markup Language

• CityJSON — City Java Script Object Notation

• GeoPose

• SensorThings API

• MovingFeatures

• MUDDI — Model for Underground Data Definition and Integration / May not be 
applicable.

• BIM/IFC — Building Information Modeling/Industry Foundation Classes. While not an 
OGC standard, this enables the integration and conversion of building data to GIS data.

• CIM — City Information Modeling

Figure B.1 — Standards playing a role in UDT Interoperability.

B.1.5.6. Challenges with Interoperability

A specific barrier to interoperability is data conversion. Integrating BIM and GIS data has the 
potential to combine a large-scale and a micro-scale built environment [24]. However, successful 
integration requires two common conversion paths, IFC-to-CityGML and IFC-to-shapefile, or 
to other geo-based formats. The conversion and integration of data is complicated by the vast 
differences between these data models across five components: encoding, semantic coherence, 
geometry validation, coordinate reference system, and topological accuracy.

The second issue is software compatibility. Integrating geospatial and building data information, 
such as importing 3D GIS data into BIM models, is a potential but challenging and continuous 
application. BIM software does not always provide support for geospatial data compatibility. 
Although some commercial software has been developed to support the integration and export 
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of models, all functionality is not realized. For example, Esri’s CityEngine can export 3D city 
models to various data formats, but it does not directly support semantic compatibility with the 
CityGML standard [25, 28].

B.1.6. Benefits to Health Digital Twins

The benefits of a Health Digital Twin are far reaching and accrue to many parties, only partially 
including:

• Patients — Through the synthesis of distributed sensor data that can be a part of a Digital 
Twin and health data, patients benefit from a more insightful, holistic approach to health 
care delivery leading to improved health outcomes.

• Caregivers — These solutions enable friends, family, and neighbors to provide care to their 
loved ones, even if remote, partially reducing the caregiving burden often known to lead to 
burnout and to cost caregivers their own health.

• Hospitals/health systems — Will be able to use digital twin models to track procedural or 
utilization tendencies and to better understand patient needs and reduce costs.

• Insurers — Both public and private payers can utilize digital twins to better understand 
their populations and develop approaches to help individuals make healthy choices.

• Governments — Will be well positioned to understand the sources of costs and 
inefficiencies in the medical infrastructure overall to develop approaches and policies to 
reduce costs long-term.

Ultimately, a Digital Twin focused on healthcare needs will help communities and individuals 
lead their healthiest lives. And the return on investment on healthier, happier communities will 
reap rewards for generations.

B.1.7. Conclusion

Digital twins can have a transformative impact on health outcomes, optimize resource allocation, 
and reduce costs in urban environments. By leveraging real-time data and advanced analytics, 
health digital twins can provide actionable insights into patient care, facility management, and 
public health interventions. As urban environments become more complex, the ability to model 
and simulate health scenarios within a digital twin framework will be essential for anticipating 
and addressing the challenges of modern healthcare.

As the technology continues to evolve, its adoption in the healthcare sector will likely expand, 
driving innovation and improving the quality of life for urban populations.

Key use cases and benefits of health digital twins have been presented along with how non-
health use cases can support decision making within healthcare – expanding the value of a city-
wide digital twin infrastructure.

The challenges of interoperability notwithstanding, we strongly encourage the Land & Housing 
Corporation to consider the inclusion of health use cases in future pilots as well as continue 
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to explore extracting health insights from non-health use cases. By incorporating urban noise 
analysis and situational analysis of geo-referenced imagery into digital twins, the Land and 
Housing Corporation can enhance their ability to monitor, analyze, and respond to various 
challenges, ultimately improving public health, safety, and overall quality of life. As additional use 
cases are developed, they will also be able to provide input supporting health risk analytics.

Further, we recommend surveying the Korean healthcare sector to identify potential use cases 
of interest to the industry.
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C ANNEX C
(NORMATIVE)
ROAD CLASSIFICATION
 

Suggested by Alessandro Palmas, consultant c/o United Nation Global Service Centre

Before instructing an AI/Deep Learning system, a classification method should be agreed.

As discussed before, without reinventing the wheel, we adopt some of the OpenStreetMap’s 
Map Feature classification2 to describe roads’ conditions.

The two main classes used to classify road conditions are:

• surface: https://wiki.openstreetmap.org/wiki/Key:surface

• smoothness: https://wiki.openstreetmap.org/wiki/Key:smoothness

and, applied to a road, they can be used alone or togheter as they describe different features.

In practical terms:

Surface could be useful to understand how good/fast a vehicle could go on that road, but 
especially how its condition could change depending on the weather. An asphalted road in 
UN is considered an all weather road, regardless heavy rains fallen some days before, while an 
unpaved is considered a fair weather road, as it could be not passable after rain or snow, or even 
during the whole rain season in some Countries.

The most used — for our scope — properties for surface tag (class) are:

 
Table C.1 — Detail of Tag Descriptions

MORE GENERIC 
TAGS

DESCRIPTIVE 
TAGS

DESCRIPTION

asphalt  Short for asphalt concrete.

 paved Other solid surfaces (cement, etc.)

unpaved   

2https://wiki.openstreetmap.org/wiki/Map_features
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MORE GENERIC 
TAGS

DESCRIPTIVE 
TAGS

DESCRIPTION

 compacted
A mixture of larger (e.g., gravel) and smaller (e.g., sand) parts, compacted 
(e.g., with a roller), so the surface is more stable than loose gravel.

 gravel
This tag has very large meaning range. Used for cases ranging from huge 
gravel pieces like track ballast used as surface, through small pieces of 
gravel to compacted surface.

 rock Big pieces of rock used to improve path quality or exposed bare rock.

 dirt
We can include grass Used for where surface is exposed soil, also 
commonly referred to as earth or dirt, but it is not sand, gravel, or rock.

 sand Small to very small fractions (less than 2 mm) of rock.

Text extracted by the OpenStreetMap wiki page

Smoothness usually help to understand which kind of vehicle is able to travel on that road. This, 
for our scope is a bit much; we group the several classes by 3.

 
Table C.2 — Comparison of Classification Categories

OUR 
CLASSIFICATION

OSM TAG KIND OF VEHICLE DESCRIPTION

excellent (thin_rollers)
As-new asphalt or concrete, smooth paving stones 
with seamless connections, etc.

good

good (thin_wheels)
Asphalt or concrete showing the first signs of wear, 
such as narrow (<1.5 cm) cracks.

intermediate
(wheels) city biker, 
Scooter

Asphalt and equivalent that shows signs of 
maintenance such as patches of repaired pavement, 
wider cracks (>2 cm). The pavement may contain 
small potholes.

bad
(robust_wheels) 
trekking bike, 
normal cars

Heavily damaged paved roads that badly need 
maintenance: many potholes, some of them quite 
deep. The average speed of cars is less than 50% of 
what it would be on a smooth road.

intermediate

very_bad

(high_clearance) 
Car with high 
clearance, light-
duty off road 
vehicles

Unpaved roads with potholes and ruts, but still 
passable with an average SUV with a ground 
clearance of at least 18 cm.*

bad horrible

(off_road_wheels) 
heavy-duty off road 
vehicles and all 
below

Unpaved tracks with ruts, rocks etc that need 
a ground clearance of at least 21 cm. Skid plate 
protection is advisable.
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OUR 
CLASSIFICATION

OSM TAG KIND OF VEHICLE DESCRIPTION

very_horrible

(specialized_off_
road_wheels) 
tractor, tanks and 
all off-highway 
vehicles

Tracks with deep ruts and other obstacles that need 
a ground clearance of at least 24 cm.

Text extracted by the OpenStreetMap wiki page

C.1. Example Photos
 

Figure C.1 — asphalt; smoothness=good

Figure C.2 — asphalt; smoothness=excellent
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Figure C.3 — asphalt; smoothness=good

Figure C.4 — surface=compacted; smoothness=good
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Figure C.5 — surface=compacted; smoothness=good

Figure C.6 — surface=gravel; smoothness=good
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Figure C.7 — surface=gravel; smoothness=good

Figure C.8 — surface=dirt; smoothness=fair
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Figure C.9 — surface=dirt; smoothness=fair

Figure C.10 — surface=dirt; smoothness=fair
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Figure C.11 — surface=dirt; smoothness=good

Figure C.12 — surface=dirt; smoothness=good

Figure C.13 — surface=rock; smoothness=fair
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Figure C.14 — surface=dirt; smoothness=good

Figure C.15 — surface=rock; smoothness=bad
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Figure C.16 — surface=dirt (or mud); smoothness=bad

Figure C.17 — surface=mud; smoothness=bad
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D ANNEX D
(NORMATIVE)
OPEN-SOURCE SOFTWARE USED OR
DEVELOPED FOR UDTIP
 

UDTIP has been implemented based on open-source software and the outcomes are also 
available as open source. The list of open-source software used in the project or developed by 
the project is as the table below:

 
Table D.1 — Open-source Software Used or Developed for UDTIP

NAME DESCRIPTION
MODULE USING 
THIS OPEN 
SOURCE

LICENSE SITE URL

QGIS ope
Noise

QGIS python plugin for 
noise level analysis

D100: Noise 
Analysis

GPL-3.0
https://github.com/Arpapiemonte/
openoise-map

CVAT
Image labeling tool for 
training data

D101: Geo-AI MIT https://www.cvat.ai/

Label Studio
Image labeling tool for 
training data

D101: Geo-AI Apache 2.0 https://labelstud.io/

Sensor 
Logger

cross-platform data logger 
that logs readings from 
common motion-related 
sensors on smartphones.

D101: Geo-AI MIT
https://github.com/tszheichoi/
awesome-sensor-logger

OpenCamera 
Sensors

Android application for 
synchronized recording 
of video and IMU data. 
It records sensor data 
(accelerometer, gyroscope, 
magnetometer) and video 
with frame timestamps 
synced to the same clock.

D101: Geo-AI GPL 3.0
https://github.com/
MobileRoboticsSkoltech/
OpenCamera-Sensors

FFMPEG

FFmpeg is a collection 
of libraries and tools 
to process multimedia 
content such as audio, 
video, subtitles and related 
metadata.

D101: Geo-AI 
Mostly LGPL 2.1

Some 
modules are 
MIT, X11, 
BSD

https://github.com/FFmpeg/
FFmpeg

OPEN GEOSPATIAL CONSORTIUM 24-067R1 131

https://github.com/Arpapiemonte/openoise-map
https://github.com/Arpapiemonte/openoise-map
https://www.cvat.ai/
https://labelstud.io/
https://github.com/tszheichoi/awesome-sensor-logger
https://github.com/tszheichoi/awesome-sensor-logger
https://github.com/MobileRoboticsSkoltech/OpenCamera-Sensors
https://github.com/MobileRoboticsSkoltech/OpenCamera-Sensors
https://github.com/MobileRoboticsSkoltech/OpenCamera-Sensors
https://github.com/FFmpeg/FFmpeg
https://github.com/FFmpeg/FFmpeg


NAME DESCRIPTION
MODULE USING 
THIS OPEN 
SOURCE

LICENSE SITE URL

GPS Logger
A GPS logger for Android 
mobile devices.

D101: Geo-AI GPL-3.0
https://github.com/BasicAirData/
GPSLogger

PyTorch

PyTorch is an open source 
deep learning framework 
built to be flexible and 
modular for research, with 
the stability and support 
needed for production 
deployment.

D102: Geo-AI BSD-3 https://github.com/pytorch

Road 
Classification 
API

Geo-AI tool for classifying 
road surfaces developed by 
Helyx

D102: Geo-AI Apache 2.0
https://github.com/Natte2110/
road-classification-api-D102

CesiumJS 3D visualization engine D104 Apache 2.0
https://cesium.com/platform/
cesiumjs/

Mago3D
3D visualization engine 
developed by Gaia3D

D104 Apache 2.0
https://github.com/Gaia3D/
mago3d-suite

pygeoapi
pygeoapi is a Python server 
implementation of the OGC 
API suite of standards

D103 MIT https://pygeoapi.io/

OGC 3D 
GeoVolumes

Open-source 
Implementation of OGC 
API — 3D GeoVolumes / 
Installation by Node.js or 
Docker

D103 Apache 2.0
https://github.com/
JoeThunyathep/OGC-API-3D-
GeoVolumes

OGC API 
Features

A modern, RESTful 
standard for accessing and 
querying geospatial feature 
data.

D103
OGC 
Copyright 
License

link:++https://github.com/
opengeospatial/ogcapi-features
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