
OGC® DOCUMENT: 23-047
External identifier of this OGC® document: http://www.opengis.net/doc/PER/T19-D011

OGC TESTBED-19
GEODATACUBES
ENGINEERING REPORT

ENGINEERING REPORT

PUBLISHED

Submission Date: 2024-03-05
Approval Date: 2024-03-27
Publication Date: 2024-07-22
Editor: Alexander Jacob

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Copyright notice

Copyright © 2024 Open Geospatial Consortium
To obtain additional rights of use, visit https://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 23-047 ii

https://www.ogc.org/license
https://www.ogc.org/legal

CONTENTS

I. EXECUTIVE SUMMARY ..vi

II. KEYWORDS ..vii

III. CONTRIBUTORS ..vii

2. INTRODUCTION ...10

3. STATE OF THE ART .. 14
3.1. Crosswalk between STAC and OGC API — Records ... 14
3.2. Crosswalk between the openEO API specification and OGC API — Processes Standard 23
3.3. Crosswalk between the openEO API specification and the draft OGC API – Coverages Standard
..32
3.4. Crosswalk between the draft GDC standard and the OGC WCPS Standard41

4. HIGH LEVEL OVERVIEW OF GDC API ..45
4.1. Profiles proposal by Ecere ... 46

5. OUTLINE OF ALL CONDUCTED EXPERIMENTS/IMPLEMENTATIONS 49
5.1. Back-ends ...49
5.2. Clients ... 72

6. INTER COMPARISON EXPERIMENTS .. 99
6.1. Ecere Technology Integration Experiments ... 99
6.2. Eurac Research — GDC Web Editor ..105
6.3. Geomatys — API endpoints integration ... 106
6.4. Wuhan University Technology Integration Experiments ..108
6.5. 52°North GmbH — Executable Test Suite (ETS) for the draft OGC API — GDC Standard109

7. USABILITY TESTS .. 111
7.1. Sinergise Usability Test .. 111

8. LESSONS LEARNED FROM API IMPLEMENTATION ...116

9. FUTURE OUTLOOK .. 119

ANNEX A (NORMATIVE) ABBREVIATIONS/ACRONYMS ..121

BIBLIOGRAPHY .. 124

OPEN GEOSPATIAL CONSORTIUM 23-047 iii

LIST OF TABLES

Table 1 .. 15
Table 2 .. 16
Table 3 .. 16
Table 4 .. 18
Table 5 .. 19
Table 6 .. 42
Table 7 .. 50
Table 8 — Use case A (mapping of capabilities) ..53
Table 9 — Use case B (mapping of capabilities) ..53
Table 10 — Use case C (mapping of capabilities) ... 54
Table 11 — Status of the GNOSIS Cartographer and/or gdc-test client integration with
participant API endpoints .. 99
Table 12 ... 106
Table 13 ... 106
Table 14 ... 108
Table 15 ... 109
Table 16 ... 113

LIST OF FIGURES

Figure 1 .. 42
Figure 2 .. 42
Figure 3 — GDC Draft Specification High Level Overview ..46
Figure 4 — OGC API - Coverages request from GNOSIS Map Server using CQL2 expressions to
filter cells by values and convert Kelvin to Celsius ... 55
Figure 5 — Coverage output of above request, with a color map style applied in QGIS55
Figure 6 — OGC API - Coverages request from GNOSIS Map Server using CQL2 expressions to
compute an Enhanced Vegetation Index (EVI) and filter out clouds ... 55
Figure 7 — Coverage output of above request, with a color map styled applied in QGIS56
Figure 8 — Example PassThrough process execution request (for Collection Output) 56
Figure 9 — Example PassThrough process execution request (for Synchronous execution) 57
Figure 10 — Filtering using CQL2 polygon geometry ...58
Figure 11 — Aggregating on temporal dimension using CQL2 expression58
Figure 12 — Sobel operator (kernel convolution) implemented as a CQL2 expression 58
Figure 13 — OGC API - Coverages request from Eurac Research client (GDC Web Editor) to our
server, visualized as an RGB composite ...61
Figure 14 ..62

OPEN GEOSPATIAL CONSORTIUM 23-047 iv

Figure 15 ..70
Figure 16 ..71
Figure 17 — Cartographer visualizing CMIP5 pressure and wind velocity73
Figure 18 — Cartographer visualizing relative humidity ... 74
Figure 19 ..76
Figure 20 ..77
Figure 21 ..78
Figure 22 ..78
Figure 23 — WHU’s OGE-DataClient visualizing climate:era5:relativeHumidity from Ecere
Coverages API ...87
Figure 24 — WHU’s OGE-DataClient visualizing processing result from Ecere Processes API
using synchronous mode ... 87
Figure 25 — WHU’s OGE-DataClient visualizing processing result from WHU Processes API
using Workflows&Chaining(collection output) ..88
Figure 26 — WHU’s OGE-DataClient visualizing processing result in PNG format obtained from
the rasdaman OpenEO API while operating in synchronous mode ...89
Figure 27 — Albedo as an Essential Variable of the Arctic ..91
Figure 28 — EDR provider framework ..92
Figure 29 — Surface albedo Spring 2019 .. 93
Figure 30 — CMIP5 Near Surface Temperature Spring 2019 ... 93
Figure 31 — Magnitude of change in surface albedo between May 2019 and April 202394
Figure 32 — Tree Cover Density dataset from rasdaman’s GDC API visualized in 3D using
GNOSIS Cartographer ..101
Figure 33 — EVAPOTRANSPIRATION dataset from Brockmann Consult retrieved from Ecere’s
gdc-test client (styled in QGIS) ..102
Figure 34 — Successful coverage request from Wuhan University server ECMWF_hsvs collection
(styled in QGIS) ..103
Figure 35 — Successful coverage request from Eurac server s2_l2a collection104
Figure 36 — Ecere’s GDC Test tool showing syntax help for command line arguments 105
Figure 37 — Ecere’s GDC Test tool executed for the GNOSIS Map Server endpoint105

OPEN GEOSPATIAL CONSORTIUM 23-047 v

I EXECUTIVE SUMMARY

OGC Testbed-19 has continued and furthered an ongoing discussion about how to interact with
GeoDataCubes (GDC) in the most interoperable way (see Chapter 1 for more Introduction).
Testbed 19 participants produced a draft OGC GDC API standard that incorporates the most
relevant developments in the field in and outside of OGC. This work advanced the common
understanding of available solutions while discovering to a much better degree the advantages
and drawbacks of current solutions. Testbed 19 participants produced prototypes of five back-
end implementations and six client implementations as well as an automated test suite, which
are described in full detail in Chapter 4. Many of the researched solutions are also available as
open source and hence offer a perfect starting point for further GDC activities.

The main technologies that were evaluated in Testbed 19 included the OGC API Standards
suite1 , the openEO API2 and the Spatiotemporal Asset Catalog3 (STAC) specification. Based
on cross walk comparisons (see Chapter 2), a unified draft GDC API was developed integrating
as much as possible the existing solutions. openEO is largely compliant with the OGC API-
Common Standard. As such, the openEO API specification provided the foundation for defining
a draft OGC GDC API draft standard. During the Testbed 19 period, more building blocks
from the OCG API were incorporated into the draft GDC API document. These building blocks
included parts of OGC API — Common, OGC API — Coverages, and OGC API – Processes.
There is also future potential for visualization services through maps or tiles or even including
components or elements of the OGC Web Services suite of Standards, such as WMS, WMTS,
WCS, etc.

The current version of the draft GDC API, described in D71 of T19, supports different scenarios
enabling implementations of the draft standard to offer only minimal support for data access
with minimal manipulation of the data. Minimal manipulation is in terms of subsetting and
reprojecting or including more advanced processing capabilities by incorporating building blocks
from the openEO specification or from the OGC API — Processes – Part 1: Core Standard.
Chapter 3 gives an overview of the draft standard.

The interaction capabilities between the different servers and clients developed are described in
Chapter 5 and first impressions on usability in Chapter 6.

Future work could include the ability to link two processing options into one “integrated”
option that supports either submitting openEO process graphs to a OGC API – Processes
endpoint (extending and working on Processes — Part 3), or supports integration of an OGC
API – Processes process in the process graph of openEO through an extended concept of user
defined functions in openEO. Further discussion is also needed on the pros and cons of including

1https://ogcapi.ogc.org/

2https://openeo.org/

3https://stacspec.org/en

OPEN GEOSPATIAL CONSORTIUM 23-047 vi

https://ogcapi.ogc.org/
https://openeo.org/
https://stacspec.org/en

authentication in the draft standard. More details about lessons learned and suggestions can be
found in Chapters 7 and 8 of this ER.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

geographic, data cubes, api

I I I CONTRIBUTORS

All questions regarding this document should be directed to the editor or the contributors:

NAME ORGANIZATION ROLE

Alexander Jacob Eurac Research Editor

Matthias Mohr Eurac Research Contributor

Michele Claus Eurac Research Contributor

Glenn Laughlin Pelagis Data Solutions Contributor

Jérôme Jacovella-St-Louis Ecere Corporation Contributor

Patrick Dion Ecere Corporation Contributor

Dimitar Misev Rasdaman Contributor

Peter Baumann Rasdaman Contributor

Quentin Bialota Geomatys Contributor

Pascal Broglie Geomatys Contributor

Gérald Fenoy GeoLabs Contributor

Peng Yue Wuhan University Contributor

OPEN GEOSPATIAL CONSORTIUM 23-047 vii

NAME ORGANIZATION ROLE

Kaixuan Wang Wuhan University Contributor

Yi Wei Wuhan University Contributor

Mahael Kadunc Planet Labs Contributor

Benjamin Pross 52° North Contributor

Chen-Yu Hao Feng Chia University Contributor

Pontus Lurcock Brockmann Consult Contributor

Greg Buehler Open Geospatial Consortium Initial Template

OPEN GEOSPATIAL CONSORTIUM 23-047 viii

2

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 23-047 9

2 INTRODUCTION

In order to reduce the time and effort required to generate added value from raw,
heterogeneous data, over the past decade, a multitude of independent initiatives have
developed solutions to answer the need for Analysis Ready Data (See also Testbed 19 ARD ER
D051). These initiatives resulted in various GeoDataCube (GDC) implementations, standards,
data formats, and best practices. Interoperability between the GDC solutions has so far not
been a core concern. However, with the increasing amount of data served as a GDC as well as
its increasing uptake, it is becoming essential to understand what exactly a GDC entails, how
it was created, and how different GDCs can be consistently used together. This iteration of
GDC and ARD concepts in OGC Testbeds has started researching into the current landscape
of GDC technology. Based on an evaluation of existing solutions and applications, the Testbed
participants designed and implemented a first draft version of a GDC API that specifies
requirements for supporting data access and processing within and across multiple instances
of GDCs. This draft GDC API standard provides the core functionalities of GDCs in general
and enables users to handle different GDC implementations/back-ends according to the same
principles. By improving interoperability, both vendors and consumers will benefit. At the same
time, vendors and data providers will be able to continue the development of specific GDC
variants with full flexibility regarding design and technological choices (e.g., internal storage
organization) as the GDC focuses solely on ensuring interoperable interfaces. On the other
hand, data consumers and end users will be able to interact more effectively with different GDC
instances. This can be achieved by merging, combining, and creating workflows spanning across
multiple GDCs, easily migrating between different solutions while being protected from vendor
lock-in. For the Testbed 19 GDC activity, use cases were prepared by several stakeholders
(NRCan, EUMETSAT, ECMWF). Below is a short description of these selected use cases:

• NRCan’s use case focused on evaluating higher-level GDC requirements in the context
of emerging Canadian activities related to improving the use of Earth Observation (EO)
nationally. NRCan wanted to incorporate developed GDC API concepts within the design
of future Canadian EO exploitation platforms to maximize the platforms’ utility and
interoperability. In this context, it will be beneficial for the OGC GDC API Standard to
support:

• access to diverse EO data sets from domestic and international sources;

• integration of EO and other forms of geospatial data (e.g., vector) for analysis purposes;

• access to dataset and GDC metadata to support diverse use of the GDC and the data it
contains (e.g., for analysis, processing, etc.);

• interoperability with GDCs offered by multiple providers; and

• implementation within open source software packages.

• The EUMETSAT use case draws inspiration from the services to be provided by the
Destination Earth Data Lake project. A key challenge in the Data Lake project is the
heterogeneity of data types that must be provided to users in a harmonized manner,
making the data easily exploitable. The proposed GeoDataCube contains weather

OPEN GEOSPATIAL CONSORTIUM 23-047 10

and climate data, administrative and environmental spatial units (vector maps), static
environmental data, land use/land cover maps, and remote sensing image time series.
Users exploiting the GeoDataCube must be able to query external statistical databases.
The EUMETSAT use case also proposes processes and workflows that should be
supported by the GDC API, catering for common processing steps that most users need
to apply to the data. Interactions with external systems such as other data cubes and web
mapping services are also foreseen.

• ECMWF’s use case considered the interoperability between the Meteorological Archival
and Retrieval System (MARS) and a potential candidate for the implementation of a GDC
API. This use case covers requirements with data cubes of arbitrary dimension, of different
types, and irregular or sparse data content. ECMWF also requested support for non
homogeneous grids and non-orthogonal data access.

Please note that Testbed 19 is not the first Testbed with a research thread focused on GDCs.
Previous efforts and especially the resulting ERs give some clues into gaps that need to be
addressed.

• The OGC Testbed-17: Geo Data Cube API Engineering Report (ER) (21-027) is, like all
OGC Collaborative Solutions and Innovation Program ERs, available from the OGC public
ER webpage. The OGC Testbed-17 ER documents the results and recommendations of the
Geo Data Cube API task. The Testbed-17 Call for Participation provides additional insights
into requirements and use cases. The ER defines a draft specification for an interoperable
GDC API leveraging OGC API building blocks and details implementation of the draft
GDC API. The ER also explores various aspects including data retrieval and discovery,
cloud computing, and Machine Learning. Implementations of the draft GDC API were
demonstrated with use cases including the integration of terrestrial and marine elevation
data and forestry information for Canadian wetlands. One of the key requirements for
future work highlighted was as follows.

• “Defining well-known processes expecting specific inputs including a particular
convenient processing language to facilitate flexible coverage processing should be
considered.”

• OGC Testbed-16: Data Access and Processing ER (20-016) summarizes the results of
the 2020 Testbed-16 Data Access and Processing task. The task had the primary goal
to develop methods and apparatus to simplify access to, processing of, and exchange of
environmental and Earth Observation (EO) data from an end-user perspective.

• “Consider adding the ability to negotiate output formats.”

• “Explore adding support for HTTP POST for invoking DATA processes.”

• “Considering adding an up/downsampling capability of data to control the volume of
data being processed.”

• “Investigate DAPA extensibility.”

• “Enhanced and interactive documentation about all aspects of a DAPA deployment.”

OPEN GEOSPATIAL CONSORTIUM 23-047 11

• “The ability to combine different datasets in one request.”

Additionally, there are several key developments happening in parallel both inside and outside
of the OGC. Within the OGC, there are the activities focused on the various components of the
OGC API suite of Standards, including common, coverages, features, records, processing and,
of course, the original OGC Web Services (W*S) suite of standards. Outside the work of the
OGC, there are specifications such as STAC and openEO tackling similar objectives. Especially
STAC, but also openEO, has already seen a considerable uptake in industry and space agencies
supported by a number of open-source implementations available for use. To this end, when
starting to define solutions and draft a GDC API standard, all of these technologies and existing
GDC related specifications should be considered. In the following section on the state of the art,
a more detailed comparison of core parts of the existing specifications is presented in the form
of crosswalks.

OPEN GEOSPATIAL CONSORTIUM 23-047 12

3

STATE OF THE ART

OPEN GEOSPATIAL CONSORTIUM 23-047 13

3 STATE OF THE ART

This chapter provides an overview of relevant technologies and specifications of useful
GeoDataCube API’s evaluated in Testbed-19. Crosswalks are used to document detailed
comparisons between key specifications/standards such as openEO, STAC, part of the OGC
API suite, and WCPS. These crosswalks highlight architectural, conceptual, and requirements
differences and try to map the most relevant pieces to each other. These crosswalks were
created prior to writing the first draft version of the GDC API specification. This approach was
taken to better understand the landscape of existing technologies, and all testbed participants
have been invited to develop relevant comparisons. As a result, the following crosswalks were
created.

3.1. Crosswalk between STAC and OGC API — Records

This crosswalk provides a brief overview over similarities and differences between the following.

• STAC (API), v1.0.0 (+ extensions)

• OGC API — Records — Part 1: Core, draft version (2023-05-26)

In the following, OAR1 is used as an abbreviation for OGC API — Records — Part 1.

3.1.1. Introduction

This crosswalk compares the content model (STAC vs. OAR1) and the API specification (STAC
API vs. OAR1).

Unfortunately, STAC and OGC API — Records are not fully compliant with each other. This
means that by default a STAC API endpoint does not automatically conform to a OGC API —
Records endpoint and vice versa. Nevertheless, there are no major conflicts in the specifications
so that both implementations can interoperate with a relatively small number of additions.

3.1.1.1. Terminology

The different entities specified in STAC and OAR1 can be mapped as follows.

OPEN GEOSPATIAL CONSORTIUM 23-047 14

http://docs.ogc.org/DRAFTS/20-004.html

Table 1

STAC OAR1

Catalog Record Collection

Collection Record Collection

Item Record

Nevertheless, there may be other mappings between concepts and properties in the
specifications. Some may argue a STAC Collection is a OAR1 Record. Due to the way the JSON
representations are defined, a mapping as in the table above is assumed.

Please also note that Catalogs, Collections, and Items could be Records in OAR1 and some
implementations only convert Records to Record Collections once there is at least one child
record. Catalogs are currently mostly used in static deployments and do not play a huge role in
APIs/dynamic deployments.

3.1.2. Static (content)

• The content model and static catalog behavior for STAC is specified in the standalone
STAC specification and corresponding extensions.

• The content model and static catalog behavior for OAR1 is specified in the requirement
classes “Record Core,” “Record Collection,” and “Crawlable Catalog.”

Note: In the tables below, the following applies.

• bold properties indicate that the properties are required.

• bold and italic properties are required if a criteria is met

• ✅ means that fields are fully compatible.

• ⚠
️
 means that fields are generally compatible (if applicable) but the field is not required in

both specs or there are other minor differences implementors need to be aware of.

• ❌ means there is a conflict between the specifications: the generated JSON is NOT
compatible.

• Profile* Checks the compliance if STAC would be defined as an OGC API — Records —
Part 1 profile / extension.

OPEN GEOSPATIAL CONSORTIUM 23-047 15

3.1.2.1. Catalogs

Assuming a JSON (non-GeoJSON) encoding.

Table 2

STAC OAR1 PROFILE* COMPATIBLE / COMMENTS

type =
Catalog

type =
Collection

⚠
️
 Issue

⚠
️
 There is no Catalog in OAR1, a “lightweight” Collection may be

used instead.

stac_
version

- ✅ ⚠
️

stac_
extensions

- ✅ ✅

id id ✅ ✅

title title ⚠
️
 Issue ⚠

️

description description ✅ ⚠
️
 STAC disallows empty strings

links links
⚠
️
 Issue 1

Issue 2 Issue
3

⚠
️
 Structure is compatible except for templated links and different

relation type requirements (none in STAC; self in OAR1). Also,
OAR1 and STAC both use the relation type child with a media type
application/json to link to catalogs, but clients cannot distinguish
whether they can expect OAR1 or STAC.

See below for more details about Collections.

3.1.2.2. Collections

Assuming a JSON (non-GeoJSON) encoding.

Table 3

STAC OAR1 PROFILE* COMPATIBLE / COMMENTS

type =
Collection

type =
Collection

✅ ✅

-
itemType =
record (API
only?)

✅ ✅

OPEN GEOSPATIAL CONSORTIUM 23-047 16

https://github.com/opengeospatial/ogcapi-records/issues/264
https://github.com/radiantearth/stac-spec/issues/1232
https://github.com/opengeospatial/ogcapi-records/issues/276
https://github.com/opengeospatial/ogcapi-records/issues/275
https://github.com/radiantearth/stac-spec/issues/1235
https://github.com/radiantearth/stac-spec/issues/1235

STAC OAR1 PROFILE* COMPATIBLE / COMMENTS

stac_version - ✅ ⚠
️

stac_extensions conformsTo (tbc) ✅

⚠
️
 STAC extensions could be used in conformsTo, but

conformance classes that are not valid JSON schemas can’t be
used in stac_extensions.

id id ✅ ✅

title title ⚠
️
 Issue ⚠

️

description description ✅ ⚠
️
 STAC disallows empty strings

links links
⚠
️
 Issue

1 Issue 2
Issue 3

⚠
️
 Structure is compatible except for templated links, but

different relation type requirements (none in STAC; self and
root in OAR1). Also, OAR1 and STAC both use the relation
type child with a media type application/json to link to
collections, but clients cannot distinguish whether OAR1 or
STAC is expected.

keywords keywords ✅ ✅

license license
✅ (STAC
1.1+)

⚠ STAC 1.0 is not fully compatible, but STAC 1.1 will be made
compatible.

providers - ✅ ✅

contacts
(extension)

contacts ✅ ✅

extent extent ✅ ⚠
️
 STAC requires a bounding box and a temporal interval.

summaries - ✅ ✅

assets - ✅ ⚠
️
 Assets are provided as links (aka “associations”) in OAR1.

language
(extension)

language ✅ ✅

languages
(extension)

languages ✅ ✅

-
recordLanguages
(API only?)

✅ ✅

created
(common
metadata)

created ✅ ✅

OPEN GEOSPATIAL CONSORTIUM 23-047 17

https://github.com/radiantearth/stac-spec/issues/1232
https://github.com/opengeospatial/ogcapi-records/issues/276
https://github.com/opengeospatial/ogcapi-records/issues/276
https://github.com/opengeospatial/ogcapi-records/issues/275
https://github.com/radiantearth/stac-spec/issues/1235

STAC OAR1 PROFILE* COMPATIBLE / COMMENTS

updated
(common
metadata)

updated ✅ ✅

themes
(extension)

themes ✅ ✅

crs (API only) crs ✅ ✅

- rights ✅ ✅

3.1.2.3. Items / Records

The following assumes a GeoJSON encoding for Records.

3.1.3. Top-level

Table 4

STAC OAR1 PROFILE* COMPATIBLE / COMMENTS

type =
Feature

type =
Feature

✅ ✅

stac_
version

- ✅ ⚠
️

stac_
extensions

conformsTo ✅
⚠
️
 STAC extensions could be used in conformsTo, but conformance

classes that are not valid JSON schemas cannot be used in stac_
extensions.

id id ✅ ✅

geometry geometry ✅ ⚠
️
 STAC disallows GeometryCollections

bbox bbox ✅ ⚠
️
 STAC requires bbox if geometry is not null.

properties properties ✅

links links
⚠
️
 Issue 1

Issue 2 Issue
3

⚠
️
 Structure is compatible except for templated links, but different

relation type requirements (none in STAC; self in OAR1). Also, OAR1 and
STAC both use the relation type item with a media type application/
geo+json to link to items/records, but clients cannot distinguish whether
OAR1 or STAC is expected.

OPEN GEOSPATIAL CONSORTIUM 23-047 18

https://github.com/radiantearth/stac-spec/issues/1160
https://github.com/opengeospatial/ogcapi-records/issues/276
https://github.com/opengeospatial/ogcapi-records/issues/275
https://github.com/radiantearth/stac-spec/issues/1235
https://github.com/radiantearth/stac-spec/issues/1235

STAC OAR1 PROFILE* COMPATIBLE / COMMENTS

assets - ✅ ⚠
️
 Assets are provided as links (aka “associations”) in OAR1.

collection - ✅
✅ This field is required in STAC if such a relation type is present and is not
allowed otherwise.

- time
⚠
️
 Issue 1

Issue 2
⚠
️
 STAC: datetime / start_datetime / end_datetime in

properties. STAC can’t encode all options that OAR1 allows.

3.1.4. Properties

Table 5

STAC OAR1 PROFILE* COMPATIBLE

- type ⚠
️
 Issue ⚠

️

datetime / start_datetime /
end_datetime

-
⚠
️
 Issue 1

Issue 2
⚠
️
 OAR1: time in the top-level object

title (common metadata) title ⚠
️
 Issue ⚠

️

description (common
metadata)

description ✅ ⚠
️
 STAC disallows empty strings

keywords (common
metadata)

keywords ✅ ✅

license (common metadata) license
✅ (STAC
1.1+)

⚠
️
 STAC 1.0 is not fully compatible, but STAC

1.1 will be made compatible.

created (common metadata) created ✅ ✅

updated (common metadata) updated ✅ ✅

contacts (extension) contacts ✅ ✅

themes (extension) themes ✅ ✅

language (extension) language ✅ ✅

languages (extension) languages ✅ ✅

-
resource
Languages

✅ ✅

- externalIds ✅ ✅

OPEN GEOSPATIAL CONSORTIUM 23-047 19

https://github.com/opengeospatial/ogcapi-records/issues/277
https://github.com/radiantearth/stac-spec/issues/1232
https://github.com/radiantearth/stac-spec/issues/1232
https://github.com/opengeospatial/ogcapi-records/issues/277
https://github.com/radiantearth/stac-spec/issues/1232
https://github.com/radiantearth/stac-spec/issues/1232

STAC OAR1 PROFILE* COMPATIBLE

- rights ✅ ✅

- formats ✅
✅ STAC: A similar list can be obtained from the
type field in assets

3.1.5. API (behavioral)

• The STAC API description is specified in the standalone STAC API specification and
corresponding extensions (conformance classes Core, Collections, Features).

• The OAR1 API description is specified in the requirement classes “Records API,”
“Searchable Catalog,” and “Local Resources Catalog.”

Both API descriptions have dependencies on the OGC API — Features and OGC API — Common
Standards.

Both API specifications use HTTP as the basis and encourage the use of HTTPS. HTTP 1.1 is
required for OAP1, while the STAC API description does not explicitly define an HTTP version.
Both API specifications follow REST principles and make use of HTTP content negotiation.
Both APIs make broad use of “Web Linking” (compatible between OAR1 and STAC API). Both
specifications recommend the implementation of CORS.

The default encoding for request and response bodies is JSON. The OGC API – Common
Standard recommends also supporting HTML as an response body encoding. Therefore content
negotiation needs to be implemented more carefully for OAR1. A STAC API implementation
usually uses client software to render HTML output from JSON (e.g., STAC Browser).

Both specifications make broad use of OpenAPI 3.0 (or later) and JSON Schema for specification
purposes.

3.1.5.1. Landing Page

• STAC: GET / (required)

• OAR1: GET / (required)

As both the STAC and OAR1 landing pages are consistent with the requirements specified in the
OGC API — Common Standard, the landing pages are very similar.

In OAR1 an implementation must provide just links and can optionally add title and
description.

OPEN GEOSPATIAL CONSORTIUM 23-047 20

https://docs.ogc.org/is/19-072/19-072.html

An implementation of the STAC API requires additional properties (stac_version, type,
id, description) to form a full STAC Catalog. The STAC API implementation also lists the
conformance test classes in the landing page, while OAR1 has the implementation separate.

The use of links is a bit different in STAC API and OAR1 implementations. The implementation
of the Collection List is optional in STAC. A STAC API implementation can also just expose child
links to catalogs/collections and/or to a search endpoint.

3.1.5.2. Conformance

• STAC: GET /conformance (optional)

• OAR1: GET /conformance (required)

Both endpoints are 100% equivalent. OAR1 requires a separate endpoint that lists conformance
test classes, which is optional in STAC API. A STAC API implementation additionally lists the
conformance classes in the landing page.

3.1.5.3. Collection List

• STAC: GET /collections (optional)

• OAR1: GET /collections (required)

As the endpoints for collection lists are both based of OGC API — Features — Part 1, the
endpoints are very similar. The difference between STAC and OAR1 is how the individual
collections are encoded, see Collections for details.

3.1.5.4. Individual Collection

• STAC: GET /collections/{collectionId} (optional)

• OAR1: GET /collections/{collectionId} (required)

As the endpoints for individual collections are both based of OGC API — Features — Part 1,
the endpoints are very similar. The difference between STAC and OAR1 is how the individual
collections are encoded, see Collections for details.

3.1.5.5. Item List

• STAC: GET /collections/{collectionId}/items (optional)

• OAR1: GET /collections/{collectionId}/items (required)

OPEN GEOSPATIAL CONSORTIUM 23-047 21

https://docs.ogc.org/is/17-069r3/17-069r3.html
https://docs.ogc.org/is/17-069r3/17-069r3.html

As the endpoints for item lists (per collection) are both based of OGC API — Features — Part 1,
the endpoints are very similar. The difference between STAC and OAR1 is how the individual
items are encoded, see Items for details. Additionally, OAR1 defines the following parameters
that implementations must support: q, type, and externalid.

3.1.5.6. Individual Item

• STAC: GET /collections/{collectionId}/items/{itemId} (optional)

• OAR1: GET /collections/{collectionId}/items/{recordId} (required)

As the endpoints for individual items are both based on top of OGC API — Features — Part 1,
the endpoints are very similar. The difference between STAC and OAR1 is how the individual
items are encoded, see Items for details.

3.1.5.7. Search

STAC defines three ways to search for resources:

• Collection Search Extension: Search for collections via GET /collections (based on Local
Resource Catalogue in OAR1);

• Item Search: Search (globally) for items across collections via GET /search and POST /
search; and

• Items per Collection: Filter for items in a specific collection via GET /collections/
{collectionId}/items (see Item List).

OAR1 defines similar ways to search for resources:

• Local Resource Catalogue: Search for record collections via GET /collections;

• Record Search: A global search for records is planned in the requirement class Searchable
Catalogue, but is not yet fully defined. There are chances for incompatibilities with STAC;
and

• Records per Record Collection: Filter for records in a specific record collection via GET /
collections/{collectionId}/items (see Item List).

3.1.5.8. Datacubes

OAR1 does not prescribe how to provide metadata about datacubes. OGC in general has a
couple of related standards, e.g., OGC API Coverages and the draft GeoDataCube API, but the
relation with OAR1 is not clearly defined for any of them.

OPEN GEOSPATIAL CONSORTIUM 23-047 22

https://docs.ogc.org/is/17-069r3/17-069r3.html
https://docs.ogc.org/is/17-069r3/17-069r3.html
https://github.com/stac-api-extensions/collection-search/
https://github.com/radiantearth/stac-api-spec/tree/main/item-search
https://docs.ogc.org/DRAFTS/20-004.html#clause-local-resources-catalogue
https://docs.ogc.org/DRAFTS/20-004.html#clause-searchable-catalogue
https://docs.ogc.org/DRAFTS/20-004.html#clause-searchable-catalogue
https://github.com/opengeospatial/ogcapi-features/issues/832

STAC does not provide metadata about datacubes either in the core, but it has a datacube
extension.

3.2. Crosswalk between the openEO API specification
and OGC API — Processes Standard

The crosswalk provides a brief overview of the similarities and differences between the
following.

• openEO API, v1.2.0

• OGC API — Processes — Part 1: Core, v1.0.0

In the following, OAP1 is used as an abbreviation for OGC API — Processes — Part 1: Core
Standard.

3.2.1. Introduction

The OCG API – Processes – Part 1: Core Standard (aka Processes API or OAPI) only defines
processing, while the openEO API has a much broader scope. openEO covers many parts that
other OGC API Standards define: some are aligned and some are not.

Conceptually, the two API specifications are similar but have some conflicts that cannot be
easily resolved (e.g., process description with multiple outputs in OAP1, job listing with different
job status values).

A key differentiator between OAP1 and openEO is that process chaining is a fundamental
concept in openEO for defining workflows while OAP1 is more meant to run larger “black box”
workflows. However, Part 3 of OGC API – Processes defines the behavior of an implementation
that supports the ability to define ad-hoc workflows, chains nested processes, refers to both
local and external processes and collections of data accessible via OGC API standards as inputs
to a process, and triggers execution of processes through OGC API data delivery specifications
such as OGC API — Tiles, DGGS, Coverages, Features, EDR, and Maps. This extension also
defines the behavior of an implementation that supports the ability to deploy a workflow
defined using the mechanisms it describes through the OGC API — Processes — Part 2: Deploy,
Replace, Undeploy extension.

Another key differentiator is that openEO has a list of pre-defined but extensible processes
available while the OGC API — Processes Standard does not predefine processes.

As such, the target audience for implementing and using OAP1 and openEO may only partially
overlap.

The openEO API specification covers the following “categories” of endpoints.

OPEN GEOSPATIAL CONSORTIUM 23-047 23

https://github.com/stac-extensions/datacube
https://github.com/stac-extensions/datacube
https://processes.openeo.org

• API discovery — Partially covered by OGC API — Processes — Part 1

• Authentication — Not defined by the OGC API Standards Suite

• Data Discovery — Covered by various other OGC API Standards (Coverages, EDR,
Features, Records, …)

• Process Discovery — Covered by OGC API — Processes — Part 1 Standard

• Pre-defined processes — Covered by OGC API — Processes — Part 1 Standard

• User-defined processes / Workflows — Covered by draft OGC API — Processes — Part
2 and 3 extensions.

• Data Processing — Covered by draft OGC API — Processes — Part 1 and 3 extensions.

• Synchronous processing — Covered by the OGC API — Processes — Part 1 Standard

• Batch Job processing — Covered by OGC API — Processes — Part 1 Standard

• On-demand processing — Covered by other OGC API Standards (Maps, Tiles, …)

• File Storage — Not covered by the OGC API Standards Suite

3.2.2. General API mechanics

Both API definitions use HTTP as the basis and encourage the use of HTTPS. HTTP 1.1 is
required for an OAP1 implementation, while openEO does not specify a specific HTTP version.
Both API specifications follow REST principles and make use of HTTP content negotiation. Both
API specifications make broad use of “Web Linking” (compatible between OAP1 and openEO).
Both specifications recommend the implementation of Cross-Origin Resource Sharing (CORS).

The default encoding for request and response bodies is JSON. The OGC Processes API
recommends supporting HTML as a response body encoding. openEO uses client software to
render HTML output from JSON.

Both specifications make broad use of OpenAPI 3.0 and JSON Schema for specification
purposes.

Many OAP1 and openEO API endpoints support pagination through links with the relation types
next and prev. These endpoints have a limit parameter to enable pagination for a specific
page size. Note: Pagination is rarely used in openEO implementations and most clients don’t
support it consistently.

3.2.3. API discovery

Discovering an API endpoint, connecting to it and reading the capabilities is always the first step
clients need to execute.

OPEN GEOSPATIAL CONSORTIUM 23-047 24

3.2.3.1. Well-known document

• openEO: GET /.well-known/openeo

• OAP1: n/a

openEO clients usually first connect to the well-known document to discover different versions
or implementations of a server. Thus a client can choose a suitable API version including
choosing between production and development instances. Then the openEO client connects to
the selected instance’s landing page. OGC API — Processes clients always directly connect to a
landing page. openEO clients can also directly connect to the landing page.

This folder structure with the document typically resides outside of the actual API
implementations, i.e., in the root of the host or domain.

3.2.3.2. Landing page

• openEO: GET / (required)

• OAP1: GET / (required)

As the landing pages are both consistent with OGC API — Common, the landing pages are very
similar.

Some differences include the following.

• openEO requires the following additional fields.

• Defined in OAP1, but not required: title, description

• Not defined in OAP1: api_version, backend_version, stac_version, id, endpoints,
(type)

• The relation type to link to the conformance classes is conformance in openEO (originating
from OGC API — Features / STAC API) and http://www.opengis.net/def/rel/ogc/1.
0/conformance in OAP1. Two links with the same target but different relation types will
be required.

• The existence of API endpoints in openEO is primarily checked through endpoints, which
is not present in OAP1. OAP1 uses links, which openEO primarily uses for non-API-related
links. Nevertheless, links such as required in OAP1 can be added easily to an openEO
implementation. The following additional links are relevant for OAP1.

• One of the link relations service-desc or service-doc is required in OAP1 and
should link to an API description (e.g., OpenAPI or rendered HTML version).

OPEN GEOSPATIAL CONSORTIUM 23-047 25

• A link with relation type http://www.opengis.net/def/rel/ogc/1.0/processes to
/processes is required for OAP1, but not in openEO.

• A link with relation type http://www.opengis.net/def/rel/ogc/1.0/job-list to /
jobs can be added in OAP1, but is not present in openEO.

3.2.3.3. Conformance classes

• openEO: GET /conformance (optional)

• OAP1: GET /conformance (required)

Both conformance test class endpoints are 100% equivalent. OAP1 requires a separate endpoint
that lists conformance test classes. openEO additionally supports listing the conformance test
classes in the landing page (follows STAC API). Conformance test classes are only fully defined
since openEO API v1.2.0.

3.2.4. Authentication

• openEO: GET /credentials/basic and/or GET /credentials/oidc

• OAP1: n/a

OpenEO defines two authentication mechanisms:

• OpenID Connect (primary); and

• HTTP Basic (secondary, primarily for development/testing purposes).

The OAP1 Standard does not define any authentication mechanisms, but both authentication
mechanisms can also be implemented for OAP1. The main issue will be that OAP1 clients will
likely not support the mechanisms.

The availability of the authentication mechanisms is detected through the endpoints in the
openEO landing page, while in OAP1 the OpenAPI document for such an authentication
mechanism (which implicitly requires a link to an OpenAPI 3.0 file with relation type service-
desc in the landing page) must be parsed.

3.2.5. Data Discovery

Data Discovery is not covered by the OAP1 Standard, but can be “plugged in” by implementing
various other OGC API building blocks (e.g., Coverages, EDR, Features, Records, etc.). Except
for OGC API — Processes — Part 3, it is not clear how the processes defined in the OAP1
Standard can access resources from other API implementations. The processes probably need
to implement data access individually through clients implementing OGC API building blocks.

OPEN GEOSPATIAL CONSORTIUM 23-047 26

As such, OAP1 could also be made compliant with STAC API — Collection and STAC API —
Features. STAC API — Collections is required by openEO. STAC API — Features is optional in
openEO, but would likely be required to allow data access through an OAP1 processes.

3.2.6. Process Discovery

The OAP1 Standard claims that it

does not mandate the use of any specific process description to specify the
interface of a process.

The OAP1 Standard does define a “default” encoding in the conformance class “OGC Process
Description.” Unfortunately, this is a somewhat mislading statement and the OAP1 Standard still
provides a predefined set of fields which conflict with openEO (see below).

The openEO API specification defines a single encoding for process descriptions.

An important difference is that in OAP1 a single process is executed (optionally processes can be
chained using the draft OGC API — Processes — Part 3 extension) which means a process in an
OAP1 implementation is often more complex. In an openEO implementation a process is often
very fine-granular (e.g., addition of two numbers) and can usually chain multiple of processes
to a more complex process (graph). The process chaining into a full graph is fundamental in
openEO.

Another major difference is that in openEO there are pre-defined process descriptions available
for common use cases. The OGC API — Processes Standard does not provide pre-defined
process descriptions. In theory, an implementation could re-use the openEO processes in an
OGC API — Processes endpoint if OGC API — Processes — Part 3 is implemented for chaining.

3.2.6.1. Pre-defined processes

• openEO: GET /processes (required)

• OAP1: GET /processes, GET /processes/{processID} (both required)

In openEO GET /processes operation returns the full process metadata, while an OAP1
implementation only returns a summary. The general structure of the response of GET /
processes is the same (processes and links). The OGC Process Description and the openEO
process description are not compatible.

openEO does not yet define an endpoint to retrieve an individual process such as a OAP1 GET /
processes/{processID} endpoint will. There is a proposal available to add such an endpoint to
the openEO specification. openEO has the concept of namespace for processes though and thus
defines the endpoint at
GET /processes/{namespace}/{process} which would conflict with the OAP1 definition.

Some notable differences in the process description (only fully delivered via GET /processes/
{processID}) include the following.

OPEN GEOSPATIAL CONSORTIUM 23-047 27

https://github.com/opengeospatial/ogcapi-processes/issues/325
https://processes.openeo.org
https://processes.openeo.org
https://github.com/Open-EO/openeo-api/pull/348

• OAP1 defines jobControlOptions, which is undefined in openEO yet (which implies
["sync-execute","async-execute"]).

• OAP1 defines outputTransmission, which is not available in openEO. It seems as though
this will be removed.

• OAP1 allows multiple outputs, openEO only allows a single output (potential workaround:
wrap in an array or object).

• OAP1 uses title and openEO uses summary.

• OAP1 specifies inputs as object and the identifier as key, openEO specifies parameters
as array and the identifier as name property (but the content of each is otherwise very
similar).

Below is a simple process encoded in the two variants discussed here.

• OGC Process Description

• openEO Process

3.2.6.2. User-defined processes / Workflows

Workflows are not described in the OGC API — Processes — Part 1 Standard. Instead, the
draft Part 2 extension defines the deployment/management of workflows and the Part 3
extension specifies how to define the workflows. The Part 2 extension defines how to chain/
nest processes in an OGC API — Processes implementation and also defines a “workflow
language” (“Modular OGC API Workflow JSON”, short: MOAW), but it seems to also allow
providing other workflow languages such as openEO user-defined processes and the Common
Workflow Language (CWL).

openEO defines the /process_graphs endpoints and has workflows (called “user-defined
processes” in openEO, i.e., a process with a process graph) included in the core.

Related documents:

• MOAW: https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/
workflows/sections/clause_6_overview.adoc (and following chapters)

• openEO: https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/
workflows/sections/clause_13_openeo_workflows.adoc

• CWL: https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/
workflows/sections/clause_12_cwl_workflows.adoc

A comparison between MOAW and openEO user-defined processes should also be considered
in the future.

OPEN GEOSPATIAL CONSORTIUM 23-047 28

https://github.com/Open-EO/openeo-api/issues/429
https://github.com/opengeospatial/ogcapi-processes/issues/326
oap-echo-example.json
openeo-echo-example.json
https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/workflows/sections/clause_6_overview.adoc
https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/workflows/sections/clause_6_overview.adoc
https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/workflows/sections/clause_13_openeo_workflows.adoc
https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/workflows/sections/clause_13_openeo_workflows.adoc
https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/workflows/sections/clause_12_cwl_workflows.adoc
https://github.com/opengeospatial/ogcapi-processes/blob/master/extensions/workflows/sections/clause_12_cwl_workflows.adoc

3.2.7. Data Processing

3.2.7.1. Synchronous processing

• openEO: POST /result

• OAP1: POST /processes/{processID}/execution

3.2.7.2. Batch Job processing

3.2.7.2.1. Job list

• openEO: GET /jobs

• OAP1: GET /jobs

The job list provided by an OAP1 endpoint has several parameters that are not available in an
openEO implementation. The general structure of the response of GET /jobs is the same (jobs
and links). Each job complies to the structure discussed in Job status.

3.2.7.2.2. Job status

• openEO: GET /jobs/{jobID}

• OAP1: GET /jobs/{jobID}

Similar properties in OAP1 and openEO:

• jobID (required) / id (required)

• processID (string) / process (required, object containing chained processes)

• status (required, below: OAP1 / openEO) — The values map as follows:

• accepted / created

• n/a / queued

• running / running

• successful / finished

• failed / error

OPEN GEOSPATIAL CONSORTIUM 23-047 29

• dismissed / canceled

• created (required in openEO only)

• updated

• progress

• links (to be added to openEO)

Additional properties in the OAP1 Standard:

• type (required) (always: process)

• messsage (-> use logs in openEO)

• started (-> use logs in openEO)

• finished (-> use logs in openEO)

Additional properties in the openEO specification:

• title

• description

• costs

• budget

• usage

3.2.7.2.3. Creating a job

• openEO: POST /jobs

• OAP1: POST /processes/{processID}/execution

An OAP1 implementation may provide inputs, outputs, the response type (raw or document),
and/or a subscriber.

An openEO implementation must provide a process (chained processes as process graph with
optional additional metadata) and may additionally provide a title, a description, a billing plan,
and/or a maximum budget.

Both specifications seem to support providing additional properties.

OPEN GEOSPATIAL CONSORTIUM 23-047 30

https://github.com/Open-EO/openeo-api/issues/495

3.2.7.2.4. Queueing a job

• openEO: POST /jobs/{jobID}/results

• OAP1: n/a (queued directly after creation)

3.2.7.2.5. Cancel / Delete a job

• openEO: DELETE /jobs/{jobID}/results / DELETE /jobs/{jobID}

• OAP1: n/a / DELETE /jobs/{jobID}

3.2.7.2.6. Result Access

• openEO: GET /jobs/{jobID}/results

• OAP1: GET /jobs/{jobID}/results

In an openEO implementation, result access fully relies on STAC. The response is a valid STAC
Item or Collection.

For an OAP1 implementation the result access differs depending on the given parameters.

3.2.7.3. On-demand processing

On-demand processing in this context means that processing is only executed for extents shown to
the user, e.g., on a web map. Results are processed “on demand” depending on the interaction with the
map (e.g., how Google Earth Engine does it in their Code Editor by default).

TBD, lower priority as it’s not covered by OAP1. It’s also optional and very different in openEO.
Instead it is defined as a separate OAP1 API implementation for individual OGC API resources.
For example, a combination of OGC API — Maps and OGC API — Processes.

3.2.8. File Storage

• openEO: /files (various methods), /files/{path} (various methods)

• OAP1: n/a

As file storage is not specified in the OAP1 Standard or in any of the OGC APIs, comparisons
cannot be provided.

OPEN GEOSPATIAL CONSORTIUM 23-047 31

https://docs.ogc.org/is/18-062r2/18-062r2.html#toc34

3.3. Crosswalk between the openEO API specification
and the draft OGC API – Coverages Standard

The following crosswalk provides a brief overview of the similarities and differences between:

• openEO API, v1.2.0

• OGC API — Coverages — Part 1: Core, v0.0.6

3.3.1. Introduction

The draft OGC API — Coverages Standard (OAC1 or Coverages API) establishes how to access
coverages as defined by the OGC Abstract Specification Topic 6 / ISO 19123 Schema for
coverage geometry and functions, and thus provides an alternative to the established OGC Web
Coverage Service (WCS) interface standard (v2.1).

The strategy behind the development of the OGC API — Coverages Standard is to define a
minimal, relatively simple Coverages API Standard first, with new capabilities being incrementally
added based on community demands while defining how to access (portions of) coverages
from a catalog. The content of the coverage can be encoded using any suitable logical model
and physical encodings, such as those defined by Coverage Implementation Schema (CIS) 1.1,
netCDF, CoverageJSON, GeoTIFF (including Cloud Optimized GeoTIFF (COG)), or LAS/LAZ
(including Cloud Optimized Point Cloud (COPC)).

The following crosswalk compares the Draft Coverages API Standard with the openEO API,
touching all the functionalities that are declared in the OGC standard.

• (meta)data retrieval

• subsetting through dimension(s)

• range (bands) subsetting

• up/down-scaling

• data retrieval as tiles

The following abbreviations will be used throughout this chapter.

• openEO : openEO API, v1.2.0

• OAC1 : OGC API — Coverages — Part 1

OPEN GEOSPATIAL CONSORTIUM 23-047 32

https://api.openeo.org/1.2.0/
https://docs.ogc.org/DRAFTS/19-087.html
https://portal.ogc.org/files/?artifact_id=19820
https://www.iso.org/standard/40121.html
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
http://www.opengis.net/doc/IS/cis/1.1.1
https://www.ogc.org/standard/netcdf/
https://covjson.org/

3.3.2. Nomenclature

Despite both specifications having dependencies on the OGC API — Features Standards,
openEO/STAC and OGC have different terminologies and data models. Therefore, below are
definitions of the most relevant terms from both API “worlds.”

Most notably, an OGC coverage — even though formally defined as a feature (and not a collection
thereof) — is frequently an abstraction for a collection of (generally, but not limited to, gridded)
datasets/items (like time-series of satellite images for instance), so the concept “coverages” can
generally be compared with STAC collections, especially datacubes.

3.3.2.1. OGC

collection:

A set of features from a dataset.

coverage:

A feature that acts as a function to return values from its range for any direct position within
its spatial, temporal, or spatio-temporal domain; this can be equivalent to either a STAC Item or
Collection.

domain:

A set of direct positions along some axis in space and time (or other dimensions) that defines
the “location” of a coverage, associated with a (compounding of) spatio(-temporal)(-other)
coordinates reference system (CRS), and for each of which a set of 1+ values (range) are
associated.

feature:

An abstraction of real world phenomena.

range:

A set of feature attribute values associated by a function with the elements of the domain of
a coverage, that means the stored values of a coverage like for instance the spectral bands; in
the STAC datacube extension, range and domain are condensed into the same cube:dimensions
container.

3.3.2.2. STAC

catalog:

A logical group of other catalog, collection, and item objects.

collection:

OPEN GEOSPATIAL CONSORTIUM 23-047 33

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://myogc.org/go/coveragesDWG
https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md
https://openeo.org/documentation/1.0/datacubes.html
https://github.com/radiantearth/stac-spec/tree/master/item-spec
https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md
https://github.com/stac-extensions/datacube

A set of common fields to describe a group of items that share properties and metadata

item:

A GeoJSON Feature augmented with foreign members relevant to a STAC object.

cube:dimensions:

A set of dimensions that can be of different types: spatial, temporal, “other,” etc.

3.3.3. Crosswalk

The capabilities defined in the openEO specification and the draft OAC1 Standard largely
overlap. However, as also declared in the preface, OAC1 defines a simpler service as specified
in the OAC1 core requirements class (no authentication/authorization management, processes,
batch jobs, logs, processing budgets, etc.).

The draft OAC1 Standard usually specifies simpler ways to request basic operations on datasets
(like filtering or resampling) which is done by using the query parameters of the URLs. On the
other hand, openEO permits a much powerful service with processing graphs and asynchronous
jobs management, but at the cost of a slightly more laborious way to execute the most basic
“processing” operations.

The coverage data model is generally a bit more flexible with regards to the “arbitrary” non-
spatial non-temporal dimensions, while the processes in openEO generally do not include such
dimensions.

The only OAC1 capability that openEO does not directly provide (if not via cascade with a
secondary tiles service) is to attach tilesets to coverages, and hence enable tiled access to the
data.

3.3.3.1. Meta / API capabilities

In this section the available information on the API capabilities is provided. This information is
relevant for interoperability and “machine-actionable” services.

3.3.3.2. Well-known URIs

• openEO: GET /.well-known/openeo (optional)

• OAC1: n/a

Site-wide metadata information: In an openEO API implementation this is a list of versions
of the API that the server supports, and it is meant to help a client choose the most suitable
endpoint (eg. production/development).

Site-wide metadata is not specified in the draft OAC1 Standard.

OPEN GEOSPATIAL CONSORTIUM 23-047 34

https://api.openeo.org/1.2.0/#tag/Capabilities/operation/connect

3.3.3.3. Landing page

• openEO: GET / (required)

• OAC1: GET / (required)

The landing pages as defined in both specifications are consistent with the OGC API — Common
Standard, and there are only minor differences in the returned schemas.

3.3.3.4. Conformance

• openEO: GET /conformance (optional) (only from v1.2.0)

• OAC1: GET /conformance (required)

Both endpoints are 100% equivalent (openEO additionally supports the ability to list the
conformance test classes in the landing page, following the STAC API).

3.3.3.5. API description

• openEO: as per service-desc/service-doc relation types

• OAC1: GET /api (required)

Both openEO and OAC1 implementations can provide service descriptions (e.g., OpenAPI
documents) and human-readable documentation in the resources pointed to by the standard
service-desc and service-doc relation types. In an OAC1 implementation such resources
(both) point to the /api endpoint.

3.3.3.6. Authentication

• openEO: GET /credentials/basic and/or GET /credentials/oidc

• OAP1: n/a

The openEO specification defines two authentication mechanisms:
OpenID Connect (primary) and HTTP Basic (for development/testing). The draft OAC1 Standard
does not define any authentication mechanisms. While both mechanisms could be implemented,
OAC1 clients will likely not support them.

The availability of the authentication mechanisms is detected through the endpoints in the
openEO landing page, while in OAC1 parse the OpenAPI document needs to be parsed for the

OPEN GEOSPATIAL CONSORTIUM 23-047 35

https://api.openeo.org/1.2.0/#tag/Capabilities/operation/capabilities
https://ogcapi.ogc.org/common/
https://api.openeo.org/1.2.0/#tag/Capabilities/operation/conformance
https://api.openeo.org/1.2.0/#section/Authentication
https://api.openeo.org/1.2.0/#section/Authentication
https://developers.google.com/identity/openid-connect/openid-connect

authentication information (which implicitly requires a link to an OpenAPI 3.0 file with relation
type service-desc in the landing page).

3.3.3.7. Data discovery

• openEO:

• GET /collections (required)

• GET/POST /search (optional)

• OAC1:

• GET /collections (required)

openEO and OAC1 implementations both provide a resource for accessing the whole catalog of
datacubes/coverages offered by the server. This includes basic/abbreviated metadata for each
of the assets in order to try to keep the response size small. Full metadata details are instead
available as per data description.

CIS coverages will be returned by an OAC1 request, STAC Collections by an openEO request.

Optionally, openEO specifies how to search for individual STAC items “hidden” inside the
collections, as per STAC API repository.

3.3.3.8. Data description

• openEO:

• GET /collections/{collectionId} (required)

• GET /collections/{collectionId}/queryables (optional)

• OAC1:

• GET /collections/{collectionId} (required)

• GET /collections/{collectionId}/coverage/rangetype (required)

• GET /collections/{collectionId}/coverage/domainset (required)

• GET /collections/{collectionId}/coverage/metadata (optional)

Full metadata descriptions of collections are available in both the openEO and OAC1
specifications, encoded as STAC Collections or CIS Coverages, respectively.

OPEN GEOSPATIAL CONSORTIUM 23-047 36

https://api.openeo.org/1.2.0/#tag/EO-Data-Discovery/operation/list-collections
https://api.openeo.org/1.2.0/#tag/EO-Data-Discovery/STAC
https://github.com/radiantearth/stac-spec/tree/v0.9.0/api-spec
https://api.openeo.org/1.2.0/#tag/EO-Data-Discovery/operation/describe-collection
https://api.openeo.org/1.2.0/#tag/EO-Data-Discovery/operation/list-collection-queryables

Additional links are provided (required) for coverages in an OAC1 implementation with respect
to the basic “Collection Resources” as defined in the OGC API — Common Standard: One for
the description of the sole “range” of the coverage, and one for the sole “domain,” which is just
a subset of the full metadata description. Also available, though optional, is the link to the sole
coverage’s “metadata,” meaning supplementary/domain-specific extra metadata fields that might
be attached to a coverage.

The openEO specification offers a more flexible and machine-actionable solution for filtering the
description of a collection. This is by means of the “queryables”: a listing of all metadata filters
available for each collection. This is in line with both filter STAC API extension and the draft
OGC API — Features — Part 3: Filtering Standard.

3.3.3.9. Data access

• openEO:

• POST /result @ load_collection process (sync)

• POST /jobs @ load_collection process
POST /jobs/{jobId}/results (async)

• OAC1:

• GET /collections/{collectionId}/coverage (required)

• GET /collections/{collectionId}/coverage/rangeset (optional)

OAC1 : Encoding as negotiated in the HTTP protocol, with a proper fallback media type
otherwise. The actual coverage values (the range set) can be represented either in-line or by
reference to an external file which may have any suitable encoding.

An openEO implementation provides access to the actual data by means of the load_collection
process, which can be submitted either synchronously or asynchronously as a batch job. The
format of the resulting data shall always be specified by chaining a save_result process.

For pre-filtering/data subsetting options, see next section.

3.3.3.10. Data subsetting

• openEO:

• POST /result @ load_collection process (sync)

• POST /jobs @ load_collection process
POST /jobs/{jobId}/results (async)

• OAC1:

OPEN GEOSPATIAL CONSORTIUM 23-047 37

https://github.com/stac-api-extensions/filter#queryables
https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/filtering
https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/filtering
https://api.openeo.org/1.2.0/#tag/Data-Processing/operation/compute-result
https://processes.openeo.org/#load_collection
https://api.openeo.org/1.2.0/#tag/Batch-Jobs/operation/create-job
https://processes.openeo.org/#load_collection
https://api.openeo.org/1.2.0/#tag/Batch-Jobs/operation/start-job
https://processes.openeo.org/#load_collection
https://processes.openeo.org/#save_result
https://api.openeo.org/1.2.0/#tag/Data-Processing/operation/compute-result
https://processes.openeo.org/#load_collection
https://api.openeo.org/1.2.0/#tag/Batch-Jobs/operation/create-job
https://processes.openeo.org/#load_collection
https://api.openeo.org/1.2.0/#tag/Batch-Jobs/operation/start-job

• bbox / datetime / subset query params (domain subsetting)

• properties query param (range subsetting)

The parameters offered by the openEO load_collection process supports subsetting the
requested collection along a cube’s dimensions, which also includes what the OAC1 Standard
calls the range set, hence the “bands” of the dataset. There is no option for low:high subsetting
of an arbitrary dimension which might neither be classified as spatial nor temporal, like the
subset query parameter offers in OAC1.

Spatial subsetting as defined in the openEO specification is more powerful as not only
bounding-boxes but also GeoJSON geometries can be specified for a more accurate clipping
of the data. On the other hand, OAC1 supports specifying open/unbounded spatial intervals.
Open/unbounded time intervals are supported in both API specifications (via null or double-
dots .., respectively).

Spatial filtering with coordinates specified with an arbitrary CRS is available in both API
specifications. In both cases, all data values that spatially intersect with the provided spatial
extent/range (boundaries included) will be in the response.

Subsetting of an arbitrary dimension — not classified as spatial not temporal, nor band in the
openEO datacube model — is not possible in an openEO implementation, while available in an
OAC1 implementation via subset parameters.

In case the response is too large, the current proposal is for an OAC1 implementation to return
a URI instead of the content, or a reduced-resolution coverage with a URI to the full resolution
response.

Filtering/cherry-picking of bands is available in both the OAC1 and openEO implementations via
the properties parameter and load_collection process, respectively. Both band names and band
indices can be used in an OAC1 implementation, while an openEO implementation only accepts
band names.

An openEO compliant server can optionally provide a rough estimate of the time/cost of a
stored job via /jobs/{jobId}/estimate. Server logs are also available from an openEO server
implementation either directly in the synchronous processing response (as a link), or via the API
resources dedicated to the batch jobs (eg. jobs/{jobId}/logs).

3.3.3.11. Data scaling

• openEO:

• POST /result @ resample_spatial process (sync)

• POST /jobs @ resample_spatial process
POST /jobs/{jobId}/results (async)

• OAC1:

OPEN GEOSPATIAL CONSORTIUM 23-047 38

https://processes.openeo.org/#load_collection
https://processes.openeo.org/#load_collection
https://api.openeo.org/1.2.0/#tag/Data-Processing/operation/estimate-job
https://api.openeo.org/1.2.0/#tag/Batch-Jobs/operation/debug-job
https://api.openeo.org/1.2.0/#tag/Data-Processing/operation/compute-result
https://processes.openeo.org/#resample_spatial
https://api.openeo.org/1.2.0/#tag/Batch-Jobs/operation/create-job
https://processes.openeo.org/#resample_spatial
https://api.openeo.org/1.2.0/#tag/Batch-Jobs/operation/start-job

• GET /collections/{collectionId}/coverage?scale-size=axisName({number})
[,axisName({number})]*

• GET /collections/{collectionId}/coverage?scale-axes=axisName({number})
[,axisName({number})]*

• GET /collections/{collectionId}/coverage?scale-factor={number}

Specifying how to rescaling a dataset in an openEO implementation requires the same
procedure as for any other kind of processing, thus preparing a process graph that executes the
desired operation, then fetch the results, either synchronously or asynchronously through the
creation of a batch job.

At of February 2024, the available openEO specified processes for data resampling are
resample_spatial — that rescales the spatial dimensions to a target resolution, or to a
target spatial coordinate reference system — and resample_cube_spatial/ resample_cube_
temporal, that rescale the spatial/temporal dimensions to match the resolutions of a provided
target datacube.

While an OAC1 implementation does not let a user specify a resolution, a client can specify the
target number of samples along a dimension, or the scaling factor. While the capabilities of a
user-defined process with asynchronous job management go well beyond data, the resampling
of a dataset provides a wide range of benefits, the OAC1 Standard provides a somewhat simpler
shortcut for via query parameters of the URL.

The OAC1 Standard also supports specifying scaling on any coverage’s dimension, while openEO
only supports scaling along the spatial plane/dimensions.

3.3.3.12. Tiles

• openEO: -> secondary web services

• OAC1:

• GET /collections/{collectionId}/coverage/tiles : list the available tilesets

• GET /collections/{collectionId}/coverage/tiles/{tileMatrixSetId} : tileset
description

• GET /collections/{collectionId}/coverage/tiles/{tileMatrixSetId}/
{tileMatrix}/{tileRow}/{tileCol} : retrieve tile

The OAC1 Standard, in alignment with the requirements defined in the OGC API — Tiles
Standard, supports the retrieval of coverage data in form of tiles. The tiled content is trimmed
and resampled to match the boundaries and resolution of a given tile. More than one tileset can
be attached to a coverage.

OPEN GEOSPATIAL CONSORTIUM 23-047 39

https://api.openeo.org/1.2.0/#tag/Data-Processing/operation/create-job
https://processes.openeo.org/#resample_spatial
https://processes.openeo.org/#resample_spatial
https://processes.openeo.org/#resample_cube_temporal
https://processes.openeo.org/#resample_cube_temporal
http://docs.ogc.org/DRAFTS/20-057.html

The openEO specification does not specify how to provide tiled access directly, but can be easily
cascaded by a dedicated secondary tiles service (like XYZ tiles) thanks to the /service_types
resource.

3.3.3.13. Media encoding

• openEO: GET /file_formats

• OAC1: GET /api

Both the OAC1 and openEO specifications provide a list of data formats the server supports,
both the data formats that the server can read from (input) and write to (output).

OAC1 embeds the information in the API description available at the /api endpoint and does
not mandate any particular output encoding or format, although CIS JSON is recommended.
Binary formats of course are also allowed (CIS RDF, NetCDF, GeoTIFF, PNG, JPEG, JPEG-2000,
etc.).

In the openEO specification format names and parameters are aligned with the GDAL/OGR
formats although custom file formats are also permitted.

3.3.4. References

• openEO API, v1.2.0 — https://api.openeo.org/1.2.0/

• OGC API — Coverages — Part 1: Core, v0.0.6 — https://docs.ogc.org/DRAFTS/19-087.
html

• OGC API — Common — https://ogcapi.ogc.org/common/

• OGC Abstract Specification Topic 6 — Schema for coverage geometry and functions —
https://portal.ogc.org/files/?artifact_id=19820

• OGC API — Tiles — Part 1: Core Standard 1.0.0 — https://docs.ogc.org/is/20-057/20-057.
html

• OGC Web Coverage Service (WCS) 2.1 Interface Standard — http://docs.opengeospatial.
org/is/17-089r1/17-089r1.html

OPEN GEOSPATIAL CONSORTIUM 23-047 40

https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://api.openeo.org/1.2.0/#tag/Capabilities/operation/list-service-types
https://api.openeo.org/1.2.0/#tag/Capabilities/operation/list-file-types
https://api.openeo.org/1.2.0/
https://docs.ogc.org/DRAFTS/19-087.html
https://docs.ogc.org/DRAFTS/19-087.html
https://ogcapi.ogc.org/common/
https://portal.ogc.org/files/?artifact_id=19820
https://docs.ogc.org/is/20-057/20-057.html
https://docs.ogc.org/is/20-057/20-057.html
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html

3.4. Crosswalk between the draft GDC standard and the
OGC WCPS Standard

The following provides a brief overview of the similarities and differences between the draft
GeoDataCube (GDC) API standard and the adopted Web Coverage Processing Service (WCPS)
Standard (which also has been adopted by ISO).

References:

• OGC WCPS standard with WCPS primer

• ISO IS 19123-3, adopted as update of OGC Abstract Topic 6

3.4.1. WCPS in Brief

The OGC WCPS Standard specifies a GeoDataCube analytics language for server-side
evaluation of datacubes modeled as coverages as per the OGC Coverage Implementation
Schema (CIS) Standard. WCPS is a language honed to the datacube structure, designed to
be compact, as data query languages such as SQL are, while offering specialized datacube
functionality. Building a language, rather than an API specification, opened up the flexibility
to have queries ranging from simple access and extraction to any complexity of processing.
WCPS is high-level and agnostic of any protocols and encodings (such as JSON). WCPS has been
shown to work over https GET/KVP, POST, and OAPI.

3.4.2. Comparison of the GDC API and WCPS

Both the current GDC API draft and WCPS follow the same philosophy of allowing requests
ranging from very simple to unlimited complexity made for server-side evaluation. The draft
GDC Standard defines a framework which can be utilized as a carrier protocol for manifold
extensions, including WCPS, openEO, or general OAPI-Processes. WCPS, on the other hand,
is protocol-agnostic and can utilize any carrier, including GET/KVP, XML/POST, SOAP, REST,
OAPI-Coverages, OAPI-Processes, and GDC. As such, GDC and WCPS appear complementary.

In terms of functionality, the draft GDC API specification offers access, extraction, scaling,
reprojection, and format encoding. For more advanced processing the specification resorts
to external mechanisms such as openEO and OAPI — Processes. The rasdaman Testbed-19
GDC implementation maps GDC requests to WCPS queries which then get executed by the
rasdaman engine. The same approach is adopted for OAPI-Coverages (and also for WMS and
WMTS). Internally, rasdaman translates WCPS into the rasql array query language which, on the
side, is adopted by ISO as part 15 of SQL. Bottom line, all OGC coverage API functions can be
expressed in WCPS. Additionally, WCPS offers features going beyond what APIs are considering
making it a superset of the functionalities of the various OGC API Standards.

OPEN GEOSPATIAL CONSORTIUM 23-047 41

https://www.ogc.org/standard/wcps
https://earthserver.xyz/wcs#wcps
https://committee.iso.org/sites/tc211/home/projects/projects---complete-list/iso-19123-3.html
https://link.springer.com/article/10.1007/s10707-009-0087-2
https://m-mohr.github.io/geodatacube-api/
https://www.iso.org/standard/84807.html
https://docs.ogc.org/is/08-068r3/08-068r3.html

In the diagram below, the draft GDC API and the WCPS Standard are compared. Focus is on
“real” datacube operations. OAP I- specific/datacube unspecific concepts (such as collections)
have been ignored. The fact that WCPS omits establishing non-datacube concepts allows WCPS
to be embedded into any macro model and get coupled with queries in STAC, OAPI — Records,
XQuery/XPath, and any other such model.

Further, only the built in mechanisms, not “black boxes” pulled in from other specifications,
are considered. The rationale is that the language semantics can greatly help protect from user
errors (such as addressing dimensions not existing, taking nulls as real values, etc.) and further
allows server-side optimizations.

Table 6

SPECIFICATION EXTRACTION SCALING REPROJECTION ENCODING MANIPULATIONAGGREGATION FUSION

GDC (openEO) ✔
️

✔
️

✔
️

✔
️

✔
️

✔
️

✔
️

WCPS ✔
️

✔
️

✔
️

✔
️

✔
️

✔
️

✔
️

Legend: ✔
️
 = available, ❌ = not available

• through a special micro syntax in the parameters

Aside from functionality, syntax simplicity is an important criterion in practice. Below a relatively
simple example is provided: deriving the absolute windspeed from ECMWF ERA5 wind speed u
and v components through the common vector formula of sqrt(u^2 + v^2). In both cases, the
color ramp was omitted as it is not of concern for this discussion.

First, the WCPS query:

for $c0 in (ERA5)
return
 encode(
 sqrt(pow($c0.u10, 2.0) + pow($c0.v10, 2.0)) [time("2000-01-
01T01:00:00Z")],
 "PNG"
)

Figure 1

Next, the openEO code in the Python client describing the same operation:

data = connection.load_collection(
 "ERA5",
 spatial_extent = None,
 temporal_extent = ["2000-01-01T01:00:00Z", "2000-01-01T02:00:00Z"],
 bands = ["u10", "v10"]
)
u10 = data.band("u10") ** 2.0
v10 = data.band("v10") ** 2.0
data = u10 * v10
data = data.apply(process = lambda x: sqrt(x))

OPEN GEOSPATIAL CONSORTIUM 23-047 42

result = data.save_result("PNG")

Figure 2

In passing, note that WCPS has a formally defined semantics which the current GDC API draft
provides through openEO. Such a formalization is useful to ensure that all servers interpret the
same query the same way, delivering the same result.

3.4.3. Conclusion

The draft OGC API — GDC Standard follows the openEO language-based approach, and
internally chooses a syntax which is easy to parse for machines through process graphs. Client
libraries ensure that it is easy to use for humans. That said, both openEO and WCPS fit well as
language add-ins to the draft GDC API. WCPS may act as the “glue” to the OAPI — Coverages
model.

OPEN GEOSPATIAL CONSORTIUM 23-047 43

4

HIGH LEVEL OVERVIEW OF
GDC API

OPEN GEOSPATIAL CONSORTIUM 23-047 44

4 HIGH LEVEL OVERVIEW OF GDC API

Based on the pre-requisites provided in the use cases, the crosswalks analysis documented
in the previous chapter and the input from the Testbed-19 participants, a first draft of the
GeoDataCube API specification was developed. The goal was not to invent a new standard from
scratch, but to build on existing specifications and standards that are already widely adopted by
the community. To that end, the first GDC API draft was defined based the existing openEO API
and STAC API specifications as well as the more mature modules from the OGC API Standards
Suite.

Both the openEO and STAC specifications are currently (February 2024) in the process of
becoming OGC Community Standards. During the development of the openEO specification
and tools, an effort was made to keep aligned as much as possible with the ongoing OGC
API Standards work. As a result, there is already considerable alignment in a fashion similar
to how STAC work has been following activities related to the OGC API- Features Standard.
This means that the proposed draft GDC API specification includes many building blocks from
OGC API Standards by design, as well. Specifically, OGC API — Common provides fundamental
requirements classes (building blocks). The GDC API description is provided by Common Part 1
as the core requirements class. The data description requirements follows OGC API Common —
Part 2: Collections and STAC.

Naturally, a data cube centric model is preferred. Simple and direct data access can be achieved
through Coverages and Features endpoints and can be further extended into visualization using
openEO secondary Web Services, implementing OGC API Maps, or the traditional W*S suite of
standards. Data processing is realized both through openEO as well as OGC API — Processes.
Currently the latter are the two most difficult to bring together because each has a completely
different design. Ideally, in a final GDC API standard there will be only one processing mode
reconciling the two proposed solutions. Specifying both now, however, allows developers to
study both solutions in more detail, learn about the strengths and weaknesses of each, and allow
usability tests for direct comparison.

OPEN GEOSPATIAL CONSORTIUM 23-047 45

Figure 3 — GDC Draft Specification High Level Overview

4.1. Profiles proposal by Ecere

Ecere’s vision of an OGC GDC API standard is based on profiling existing capabilities defined
by other OGC approved and draft standards, such as OGC API — Processes and OGC
API — Coverages. This avoids defining yet another way to retrieve data from data cubes,
while ensuring that the GDC API definition remains in sync with the still evolving OGC API
capabilities.

Different profiles could be defined, regrouping a set of minimal capabilities that must be
implemented to conform to each profile.

A “Core” profile could define the minimal capabilities to conform to the GDC API specification,
including the ability to retrieve specific fields from a GeoDataCube for a given area, time, and
resolution of interest. This corresponds to the OGC API — Coverages — Part 1: Core‘s “Core,”
“Subsetting,” “Scaling,” and “Field Selection” requirement classes.

A “Processing” profile could define the capability to provide a custom execution request to
execute a workflow integrating predefined processes and data available from the API or from
any other GDC APIs, while remaining flexible as to the content of that execution request. This
would correspond to the “Core” and “OGC Process Description” of OGC API — Processes —
Part 1: Core, as well as to the “Collection Input,” “Remote Collection,” and “Collection Output”
requirement classes of Processes — Part 3.

Processes — Part 3 “Collection Output” would act as the glue ensuring that any client supporting
access to a GeoDataCube using the Core profile, can also access data from a GeoDataCube

OPEN GEOSPATIAL CONSORTIUM 23-047 46

generated on-the-fly by a processing workflow using that same Core capability, as defined
in OGC API — Coverages, with only the additional step of submitting the execution request
using an HTTP POST operation, resulting in a virtual GeoDataCube. Accessing such a virtual
GeoDataCube from an execution request is already partially supported by the GDAL OGC API
driver.

Similarly, the Processes — Part 3 “Collection Input” and “Remote Collections” would be the glue
to allow using data from any OGC GDC API conformant server implementing the Core profile,
including those implementing Processing profile, as an input to a GDC processing workflow.

The specific content of the submitted ad-hoc execution requests would be defined by additional
profiles, using mechanisms also defined in OGC API — Processes — Part 3, including extensions
to the Processes — Part 1 execution requests for “Nested Processes” and “field modifiers”
using CQL2 expressions, as well as alternate workflow definition languages such as “Common
Workflow Language (CWL)” and “OpenEO process graphs.” Only clients crafting the workflow
defined within the request would need to care about the content of the execution requests.
Clients accessing and visualizing the resulting GeoDataCube simply submit the request as the
request is received.

A “CQL2” Profile could support CQL2 expressions to define filters and derived fields directly as
part of data requests, without necessarily implementing the “Processing” profile, but implying
support for field modifiers when combined with the “Processing” profile. CQL2 expressions
provide a very intuitive and compact way to express simple arithmetic calculations such as
vegetation indices, as well as more complex use cases, including several uses cases discussed
during the Testbed which were then described using more verbose process graphs.

A separate GDC profile could potentially be defined for the different openEO capabilities based
on the proposed openEO OGC Community Standard, which differs in some respects from OGC
API — Processes.

OPEN GEOSPATIAL CONSORTIUM 23-047 47

5

OUTLINE OF ALL
CONDUCTED
EXPERIMENTS/IMPLEMENTATIONS

OPEN GEOSPATIAL CONSORTIUM 23-047 48

5 OUTLINE OF ALL CONDUCTED
EXPERIMENTS/IMPLEMENTATIONS

5.1. Back-ends

5.1.1. Brockmann Consult – D111/D112 OGC API-GDC instance

5.1.1.1. Introduction

xcube is an open source data cube framework under development by Brockmann Consult
GmbH (BC) since 2018. xcube is based on the Python scientific software stack, in particular the
xarray package and Zarr storage format. The server component of xcube provides a modular
plug-in framework for the implementation of datacube-related web services. Server plug-ins
for a number of standard and in-house APIs have already been released, and the Testbed-19
Geodatacube is being implemented as an additional server plug-in.

5.1.1.2. Development and deployment process

Like all xcube code, the GeoDataCube server plug-in is being developed openly at https://
github.com/dcs4cop/xcube and released under the open-source MIT license. The GeoDataCube
features are being added in a series of short-lived branches which are merged with the master
branch at regular intervals; releases (usually several per year) are made directly from the
master branch as Git tags, GitHub releases, Docker images, and conda-forge packages. The
GeoDataCube implementation is thus being automatically integrated into the mainline xcube
releases.

5.1.1.3. Public server instance

Our API backend server is at https://testbed19.api.dev.brockmann-consult.de/api/ogc. The
deployment is updated regularly with the latest codebase from the Testbed-19 development
branch, if one currently exists, or the master branch if not.

5.1.1.4. Deploying an xcube server

Since xcube is open source, a server instance can be installed and initialized by any Testbed
19 participant or other interested party. See the xcube documentation at https://xcube.

OPEN GEOSPATIAL CONSORTIUM 23-047 49

https://xcube.readthedocs.io/
https://docs.xarray.dev/en/stable/
https://zarr.readthedocs.io/en/stable/
https://github.com/dcs4cop/xcube
https://github.com/dcs4cop/xcube
https://conda-forge.org/
https://testbed19.api.dev.brockmann-consult.de/api/ogc
https://xcube.readthedocs.io/

readthedocs.io/ for details on how to install, configure, and run the xcube server. Note that the
latest Testbed-19 developments may only be available in a development branch.

The datasets and configuration used in the deployment are also public. To start an xcube server
with the same configuration as the BC deployment, run

xcube serve --port 8000 --config s3://xcube-viewer-app/testbed19/dev/api/
server-config.yaml

5.1.1.5. Available datasets

BC has ingested the datasets listed below, as specified in Use Case B of the OGC Call for
Proposals. Ingested data cover at minimum the area of interest defined by the use case.

Table 7

DATASET COLLECTION LINK NOTES

Copernicus EU-DEM EU_DEM_25_E30_N30 Entire E30/N30 tile

Soilgrids250m soilgrids

ERA5-Land era5 2022–2023 only

CMIP6 — SSP2-4.5 cmip 2015–2049 only

Some additional datasets, unrelated to the use case, are also published by the server. The
datasets are not listed in the table but can be explored via the Brockmanns GDC instance.

5.1.2. Ecere — GeoDataCube API Instance (D171)

For the server deliverable, Ecere provided a GDC API server instance that supports the OGC API
Coverages and Processes capabilities.

End-point: https://maps.gnosis.earth/ogcapi

5.1.2.1. Supported Capabilities

The supported OGC API Coverages capabilities include the Core, Subsetting, Scaling, Field
Selection, as well as Coverage Tiles. The supported OGC API Processes capabilities include the
Core and OGC Process Description. The Ecere implementation also supports additional OGC
standards that integrate with the GDC API. They are all listed as follows.

• OGC API — Coverages

OPEN GEOSPATIAL CONSORTIUM 23-047 50

https://xcube.readthedocs.io/
https://portal.ogc.org/files/?artifact_id=104098#eumetsat
https://testbed19.api.dev.brockmann-consult.de/api/ogc/collections/cmip
https://testbed19.api.dev.brockmann-consult.de/api/ogc/collections/soilgrids
https://testbed19.api.dev.brockmann-consult.de/api/ogc/collections/era5
https://testbed19.api.dev.brockmann-consult.de/api/ogc/collections/cmip
https://maps.gnosis.earth/ogcapi
https://docs.ogc.org/DRAFTS/19-087.html

• Subsetting, Resampling, Range subsetting (field selection), filter with CQL2 Expression,
derived properties with CQL2 Expressions

• OGC API — Processes

• Part 1: Core — Synchronous execution

• Part 3: Workflows & Chaining — Nested/Remote processes; Collection input (local or
remote)/output; Field modifiers

• OGC API — Tiles

• OGC API — DGGS (using GNOSISGlobalGrid, ISEA9R and ISEA3H Discrete Global Grid
Reference Systems)

• OGC API — Maps

• Subsetting (Spatial/Temporal/General), Scaling (resampling), CRS

5.1.2.2. Data cubes (collections) of interest

Several data cubes were made available from the GDC API deployment, covering the range of
use cases identified for the project:

Climate and weather datasets

• climate:era5:relativeHumidity: Relative humidity (4D with time and pressure, hourly with
more than 30 pressure levels, high spatial resolution)

• climate:cmip5:byPressureLevel:temperature: Air temperature (4D with time and pressure
level)

• climate:cmip5:singlePressure: Single level climate variables (Precipitation, min/max
temperature, surface specific humidity…)

• wildfire:fireDangerIndices: Fire danger indices

Static environmental data

• SRTM_ViewFinderPanorama: Global Elevation (90 meters)

• HRDEM-Ottawa: Ottawa High-resolution DTM (1 meter)

• CHSBathymetryNONNA10: Canadian (East) coastal bathymetry

Categorical coverage (similar use case to land use / land cover maps)

• wildfire:USFuelVegetationTypes: US Fuel Vegetation Types

OPEN GEOSPATIAL CONSORTIUM 23-047 51

https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/is/20-057/20-057.html
https://opengeospatial.github.io/ogcna-auto-review/21-038.html
https://docs.ogc.org/is/17-083r4/17-083r4.html#toc58
https://docs.ogc.org/per/23-010.html#_dggs_based_on_the_icosahedral_snyder_equal_area_isea_projection
https://docs.ogc.org/DRAFTS/20-058.html
https://maps.gnosis.earth/ogcapi/collections/climate:era5:relativeHumidity
https://maps.gnosis.earth/ogcapi/collections/climate:cmip5:byPressureLevel:temperature
https://maps.gnosis.earth/ogcapi/collections/climate:cmip5:singlePressure
https://maps.gnosis.earth/ogcapi/collections/wildfire:fireDangerIndices
https://maps.gnosis.earth/ogcapi/collections/SRTM_ViewFinderPanorama
https://maps.gnosis.earth/ogcapi/collections/HRDEM-Ottawa
https://maps.gnosis.earth/ogcapi/collections/CHSBathymetryNONNA10
https://maps.gnosis.earth/ogcapi/collections/wildfire:USFuelVegetationTypes

Remote sensing image time series

• sentinel2-l2a: Global sentinel-2 Level-2A imagery (10 meters resolution, B01-B12 bands +
B8A + WVP (Water vapor) + SCL (Scene classification map))

For all of the above datasets, /coverage will return the raw data values, while /map will return
an addressable RGB (ARGB) map in some default style (/styles/{styleId}/map may return
maps in different styles).

Administrative and environmental spatial units (vector maps)

• Natural Earth (Physical)

• Natural Earth (Cultural)

• OpenStreetMap

These datasets are accessible from the GDC API deployment as OGC API — Features, OGC API —
Tiles (tiled vector feature data and tiled maps), as well as OGC API — Maps.

Statistics

• At the time of completing the testbed, the server only supported statistics integrated
within spatiotemporal datasets, either as coverage fields or as feature properties.

5.1.2.3. Processes of interest

• PassThrough: This process simply cascades an existing collection but supports specifying
a filter and/or properties CQL2 expression to filter, select, or derive fields. See
explanations and examples of using PassThrough process below to derive new fields from a
coverage using various available mechanisms.

• RFClassify: This process returns classified fuel vegetation types from sentinel-2 data
based on a RandomForest classifier trained on the USFuelVegetationTypes collection. This
process was developed for the Disaster Pilot 2023 Wildland Fire Fuel Indicator Workflow,
based on previous efforts from GeoConnections 2020-2021 Modular OGC API Workflow
project, Testbed 17 — GDC API, Testbed 18 — Identifiers for Reproducible Science and
Climate Resilience Pilot.

• RenderMap: This process renders a map of existing collection(s).

NOTE: The output of this process is not a coverage in the true sense in that the fields are ARGB
values intended to be displayed directly rather than raw values.

5.1.2.4. Addressing Use Case Requirements

OPEN GEOSPATIAL CONSORTIUM 23-047 52

https://maps.gnosis.earth/ogcapi/collections/sentinel2-l2a
https://maps.gnosis.earth/ogcapi/collections/NaturalEarth:physical
https://maps.gnosis.earth/ogcapi/collections/NaturalEarth:cultural
https://maps.gnosis.earth/ogcapi/collections/osm
https://docs.ogc.org/is/17-069r3/17-069r3.html
https://maps.gnosis.earth/ogcapi/processes/PassThrough
https://maps.gnosis.earth/ogcapi/processes/RFClassify
https://maps.gnosis.earth/ogcapi/collections/wildfire:USFuelVegetationTypes
https://docs.ogc.org/per/21-027.html
https://docs.ogc.org/per/22-020r1.html
https://docs.ogc.org/per/23-020r2.html
https://maps.gnosis.earth/ogcapi/processes/RenderMap

Table 8 — Use case A (mapping of capabilities)

REQUIREMENT CAPABILITY COMMENTS

ARD spec for EO data product Schemas (Coverages-1 (Core)), GeoDataClass
covered in more details by
Testbed 19 ARD thread

ARD spec for non-EO data
product

Schemas (Coverages-1 (Core)), GeoDataClass
covered in more details by
Testbed 19 ARD thread

Access GDC subset from GDC
API implementation

Coverages-1 (Subsetting, Field selection, Scaling) (supported)

Process GDC content through
GDC API for output

Processes-1, Processes-3 (Collection Input/
Output), Coverages-2 (CQL2 Derived Fields)

(supported)

At least 1 open-source GDC API
implementation

N/A

Some math and band arithmetic
operators

Coverages-2 (CQL2 Derived Fields), Processes-3
(Input/Output Fields Modifiers

(supported)

Table 9 — Use case B (mapping of capabilities)

REQUIREMENT CAPABILITY COMMENTS

Processing of GDC
content

Processes-1, Processes-3 (Collection Input/
Output), Coverages-2 (CQL2 Derived Fields)

(supported)

Interpolation/gap-filling
process operators (time
+/- space) (output or
enrichment…)

Coverages-1 (scaling, slicing sparse
dimension permission)

(supported) interpolation for scaling,
returning latest available imagery for
sentinel-2 data cube when returning 2D
format of 2D+time datacube

Inclusion of external
processes

Processes-3 (Remote Processes, Remote
Collection + Collection Output)

(supported) supported for authorized
remote servers

Core attributes / axes x,y,
t,v(1…n)

Common-2 (Uniform Additional
Dimensions) + common CRS, e.g.,
EPSG:4326 + Gregorian / UTC time, URIs
for additional dimension Units of Measure /
semantic

(supported) supporting Lat/Lon for all
datasets, time for temporal datasets,
pressure for some datasets including
multiple pressure levels

AOI Rhine-Meuse Delta N/A
(supported) several global datasets from
demonstration end-point

Data categories EO, stats,
land use/land cover,
models

Coverages-1 (Core), Schemas
(supported) EO data available, several other
data types

Alternate DGGS support
w operators

Processes-3 (Collection Output), DGGS-
1 (Zone Data, Zone Queries), Coverages-1
(Coverage Tiles)

(supported) DGGS support for GNOSIS
Global Grid and ISEA9R — Clarify: what
is meant by “alternate DGGS” and “w
operators?”

OPEN GEOSPATIAL CONSORTIUM 23-047 53

https://docs.ogc.org/DRAFTS/23-058.html
https://docs.ogc.org/DRAFTS/19-087.html
https://github.com/opengeospatial/styles-and-symbology/issues/12
https://docs.ogc.org/DRAFTS/23-058.html
https://docs.ogc.org/DRAFTS/19-087.html
https://github.com/opengeospatial/styles-and-symbology/issues/12
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-subset-section
https://docs.ogc.org/DRAFTS/19-087.html#rc-range-subset-section
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-scaling-section
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/DRAFTS/21-009.html
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/DRAFTS/21-009.html
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://docs.ogc.org/DRAFTS/19-087.html
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-scaling-section
https://docs.ogc.org/DRAFTS/19-087.html%23/_permission_for_slicing_sparse_dimensions
https://docs.ogc.org/DRAFTS/19-087.html%23/_permission_for_slicing_sparse_dimensions
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/DRAFTS/21-009.html
https://github.com/opengeospatial/ogcapi-common/issues/286#issuecomment-1739552802
https://github.com/opengeospatial/ogcapi-common/issues/286#issuecomment-1739552802
https://docs.ogc.org/DRAFTS/19-087.html
https://docs.ogc.org/DRAFTS/23-058.html
https://docs.ogc.org/DRAFTS/21-009.html
https://opengeospatial.github.io/ogcna-auto-review/21-038.html
https://opengeospatial.github.io/ogcna-auto-review/21-038.html
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-tiles
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-tiles
https://docs.ogc.org/is/17-083r4/17-083r4.html#toc58
https://docs.ogc.org/is/17-083r4/17-083r4.html#toc58
https://docs.ogc.org/per/23-010.html%23/_dggs_based_on_the_icosahedral_snyder_equal_area_isea_projection

REQUIREMENT CAPABILITY COMMENTS

Aggregation operators:
generalization,
summarization

Coverages-1 (scaling), Coverages-2 (CQL2
Derived Fields) + Well-known function
extensions, e.g., Aggregate((B08-B04)/
(B08+B04), 'min', ['time']) (see
future work section below)

(in development) Only automatic
generalization through Scaling is supported
right now. Planning to implement
something like Aggregate((B08-B04)/
(B08+B04), 'min', ['time']).

Incorporation of new
data sources (client,
server, out of band?)
transactions/federations/
joins?

Processes-3 (Collection Input, Input/Output
field modifiers), Coverages-2 (CQL2 Derived
Fields w/ joinCollections)

(supported) Support for remote collections
from authorized servers

Outputs: COG, GRIB2,
NetCDF,CSV, etc.

Coverages-1 (Core), Processes-1 (Core),
Processes-3 (Collection Output) and HTTP
content-negotiation

(supported) Support for GeoTIFF; next
planned format: netCDF

Table 10 — Use case C (mapping of capabilities)

REQUIREMENT CAPABILITY COMMENTS

Support many axes
Common-2 (Uniform Additional Dimensions),
Coverages-1 (Core)

(supported) currently providing 4D (lat/
lon/time/pressure level) datasets

GDC “subspace” index
and query

Coverages-1 (Subsetting), Coverages-1 (Field
selection)

(supported) Subsetting, Field selection
supported

Non-rectangular
subspaces

Common-2 (Collections), Coverages-2
(Filtering) + CQL2 Spatial Functions, EDR

(supported) Collections support — Clarify:
what is a subspace?

Organization of
subspaces (collections,
tree)

Common-2 (Hierarchical Collections)?
(supported) hierarchical collections
support, planning to soon update to latest
proposal — Clarify: what is a subspace?

Axis types: measurable,
countable, non-countable

Common-2 (Uniform Additional Dimensions),
Coverages-1 (Core)

(supported)

“Nodata” option for axes
(query behavior)

Common-2 (Uniform Additional Dimensions),
slicing sparse dimension permission

(supported) Returning latest available
data when returning 2D output format of
sentinel-2 Lat/Lon + Time datacube

Multiple time axes
(phenomenon, valid?)

Common-2 (Uniform Additional Dimensions),
Coverages-1 (Core)

(supported) Supported in principle, but no
example collection

Non-rectangular query (c.
f.EDR)

Coverages-2 (Filtering) + CQL2 Spatial
Functions, EDR

(in development) Coverages-2 Filtering
supported, but Work in progress to
implement full CQL2 Spatial operators

Asynchronous execution

Processes-1 (Core: Polling patterns,
callbacks), Processes-3 (Collection Output
“on demand” as alternative) Pub/Sub / Async
API

Only Processes-3 Collection Output
implemented (multiple small synchronous
requests as an alternative)

OPEN GEOSPATIAL CONSORTIUM 23-047 54

https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-scaling-section
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/DRAFTS/21-009.html
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-features/issues/801
https://docs.ogc.org/DRAFTS/19-087.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html
https://github.com/opengeospatial/ogcapi-common/issues/286#issuecomment-1739552802
https://docs.ogc.org/DRAFTS/19-087.html
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-subset-section
https://docs.ogc.org/DRAFTS/19-087.html#rc-range-subset-section
https://docs.ogc.org/DRAFTS/19-087.html#rc-range-subset-section
https://docs.ogc.org/DRAFTS/20-024.html
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://docs.ogc.org/DRAFTS/21-065.html#spatial-functions
https://docs.ogc.org/is/19-086r6/19-086r6.html
https://github.com/opengeospatial/ogcapi-common/issues/298#issuecomment-1739029265
https://github.com/opengeospatial/ogcapi-common/issues/286#issuecomment-1739552802
https://docs.ogc.org/DRAFTS/19-087.html
https://github.com/opengeospatial/ogcapi-common/issues/286#issuecomment-1739552802
https://docs.ogc.org/DRAFTS/19-087.html%23/_permission_for_slicing_sparse_dimensions)
https://github.com/opengeospatial/ogcapi-common/issues/286#issuecomment-1739552802
https://docs.ogc.org/DRAFTS/19-087.html
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://docs.ogc.org/DRAFTS/21-065.html#spatial-functions
https://docs.ogc.org/DRAFTS/21-065.html#spatial-functions
https://docs.ogc.org/is/19-086r6/19-086r6.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/dp/23-013.html
https://docs.ogc.org/dp/23-013.html

5.1.2.5. Example use of implementation

In this example, use of the Filtering and Derived field extensions, a GeoTIFF coverage is returned
from the GNOSIS GDC API implementation for the average Near Surface Air Temperature,
converts the temperature from Kelvin to Celsius, and filters out cells where the difference
between maximum and minimum is not greater than 10 degrees.

https://maps.gnosis.earth/ogcapi/collections/climate:cmip5:singlePressure/
coverage?
 filter=(tasmax-tasmin) > 10&
 properties=tas-273.15&
 f=geotiff

Figure 4 — OGC API - Coverages request from GNOSIS Map Server using
CQL2 expressions to filter cells by values and convert Kelvin to Celsius

Figure 5 — Coverage output of above request, with a color map style applied in QGIS

In this other example, a coverage is returned from the sentinel-2 filtering out cloudy data using
the Scene Classification Layer field and computing an Enhanced Vegetation Index from the
Near-Infrared, red, and blue bands.

https://maps.gnosis.earth/ogcapi/collections/sentinel2-l2a/coverage?
 properties=2.5 * (B08 / 10000 - B04 / 10000) / (1 + B08 / 10000 + 6 * B04 /
10000 + -7.5 * B02 / 10000)&
 filter=(SCL >=4 and SCL <= 7) or SCL=11&
 subset=Lat(38.9:39.1),Lon(-4.8:-4.6),time("2017-09-04T11:18:26Z")&
 crs=[EPSG:4326]&
 scale-size=2000,2000&

OPEN GEOSPATIAL CONSORTIUM 23-047 55

 f=geotiff

Figure 6 — OGC API - Coverages request from GNOSIS Map Server using CQL2
expressions to compute an Enhanced Vegetation Index (EVI) and filter out clouds

Figure 7 — Coverage output of above request, with a color map styled applied in QGIS

The following is an example using Processes — Part 3 — ”Collection input” / “output” execution
calculating an NDVI from sentinel-2 Level-2A data cube that can be POSTed to

https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=
collection:

{
 "process" : "https://maps.gnosis.earth/ogcapi/processes/PassThrough",

OPEN GEOSPATIAL CONSORTIUM 23-047 56

https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=collection
https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=collection

 "inputs" : {
 "data" : [
 {
 "collection" : "https://maps.gnosis.earth/ogcapi/collections/
sentinel2-l2a",
 "properties" : ["(B08 - B04) / (B08 + B04)"]
 }
]
 }
}

Figure 8 — Example PassThrough process execution request (for Collection Output)

From the resulting virtual collection one can then request a coverage subset for a particular area,
time and resolution of interest:

https://maps.gnosis.earth/ogcapi/collections/temp-exec-5CB51B82/coverage?
subset=Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.453125),
time("2022-06-28")

or a map:

https://maps.gnosis.earth/ogcapi/collections/temp-exec-5CB51B82/map?subset=
Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.453125),time("2022-06-
28")

(or coverage tiles, or map tiles, or DGGS zone data…) triggering on-the-fly processing.

With authentication, a POST of this execution request to /collections could also automatically
create a new collection. The following is an equivalent example using Part 1 — Core synchronous
execution (instead of collection input/output) that can be POSTed to

https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution.

This example still uses a Part 3 input field modifiers, the "properties" which is at the same
level as the "href."

NOTE: The difference with output field modifiers is that the "properties" would be outside and
at the same level as "inputs" (and also same level as "process", which is specified in Part 3).

{
 "inputs" : {
 "data" : [
 {
 "href" : "https://maps.gnosis.earth/ogcapi/collections/sentinel2-
l2a/coverage?subset=Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.4
53125),time(\"2022-06-28\")&properties=B04,B08&f=image/tiff;application=
geotiff",
 "properties" : ["(band2 - band1) / (band2 + band1)"]
 }
]
 }
}

Figure 9 — Example PassThrough process execution request (for Synchronous execution)

OPEN GEOSPATIAL CONSORTIUM 23-047 57

https://maps.gnosis.earth/ogcapi/collections/temp-exec-5CB51B82/coverage?subset=Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.453125),time(%222022-06-28%22
https://maps.gnosis.earth/ogcapi/collections/temp-exec-5CB51B82/coverage?subset=Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.453125),time(%222022-06-28%22
https://maps.gnosis.earth/ogcapi/collections/temp-exec-5CB51B82/coverage?subset=Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.453125),time(%222022-06-28%22
https://maps.gnosis.earth/ogcapi/collections/temp-exec-5CB51B82/map?subset=Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.453125),time(%222022-06-28%22
https://maps.gnosis.earth/ogcapi/collections/temp-exec-5CB51B82/map?subset=Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.453125),time(%222022-06-28%22
https://maps.gnosis.earth/ogcapi/collections/temp-exec-5CB51B82/map?subset=Lat(-16.259765625:-16.2158203125),Lon(124.4091796875:124.453125),time(%222022-06-28%22
https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution

Unlike the Collection input/output approach, here the Area/Time/Resolution of interest is
implied from those of the “data” input avoiding the need for separate inputs that would specify
these, which would be meaningless in Collection Input/Output and would complicate the
implementation of processes that support both approaches. Whereas the Collection approach
is fully re-usable for any area/time/resolution of interest, this synchronous execution request
is only usable once. Note that the names of the bands changed to the default ones that are
understood from accessing the GeoTIFF, since GeoTIFF does not currently support encoding
band names. With collection input, the fields can be known from the collection schema (to
which the Coverages API is transitioning) or currently from the Coverage RangeType. It should
also be possible to chain this execution request with the RenderMap process using the Part 3
— Nested process (or Remote Process for the case where the two processes are on different
servers) in order to retrieve a rendered map instead of a coverage.

5.1.2.6. Future work: geometry intersections, spatial joins, aggregation and convolution

The planned OGC API — Coverages — Part — 2: Filtering, deriving fields, aggregation and convolution
extension would define common OGC API building blocks that support filters which values get
returned and derived new values using CQL2 expressions.

A Part 2 requirements class could also enable joins with other collections, including feature
collections, using a joinCollections parameter, facilitating the integration of vector and raster
data. The fields from the joined collections would become available for use within the filter and
derived field expressions.

An additional example use of the filtering extension would cover different types of queries
supported by OGC API — EDR use cases, such as trajectories, by using the CQL2 S_
INTERSECTS() spatial relation function together with a WKT geometry such as a LineString.
Only the data cube cells matching the function would be returned.

filter=S_INTERSECTS(rec.cells, POLYGON((-109 64.39894807, -61.25 64.39894807,
 -61.25 76.7652818, -109 76.7652818, -109 64.39894807)))

Figure 10 — Filtering using CQL2 polygon geometry

This extension could also define standardized functions allowing the user to perform
aggregation along one or more dimensions, using specific aggregating operations such as
minimum or average.

properties= Aggregate(tasmax, 'max', ['time']),
 Aggregate(tasmin, 'min', ['time'])&
 subset=time("2020-01-01":"2020-01-10")

Figure 11 — Aggregating on temporal dimension using CQL2 expression

Another standardized function could allow performing convolution, where operations on cell
kernels allow the user to easily implement advanced capabilities such as edge detections. This
example prototypes defining a Sobel operator used in such use cases:

properties=
 (
 Convolve(B04, [1,0,-1,2,0,-2,1,0,-1], ['Lat','Lon']) ^ 2 +
 Convolve(B04, [1,2,1,0,0,0,-1,-2,-1], ['Lat','Lon']) ^ 2
) ^ 0.5&

OPEN GEOSPATIAL CONSORTIUM 23-047 58

 subset=Lat(38.9:39.1),Lon(-4.8:-4.6),
 time("2017-04-12T11:17:08Z":"2017-09-04T11:18:26Z")

Figure 12 — Sobel operator (kernel convolution) implemented as a CQL2 expression

These additional capabilities would likely address a large majority of processing use cases, which
can also be achieved with WCPS, openEO, and OGC API — Processes execution requests involving
multiple processes, using a more intuitive and concise syntax that can be readily combined with
the other building blocks defined in OGC API — Coverages.

5.1.3. Eurac Research — GeoDataCube API Instance

For the server deliverable, Eurac Research provided a GDC API server instance that added OGC
API Coverages capabilities to an existing openEO API implementation. The implementation
extends the openEO openeo-spring-driver back-end developed by Eurac Research. The code
has been refactored to reduce the dependencies and make it more generalist. It currently
supports two data managers: rasdaman and Open Datacube. A new endpoint for OGC API
Coverages was added, enabling GET/coverages requests. An added value of this GDC API
server instance is the capability to translate OGC Coverages requests to openEO process graphs
internally, which can be later re-run again replicating the same request, or to debug using
inspecting logs if something went wrong.

End-point: https://dev.openeo.eurac.edu/

5.1.3.1. Supported Capabilities

The implemented Coverages API capabilities includes the Core, Subsetting, and Field Selection
(from OGC API — Coverages).

The following request parameters are thus available.

• bbox=west,south,east,north for spatial filters

• datetime=from[,to] parameter for time trimming (or slicing in case a single timestamp
is provided); input timestamp shall be in the format YYYY-HH-MMThh:mm:ssTZ (e.g.,
2017-10-31T10:00:00Z); ‘..’ wildcards are supported for open-ended intervals

• properties=p1[,p2]* for bands sub-selection, whose names are available in the cube:
dimensions/bands section of in the STAC collection document

• f=mime for specifying the coverage output format (eg. application/x-netcdf, image/tiff)

IMPORTANT

The following exceptions apply to the current implementation.

• The subset (and subset-crs) parameter is not accepted, hence subsetting shall be
requested through the bbox and datetime parameters.

OPEN GEOSPATIAL CONSORTIUM 23-047 59

https://github.com/Open-EO/openeo-spring-driver/tree/ogc-testbed-19
https://dev.openeo.eurac.edu/
https://docs.ogc.org/DRAFTS/19-087.html

• bbox-crs is not accepted, and lat/lon WGS84 decimal-degrees coordinates are assumed
in the bbox parameter.

Further Notes:

• at least a bbox or a datetime filter are required to inhibit download of huge amounts of
data (when requested in GeoTiff or NetCDF formats);

• authentication tokens are required in the HTTP request for retrieve a coverage (one can
fetch a token by logging in to https://dev.openeo.eurac.edu/credentials/basic; send an
email to piero.campalani@eurac.edu to get your test credentials); and

• a demo client for creating and submitting process graphs is available at https://m-mohr.
github.io/gdc-web-editor/.

IMPORTANT

The Coordinate Reference System (CRS) extension has not been
implemented, hence no reprojection of output is allowed via crs parameter
and the coverages are provided in their own native (“storage”) CRS.

5.1.3.2. Data cubes (collections) of interest

A single data cube was made available from the GDC API deployment. However, the openEO
collections available on Eurac Research’s back-end could also easily be enabled to be available
via the GDC API implementation.

• Sentinel-2 L2A: Only specific tiles covering South Tyrol, Italy. Sentinel-2 Level-2A
imagery (10 meters resolution, B01-B12 bands + B8A + WVP (Water vapor) + SCL (Scene
classification map))

The /coverage request will return the raw data values.

5.1.3.3. Example use of implementation

A sample GET/coverage request to the Eurac Research server instance is the following:

https://dev.openeo.eurac.edu/collections/s2_l2a/coverage?properties=blue,green,
red&datetime=2022-07-01T00:00:00Z/2022-07-05T00:00:00Z&bbox=11.26,46.45,11.40,46.
52&f=geotiff

The request specifies an area of interest above the city of Bolzano, where Eurac Research is
located. The request selects only the blue, green, and red bands using the properties filtering
and stores the result as a GeoTIFF.

OPEN GEOSPATIAL CONSORTIUM 23-047 60

https://dev.openeo.eurac.edu/credentials/basic;
https://m-mohr.github.io/gdc-web-editor/
https://m-mohr.github.io/gdc-web-editor/
https://dev.openeo.eurac.edu/collections/s2_l2a
https://dev.openeo.eurac.edu/collections/s2_l2a/coverage?properties=blue,green,red&datetime=2022-07-01T00:00:00Z/2022-07-05T00:00:00Z&bbox=11.26,46.45,11.40,46.52&f=geotiff
https://dev.openeo.eurac.edu/collections/s2_l2a/coverage?properties=blue,green,red&datetime=2022-07-01T00:00:00Z/2022-07-05T00:00:00Z&bbox=11.26,46.45,11.40,46.52&f=geotiff
https://dev.openeo.eurac.edu/collections/s2_l2a/coverage?properties=blue,green,red&datetime=2022-07-01T00:00:00Z/2022-07-05T00:00:00Z&bbox=11.26,46.45,11.40,46.52&f=geotiff

Figure 13 — OGC API - Coverages request from Eurac Research client
(GDC Web Editor) to our server, visualized as an RGB composite

5.1.3.4. Future work: GDC API alignment, OGC Processes implementation

Eurac planned to work on the EUMETSAT Use Case, but unfortunately developing the current
functionality took longer than expected. Additionally, no implementation for OGC API Processes
has been released in Eurac’s server yet. Therefore, a possible future work could consist of
implementing the OGC API Processes Part:1 standard and trying to harmonize and integrate it
with the currently available openEO processes and related workflows encoded in the openEO
process graph. This could also be further expanded into a first implementation of OGC API
processes part:3.

5.1.4. GeoLabs — Open Source Prototype D111

GeoLabs has implemented two different prototype server instances.

5.1.4.1. ZOO-Project with Deploy, Replace, Undeploy (DRU) support to deploy
OpenEO User Defined Processes

• Prototype Server Instance Landing Page: https://testbed19.geolabs.fr:8720/ogc-api/

• Service documentation (service-doc relation type): https://testbed19.geolabs.fr:8720/ogc-
api/api.html

The service documentation contains examples for deploying and executing a simple User
Defined Process OpenEO graph.

OPEN GEOSPATIAL CONSORTIUM 23-047 61

https://testbed19.geolabs.fr:8720/ogc-api/
https://testbed19.geolabs.fr:8720/ogc-api/api.html
https://testbed19.geolabs.fr:8720/ogc-api/api.html

5.1.4.1.1. Supported Capabilities

• OGC API — Processes

• Part 1: Core

• Part 2: Deploy, Replace, Undeploy

• Part 3: Workflows & Chaining — Nested/Remote processes, deployment of OpenEO
graphs using Part 2 draft specification and the openeo conformance class from Part3.

5.1.4.1.2. Description

The first Open Source prototype server implementation provides an environment in which the
ZOO-Project, an OGC API — Processes — Part 1 Reference Implementation, is associated with
OpenDataCube. The dedicated Docker image is tagged zooproject/zoo-project:ciab and
is available on DockerHub under the ZOO-Project organization. This tag name was chosen
because GeoLabs started with the cube-in-a-box (ciab) project. GeoLabs implemented the initial
processes for interacting with the OpenDataCube: one (GDCIndex) to index new data and
another (GDCList) to list the available collections.

In addition to Part 1, this version of the ZOO-Project also supports the “OGC API — Processes
— Part 2: Deploy, Replace, Undeploy” draft specification. By deploying the ZOO-Project with
the DRU support for this study, GeoLabs realized that how implementing the security and
relative namespace for searching for processes metadata was irrelevant in that specific case.
Consequently, GeoLabs tackled this issue by appending the public namespace (the default
location to search for the processes) to the namespace dedicated to user-deployed processes
when searching for process metadata. This way, users can access the processes from the public
namespace and the process the users have deployed can be stored in the users’ dedicated
namespace.

This server instance uses the Part 2 draft specification and the OGC Application package
encoding for deploying OpenEO User Defined Processes. The OGC Application Package has
a processDescription property that contains the metadata information, typically the one
retrieved from the /processes/{processId} endpoint, when the executionUnit is a JSON
object with a format object with a mediaType field having the application/openeo value, and
as the value field the OpenEO UDP graph. Below is a request example for deploying the basic
fahrenheit_to_celsius OpenEO graph.

{
 "processDescription": {
 "id": "fahrenheit_to_celsius",
 "title": "Convertion from fahrenheit to celsius",
 "abstract": "Convertion from fahrenheit to celsius",
 "version": "0.0.1",
 "inputs": {
 "f": {
 "title": "Degrees Fahrenheit",
 "description": "Degrees Fahrenheit",

OPEN GEOSPATIAL CONSORTIUM 23-047 62

https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/DRAFTS/21-009.html

 "schema": {
 "type": "number",
 "default": 10,
 "format": "double"
 }
 }
 },
 "outputs": {
 "result": {
 "title": "Degrees Celsius",
 "description": "Degrees Celsius",
 "schema": {
 "type": "number",
 "format": "double"
 }
 }
 }
 },
 "executionUnit": {
 "format": {
 "mediaType": "application/openeo",
 }
 "value": {
 "process_graph": {
 "subtract1": {
 "process_id": "subtract",
 "arguments": {
 "x": {
 "from_parameter": "f"
 },
 "y": 32
 }
 },
 "divide1": {
 "process_id": "divide",
 "arguments": {
 "x": {
 "from_node": "subtract1"
 },
 "y": 1.8
 },
 "result": true
 }
 }
 }
 }
}

Figure 14

This instance also partially supports OGC API — Processes — Part 3: Workflows & Chaining draft
specification. More specifically, this instance does support nested processes (local and remote).
A client application can execute a chain of processes embedded within the same request.
Nevertheless, the current implementation available within the ZOO-Project is too primitive to
be used to chain complex processes. Indeed, the current implementation supposes that the
nested processes get executed synchronously, limiting the support to fast processes only. If
the process takes too long to return, the result is a response timeout. When GeoLabs started
implementing the load_collection processes, it was realized that this process, implemented
using the datacube Python module, is too time-consuming to be invoked synchronously and
respond promptly. Consequently, the ZOO-Project must review its current support for Part

OPEN GEOSPATIAL CONSORTIUM 23-047 63

3 nested processes to default the execution mode to asynchronous when invoking a nested
process.

5.1.4.2. ZOO-Project with Data Discovery / Access provided by eoAPI and Account
Management using Keycloack

• Prototype Server Instance Landing Page: https://testbed19.geolabs.fr:8717/ogc-api/

• Service documentation (service-doc relation type): https://testbed19.geolabs.fr:8717/ogc-
api/api.html

5.1.4.2.1. Supported Capabilities

• OGC API — Processes

• Part 1: Core

• Part 3: Workflows & Chaining — Nested/Remote processes.

• OGC API — Features

• Part 1: Core

• Part 3: Filtering and the Common Query Language (CQL)

• OGC API — Tiles (Partial support)

• Part 1: Core

5.1.4.2.2. Description

The source code for this Prototype Server Implementation is currently available in a ZOO-eoAPI
repository under the GeoLabs organization. The source code uses Docker Compose to set up all
the required containers and offers a single entry point to multiple (potentially hosted somewhere
else) OGC APIs provided by various containers (that may be different hosts or pods depending
on the environment which is relied upon). The source code also gives the traditional processing
capability offered by the ZOO-Project, with 700+ processes available, while other APIs, such as
OGC API — Features and OGC API — Tiles, rely on the different eoAPI platform components.

To provide access to the eoAPI components, GeoLabs added dedicated endpoints to the
OpenAPI available per default with the ZOO-Project distributions (Docker images, Docker
Compose environments, Helm Charts) by modifying the default oas.cfg file, which defines the
produced OpenAPI. Then, using the concept of filter_in and filter_out available in the
ZOO-Project, GeoLabs created a process, used as a filter_in, dedicated to target requests

OPEN GEOSPATIAL CONSORTIUM 23-047 64

https://testbed19.geolabs.fr:8717/ogc-api/
https://testbed19.geolabs.fr:8717/ogc-api/api.html
https://testbed19.geolabs.fr:8717/ogc-api/api.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html
https://docs.ogc.org/is/17-069r3/17-069r3.html
https://portal.ogc.org/files/96288
https://docs.ogc.org/is/20-057/20-057.html

coming to a given endpoint and forwarded the request to the defined proxied component to get
back the proper response.

This Prototype Server Instance does not require users to authenticate to interact with most
endpoints. Nevertheless, GeoLabs partly supports the Account Management and provides
access to the /credentials/oidc and /me endpoints. GeoLabs set up a Keycloack instance on
another environment to implement this prototype support. This server offers authentication
capability, and the security is very trivial. A user can access every secured endpoint if the user is
in the authorized_users list or none if not. To get the first endpoint to work correctly, GeoLabs
slightly modified the implementation of the ZOO-Project to be able to alter the response that
the server will return. Indeed, in this specific case, the response expected by the GDC client
applications is partly contained in the content of the openid-configuration. As GeoLabs can
modify the response content, the filter_in process parses the openid-configuration file
and then creates the desired response with the array containing a single provider, which is the
one provided by Keycloack. Only a single provider is supported with the current implementation.

By implementing this basic security support, GeoLabs realized there is no defined way to inform
the client application whether or not one endpoint requires authentication. If the OpenAPI can
provide such information, GeoLabs could not find any to tell the client that an endpoint does not
require authentication. Consequently, GeoLabs faced public and private namespace issues for
searching for process metadata described in the previous section.

Also, by deploying this version of the Prototype Server Implementation, GeoLabs realized an
issue in the Basic HTML User Interface that comes by default with the ZOO-Project. Indeed,
when authentication is on for a given endpoint, as the Basic HTML UI does not provide any way
to authenticate, the HTML version cannot load. GeoLabs expects to solve this in the future by
integrating JavaScript components within the Basic HTML UI, permitting authentication when
required. Nevertheless, as GeoLabs provides access to STAC from the Data Discovery/Access
part, the Basic HTML UI is slightly modified to embed the STAC Browser.

Depending on the endpoint used, the media type of the returned content varies which may be
text content or binary. The current implementation covers all these cases.

5.1.5. rasdaman — GDC-API Server Instance

rasdaman is an Array DBMS with out-of-the-box support for Multi-Dimensional Datacube
Management and Analytics. It is available as an open-source community edition as well as an
enterprise version suitable for large-scale, federated commercial deployments. Both implement
generally the same interfaces, with the query languages based on the ISO SQL/MDA and OGC
WCPS standards. Additionally, OGC WMS, WMTS, and WCS are supported. Internally, all
requests are mapped to the datacube query language which the server ultimately evaluates. The
enterprise edition employs its own query processing engine optimized for scalability and green
computing.

5.1.5.1. GDC-API implementation

In Testbed-19, the proposed GDC-API were partially implemented in rasdaman community.
Specifically:

OPEN GEOSPATIAL CONSORTIUM 23-047 65

https://rasdaman.org/
https://rasdaman.org

• Authentication

• Data Discovery / Access

• OGC API — Coverages

• subsetting, resampling, range subsetting

• openEO processes

• predefined and user-defined processes, synchronous process execution

The rasdaman GDC-API implementation is available for access from clients at https://testbed19.
rasdaman.com/rasdaman/gdc. Implementers of GDC-API clients were provided with access
credentials for testing.

5.1.5.2. Data for Use-Case Scenarios

To support the Use-Case scenarios, the Testbed participants imported various data and made
the data available through the GDC-API endpoint. The https://testbed19.rasdaman.com website
provides an overview of the available datacubes.

UC A

• Sentinel-1 GRD, Sentinel-2 L2A, Sentinel-3, Sentinel-5p

UC B

• EU-DEM: A digital surface model (DSM) of EEA39 countries at 25m resolution.

• CLMS 10m: Land use maps at 10m resolution: imperviousness, tree cover, grassland,
water, and wetness.

• Soilgrids250m: Global soil property maps at six standard depth intervals with 250m
resolution.

• Worldcover: A global land cover product at 10m resolution for 2021 with an accuracy of
~76.7%.

• CMIP6 — SSP2-4.5- EC-Earth3-CC model: Global daily surface-level climate projections
covering 2000-2049 with 80km resolution (variables daily maximum near-surface air
temperature, daily minimum — near-surface air temperature, near-surface air temperature,
near-surface specific humidity, precipitation, and sea level pressure)

• ERA5-Land: Global hourly reanalysis (surface) data for 1982-2013 (variables u10, v10,
d2m, t2m, sp, ssrd, tp).

UC C

• ECMWF data regridded to 0.1 grid

OPEN GEOSPATIAL CONSORTIUM 23-047 66

https://testbed19.rasdaman.com/rasdaman/gdc
https://testbed19.rasdaman.com/rasdaman/gdc
https://testbed19.rasdaman.com

5.1.5.3. Results

Mapping the GDC and OAPI-Covreages requests turned out to be straightforward. Only a
subset of the query language capabilities was used. WCPS provides a solid basis for the variety
of geo datacube APIs that have emerged in the meantime, such as WCS GET, WCS POST/XML,
WCS SOAP, OAPI-Coverages, and now additionally the draft GDC API specification. A caveat is
that the more recent API specifications convey subtle differences in use and semantics, which
required a careful mapping. Here, WCPS can serve as the canonical expression which allows the
user to capture and document such differences exactly.

5.1.6. Wuhan University — OGC API-GDC Instance (D111)

Wuhan University successfully implemented an instance of the draft GDC API specification
leveraging the GeoCube infrastructure. This infrastructure is deployed across three private cloud
servers, utilizing the high-performance computing framework Apache Spark and the distributed
storage database HBase. The primary objective was to provide services for the management and
analytical processing of heterogeneous data from multiple sources, including raster, vector, and
tabular data types.

5.1.6.1. Supported standards or drafts

The following capabilities outlined in the proposed GDC API specification will be implemented:

• OGC API — Common

• STAC

• CQL2 filtering

• OGC API — Coverages

• subsetting, scaling, field selection

• OGC API — Processes

• Part 1: Core — Asynchronous execution mode only

• Part 3: Workflows and Chaining — Nested local processes and collection output

The endpoint is http://oge.whu.edu.cn/geocube/gdc_api_t19.

OPEN GEOSPATIAL CONSORTIUM 23-047 67

http://oge.whu.edu.cn/geocube/gdc_api_t19

5.1.6.2. Available datasets for use-case scenarios

Partial datasets from use case B and use case C were collected. Separate cubes have been
established for each data product, incorporating three fundamental dimensions: time, space,
and band. Moreover, these cubes can accommodate additional dimensions based on the distinct
characteristics of each product.

Use case B

• Copernicus_EU_DEM: The DEM covering the Rhine-Meuse delta region with an original
resolution of 25 meters.

• Soilgrids250m: The global digital soil mapping data covering the Rhine-Meuse delta region
with an original spatial resolution of 250m. It contains 9 variables including bdod, cec,
cfvo, clay, nitrogen, phh2o, sand, silt, and soc. Each variable is available over 6 soil depth
intervals: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm, and 100-200cm, and only the
average value is taken.

• SENTINEL-2 Level-2A MSI: The advanced product derived from the processed
multispectral imagery data obtained by the Sentinel-2 satellite with a spatial coverage
which includes the Rhine-Meuse delta region, with a spatial resolution of 10 meters and a
time range from 2019-01-09 to 2019-04-14.

Use case C

• ECMWF_hsvs&ECMWF_ht3e: The Europe-wide expver hsvs/ht3e data provided
by ECMWF has been uniformly sampled to 0.1 degrees x 0.1 degrees. The data
contain parameters for Divergence, Geopotential, Relative humidity, Specific humidity,
Temperature, U component of wind, V component of wind, Vertical velocity, and Vorticity
(relative). The data also include dimensions other than time, space, and band, such as
pressure.

5.1.6.3. STAC API implementation

• Basic metadata for all datasets: /collections

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections

The response body contains key attributes as specified by STAC and also includes key attributes
required by the OGC API — Common Standard.

• Full metadata for a specific dataset: /collections/{collectionId}

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e

OPEN GEOSPATIAL CONSORTIUM 23-047 68

http://oge.whu.edu.cn/geocube/gdc_api_t19/collections
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e

The response body equally contains the key attributes required by both the OGC API —
Common Standard and STAC respectively.

• Metadata queryables for a specific dataset: /collection/{collectionId}/queryables

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/queryables

All dimensions in the specific cube, apart from the spatial dimension, will be returned as
queryable items.

• Fetch items: /collection/{collectionId}/items

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/items?filter=
pressure=1000

The response body includes metadata information for all scenes in the data cube. This endpoint
supports dimension condition filtering via cql2: only cql-text encoding is supported.

• Fetch a specific item: /collection/{collectionId}/item/{itemId}

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/items/ht3e_
1000_129.128_0

The response body includes metadata information for a single scene and a link for data retrieval.

5.1.6.4. OGC API — Coverages implementation

• Retrieve a coverage: /collection/{collectionId}/coverage

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage?
bbox=0,35,40,70&datetime=2016-10-28T01:01:00Z/2016-10-28T02:01:00Z&properties=
Divergence&subset=pressure(1000)&f=tif

The endpoint supports retrieving data from the data cube and returning the data in either
GeoTIFF or netCDF format. The endpoint also supports query parameters such as bbox,
datetime, properties, subset, scale-size, scale-axes, scale-factor, and format (tif, netCDF) to
return the data relevant to the area of interest.

• Retrieve the domainset of a coverage: /collection/{collectionId}/coverage/domainset

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage/
domainset

The endpoint returns the domainset of the coverage, which includes all dimensions of the cube
except for the band dimension.

• Retrieve the rangetype of a coverage: /collection/{collectionId}/coverage/rangetype

OPEN GEOSPATIAL CONSORTIUM 23-047 69

http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/queryables
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/items?filter=pressure=1000
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/items?filter=pressure=1000
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/items/ht3e_1000_129.128_0
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/items/ht3e_1000_129.128_0
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage?bbox=0,35,40,70&datetime=2016-10-28T01:01:00Z/2016-10-28T02:01:00Z&properties=Divergence&subset=pressure(1000)&f=tif
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage?bbox=0,35,40,70&datetime=2016-10-28T01:01:00Z/2016-10-28T02:01:00Z&properties=Divergence&subset=pressure(1000)&f=tif
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage?bbox=0,35,40,70&datetime=2016-10-28T01:01:00Z/2016-10-28T02:01:00Z&properties=Divergence&subset=pressure(1000)&f=tif
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage/domainset
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage/domainset

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage/
rangetype

The endpoint returns the rangetype of the coverage, which includes information about the band
(or variable) dimension.

5.1.6.5. OGC API — Processes implementation

• Retrieve the list of all predefined processes: /processes

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/processes

This implementation offers a series of predefined processes, including data loading (loadCube),
mathematical operations (add, subtract, divide, normalize), and aggregation operations
(aggregate), among others.

• Retrieve the description of a specific process: /processes/{processId}

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate

• Execute a process: /processes/{processId}/execution

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/execution

Request body example:

{
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate",
 "inputs": {
 "data": {
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/
normalize",
 "inputs": {
 "data": {
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/
processes/loadCube",
 "inputs": {
 "cubeName": "SENTINEL-2 Level-2A MSI",
 "extent": "4.7,51.7,4.85,51.8",
 "startTime": "2019-01-17 00:00:00",
 "endTime": "2019-01-20 00:00:00"
 }
 },
 "dimensionName": "bands",
 "dimensionMembers": ["B8", "B3"]
 }
 },
 "dimensionName": "time",
 "method": "mean"
 }
}

Figure 15

OPEN GEOSPATIAL CONSORTIUM 23-047 70

http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage/rangetype
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/ECMWF_ht3e/coverage/rangetype
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/execution

The endpoint supports local processes nesting and exclusively operates in asynchronous
execution mode, creating a job upon execution.

• Retrieve the list of all jobs: /jobs

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/jobs

The endpoint returns all existing jobs.

• Retrieve the specific job: /jobs/{jobId}

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/jobs/34b59622-0faf-4fb2-8029-
1fe824d7f51b

The endpoint returns the information about a specific job, including the execution status.

• Retrieve the job results: /jobs/{jobId}/results

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/jobs/34b59622-0faf-4fb2-8029-
1fe824d7f51b/results

The endpoint returns the execution result of the process.

• Execute a process with the collection output: /processes/{processId}/execution?
response=collection

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/execution?
response=collection

Request body example:

{
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate",
 "inputs": {
 "data": {
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/
normalize",
 "inputs": {
 "data": {
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/
processes/loadCube",
 "inputs": {
 "cubeName": "SENTINEL-2 Level-2A MSI"
 }
 },
 "dimensionName": "bands",
 "dimensionMembers": ["B8", "B3"]
 }
 },
 "dimensionName": "time",
 "method": "mean"
 }

OPEN GEOSPATIAL CONSORTIUM 23-047 71

http://oge.whu.edu.cn/geocube/gdc_api_t19/jobs
http://oge.whu.edu.cn/geocube/gdc_api_t19/jobs/34b59622-0faf-4fb2-8029-1fe824d7f51b
http://oge.whu.edu.cn/geocube/gdc_api_t19/jobs/34b59622-0faf-4fb2-8029-1fe824d7f51b
http://oge.whu.edu.cn/geocube/gdc_api_t19/jobs/34b59622-0faf-4fb2-8029-1fe824d7f51b/results
http://oge.whu.edu.cn/geocube/gdc_api_t19/jobs/34b59622-0faf-4fb2-8029-1fe824d7f51b/results
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/execution?response=collection
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/execution?response=collection

}

Figure 16

The response will redirect to a description document of a collection. This service supports
triggering computations through the retrieval mechanism of OGC API — Coverages and provides
the computation results.

Example: http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/
bf5aa1a0-a492-4345-9476-3d610cdc3b9f/coverage?subset=
time(2019-01-17T00:00:00Z”:”2019-01-20T00:00:00Z”),Lon(4.7:4.85),Lat(51.7:51.8”/>)

5.2. Clients

5.2.1. Ecere — Visualization Client (D173)

As a primary deliverable, Ecere developed a visualization client based on Ecere’s GNOSIS
Cartographer 3D geospatial visualization tool.

Ecere improved the GNOSIS Cartographer software, a desktop 3D visualization client, as well
as the underlying GNOSIS library, to better interoperate with the different participants API
endpoints, to retrieve and process GDC data.

For example, with multi-dimensional stores such as CMIP5 data for wind velocity, which
includes an atmospheric pressure dimension, the client supports changing the pressure level for
selecting the slice of the atmosphere to visualize.

GNOSIS Cartographer includes a workflow editor which can build a workflow by discovering
processes and collections available from a GDC API, assemble the workflow into an execution
request, and visualize the results.

5.2.1.1. Supported capabilities

The following are the supported OGC API capabilities:

• OGC API — Coverages (including support for “Coverage Tiles”)

• OGC API — Processes (including support for “Collection Output”)

• OGC API — Tiles

• OGC API — Maps

The capabilities based on openEO were not implemented for this client.

OPEN GEOSPATIAL CONSORTIUM 23-047 72

http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/bf5aa1a0-a492-4345-9476-3d610cdc3b9f/coverage?subset=time(
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/bf5aa1a0-a492-4345-9476-3d610cdc3b9f/coverage?subset=time(
http://oge.whu.edu.cn/geocube/gdc_api_t19/collections/bf5aa1a0-a492-4345-9476-3d610cdc3b9f/coverage?subset=time(
https://docs.ogc.org/DRAFTS/19-087.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/is/20-057/20-057.html
https://docs.ogc.org/DRAFTS/20-058.html

5.2.1.2. Example use of implementation

The following image demonstrates visualizing CMIP5 data for wind velocity retrieved from the
Copernicus Data Store. In addition to the spatial and temporal dimension, this datacube includes
an atmospheric pressure dimension. The client supports changing the pressure level for selecting
the slice of the atmosphere to visualize.

Figure 17 — Cartographer visualizing CMIP5 pressure and wind velocity

The following image shows a visualization of ERA5 relative humidity data which was also
retrieved from the Copernicus Data Store. This dataset also includes at an atmospheric pressure
dimension, with a finer granularity of pressure levels. The spatial and temporal resolution is also
higher, whereas only a small subset for six days was loaded onto the server.

OPEN GEOSPATIAL CONSORTIUM 23-047 73

Figure 18 — Cartographer visualizing relative humidity

5.2.2. Eurac Research — GDC Web Editor

The GDC Web Editor is based on the openEO Web Editor, which is the main graphical user
interface to interact with openEO. The GDC Web Editor is a web application that allows users
to interactively explore a GDC API implementation, create and execute processes, and manage
jobs. Additional functionality is available for servers that support the openEO API specification.

For the GDC Web Editor two components of the openEO JavaScript ecosystem had to be
adopted:

1. openEO JavaScript Client; and

2. openEO Web Editor.

The openEO JavaScript client is used to communicate with GDC API endpoints. The GDC Web
Editor is still primarily an openEO client and as such works internally based on the openEO
architecture and concepts. This means internally all requests are translated into GDC API
requests and the responses are translated back into openEO responses. This translation work is
done by the openEO JavaScript client, which has a new Migration class for GDC API responses
and requests. As the draft GDC API standard is mostly a combination of OGC API — Coverages,
OGC API — Processes, and openEO, this migration is basically a generic converter between the
OGC APIs and openEO.

The added functionality in the GDC Web Editor includes:

OPEN GEOSPATIAL CONSORTIUM 23-047 74

https://github.com/Open-EO/openeo-js-client/
https://github.com/Open-EO/openeo-web-editor/

• exposing which collections are Coverages and which are openEO data cubes;

• visual discovery of OGC API — Coverages endpoints;

• visual discovery of OGC API — Processes endpoints;

• synchronous and asynchronous execution of workflows for OGC API — Processes (Part 1
and a small subset of Part 3);

• visual process chaining in the model builder for OGC API — Processes, including ability to
set parameters through an easy form;

• (Batch) Job management for OGC API — Processes; and

• coverage Download via the Wizard functionality.

The conversion between openEO and OGC API implementations was relatively painless. During
development the following difficulties were encountered.

• The OGC API Processes Standard specifies using return values to describe a choice
between multiple output file formats. openEO follows a different architecture where
the file format is a parameter of the save_result process. This means every OGC API
Process receives a new parameter format which users can fill. Unfortunately, some
implementations require that for every process in a chain, which is not very user-friendly
and not very intuitive.

• openEO uses a more fine-grained schema for process parameters and return values,
which offers a much better user experience in a UI to fill parameters. This means that in
an openEO implementation the client can offer, for example, a bounding box selector.
However, in an OGC API — Processes implementation the parameters must be provided
as defined in the process schema (e.g., array of numbers or a string of comma-separated
values).

• The data cube concepts in the OGC API — Coverages Standard and openEO specification
differ slightly and use different terminology, which cannot be translated 1 to 1. Also, the
terminology differences are exposed to the user, which is confusing.

• Some functionality that exists in an openEO implementation is not available in OGC API
– Processes implementation. As such, the user experience is less good for OGC API —
Processes server implementations.

• The weakest point of a client OGC API — Processes implementation is constructing
workflows that consist of multiple processes. While there is basic support for it, the
approach is not very user-friendly and various parts of OGC API — Processes — Part 3
cannot be encoded.

The source code of the GDC Web Editor and the adapted openEO JS client are available as
open-source software, released under the Apache 2.0 license. The source code and a demo
version can be found here:

OPEN GEOSPATIAL CONSORTIUM 23-047 75

• The source code of the GDC Web Editor is available at https://github.com/m-mohr/gdc-
web-editor

• The source code of the adapted openEO JavaScript client is available at https://github.
com/Open-EO/openeo-js-client/tree/gdc-api

• The hosted demo version of the GDC Web Editor is available at https://m-mohr.github.io/
gdc-web-editor/

Generally, a client that can interact with the GDC API endpoints can be implemented without
major effort, including support for OGC API — Processes and OGC API- Coverages.

An exemplary approach at converting between the different APIs and entities is shown in the
openEO JavaScript client. The interoperability experiments show good compatibility across
various servers. All use cases in Testbed 19 can be executed with the client assuming that the
server supports the required functionality.

5.2.3. Fengchia University(GIS.FCU) — Data Client (D113)

• Dev. environment

• demo site

• link: https://tm.gis.tw/testbed19client/

• Testing example

• ecere

• test layer : SRTM_ViewFinderPanorama

{
 "process": "https://maps.gnosis.earth/ogcapi/processes/RenderMap",
 "inputs": {
 "background": "navy",
 "transparent": false,
 "layers": [
 {
 "href": "https://maps.gnosis.earth/ogcapi/collections/SRTM_
ViewFinderPanorama/coverage?subset=Lat(21.8:25.4),Lon(120:121.9)%26f=image/
tiff"
 }
]
 }
}

Figure 19

• rasdaman(openEO)

OPEN GEOSPATIAL CONSORTIUM 23-047 76

https://github.com/m-mohr/gdc-web-editor
https://github.com/m-mohr/gdc-web-editor
https://github.com/Open-EO/openeo-js-client/tree/gdc-api
https://github.com/Open-EO/openeo-js-client/tree/gdc-api
https://m-mohr.github.io/gdc-web-editor/
https://m-mohr.github.io/gdc-web-editor/
https://tm.gis.tw/testbed19client/

• test layer : ERAS

{
 "process_graph": {
 "load1": {
 "process_id": "load_collection",
 "arguments": {
 "id": "ERA5",
 "spatial_extent": null
 }
 },
 "subset1": {
 "process_id": "subset",
 "arguments": {
 "data": { "from_node": "load1" },
 "subset": [{ "dimension": "time", "lower": "\"2000-01-01T01:00:00Z\""
}]
 }
 },
 "subset4": {
 "process_id": "subset_band",
 "arguments": {
 "x": { "from_node": "subset1" },
 "y": "u10"
 }
 },
 "subset5": {
 "process_id": "subset_band",
 "arguments": {
 "x": { "from_node": "subset1" },
 "y": "v10"
 }
 },
 "power6": {
 "process_id": "power",
 "arguments": {
 "x": { "from_node": "subset4" },
 "y": 2.01
 }
 },
 "power7": {
 "process_id": "power",
 "arguments": {
 "x": { "from_node": "subset5" },
 "y": 2.01
 }
 },
 "add8": {
 "process_id": "add",
 "arguments": {
 "x": { "from_node": "power6" },
 "y": { "from_node": "power7" }
 }
 },
 "sqrt9": {
 "process_id": "sqrt",
 "arguments": {
 "x": { "from_node": "add8" }
 }
 },
 "save10": {

OPEN GEOSPATIAL CONSORTIUM 23-047 77

 "process_id": "save_result",
 "arguments": {
 "x": { "from_node": "sqrt9" },
 "format": "PNG",
 "options": "{\\\"colorMap\\\": { \\\"type\\\": \\\"intervals\\\", \\
\"colorTable\\\": { \\\"1500\\\": [121, 145, 171, 255], \\\"2500\\\": [125,
255, 209, 255], \\\"3500\\\": [171, 254, 255, 255], \\\"5000\\\": [114, 224,
176, 255], \\\"8000\\\": [116, 224, 87, 255], \\\"9000\\\": [192, 255, 48,
255], \\\"10000\\\": [254, 255, 0, 255], \\\"11000\\\": [255, 255, 135, 255],
\\\"12000\\\": [245, 218, 98, 255], \\\"13000\\\": [255, 150, 51, 255], \
\\"14000\\\": [255, 102, 102, 255], \\\"15000\\\": [254, 15, 255, 255], \\
\"16000\\\": [203, 0, 204, 255] } } }"
 },
 "result": true
 }
 },
 "parameters": []
}

Figure 20

• whu

{
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate",
 "inputs": {
 "data": {
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/
normalize",
 "inputs": {
 "data": {
 "process": "http://oge.whu.edu.cn/geocube/gdc_api_t19/
processes/loadCube",
 "inputs": {
 "cubeName": "SENTINEL-2 Level-2A MSI",
 "extent": "4.7,51.7,4.72,51.72",
 "startTime": "2019-01-17 00:00:00",
 "endTime": "2019-01-20 00:00:00"
 }
 },
 "dimensionName": "bands",
 "dimensionMembers": ["B8", "B3"]
 }
 },
 "dimensionName": "time",
 "method": "mean"
 }
}

Figure 21

• Geolabs

{
 "inputs": {
 "il": [
 {
 "href": "http://geolabs.fr/dl/Landsat8Extract1.tif"
 }
],

OPEN GEOSPATIAL CONSORTIUM 23-047 78

 "out": "float",
 "exp": "im1b3,im1b2,im1b1",
 "ram": 256,
 "layers": [
 {
 "href": "Lat(3.4720895754867920:3.8112262152018426),Lon(43.276499596965
1096:43.5081449510672016)"
 }
]
 },
 "outputs": {
 "out": {
 "format": {
 "mediaType": "image/jpeg"
 },
 "transmissionMode": "reference"
 }
 },
 "response": "raw"
}

Figure 22

• TIE issues

• CORS

• This is a common issue when integrating with third-party endpoints on the
frontend because security typically does not allow direct integration like this. The
standard practice is to use a backend service to replace the frontend in accessing
the service.

• Ecere GeoDataCube API implementation.

• post

OPEN GEOSPATIAL CONSORTIUM 23-047 79

• get

• Compusult GeoDataCube API

• get

• Wuhan Univ. GeoDataCube API

• get

• Authentication suggestion

• The rasdaman GeoDataCube endpoint provides account authentication. However,
the current authentication mechanism mostly relies on basic authentication, which
is considered insufficient according to today’s cybersecurity requirements. This
is because the MD5 encryption used in basic authentication is easily susceptible
to decryption. If the MD5 encryption is used over regular HTTP, the encryption
becomes even more perilous, essentially transmitting in plaintext. While HTTPS
provides encryption, there is still a risk of being compromised, such as in a man-
in-the-middle attack. A more recommended approach is to switch to OAuth or
OpenID Connect (OIDC) for authentication.

OPEN GEOSPATIAL CONSORTIUM 23-047 80

• get request with basic authentication:

• Chrome no longer recommends using HTTP.

• However, there are still some endpoints found to be providing data through
HTTP. If the data is generally public, it might not be a concern. However, when
transmitting sensitive or high-security imagery in this manner, there is a risk of the
transmission being intercepted. Additionally, most modern browsers now default to
disallowing HTTP. Even if an HTTP address is entered, the address will be forcibly
redirected to HTTPS for the request. Of course, developers can still interact with
HTTP through backend services. It is recommended, whenever possible, to provide
services using HTTPS for better security.

• message from browser:

• Async Processes/Execution

• During implementation of the client, it was observed that computations can be
performed in both synchronous and asynchronous modes. For client implementers,
consideration must be given to handling and presenting results for both types
of operations. For example, in synchronous operations, results can be directly
displayed on the map or converted into downloadable files. In asynchronous
operations, a jobID is obtained first and the frontend needs to employ a polling
mechanism to check the execution progress of the job. When the computation is
complete and results are available, the results can then be presented on the map
or made available for file download. Alternatively, other notification methods such

OPEN GEOSPATIAL CONSORTIUM 23-047 81

as push notifications, LINE, Telegram, Email, etc., can be integrated to inform users
when the job is finished.

• Ecere

• https://maps.gnosis.earth/ogcapi/processes/actionName/execution

• Rasdaman

• https://testbed19.rasdaman.com/rasdaman/openeo/result

• whu

• The approach supporting only asynchronous JobID may pose challenges in
presenting results promptly on the map. Would it be acceptable to provide a
download option instead?

• The processes were divided into the following three steps.

• http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/jobs/
3257bfe9-1c3b-4331-90c7-686c0018f0d3

• http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/jobs/
3257bfe9-1c3b-4331-90c7-686c0018f0d3/results

• http://oge.whu.edu.cn/api/oge-data/data/gdc_api/3257bfe9-1c3b-
4331-90c7-686c0018f0d3/Coverage_2023_09_05_13_58_21.tif

OPEN GEOSPATIAL CONSORTIUM 23-047 82

https://maps.gnosis.earth/ogcapi/processes/actionName/execution
https://testbed19.rasdaman.com/rasdaman/openeo/result
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/jobs/3257bfe9-1c3b-4331-90c7-686c0018f0d3
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/jobs/3257bfe9-1c3b-4331-90c7-686c0018f0d3
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/jobs/3257bfe9-1c3b-4331-90c7-686c0018f0d3/results
http://oge.whu.edu.cn/geocube/gdc_api_t19/processes/aggregate/jobs/3257bfe9-1c3b-4331-90c7-686c0018f0d3/results
http://oge.whu.edu.cn/api/oge-data/data/gdc_api/3257bfe9-1c3b-4331-90c7-686c0018f0d3/Coverage_2023_09_05_13_58_21.tif
http://oge.whu.edu.cn/api/oge-data/data/gdc_api/3257bfe9-1c3b-4331-90c7-686c0018f0d3/Coverage_2023_09_05_13_58_21.tif

• Async processes message from the browser:

• Front-end library issue

• This is an issue related to coordinate transformation in OpenLayers. OpenLayers
typically uses map projection coordinate systems (CRS) such as EPSG:3857 (Web
Mercator) or other equidistant projection coordinate systems. The ranges of these
coordinate systems are limited to a finite extent, with latitudes approximately
between -85.0511 and 85.0511. When attempting to display latitudes beyond this
range on the map, it may result in abnormal image rendering, as these projection
coordinate systems do not support polar regions or areas too far from the poles.
If there is need to display polar regions or geographical data beyond these ranges
in OpenLayers, a different projection and coordinate system may need to be used,
such as EPSG:4326 (WGS 84 latitude-longitude coordinate system) or another
coordinate system that suits the requirements. In these coordinate systems,
latitudes can exceed 90 degrees (North Pole) or go below -90 degrees (South Pole),
and the map can accurately display these regions.

OPEN GEOSPATIAL CONSORTIUM 23-047 83

• Part of the coverage exposed an inaccurate shape:

• Processes format inconsistency

• In other Endpoints, the ‘process’ is included in the format for the endpoints
developed, utilizing a unified endpoint to perform computations based
on the specified ‘process’ within the format. However, GeoLabs operates
differently by having distinct endpoints based on the ‘process,’ and the
format does not explicitly specify the ‘process’. left:ecere; right:Geolabs:

.

5.2.4. Geomatys — Data Client (D173)

The Geomatys client uses the Unreal Engine 3D game engine. For all geospatial aspects, 3D
terrain, and tile management, the Cesium Unreal plugin developed by Cesium is relied on.
Changes were made to the Cesium plugin to enable time management (e.g., temporal WMS),
Map Tiles querying, and other useful improvements for Testbed-19.

Using Unreal’s blueprints and C++ support, Geomatys developed the various classes and tools
needed to implement the Testbed-19 OGC GDC APIs (see below for capabilities supported by
the client). Geomatys was also able to develop several ways of displaying data. On the one hand,
raster data can be requested via the Maps API (only maps tiles), which can then be displayed on
the Cesium-generated terrain. On the other hand, data from the Coverages API can be displayed

OPEN GEOSPATIAL CONSORTIUM 23-047 84

in different ways. (Geomatys products do not support coverages tiles.) Thanks to a “PostProcess”
system, the user can choose how to display data from Coverages.

For example, a user can request ECMWF data from a server that provides such data. The user
selects the region (lat/lon) of interest, the desired altitudes (pressures), and the moment in time
(2023-06-11T00:00:00.000Z for example). The user can also choose to request only the U and
V bands for wind. A display service is then created (PostProcess) that manages the wind display.
The bands to be queried are assigned to the service, then once the query is done, the wind data
is displayed in the client.

For this post processing system, wind, humidity, and temperature data are currently supported.

In terms of technical functionalities, OGC API building blocks were integrated as described
below: coverage subsetting (spatial and temporal), coverage field selection (select specific bands
in a coverage), and coverage scaling.

For the moment, the Geomatys system only handles coverages in GeoTIFF format. However,
using the gdal library to decode files, other formats will be added in the future.

In the rest of this section, the OGC API Standards (building blocks) supported by the client are
now described.

Supported capabilities :

Geomatys supports OGC API endpoints (not OpenEO or STAC API)._

• OGC API — Collections (Common-1 (Core,Landing Page), Common-2 (Collections))

• OGC API — Coverages (subsetting, scaling, field selection) (Coverages-1 (Core),
Coverages-1 (Subsetting), Coverages-1 (Scaling), Coverages-1 (Field Selection)) ✔

️
 (only

with png/jpg/geotif and not tiled)

• OGC API — Maps (Maps-1 (Core)) ✔
️
 (only tiled rasters)

5.2.5. Wuhan University — Data Client (D113)

Leveraging the online spatiotemporal computing cloud platform, Open Geospatial Engine (OGE),
developed by Wuhan University, the Wuhan Testbed 19 participants designed and developed
an OGE-DataClient that allows users to explore GDC through a visual interface online. OGE-
DataClient adheres to the draft GDC API specification draft proposed in this Testbed. The front-
end is developed in TypeScript, and automatically assembles requests and parses results based
on the agreed-upon OpenAPI specification. For data retrieval, including retrieving Coverage and
executing Process results, requests are assembled in the backend service. Then the resulting
data is appropriately formatted for seamless display in the Cesium 3D map component. Ideally,
the client can connect to any endpoint that adheres to the agreed-upon GDC API specifications,
providing capabilities for cube data retrieval and processing. However, it is important to note
that, as mentioned in the following sections, this client does not support all the capabilities
specified in the draft GDC API specification draft. Further improvements and additions to
functionalities will be made in the future.

OPEN GEOSPATIAL CONSORTIUM 23-047 85

https://docs.ogc.org/is/19-072/19-072.html
https://docs.ogc.org/DRAFTS/20-024.html
https://docs.ogc.org/DRAFTS/19-087.html#rc-core
https://docs.ogc.org/DRAFTS/19-087.html#rc-subsetting
https://docs.ogc.org/DRAFTS/19-087.html#rc-scaling
https://docs.ogc.org/DRAFTS/19-087.html#rc-fieldselection
https://docs.ogc.org/DRAFTS/20-058.html
http://www.openge.org.cn/

The demonstration link is: http://oge.whu.edu.cn:8023/ogc-data-client

The client focuses on the following features of interest.

• Retrieving all available cube data and processes under a specified GDC API endpoint by
entering the login page link.

• Viewing all dimension information for each cube.

• Supporting data retrieval with field selection and performing subset operations along any
dimension.

• Supporting map visualization of data in GeoTiff and Png formats.

• Supporting synchronous or asynchronous execution of processes compliant with the OAP
specification and synchronous execution of OpenEO processes.

• Visualizing processing results on a map.

• Retrieving and visualizing results from a virtual collection compliant with the OAP-3
specification, executing workflow on demand.

5.2.5.1. Supported approved standards and drafts standards

• OGC API — Common

• OGC API — Coverages

• subsetting, field selection

• OGC API — Processes

• Part 1: Core

• Part 3: Workflows and Chaining — Nested processes and collection output

• OpenEO API

• Synchronization only

5.2.5.2. Implementation

OGC API — Coverages

The OGE-DataClient automatically generates corresponding filtering conditions by parsing the
metadata information of the data cube, including rangetype and domainset. Users can retrieve
subsets of data as needed.

OPEN GEOSPATIAL CONSORTIUM 23-047 86

http://oge.whu.edu.cn:8023/ogc-data-client

Figure 23 — WHU’s OGE-DataClient visualizing
climate:era5:relativeHumidity from Ecere Coverages API

OGC API — Processes

The OGE-DataClient allows users to create execution requests in a JSON editor, including the
request body for individual process execution and nested workflows. Supported execution
modes include synchronous, asynchronous, and collection output. In collection output mode,
users can easily reuse the same workflow by applying different conditional retrievals to the
returned Coverage.

Figure 24 — WHU’s OGE-DataClient visualizing processing
result from Ecere Processes API using synchronous mode

OPEN GEOSPATIAL CONSORTIUM 23-047 87

Figure 25 — WHU’s OGE-DataClient visualizing processing result from
WHU Processes API using Workflows&Chaining(collection output)

OpenEO API

The OGE-DataClient supports invoking processes provided by the OpenEO API in synchronous
mode by creating a process graph in the JSON editor.

OPEN GEOSPATIAL CONSORTIUM 23-047 88

Figure 26 — WHU’s OGE-DataClient visualizing processing result in PNG format
obtained from the rasdaman OpenEO API while operating in synchronous mode

5.2.5.3. Future improvements

• Support for the OGC API — Tiles and the draft OGC API — Maps Standards.

• Support for the scaling functionality defined in the OGC API — Coverages Standard.

• Automatically generate a visual interface for input parameters based on the description of
the process, simplifying the process of creating the request body.

• Consider rendering and map visualization solutions for large-scale imagery data, avoiding
an increase in computational load on the resource-limited browser side.

• Some endpoints of the Coverage API use coordinate systems other than EPSG:4326 for
spatial filtering. It is necessary to implement coordinate system conversion for the spatial
range selected by the user to support the normal operation of subset operations.

5.2.6. Pelagis Data Solutions — Data Client (D113)

The concept of a GeoDataCube for analysis over both space and time is a very powerful
mechanism. The inherent capabilities and proposed standardization present advanced users
with a framework to develop complex spatial and temporal analysis both for environmental
monitoring and machine learning use cases. It is important that the approach taken fits within

OPEN GEOSPATIAL CONSORTIUM 23-047 89

existing OGC Standards baselines and, in a best case scenario, provides these features packaged
in a standard’s compliant framework for use within existing geospatial applications.

The Pelagis D113 client is designed to exploit the capabilities of the GeoDatacube working
products with application to climate monitoring of the Canadian Arctic. The client framework
is designed to complement the work efforts associated with the OGC Federated Marine Digital
Arctic initiative and demonstrates the integration of the GeoDataCube as a provider of essential
climate indicators compliant with the Environmental Data Retrieval (EDR) API.

Background

Pelagis is an OceanTech venture located in Nova Scotia, Canada. The foundation focuses on the
application of open geospatial technology and standards designed to promote the sustainable
use of our ocean resources. As a member of the Open Geospatial Consortium, Pelagis acts as
co-chair in the OGC Marine Domain Working Group (MarineDWG) responsible for developing
a spatially-aware federated service model for marine and coastal ecosystems. The immediate
priority is the development of a federated marine reference model based on the core OGC
standards in support of Nature-based Climate Resilience & Adaptation initiatives.

5.2.6.1. Approach

Satellite Derived Observations for Sea Ice Albedo

A key essential variable for the Arctic is surface albedo which is a strong indicator of a warming
Arctic region. The Arctic surface air temperature is rising twice as fast as the rest of the world,
and Arctic sea ice is retreating up to three times faster than the rate projected by climate model
simulations. The decline of sea ice and snow cover in the Arctic Ocean leads to a decrease of the
surface reflection and an increase of absorption of solar radiation which in turn increases surface
temperature and triggers sea ice decline. This surface albedo feedback loop is one of the major
drivers of Arctic amplification and a strong indicator of a region in transition towards an ice-free
environment.

Arctic Regional Reanalysis datasets at 2.5 km resolution are ingested into a rasdaman GDC
instance. The dataset covers a circumpolar region including Greenland, the Labrador Sea, and
the Davis Strait. This provides a baseline of spatial and temporal characteristics of the region
and over which the GDC client performs regional analysis of the surface albedo for an area of
interest surrounding the Ninginganiq National Wildlife Area.

As apparent, the change in albedo between the period of May 2020 and April 2023 is
substantial in the southern extent while the changes specific to the Ninginganiq National
Wildlife Area have remained relatively stable.

OPEN GEOSPATIAL CONSORTIUM 23-047 90

Figure 27 — Albedo as an Essential Variable of the Arctic

Environmental Data Retrieval

The D113 data client is based on the pygeoapi open source platform. The D113 data client is
designed as a provider extension that transforms standard Environmental Data Retrieval (EDR)
API structured queries to the GDC interface and dispatches the queries to the GDC service
provider. Effectively, the GDC provider instance acts as a facade to the GDC API endpoint that
provides similar capabilities including slicing, filtering, and trimming across a multi-dimensional
cube.

OPEN GEOSPATIAL CONSORTIUM 23-047 91

Figure 28 — EDR provider framework

5.2.6.2. Use Cases

Surface Albedo for the Spring Equinox 2019

This use case focuses on using a GeoDataCube API implementation to request slicing the
surface albedo observations along the spatial dimensions for the region of interest at a specific
time instance. The client requests the ‘albedo’ parameter from the GDC service provider given
an area of interest (polygon) and time instance (datetime=2019-05-06T00:00:00.000Z).

OPEN GEOSPATIAL CONSORTIUM 23-047 92

Figure 29 — Surface albedo Spring 2019

Of note is that by implementing the EDR GDC provider as a facade to each GDC service
provider, the spatial and temporal constraints may be issued to a separate GDC service provider
with no impact to the client workflow. As an example, the following query requests the near-
surface temperature from the Ecere GDC provider instance.

Example: /collections/tb19/arctic/instance/cmip5/area?coords=POLYGON -109
64.39894807, -61.25 64.39894807, -61.25 76.7652818, -109 76.7652818, -109
64.39894807&datetime=2019-05-06T00:00:00.000Z¶meter_names=tas&crs=EPSG:4326’

Figure 30 — CMIP5 Near Surface Temperature Spring 2019

Temporal analysis of Surface Albedo

The inherent value of the GeoDataCube framework is its ability to scale both in terms of volume
of data and processing capabilities. This use case focuses on delegating the analysis of surface

OPEN GEOSPATIAL CONSORTIUM 23-047 93

albedo to the GDC service provider over a temporal extent to determine the magnitude of
change for each gridded observation. In this case, the GDC provider translates the EDR request
to compose a process graph for execution by the GDC service instance to determine the change
in surface albedo for the region of interest over the temporal range of May 2019 — April 2023.

Figure 31 — Magnitude of change in surface albedo between May 2019 and April 2023

5.2.6.3. Challenges & Future Work

EDR API

EDR, in its role as a simplified API for querying discrete coverages of observations, provides an
effective means to query across the spatial and temporal dimensions of a GeoDataCube. Certain
capabilities of the draft GeoDataCube API standard are abstracted away as EDR queries against
a collection/instanceID where the instanceID represents a named process graph. Whether this
is the intention of the OGC EDR API standard is to be further investigated as certain process
graphs, especially resource intensive process graphs, require an asynchronous workflow that
benefits from caching at the service layer.

The EDR query capabilities were limited to investigating area-based and cube-based
queries against the GDC service instances. Further investigation into the capabilities of the
GeoDataCube framework for trajectory-based and corridor-based queries, for example, would
be of benefit to support further interoperability requirements with the OGC Moving Features
Standard.

Response Encodings

OPEN GEOSPATIAL CONSORTIUM 23-047 94

The response encodings supported by the EDR client focused on image-based (.png), coverage-
based (CoverageJSON), and multi-dimensional encodings supported by NetCDF. Further
investigation into alternative file-based encodings such as Zarr and GeoParquet would likely
enhance the workflow with support for cloud-optimized analysis ready data stores.

5.2.7. 52°North GmbH — Executable Test Suite (ETS) for the draft OGC
API — GDC Standard

The Executable Test Suite (ETS) for the draft OGC API — GDC Standard was created to conduct
systematic tests of the GDC implementations. The ETS is based on the OGC Team Engine and
was implemented using the TestNG Java framework.

The following conformance classes were implemented from scratch.

• Capabilities

• Account Management

• Data Discovery/Access

• Process Discovery

• OpenEO

The following existing Executable Test Suites were included by reference.

• OGC API — Processes Core

• OGC API — Coverages Core

• OGC API — Features Core

The implementation of the tests was straight forward using the detailed description of the
functionality of the draft OGC API — GDC Standard. Due to a current lack of schemas there is
no validation in place for responses. Instead, the existence of certain key elements is checked.
The existing test suite is also based on the TestNG framework, which made reusing the
tests easy. However, as not all implementations of the OGC API — GDC are supporting all
functionality, a mechanism was implemented to check for conformance first, before calling a
referenced ETS. The details can be found here: https://github.com/52North/ets-ogcapi-gdc10/
blob/main/src/main/java/org/opengis/cite/ogcapigdc10/TestListener.java

• The source code of the ETS for draft OGC API — GDC Standard is available at https://
github.com/52North/ets-ogcapi-gdc10.

• The hosted demo version of the ETS for draft OGC API — GDC Standard is available at
https://19.testbed.dev.52north.org/teamengine/.

OPEN GEOSPATIAL CONSORTIUM 23-047 95

https://github.com/52North/ets-ogcapi-gdc10/blob/main/src/main/java/org/opengis/cite/ogcapigdc10/TestListener.java
https://github.com/52North/ets-ogcapi-gdc10/blob/main/src/main/java/org/opengis/cite/ogcapigdc10/TestListener.java
https://github.com/52North/ets-ogcapi-gdc10
https://github.com/52North/ets-ogcapi-gdc10
https://19.testbed.dev.52north.org/teamengine/

5.2.7.1. Implementation details

This section lists the tests that the ETS currently consists of.

5.2.7.1.1. Capabilities

The following tests were implemented.

• test Landingpage

• test Http

• test Validate Conformance Operation And Response

5.2.7.1.2. Account Management

The following tests were implemented.

• test Basic Auth

• test User Information

5.2.7.1.3. Data Discovery/Access

The following tests were implemented.

• test Basic Metadata

• test Retrieve Coverage Domainset

• test Retrieve Coverage

• test Retrieve Coverage Rangetype

• test Full Metadata

• test Metadata Filters

5.2.7.1.4. Process Discovery

The following tests were implemented.

• test Process Graphs

OPEN GEOSPATIAL CONSORTIUM 23-047 96

• test Process List

5.2.7.1.5. OpenEO

The following tests were implemented.

• test List Batch Jobs

• execute Sync

• test Metadata Of Batch Job

• test Get File Formats

5.2.7.1.6. OGC API — Processes

All tests of core conformance class were included.

5.2.7.1.7. Coverages Core

All tests of core conformance class were included.

5.2.7.1.8. Features Core

All tests of core conformance class were included.

OPEN GEOSPATIAL CONSORTIUM 23-047 97

6

INTER COMPARISON
EXPERIMENTS

OPEN GEOSPATIAL CONSORTIUM 23-047 98

6 INTER COMPARISON EXPERIMENTS

6.1. Ecere Technology Integration Experiments

Ecere performed Technology Integration Experiments with the implementations available from
all other participants.

Table 11 — Status of the GNOSIS Cartographer and/or gdc-test client integration with
participant API endpoints

CAPABILITY /
SERVER

ECERE RASDAMAN WHU COMPUSULT GEOLABS BROCKMANN EURAC

Common-
1 (Core,
Landing
Page)

S S
S (server often
unavailable)

S S S S

Common-2
(Collections)

S S S S S S S

Coverages-1
(Core)

S S
S (504
gateway
timeout issues)

⚠ (no
overlap in
supported
formats)

S

S (difficulties:
NaN
NODATA,
invalid/
undeclared
mixed UTM
zones native
CRS)

Coverages-1
(Subsetting)

S S S S

S (missing
subset
parameter,
204 or 500
for some
slicing/
trimming)

Coverages-1
(Scaling)

S S
(implemented
functionality
removed for
stability)

S

OPEN GEOSPATIAL CONSORTIUM 23-047 99

https://maps.gnosis.earth/ogcapi
https://testbed19.rasdaman.com/rasdaman/oapi
http://oge.whu.edu.cn/geocube/gdc_api_t19/
https://ogc.compusult.com/wes/webservices
http://tb19-dev.geolabs.fr:8701/ogc-api/
https://testbed19.api.dev.brockmann-consult.de/api/ogc
https://dev.openeo.eurac.edu/
https://docs.ogc.org/is/19-072/19-072.html
https://docs.ogc.org/is/19-072/19-072.html
https://docs.ogc.org/is/19-072/19-072.html
https://docs.ogc.org/is/19-072/19-072.html
https://docs.ogc.org/DRAFTS/20-024.html
https://docs.ogc.org/DRAFTS/20-024.html
https://docs.ogc.org/DRAFTS/19-087.html#rc-core
https://docs.ogc.org/DRAFTS/19-087.html#rc-core
https://docs.ogc.org/DRAFTS/19-087.html#rc-subsetting
https://docs.ogc.org/DRAFTS/19-087.html#rc-subsetting
https://docs.ogc.org/DRAFTS/19-087.html#rc-scaling
https://docs.ogc.org/DRAFTS/19-087.html#rc-scaling

CAPABILITY /
SERVER

ECERE RASDAMAN WHU COMPUSULT GEOLABS BROCKMANN EURAC

Coverages-
1 (Field
Selection)

S S S ⚪ S
S (missing
range type /
schema)

Coverages-
1 (Coverage
Tiles)

S

Coverages-
2 (CQL2
Filtering)

S

Coverages-
2 (CQL2
Derived
Fields)

S

Processes-1
(Core, OGC
Pr.Desc.)

S S S S

Processes-
3 (Collection
Input)

S

 (should
be easy to
implement
based on load
Cube process)

Processes-
3 (Collection
Output)

S S F

Processes-
3 (Nested
Processes)

S S

⚠ (issue with
default raw
response,
conformance
decl.)

S = Tested and functional

F = Tested and does not work

⚪ = Not tested

 = Does not exist/Not implemented

⚒ = In development

⚠ = Error / Problem

OPEN GEOSPATIAL CONSORTIUM 23-047 100

https://maps.gnosis.earth/ogcapi
https://testbed19.rasdaman.com/rasdaman/oapi
http://oge.whu.edu.cn/geocube/gdc_api_t19/
https://ogc.compusult.com/wes/webservices
http://tb19-dev.geolabs.fr:8701/ogc-api/
https://testbed19.api.dev.brockmann-consult.de/api/ogc
https://dev.openeo.eurac.edu/
https://docs.ogc.org/DRAFTS/19-087.html#rc-fieldselection
https://docs.ogc.org/DRAFTS/19-087.html#rc-fieldselection
https://docs.ogc.org/DRAFTS/19-087.html#rc-fieldselection
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-tiles
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-tiles
https://docs.ogc.org/DRAFTS/19-087.html#rc-coverage-tiles
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html#_7cf8ffda-3298-44cb-b32b-61240644cd6f
https://docs.ogc.org/DRAFTS/21-009.html#_7cf8ffda-3298-44cb-b32b-61240644cd6f
https://docs.ogc.org/DRAFTS/21-009.html#_7cf8ffda-3298-44cb-b32b-61240644cd6f
https://docs.ogc.org/DRAFTS/21-009.html#_cce235f9-f9d7-4623-900b-b08b476c1f0f
https://docs.ogc.org/DRAFTS/21-009.html#_cce235f9-f9d7-4623-900b-b08b476c1f0f
https://docs.ogc.org/DRAFTS/21-009.html#_cce235f9-f9d7-4623-900b-b08b476c1f0f
https://docs.ogc.org/DRAFTS/21-009.html#_dbff7350-32b6-4c4a-922f-45c1573c6e56
https://docs.ogc.org/DRAFTS/21-009.html#_dbff7350-32b6-4c4a-922f-45c1573c6e56
https://docs.ogc.org/DRAFTS/21-009.html#_dbff7350-32b6-4c4a-922f-45c1573c6e56

6.1.1. Experiment examples

This demonstrates visualizing a Tree Cover Density data cube available from the rasdaman GDC
API implementation with the client.

Figure 32 — Tree Cover Density dataset from rasdaman’s
GDC API visualized in 3D using GNOSIS Cartographer

OPEN GEOSPATIAL CONSORTIUM 23-047 101

Figure 33 — EVAPOTRANSPIRATION dataset from Brockmann
Consult retrieved from Ecere’s gdc-test client (styled in QGIS)

OPEN GEOSPATIAL CONSORTIUM 23-047 102

Figure 34 — Successful coverage request from Wuhan
University server ECMWF_hsvs collection (styled in QGIS)

OPEN GEOSPATIAL CONSORTIUM 23-047 103

Figure 35 — Successful coverage request from Eurac server s2_l2a collection

To provide an easier and objective way to continuously test different server implementations
and report TIE success, Ecere developed a command-line GDC API test application. The test
reports a PASSED, FAILED, or SKIPPED result for each of the supported GDC API capabilities.

The tool supports several options to select testing with a specific collection, temporal interval,
spatial region, or fields. The test considered both retrieving data as raw coverage as well as
attempting to render it by applying a style, and generate an output which can be kept for further
manual validation. A pre-defined execution request must be provided to test the Processes
capabilities, as the tool will not yet attempt to generate one automatically from a process.

This figure demonstrates the execution of the GDC test tool using the Ecere GNOSIS Map
Server API endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-047 104

Figure 36 — Ecere’s GDC Test tool showing syntax help for command line arguments

Figure 37 — Ecere’s GDC Test tool executed for the GNOSIS Map Server endpoint

6.2. Eurac Research — GDC Web Editor

The following table provides an overview of the current status (February 2024) of the GDC Web
Editor connecting to the GDC API implementations.

OPEN GEOSPATIAL CONSORTIUM 23-047 105

All the functionality mentioned in the table header is available in the GDC Web Editor except for
some specific requirements for workflows in OGC API — Processes — Part 3. If a cell is set to ‘n/
a’ it means that the server doesn’t support the functionality.

The Wuhan Server can only be tested with a local dev version of the GDC Web Editor as it is not
accessible via HTTPS. The hosted online version of the GDC Web Editor can only access servers
supporting HTTPS due to security reasons.

Table 12

API CONNECTION AUTH
DATA
DISCOVERY

PROCESS
DISCOVERY

COVERAGE
DOWNLOAD

STAC ITEM
DOWNLOAD

OGC API
PROCESSING

OGC
API
JOBS

OPENEO
PROCESSING

Ecere ✔
️

n/a ✔
️

✔
️

✔
️

n/a
✔
️

Sync
n/
a

n/a

rasdaman ✔
️

✔
️
✔
️

✔
️

⚠
️

derives
from
openeo-
processes

✔
️

n/a n/a
n/
a

✔
️

Sync +
UDP

WHU
✔
️

⚠
️
 HTTP only

n/a ✔
️

✔
️

✔
️

✔
️ ✔

️

Async
✔
️

n/a

GeoLabs ✔
️

✔
️
✔
️

✔
️

n/a ✔
️

✔
️

✔
️

n/a

Brockmann ✔
️

n/a ✔
️

n/a ✔
️

✔
️

n/a
n/
a

n/a

EURAC ✔
️

✔
️
✔
️

✔
️

✔
️

n/a n/a
n/
a

✔
️

Sync +
Async

6.3. Geomatys — API endpoints integration

Below is the status of API endpoint integrations in the Geomatys Unreal Engine (3D) client.
These API endpoints are provided by Testbed-19 GDC participants’ servers.

Table 13

OPERATIONS / SERVERS ECERE RASDAMAN WHU COMPUSULT GEOLABS BROCKMANN EURAC

Authentication - ✔
️

- ⚪
️

- - ✔
️

OPEN GEOSPATIAL CONSORTIUM 23-047 106

https://maps.gnosis.earth/ogcapi
https://testbed19.rasdaman.com/rasdaman/oapi
http://oge.whu.edu.cn/geocube/gdc_api_t19/
https://ogc.compusult.com/wes/webservices
http://tb19-dev.geolabs.fr:8701/ogc-api/
https://testbed19.api.dev.brockmann-consult.de/api/ogc
https://dev.openeo.eurac.edu/

OPERATIONS / SERVERS ECERE RASDAMAN WHU COMPUSULT GEOLABS BROCKMANN EURAC

GET /collections ✔
️
✔
️

✔
️
⭕
️

✔
️

✔
️

✔
️

GET /collections/{cid} ✔
️
✔
️

✔
️
⚪
️

⚪
️

✔
️

✔
️

GET /collections/{cid}/coverage
(only geotiff)

✔
️
⚪
️

✔
️
⚪
️

⚪
️

⚪
️

⚪
️

GET /collections/{cid}/coverage/
rangetype

✔
️
✔
️

✔
️
⭕
️

⭕
️

✔
️

⭕
️

GET /collections/{cid}/coverage/
domainset

✔
️
✔
️

✔
️
⭕
️

⭕
️

✔
️

⭕
️

GET /collections/{cid}/coverage/
tiles (only png/jpg)

✔
️
⭕
️

⭕
️
⭕
️

⭕
️

⚪
️

⭕
️

GET /collections/{cid}/map ⚪
️
⭕
️

⭕
️
⭕
️

⭕
️

⭕
️

⭕
️

GET /collections/{cid}/map/tiles ✔
️
⭕
️

⭕
️
⭕
️

⚪
️

⭕
️

⭕
️

6.3.1. Legend

✔
️
 = Tested and functional

❌ = Tested and does not work

⚪
️
 = Not tested

⭕
️
 = Does not exist / Not implemented

⚠
️
 = Error / Problem

6.3.2. Geomatys Client Supported Capabilities

Geomatys supports OGC API endpoints (not OpenEO or STAC API).

• OGC API — Coverages (subsetting, scaling, field selection) ✔
️
 (only with png/jpg/geotif

and not tiled)

• OGC API — Maps ✔
️
 (only tiled rasters)

Some documentation of APIs supported by our client :

• Common-1 (Core,Landing Page)

• Common-2 (Collections)

OPEN GEOSPATIAL CONSORTIUM 23-047 107

https://maps.gnosis.earth/ogcapi
https://testbed19.rasdaman.com/rasdaman/oapi
http://oge.whu.edu.cn/geocube/gdc_api_t19/
https://ogc.compusult.com/wes/webservices
http://tb19-dev.geolabs.fr:8701/ogc-api/
https://testbed19.api.dev.brockmann-consult.de/api/ogc
https://dev.openeo.eurac.edu/
https://docs.ogc.org/is/19-072/19-072.html
https://docs.ogc.org/DRAFTS/20-024.html

• Coverages-1 (Core)

• Coverages-1 (Subsetting)

• Coverages-1 (Scaling)

• Coverages-1 (Field Selection)

• Maps-1 (Core)

6.4. Wuhan University Technology Integration
Experiments

This table illustrates the interaction testing of each GDC API endpoint using the data client
implemented by Wuhan University.

Table 14

API
GET
COLLECTIONS

GET
COLLECTION

GET
DOMAINSET

GET
RANGETYPE

GET
COVERAGE

GET
PROCESSES

GET
PROCESS

EXECUTE
OAP 
— 1

EXECUTE
OAP 
— 3

EXECUTE
OPENEO
API
(SYNC)

Ecere ✔
️

✔
️

✔
️

✔
️

✔
️

✔
️

✔
️ ✔

️

Sync
✔
️ N/

A

rasdaman ✔
️

✔
️

✔
️

✔
️

✔
️

✔
️

N/A N/A N/A ✔
️

WHU ✔
️

✔
️

✔
️

✔
️

✔
️

✔
️

✔
️ ✔

️
+

Async
✔
️ N/

A

GeoLabs ✔
️

✔
️

N/A N/A N/A ✔
️

✔
️

✔
️

N/A
N/
A

Brockmann ✔
️

✔
️

✔
️

✔
️

✔
️

N/A N/A N/A N/A
N/
A

EURAC ✔
️

✔
️

N/A N/A N/A ✔
️

N/A N/A N/A ⚪
️

Compusult ⚪
️

⚪
️

⚪
️

⚪
️

⚪
️

⚪
️

⚪
️

⚪
️
⚪
️
⚪
️

✔
️
 = Functional

❌ = Does not work

⚪
️
 = Not tested

OPEN GEOSPATIAL CONSORTIUM 23-047 108

https://docs.ogc.org/DRAFTS/19-087.html#rc-core
https://docs.ogc.org/DRAFTS/19-087.html#rc-subsetting
https://docs.ogc.org/DRAFTS/19-087.html#rc-scaling
https://docs.ogc.org/DRAFTS/19-087.html#rc-fieldselection
https://docs.ogc.org/DRAFTS/20-058.html

N/A = Not implemented

6.5. 52°North GmbH — Executable Test Suite (ETS) for the
draft OGC API — GDC Standard

The following table provides an overview of the current status (February 2024) of the GDC API
implementations that were tested using the ETS for OGC API — GDC.

The list of tested functions can be found below. The number in brackets indicates passed/failed/
skipped tests.

Table 15

PROVIDER CAPABILITIES
ACCOUNT
MANAGEMENT

DATA
DISCOVERY/
ACCESS

COVERAGES
CORE

FEATURES
CORE

PROCESS
DISCOVERY

OGC API
PROCESSES

OPENEO

Ecere 2/1/0 0/1/1 4/2/0 passed 230/1/47 1/1/0 passed 1/2/1

rasdaman 2/1/0 passed 3/3/0 skipped 2/3/12 passed skipped 2/1/1

WHU 2/1/0 0/1/1 passed skipped 5/3/2 1/1/0 17/19/0 1/2/1

GeoLabs 2/1/0 0/1/1 3/3/0 skipped 2/3/12 1/1/0 passed 1/2/1

Brockmann passed 0/1/1 3/3/0 skipped 4/3/10 0/2/0 skipped 1/2/1

EURAC passed passed 2/4/0 skipped skipped 1/1/0 skipped passed

6.5.1. Known limitations

The referenced test suites (ETS API — Processes, Coverages, and Features) need an
API description in order to work correctly due to the prototypical nature of the tested
implementations. As such, this API description was not always available. In this case, the
respective referenced tests were skipped.

OPEN GEOSPATIAL CONSORTIUM 23-047 109

7

USABILITY TESTS

OPEN GEOSPATIAL CONSORTIUM 23-047 110

7 USABILITY TESTS

7.1. Sinergise Usability Test

To perform usability tests of the draft GDC APIs and clients, the decision was made to replicate
an existing processing chain that is a part of the agricultural area monitoring system that several
EU countries use.

7.1.1. Test Scenario Definition

Inputs:

• GeoPackage with 100,000 field polygons, each having a “crop type group” assigned; and

• Sentinel-2 L2A data for 2022 (all observations).

Desired result:

• An application that compares Normalized Difference Vegetation Index (NDVI) timeseries
of a polygon with its neighbors - https://area-monitoring.sinergise.com/docs/markers/
similarity-and-euclidian-distance-marker/examples/#similarity-marker-examples (see the
application screenshots).

Implementation Steps:

• for each of the input polygons:

• calculate NDVI of pixels within the polygon;

• compute statistics over all pixels belonging to the same polygon — min/max/mean/
percentiles; and

• repeat for each observation in the time interval (full year);

• calculate similarity scores by the back-end using the formula defined here: https://area-
monitoring.sinergise.com/docs/markers/similarity-and-euclidian-distance-marker/
#similarity-score;

• configure UI widget showing the NDVI time series of the selected object compared with
similar objects in the neighborhood; and

OPEN GEOSPATIAL CONSORTIUM 23-047 111

https://area-monitoring.sinergise.com/docs/markers/similarity-and-euclidian-distance-marker/examples/#similarity-marker-examples
https://area-monitoring.sinergise.com/docs/markers/similarity-and-euclidian-distance-marker/examples/#similarity-marker-examples
https://area-monitoring.sinergise.com/docs/markers/similarity-and-euclidian-distance-marker/#similarity-score;
https://area-monitoring.sinergise.com/docs/markers/similarity-and-euclidian-distance-marker/#similarity-score;
https://area-monitoring.sinergise.com/docs/markers/similarity-and-euclidian-distance-marker/#similarity-score;

• configure UI widget showing time-lapse of the satellite images of the selected parcel using
one of various visualizations (true color, false color, NDVI).

After initial analysis of the capabilities of the proposed draft GeoDataCube (GDC) API Standard,
available servers, and clients, the Testbed 19 participants decided that the execution of all the
implementation steps (above) was too ambitious for completion in Testbed 19. Therefore, the
decision was to use a more streamlined scenario, removing the requirement for calculation of
similarity scores and configuration of UI widgets.

7.1.2. Principles of Usability Testing

In usability testing, the selected scenario was executed, including discovery, implementation, and
execution phases that are typical in development of an EO processing chain.

Since the purpose of the Testbed 19 GeoDataCube (GDC) thread was the evaluation of a
proposed OGC GDC API Standard, a typical user interface usability test was not done. Instead,
the primary focus was on the usability aspects of the GDC API and the clients’ support of the
draft GDC API, such as:

• evaluate conceptual alignment of the proposed GDC API for the tested scenario;

• identify any gaps in the ability of the draft GDC API Standard to fully support the scenario
implementation;

• evaluate ease-of-use in implementations of the GDC API, as presented via the client in
discovery, implementation, and execution phases of the scenario;

• identify any missing support of required GDC API functionality in the implementation of
the client; and

• identify opportunities in clients for improvements of the user experience over the basic
functions of the GDC API.

7.1.3. Usability Testing Results

Implementations of the proposed GDC API were tested using the Eurac GDC Web Editor Client
and, in parallel, trying to use GDC API calls directly from Python to be able to better understand
the behavior of the UI client.

The general conclusion of the executed scenarios is that the draft GDC API Standard is suitable
for implementation of the use-case. Most of the difficulties were caused by the fact that the
server and client UI implementations of the draft GDC API are not fully mature or do not
support all the capabilities envisaged for the GDC API Standard.

The few desired functionalities that are currently not supported by the draft OGC GDC API
Standard would not be too difficult to work around using client libraries and a small amount of
data post-processing.

OPEN GEOSPATIAL CONSORTIUM 23-047 112

Table 16

SCENARIO
ACTIVITY

USABILITY ASSESSMENT

discover
coverage dataset

✅ API provides ample metadata about available coverages.
ℹ
️
 With large lists of coverages, discovery can be slow: The draft GDC API does not mandate

paging.
ℹ
️
 Filtering the returned coverage is not supported by the draft GDC API.

✅ The GDC Web Editor client provides neatly formatted metadata and search capability.

visualize
coverage

✅ Downloading a subset of a coverage is possible through the coverage endpoint.
✏ The GDC Web Editor client does not provide an easy way to ‘preview’ the data. The user
must create a new process or use the coverage download wizard.
✅ Most UI clients do a reasonable job at default rendering of Sentinel 2 data and NDVI.

list available
timestamps

✅ The OGC API — Coverages Standard specifies requirements for retrieving the DomainSet of a
coverage.
✅ STAC provides Temporal Extent info that is neatly rendered in the GDC Web Editor client.
✏ It would be helpful to have some position-specific filtering of timestamps (available
observations over some AOI), lest the user is left to trying several dates to find one that has the
desired coverage data.

implement band
selection

✅ The draft OGC API — Coverages Standard specifies requirements for subsetting bands when
retrieving coverages.
✅ The openEO load_collection process has a convenient bands parameter filter.
✅ The GDC Web Editor client supports drop-down selection from a preset list of collection’s
bands.
ℹ
️
 Sentinel-2 coverages in the rasdaman server are single-band, while the EURAC server

combines all bands into a single coverage. The recommendations for encouraging consistency
between server implementations would be beneficial for the user experience.

visualize selected
bands

✅ Support for visualizing rasters with arbitrary bands in the GDC API is basic, but reasonable.
✏ openEO requires a save_result process at the end, which is inconvenient when just doing
data exploration.

discover band
math capabilities

✅ The openEO API defines processes and allows listing those supported by a server.
✅ The GDC Web Editor client provides free-text search capabilities over processes and their
metadata.
⚠
️
 The OGC API — Processes Standard does not prescribe ‘basic’ processes. The availability of

basic math is up to the server.

implement band
math

✅ The GDC Web Editor client provides an excellent wizard to convert mathematical expressions
into process graphs.
✏ The openEO API does not broadcast mathematical operations over data cubes (e.g., numpy
https://numpy.org/doc/1.26/user/basics.broadcasting.html). This takes some time for the user to
adjust to.
✏ The openEO API broadcasting is implemented differently in rasdaman (allows broadcast) and
EURAC (does not allow broadcast, requires reduce_dimension process).
✏ The openEO API processes for broadcasting over a data cube are difficult to learn - apply,
apply_dimension, and reduce_dimension all seem like good candidates for the task, but
finding the correct one is often trial-and-error.

OPEN GEOSPATIAL CONSORTIUM 23-047 113

https://numpy.org/doc/1.26/user/basics.broadcasting.html

SCENARIO
ACTIVITY

USABILITY ASSESSMENT

✅ Processing over specific dimensions on generic data cubes is not an easy subject. The open
EO documentation provides comprehensive documentation and a tutorial on this topic.

clipping to
polygon AOI

✅ The openEO API supports clipping the coverage with a polygon in the spatial_extent
parameter of the load_collection process.
⚠
️
 The OGC API — Coverages Standard requirements for retrieval support axis-parallel

bounding-box subsetting only.
✏ Support for polygon clipping in load_collection is not common in current openEO
servers.

averaging over
AOI

✅ The openEO API provides the aggregate_spatial process that supports this requirement
well.
✅ The resulting vector data cube can be encoded in JSON.
✏ openEO higher-order functions (aggregations, apply, reduce, etc.) are not easy to develop
with. This is mostly due to a critical dependency on the dimensions of the data cubes that are
being processed. The recommendation is that this information is made available to developers
while designing the process graphs.
✏ openEO process execution errors are often not helpful. Providing more verbose logging and
a more structured error handling with an indication of the location of the error in the source code
(or graph) would make for a smoother developer experience. (The cause of this problem was likely
the prototype state of server implementations and not a shortcoming of the draft GDC API).

apply the process
over many AOIs

✅ openEO’s batch execution mode supports scaling the process over large areas and many AOIs.
✏ openEO supports parameterized process graphs, but parameterizations are not supported by
the GDC Editor client, unless the server supports storing a process graph.

inspect the full
results of the
processing

⚠
️
 The vector data cube that is the result of the processing is not a coverage available through an

implementation of the draft OGC GDC API Standard. The recommendation is adoption of some
best practices aimed at harmonizing the use of vector data cubes across all OGC APIs related to
processing of Earth observation data.

OPEN GEOSPATIAL CONSORTIUM 23-047 114

8

LESSONS LEARNED FROM
API IMPLEMENTATION

OPEN GEOSPATIAL CONSORTIUM 23-047 115

8 LESSONS LEARNED FROM API
IMPLEMENTATION

Generally, the execution of Testbed 19 was needed at this point in time given the number of
available GDC solutions. For the sake of avoiding technological fragmentation and allowing
interoperability to happen, considerable exchange and discussion were needed to bring the best
of the different solutions “under one roof.” A key aspect to this work was to start with a clear
GDC API specification to develop against. Much time was lost in the early phases of Testbed 19
since no GDC API specification was available. In order to come up with a draft specification, a
deep understanding of the necessary existing solutions was required.

In order to meet this starting requirement, a series of crosswalks were defined that compare
key components and details of different existing standards and specifications that include
information on where the standards align and where the standards are conflicting. This was
true for both the data discovery part as well as the data processing part. One of the key
deliverables of the Testbed 19 GDC activity is the comprehensive crosswalk comparisons of the
technologies. This step required the willingness of all participants to take step back and look
at other solutions in detail before engaging with development activities of any kind. For future
iterations of the OGC GDC work, additional effort into this screening and understanding of the
technological landscape should be considered.

The current draft GDC API as developed and presented in Testbed 19 has to be understood in
this context as well. The current draft was not intended to be a perfect solution for datacube
processing. This is partly due to the fact that the different approaches mainly developed in OGC
API processes and openEO are not yet consistently aligned. This was done by design to allow
implementers to discover and develop against both ways of processing and the intention was to
allow the Testbed usability studies to comment on the different approaches.

At the level of data processing, two fundamentally different models of how to allow for
processing on the web are in use. One is based on the concept of wrapping existing code into
application packages and running the packages in a supporting execution environment. The
other is based on allowing for complete design of workflows based on a set of predefined
functions or processes. These two paradigms come with different advantages and drawbacks.
The first allows for very easy integration of legacy tools and code. The latter allows for very
efficient design of processing workflows especially when considering the chaining of operators
and processes into long and complex workflows. However, the developer is required at least
once to recode the workflow using the predefined processes. On the other hand, from a
computational efficiency point of view it is very hard to optimize workflows not knowing the
implementation details of every node or process in the graph. This can lead to performance
losses when chaining multiple such packages into a processing pipeline.

Ideally it would be possible to integrate both approaches and have the possibility to chain
legacy code with new developments in one workflow. Users should prioritize the use of highly
optimized predefined processing functions and rely on application packages only when being
absolutely forced to utilize legacy code, e.g., for reproducing results of research. This still
requires work both conceptually and on the implementation side. Some ideas contained in the
draft OGC API — Processes Part 3 Standard can be used for this. Also an extended more general

OPEN GEOSPATIAL CONSORTIUM 23-047 116

definition of user defined functions in openEO allowing to integrate application packages as
nodes in the openEO process graph should be considered.

Generally, the use cases presented with Testbed 19 have proven to be challenging given the
current state of development and design of the existing OGC API Standard. At the current state
of the draft of GDC API, the use cases are all theoretically possible, but more work is needed for
the implementations to catch up with the draft specification of the GDC API Standard.

This in turn leads to very little time for running the usability tests, which had to be done in a
rushed manner towards the end of the Testbed. The tests did confirm that implementations of
the GDC API are capable of tackling complex use cases, but that there still are many issues with
the current implementations to support all features of the draft specification. Limitations that
have been found regarding the GDC API standard definition include:

1. better support for paging and filtering when servers offer large amounts of
collections;

2. data exploration in openEO is non trivial especially when back-ends do not
support secondary web services;

3. OGC API Processes does not guarantee support for a set of basic mathematical
operators;

4. OGC API Coverages does not allow for polygon based subsetting;

5. results that are not raster based are not easily extracted through OGC API
coverages; and

6. currently the user needs to select which way of processing method to follow: The
OGC API — Processes or the openEO approach.

On the positive side the participants determined that the draft GDC API Standard is very useful
already:

1. access to collection meta data is plentiful and informative;

2. the addition of simple and direct download functionality through OGC API
Coverages is appreciated;

3. band filtering, as well as spatial and temporal filtering of collections is well
supported;

4. visualizing arbitrary band combinations is reasonable;

5. the guaranteed availability of a well defined set of basic operators is much
appreciated; and

6. supporting both synchronous and asynchronous processing is good, to support
both prototype development and large scalable processing.

OPEN GEOSPATIAL CONSORTIUM 23-047 117

9

FUTURE OUTLOOK

OPEN GEOSPATIAL CONSORTIUM 23-047 118

9 FUTURE OUTLOOK

Testbed-19 has continued and furthered an ongoing discussion about how to interact with
GeoDataCubes in the most interoperable way. The Testbed participants produced a draft for a
specification bringing together the most relevant developments in GeoDataCube technology
in and outside of OGC which greatly furthered the common understanding of the available
solutions and started a process of discovering to a much better degree the advantages and
drawbacks of these solutions. Testbed 19 participants produced prototypes of five back-end
implementations and six client implementations as well as an automated test suite. Many of
these solutions, being available as open source, providing a perfect starting point for further
activities in this direction.

The main issue with the current draft GDC API specification is that the specification still allows
for two fundamentally different ways of interaction for describing and triggering processing of
data cube resources. The first recommendation would be for the OGC GDC SWG and future
OGC Testbeds to consider how these two different approaches can be brought together thereby
enabling a flexible yet efficient and integrated interoperable processing workflow design well
supported by clients.

The Testbed 19 GDC use cases were challenging, which is good in terms of making sure that the
draft specification does not have a narrow scope. This however also brought to light issues in
terms of effort required to bring the prototype implementations to the level to be able to run
those more complex use cases. Given that the draft GDC API standard was tested against those
use cases, a next recommendation would be to continue and extend the testing on usability
to get more feedback on the current design of the specification before it goes into the OGC
standardization process.

There were also some proposals during the Testbed that the GDC API specification be a profile
of existing OGC API building blocks. A clear definition of such profiles is still incomplete and
needs more discussion. Also, not all the promising technologies and tools used to create the
draft GDC API standard are currently OGC standards and hence cannot easily be referenced in a
consistent way. As of February 2024, both the openEO and STAC specifications are proposed as
OGC Community Standards, possibly making this interaction more feasible.

As an outcome of the useability tests that were performed, it is also clear that how the
datacubes can be connected with other data sources or new types of data cubes based on
vectors, for example, needs to be considered.

Apart from how to interact with the GeoDataCubes themselves, there is also a need to
harmonize the content of metadata fields and the organization of the content of the data cubes
to increase interoperability. This refers to things such as the names of bands in multispectral
datasets or the setup of the cubes including all bands in one cube or having a cube for each
band. This issue must be discussed certainly also with other tasks and initiatives being pursued
in the Analysis Ready Data SWG and related testbed activities as well as possibly CEOS.

OPEN GEOSPATIAL CONSORTIUM 23-047 119

A

ANNEX A (NORMATIVE)
ABBREVIATIONS/ACRONYMS

OPEN GEOSPATIAL CONSORTIUM 23-047 120

A ANNEX A
(NORMATIVE)
ABBREVIATIONS/ACRONYMS

ADES Application Deployment and Execution Service

AP Application Package

API Application Programming Interface

ATLAS Advanced Topographic Laser Altimeter System

CF Climate and Forecast (Metadata Conversions)

CIS Coverage Implementation Schema

CMIP Coupled Model Intercomparison Project

COPS Cloud Optimized Point Cloud Specification

CORS Cross-Origin Resource Sharing

CQL Common Query Language

DEM Digital Elevation Model

DSM Digital Service Model

EDR Environmental Data Retrieval

EMS Exploitation Platform Management Service

EVI Enhanced Vegetation Index

EO Earth Observation

ER Engineering Report

GDC Geo Data Cube

GUI Graphical User Interface

HTML HyperText Markup Language

OPEN GEOSPATIAL CONSORTIUM 23-047 121

ICESAT-2 Ice, Cloud, and Land Elevation Satellite

ISO International Organization for Standardization

JSON Java Script Object Notation

MARS Meteorological Archival and Retrieval System

MSDI Marine Spatial Data Infrastructure

NetCDF Network Common Data Form

NSIDC National Snow & Ice Data Center

OAC OGC API Coverages

OAP OGC API Processes

OAR OGC API Records

REST Representational State Transfer

STAC Spatial Temporal Asset Catalogue

UI User Interface

WCS Web Coverage Service

WCPS Web Coverage Processing Service

WMS Web Map Service

WMTS Web Map Tiling Service

WPS Web Processing Service

XML Extensible Markup Language

OPEN GEOSPATIAL CONSORTIUM 23-047 122

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 23-047 123

BIBLIOGRAPHY

[1] Katharina Schleidt, Ilkka Rinne: OGC 20-082r4, Topic 20 — Observations, measurements
and samples. Open Geospatial Consortium (2023). http://www.opengis.net/doc/as/
om/3.0.

[2] Mark Burgoyne, David Blodgett, Charles Heazel, Chris Little: OGC 19-086r6, OGC API
— Environmental Data Retrieval Standard. Open Geospatial Consortium (2023). http://
www.opengis.net/doc/IS/ogcapi-edr-1/1.1.0.

[3] Emmanuel Devys, Ted Habermann, Chuck Heazel, Roger Lott, Even Rouault:
OGC 19-008r4, OGC GeoTIFF Standard. Open Geospatial Consortium (2019). http://
www.opengis.net/doc/IS/GeoTIFF/1.1.0.

[4] Kyoung-Sook KIM, Nobuhiro ISHIMARU: OGC 19-045r3, OGC Moving Features Encoding
Extension — JSON. Open Geospatial Consortium (2020). http://www.opengis.net/doc/IS/
mf-json/1.0.0.

[5] Douglas Nebert, Uwe Voges, Lorenzo Bigagli: OGC 12-168r6, OGC® Catalogue Services
3.0 — General Model. Open Geospatial Consortium (2016). http://www.opengis.net/doc/
IS/cat/3.0.0.

[6] Draft OGC API — Connected Systems — Part 1: Feature Resources https://ogcapi.ogc.
org/connectedsystems/

[7] OGC API — Records — Part 1: Core

[8] OGC Building Blocks: https://blocks.ogc.org/index.html

[9] Lawrence Livermore National Laboratory: NetCDF CF Metadata Conventions: http://
cfconventions.org/

OPEN GEOSPATIAL CONSORTIUM 23-047 124

http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/IS/ogcapi-edr-1/1.1.0
http://www.opengis.net/doc/IS/ogcapi-edr-1/1.1.0
http://www.opengis.net/doc/IS/GeoTIFF/1.1.0
http://www.opengis.net/doc/IS/GeoTIFF/1.1.0
http://www.opengis.net/doc/IS/mf-json/1.0.0
http://www.opengis.net/doc/IS/mf-json/1.0.0
http://www.opengis.net/doc/IS/cat/3.0.0
http://www.opengis.net/doc/IS/cat/3.0.0
https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/connectedsystems/
https://blocks.ogc.org/index.html
http://cfconventions.org/
http://cfconventions.org/

	I. Executive Summary
	II. Keywords
	III. Contributors
	2. Introduction
	3. State of the Art
	3.1. Crosswalk between STAC and OGC API — Records
	3.1.1. Introduction
	3.1.1.1. Terminology

	3.1.2. Static (content)
	3.1.2.1. Catalogs
	3.1.2.2. Collections
	3.1.2.3. Items / Records

	3.1.3. Top-level
	3.1.4. Properties
	3.1.5. API (behavioral)
	3.1.5.1. Landing Page
	3.1.5.2. Conformance
	3.1.5.3. Collection List
	3.1.5.4. Individual Collection
	3.1.5.5. Item List
	3.1.5.6. Individual Item
	3.1.5.7. Search
	3.1.5.8. Datacubes

	3.2. Crosswalk between the openEO API specification and OGC API — Processes Standard
	3.2.1. Introduction
	3.2.2. General API mechanics
	3.2.3. API discovery
	3.2.3.1. Well-known document
	3.2.3.2. Landing page
	3.2.3.3. Conformance classes

	3.2.4. Authentication
	3.2.5. Data Discovery
	3.2.6. Process Discovery
	3.2.6.1. Pre-defined processes
	3.2.6.2. User-defined processes / Workflows

	3.2.7. Data Processing
	3.2.7.1. Synchronous processing
	3.2.7.2. Batch Job processing
	3.2.7.2.1. Job list
	3.2.7.2.2. Job status
	3.2.7.2.3. Creating a job
	3.2.7.2.4. Queueing a job
	3.2.7.2.5. Cancel / Delete a job
	3.2.7.2.6. Result Access

	3.2.7.3. On-demand processing

	3.2.8. File Storage

	3.3. Crosswalk between the openEO API specification and the draft OGC API – Coverages Standard
	3.3.1. Introduction
	3.3.2. Nomenclature
	3.3.2.1. OGC
	3.3.2.2. STAC

	3.3.3. Crosswalk
	3.3.3.1. Meta / API capabilities
	3.3.3.2. Well-known URIs
	3.3.3.3. Landing page
	3.3.3.4. Conformance
	3.3.3.5. API description
	3.3.3.6. Authentication
	3.3.3.7. Data discovery
	3.3.3.8. Data description
	3.3.3.9. Data access
	3.3.3.10. Data subsetting
	3.3.3.11. Data scaling
	3.3.3.12. Tiles
	3.3.3.13. Media encoding

	3.3.4. References

	3.4. Crosswalk between the draft GDC standard and the OGC WCPS Standard
	3.4.1. WCPS in Brief
	3.4.2. Comparison of the GDC API and WCPS
	3.4.3. Conclusion

	4. High level overview of GDC API
	4.1. Profiles proposal by Ecere

	5. Outline of all conducted experiments/implementations
	5.1. Back-ends
	5.1.1. Brockmann Consult – D111/D112 OGC API-GDC instance
	5.1.1.1. Introduction
	5.1.1.2. Development and deployment process
	5.1.1.3. Public server instance
	5.1.1.4. Deploying an xcube server
	5.1.1.5. Available datasets

	5.1.2. Ecere — GeoDataCube API Instance (D171)
	5.1.2.1. Supported Capabilities
	5.1.2.2. Data cubes (collections) of interest
	5.1.2.3. Processes of interest
	5.1.2.4. Addressing Use Case Requirements
	5.1.2.5. Example use of implementation
	5.1.2.6. Future work: geometry intersections, spatial joins, aggregation and convolution

	5.1.3. Eurac Research — GeoDataCube API Instance
	5.1.3.1. Supported Capabilities
	5.1.3.2. Data cubes (collections) of interest
	5.1.3.3. Example use of implementation
	5.1.3.4. Future work: GDC API alignment, OGC Processes implementation

	5.1.4. GeoLabs — Open Source Prototype D111
	5.1.4.1. ZOO-Project with Deploy, Replace, Undeploy (DRU) support to deploy OpenEO User Defined Processes
	5.1.4.1.1. Supported Capabilities
	5.1.4.1.2. Description

	5.1.4.2. ZOO-Project with Data Discovery / Access provided by eoAPI and Account Management using Keycloack
	5.1.4.2.1. Supported Capabilities
	5.1.4.2.2. Description

	5.1.5. rasdaman — GDC-API Server Instance
	5.1.5.1. GDC-API implementation
	5.1.5.2. Data for Use-Case Scenarios
	5.1.5.3. Results

	5.1.6. Wuhan University — OGC API-GDC Instance (D111)
	5.1.6.1. Supported standards or drafts
	5.1.6.2. Available datasets for use-case scenarios
	5.1.6.3. STAC API implementation
	5.1.6.4. OGC API — Coverages implementation
	5.1.6.5. OGC API — Processes implementation

	5.2. Clients
	5.2.1. Ecere — Visualization Client (D173)
	5.2.1.1. Supported capabilities
	5.2.1.2. Example use of implementation

	5.2.2. Eurac Research — GDC Web Editor
	5.2.3. Fengchia University(GIS.FCU) — Data Client (D113)
	5.2.4. Geomatys — Data Client (D173)
	5.2.5. Wuhan University — Data Client (D113)
	5.2.5.1. Supported approved standards and drafts standards
	5.2.5.2. Implementation
	5.2.5.3. Future improvements

	5.2.6. Pelagis Data Solutions — Data Client (D113)
	5.2.6.1. Approach
	5.2.6.2. Use Cases
	5.2.6.3. Challenges & Future Work

	5.2.7. 52°North GmbH — Executable Test Suite (ETS) for the draft OGC API — GDC Standard
	5.2.7.1. Implementation details
	5.2.7.1.1. Capabilities
	5.2.7.1.2. Account Management
	5.2.7.1.3. Data Discovery/Access
	5.2.7.1.4. Process Discovery
	5.2.7.1.5. OpenEO
	5.2.7.1.6. OGC API — Processes
	5.2.7.1.7. Coverages Core
	5.2.7.1.8. Features Core

	6. Inter Comparison Experiments
	6.1. Ecere Technology Integration Experiments
	6.1.1. Experiment examples

	6.2. Eurac Research — GDC Web Editor
	6.3. Geomatys — API endpoints integration
	6.3.1. Legend
	6.3.2. Geomatys Client Supported Capabilities

	6.4. Wuhan University Technology Integration Experiments
	6.5. 52°North GmbH — Executable Test Suite (ETS) for the draft OGC API — GDC Standard
	6.5.1. Known limitations

	7. Usability Tests
	7.1. Sinergise Usability Test
	7.1.1. Test Scenario Definition
	7.1.2. Principles of Usability Testing
	7.1.3. Usability Testing Results

	8. Lessons learned from API implementation
	9. Future outlook
	Annex A (normative) Abbreviations/Acronyms
	Bibliography
	—————
	List of Tables
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8 — Use case A (mapping of capabilities)
	Table 9 — Use case B (mapping of capabilities)
	Table 10 — Use case C (mapping of capabilities)
	Table 11 — Status of the GNOSIS Cartographer and/or gdc-test client integration with participant API endpoints
	Table 12
	Table 13
	Table 14
	Table 15
	Table 16

	List of Figures
	Figure 1
	Figure 2
	Figure 3 — GDC Draft Specification High Level Overview
	Figure 4 —
 OGC API - Coverages request from GNOSIS Map Server using CQL2 expressions to filter cells by values and convert Kelvin to Celsius

	Figure 5 — Coverage output of above request, with a color map style applied in QGIS
	Figure 6 —
 OGC API - Coverages request from GNOSIS Map Server using CQL2 expressions to compute an Enhanced Vegetation Index (EVI) and filter out clouds

	Figure 7 — Coverage output of above request, with a color map styled applied in QGIS
	Figure 8 — Example PassThrough process execution request (for Collection Output)
	Figure 9 — Example PassThrough process execution request (for Synchronous execution)
	Figure 10 — Filtering using CQL2 polygon geometry
	Figure 11 — Aggregating on temporal dimension using CQL2 expression
	Figure 12 — Sobel operator (kernel convolution) implemented as a CQL2 expression
	Figure 13 — OGC API - Coverages request from Eurac Research client (GDC Web Editor) to our server, visualized as an RGB composite
	Figure 14
	Figure 15
	Figure 16
	Figure 17 — Cartographer visualizing CMIP5 pressure and wind velocity
	Figure 18 — Cartographer visualizing relative humidity
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23 — WHU’s OGE-DataClient visualizing climate:era5:relativeHumidity from Ecere Coverages API
	Figure 24 — WHU’s OGE-DataClient visualizing processing result from Ecere Processes API using synchronous mode
	Figure 25 — WHU’s OGE-DataClient visualizing processing result from WHU Processes API using Workflows&Chaining(collection output)
	Figure 26 — WHU’s OGE-DataClient visualizing processing result in PNG format obtained from the rasdaman OpenEO API while operating in synchronous mode
	Figure 27 — Albedo as an Essential Variable of the Arctic
	Figure 28 — EDR provider framework
	Figure 29 — Surface albedo Spring 2019
	Figure 30 — CMIP5 Near Surface Temperature Spring 2019
	Figure 31 — Magnitude of change in surface albedo between May 2019 and April 2023
	Figure 32 — Tree Cover Density dataset from rasdaman’s GDC API visualized in 3D using GNOSIS Cartographer
	Figure 33 — EVAPOTRANSPIRATION dataset from Brockmann Consult retrieved from Ecere’s gdc-test client (styled in QGIS)
	Figure 34 — Successful coverage request from Wuhan University server ECMWF_hsvs collection (styled in QGIS)
	Figure 35 — Successful coverage request from Eurac server s2_l2a collection
	Figure 36 — Ecere’s GDC Test tool showing syntax help for command line arguments
	Figure 37 — Ecere’s GDC Test tool executed for the GNOSIS Map Server endpoint

