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EXECUTIVE SUMMARY

Implementations of the Analysis Ready Data (ARD) concept are consistent with the FAIR
principles of finding, accessing, interoperating, and reusing physical, social, and applied science
data with ease. The goal of this Testbed 19 OGC Engineering Report (ER) is to advance the
provision of geospatial information by creating, developing, identifying, and implementing ARD
definitions and capabilities. Specifically, this ER aims to increase the ease of use of ARD through
improved backend standardization and varied application scenarios. Additionally, this work
seeks to inform ARD implementers and users about standards and workflows to enhance the
capabilities and operations of ARD. Ultimately, the goal of the work described in this ER is to
maximize ARD capabilities and operations and contribute to the enhancement of geospatial
information provision.

Four distinct scenarios - gentrification, synthetic data, coverage analysis, and coastal studies

- are explored to reveal both the strengths and limitations of the current ARD framework.

The gentrification scenario, which utilizes existing Committee on Earth Observation Satellites
(CEOS) ARD data, highlights the need to expand ARD's scope beyond Earth Observation (EO)
data. The integration of diverse data types, such as building footprints and socio-economic
statistics, is crucial for comprehensive analysis. The synthetic data scenario explores the
potential of simulated EO imagery to enhance data availability and diversity for machine
learning applications. However, challenges in standardization and quality assessment require
further investigation. The analysis of coverages for ARD reveals the importance of clear pixel
interpretation (“pixel-is-point” vs. “pixel-is-area”) and standardized units of measure for seamless
integration and analysis. Additionally, enriching the metadata structure with defined extensions
is crucial for efficient data discovery and understanding. The coastal study scenario, where in-
situ data needs to be elevated to ARD, emphasizes the need for flexible levels of readiness.
Different analytical tasks may require distinct data properties, necessitating adaptable standards
that cater to temporal emphasis, spatial alignment, and non-GIS applications like machine
learning.

This work identified several key areas for improvement:

e encompassing non-EO data such as building footprints, socio-economic statistics,
synthetic data, and in-situ measurements;

e establishing guidelines and quality controls for incorporating diverse data types;

e tailoring data specifications to accommodate different analytical needs, including temporal
emphasis and non-GIS applications; and

e implementing structured metadata with defined extensions for enhanced data discovery,
understanding, and provenance tracking.

In addition to the above recommendations, the interoperability and support of ARD in wider
communities warrants further exploration and implementation. Additionally, areas such as
uniform evaluation and compliance certification could be further investigated to ensure
consistency in data readiness across various hierarchies and application domains.
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INTRODUCTION

In this Engineering Report (ER), Analysis Ready Data (ARD) refers to time-series stacks of
overhead imagery that are prepared for a user to analyze without having to pre-process the
imagery themselves [71][88][103][110]. The idea behind ARD is that providers of satellite
imagery are in a better position to undertake these routine steps than the average user [71].
Analysis-ready datasets have been responsibly collected and reviewed so that analysis of the
data yields clear, consistent, and error-free results to the greatest extent possible [71].

ARD is important because it saves time and resources by providing users with data that has
already been preprocessed and rigorously validated and is ready for analysis. ARD also ensures
that users have access to high-quality data that has been reviewed for accuracy and consistency
[71]. ARD can be used in various applications such as land cover mapping, change detection,
and environmental monitoring. The concept and implementation of analysis readiness can
significantly address both climate and disaster resilience needs for information agility by
improving access to interdisciplinary sciences such as natural, social, and applied sciences as well
as engineering (civil, mechanical, etc.) public health, public administration, and other domains of
analysis and application.

The CEOS Analysis Ready Data (ARD) strategy aims to simplify data handling by removing many
of the fundamental data correction and processing tasks from users so that more users and more
uses of the data are possible [113]. CEOS ARD involves satellite data that have been processed
to a minimum set of requirements and organized into a form that allows immediate analysis

with a minimum of additional user effort and interoperability both through time and with other
datasets [1].

The Testbed 19 ARD ER reviews all existing standards and previous ARD work, including CEOS
ARD efforts [116][7]1[10][12][14][16][18][20][22][29]1[103][110][4] and previous OGC efforts
[24][42][56]. The ER will define foundational elements that allow for the mixing and matching of
different standards and target its mission of implementing Findable, Accessible, Interoperable,
and Reusable (FAIR) principles for scalable and repeatable use of data [31]. ARD is a key example
of the capability to enable the FAIR principles of finding, accessing, interoperating, and reusing
physical, social, and applied science data easily.

The Testbed 19 activities included:
e defining ARD scenarios;
e refining and implementing the ARD scenarios;
e coordinating with the ARD SWG on ARD standard development;
e demonstrating the ARD scenarios;

e describing the ARD scenarios in detail (including all aspects that are relevant for current
and future standardization); and

e documenting the open delivery of the demonstration components in a software container
for future use.
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The ARD ER clearly describes and reports scope, objectives, methodology, and expected
outcomes of the Testbed 19 ARD work. The ER describes ARD requirements, identifies initial
use case objective(s), and the components and elements needed to achieve these objectives.
Further, the ER describes how the Testbed participants achieve the objectives, and, if applicable,
identifies technology gaps or elements for future work. Finally, this ER summarizes how this
work is scalable within other domains or to be applied more broadly within the same domain.
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ANALYSIS READY DATA

This section provides the basic concepts of and requirements for analysis ready data (ARD).

2.1. Definition

CEOS defines ARD as “satellite data that have been processed to a minimum set of requirements
and organized into a form that supports immediate analysis with a minimum of additional

user effort and interoperability both through time and with other datasets.” This definition

needs to be expanded to cover non Earth Observation data, such as model outputs, in-situ
measurements, demographic data, and economic data which may need geocoding to register
them geospatially. Broadening the definition to encompass all geospatial data, ARD is then
defined as geospatial data that have been processed to a minimum set of requirements and
organized into a form that enables immediate analysis with a minimum of additional user effort
and interoperability both through time and with other datasets. The ultimate direction is working
towards the FAIR principles[31] of finding, accessing, interoperating, and reusing physical, social,
and applied science data easily.

2.2. Fundamental Requirements

The fundamental requirements for making a dataset analysis ready are as follows.

1. Ensure Data Quality: The quality of data is critical in preparing the data for
analysis. Data need to be accurate, consistent, complete, and free of errors. Thus,
ensure that all the datasets being used are of high quality.

2. Data Cleaning: The next step is to clean the data set. Data cleaning involves
removing duplicates, filling in missing values, and removing any irrelevant
variables from the dataset.

3. Standardize Data Formats: Data come in different formats and types. Differences
in coding or labeling of datasets may become a major problem during analysis.
Thus, standardize the format of the data to make the data analysis-ready.

4, Data Integration: Often, data for analysis come from multiple sources. In such
a situation, different datasets might have varied column names, restrictions,
clarifications, or even misalignments. So, it becomes essential to integrate the
data sets into a single conflated and comprehensible dataset.

OPEN GEOSPATIAL CONSORTIUM 23-043 12



5. Variable Identification: Knowing what each variable of a dataset represents is
important. Proper documentation of each variable makes it easier to understand
the dataset and improves the quality of the analysis.

6. Data Segmentation: In addition to integrating data sets, segmenting or
partitioning the results as per a certain criteria or logic may be required if time-
series analyses or testing hypotheses are carried out.

7. Ensure Data Security and Privacy: Protecting trustworthy data ensures the access
and integrity of valuable datasets for analysis. While the specific requirements
may vary depending on the data characteristics and intended use, upholding a
high degree of data security and privacy remains paramount.

8. Data Storage: The final step is to store the data in a secure, but accessible
manner. Best practices recommend storing data at a secure location, where the
data are accessible to authorized users, with proper backup and disaster recovery
provisions in place.

2.3. Product Families

2.3.1. Earth Observations (Satellite remote sensing)

The major components of satellite remote sensing ARD typically include the following
properties[1][110]:

e radiometric and geometric correction;
e mosaicing and tiling;

e cloud and shadow masking;

e atmospheric correction; and

e metadata and catalog.

In Testbed 19, several ARD products have been found and originally used for different analysis.
These products were combined into a comprehensive dataset for focused analysis. These
include Landsat data products for gentrification scenario and essential earth observations for
marine and coastal study scenario.

2.3.2. Model Outputs

Model outputs carry different properties and characteristics for preparing and publication as
ARDs. One example is synthetic data which have a clear underlying physical model but simulate
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sensor observation under different conditions. The serving and preparing of synthetic results as
ARDs is one of the scenarios studied in Testbed 19.

2.3.3. Other Geospatial Data

There still exist data that do not quite fall into the existing CEOS ARD families. For example,
in-situ observations may need to be pre-processed through a series of algorithms to provide
the observations as ARD ready for integration and interoperation with other data sources and
analytical systems. The in-situ data were studied in the coastal stud scenario.

Demographic data and building information are other examples of non-EO data that need to be
prepared and made analysis ready. Processing may involve geocoding and other specific pre-
processing.

Besides “strict” geospatial data, there may be data that have certain geospatial properties, but
the focus is rather aligning the data ready for analysis through Al/ML (artificial intelligence and
machine learning). For example, training datasets may include broad ranges of labeled data for
machine learning. The inclusion of such datasets in ARDs is also discussed in this ER.
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SCENARIO ON GENTRIFICATION STUDY

NOTE: This scenario was led and implemented by the Center for Spatial Information Science and
Systems (CSISS), an interdisciplinary research center chartered by the provost and affiliated with
the College of Science at George Mason University, Fairfax VA, 22030, U.S.A.

3.1. Introduction

Due to advancements in technology and acquisition strategies, institutions, such as the USGS
and European Commission, can release vast amounts of remote sensing images under free
licenses. Simultaneously, storing and computing power has developed to accommodate this
increase in data. Yet, the volume of data still poses a great challenge to data analysts, scientists,
and non-experts alike. Data analysts report spending 80% of their time cleaning data to ensure
interoperability for time series[25]. Furthermore, much of the storage and computing power
required to store and process these data are inaccessible to non-experts. Many scientists
believe that the solution to both problems is a concept termed “analysis ready data” (ARD).

The committee of Earth Observation satellites defines ARD as satellite data that have been
processed to a minimum set of requirements and organized into a form that supports immediate
analysis with a minimum of additional user effort and interoperability both through time and
with other datasets [43]. In other words, an ARD product undergoes common data processing
before distribution. These preparations are time consuming, computationally taxing, and require
expertise to perform. Currently, the closest thing to a standard for ARD is CEOS Analysis Ready
Data for Land (CARDA4L), which outlines the threshold and target quality of data for it to be
considered ARD [57].

The first set of data to meet the CARDA4L requirements was the USGS'’s Landsat collection 2
surface reflectance and surface temperature products [43]. Collection 2 has a great depth of
remote sensing imaging as the USGS has also reprocessed its images from collection 1 from
Landsat 1-8 [72] which enables users to use ARD for a time series that spans back to the

first Landsat mission. Collection 2 is organized into 3 levels [72]. Level 1 is geometrically and
radiometrically corrected data [72]. Within level 1 a tier system is used to distinguish between
the quality of data based on the radical root mean square error (RMSE) [72]. Tier 1 is the best
contains data with a RMSE lower than 12, all data with an RMSE greater than 12 are grouped
into tier 2 [72]. Near real time data are data that have yet to be categorized into either tier 1
or 2 and are available for rapid download [72]. Moving onto Level 2 data which are certified by
CEOS as ARD, Level 2 products are only derived from level 1 data and use top of atmosphere
corrections to provide surface reflectance and surface temperature [72]. Furthermore, all ARD
products include a quality assurance band [72]. As of January 28th, 2022 in addition to Landsat,
Sentinel 2's Level-2A product has been certified for meeting the threshold of ARD by CEOS
[89]. The Sentinel 2 product is broken into several levels. Level-0 is the raw compressed image
from the satellite that is downlinked [104]. Level-1A involves creating a geometric model to
locate pixels in the image and uncompressing the images [104]. Level-1B involves performing
radiometric calibrations and geometric refining to the geometric model produced in Level-1A
[104]. Then Level-1C involves Ortho-image generation, top of atmosphere (TOA) is computed,
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and clouds are calculated [104]. Finally, Level-2A provides surface reflectance products based on
the TOA product as well as scene classification for clouds [104].

In short, the goal of ARD is to standardize and centralize data to make it more accessible in

a way that removes friction for users working with remote sensing data 3. CEOS created a
guideline for what constitutes ARD data in the CEOS ARD for land (CARDA4L) product, providing
fundamental support to ARD standards [111]. Likewise, The Open Geospatial Consortium (OGC)
Testbed-16 worked to solidify what ARD is by creating a list of characteristics for data to be
considered ARD, including, but not limited to, homogeneous organization, georeferencing,

units, and metadata detailing changes made [111]. This scenario is implemented to show how
ARD helps improve the ease of use and accessibility of data through a case study. The scenario
aims to provide insights and recommendations to the OGC Standards Working Group (SWG)
responsible for moving the ARD standards set forth by the International Organization for
Standardization and Open Geospatial Consortium.

3.2. Scenario Methodology

3.2.1. Datasets

The Earth Explorer data portal provides access to the USGS’s Landsat collection 2 data.
Collection 2 consists of three levels. Level 1 consists of data that have been geometrically and
radiometrically corrected. Level 1 uses an internal tier system to organize data based on pixel
quality and processing level [114]. Real time data is where imagery goes before being moved
into either tier 1 or 2, which is determined by the image radical root mean square error (RMSE)
[72]. A score of 12 or better is categorized as tier 1. Level 2 data are ARD certified by CEOS and
are derived from tier 1 data only [117], [2]. Furthermore, there are level 2 science products that
have a long enough time series and consistency that the products can be used to track climate
change [5]. Lastly, level 3 data are data derived from level 2 science products. Using Earth
Explorer, ARD surface reflectance and associated quality assurance products were downloaded
of the tile horizontal 27 vertical 9 spanning from 2013 to 2019, which encompassed the city of
interest, Washington DC.

While gentrification bears resemblances to community redevelopment, it usually progresses
more rapidly and is frequently propelled by significant financial investments. Moreover,
gentrification often brings about notable shifts in micro-level socioeconomic dynamics. To
track gentrification, the Testbed participants focused on the construction of new buildings in
DC. While ARD is available up until early 2023, the most recent building footprint of DC was
from 2019. Like the DC building footprint, the building permit data were accessed from Open
Data DC. The building permit data were organized by year, which was then filtered by the
type ‘construction’ and subtype ‘new building’. Since construction takes several years, analysis
was not only for the year that the permits were approved but also the years before and after.
Working within these constraints, the earliest building permit used was 2012, and the latest was
in 2018.
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Extract by Mask

‘

Figure 1 — Example of model builders used to create training data

Because the Landsat imagery is ARD, there was no need to perform any top of atmosphere
corrections, so the process of turning the Landsat imagery into training datasets could begin
immediately. First, all data were added to an ArcGIS map. As this scenario is exploring the
capabilities of ARD, using a common and easily accessible tool like ArcGIS meant that the
methodology could be easily replicated, and conclusions of ARD'’s limitations and abilities would
be applicable to the largest number of people. Furthermore, as seen in Figure Figure 1, ArcGIS’s
built-in model builder expedited the process of creating training data by taking full advantage

of the standardization of the ARD. After adding all the downloaded information, the building
footprint was dissolved by shape area to remove shared boundaries. The dissolved building
footprint was then used as the feature mask in the extract by mask geoprocessing tool to extract
only pixels of DC from the Landsat imagery.

Then, an ArcGIS geoprocessing tool was used to remove all pixels that were not marked as clear
pixels. All the data were reorganized into different folders by year, which were then grouped
together by intervals of three. As a result, there would be a folder 2013-2015, with subfolders
2013, 2014, 2015 and so on for folders 2014-2016, 2015-2017, 2016-2018, and 2017-2019.
Next, true values were created, by separating pixels known to be new buildings which was done
by extracting by mask, with the building permit for the respective year acting as the mask. As
mentioned before, for each permit the participants wanted to look at the year prior and after

as well. For example the 2013-2015 images used the 2014 building permit data to extract the
pixels that had new buildings. Pixels that were designated as not having new buildings were
stored separately in another folder. In short, this resulted in three groups of data: Images with
just the new building pixels, images without the new building pixels, and images of both types
of pixels. The last set would be used as the unsupervised training data. Each group and set of
years would be organized into separate mosaic datasets. In other words, there would be three
2013-2015 mosaic datasets, one for each group, and so on.

It was difficult to turn the mosaic dataset into a multidimensional dataset because ArcGIS was
unable to read the ARD’s metadata. So, information such as the product name and acquisition
date were missing in the ARD. However, the ARD file names are formatted to be human-
readable [104], and include the acquisition date as a part of the file name. Therefore, creating a
new field in the mosaic dataset and splicing the file name, with the calculate field geoprocessing
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tool, created the necessary temporal component to create a multidimensional raster, with the
build multidimensional info geoprocessing tool. Finally, the Space time Cubes were created
using the Create Space Time Cube from the Multidimensional Raster spatial analysis tool. One
advantage of using this tool was the fill empty bins parameter, which used an interpolated
univariate spline algorithm to create a temporal trend to fill the empty bins.

Using the datasets created from the ARD, other built-in machine learning tools within ArcGIS
were used and tested. With the release of ArcGIS 3.1, ‘Train Using AutoML and ‘Predict Using
AutoML became available. Both tools enable the user to streamline the machine learning
process by determining the best models, hyperparameters, and creating the optimal ensemble
of models for the validation set[Esri_automl]. So, the ‘Train Using AutoML’ tool was used for
building a machine learning model optimized for the dataset given, and the ‘Predict Using
AutoML was used to predict where gentrified pixels would be in the future.

3.2.2. Supervised Machine Learning

A feature class was needed to use the “Train using AutoML” tool. Therefore, the rasters had to
be turned into polygons. Since the goal is for the model to predict future gentrified pixels, the
dataset of rasters that contained only gentrified pixels was used. This dataset had previously
been used as the input for the multidimensional rasters. Each raster was converted to an
individual polygon feature using the ‘raster to polygon’ tool. The polygon feature stored each
gentrified pixel as its row, so each pixel was assigned a date and satellite based on the raster

it came from. Then, each polygon feature was added to a larger feature class grouped into the
years 2013-2015, 2014-2016, 2015-2017, 2016-2018, and 2017-2019 like how the space
time cubes were organized. All these steps were automated using the model builder feature

of ArcGlIS, which was made possible due to the ARD’s standardization of file names and pre-
processing. Finally, the feature classes could then be used as input into the ‘Train Using AutoML’
tool, with the grid code being the dependent value the model was trying to predict, and the date
and satellites being the independent variables being used to explain that change over time. The
models created could then be used by ‘Predict Using AutoML.

3.3. Results and Discussions

In this study, the strengths and limitations were evaluated for using Landsat ARD on the
workflow of creating training data and used the training data to evaluate the AutoML tools
and time series clustering tool built into ArcGIS. Overall, the evaluation of the various pre-
defined machine learning tools in ArcGIS shows that standard machine learning algorithms are
ideal in all use cases, such as monitoring gentrification. Moving on to look at how ARD affects
workflow, the Landsat ARD was easily accessible due to the USGS Earth Explorer website

and ARD tile tiling. Earth Explorer maintains accessibility by having free, indexable, and easily
downloadable data. Furthermore, the radiometric and geometric correction standardization
allows for immediate interoperability and comparison in time series. The benefits of this are
threefold: firstly, increased accessibility to remote sensing data because the user doesn't need
to be familiar with applying algorithms that perform radiometric and geometric corrections to
use the images. Secondly, this reduces both the labor hours and computing power that would've
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been needed to apply said corrections. Lastly, ARD maximizes accessibility by being processed
enough that it can be used immediately upon download, but not so specifically that it can only
be used in a narrow domain. This is exemplified by the creation of the ESRI's Space Time Cubes,
which are similar to Data Cubes. Immediately after adding the data to ArcGlS, the images could
be altered to fit the needs of the use case. Furthermore, the built-in quality assurance (QA) band
that comes with each raster removed poor quality pixels from the data set.

However, there were some minor limitations of working with ARD. Firstly, the QA bands for
the different satellites used different encodings to represent different pixel quality, meaning
that two model builders had to be used to process the data. Another area for improvement was
metadata incompatibility with ArcGIS, which supports the specific Landsat satellites but not
the ARD. It is hoped that ESRI will address this in the near future. Lastly, it is recommended
that users should be able to access ARD through a Data Cube-like format, especially in

the described scenario, which prepares ARD to machine learning-ready training datasets.
Currently, thanks to the standard human-readable file and raster names, acquisition date, band
information, and satellite used could easily be added to datasets that had trouble reading the
ARD metadata, but injecting ARD into Data Cube will provide a much smoother user experience.
This recommendation was also mentioned in the Climate Resilience Pilot Engineer Report.
Analysis Ready Data Cubes (ARDC) can be important in processing big data which will make
ARD more accessible and easier to use [8]. Analysis Ready Data Cubes (ARDC) play a crucial
role in efficiently processing large datasets, making ARD more accessible and user-friendly.

The development of ARDC will not only enhance the practical application of ARD for Earth
Observation (EO) data but will also facilitate the integration of non-EO datasets, fostering the
development of applications that address real-world problems by seamlessly combining EO and
non-EO data while adhering to ARD standards.

In conclusion, notwithstanding ARD’s minor limitations, ARD significantly optimized the
workflow process of turning the downloaded data into organized machine learning training
datasets due to its accessibility and immediate interoperability.
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6 SCENARIO ON ISO/OGC COVERAGE AND
DATACUBE STANDARDS

NOTE: The scenario on the topic of reviewing ISO/OGC coverage and datacube standards for
Analysis Ready Data was led and implemented by rasdaman.

4.1. Introduction

This analysis investigates how analysis-ready the OGC Coverage Implementation Schema (CIS)
is[26][44][58]. Coverages are the accepted paradigm for modeling fields (in the sense of physics)
across standard bodies with a geospatial focus [107]. Technically speaking, coverages encompass
regular and irregular grids, point clouds, and general meshes. The gridded data, specifically,
resemble datacubes, which is the particular focus of this Engineering Report.

One use case to investigate (with the help of GeoDataCube(GDC) that was set up in parallel
to this scenario activity) is how far the ISO/OGC coverage standards carry in supporting the
analysis readiness of geospatial data, in particular: CIS 1.1[75] and the OGC Web Coverage
Processing Service (WCPS) 1.1[92] Standards.

4.2. Coverages — A Data Structure for ARD in Earth
Observation

This section summarizes the key findings and recommendations regarding the use of coverages
as a data structure for Analysis Ready Data (ARD) in Earth Observation (EO). For detailed
information, please refer to Annex B.

4.2.1. Standards and Structure

e Standards Alignment: Coverages adhere to OGC Standards such as CIS 1.1 and WCPS,
aligning with 1ISO 19123-2 and 19123-3 for consistency and interoperability.

e General Grid Coverage: This core structure defines the spatial and data aspects of ARD,
consisting of the following.

e Domain set: Geospatial reference system

e Range set: Data values and their types
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¢ Range type: Data format (e.g., numerical, categorical)

o Metadata: Additional information about the data

4.2.2. WCPS — A Datacube Language for ARD Processing

Datacube Model: WCPS provides a framework for organizing and manipulating large EO
datasets.

Common Operations: WCPS offers a set of functions for processing and analyzing
coverages.

User-Friendly Syntax: Similar to FLOWR, WCPS enables users to express processing tasks
intuitively.

4.2.3. Obstacles and Recommendations for Coverages as ARD

This study analyzed challenges in using coverages for ARD and proposes solutions.

1 Data Modeling

Pixel-in-X Misconception: Clarify that pixels are associated with specific coordinates, not
cells. Invest in educational resources to address this confusion.

Pixel Interpretation: Standardize on “pixel-is-area” for consistency and avoid half-pixel
shifts.

Units of Measure: Adopt QUDT for its machine-readable format and conversion
capabilities.

Tiling Transparency: Make tiling an internal detail of ARD, transparent to users.

Structured Metadata: Organize and structure metadata for improved access and
comprehension. Consider a registry of defined extensions for efficient information
extraction.

2 Data Processing
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Context-Aware Interpolation: Utilize appropriate interpolation methods such as kriging
based on data type and context.

Compatible Image Pyramids: Allow only compatible interpolation methods during retrieval
and processing to avoid inconsistencies.

Data Summarization: Clearly document appropriate aggregation methods for different
data types (e.g., counts vs. averages) to prevent misinterpretations.
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¢ Dimension Hierarchies: Capture and document hierarchical structures (e.g., time series) for
efficient analysis and exploration.

e Validity and Reliability Masks: Implement masks to identify and filter out areas of
uncertainty, improving data reliability.

® Product Provisioning Coherence: Track data processing history and ensure consistency
across versions and providers to maintain data quality.

e Numerical Effects Awareness: Understand the inherent inaccuracies of floating-point
numbers to avoid calculation errors.

4.2.4. Practical Examples in Context
This study examined how coverages can be applied to real-world scenarios.

e Service Quality Parameters: Define and communicate key parameters such as accuracy,
resolution, and uncertainty to users for informed decision-making.

e Coverage Fusion: Leverage advanced techniques and cloud computing to combine data
from diverse sources despite format variations, quality differences, and spatial/temporal
overlaps.

e Machine Learning Integration: Utilize ML models for automated ARD processing and
analysis, ensuring data quality and model suitability for specific tasks.

4.3. Recommendations for Standard Development

Based on the insights gained, the following are recommendations for improving ARD standards.

e Refine Existing Standards: Update OGC standards to address identified challenges and
reflect current needs in EO.

e Enhance Metadata Structures: Design and implement standardized metadata structures to
accommodate diverse use cases and scenarios.

e Universal Units of Measure: Promote QUDT adoption for consistent and interoperable
data exchange.

e User-Friendly APIs: Focus on clear data access and processing functionalities in APlIs,
hiding technical details.

e Interval Arithmetic Adoption: Utilize interval arithmetic to quantify uncertainties and
provide more reliable calculation results.
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e Fitness Negotiation and SLAs: Develop mechanisms for users to specify quality
requirements and services for guaranteed data suitability.

e Model Applicability Parameters: Define clear parameters for machine learning models to
ensure appropriate use and reliable results.

4.4 . Conclusion

By addressing the challenges and implementing the proposed recommendations, coverages

can become a powerful and versatile data structure for ARD in Earth observation which will
enable efficient and accurate analysis for diverse applications, advancing scientific research and
decision-making in EO.
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SYNTHETIC DATA SCENARIO

NOTE: This scenario was led and implemented by Rendered.Al.

5.1. Introduction

One of the fundamental reasons to define Analysis Ready Data standards is that it is common
for real world datasets to have insufficient metadata or structure for common tasks and
analyses. Synthetic data generation, the process of creating datasets that simulate real data
according to predefined specifications, offers an opportunity to advance the concept and
application of ARD by the following.

1. Providing benchmark or referenceable examples of how an ideal dataset would be
composed including content, metadata, and structure.

2. Supporting specific use cases or examples of commonly used datasets, such as
Earth observations satellite content, that can be used to test data processing
tools and pipelines.

3. Providing experimental input for both training and validating algorithms used to
process real sensor data.

This Testbed 19 ARD project provided a demonstration of a synthetic data generation pipeline
that produces diverse datasets in an ARD-compliant format, specifically the CEOS ARD for Land
- Surface Reflectance (CARD4L-SR) Standard. The goal of this process is to better understand
how synthetic data can provide value to the creators and users of ARD, and how the framework
for ARD can likewise benefit the creators and users of synthetic data. In the process, the
implications of synthetic data generation within this ARD framework are explored as well as
what elements of an ARD specification might be beneficial for supporting synthetic data and its
uses.

5.2. Methodology

The synthetic data application produced for this project supports the simulation of Analysis
Ready Data for electro optical remote sensing imagery. The data generation pipeline utilizes
industry leading physics-based image simulation technology that enables for the creation

of sensor model approximations of existing Earth imaging platforms currently in orbit. This
application also leverages remote-sensing derived content that has been assembled to produce
“digital twins” of locations on Earth at various scales. This content simulation capability was then
configured into a synthetic data channel on the Rendered.ai platform that outputs all necessary

OPEN GEOSPATIAL CONSORTIUM 23-043 27


https://rendered.ai

dataset and pixel-level truth information to meet the threshold requirements of the CARD4L-SR
specification.

5.2.1. Sensor Simulation

The simulation capability demonstrated in this effort uses the Rochester Institute of
Technology’s Digital Imaging and Remote Sensing (DIRS) Laboratory simulation technology,
DIRSIG. DIRSIG enables the simulation of physically accurate electro-optical data with accurate
spectral properties and radiometric responses calculated at sub-pixel resolutions which is done
using detailed models of sensor and platform properties that drive a path-traced radiometry
estimation performed against provided spectrally defined 3D content.

The image capture platforms chosen to be modeled for this application were:

Table 1

PLATFORM TYPE SENSOR APPROXIMATION GSD SPECTRAL BANDS ARRAY SIZE
Medium resolution EO Maxar WorldView-3 ~1.24 m 9-channel VIS+NIR 640 x 480
High resolution EO Planet SkySat 16-21 ~0.75 m 5-channel PAN+VIS+NIR 1024 x 768

These platforms represent common data sources for users in the remote sensing and ARD
community.

5.2.2. Scenes

Simulation scenes were selected from a set of available radiometrically annotated scenes that
provide a variety of geospatial content which can be used to provide product family information.
Scenes in DIRSIG are defined using the following.

1. 3D content, including terrain surface model and specific models of above-ground
assets

2. Material maps that define material type for all surfaces in the scene

3. Material emissivity curves for all material types referenced

4, Texture maps that associate varied material curves within each material type

The scenes selected for this application are as follows.

e Suburban scene: This scene represents an 8 km2 area modeled after the Rochester suburb
of Irondequoit, NY.
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e Industrial scene: This scene represents a 10 km2 area modeled after a chemical plant in
the desert town of Trona, CA.

Figure 2 — RAI Scene Side By Side (Left: Overhead image of the
Suburban scene; Right: Overhead image of the Industrial scene.)

These scenes were constructed by researchers and engineers at RIT’s DIRS Laboratory and
represent high-fidelity 3D geometry and spectra purpose-built for simulation within DIRSIG.

5.2.3. Atmospherics

The capability to modify atmospheric conditions and visibility is included with the application.
This is achieved using atmosphere models generated using MODTRAN spectral modeling
software. Separate atmospheric models were generated for urban and rural aerosol levels, as
well as summer and winter conditions found at mid-latitude. Within these four categories of
atmosphere, five different visibility levels were also modeled, including 5, 10, 15, 30, and 50 km
visibility. These variations put the total number of atmospheric combinations at twenty, allowing
for a flexible determination of atmospheric properties.

Importantly, atmospheres can also be removed from the simulation to approximate the desired
output of imagery post-processed for atmosphere removal. By default, when an atmosphere

is selected in the simulation configuration, this channel outputs two images per run of the
simulation: one with the atmosphere included and one without. This design was chosen to
support the use case of atmospheric removal process development, testing, and validation.

Clouds and cloud shadows are also modeled within this application. This approach uses a voxel-
based approach where individual voxels contain information about water vapor concentration,
which is used to approximate absorption and scattering of various wavelengths of light.

5.2.4. Synthetic Data Application

The synthetic data application is developed using the “Channel” implementation based upon
Rendered.ai's open source Ana framework. The channel is then deployed to the Rendered.ai
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platform, allowing users to generate synthetic datasets on-demand using the web-based dataset
configuration interface. This graph interface supports the explicit definition of which parameters
to control and which to randomize to produce the desired diversity in the output dataset.
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Figure 3 — RAI ARD Graph (Node and edge-based graph
configures simulation inputs on the Rendered.ai platform.)

This channel is configured to output imagery with all information required to meet the threshold
ARD requirements including dataset and pixel-level metadata. The output of running a
simulation using this channel is a zipped folder containing output data cubes for each run of the
simulation, JSON files containing dataset-level metadata, and pixel mask images that show pixel-
level metadata designated in the ARD specification.

The synthetic data application developed for this project was deployed to the Rendered.ai
platform, and can be utilized by the general public by using a content code within the web
platform. The content code specific to this application is “ARD.” Within the workspace

included in this content code, users will find pre-configured graphs for specific image scenario
simulations, as well as pre-generated datasets that include all required metadata and annotations
specific to the CARD4L-SR standard.

5.3. Discussion

5.3.1. Applications of Synthetic Data for the ARD Community

Synthetic data has many potential applications for ARD practitioners. The synthetic data channel
developed for this project enabled creators of ARD data products to produce baseline datasets
to develop and test algorithms for automated generation of ARD calibrations and metadata.

This includes atmospheric calibration, water and ice pixel masking, cloud and cloud shadow
detection, and terrain occlusion and shadowing. As these processes often require significant
amounts of ground truth data to develop, the use of synthetic data can alleviate the need for
expensive data collection and labeling campaigns.
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Synthetic data also has uses for consumers of ARD datasets, supporting the development and
testing of custom processing techniques with known land cover, sensor, and atmospheric inputs.
The configurability of the data output enables fine-grained experimentation to understand the
impacts that varied conditions and collection parameters have on algorithm performance. Also,
because the scene and collection parameters can be fully customized, synthetic data allows
users to approximate data collected from imaging platforms that do not yet exist, or of objects
on Earth that have never been captured in imagery, thereby reducing barriers to innovation.

5.3.2. Synthetic Data and the ARD Standard

The CEOS ARD standard has been developed to enable users of real Earth Observation data
with all information needed to perform common and complex analytics with those data. It is also
a helpful guide for developers and users of synthetic EO data, as the standard lays out guidelines
for associated descriptive data. Often, annotations and metadata constructed for synthetic data
are customized to include only the information relevant to the task it was engineered for, but as
synthetic data become more widely adopted, dataset structure metadata will need to become
more standardized to be more widely useable. This effort serves as a step in that direction for
synthetic EO imagery.

While the CEOS ARD standard was designed to apply to real EO datasets, much of the relevant
dataset-level metadata of synthetic datasets generated in this exercise can be incorporated
into the existing standard. For instance, the requirement to specify Auxiliary Data (section 1.14)
can apply to all input content used in simulation, for example the 3D content and atmospheric
databases used. Similarly, the requirement for all algorithms used in dataset generation to be
listed (section 1.13) can apply to simulation algorithms used in image generation, for instance
the use of DIRSIG for this simulation application. Due to the volume and granularity of this
information, a distributed metadata approach, such as separate per-image metadata JSON

files like those created by the Rendered.ai platform, is a preferred format for the exchange and
transfer of this information.

The diversity needed for effective synthetic data requires the stochastic variation of input
parameters to ensure sufficient domain coverage. To ensure data provenance, these stochastic
inputs need to be traceable in image-level metadata. This is one area where synthetic data
require metadata beyond what is defined in the existing CEOS ARD standard. By default, the
Rendered.ai platform creates this level of metadata per run of a simulation. If synthetic data
were to be considered as a novel family within the ARD standard, this would be an important
element to include.

5.3.3. Lessons Learned and Next Steps

The work done for this project showed that a synthetic EO data pipeline can be developed that
can auto-generate data that meet the requirements of a CEOS Analysis Ready Data standard.
This standard is already well-defined for accommodating synthetic data, though there are areas
where additional requirements may be specified to ensure the most useful output synthetic data
products. With synthetic data growing in importance in the realm of Al and data analytics, it is
important for this form of data to be considered in any standards development effort.
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With this example established, further work could be done to develop Analysis Ready synthetic
data with a specific use case in mind, or to supplement an existing real Analysis Ready dataset
to address issues of bias or data scarcity in the real data. Beyond this, further work could

be done to develop a formal substandard within ARD to specifically support synthetic data
needs, including requirements discussed in this report surrounding stochastic simulation input
information to ensure fully traceable data products and outcomes.

5.4. Conclusion

This effort serves to introduce the concept of synthetic data within the ARD community. To that
end, the application developed as part of this effort will be included as a “Content Code” in the
Rendered.ai platform, allowing new users to utilize the content and capabilities described in this
report using a complementary thirty-day trial of the Rendered.ai platform allowing for simulation
configuration and unlimited dataset generation within that period. From there, experiments can
be run using the functionality and the meta described, including atmosphere removal processing,
cloud detection, and detection of various land cover elements in varied scenarios.

Hopefully this effort will introduce users in the ARD community to the concept of synthetic data
for EO applications. As the potential value of synthetic data is realized within this community,
this will necessitate thoughtful planning around the incorporation of synthetic data techniques
into demonstration and validation of Analysis Ready Data standards.
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STUDY OF COASTAL ENVIRONMENTS IN THE
ARCTIC

NOTE: This scenario was led and implemented by Pelagis Data Solutions. Pelagis is an ocean-
tech venture located in Nova Scotia, Canada focused on the application of open geospatial
technology and standards designed to promote the sustainable use of our ocean resources.

6.1. Introduction

Remote sensing of marine and coastal environments plays an increasingly important role
towards monitoring the sustainable use of ocean resources. As the effects of climate change
are especially impactful to coastal ecosystems, Earth Observation (EQ) derived analysis ready
datasets corrected for environmental bias and spatial and temporal resolution provide valuable
insights into coastal areas that otherwise are very difficult, if not impossible, to monitor, such as
mapping habitat extent and change, understanding biogeochemical processes, and monitoring
human impacts and conservations.

This Testbed 19 project was designed to enhance previous work positioning the OGC suite

of standards and best practices at the core of a federated marine spatial data infrastructure
(MSDI). In particular, analysis ready datasets for marine and marine-terrestrial realms, as defined
by the International Union for Conservation of Nature(IUCN) Global Ecosystem Typology, are
reviewed and purposed towards the development of essential climate and biodiversity variables
for coastal marine environments in the Canadian Arctic.

6.2. Challenge

The concept of analysis ready data has historically been targeted towards satellite-derived
datasets processed to a minimum set of requirements and organized into a form that enables
immediate analysis with a minimum of additional user effort and interoperable through space and
time. Although the term “analysis readiness” appears relatively generic, in practice analysis ready
datasets must adhere to a minimum threshold of requirements. These requirements include
defining the characteristics of the dataset, the per-pixel properties and capabilities, and the
metadata describing atmospheric and geometric corrections applied to dataset observations.

A key benefit of analysis readiness is that it hides the complexities of data collection and

processing of raw satellite imagery and provides application ready datasets targeting specific
scenarios. In terms of interoperability of these datasets, the key characteristics when applied
to geospatial applications are the spatial and temporal properties of the dataset. Information
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on these characteristics permits client applications (and users) to determine suitability of such
datasets applied to specific domain problems over a specific temporal range and spatial extent.

Similarly, OGC provides Standards and specifications that address collections of observations
provisioned through in-situ platforms and sampling programs. The OGC Abstract Specification
Topic 20: Observations, measurements, and samples version 3.0 (OGC OMSv3)[60] models
collections of observations associated with the properties of a feature of interest. Observations
are modeled as collections over an observed property and allow for subsequent processing

to derive ‘analysis readiness’. In this context, it is important to understand the overlap of term
definitions to further ensure the interoperability of analysis ready datasets independent of the
platform from which the datasets were derived. This separation of concerns is well addressed by
the OMSv3 specification.

The following scenario revisits the role of analysis ready datasets within a regionally applied
climate monitoring system. The scenario was designed to leverage analysis ready datasets
combined with in-situ observations to draw direct relationships between a changing
environment and dependent human activities. The core of this exercise focuses on the
application of OGC Standards and specifications as adapters to provision analysis ready
datasets relative to key ocean and coastal climate indicators. The usability of satellite-derived
observations is dependent on key processing algorithms that transform the raw observation
collections into key environmental indicators that either directly measure essential variables
associated with a region of interest or indirectly contribute to further processing towards similar
goals.

6.2.1. Analysis Ready Datasets for a Digital Arctic

The Global Climate Observing System (GCOS) defines a set of Essential Climate Variables (ECVs)
representing key variables that contribute to the characterization of Earth’s climate. In particular,
sea ice is a key indicator of climate variability in the polar regions. Three key components
representative of sea ice variability are sea ice concentration, sea ice thickness, and surface
albedo. Sea ice is defined as frozen sea water which floats on the surface of the ocean, excluding
ice shelves which are anchored on land but protrude out over the surface of the ocean. Long-
term monitoring of sea ice is important for understanding climate change and the related impact
on regional biodiversity and ecosystem services. The sea ice - surface albedo relationship is a key
component of climate monitoring. A decrease in sea ice coverage directly affects surface albedo
with a corresponding increase in solar heating of ocean waters.

To support the integrity of climate observations, GCOS identifies the measurable parameters to
be used to characterize each ECV. For example, sea ice concentration (coverage), sea ice surface
albedo, and sea ice thickness. The requirements for each measured parameter are similar to the
CEOS defined Product Family Specification (PFS) schema in that GCOS defines five criteria to

be used to assess the quality of measurement - spatial resolution (horizontal, vertical), temporal
resolution, measurement uncertainty, stability (i.e., effects of bias over time), and timeliness (how
often is the phenomenon measured and made available, e.g., daily, monthly).

For each criterion, there is a set of guidelines that must be met to support the application of
any measurement to the ECV. A goal (G) is the ideal requirement to be met by an observation
collection, a threshold (T) representing the minimum acceptable value and a breakthrough (B)
value representing an intermediate level between the goal and threshold identifying limits of
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applying such measurements to specific use cases. For example, to analyze sea ice concentration
for near-coast applications, the goal is set to a horizontal resolution of 1km whereas regional
applications are limited to 5km resolution.

This work item complements the deliverables associated with the Digital Arctic theme of the
OGC FMSDI 2023 project. In particular, the goal is to leverage satellite derived datasets to
identify the changes in sea ice coverage, thickness, and surface albedo related to features of
interest within the circumpolar Arctic.

There are several data sources available that provide measurements of sea ice coverage and
surface albedo for the arctic region. Current work has focused on integration with data products
provisioned through the Copernicus Climate Data Store (CDS) and NASA’s National Snow and
Ice Data Center Distributed Active Archive Center (NSIDC DAAC).

Processed observations of sea ice coverage and surface albedo provided through the Copernicus
Data Store are made available through the ERA5 reanalysis product gridded to a regular latitude
longitude of 0.25 degrees. In addition, there is the Copernicus Arctic Regional Reanalysis
(CARRA) data product gridded to regional resolution of 2.5km. For the Testbed 19 exercise, the
CARRA-WEST dataset was used as the baseline for monitoring the regional climate indicators
for sea ice coverage and surface albedo.

The NSIDC DAAC provides the ICESat-2 data collection derived from the Advanced
Topographic Laser Altimeter System (ATLAS) instrument aboard the Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2). The NSIDC DAAC distributes Level-1, Level-2, Level-3A, and
Level-3B ICESat-2/ATLAS products, which range in temporal coverage from October 2018 to
present. These datasets are based on the polar orbit of the ICESat-2 satellite separating each
ground track revisit into separate data granules. There are 1387 reference ground tracks in

the ICESat-2 repeat orbit. The reference ground track increments each time the spacecraft
completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full
cycle. Metadata specific to each polar orbit is maintained as a queryable and discoverable
service identifying specific data granules based on spatial and temporal extents. A spatial query
provides reference to the available data granules with reference ground tracks (RGTs) that
intersect the extent of a feature of interest. Once established, temporal queries are available to
isolate the set of data granules representing each ground track revisit. For the purpose of the
Testbed 19 exercise, the focus was on the [74] data product providing along track heights for
sea ice and open water leads.

6.3. Approach

This exercise leverages the emerging role of the OGC GeoDataCube initiative to transform
the native formats provided through the CDS and NSIDC data stores into a Rasdaman

vector database exposing the native data stores as “analysis ready.” For context, the area of
concern was established around the protected areas of the Canadian Arctic — specifically the
Ninginganiq National Wildlife Area located on the east coast of Baffin Island, Nunavut.

Temporal analysis of Surface Albedo
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The inherent value of the GeoDataCube (GDC) framework is its ability to scale both in terms of
volume of data and processing capabilities. This use case focuses on delegating the analysis of
surface albedo to the GDC service provider over a temporal extent to determine the magnitude
of change for each gridded observation. In this case, the GDC provider translates the request
to a native OGC Web Coverage Processing Service (WCPS) process graph for execution by the
GDC service instance to determine the change in surface albedo for the region of interest over
the temporal range of May 2019 — April 2023 (see Figure 4).

Figure 4 — Magnitude of change in surface albedo between May 2019 and April 2023

6.4. Standards and Interoperable Technologies

The following standards and interoperable technologies were evaluated as part of the
Testbed-19 ARD initiative.

OGC Observation System Models

The coastal environments scenario extends the concept of Analysis Ready Data to include
processed data pipelines sourced from in-situ observation collections and sampling programs.
Raw data, such as NetCDF datasets provided through the NOAA Saildrone program for
monitoring ocean conditions, are processed into an ‘ARD’ encoded using the OGC Moving
Features Access Standard. Extending the concept of ARD to include datasets sourced from non-
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satellite based observing platforms permits a consistent view of important datasets independent
of the datasets’ originating platforms and associated processes and procedures. This serves to
validate the interoperability requirements of analysis ready datasets based on the minimum level
of processing for spatial and temporal correctness.

This Testbed 19 work effort extended the OGC Observations & Measurements Abstract
Specification (OMSv3) and the Connected Systems initiative to represent ARDs, with the
appropriate metadata model, as a type of observation system providing essential variables

and regional indicators for features and coverages of interest. To this effort, there is currently
an initiative to align the OMSv3 observation systems metadata model with the GeoDCAT
application profile of the ISO 19115-1:2014 Geographic information Metadata Standard. This
effort may provide an opportunity to evaluate the requirements of the ARD metadata model in
this same context.

OGC Moving Features

The OGC Moving Features Access [91] Standard defines a standard encoding for features in
motion. Testbed-18 work extended this model to include observation collections made along a
trajectory by an observer. Continuing to extend the principles of the Moving Features Standard,
the Testbed 19 exercise uses terms defined in the OGC API — Connected Systems — Part 1:
Feature Resources Standard[105] to model the ICESat-2 satellite as a platform hosting the
ATLAS sensor. The Reference Ground Track represents the movement of a ‘virtual’ observer
traveling along the earth surface providing height observations against a Feature of Interest with
observable property ‘sea ice height’.

Leveraging the Moving Features model to encode the sea ice height observations allows client
applications to ingest the surface height along a trajectory and apply trajectory based analysis
directly against the observation collection. For example, the ICESAT/2 revisit to the Ninginganiq
National Wildlife Area may be down-sampled to intervals of 1/10th of a second (See Figure 5).
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Figure 5 — Downsampled Sea Ice Height Observations
over the Ninginganiq National Wildlife Area - May 2019

6.5. Future Work

Seasonal effects on Data Quality

Under investigation is an issue with measuring sea ice extent in the summer months in which

melting ponds may affect the remotely sensed observations. The melting season sea ice radar
freeboards require a correction for an electromagnetic range bias which is provided separately
through the British Antarctic Survey (BAS), a component of the National Environment Research
Council (NERC UK) [28]. It is unclear how a proposed Product Family Specification will address

uncertainty issues for the overall data quality when such metrics are dependent on seasonal
(temporal) conditions affecting observation measurements.

Spatial Resolution

Analysis of regional biodiversity indices and indicators requires a finer resolution of processed
satellite-derived observation datasets. Level 3 processed earth observation data products tend
to lose fidelity to offset exponential storage costs. As an example, the Copernicus CARRA-WEST
reanalysis data product is provided as a 2.5km gridded coverage for specific regions of the Arctic
whereas the global ERA5 dataset is provided at 25km gridded coverage. In line with the GCOS
criteria for application of earth observations to coastal areas, the CARRA-WEST data product
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meets the requirements of horizontal resolution for regional analysis whereas the ERA5 data
product may only be used in a global context.

Future work efforts related to Testbed-19 are designed to evaluate the effectiveness of
regionally specific ARDs that maintain the near-raw spatial resolution satisfying the criteria of
GCOS while not incurring storage costs associated with global coverage models.

Temporal Resolutions

Satellite observations are periodic relative to a reference feature of interest. The ICESat-2
mission, for example, revisits the same reference ground track on a 91-day schedule resulting

in sea ice observations that may not overlap with a specific event or period of interest. Inferring
observations along a temporal coverage is required not only at time instant of an observation
event but also for relevant periods of observations to infer causal analysis.

GeoDataCubes and Analysis Ready Datasets

The concept of multi-dimensional arrays and the arrays’ use supporting earth observation
missions are well established. However, as per OGC initiatives related to GeoDataCubes and
Analysis Ready Datasets, further development to enhance the concept along a spatial and
temporal coverage is required to support a scalable framework for climate observations and
biodiversity.
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RESULTS, DISCUSSIONS, AND CONCLUSIONS

NOTE: This section summarizes findings and conclusions.

7.1. Results and Discussions

The following three scenarios described in this Engineering Report demonstrated that ARD
provides numerous benefits.

e |mproved metadata: ARD data is well-documented with metadata and related catalog
information making it easier for users to find and understand the data.

* Increased ease of integration: ARD data is easy to integrate with other data sources which
makes it possible to create new and innovative applications that combine ARD with other
types of data.

e |Improved interoperability: ARD data is interoperable with other data systems making
it possible to share and exchange ARD data between different organizations and
communities.

e Uncertainty reduction: ARD data is processed to reduce uncertainty which makes it more
reliable and accurate for use in decision-making.

e Provenance: ARD data has provenance metadata, which documents the source of the
data and the steps that were taken to process the data. This helps users to understand the
limitations of the data and to use it appropriately.

e Autonomous workflows: ARD data can be used to create autonomous workflows that can
process and analyze data without human intervention which can save time and resources.

e Geolocation accuracy enhancement: ARD data is processed to improve geolocation
accuracy making it more useful for applications such as mapping and navigation.

e  Workflow characterization: ARD data can be used to characterize workflows, which can
help to improve the efficiency and effectiveness of the workflows.

e Refined requirements on all aspects of ARD: The ARD community needs to be constantly
working to refine the requirements for ARD which ensures that ARD data meets the needs
of its users.

Overall, ARD makes data more accessible, reliable, and interoperable. With existing de facto
standards or specifications for ARD (e.g., CARDA4I), there are some challenges in preparing,
publishing, and discovering ARD. The following are some of the challenges surfaced in Testbed
19.
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* Incomplete Standards (metadata gaps): The testbed scenarios highlighted two critical
areas where the existing CEOS ARD specifications need improvement in terms of
metadata. First, an inconsistency in quality measures and encoding within CARD4L data
was observed. Data from the same scenario may use different measures and encoding
methods, which hinders overall consistency and interoperability. Second, the scenarios
revealed compatibility issues with metadata for CEOS ARD-compliant data. Existing
software tools may not support the metadata due to non-standard formats and a lack of
widespread adoption, thereby creating challenges in accessibility and utilization.

e Limited Adoption and Support (recognition and participation gaps): Two key obstacles
to user adoption and support were identified when implementing the Testbed scenarios.
First, there is limited support and recognition for existing CEOS ARD standards.
Commercial and open-source tools may not fully recognize or utilize data released based
on current ARD standards, which hinders the accessibility and integration of the data.
Second, there is a prevalent restriction on user adoption of existing ARD specifications.
The lack of widespread recognition and support creates a barrier to broader user adoption
and application of the valuable principles embodied in ARD.

e No Standard for Non-EO Data (data type Gaps): The current CEOS ARD specification
does not include non-EO data. The CEOS ARD specification needs to be expanded
to accommodate non-EO data, such as building data in a gentrification scenario, in-
situ data in a coastal study scenario, and simulated electro-optical remote sensing
imagery in a synthetic data scenario. Some data, such as training datasets that label
scenes of images and/or objects for machine learning applications, may not need to
be spatially aligned. These datasets may be considered ready for machine learning,
but not necessarily GIS-ready. The inclusion of these datasets may necessitate further
consideration of the expansion of the ARD scope and adjustments to its underlying
common minimum requirements. In terms of the creation and publication of ARD, the
extension of specifications is also necessary for non-EQ data and data not intended for
GIS applications.

e Levels of Readiness (readiness gaps): The testbed scenarios exposed a challenge regarding
levels of data readiness. Different applications require varying degrees of preparedness,
as evident in the gentrification scenario. Analyzing time series data within this scenario
necessitates a strong emphasis on the temporal dimension, which might not be fully
addressed by current standards. Readily utilizing such data demands a distinct level of
preparedness compared to other analyses, potentially requiring further task-specific data
preparation. To accommodate diverse analytical needs, flexible and adaptable standards
encompassing various levels of readiness are necessary which will ensure data are
appropriately equipped for different tasks and applications, maximizing the data’s utility
and impact across domains.

7.2. Recommendations to ARD standard

Recommendations:
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Leverage existing standards to facilitate the description and publication of ARD: Existing
standards developed by organizations such as ISO, OGC, and QUDT for data description,
publication, and interoperability are likely already supported by many existing tools

and applications. Incorporating these established standards and specifications into the
definition of ARD standards can potentially increase adoption and reduce development
burden. For example, ISO/OGC Coverages (such as Coverage Implementation Schema
CIS 1.1) can be reused to support ARD by making some adaptations for data quality and
metadata requirements.

Clearly Defining Scope and Levels of Readiness: Ensuring effective analysis ready data
(ARD) requires clarity in both the scope and levels of readiness of the data which can be
achieved through two key actions: Clarifying the scope and defining adaptable levels of
readiness. The current definition of CEOS-ARD needs to be broadened to encompass
non-EO data types which should include clear guidelines for incorporating diverse data
such as building footprints, socio-economic statistics, and in-situ measurements within
ARD standards. Secondly, the existing “minimum” and “goal” levels of conformance should
be revised to better address diverse data types and user needs. Additionally, introducing
new levels tailored to specific requirements, such as “GIS-ready” and “machine-learning-
ready,” would further accommodate temporal emphasis and other special needs.
Furthermore, enabling flexible data provisioning empowers data providers to declare
specific conformance levels based on the data’s characteristics and intended applications
enabling data to effectively cater to the diverse readiness needs of stakeholders such as
data analysts, GIS analysts, and machine learning practitioners.

Inclusion of Training Datasets in ARD: The inclusion of training datasets into the Analysis
Ready Data (ARD) standard is recommended to facilitate the development and application
of machine learning (ML) algorithms for geospatial data analysis. ML algorithms have
gained significant prominence and are now employed in a wide range of geospatial
applications, including land cover classification, change detection, and feature extraction.
However, the development of ML algorithms necessitates substantial amounts of training
data, which are often difficult to obtain. Incorporating training datasets into the ARD
standard would provide a consistent and readily accessible source of training data for
geospatial ML applications. The existing CEOS-ARD specification mandates the inclusion
of metadata pertaining to the data source, the data collection process, and the data
quality. This metadata model can be utilized to evaluate the quality and suitability of
training datasets for specific ML applications. On the other hand, the OGC Training Data
Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1: Conceptual Model
Standard defines a data model for datasets that encompasses information about the data,
the labels, and the ML algorithm employed to create the labels. This unique emphasis on
ensuring the compatibility of the training dataset with various ML frameworks and tools
can be incorporated into the developing ARD standard by expanding the metadata model.
The inclusion of training datasets in ARD standards would contribute to the achievement
of increased availability of training data for geospatial domains, improved data quality and
suitability for specific ML applications, and enhanced data interoperability with different
ML frameworks and tools.

Synthetic Data in ARD: The inclusion of synthetic data in ARD standards warrants
further investigation due to the potential of synthetic data to enhance the availability,
quality, and diversity of training data for geospatial machine learning (ML) applications.
Synthetic data offers a unique advantage over real-world data in that it possesses
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inherent tractability to underlying physical models and provides complete control over the
simulated environment, enabling the generation of customized datasets tailored to specific
ML tasks and geospatial applications.

Uniqueness of Synthetic Data:

(1) Tractability to Physical Models: Synthetic data is generated based on well-defined physical
models, allowing for a deeper understanding of the relationships between input features and
output labels, which can enhance the interpretability and generalization ability of ML models.

(2) Full Control of Simulated Environment: The controlled nature of synthetic data generation
enables the creation of datasets with specific characteristics and scenarios that may be difficult
or impossible to obtain from real-world data, providing valuable training material for a wide
range of ML tasks.

(3) Customization and Augmentation: Synthetic data can be customized and augmented to
address specific data biases or limitations in real-world datasets, ensuring that ML models are
trained on a diverse and representative representation of geospatial phenomena.

Areas for Further Investigation:

(1) Standardization and Integration: Research on standardizing the format and metadata of
synthetic data to facilitate integration into the ARD standard.

(2) Quality Assessment and Evaluation: Development of methods for assessing the quality and
suitability of synthetic data for specific geospatial ML tasks.

(3) Generation of Realistic and Representative Synthetic Data: Exploration of techniques for
generating synthetic data that accurately represents real-world geospatial phenomena and
incorporates realistic levels of complexity and variability.

(4) Integration with Geospatial ML Frameworks and geophysical models: Investigation of
methods for integrating synthetic data into existing geospatial ML frameworks and tools or
geophysical models for earth science analysis.

e Data quality and representation: Several specific recommendations arose from the
scenarios regarding data quality and representation. The first focuses on addressing
pixel representation ambiguity. Establishing a clear consensus on interpreting pixel
representation correctly (such as discussions on pixel as points or areas — "pixel-is-
point” vs. “pixel-is-area”) and ensuring consistency across datasets is crucial. Secondly,
standardization of units of measure is imperative. Utilizing consistent and machine-
readable units (e.g., QUDT) facilitates seamless data integration and analysis. Third,
improved temporal dimension handling is necessary. Addressing the varying needs of time-
series analyses by incorporating temporal considerations into data serving and standards
will enhance flexibility. Finally, enriching metadata structure is key. Implementing
structured metadata with defined extensions improves data discovery, understanding,
and provenance tracking, empowering users to efficiently locate, comprehend, and utilize
the data. Addressing these essential aspects can ensure high-quality ARD, maximizing its
potential as a useful data ready for research and application.
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7.3. Conclusions

Scenarios (gentrification, coverages, synthetic data, and coastal study) confirmed the benefits of
ARD: improved data characterization, ease of integration for satellite and non-satellite data and
services, interoperability (data, services, and tools), uncertainty, data provenance, autonomous
workflows, geolocation accuracy, workflow characterizations, and ARD data organization.
Several challenges have been identified: inconsistent metadata encoding, software support, high
level of readiness, specialized data readiness, and non-geospatial domain priority access.

Recommendations for the development of an ARD standard include compatibility with existing
standards, scope of geospatial analysis ready data, and levels of readiness or conformance.

Future directions for the development and testing of ARD standards may include expanding
data products, applications, and readiness levels. Training datasets, GeoDataCubes, and link:
CDB are other OGC standards activities related to the development of analysis ready data.
The interoperation and support of ARD in these communities needs further study and testing.
Uniform evaluation and conformance certification may be further enforced to ensure the
consistency of data readiness in terms of hierarchies and application domains.
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ANNEX A
(NORMATIVE)
ABBREVIATIONS/ACRONYMS

1D

3D

4D

API

ARD

ARDC

ASCII

ATLAS

BAS

BIPM

CARDA4L

CARDA4L-SR

CARRA

CCD

CDS

CEOS

CEOS-ARD

CIS

CODATA

CRS

One-Dimensional

Three-Dimensional

Four-Dimensional

Application Programming Interface

Analysis Ready Data

Analysis Ready Data Cube

American Standard Code for Information Interchange
Advanced Topographic Laser Altimeter System

British Antarctic Survey

Bureau International des Poids et Mesures

CEQOS Analysis Ready Data for Land

CEOS ARD for Land - Surface Reflectance

Copernicus Arctic Regional Reanalysis

Charge-Coupled Device

Climate Data Store

Committee on Earth Observation Satellites

Committee on Earth Observation Satellites — Analysis Ready Data
Coverage Implementation Schema

Committee on Data of the International Science Council

Coordinate Reference System
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CURIE
DAAC
DAG
DEG_C
DEM
DIRS
DIRSIG
DRUM
ECV
EDR
EEA
EO
EPSG
ER
ERAS
EU
FAIR
FAIRICUBE
FLWOR
FMSDI
FOV
GCOS
GDC
GML
GSD

ICESat-2

Compact URI

Distributed Active Archive Center
Directed Acyclic Graph

Degree Celsius

Digital Elevation Model

Digital Imaging and Remote Sensing

Digital Imaging and Remote Sensing Image Generation

Digital Representation of Units of Measurement
Essential Climate Variable

Environmental Data Retrieval

European Environmental Agency

Earth Observation

European Petroleum Survey Group

Engineering Report

ECMWEF Reanalysis v5

European Union

Findable, Accessible, Interoperable, and Reusable
FAIR information cube

For, Let, Where, Order by, Return

Federated Marine Spatial Data Infrastructure
Field of View

Global Climate Observing System

Geo Data Cube

Geography Markup Language

Ground Sampling Distance

Ice, Cloud, and land Elevation Satellite-2
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INSPIRE
/0
IRECI
ISO
IUCN
JSON
ML
MODTRAN
MSDI
NASA
NATO
NERC
NetCDF
NIR
NOAA
NSIDC
OGC
OGC-NA
OLAP
PAN
PFS
QUDT
RDF

RIT

Sl

SLA

Infrastructure for Spatial Information in Europe
Input/Output

Inverted Red-Edge Chlorophyll Index
International Organization for Standardization
International Union for Conservation of Nature
JavaScript Object Notation

Machine Learning

MODerate Resolution Atmospheric TRANsmission
Marine Spatial Data Infrastructure

National Aeronautics and Space Administration
North Atlantic Treaty Organization

National Environment Research Council
Network Common Data Form

Near Infrared

National Oceanic and Atmospheric Administration
National Snow and Ice Data Center

Open Geospatial Consortium

OGC Naming Authority

Online Analytical Processing

Panchromatic

Product Family Specification

Quantities, Units, Dimensions, and Types
Resource Description Framework

Rochester Institute of Technology

International System of Units

Service Level Agreement
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SKOS
SOS
SPS
SQL
SWE
TIFF
TIRS
UCUM
UML
URI
URL
USGS
uTC
VIS
WCS
WCS-T
WCPS
WGS84
WMS
WMTS

XML

Simple Knowledge Organization System

Sensor Observation Service
Science for Peace and Security
Structured Query Language
Sensor Web Enablement

Tag Image File Format

Thermal Infrared Sensor

Unified Code for Units of Measure
Unified Modeling Language
Uniform Resource Identifier
Universal Resource Locator
United States Geological Survey
Coordinated Universal Time
Visible

Web Coverage Service

WCS Transaction

Web Coverage Processing Service
World Geodetic System 1984
Web Map Service

Web Map Tile Service

Extensible Markup Language
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ANNEX B
(INFORMATIVE)
RASDAMAN ARD ANALYSIS

NOTE: This contribution was prepared by rasdaman GmbH, a German academic spinoff whose
product is the rasdaman (“raster data manager”) federated datacube engine. The company has

been and continues to be active in OGC, ISO, and EU INSPIRE standardization The focus is on

the coverage standards that define the datacube data and service models.

B.1. Executive Summary

The rasdaman ARD analysis investigated how analysis-ready (better: consumption-ready) the
OGC coverage standards are. Across all relevant standardization bodies, coverages are the
accepted paradigm for spatiotemporally varying data (“fields” in the sense of physics). Technically
speaking, coverages encompass regular and irregular grids, point clouds, and general meshes.
Gridded data, specifically, resemble datacubes, is the particular focus of this report.

Data about the Earth, like in many other domains, are too difficult to access. In order to perform
some insight-gaining task, a series of steps must be performed. These tasks often require a
spectrum of detailed technology skills which are not related to the original Earth science task

on hand. Special-purpose file formats with sometimes rather peculiar mechanics, juggling with
horizontal, vertical, and time reference systems, and scaling up processing to large amounts

of data are just a few of such common issues. One reason is that data often are provided in a
more generator-centric (where generator can be a sensor or a program, such a weather forecast)
rather than a user-centric manner, which might also be called “too upstream.”

As is well-known, generator-centric (rather than user-centric) data hinder EO exploitation
significantly, making such tasks impossible to conquer for non-experts and tedious for experts.
For the desirable, user-friendly opposite approach, the term Analysis-Ready Data (ARD) was
coined by the USGS Landsat team and has since gone viral.

However, despite significant work and visible progress, such as in CEOS, ultimately it is by no
means clear what ARD exactly means and how it can be achieved.

In this Appendix, a fresh look is taken at the problem. The focus is on spatiotemporal raster
data, i.e., datacubes, modeled as coverages according to the predominant OGC and ISO
standards. The Holy Grail of this study is the ability to provide automatic data fusion of Earth
data. The analysis provided in this Appendix is based on long-term practice (and suffering).
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Current shortcomings and proposals for the way forward are listed, including research and
standardization directions.

B.2. Section 1 —Introduction

This Appendix provides a concrete application and format independent discussion of the current
status of ARD and provides recommendations. Further, the OGC Web Coverage Processing
Standard (a potential datacube analytics language) provides a framework for the discussion of
operations as a convenient way to write down atomic and composite operations on coverages.
Results, however, are independent from any particular request expression style.

In the following discussion, the ultimate exercise of ARD and interoperability is considered to be
automated data fusion. This is the process of combining two independently produced data sets
in a mathematically rigorous way, automatically, and without human intervention. Obviously,
this poses particularly high requirements on the “compatibility” of the data. Therefore, particular
attention will be devoted to this use case.

Since at least 1997, the need for harmonizing remote sensing data was expressed [27]. The
definition cited by Strobl, for example, calls EO data homogenized if “geophysical values [are]
agnostic of the originally acquiring sensor and observation condition” and concludes that in
this case the data are “directly comparable.” Algorithmic comparison requires combination and,
hence, appears to be a kind of data fusion. However, there is more homogenization needed
before such a combination can be done. Therefore, such homogenization was chosen as one of
the readiness test cases.

This research work was done in the context of OGC Testbed-19, EU FAIRICUBE, and NATO SPS
Cube4EnvSec.

The remainder of this Appendix is organized as follows. Section 2 is a brief primer on the
OGC/ISO coverage data model. Section 3 is where existing and missing ARD qualities are
inspected and proposals for ARD enhancement are made. Section 4 provides a synopsis of the
recommendations. Finally, Section 5 concludes the analysis on achieving analysis ready data
using the coverage standards.

B.3. Section 2 — Coverages

In this section, an overview of the OGC Coverage Implementation Schema (CIS) Standard is
presented[45]. Version 1.1 introduces the General Grid Coverage structure. This structure is

both a simplification and an extension of the previously considered coverage types, Rectified
Grid Coverage and Referenceable Grid Coverage of CIS 1.0. The OGC CIS 1.0Standard is also ISO
19123-2 [44] which is currently equivalent to OGC CIS 1.0. A new work item is being processed
to adopt OGC CIS 1.1 as an update to 19123-2. Bottom line, OGC CIS 1.1 is currently the most
advanced — and handy — coverage data model standard.
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Later discussions on operations references the OGC WCPS geo datacube analytics language
standard [75], which is also ISO 19123-3 [58]. However, this is for discourse convenience only —
operations can be expressed in any style, in both desktop and cloud environments, etc.

B.3.1. Overview

In this section provides an overview of the coverage model and structure as a basis for what
follows. Readers familiar with it may safely skip this section. For more detail, there exist tutorials
[59][73], an interactive sandbox [20], and a public OGC wiki on coverages and datacubes [106].

Coverages are standardized by both ISO and OGC in close collaboration. Concepts and
Terminology are established in ISO 19123-1 [26][112] which has also been adopted by OGC as
an update to OGC Abstract Topic 6 [115]. A concrete, interoperability-testable data structure
based on these concepts is given by the OGC Coverage Implementation Schema 1.1 [45][118],
specifically: its General Grid Coverage structure with its schemata for XML, JSON, and RDF
encoding [45](3].

B.4. The Coverage Structure

Conceptually, a coverage is a function mapping location (i.e., coordinates) to data values. In
plain words, a coverage offers some value (such as a color pixel) for each of the coordinates the
coverage covers. These coordinates are called direct positions and only at these direct positions
in a coverage is there a value. In discrete coverages, these are the only points from which data
can be retrieved. In continuous coverages, values between the direct positions can be derived
through interpolation.

Technically, the coverage data structure consists of four main components (plus some details
which are ignored at this level of detail) as follows.

e domain set: Where can values be found?
e range set: The values.
e range type: What do the values mean?

e metadata: What else should be known about these data?

The UML diagram in Figure B.1 illustrates this structure. It shows the four components domain,
range, range type, and metadata, of which the last one is optional. Each component is now
described.
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«Data Type»
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DomainSet SWE Common::DataRecord RangeSet

Figure B.1 — High-level coverage structure of OGC CIS 1.1 [118]

Domain set. The domain set consists of direct positions where values are located. As raster
data/datacubes are focused only on grid coverages, the domain set forms a (regular or irregular)
grid. Such a grid, as well as its grid coordinates, can be of any number of dimensions (better
said: axes), made up from spatial, temporal, and other axes such as spectral frequencies. The
underlying grid space of a domain set is defined by its corresponding Coordinate Reference
System (CRS). More about CRS later in this Appendix.

B Y

Figure B.2 — Examples of regular and irregular grids [26]

In gridded coverages (aka datacubes), coordinates are aligned on some grid. Still, there is

a wealth of variety for possible grid types: Cartesian or geo-referenced, space or time, or
something else, regular or irregular, etc. With growing complexity, the description of a grid,
as part of the domain set, grows, and likewise so does the size of the corresponding domain
set. The simplest case is a regular Cartesian or geo-referenced axis. In this case, what are
simply needed to be stored are lower and upper bound as well as resolution. The case of an
irregular axis is more involved: all the individual grid points on the axis between its lower and
upper bound need to be stored explicitly. More complex grids require even more involved
representations.

Below is an example for a CIS 1.1 GeneralGridCoverage grid (XML representation) that involves
both regular axes (Lat and Long) and an irregular axis (time). Note the definition of Lat and Long
as regular axis with a given resolution, as opposed to the explicit enumeration of the time steps
in the date axis. The underlying (Cartesian) grid, modeling the array data structure, is given by
the GridLimits. However, this is just a technical detail and often of no further concern. More
important is the srsName (spatial reference system name — a GML legacy naming, as also time
is covered) attribute which defines the coverage’s coordinate reference system (CRS). In the
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example the overall coverage is made up from the Lat and Lon axes which EPSG:4326 (aka
WGS84) contributes, followed by a time axis provided via the OGC AnsiDate reference.

<GeneralGridCoverage xmlns="http://www.opengis.net/cis/1.1/gml" ...>
<DomainSet>
<GeneralGrid
srsName="[ EPSG:4326,0GC:AnsiDate"]
axisLabels="Lat Long date" uomLabels="deg deg d">
<RegularAxis axisLabel="Lat" wuomLabel="deg"
lowerBound="40" upperBound="60" resolution="10"/>
<RegularAxis  axislLabel="Long" uomLabel="deg"
lowerBound="-10" upperBound="10" resolution="10"/>
<IrregularAxis axislLabel="date" uomLabel="d">
<C>2015-12-01</C>
<C>2015-12-02</C>
<C>2016-00-12</C>
<C>2016-05-01</C>
</IrregularAxis>
<GridLimits srsName=" 0GC:Index3D" axislLabels="1 j k">
<IndexAxis axisLabel="1"
lowerBound="0" upperBound="2"/>
<IndexAxis axisLabel="7j"
lowerBound="0" upperBound="2"/>
<IndexAxis axislLabel="k"
lowerBound="0" upperBound="2"/>
</GridLimits>
</GeneralGrid>
</DomainSet>
<RangeType> ... </RangeType>
<RangeSet> ... </RangeSet>
<Metadata> .. </Metadata>
</GeneralGridCoverage>

Notably, OGC GML does not support date strings for coordinates, only numbers. After multi-
year discussions between the Web Coverage Service and the GML working groups the GML
Standards Working Group (SWG) did not extend the coordinate format to include strings

as requested by the WCS SWG. For this and other overly restrictive settings in GML, the

WCS SWG departed from GML with CIS 1.1 and defined an XML schema more suitable for
non-numerical coordinates. Meanwhile, in the latest version of ISO 19111:2019 Geographic
information Referencing by coordinates [6], date/time strings finally are included, but the effort
of changing the coverage XML schema to achieve the same effect via 19119 is currently not
being proposed.

Range values. For storage, these values need to be linearized following one of many possible
schemes, but this is an implementation detail of the particular representation chosen and does
not affect the fact that coordinates are determined by the coverage axes. There is also the
question about how the direct positions of the domain set are connected to their respective
values. There are several ways of achieving this, as follows.

e The domain set, together with a sequentialization rule (which is ignored here), indicates a
sequence of direct positions. The sequence in the range set follows this pattern.

e Domain and range sets are stored interleaved, as a sequence of coordinate/value pairs so
that the correspondence is clear.

e Domain and range sets are tiled or partitioned into smaller parts. Inside each tile any of the
above techniques can be used.
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e Sometimes the domain set is not explicitly available, but just some information to derive
the underlying grid. A typical case is a sensor model which stores Ground Control Points
out of which the sensor model generates the grid coordinates for the range values.

Range type. A coverage’s range type captures the semantics of the range set values. The
definition of range is based on SWE Common so that sensor data can be transformed into
coverages without information loss, thereby enabling seamless service chains from upstream
data acquisition (e.g., through OGC Sensor Observation Service Standard) to downstream
analysis-ready user services (such as OGC WMS, WCS, and WCPS). Notably, the range type

can go far beyond just a datatype indicator (such as integer versus float). For example, unit

of measure, accuracy, nil values, and the semantics (by way of a URL reference), and more
information can be provided with a range type, thereby accurately describing the meaning of the
values. The following is an example range type definition for panchromatic optical data, encoded

in GML:

<GeneralGridCoverage xmlns="http://www.opengis.net/cis/1.1/gml" ...>
<DomainSet> .. </DomainSet>
<RangeType>

<swe:field name="panchromatic">
<swe:Quantity definition=
"http://opengis.net/def/property/0GC/0/Radiance">
<swe:description>panchromatic sensor</swe:description>
<swe:NilValues>
<swe:nilValue reason=
"http://www.opengis.net/def/nil/0GC/0/AboveDetectionRange">
255
</swe:nilvalue>
</swe:Nilvalues>
<swe:uom code="W.m-2.sr-1.nm-1"/>
</swe:Quantity>
</swe:field>
</RangeType>
<RangeSet> ... </RangeSet>
<Metadata> .. </Metadata>
</GeneralGridCoverage>

Metadata. This optional part is left unspecified in the CIS Standard and can contain any

number of literally anything, (in XML xs:any). In addition to domain set and range type, the
mandatory technical metadata of a coverage, these optional metadata are completely application
dependent. Of course, the coverage user cannot understand the metadata, but the metadata

will duly be transported so that the connection between data and metadata is preserved. One
example of such metadata is given by the European INSPIRE legal framework for a common
Spatial Data Infrastructure. INSPIRE prescribes canonical metadata for each object following

a specific schema. This demonstration showcases use of INSPIRE metadata. Note the “any
number:” different applications may add their own metadata, and each application in practice
would only look at those metadata slots it recognizes, ignoring all others.

Returning to the discussion of CRSs and the srsName attribute, a coordinate is meaningless if
there is no indication about the reference system in which it is expressed. A value of 42 — is that
degrees (referring to what datum?), meters, years since epoch, or million years backwards? All
that information is provided with the CRS.

As per an OGC Naming Authority (OGC-NA) decision, CRSs shall be expressed in URLs, and that
is what is found in the srsName attribute. These URLs resolve through a special service operated
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by OGC providing definitions for CRSs such as http:/www.opengis.net/def/crs/EPSG/0/4326
and http:/www.opengis.net/def/crs/OGC/0/AnsiDate.

A so-called CRS resolver service, running an open-source implementation by Constructor
University, delivers the CRS details [9]. As this results in quite unwieldy URLs, OGC has resolved
that CURIEs alternatively can be used everywhere in place of URLs. The CRSs above then can be
written as [EPSG:4326] and [OGC:AnsiDate].

Such CRSs can be plugged together to define higher-dimensional spaces. The EPSG catalog is
large, but preparing all possible axis combinations is not feasible. Therefore, and following ISO
19111-2, CRS and axis composition is provided where the base URL ends with crs-compound,
followed by an ordered list of component CRSs and axis. This is the structure shown in the
srsName attribute before, better digestible with a slight reformatting:

http://www.opengis.net/def/crs-compound
?  1=http://www.opengis.net/def/crs/EPSG/0/4326
& 2=http://www.opengis.net/def/crs/0GC/0/AnsiDate

The alternative CURIE shorthand notation for this example is [EPSG:4326,0GC:AnsiDate].

Above is the information necessary to understand the concept “domain set.” But there is

also the following consideration: Services would be slowed down considerably if, for each
coverage decoding, the application first needs to retrieve the CRS definition. Actually, not all

the information is needed — the most important are the axis names and units of measure. The
axisLabels="Lat Long date” and uomlLabels="deg deg d” attributes provide this excerpt directly.
Additionally, the axis labels define the sequence of axes. The axis sequence ambiguity actually

is a problem recurring in GeoJSON and other OGC services where axis order is implicitly
assumed. For example, the GeoJSON specification [11] states: “The coordinate reference

system for all GeoJSON coordinates is [...] WGS 84." [11] also states that “the use of alternative
coordinate reference systems [...] has been removed from this version of the specification.”

The RFC suggests that “where all involved parties have a prior arrangement, alternative
coordinate reference systems can be used without risk of data being misinterpreted.” This means
that information about the CRS used must be transported outside the GeoJSON file which,
consequently, is no longer self-contained. Hence, a conclusion is reached that GeoJSON may not
be viable for use in ARD-ready applications and content.

B.5. Coverage Processing

For the sake of the discussion in the next section, a very brief introduction to ISO 19123-3

[58] and its geo datacube query language, also known as Web Coverage Processing Service
(WCPS), is presented. Strictly speaking, WCPS defines a higher, abstract level language and not
a concrete service as it is agnostic of the underlying protocol. Such protocols are provided in the
OGC WCS Processing Standard [13]. This separation of concerns allows discussing concepts in
an APIl-independent manner.

The current version of WCPS addresses the most widely used coverage subtype, regular and
irregular grid coverages, also known as raster data or, more generally, datacubes. The concept of
queryable datacube services was first introduced in [15] and refined in [17]. The concept follows
the general Big Data definition of “data too big to download” therefore adopts an approach of
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“shipping code to data.” WCPS is embedded in a long tradition of special-purpose languages

for data analysis, with SQL as its most prominent example. Having a special data language has
several advantages: more concisely fitting the task, thus leading to more compact, high-level
phrasing than with general programming languages; safe in evaluation, thus less prone to attacks
than general programming languages; server-side optimization; and several more.

WCPS as a datacube language conveys several key properties as follows.

e The datacube model, OGC Coverage Implementation Schema [45], is embedded — no
particular structure definitions have to be made. The language already syntactically
enforces succinct and complete writeup (which means automatic query checking, syntax
highlighting, and editing hints are possible, as provided with the rasdaman query editor).

e Common operations are readily available and easy to formulate, such as Tomlin’s
Map Algebra categories (local, focal, zonal, global) and many common Tensor Algebra
operations reaching up to, for example, the Discrete Fourier Transform.

e There is a formal basis of static and dynamic semantics laid down in the WCPS Standard so
that all implementations are guaranteed to return the exact same result. In contrast, OGC
Environmental Data Retrieval (EDR) [21] which also knows a datacube subsetting request
can return literally “anything” which makes client design and development potentially
rather difficult.

e Some dangerous constructs — such as explicit loops with unverifiable termination — are
unavailable, thereby disallowing a class of denial-of-service attacks. A WCPS query can
get a “price tag” of how many data reads are required, how big the result will be, and how
much processing is involved prior to executing the request.

e The syntax is close to the FLOWR expressions of XQuery [23] so that both can be
integrated, forming a unifying query model for both data and metadata, supporting
hierarchically structured XML or JSON.

These design rationales differentiate WCPS from the family of raster processing languages
which typically are designed in the spirit of general programming languages, such as the xarray
python library [30], Matlab [32], or IDL [33]. In a nutshell, WCPS provides a crisp, concise geo
datacube language for client-side ease-of-use and server-side evaluation and optimization.

The WCPS language works as follows. At the core, it consists of a for and a return statement. In
the for part, variables are defined which iterate over coverage lists. For example,

for $c in ( A, B, C )

would assign coverages A, B, and C to variable $c in turn. This alone does not do anything
because a way to generate output is lacking. Output generation is accomplished with the return
clause. In the trivial case below it delivers a constant number:

return 42

If the goal is to download all three coverages from above this can be written as follows, selecting
the preferred output format (assuming it technically can hold these coverages):

for $c in ( A, B, C )
return encode( $c, "png" )
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Now pixelwise, processing can be started where all the operators are known: arithmetic, logical,
exponential, logarithmic, trigonometric, case distinction, etc. While this works, it will download
the complete coverage. It is better to add subsetting to extract a region of interest (note that the
sequence of axes in the query does not matter):

for $c in ( A, B, C )
return
encode( $c [ date( "2018-05-22" ),
E( 332796 : 380817 ),
N( 6029000 : 6055000 )

Notably, for each axis not mentioned, the full extent is used while subsetting is applied on the
datacube axes in the query which allows writing queries that are to dimensions not of interest.
For example, a timeseries analysis query would look perfectly the same for 1D sensor timeseries,
3D image timeseries, and 4D climate and weather timeseries.

So far, each coverage has been processed in isolation. Data fusion is possible through “nested
loops™:

for $c in ( A ),
$d in ( B )
return encode( $c + $d, "png" )

Aggregation plays an important role for reducing the volume of data transported to the client.
With the common aggregation operators — in WCPS called “condensers” — queries like the
following are possible (note that no format encoding is needed, numbers are returned in ASCII):

for $c in ( A )
return max( $c )

As a final example, the following WCPS query computes the Inverted Red-Edge Chlorophyll
Index (IRECI) on a selected space/time region, performs contrast reduction for visualization, and
delivers the result reprojected to EPSG:4326:

for $c in (S2_L2A_32633_B07_60m),
$d in (S2_L2A 32633 _B04 60m),
$e in (S2_L2A_32633_B05_60m),
$f in (S2_L2A_32633_B06_60m)
let $sub := [ date("2018-05-22"),
E(332796:380817),
N(6029000:6055000) ]
return
encode(
crsTransform(
( $c -%d )/ ($e/ $f ) [ $sub 1,
{ E: " EPSG:4326", N: “EPSG:4326" }
) / 50,
"png",
)

For more detail, refer to the WCPS tutorial provided by EarthServer [59][73].

Such queries can be sent via the Web through the WCS ProcessCoverages request, with a
structure as shown below where {wcps-expression} represents the WCPS query sent:

https://acme.com/rasdaman/ows
? SERVICE=WCS&VERSION=2.0
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& REQUEST=ProcessCoverages

& QUERY={wcps-expression}
In the rasdaman server, for example, queries undergo highly effective optimization prior to
execution, including parallelization among cores available and distributed processing (in case of
federated queries).

B.6. Section 3— ARD Obstacles in Coverages

In this section, shortfalls of ARD in coverages are inspected. The discussion is based on both
conceptual considerations obtained from manifold standards development discussions as

well as empirical experience from projects dealing with datacubes as a special, yet prevailing,
category of coverages. The discussion below is loosely grouped into data and processing issues,
acknowledging that both are tightly intertwined and cannot always be separated completely.

B.6.1. Data

This section is written with the coverage structure in mind, consisting of domain, range, range
type, and metadata. Generally, it can be observed that scientists and developers so far have put
more effort into the design of the domain (such as coordinate handling, at least horizontally)
than in the measured/generated values of the range.

B.6.1.1. Pixel-in-X

A recurring discussion on geo raster data is whether the pixels are assumed to sit in the center
or a corner of the cell. The root cause is a gross misinterpretation of diagrams.

In a 2D diagram the coordinate axes determine the position of points drawn in the diagram.
Auxiliary lines go through the integer values or some other meaningful line spacing. Crossing
auxiliary lines encloses areas, but in mathematics this has no meaning. If points are to be plotted
at coordinates where auxiliary lines cross, then the points will invariably be plotted at the cross-
section of two lines.

In programming, arrays (which are used to ultimately store the pixels) are diagrammatically
usually shown as a lineup of boxes where each box symbolizes a storage area that holds some
value. The borders in this diagram have no meaning.

Figure B.3 puts both types of diagrams next to each other. Note how in the left Cartesian
diagram numbers (i.e., coordinates) are associated with the lines whereas in the right array
diagram numbers (i.e., storage addresses) are associated with the boxes. Combining both
concepts results in the notion of pixels that (i) have been acquired for some geographic point
(left interpretation) and (ii) have been stored in some memory cell.

This has caused confusion among some geo scientists who started mixing both concepts and
coming up with the idea that a pixel could sit in the “center” of the cell, leading (with regular
grids) to a half-pixel offset of the pixel’s direct position. Consequently, the scientists differentiate
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between “pixel-in-center” and “pixel-in-corner” often making some silent assumption that the
corner under consideration is the upper-left one while for d dimensional data 2d corners exist.

This interpretation is factually wrong. On the level of abstraction of gridded geographic data
there is no concept of a “cell” in the array sense, just direct positions (in coverage terminology)
sitting at the given real-world coordinates. Each sensor delivers data for the given coordinates,
meaning at the crossing of the auxiliary lines for these coordinates. If the value was assumed
to sit, say, “between x; and x;+1”, then it would have the direct position coordinates given by (x;

+ Xj+1)/2. On a side note, some formats offer slots to store a local reference frame which could
capture such an offset.
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Figure B.3 — Cartesian diagrams (left) versus array symbolization (right)

The situation is aggravated by the lack of indicating the pixel-in-X assumption in some data
formats. Combining datasets (including a background map) with different assumptions can
lead to unwanted half-pixel shifts, potentially leading to dramatic deviations in an analysis.
Discussions of how to handle this appear periodically on the Web, such as on gdal-dev where
a contributor recently looked at the NetCDF format and Proba-V satellite data observing that
wrong interpretation “could be dangerous or at least inconvenient. In my case | have a Python
code that does zonal statistic and when a geometry is converted to a little raster binary mask,
it does not match the same area in the ProbaV data and the results is a crash in Fiji because
ReadRaster goes overboard or lost of NDVI data in other regions. The half pixel shift grows as
you go east.”

This offset issue becomes even more spectacular when applied beyond the normally considered

horizontal axes. In x/y/z coverages including a height or bathymetry axis there is no generally
accepted convention that would determine a half-voxel offset upward or downward.
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Similar questions arise on the temporal axis. Consider an example where some coverage with
temporal resolution 1 year provides weather observations every January. Naturally, it would be
expected that data “sit” in January. A pixel-in-center assumption would have a half-resolution
offset, so 6 months. Hence, the weather observations would be attributed to June, rather than
January.

Fortunately, the pixel-in-X discussion has not yet reached vertical and temporal axes and
remains an item of discussion and confusion on the horizontal axes. Another difficulty is when
non-regular grids come into play. Gridded coverages can be of the regular structure assumed so
far (Figure B.4 left), or can be irregular of several types (Figure B.4 center and right).

Figure B.4 — Sample regular and irregular grid coverage types [26]

The recommendation is to improve education on this misconception and always assume a

pixel sitting at the coordinate indicated, with no offset to anywhere. Course material should be
developed and distributed widely which discusses pixel-in-X in particular on 4D spatiotemporal
coverages.

B.6.1.2. Pixel-is-X

Another issue centers around the question whether a pixel is considered a point (hamed “pixel-
is-point”) or an area “around” that point (named pixel-is-area”). Typically, in regular grids this area
would stretch halfway to the neighbor positions (Figure B.5). Motivation is that optical sensors
average light values over an area while elevation data represent a sample valid at exactly (and
only) at the measured point.
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Figure B.5 — Pixel-is-area perception

There is no commonly defined handling. Users are expected to understand and interpret data
appropriately. For example, the United States Geological Survey (USGS) points out [34] that
Landsat uses a pixel-is-point interpretation and warns that some tools assume pixel-is-area
designation. According to the above argument, however, Landsat should have a designation
pixel-is-area.

To investigate this further, the characteristics of a sensor are considered. Details like viewing
angles of a sensor are ignored, assuming an orthorectified, radiometrically corrected situation
for simplicity. Likewise, the sensor instrument structure and its common variants such as
pushbroom, whiskbroom, array, etc., are ignored.

Regardless of whether sensors are single or combined (e.g., CCD arrays), each single sensor has
a so-called field of view (FOV) which is defined as the maximum angle of view that a sensor can
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effectively collect signals (such as photons). The width on the ground corresponding to the FOV
is called the swath width.

A sensor will collect signals over some time over its FOV, resulting in the final pixel value. This
FQOV, due to the physical nature of the sensor, will be a cone which is narrow close to the sensor
and wider as distance increases. The area from which a sensor captures signals can be described
through an integral over the FOV area, which is circular or more generally elliptic.

In any case, the FOV cone does not “know” about the neighbor sensors, and by no means can
it be assumed that signal capture stops midway between the FOV centers (Figure B.6 left), or
conversely that every point in the swath width contributes to some pixel in the sensor array
(Figure B.6 right). Even in the case of no overlapping and maximum FOV relative to sensor
distance, it noticed that there are areas that do not contribute to any pixel.
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Figure B.6 — Various FOV situations

Therefore, the assumption is that a pixel can always represent an area of signal collection (pixel-
is-area), even if the area shrinks to a singular point (pixel-is-point). The main point is that this
differentiation should not lead to a substantially different treatment, such as introducing a map
offset — at least not on the level of abstraction discussed and notwithstanding particular sensor
characteristics to be captured.

The main difference remaining is interpolation: The DEM should not be interpolated while it is
perfectly fine for the optical sensor. In this opinion, it is captured already in the interpolation
information of the coverage where the DEM would have no interpolation associated whereas
the optical sensor is fine with various sorts of interpolation.

At a next level of differentiation, interpolation might be restricted to the FOVs of the sensors,
but that information is not captured in the current standards and would possibly lead to a
massive increase in complexity.

Finally, an observation is that pixel-is-x exclusively focuses on horizontal space. No guidance
was found on how to apply these concepts on vertical and temporal coordinates. Additionally,
reservations from above concerning shifting by a half-resolution offset apply.

Notably, in the OGC there is some controversy on this topic[35].

Further investigation into the technical details of where in the coverage extent interpolation
should be allowed is recommended which should not stop at area versus point discussions
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but also drill more deeply into theory and practice. In any case, it is strongly recommended to
abandon the idea of half-pixel shifts.

B.6.1.3. Units of Measure

A long-standing, yet not satisfactorily solved issue is the unit of measure (uom). CIS tentatively
does not make any coverage-specific assumption about its representation. After all, uom is an
overarching concept which should not be made specific to coverages. A string-valued attribute
for identification, as adopted from OGC Sensor Web Enablement (SWE) Common where
attributes code and href, is suggested. SWE requires either a code attribute using UCUM or a
reference to an external unit definition.

However, diving into the corresponding XML schema, it appears that the underlying uom code
type, UnitReference, is not defined. Instead, there is a UnitReferencePropertyType type whose
attribute code is of type UomSymbol. Even in the examples provided with the SWE Common
Standard, a wide range of usage is found:

e use of the code attribute for a symbol, name, abbreviation thereof, or a formula: code="%",
code="mbar’, code="deg”, code="km/h”; and

e use of the xlink:href attribute for a reference to a concept or an abbreviated unit name (for
which, however, no registry exists).

xlink:href="http://www.opengis.net/def/uom/I1S0-8601/0/Gregorian”
xlink:href="Cel"

In CIS, the range type — which is adopted from SWE Common — contains a corresponding
element which is supposed to contain a UCUM unit or a URI, as per OGC convention. A URL
would act as an identifier of some unit, and with a suitable mechanism behind this would allow
even automatic transformation between units, say between feet and meters. Similarly, in the
domain definition CIS remains agnostic and just requires units — such as geographic degrees or
km, or temporal timestamps — which are understood in the context used.

Actually two issues can be identified. First, an incoherence in names can be observed. This
happens when abbreviations are used. Even on very basic geographic units, uniformity is lacking
as the following two random examples demonstrate.

e OGP at some time changed “long” for longitude to “lon” in the EPSG axis abbreviation
to have a three character abbreviation like “lat”. This led to major issues in the handling
of existing and new data as software usually did not automatically recognize that “long”
and “lon” both denote the same axis. In the end, the solution in OGC was to allow
in a coverage to freely name the axis labels, not tied to the name used in the EPSG
CRS definition. These axes could be identified by position in the axis sequence — for
example, CRS axes “Lat Lon h ansi” in a coverage can be named “lat long height date”. This
decoupling allowed tools to keep legacy “long” and also to liberate applications from using
cumbersome OGC names such as “ansi” for dates.

e Another issue of the same kind, which remains unsolved today, is the use of both “deg”
and “degree” for the unit of measure along horizontal geographic axes.

OPEN GEOSPATIAL CONSORTIUM 23-043 67



Second, coverages are lacking a framework which would allow automatic conversion across the
manifold units in practical use worldwide.

Obviously, there is a lack of standardization for such information, leading to nonhomogeneous
or missing information in operational data. This has been observed already earlier [36]. Relevant
candidates are inspected.

UCUM (Unified Code for Units of Measure) is a code system intended to include all units of
measures being contemporarily used in international science, engineering, and business [37].
Units can be constructed following a mini language. For example, radiation per area might be
expressed as “W/cm2” for Watts per square centimeter. If no unit is to be provided, by CIS
convention, uom is “1” which in UCUM is expressed as “10*0”. Notably, for complex physical
phenomena UCUM can become quite involved, as the radiance definition “W.m-2.sr-1.nm-1" in
one CIS schema example shows [45].

The European Environmental Agency (EEA) has published a dictionary with concepts relevant
for environmental monitoring and land management [38]. This hierarchical classification system
uses the Simple Knowledge Organization System (SKOS), a common data model for sharing and
linking knowledge organization systems via the Web [39]. According to the website, this RDF-
based data dictionary was last updated in 2015, so does not appear well maintained. Further,
the power of ontologies seems not fully utilized as the main connectivity between terms is the
hierarchy, without a fully-fledged explicit ontology network.

RAINBOW is the OGC Definitions Server [40] which offers information about concepts relevant
in the standards ecosystem, with units of measure, CRSs, etc. While the service offers a wide
range (including, for example, planetary science CRSs) RAINBOW is relatively new. For example,
for temperature there is Kelvin, but neither Celsius nor Fahrenheit are available, and the

EPSG section is completely empty. UCUM is referenced, but the corresponding concept is not
connected to anything. Most important for this discussion, no information is provided that could
be used for some automatic conversion, such as from seconds to minutes or meters to feet. A
discussion has been launched recently, but subsequently has been closed again [41].

An alternative is QUDT [46], a unified architecture for the conceptual representation

of quantities, quantity kinds, units, dimensions, and data types. It appears that QUDT is
substantially more comprehensive than the uom ontology started by OGC. For example,
temperature is linked to Kelvin, Fahrenheit, and Celsius, among others. DEG_C (Degree Celsius)
contains information on the derivation from the canonical (Kelvin) unit indicating a conversion
multiplier of 1.0 and a conversion offset of 273.15, in a machine-readable format. This indeed
allows for an automatic conversion.

A potential downside of QUDT is the lengthy URIs which are unwieldy, at least for human users
(and even more so with composite CRSs, see discussion of multi-dimensional CRSs). One could
argue, though, that only the developers see such URIs. In operational applications, there is only
machine-to-machine communication where the length of the notation does not matter.

Notably, QUDT is not a standard, but a research outcome maintained by a small (but rather
active) group. Custom datatypes for measurements as well as on-the-fly support of arbitrary
custom datatypes are implemented in an Apache Jena fork.

Recently, another RDF ecosystem of practically relevant datatypes has been suggested [47],
including a microformat for UCUM syntax next to energy, force, pressure, speed, temperature,
time, etc., which combines the exact notation of UCUM with the reasoning capabilities as in
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QUDT. An implementation based on the Apache Jena reasoning framework is available. In future
this might open the door for an automatic conversion across atomic and composite units.

A further recent activity has been launched by of CODATA with its Digital Representation of
Units of Measurement (DRUM) task group [48]. The Bureau International des Poids et Mesures
(BIPM) [49], an international organization established by the Metre Convention and managing
body of the International System of Units (SI) and the international reference time scale (UTC),
has started, during Testbed 19, a Forum on Metrology and Digitalization with one aim being a SI
Digital Framework. Both CODATA and BIPM goals appear similar to what is discussed in this ER
Annex, but no results are available yet. At the University of North Florida, a prototypical Units of
Measure Interoperability Service [50] has been established aiming at automatic units translation.

Comparing the approaches discussed so far reveals the following findings.

e Common sense names and abbreviations are not suitable for unit understanding and
automatic conversion.

e UCUM is exact and can be parsed for automatic handling by introducing a microsyntax
which is nicely compact but can become unwieldy for human users.

e OGC'’s ontology approach is going the right direction but is not (yet) usable in its current
preliminary state.

e QUDT is amenable to reasoning as well as to conversion arithmetics.

Bottom line, it is recommended adopting QUDT for use in the range type — best as a normative
requirement, but at least as a good practice. OGC might be the right body for that. Also, OGC
could host the specification and service as part of OGC's “community standards” process which
has become popular recently.

B.6.1.4. Tiling

Partitioning of large arrays into smaller sub-arrays, also known as tiling or chunking, is a common
technique for storing large arrays. Queries requiring some region of a gridded coverage will need
to retrieve the required tiles, cut out the intersection with the region, and reassemble the parts
into the result.

A comprehensive analysis of tiling in general has been provided by Furtado [51]. Particular
patterns were categorized and cast into several parametrized strategies for easier handling by
the tiling responsible, normally the data manager (Figure B.7). In rasdaman, these strategies have
been implemented in a storage layout clause extending the insert and update statements. The
engine will use the tiling directives for all new incoming data arranging the data according to the
pattern specified. Via an update statement, a repartitioning is possible, something useful if new
insights about the access patterns have emerged.
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Figure B.7 — Sample tilings, after Furtado: from left,
regular, aligned, non-aligned, area-of-interest strategy

The goal of tiling is always to minimize the number of disk accesses. Within limits it is of less
importance how large the tiles are, but every |I/O request costs. What is important is to minimize
those I/O requests. If tiles are too small (like 4kB at some time used by Oracle and Esri, and
about 100x100 pixels used in the 2D tiling of PostGIS Raster [52]) too many loads need to be
performed, leading to significant performance losses as verified experimentally by Furtado. If
tiles are too large, on the other hand, too much data are loaded and then dropped while cutting
out the result. As such, tiling becomes a tuning parameter giving the administrator complete
freedom to define any partitioning, or simply rely on some reasonable defaults.

Array databases hide the underlying storage structure of the datacubes, thus relieving users
from a potentially challenging technicality which has proven useful in practice for simplifying
access APIs and client codes. Some tools, though, require the user to reassemble the tiled and
clipped data. In OGC standardization attempts exist, though, to make the tiling explicit.

OGC Web Map Tile Service (WMTS) “trades the flexibility of custom map rendering for the
scalability possible by serving of static data (base maps) where the bounding box and scales
have been constrained to discrete tiles”[19]. This reduced functionality is justified by easier
implementation: “The fixed set of tiles allows for the implementation of a WMTS service using a
web server that simply returns existing files.” This tiling, though, is offered only for 2D x/y, any
other potential dimensions a datacube can have are not considered. Elevation is considered in
the 3D Tiles standard [53], however not time. On a side note, geographical parameters also are
hardwired: Angles are fixed to radians, distances to meters.

OGC Abstract Topic 22 [54] specifies models for 2D tilings which, without further justification,
are said to extend into higher dimensions. The 3D Tiles standard [53] is yet another specification
addressing tiling. Further, in ISO a coverage tiling standard proposal has been submitted recently.

Notably, Abstract Topic 22 emphasized that a tile internally obeys a “homogeneity constraint”
of following a single tessellation rule. A tile set making up one particular object is assumed to
have a common CRS, uom, origin, and extent for all its tiles. In contrast, in the coverage world
the coverage is the unit of homogeneity. All these tiling concepts and APIs have in common the
introduction of a concept at the user level which is not required by the scientific task (such as
EO analysis) and substantially complicates handling coverages.

One argument is that visual map clients request data in a tiled way and, therefore, providing tiles
is natural. However, storage tiling and delivery tiling are two separate concerns. A client might
get data in tiles, but a spatiotemporal access API should always allow user-selected arbitrary
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bounding boxes and not constrain to some storage pattern the server finds useful. Finally, while
visual clients like to access in tiles of their own chosen sizes, this certainly does not hold for
analysis where, for example, the code for processing a 2D array should be a simple nested loop
on a single, contiguous array. Everything else creates additional complexity, programming needs,
and opportunities for introducing bugs — in short: it is not analysis-ready.

Notably, CIS supports tiled storage, but that is part of the internal data organization — neither
W(CS GetCoverage nor WCPS queries are aware of such internals. Both operate regardless of
what the tiling of a coverage is like.

Therefore, it is ultimately claimed that for analysis-readiness tiling should be opaque and hidden
from the user. If deemed necessary to standardize, then a separate tuning APl might be defined
which could fit well into the coverage administration APIl, WCS-T [55].

B.6.1.5. Coverage Metadata

The coverage metadata element contains any ancillary information beyond the canonical
metadata fixed in the coverage structure. The corresponding XML schema part of CIS is as
follows:

<complexType name="MetadataType">
<sequence>
<any namespace="##fother" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>

Although by definition the CIS coverage metadata item can contain literally “anything” and,
hence, is outside the scope of the Standard, other standards utilize the metadata in a normative

manner. One example is the EU INSPIRE WCS standard which is based on CIS coverages with an
INSPIRE-specific metadata contents.

Tools are expected to add further information. For example, rasdaman can add information
about the contributing footprints of the original input files to allow tracing back the origin of
pixel data if needed.

The INSPIRE Elevation Grid metadata are embedded as shown below, following the above
metadata schema while honoring the INSPIRE schema.

<gmlcov:metadata>

<el-covmd:ElevationGridCoverageMetadata xsi:schemalLocation="http:
//inspire.ec.europa.eu/schemas/el-covmd/4.0 http://schema.datacove.eu/
ElevationGridCoverageMetadata.xsd"
xmlns:el-covmd="http://inspire.ec.europa.eu/schemas/el-covmd/4.0" ..>

</el-covmd:ElevationGridCoverageMetadata>
</gmlcov:metadata>

The following example extends this: three different, independent metadata records coexist in
the coverage.

<GeneralGridCoverage xmlns="http://www.opengis.net/cis/1.1/gml" ...>
<DomainSet> ... </DomainSet>
<RangeSet> ... </RangeSet>
<RangeType> ... </RangeType>
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<Metadata>
<el-covmd:ElevationGridCoverageMetadata
xmlns:el-covmd=
"http://inspire.ec.europa.eu/schemas/el-covmd/4.0" ...>

</el-covmd:ElevationGridCoverageMetadata>
<card4l:Card41lMetadata xmlns:cardsl="..." ...>

</caféél:Card41Metadata>
<special:MySpecialMetadata xmlns:special="..." ...>

</special:MySpecialMetadata>
</Metadata>
</GeneralGridCoverage>

How to combine various metadata items in this “bag” is not standardized, and hence tools will
have varying issues in extracting specific information again. It would be helpful, at a minimum,
to define a structure enabling the coexistence of metadata items without impact. This appears a
relatively low-hanging fruit: by introducing a convention of parallel, independent sub-elements
in the metadata slot, tools can provide and consume exactly those metadata the users are
interested in, without getting confused by all the other slots that may be present. Simple path
expressions would allow selecting such sections.

In rasdaman, for example, there are two such compartments already available. One is reserved
for technical use by rasdaman, such as for metadata applying only to specific regions in a
coverage. Another one is for metadata according to the EU INSPIRE standards.

A proposal is that OGC establishes a registry, maintained by the OGC Naming Authority (OGC-
NA) and overseen by the Coverages SWG as is the case with other coverage-related registry
information already, where extensions can be registered. Such an extension would consist of:

e aname not already registered;
e an XML namespace defining the structure; and

e any further pertinent information, such as description, examples, authoritative experts, etc.

Based on such registries, tools can extract the metadata of interest and be sure these are not
“polluted” by other structures stored with the coverage, and as such ignore all other metadata
items not of interest.

This has been discussed for XML, but it should be done in sync also for the JSON and RDF
encodings which are also specified in the CIS standard.

B.6.2. Processing

After inspection of the coverage data structure, the focus now turns to coverage processing.
As mentioned earlier, aspects sometimes are entangled so that processing is affected by data
modeling, and vice versa.
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B.6.2.1. Interpolation

In Earth sciences, coverage data in general describe spatially extended, time-varying physical
phenomena, corresponding to the mathematical notion of a “field” in physics [61]. Sensors
observing natural phenomena do not collect data only at the exact point of a direct position.
Rather, date are integrated over some neighborhood of the direct position and present the result
as the value at this position. Generally, these observations are aggregated over some region

and time. Therefore, it may make sense to invert this quantization to discrete points and derive
values for in-between positions from the direct positions available in the coverage.

Through interpolation, range values can be obtained for coordinates within the domain of

a coverage which are not direct positions, usually by combining the values of several direct
positions in the neighborhood of the coordinate location under inspection. Technically,
interpolation is applied during resampling in reprojection and scaling operations where new
direct positions are constructed which need to get values assigned.

As a first requirement, the domain must be in a CRS which allows expressing “in between”
coordinates. Cartesian coordinates, for example, do not fulfill this while geographic and temporal
coordinates do.

While computing such an interpolated value, an additional requirement is that the range type
must support derivation of values. Only nearest-neighbor interpolation is always possible as it
retains one of the original values. Further common interpolations, such as linear, quadratic, or
cubic require additionally a continuous range data type supporting the interpolation math.

Obviously, the justification for interpolation cannot simply be deduced from the data type.

Just because some range type is an integer does not preclude that new values can be derived
through integer arithmetics. And just because the domain is continuous does not mean that
interpolation can be applied freely. One example of a very careful handling of interpolation

is kriging[62]. Kriging is a method similar to regression analysis developed originally for
geostatistics (in particular, mining where underground data tend to be particularly sparse), but
also applied in many other domains like hydrogeology, remote sensing, and astronomy. See [63]
for an in-depth presentation of spatial data interpolation.

B.6.2.2. Image Pyramids

A special interoperability situation occurs in the context of image pyramids. Image pyramids are
used by virtually every tool to speed up zoom access which is why pyramids are considered a
form of processing but are actually an auxiliary data structure. When a user zooms out, then
data get requested at a lower resolution to reduce client load and transfer times. For faster
response the server caches lower-resolution versions of the data so that scaling loads and
processes only from the next-closest higher resolution and not the high-volume base level. The
problem is that while deriving the pyramid levels, interpolation may be applied. This raises the
following concerns.

e With two scale steps being applied to the data, is the combined interpolation equivalent to
a single scale operation, especially when considering numerical effects?
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e During preparation of the pyramid when some interpolation gets applied, a choice must
be made. If the user requests another interpolation method than the one used in pyramid
building, then two different interpolation methods get applied to the data in turn, with
unclear outcomes. Obviously, maintaining pyramid variants for different interpolations is
unfeasible in face of the storage needs.

Obviously, this holds not only for a visual client’s zoom-out, but also if the server uses pyramids
for scaling operations during any other processing. Generalizing this idea, a coverage should
only allow interpolation methods during retrieval and processing which are compatible with the
interpolation methods applied during generation of this coverage.

In the case of Landsat 8, chosen as a random example, it is found in [64] that the TIRS

bands 10-11 are collected at 100 meters but get resampled to 30 meters to match the OLI
multispectral bands. Actually, handling different bands in satellite images with different methods
is quite common, given that several different instruments contribute bands. For Landsat 8,
resampling is reported to be Cubic Convolution.

B.6.2.3. Summarizability

It is well known in statistics that aggregation of values is meaningful only under particular
conditions, and different types of aggregation are subject to different constraints.

A large body of research is available from OLAP and Statistical Databases, including
[65][66][671[68][69][701[76][771[78]. These constraints are given by the type of data (the
coverage range type), but also by the particular axis (the coverage domain), and aggregation
constraints typically vary across the axes. Finally, the type of aggregation (count, min, max, sum,
avg as well as modes, percentiles, etc.) is relevant. Examples for such impact factors include the
following.

e On classification data, maximum and minimum are meaningful, but neither sum (as well as
difference) nor average is. Counting of occurrences is allowed.

e Addition of timestamps is not meaningful — adding years 2023+2023 would result in the
year 4046 which is likely not an intended result. Rather, it is necessary to differentiate
between timestamps (where addition is not meaningful) and time periods (which can be
added up and added to timestamps).

e To obtain the car throughput in an image timeseries it is incorrect to add the number of
cars recognized in each time slice because cars driving through the area of interest likely
will appear in several such slices.

The term summarizability has been introduced by Lenz and Shoshani [65] to denote whether
some particular type of aggregation is meaningful. Categorial data, for example, are not
amenable to summing up or averaging, but there are more cases. The paper lists a series

of examples, such as in socio-economic data, “number of accident deaths by month” is
summarizable whereas “number of children attending school by month” is not summarizable.

Mazon et al. [66] provide a review of summarizability issues with a focus on Online Analytical
Processing (OLAP). In [67] non-, semi-, and fully-additive measures are discussed, and
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beyond sums also averaging and rounding. Manifold approaches have been taken to ensure
summarizability, including analytical [68], rule-based [69], and SQL integrity rules [70].
Inaccurate summary factors and the impact of inaccurate summary factors are treated in
[76], providing practical rules on proper summation design. Altogether, there is a rich body of
research and results available for business and statistical data.

Lenz and Shoshani [65] provide a categorization into flow (de-noting a cumulative effect over
a period), stock (state at specific points in time), and value-per-unit, based on which they
establish summation rules and compatibility matrices proving that these are necessary; no
proof is provided for sufficiency. Kimball and Ross [77] adopt a slightly different perspective
in distinguishing additive, semi-additive, and non-additive categories. On a side note,
summarization does not preserve proportions [80], a fact which potentially can be relevant for
model-based processing of EO data.

Niemi et al [78] combine these insights into the observation that a query can only produce
meaningful results if (i) the aggregation operation is appropriate for the measure (in coverages:
range values) and (ii) the measure is appropriate for the aggregation levels in the cube’s
dimensions (in coverages: axes).

Niemi et al [78] further establish a new categorization of dimension types and multi-dimensional
structures, derive a measure categorization, give formal definitions for summarizability

types based on the relational model of data, and then construct provably correct rules for
summarization.

In the context of EO, direct aggregation is concerned as well as indirect aggregation performed
in “zonal” operations like reprojection and scaling, plus “global” operations like radiometric
corrections.

In the field of Earth data such considerations are at a very preliminary stage. OGC Sensor Web
Enablement (SWE) Common [79] distinguishes an eclectic mix of Count, CountRange, Category,
CategoryRange, Quantity, QuantityRange, Time, TimeRange, Boolean, and Text which does not
appear helpful in providing summarizability guidance to tools.

More research is required to ensure that results can be transferred from the work mentioned or
to perform any necessary adjustment. For example, if the data comprises wind directions taken
at time intervals and there is a need to determine the prevailing wind during some period of
time, then it is not appropriate to compute the sum or the arithmetic mean, but it is appropriate
to compute the mode [78].

A goal should be to define a framework for categorizing data with respect to the data’s
summarizability which should allow finding provably correct constraints ideally derived
automatically for some given coverage. In the SQL ecosystem, critical errors can be discovered
automatically and, hence, avoided[81].

A first, admittedly simple and incomplete, step would be to reflect the well-known statistics
categorization into categorical, ordinal, and numerical data by adding such an attribute into the
coverage range type, plus corresponding protection of aggregation, interpolation, etc. With

an increased understanding and better metadata such safeguarding might successively get
increased.
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B.6.2.4. Dimension Hierarchies

On dimensions, aggregation often is driven by the conceptual model of the axis. For example,
over time it is common to aggregate up to days, up to months, or up to years. Aggregations
might consider all data of some chosen interval or regular parts thereof, such as “every
February.” A roll-up from days to weeks in OLAP sales data is mathematically very similar to a
map zoom-out by a factor 7, maybe with the particularity that OLAP data regularly are null at
weekends. It is typical to have several successive abstraction levels, commonly called dimension
hierarchies or concept hierarchies.

Looking more closely, the time axis reveals a particularity: As weeks and months do not align
in the calendar, OLAP time hierarchies are not strict (i.e., tree-like), but directed acyclic graphs
(DAGSs) where users can decide to roll up over weeks or over months. Figure B.8 schematically
shows two dimensional hierarchies.

location:
Clty «—region <«—— country

time:

month
day e =~ year

— week <«

Figure B.8 — Sample dimension hierarchies for geographic names and time

For Earth data, use of the temporal axis is likewise found. However, spatial x/y/z axes differ in
the zoom semantics. As opposed to many other axis types, these are continuous in aggregation,
or, expressed in common terms, allow zoom by any real-valued factor. (This is not to be confused
with image pyramids where the predefined pyramid members only act as an internal acceleration
and optimization mechanism, but do not serve any conceptual purpose and are not visible to
users.)

Altogether, dimension hierarchies are powerful concepts for adding more semantics to multi-
dimensional data (including summarizability constraints, as discussed before). It is certainly worth
looking into solutions in other domains, such as ISO SQL OLAP [82] and Microsoft MDX [83].
The recommendation, therefore, is to add dimension hierarchies to coverage axes and exploit
their semantics in the GeoDataCube queries of ISO 19123-3 [58].

OPEN GEOSPATIAL CONSORTIUM 23-043 76



B.6.2.5. Validity and Reliability Masks

One way of characterizing validity of range values is to annotate every cell (pixel, voxel, etc.)
with information about its validity which may consist of global metadata identical for all direct
positions, or characterizations individual for direct positions.

For example, the SoilGrids service [84] offers an uncertainty layer which can be activated by the
user for visual inspection (see Figure B.9).

The I12gen tool [85][86] which processes Level 1 data to Level 2 generates on the side a quality
bit vector per pixel with a series of relevant information, including the following.

' e ————

Soil organic carbon stock <

Figure B.9 — SoilGrid uncertainty layer visualization

Pixel is over land/over sea

Sunglint

Reflectance exceeds threshold

Observed radiance very high or saturated
Sensor view zenith angle exceeds threshold
Solar zenith exceeds threshold

Probable straylight contamination

Probable cloud or ice contamination
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e Atmospheric correction failure
e \Very low water-leaving radiance
e Navigation failure

e Navigation quality is suspects

In WCPS, such masking can be used to disregard “bad” pixels, say, in an aggregation, expressed
as

for $s in ( MyScene ), $m in ( MySceneMask )

return count( $s % ($m.sunglint = @) )

In case of a statistical mask with, say, percent values between 0 and 100 a threshold might get
applied in a query:

for $s in ( MyScene ), $m in ( MyScenePercentage )

return max( $s * ($m > 70) )

As can be seen, there is a much wider range of possible irregularities than just clouds and cloud
shadows, which again requires some remote sensing experience to decide about relevance of
individual flags for a given analysis task. As a Holy Grail, the system could determine which
quality filters have to be applied for a meaningful result (and whether the remaining values still
are sufficient).

Investigation is recommended on adding quality measures (as described or different) to
coverages and investigate on automatically evaluating such quality measures in WCPS, maybe
using ontologies. However, Machine Learning (ML) is not recommended.

Figure B.10 — Sentinel-1 scenes delivered by ESA with different processing parameters applied
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B.6.2.6. Product Provisioning Coherence

Data provenance is important information for assessing the usefulness of a particular data set
for a given purpose. In particular, the processing applied can have an impact as studies [87]
convincingly show. Even changes in software versions or processing parameters can have critical
consequences. An example is given in Figure B.10 where both times Sentinel-1 radar satellite
data are shown: left with an acquisition (and, hence, ESA processing) time between June 2017
and May 2018, right with a Sentinel-1 patch from 2023 extracted from the ESA Copernicus
archive. Neural networks trained on the left-hand side image generation by experience fail
miserably when applied to data of the generation shown on the right-hand side.

In the FAIRICUBE project, several data sets were harvested from the European Environmental
Agency (EEA). While building up datacubes from the the file sets, several inconsistencies

were noted. In some cases, resolution got enhanced at some time. However, the dataset was
continued to be advertised as the same and with the same name. In land use classification data,
at some point in time new classes were introduced (fortunately none were deleted). In one
dataset, the data semantics changes over time: The imperviousness dataset for the year 2018
has percentage values from 0 — 100% whereas for 2006 it has class numbers indicating 0-20%,
20-40 %, etc. Sometimes the legend was observed to change over time, and it remains to be
investigated deeper whether this hints at deeper semantics changes in the data.

From the usability perspective and the coverage homogeneity idea, such changes establish new
products — tools running automatically over the dataset time extent can generate disastrous
errors without a chance of recognizing and reporting this.

Changes are not captured by the coverage constituents currently, and generally are hard to
capture. Basically, a provenance record would need to capture not only the tools used, but also
the software version and the concrete parameters used. However, this still leaves open the
interpretation of how the changes affect the product properties.

Generally, the recommendation is to define processing levels rigorously enough so that
measures for variation introduced by the processing get provided alongside with the result,

or ideally variations are ruled out in the first place. Towards this Holy Grail, Strobl suggests a
revision of the ubiquitously used processing levels [93]. The suggestion distinguishes processing
along two “dimensions” (not related to coverage dimensions), measurand and spatiotemporal,
which together span a 2D matrix of combinations where each field defines a possible processing
status. This allows sorting the usual processing levels into the matrix, relating them, and spotting
combinations not addressed by processing levels hitherto.

From a coverage standards perspective, Strobl’'s measurand dimension relates to the coverage
range set whereas the spatiotemporal dimension relates to the coverage domain set. However,
while the disentangling of ARD impact factors is a good way forward there is no clear
requirements analysis which could justify the distinction made between combination-ready,
fusion-ready, analysis-ready, and inference-ready.
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B.6.2.7. Numerical Effects

In the processing heavy EO world and the common use of floating-point numbers, a series

of undesirable effects can occur which falsify results. Sometimes this influence is negligible,
sometimes the result becomes completely wrong. It depends on the degree of deviation from
the theoretically correct result, but also on the accuracy requirements of the problem to be
solved.

One blatant example is defining null values as floating-point numbers. This is dangerous because
(i) many numbers cannot be represented exactly (such as the beloved decimal-based fractions
such as 0.1) and (ii) any operation applied can introduce inaccuracies. Stull [94] reports a simple
example: add up 30 times 0.1 and you will get 2.9999993, rather than 3. This is with 32-bit
floats; with 64-bit floats the result is 3.0000000000000013.

Now imagine a null value is defined as 3. Both computations would miss the null value. One may
consider this example un-realistic, but it is felt that it is not: During import of data into a service
it is common to preprocess from raw to say Level 2 (see discussion above), with all the numerical
issues. Obviously, computations may accidentally distort the outcome and thereby generate a
value that is treated as non-null, for example, in aggregations. Conversely, values which should
count as non-null might accidentally get mapped to null.

This constitutes a huge and dangerous source of errors which often do not receive the
attention required, among others, because data scientists rarely have an education in Numerical
Mathematics as computer scientists usually get during undergraduate studies. In general, a
rather naive handling of floating-point numbers is often observed.

One of the insights Numerics teaches is interval arithmetics, used for floating-point numbers
[95][96]. In this approach, numbers are considered inexact in the sense that the numbers do
not have s single known value, but “smear” out over an interval of validity, in practice given by
an interval. This can capture the behavior of floating-point numbers with finite accuracy. Error
propagation rules can help estimating the ultimate accuracy of float computations [97].

While interval computations are significantly more involved (and require significant skills on
the developer side) and drag down performance as compared to point Numerics, interval
computations provide an automatic precision control which supports assessing processing
chains, among others.

While tools generally do not implement this approach due to the above obstacles mentioned,
these concepts might at least give hints on proper handling of finite-accuracy numbers. In
rasdaman, for example, null intervals can be defined [98] which, when wisely used, can capture
numerical deviations in the proximity of the conceptually foreseen null values. In the above
example, a null interval around 3.0 might be defined as [2.9999993 : 3.0000007], based on the
known processor accuracy. If a null value is defined as 3 then an equality comparison will fail in
both cases.

The situation is further complicated through a parallel execution of code on heterogeneous
hardware which can happen locally when CPU and GPU employ slightly divergent accuracies
(and, hence, arithmetics), and even more so with distributed processing where, in the extreme
case, supercomputer and edge devices jointly solve processing tasks.
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Generally, for enhanced confidence, data tools should employ interval arithmetics so that the
tools can provide error estimates. If provided by all tools along a processing chain, then the
chain itself could be characterized in its overall error estimates. One starting point is shown with
rasdaman where null intervals can be defined [98] and are strongly recommended on float and
double range types.

B.6.3. Practical Examples

In this section, larger real-life examples are provided to put the ARD investigation in context.

B.6.3.1. Service Quality Parameters

There are manifold general service quality parameters such as bandwidth, availability, and
response time from coverage-specific quality parameters. Only the latter are of concern in

this context which supports concentrating on the coverage structure by inspecting every
normative component for accuracy and fitness considerations. In the following incomplete walk-
through, qualitative and quantitative criteria for fitness of purpose of a given coverage for some
applications are addressed. Further research should conduct a systematic review with ideally
formal arguments for correctness and completeness.

e Domain

e Match with the area of interest: are the requested dimensions present, such as a
temporal axis for timeseries analysis?

e |s spatiotemporal resolution sufficient for the purpose?

e Are data provided in a CRS which supports transformation into one of the CRSs
understood by the client?

e Range type

e Are data in some unit that can be converted to a unit understandable by the client? For
example, feet can be converted to meters, but flight (pressure) levels cannot easily be
converted into hekto-Pascal (hPa).

e Accuracy: Are the range values exact enough for the analysis to be performed so
that the targeted results can be achieved? In the simplest case, this would become a
parameter in the range type. However, accuracy may vary across the coverage extent,
so other means might be appropriate such as accuracy masks. Note that this is related
to null values (a null value has an accuracy of 0), but not identical (non-null values can
vary wildly in their accuracy).

e Plausibility: With what probability can the data be trusted? Again, this can be
represented by a single value or, in the other extreme, by a twin coverage containing
a probability for every range value. Measures can be binary or percents, among others
(such as the floating-point accuracy or smaller).
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e Range:

o Are there sufficient non-null values in the area of interest, in all dimensions?

e Processing:

e Are all aggregation and other functions applicable on the type of data (categorial,
ordinal, numerical)?

e What interpolation must be applied, if any? Is a suitable interpolation method admitted
by the coverage?

The key question is always: is the given coverage good enough for answering the question the
client has — where “good” can mean a variety of things, as discussed?

Which, however, prompts for a counterpart on the client side: What is the required minimum
accuracy for a given task? This question has not been addressed adequately to the best of
knowledge. More generally, this addresses service quality parameters which actually may have
strong mutual dependencies. For example, JPEG image quality may be reduced to obtain smaller
files which transmit faster. This quality reduction (in this case: by filtering out higher spectral
frequencies, but also introducing artifacts sometimes) may or may not be acceptable.

Therefore, the development of APIs is suggested which, in parallel to formulating extraction

and processing requests, enable clients to express quality criteria. Corresponding frameworks
exist already in the field of cloud computing [99][100] including, for example, agent-based fuzzy
approaches [101]. For semantic handling in the coverage context these need to be augmented
with coverage-specific parameters, such as the ones discussed above. Optimal flexibility is given
by providing a language rather than just a list of parameters so that conditions of any complexity
can be built easily. For the evaluation of such quality requests against the quality offered by the
service — essentially, a multi-attribute prioritization decision making problem — methods such as
dual hesitant fuzzy graphs [102] may turn out promising.

B.6.3.2. Coverage Fusion

As discussed in the Introduction of this Annex, data fusion is an excellent study field for ARD.
Assume two georeferenced grid coverages, A and B. The goal is to obtain the mean square
difference over all cells. In WCPS, this is expressed as:

for $a in (A), $b in (B)

return avg( pow( $a - $b, 2 ) )

If this is done as part of some large, unsupervised analysis process several facets must be
investigated by the code (rather than a human), simply derived from the coverage definition.
First, each coverage needs to undergo individual scrutiny as described in the previous
subsection. Additionally, the following criteria are spotted; as before, rigorous research should
establish a formally correct and complete criteria set.

e Domain
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e Do A and B share the same dimension and axes? Otherwise, the coordinate tuple is
ambiguous.

e Do both share the same CRS? If a reprojection is required, this could be performed
automatically.

e Do further constituents fit in a compatible way, such as: coverage type; categorial
vs ordinal vs numerical; etc. Again, in some cases an automatic adjustment may be
possible.

e |n case of resampling, are the interpolation methods of both coverages compatible?

e Range type

e Through type casting, different numerical types (integer, float, complex) get adjusted
automatically. This is part of the WCPS Standard already.

e Determine proper treatment of null values (which may be different for A and B).

e \erify the units of measure for compatibility between A and B. If there is an
opportunity for automatic unit conversion, apply that. Further investigation should
determine how much of this inter-coverage harmonization can be automated.

B.6.3.3. ML

From the perspective of this discussion, model-based prediction through Neural Networks
constitutes just another “processing” request to a service. For example, in the UDF-enhanced
WCPS of rasdaman a prediction can be invoked as a query function which internally the server,
as part of the query processing sends over to pytorch. The following example takes some user-
specified patch from a datacube built from Sentinel-2 optical satellite data, and applies a crop
model to it.

for $c in (Sentinel_2a), $m in (CropModel)

return encode( nn.predict( $c[..], $m ),“tiff* )

Technically, function predict() from package nn (Neural Networks) receives the area of interest
together with the model to be applied and passes both to pytorch. The result returned is
processed further by rasdaman and in this case encoded as TIFF.

As it turns out in experiments as part of the Al-Cube [108] and FAIRICUBE [109] projects, such
pretrained models are extremely susceptible to even small deviations from the training data in
practically all parameters: different resolution, different radiometry, different landscape, etc.
Therefore, a current research topic is to investigate how to “fence” models in a way that the
server can predict the result quality and possibly warn users or even refuse to apply a model in
a given situation, such as “applying a fire forecast over the ocean does not make sense.” Initial-
stage considerations on criteria for such an assessment include the following.

e Landscape type: As a simple example, a seashore and water areas boundary polygon might
automatically be applied on areas of interest when models classified as land-based are
invoked.
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e Temporal applicability: For example, a crop damage estimator should be applied at a time
of year when normally crop grows in the area of interest.

e Data-inherent properties: This might address freeness of clouds and cloud shadows, data
histogram, or other suitable statistics.

Obviously, to this end models also need to carry quality information, specifically: a description
of applicability. This addresses on the one hand the input data for the model analysis, but also
the quality parameters imposed by the client. It is understood that such research is in its infancy,
although highly important when model-based prediction occurs somewhere in the middle of
automated decision-making pipelines, without human plausibility checking.

B.7. Section 4 — Summary of Recommendations

An almost certainly incomplete set of issues with coverage handling related to ARD has been
discussed. These issues are not always independent. Quite the opposite: many of them are
disentangled and, hence, should be addressed in a synoptic manner. In this section, summary of
the discussion is provided, providing the recommendations as defined above.

e OGC should update the GML Standard to (i) complete definitions and (ii) reflect needs
that have emerged in other standards that use GML (and had to be implemented by these
groups). One example is ISO 8601 / OGC WMS time strings as coordinates. On this
occasion, care should be taken that any such changes — which recently tend to focus on
JSON — are applied consistently over all encodings.

e OGC should establish conventions on the metadata structures so that independent
metadata sections can coexist in the metadata slot of a coverage. For various situations
such slots might be defined, such as for INSPIRE. Such conventions could become a Best
Practice document, an annex to the existing Coverage Implementation Schema, or even a
separate standard. The OGC registry should support this for an automatic validation.

e A common approach to the representation of units of measure (uom) should be adopted
which ultimately allows for an automatic conversion of units. The best candidate so far
appears to be QUDT. OGC should adopt QUDT as a “community project,” meaning at least
some semi-normative “good practice” or alternatively some normative fixing. Additionally,
development of tools and tutorials to boost community uptake should be pushed, for
example in OGC Testbeds.

e Standards should strive to exclude technicalities from APIs as much as possible. A
particular example is tiling of datacubes which is implementation specific, not adding any
functionality, but complexity for users (including client developers).

e |Interval arithmetics and systematic error propagation estimates should become common
sense in and across scientific services.
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e Concepts and APIs for fitness negotiation and service-level agreements should be
established which enable clients to express quality requirements so that a service can
decide whether it is able to honor those requirements or not.

e Applicability parameters should be developed for models so that the models can be
matched against the invocation situation as a kind of “safety belt.”

e The product generation needs to become less hand-waving to more rigorously comply and
keep product specifications and documentation coherent.

e |SO and OGC should extend the coverage data and processing model with the
enhancements proposed in this paper. These enhancements affect the 19123-* series in
ISO and the Abstract Topic 6, Coverage Implementation Schema, and WCPS Standards in
OGC.

e Summarizability of Earth data should be investigated to find a framework for better
safeguarding of semantically incorrect aggregation queries. As a start, OGC and ISO should
enhance the coverage range type with a distinction of categorial, ordinal, and numerical
range types.

e For coverage tiling, OGC should enhance the coverage maintenance standard WCS-T,
rather than having completely independent, scope-limited standards not connected at all
with coverages.

e Aninvestigation is recommended on adding quality measures (as described or different)
to coverages and investigate on automatically evaluating such quality measures in WCPS,
maybe using ontologies. However, ML is not recommended for this task.

e  OGC recently has adopted a strategy which maximizes the number of standards published,
knowingly accepting that such standards may not only overlap, but effectively can be
incompatible with existing standards (such as the recent CoverageJSON versus CIS).

This damages the original goal of interoperability and, therefore, is being disputed
controversially in the implementer, service operator, and data user communities.

e Abandon the misconception of pixel-in-X. In particular, do not perform half-resolution
shifts on images. Obviously, this would need synchronous changes in many tools
worldwide.

B.8. Section 5— Conclusion

The issue of how to achieve analysis ready EO data has been inspected, starting from the
coverage standards which provide already a canonical structure, but needs augmentation for
more readiness. “Readiness for what?” is actually another central issue which is not always
addressed sufficiently in research but is essential for having a clear goal. The following two
aspects of readiness are found to be particularly important.
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e Generally, clients and users should not need to be burdened with technical details not
relevant for the action to be performed, such as data formats, protocol specifics, tiling,
parallelization, etc.

e There is no absolute, free-standing analysis-readiness. Rather, readiness is specific to
each task, and therefore applications requiring some analysis-readiness need a means to
negotiate parameters. Research in this direction is encouraged.

Besides these general statements, several concrete suggestions have been contributed to
relevant bodies like OGC for enhancing standards and registries for better ARD support.

It is hoped that these deliberations contribute to a better consumption readiness of Earth data
and services.
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