
OGC® DOCUMENT: 22-024R2
External identifier of this OGC® document: http://www.opengis.net/doc/PER/T18-D002

TESTBED-18: FILTERING
SERVICE AND RULE SET
ENGINEERING REPORT

ENGINEERING REPORT

PUBLISHED

Submission Date: 2022-12-24
Approval Date: 2023-01-19
Publication Date: 2023-06-16
Editor: Sergio Taleisnik

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Copyright notice

Copyright © 2023 Open Geospatial Consortium
To obtain additional rights of use, visit https://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 ii

https://www.ogc.org/license
https://www.ogc.org/legal

CONTENTS

I. ABSTRACT ...v

II. EXECUTIVE SUMMARY ...v

III. KEYWORDS ..vii

IV. PREFACE ...viii

V. SECURITY CONSIDERATIONS ... ix

VI. SUBMITTERS ... ix

1. SCOPE .. 2

2. NORMATIVE REFERENCES ... 4

3. TERMS, DEFINITIONS AND ABBREVIATED TERMS ..6
3.1. Terms and definitions ..6
3.3. sortable ... 8
3.4. Abbreviated terms ... 10

4. INTRODUCTION ...13
4.1. Background ..13
4.2. Requirements Statement ..15
4.3. Functional Overview ... 16

5. OPERATIONS ...23
5.1. Conformance Classes ..23

6. SCHEMAS ... 26
6.1. Query Expression ...26
6.2. Stored Queries ..29
6.3. Parameters ...30

7. PROCESSES — PART 3 APPROACH .. 32
7.1. Pre-defining queries based on Processes — Part 3 extension ...32
7.2. Cross-collections queries ... 35

8. CONCLUSIONS ... 38
8.1. Research questions ..38
8.2. Lessons learned .. 40

OPEN GEOSPATIAL CONSORTIUM 22-024R2 iii

8.3. Future work ...41

ANNEX A (INFORMATIVE) SAMPLE EXPRESSIONS AND REQUESTS43
A.1. Example query expressions ...43
A.2. Example requests .. 47

ANNEX B (INFORMATIVE) REVISION HISTORY ...54

BIBLIOGRAPHY ...56

LIST OF TABLES

Table 1 — Operations ..23
Table 2 — Conformance Classes .. 24

LIST OF FIGURES

Figure 1 — Component Diagram for the Advanced Filtering of SWIM Feature Data Taskvii
Figure 2 — History of OGC experiments to enhance SWIM .. 15
Figure 3 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task 17
Figure 4 — Workflow from the perspective of a business user that needs filtered data18
Figure 5 — First Workflow Sequence Diagram ...19
Figure 6 — Workflow from the perspective of a filtering rules developer 20
Figure 7 — Second Workflow Sequence Diagram ... 21
Figure 8 — Paging through an output collection resulting from the above filter query pre-defined
using OGC API - Processes - Part 3 ... 35
Figure 9 .. 35
Figure 10 ..36

OPEN GEOSPATIAL CONSORTIUM 22-024R2 iv

I ABSTRACT

This Testbed-18 (TB-18) Filtering Service and Rule Set Engineering Report (ER) documents best
practices identified for features filtering and describes in detail how filtering can be decoupled
from data services. Further, this ER describes how filtering rules can be provided to Filtering
Services at runtime.

I I EXECUTIVE SUMMARY

Previous OGC work addressed the challenges of increasing interoperability between aviation
data services. Recently, the OGC community has developed a new family of standardized
OpenAPI-based Web APIs for various geospatial resource types. These new OGC API Standards
have the potential to enhance the way in which consumers can access geospatial data from
various sources. OGC Testbed-16 brought together previous work on the development of
OGC API Standards, the use of semantics to enrich data and SWIM data processing, and
demonstrated an OpenAPI-based API implementation instance serving SWIM data. OGC
Testbed-17 took lessons learned and recommendations from Testbed-16 and focused on further
testing the value of standards-based APIs within the SWIM program.

OGC API-Features endpoints define their filtering capabilities. Filtering is standardized across
different parts of OGC API-Features (see section Previous Work). As of December 2022, two
parts were still in draft status. Advanced filtering capabilities require sophisticated server
software. Not all data providers will be able to operate such a powerful service endpoint.
FAA SWIM Data Services currently produce data from the National Airspace System (NAS) to
consumers using various protocols and service offerings in both synchronous and asynchronous
messaging formats. OGC Testbed-18 explored filtering mechanisms for feature data served by
OGC API-Features instances. The experiments included filtering of native and fused SWIM data
and experimented with filtering services.

The research questions for the Advanced Filtering of SWIM Feature Data Task were as follows.

• How does filtering of SWIM data served by OGC API-Features endpoints work?

• Is the metadata required by the various OGC API-Features parts sufficient to allow clients
to fully understand the filtering capabilities of a service endpoint?

• OGC API — Features — Part 3: Filtering and the Common Query Language (CQL) supports
queryables that are not directly represented as resource properties in the content schema
of the resource. Is it possible to identify best practices for their usage?

• Clients may know the content schema of offered resources. How best to use this
knowledge for advanced filtering beyond what is defined in particular in OGC API —
Features — Part 3: Filtering and the Common Query Language (CQL)?

OPEN GEOSPATIAL CONSORTIUM 22-024R2 v

• How does a filtering service look that allows advanced filtering for rather simple OGC API-
Features-based SWIM data endpoints?

• How does such a service work in situations where a data publisher has restricted
filtering on certain properties (for example, because the backend datastore has not been
configured to allow high-performance queries on those properties)?

• How can a client application support a customer that has knowledge of the content
schema of an offered resource in the creation of filter statements? What are the key
requirements for a developer GUI that allows visualization and management of these
filtering tools?

• Is it possible to easily create a new filtered dataset by creating machine readable filtering
rules based on the metadata required by the OGC API-Features standards? How can these
rules be provided to the Filtering Service at runtime?

To answer these questions, this Testbed-18 Task was organized into the development and
testing of a system of six interconnected components, as seen on Figure 1.

• Façades for SWIM services with simple filtering mechanisms. Retrieving aviation data
from multiple SWIM services and serving these data through APIs built based on OGC API
standards featuring basic filtering mechanisms. Three Façades were built.

• The OGC API-Features Façade 1 (identified collectively as D100): Four APIs built to
serve NOTAMs, Airport Layouts, and Airspaces

• The OGC API-Features Façade 2 (identified collectively as D101): Three APIs built to
serve aeronautical, flight, and weather features.

• An extra façade, not originally included in the Task architecture, was offered in-kind by
the company Skymantics, and was named OGC API-Features Façade 3: An API built to
serve flight plans from the SFDPS (FAA) Service.

• Components that serve aviation data with advanced filtering mechanisms. Two filtering
services were built, each one featuring an API.

• The Filtering Service 1 (identified as D102): Built to serve SWIM data from D100 with
advanced filtering mechanisms.

• The Filtering Service 2 (identified as D103): Built to serve SWIM data from all three
façades with advanced filtering mechanisms.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 vi

• Client components to demonstrate consumption of filtered data and configuration of
filtering mechanisms. Two clients were built: One meant to serve an aviation domain
expert and the other to serve a developer of aviation software applications.

• The Business User Client (identified as D104): A client built to query filtering services
and demonstrate the usage of advanced filtering mechanisms.

• The Developer Client (identified as D105): A client built to define filter statements that
can be expressed in a machine-readable way and exchanged with the filtering services.

Figure 1 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task

All components were successfully developed and tested. This ER captures the operations,
conformance classes, schemas, and processes meant to support an API with advanced filtering
mechanisms. A comprehensive analysis of the research questions is included in a separate
chapter.

I I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

testbed, web service, api, standard, filter, SWIM, aviation

OPEN GEOSPATIAL CONSORTIUM 22-024R2 vii

IV PREFACE

It is possible that some of the elements of this document may be the subject of patent rights.
The Open Geospatial Consortium shall not be held responsible for identifying any or all such
patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 viii

V SECURITY CONSIDERATIONS

No security considerations have been made for this document.

VI SUBMITTERS

All questions regarding this document should be directed to the editor or the contributors:

Name Organization Role

Sergio Taleisnik Skymantics, LLC Editor

Clemens Portele interactive instruments GmbH Contributor

Eugene Yu George Mason University Contributor

Jérôme Jacovella-St-Louis Ecere Corporation Contributor

Patrick Dion Ecere Corporation Contributor

Mohammad Moallemi Concepts Beyond LLC Contributor

OPEN GEOSPATIAL CONSORTIUM 22-024R2 ix

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 22-024R2 1

1 SCOPE

This OGC Testbed 18 Engineering Report (ER) documents best practices identified for features
filtering and describes in detail how filtering can be decoupled from data services. This includes
how filtering rules can be provided to Filtering Services at runtime. The ER specifies operations,
schemas, and processes to support search and filtering of features. The ER also documents
lessons learned and recommendations for future work.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 2

2

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 22-024R2 3

2 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Open API Initiative: OpenAPI Specification 3.0.2, 2018 https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.2.md

van den Brink, L., Portele, C., Vretanos, P.: OGC 10-100r3, Geography Markup Language (GML)
Simple Features Profile, 2012 http://portal.opengeospatial.org/files/?artifact_id=
42729

W3C: HTML5, W3C Recommendation, 2019 http://www.w3.org/TR/html5/

Schema.org: http://schema.org/docs/schemas.html

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee: IETF RFC 2616,
Hypertext Transfer Protocol — HTTP/1.1. RFC Publisher (1999). https://www.rfc-
editor.org/info/rfc2616.

E. Rescorla: IETF RFC 2818, HTTP Over TLS. RFC Publisher (2000). https://www.rfc-editor.org/
info/rfc2818.

G. Klyne, C. Newman: IETF RFC 3339, Date and Time on the Internet: Timestamps. RFC Publisher
(2002). https://www.rfc-editor.org/info/rfc3339.

M. Nottingham: IETF RFC 8288, Web Linking. RFC Publisher (2017). https://www.rfc-editor.org/
info/rfc8288.

H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub: IETF RFC 7946, The GeoJSON Format.
RFC Publisher (2016). https://www.rfc-editor.org/info/rfc7946.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 4

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
http://portal.opengeospatial.org/files/?artifact_id=42729
http://portal.opengeospatial.org/files/?artifact_id=42729
http://www.w3.org/TR/html5/
http://schema.org/docs/schemas.html
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc7946

3

TERMS, DEFINITIONS AND
ABBREVIATED TERMS

OPEN GEOSPATIAL CONSORTIUM 22-024R2 5

3 TERMS, DEFINITIONS AND ABBREVIATED
TERMS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

3.1. Terms and definitions

3.1.1. Application Programming Interface (API)

an interface that is defined in terms of a set of functions and procedures and enables a program
to gain access to facilities within an application [8].

3.1.2. Façade Service

a component that fetches data from a specific data source and makes it available through its
own interface [10]. The main reason for building this type of service is the difficulty or inability
to modify the original data source with the intent of modifying:

• the underlying structure of the API; and

• the format in which the data are made available.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 6

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

3.1.3. filter expression

predicate encoded for transmission between systems.

Example CQL2-Text or CQL2-JSON are examples how a predicate can be encoded as a filter
expression.

[SOURCE: [14]]

3.1.4. parameterized stored query

a stored query that has one or more parameters.

Note 1 to entry: When executing a parameterized stored query, the user has to provide
parameter values for each parameter of a stored query. If a parameter has a default value, a
parameter can be omitted from the request to execute the stored query.

3.1.5. Predicate

set of computational operations applied to a data instance which evaluate to true or false.

Note 1 to entry: In relational algebra, this is called a selection.

[SOURCE: [5]]

3.1.6. property selection

operation to create a copy of a data instance, restricted to a subset of the properties of the data
instance.

Note 1 to entry: In relational algebra, this is called a projection. This term was used in the OGC
Web Feature Service standard, but the Features API SWG has decided not to use the term,
because in the context of geographic information the term “projection” is closely associated with
map projections and causes confusion if used with a different meaning.

Note 2 to entry: This topic is one of the future parts that the Features API SWG is starting to
work on. See the initial proposal.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 7

https://en.wikipedia.org/wiki/Selection_(relational_algebra)
https://en.wikipedia.org/wiki/Projection_(relational_algebra)
https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/property-selection

3.1.7. query

request for data from a dataset.

Note 1 to entry: A query will at least identify the data that the query operates on, the
predicate(s) used to select the result set, the properties of the data instances that should be
included in the response, the order in which the data instances should be included in the
response, and the maximum number of data instances in the response.

3.1.8. queryable

a token that represents a property of a resource that can be used in a filter expression.

[SOURCE: [14]]

3.2. returnable

a token that represents a property of a resource that can be included in a representation of the
resource.

Note 1 to entry: The term has been introduced in the proposal for the Schemas extension of
OGC API Features, so far without a definition.

Note 2 to entry: APIs implementing OGC API Features will include all returnables in a response
unless the property has no value for the instance or if the property is not included in the list of
requested properties (see property selection).

3.3. sortable

a token that represents a property of a resource that can be used to sort a collection of resource
instances.

NOTEThe term has been introduced in OGC API Records without a definition. Note that the
content will be moved from OGC API Records to a new part of OGC API Features.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 8

https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/schemas

3.3.1. sorting

operation to order the data instances in a set based on the values of selected properties of each
data instance.

Note 1 to entry: This capability is currently part of OGC API Records, but will be moved to a
new part of OGC API Features.

3.3.2. Standardized API

an API that is intended to be deployed by multiple API providers with the same API definition.

Note 1 to entry: The only difference between the API definitions will be the URL(s) of the API
deployment. All other aspects are identical (resources, content schemas, content constraints
and business rules, content representations, parameters, etc.) so that any client that can use one
deployment of the standardized API definition can also use all other deployments, too.

Note 2 to entry: If the API provides access to data, different deployments of the API will
typically share different content.

3.3.3. Standards-based API

an API that conforms to one or more conformance classes specified in one or more standards.

Note 1 to entry: Since almost all APIs will conform to some standard, the term is usually used in
the context of a specific standard or a specific family of standards. This ER considers Web APIs
with a specific focus on the OGC API standards. Therefore, whenever the term is used in this ER,
it is meant as an alias for an API that conforms to one or more conformance classes as defined in
the OGC API standards.

3.3.4. stored query

a predefined query that is available a resource in a Web API.

Note 1 to entry: Stored queries can be used for two purposes. The first is to save users of the
API the effort of creating their own queries. The second is to constrain what users may receive

OPEN GEOSPATIAL CONSORTIUM 22-024R2 9

https://docs.ogc.org/DRAFTS/20-004.html#rc_sorting

and how. The second purpose was the main purpose in the testbed where a developer creates
stored queries for use by business users.

Note 2 to entry: The Testbed 18 requirements state that “filtering rules” must be defined “in
some machine readable way.” This Engineering Report uses stored query in the OGC standards
and filtering rule in the Testbed 18 requirements as synonyms. The “JSON file with filtering
rules” in Figure 11 of the Testbed 18 Call for Participation is a query encoded as a JSON object
that includes filter expressions using CQL2-Text or CQL2-JSON.

3.3.5. SWIM Data

any data provided through the SWIM System.

3.3.6. Web API

an API using an architectural style that is founded on the technologies of the Web [9].

Note 1 to entry: Best Practice 24: Use Web Standards as the foundation of APIs in the W3C
Data on the Web Best Practices [9] provides more detail.

Note 2 to entry: A Web API is basically an API based on the HTTP standard(s).

3.4. Abbreviated terms

AIXM Aeronautical Information Exchange Model

API Application Programming Interface

CQL2 OGC Common Query Language

CRS Coordinate Reference System

ER Engineering Report

FAA Federal Aviation Administration

JSON JavaScript Object Notation

NAS National Airspace System

OPEN GEOSPATIAL CONSORTIUM 22-024R2 10

https://www.w3.org/TR/dwbp/#APIHttpVerbs

NOTAM Notice to Airmen

OGC Open Geospatial Consortium

SFDPS SWIM Flight Data Publication Service

SWIM System Wide Information Management

TB Testbed

TIE Technology Integration Experiment

WFS Web Feature Service

OPEN GEOSPATIAL CONSORTIUM 22-024R2 11

4

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 22-024R2 12

4 INTRODUCTION

4.1. Background

4.1.1. SWIM

The System-Wide Information Management (SWIM) initiative supports the sharing of
aeronautical, air traffic, and weather information. This is accomplished by providing
communications infrastructure and architectural solutions for identifying, developing,
provisioning, and operating a network of highly distributed, interoperable, and reusable services.

As part of the SWIM architecture, data providers create services for consumers to access their
data. Each service is designed to be stand-alone. However, the value of data increases when
combined with other data. Real-world situations are often not related to data from one but
instead from several SWIM feeds. The need for consumers to retrieve data from several SWIM
services creates the need of interoperability between those services.

4.1.2. OGC API Standards

For several years, the OGC members have worked on developing a family of OGC Web
API standards for various geospatial resource types. These OGC API Standards are defined
using OpenAPI. As the OGC API standards keep evolving, are approved by the OGC, and
are implemented by the community, the aviation industry can subsequently experiment and
implement them.

The following OGC API Standards and Draft Specifications were used for the development of
APIs during Testbed 18.

OGC API – Features: A multi-part standard that defines the capability to create, modify, and
query vector feature data on the Web and specifies requirements and recommendations for
APIs to follow a standard way of accessing and sharing feature data. It currently consists of the
following four parts.

• OGC API — Features — Part 1: Core. Approved September 2019, this standard defines
discovery and query operations. [12]

• OGC API — Features — Part 2: Coordinate Reference Systems by Reference. This standard,
approved October 2020, extends the core capabilities specified in Part 1: Core with the
ability to use coordinate reference system (CRS) identifiers other than the defaults defined
in the core. [13]

OPEN GEOSPATIAL CONSORTIUM 22-024R2 13

• Draft OGC API — Features — Part 3: Filtering. Part 3 specifies an extension to the OGC
API — Features — Part 1: Core standard that defines the behavior of a server that supports
enhanced filtering capabilities. [14]

• Draft OGC API — Features — Part 4: Create, Replace, Update, and Delete. Part 4 specifies
an extension that defines the behavior of a server that supports operations to add,
replace, modify, or delete individual resources from a collection. [15]

• Proposal OGC API — Features — Part 5: Search. The proposal is an initial draft for Query
resources that support queries on multiple collections in the same request, parameterized
stored queries and join queries. [6]

A Common Query Language (CQL2) is being developed together with Part 3 to standardize a
language that is recommended for filter expressions. [16]

OGC API – Processes: An approved (August 2021) OGC API Standard, specifies requirements
for implementing a Web API that enables the execution of computing processes and the
retrieval of metadata describing their purpose and functionality. Typically, these processes
combine raster, vector, coverage, and/or point cloud data with well-defined algorithms to
produce new information. [1]

Draft OGC API – Tiles: This recent OGC API Standard defines how to discover which resources
offered by the Web API can be retrieved as tiles, retrieve metadata about the tile set (including
the supported tile matrix sets, the limits of the tiled set inside the tile matrix set), and how to
request a tile. [2]

Draft OGC API – Styles: This draft OGC API specifies building blocks for implementing OGC
Standards based Web APIs that enable map servers, clients, and visual style editors to manage
and fetch styles. [3]

4.1.3. Exploration of OGC API Standards by SWIM

Over the years, the FAA and the OGC have jointly explored making SWIM data more easily
accessible and more valuable. As part of these past efforts, Testbed-16 brought together
previous work on the development of OGC APIs, the use of semantics to enrich data, and
SWIM data processing. The objectives were to deliver the first demonstration of an OpenAPI-
based API serving SWIM data, a component generating aviation Linked Data, and two client
applications querying and displaying that data [15].

Two of TB-16 recommendations were to integrate OGC API requirement classes within SWIM
Data Services and to demonstrate interoperability between diverse Aviation APIs [15]. In
order to advance these recommendations, TB-17 focused on the development of eleven APIs
based on OGC API Standards and the completion of Technology Integration Experiments (TIEs)
between these APIs.

During TB-16, the development of the API serving aviation data resulted in numerous lessons
learned and recommendations [15]. TB-16 saw the development of one aviation-related API
based on an OGC API Standard (OGC API — Features). The APIs developed during TB-17 ([4])

OPEN GEOSPATIAL CONSORTIUM 22-024R2 14

addressed many of those lessons learned and implemented additional OGC API Standards (draft
and approved) which have been maturing since. This process is reflected in Figure 2.

Figure 2 — History of OGC experiments to enhance SWIM

4.2. Requirements Statement

Testbed-18 required investigating the potential of filtering using OGC API Standards in the
context of the SWIM Program.

The original goals of the TB-18 Advanced Filtering of SWIM Feature Data Task were as follows.

• Experiment with OGC API-Features filtering mechanisms.

• Explore if best practices for advertising filtering capabilities are required beyond what is
already defined in the various OGC API-Features Parts.

• Demonstrate advanced filtering in situations where the data endpoints support only
rudimentary filtering by introducing a new service type “Filtering Service.”

• Allow filtering rules for a specific data service to be provided at runtime in a machine-
readable manner.

The research questions for the Advanced Filtering of SWIM Feature Data Task were as follows.

• How does filtering of SWIM data served by OGC API-Features endpoints work?

• Is the metadata required by the various OGC API-Features parts sufficient to allow clients
to fully “understand” the filtering capabilities of a service endpoint?

OPEN GEOSPATIAL CONSORTIUM 22-024R2 15

• OGC API — Features — Part 3: Filtering and the Common Query Language (CQL) supports
queryables that are not directly represented as resource properties in the content schema
of the resource. Is it possible to identify best practices for their usage?

• Clients may know the content schema of offered resources. How best to use this
knowledge for advanced filtering beyond what is defined in OGC API — Features — Part 3:
Filtering and the Common Query Language (CQL)?

• How does a filtering service look that allows advanced filtering for rather simple OGC API-
Features-based SWIM data endpoints?

• How does such a service work in situations where a data publisher has restricted
filtering on certain properties (for example, because the backend datastore has not been
configured to allow high-performance queries on those properties)?

• How can a client application support a customer who has knowledge of the content
schema of an offered resource in the creation of filter statements? What are the key
requirements for a developer GUI that supports visualization and management of these
filtering tools?

• Is it possible to easily create a new filtered dataset by creating machine readable filtering
rules based on the metadata required by the OGC API-Features standards? How can these
rules be provided to the Filtering Service at runtime?

4.3. Functional Overview

As shown in Figure 3, the Advanced Filtering of SWIM Feature Data Task architecture was
organized into a system of seven interconnected components. All seven components were
developed simultaneously throughout the Testbed, with permanent communication and
cooperation among participant organizations.

The components can be divided into the following three groups.

• Façades for SWIM services with simple filtering mechanisms. Retrieve aviation data
from multiple SWIM services and serve these data through APIs built based on OGC API
Standards featuring basic filtering mechanisms. Three Façades were built.

• The OGC API-Features Façade 1 (identified collectively as D100): Four APIs built to
serve NOTAMs, Airport Layouts, and Airspaces

• The OGC API-Features Façade 2 (identified collectively as D101): Three APIs built to
serve aeronautical, flight, and weather features.

• An extra façade, not originally included in the Task architecture, was offered in-kind by
the company Skymantics, and was named OGC API-Features Façade 3: An API built to
serve flight plans from the SFDPS (FAA) Service.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 16

• Components that serve aviation data with advanced filtering mechanisms. Two filtering
services were built, each one featuring an API.

• The Filtering Service 1 (identified as D102): Built to serve SWIM data from D100 with
advanced filtering mechanisms.

• The Filtering Service 2 (identified as D103): Built to serve SWIM data from all three
façades with advanced filtering mechanisms.

• Client components to demonstrate consumption of filtered data and configuration of
filtering mechanisms. Two clients were built: One meant to serve an aviation domain
expert and the other to serve a developer of aviation software applications.

• The Business User Client (identified as D104): A client built to query filtering services
and demonstrate the usage of advanced filtering mechanisms.

• The Developer Client (identified as D105): A client built to define filter statements that
can be expressed in a machine-readable way and exchanged with the filtering services.

Figure 3 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task

4.3.1. Component Interactions

The following two figures illustrate the intended interactions between the components
described in the Work Items & Deliverables section of this ER. The two figures illustrate the
workflows for using the filtering service for data subsetting (Figure 4) from the perspective of a
business client and for configuring the filtering service at runtime (Figure 6) from the perspective
of the filtering rules developer.

In the first workflow, illustrated in Figure 4, an OGC API-Features façade to SWIM Data Service
data service offers insufficient filtering capabilities to its customers. The Business User Client
does not want to access large data sets and then perform filtering itself. Instead, the client wants
to make use of a Filtering Service that can handle the filtering of the data and provide the subset
of the data that the client is interested in. If the filtering service receives a data request from the

OPEN GEOSPATIAL CONSORTIUM 22-024R2 17

client, it connects to the data service to access the necessary data, filters out everything that is
not requested by the client, and eventually delivers the result to the client.

Figure 4 — Workflow from the perspective of a business user that needs filtered data

OPEN GEOSPATIAL CONSORTIUM 22-024R2 18

Figure 5 — First Workflow Sequence Diagram

The second workflow, illustrated in Figure 6, demonstrates how a filtering service can be
configured at run time. The assumption is that the Developer Client is aware of the API
characteristics of the data service as well as the content schema of the data served by the data
server. Based on both, the client supports the user with a GUI in the definition of the filtering
rules. The user can then register these rules with the filtering service, which is now configured
to run the data service specific filtering.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 19

Figure 6 — Workflow from the perspective of a filtering rules developer

OPEN GEOSPATIAL CONSORTIUM 22-024R2 20

Figure 7 — Second Workflow Sequence Diagram

OPEN GEOSPATIAL CONSORTIUM 22-024R2 21

5

OPERATIONS

OPEN GEOSPATIAL CONSORTIUM 22-024R2 22

5 OPERATIONS

Table 1 — Operations

ENDPOINT METHOD REQUEST RESPONSE DESCRIPTION

/search GET n/a List of stored queries
Fetch the stored queries on the
server

/search POST A query expression A feature collection Execute an ad-hoc query

/search/
{queryId}

GET n/a A feature collection
Execute the stored query;
parameters are submitted as
query parameters

/search/
{queryId}

POST
URL-encoded
form with query
parameters

A feature collection Execute this stored query

/search/
{queryId}

PUT A query expression n/a
Create or update a stored
query

/search/
{queryId}

DELETE n/a n/a Delete this stored query

/search/
{queryId}/
definition

GET n/a A query expression
Get the definition of the stored
query

/search/
{queryId}/
parameters

GET n/a
JSON Schema of an
object where each
parameter is a property

Get the definition of the
parameters

/search/
{queryID}/
parameters/
{parameterID}

GET n/a
JSON Schema of the
parameter

Get the details of a query
parameter

5.1. Conformance Classes

• Core: Support executing stored queries.

• Parameterized Stored Queries: Support executing parameterized stored queries.

• Manage Stored Queries: Support reading, creating, replacing, and deleting stored queries.

• Ad-hoc Queries: Support executing ad-hoc queries.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 23

Table 2 — Conformance Classes

ENDPOINT METHOD CONFORMANCE CLASS

/search GET Core

/search POST Ad-hoc Queries

/search/{queryId} GET Core

/search/{queryId} POST Core

/search/{queryId} PUT Manage Stored Queries

/search/{queryId} DELETE Manage Stored Queries

/search/{queryId}/definition GET Manage Stored Queries

/search/{queryId}/parameters GET Parameterized Stored Queries

/search/{queryID}/parameters/{parameterID} GET Parameterized Stored Queries

Note that /search/{queryId}/definition is part of the ‘Manage Stored Queries’
Conformance Class. This is because in the current design GET on /search returns only the
main query metadata and, if applicable, the parameter descriptions. This supports use cases
where a query provider wants to keep the query expressions hidden from regular users. That
is, the query expression of a stored query should only be visible to those managing the query.
Consequently, GET on /search/{queryId}/definition is part of the Manage Stored Queries
conformance class.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 24

6

SCHEMAS

OPEN GEOSPATIAL CONSORTIUM 22-024R2 25

6 SCHEMAS

6.1. Query Expression

{
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$id": "QueryExpression.json",
 "oneOf": [
 {
 "allOf": [
 {"$ref": "#/$defs/query"},
 {
 "type": "object",
 "properties": {
 "title": {"type": "string"},
 "description": {"type": "string"},
 "limit": {"$ref": "#/$defs/limit"},
 "parameters": {"$ref": "Parameters.json"}
 }
 }
]
 },
 {
 "type": "object",
 "required": ["queries"],
 "properties": {
 "title": {"type": "string"},
 "description": {"type": "string"},
 "queries": { "type": "array", "minItems": 1, "items": {"$ref": "#/
$defs/query"} },
 "filter": {"$ref": "#/$defs/filter"},
 "filterOperator": { "type": "string", "enum": ["and", "or"], "default":
 "and" },
 "properties": {"$ref": "#/$defs/properties"},
 "limit": {"$ref": "#/$defs/limit"},
 "parameters": {"$ref": "Parameters.json"}
 }
 }
],
 "$defs": {
 "query": {
 "type": "object",
 "required": ["collections"],
 "properties": {
 "collections": { "type": "array", "minItems": 1, "items": {"type":
"string"} },
 "filter": {"$ref": "#/$defs/filter"},
 "properties": {"$ref": "#/$defs/properties"},
 "sortby": {"$ref": "#/$defs/sortby"}
 }
 },
 "filter": {"type": "object"},
 "properties": { "type": "array", "minItems": 1, "items": {"type": "string",
 "minLength": 1} },

OPEN GEOSPATIAL CONSORTIUM 22-024R2 26

 "sortby": {
 "type": "array",
 "minItems": 1,
 "items": {"type": "string", "pattern": "[+|-]?.+"}
 },
 "limit": {"type": "integer", "minimum": 1, "default": 1000, "maximum":
10000}
 }
}

A query expression can contain a single query (the properties “collections,” “filter,” “properties,”
and “sortby” are members of the query expression object) or multiple queries (a “queries”
member with an array of query objects is present) in a single request.

For each query

• The value of “filter” is a CQL2 JSON filter expression.

• The value of “properties” is an array with the names of properties to include in the
response.

• The value of “sortby” is used to sort the features in the response.

• Multiple entries in the “collections” member represent a join between the specified
collections. Just like in SQL, the properties of each collection participating in the join are
combined and presented in the features in the result set. Property names in the request
and in the response have to be prefixed with the collection name plus a period (“.”), e.g.,
“collection.property.”

• Support for joins was a stretch goal in Testbed 18 and not discussed or tested in detail.

• There are several open questions related to joins that should be considered by the
Features API SWG.

• How should the id of the joined feature be assigned? A combination of all features
in the tuple?

• How should the primary geometry be assigned (in the GeoJSON representation) if
there are multiple geometry properties?

• Should it also be allowed to “nest” joined properties, so instead of { …, "col.
prop1": 1, "col.prop2": "a", … } encode it as { …, "col": { "prop1": 1,
 "prop2": "a" }, … }?

For multiple queries

• If multiple queries are specified, the results are concatenated. The response is a single
feature collection.

• The feature ids in the response to a multi-collection query must be unique. Since the
featureId of a feature only has to be unique per collection, they need to be combined
with the collectionId. The server could determine how the id values are constructed
or require a specific approach. The latter has the advantage that the source feature
could be identified (if, e.g., a concatenation of the collectionId and featureId such

OPEN GEOSPATIAL CONSORTIUM 22-024R2 27

as “apronelement.123456” is used). However, if this is a requirement, then maybe a
“self” link in each feature would be cleaner? In addition, if an API already uses feature
identifiers that are unique across all collections (e.g., a UUID), then a mandatory
collection prefix would be unnecessary.

• Another aspect is cases where a feature is included in the result set of multiple
queries. The feature should be included only once in the result. However, if the ids are
constructed in a way that there is no conflict, if the same feature is included multiple
times (e.g., just an auto-incrementing index value as the id), maybe it could also be
tolerated if the same feature is included more than once?

• Another approach to both issues could be to return an array of feature collections in
the response, one for each query. Similar to what was done in WFS 2.0. This seems
cleaner and clearer as it avoids the “hacks” and issues discussed in the previous bullet
items. Since /search is a different resource than /items this would be conceptually
clean. This leaves the question of usability: a single feature collection is easier if the
result is just fed into some GeoJSON tooling. However, in a JavaScript based client it
seems there is no overhead to process such a response. It could also be beneficial for
use with JSON-FG where each feature collection would more likely be homogeneous
and could include metadata that simplify parsing the response.

• The direct members “filter” and “properties” represent “global” constraints that must be
combined with the corresponding member in each query. The global and local property
selection list are concatenated and then the global and local filters are combined using the
logical operator specified by the “filterOperator” member.

• The global member “filter” should only reference queryables that are common to all
collections being queried. If a queryable is specified that is not defined or does not
exist for a particular collection then the value of the property is null.

• The global member “properties” should only reference presentables that are common
to all collections being queried. If a presentable is specified that is not defined or does
not exist for a particular collection then the property is omitted from the response.

General rules

• A “title” and “description” for the query expression can be added. Providing both is
strongly recommended to explain the query to users.

• The “limit” member applies to the entire result set.

• Note that “sortby” will only apply per query. A global “sortby” would require that the
results of all queries are compiled first and then the combined result set is sorted. This
would not support “streaming” the response.

• In case of a parameterized stored query, the query expression may contain JSON objects
with a member “$parameter.” The value of “$parameter” is an object with a member where
the key is the parameter name and the value is a JSON schema describing the parameter.
When executing the stored query, all objects with a “$parameter” member are replaced

OPEN GEOSPATIAL CONSORTIUM 22-024R2 28

https://github.com/opengeospatial/ogc-feat-geo-json

with the value of the parameter for this query execution. Comma-separated parameter
values are converted to an array if the parameter is of type “array”.

• Parameters may also be provided in a top-level member “parameters” and referenced using
“$ref”.

6.2. Stored Queries

{
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$id": "StoredQueries.json"
 "type": "object",
 "properties": {
 "queries" : { "type": "array" , "items": {"$ref": "#/$defs/
StoredQueryDescription"} },
 "links" : { "type": "array" , "items": {"$ref": "#/$defs/Link"}
 },
 "title" : { "type": "string"
 },
 "description": { "type": "string"
 }
 },
 "$defs": {
 "StoredQueryDescription": {
 "required": ["id"],
 "type": "object",
 "properties": {
 "id": {"type": "string"},
 "title": {"type": "string"},
 "description": {"type": "string"},
 "parameters": { "$ref": "Parameters.json" },
 "links": { "type": "array", "items": {"$ref": "#/$defs/Link"} }
 }
 },
 "Link": {
 "type": "object",
 "required": ["href", "rel"],
 "properties": {
 "href": {"type": "string"},
 "rel": {"type": "string"},
 "title": {"type": "string"},
 "type": {"type": "string"},
 "hreflang": {"type": "string"},
 "length": {"type": "integer"},
 "templated": {"type": "boolean", "default": false}
 }
 }
 }
}

OPEN GEOSPATIAL CONSORTIUM 22-024R2 29

6.3. Parameters

The parameters are described as a JSON object where each parameter is a property with its
JSON Schema as its value.

Providing sufficient information that allows clients to generate meaningful queries is essential.
Recommendation 1 in OGC API — Features — Part 3 has recommendations for schemas that are
straightforward to parse by clients but that are expressive enough to allow clients to generate
forms to provide parameter values.

In addition, if a parameter declares a default value, the API will use that default value if no value
is provided in the request to execute a query.

{
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$id": "Parameters.json"
 "type": "object",
 "description": "Each parameter is described by a property where each value
is a JSON Schema object.",
 "additionalProperties": {
 "$ref": "https://json-schema.org/draft/2019-09/schema"
 }
}

OPEN GEOSPATIAL CONSORTIUM 22-024R2 30

https://docs.ogc.org/DRAFTS/19-079r1.html#rec_filter_queryables-schema

7

PROCESSES — PART 3
APPROACH

OPEN GEOSPATIAL CONSORTIUM 22-024R2 31

7 PROCESSES — PART 3 APPROACH

7.1. Pre-defining queries based on Processes — Part 3
extension

The OGC API — Features Search extension (described in detail in the other section of this
document) shares a lot in common with the idea of allowing filter, properties (for selection
and derived fields/properties), and sortBy to qualify inputs in OGC API — Processes — Part 3:
Workflows and Chaining (input and output modifiers requirements classes).

A well-known pass-through process (with support for collection input including filtering) could
support an execution request with a syntax equivalent to the Search extension endpoint, similar
to how the OGC API — Routes /routes endpoint shares a POST payload syntax with an eventual
definition of a well-known routing process. Pre-defined queries could also be parameterized by
deploying them as processes, as suggested in the Deployable workflows requirements class of
Processes — Part 3: Workflows and Chaining.

The modifiers introduced include the same filter, properties, and sortBy parameters to
qualify inputs originating from a data collection or process, whether they are local or remote,
as well as outputs resulting from a process. In addition to the ability to select specific fields/
properties, the properties parameter can also be used to derive new fields, for example using
CQL2 arithmetic expressions.

Processes — Part 3 also defines a Collection output requirements class where the output of the
workflow execution is either a dataset landing page (which can contain multiple collections), or a
single collection.

For example, the following parameterized query, addressing similar use case as the one
described further in section 8.3.5 — Support for the Search resources‘s Example 2, taking two
parameters, a string enumeration named composition and a string array named airports, could be
expressed in a Part 3-extended OGC API — Processes execution request (using Collection input
and Output modifiers) as shown below.

Example 1 — Example parameterizable query as a Part 3-extended execution request

{
 "process" : "PassThrough",
 "inputs" : {
 "data" : [{
 "collection" : "apronelement",
 "filter": {
 "op": "and",
 "args": [
 {
 "op": "=",
 "args": [
 {"property": "composition"},

OPEN GEOSPATIAL CONSORTIUM 22-024R2 32

https://opengeospatial.github.io/ogcna-auto-review/21-009.html
https://opengeospatial.github.io/ogcna-auto-review/21-009.html
https://opengeospatial.github.io/ogcna-auto-review/21-009.html#toc25

 {
 "$input": {
 "composition": { "type": "string", "enum": ["CONC", "..."] }
 }
 }
]
 },
 {
 "op": "in",
 "args": [
 {"property": "airport"},
 {
 "$input": {
 "airports": {
 "type": "array",
 "items": { "type": "string", "enum": ["JFK", "EWR", "LGA", ".
.."] }
 }
 }
 }
]
 }
]
 },
 "properties": ["geometry", "airport", "type"],
 "sortBy": ["airport"]
 }]
 }
}

In this example, data is an input defined in the PassThrough well-known process with multiplicity
1..* which is returned as the process output.

The collection property is defined in the Collection input requirements class of OGC API —
Processes — Part 3, whereas the filter, properties, and sortby elements specifying a cql2-json
filtering expression, selected properties and an ascending sort order by airport, are defined in
Part 3’s Input modifiers requirements class.

These field modifiers can also be used in the context of the Output modifiers requirements
class together with the Collection output requirement class or with regular process execution
outputs. In the context of a feature collection output, these query parameters building blocks
also correspond to the functionality provided by OGC API — Features — Part 3: Filtering, as well as
a planned extensions for Coverages and Discrete Global Grid Systems.

This execution request could be deployed as a new process, e.g., ApronFiltering, using the
Processes — Part 2: Deploy, Replace, Undeploy extension’s POST operation to /processes together
with the Deployable workflows requirements class of Part 3. The resulting process would get
listed at /processes with a process description including the input parameters (composition
and airports) and could itself be executed by POSTing to /processes/ApronFiltering/
execution.

Example 2 — Example execution request of parameterized query deployed as a process

{
 "inputs" : {
 "composition" : "CONC",
 "airports": ["JFK", "LGA"]
 }

OPEN GEOSPATIAL CONSORTIUM 22-024R2 33

}

Posting this execution request to the execution endpoint without a Prefer: header would result
in a synchronous execution that returns the features. With support for the Collection output
requirements class, specifying as parameter response=collection would instead return a
collection description, as for a GET request to /collections/{collectionId} in Common —
Part 2 and Features — Part 1. With response=landingPage, a landing page would be returned for
the filtered dataset, allowing to retrieve multiple collections.

Such virtual collections could also be published to a dataset API as a persistent collection, e.g.,
as /collections/concApronsJFKLGA, using a non-parameterizable execution request as the
payload of a POST operation to /collections to create the dynamic collection, with a Processes
execution request content media type to be registered, e.g., application/ogcexecreq+json as
suggested in Part 3 — Section 14. Media Types.

During this Testbed-18 advanced filtering task Ecere successfully demonstrated the use of Part
3 extensions to pre-define filtering queries to the cascading service, including the deployment of
a sample PassThrough process with support for the filter and properties modifiers, as well as
for the Collection Input and Collection output requirements class, with the following limitations:

• the filters were expressed using the cql2-text encoding rather than cql2-json;

• the input and output were limited to a single collection;

• the sortBy modifier (and sorted feature collections in general) remained to be
implemented; and

• support for parameterized queries and deployable workflows was not yet implemented.

A sample pre-defined query is available from the endpoint:

https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=collection

including the following default pre-defined filter execution request:

Example 3 — Working execution request of filtering query from D100 cascaded collection

{
 "process" : "https://maps.gnosis.earth/ogcapi/processes/PassThrough",
 "inputs" : {
 "data" : [
 {
 "collection" : "https://maps.gnosis.earth/ogcapi/collections/swim:
d100_airports:apronelement",
 "filter" : "composition = 'CONC' and airport in ('JFK', 'EWR',
'LGA')",
 "properties" : ["geometry", "airport", "type"]
 }
]
 }
}

OPEN GEOSPATIAL CONSORTIUM 22-024R2 34

https://opengeospatial.github.io/ogcna-auto-review/21-009.html#toc36
https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=collection
https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=collection

Figure 8 — Paging through an output collection resulting from the
above filter query pre-defined using OGC API - Processes - Part 3

7.2. Cross-collections queries

Among advanced filtering capabilities are cross-collections queries, whereby the server is
instructed to perform a join between data sources (which could potentially be hosted in two
different servers) as a multi-collection query. Although there was no time to implement this
capability during the Testbed, some thinking and discussion focused on researching that
capability. Whereas the search extension defines a new endpoint at /search, Ecere suggested
supporting cross-collection queries for the usual /items endpoint. An example GET request
would appear as follows:

GET /collections/apronelement/items?
 collections=apron&
 properties=*,apron.otherProperty&
 filter=associatedApron=apron.id and airport in (JFK, EWR, LGA)&
 sortby=airport&
 limit=1000

Figure 9

OPEN GEOSPATIAL CONSORTIUM 22-024R2 35

If there are multiple airport aprons matching the same apronelement, this would likely return
more entries than available in the apronelement collection. In this case, the items IDs would need
to be disambiguated and would not correspond to the typical /collections/apronelement/
items/{itemId}.

The following request illustrates a weather use case, where wind speed information could be
available either as OGC API — Features or as OGC API — Coverages (in the case of a coverage,
winds.geometry would refer to the geometry of each cell):

GET /collections/flightRoutes/items?
 collections=https://weather.com/ogcapi/collections/winds&
 filter=winds.speed > 100 and s_intersects(geometry, winds.geometry) and
departingAirport in (JFK, EWR, LGA)&
 sortby=-winds.speed,departingAirport&
 limit=1000

Figure 10

If the winds collection supports OGC API — Environmental Data Retrieval (EDR), the flight routes
service could use a trajectory request including the flight route geometry to the weather data
API, as one potential way to make this efficient. This would avoid the client fetching the full set
of weather data, then transmitting it all again to the flight route service, exchanging the full data
collection twice, when in fact all that may have been needed is for the first service to send the
smaller flight routes geometry to the second service in a trajectory request. In addition, the two
services may often be hosted nearby (e.g., both being hosted on Amazon Web Services), while
the client is located elsewhere.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 36

8

CONCLUSIONS

OPEN GEOSPATIAL CONSORTIUM 22-024R2 37

8 CONCLUSIONS

8.1. Research questions

The CFP included several research questions that drive the architecture used in Testbed 18
Filter activities. This section is intended to explain how this architecture addressed the research
questions.

How does filtering of SWIM data served by OGC API-Features endpoints work?

See the sequence diagram. Part 1 of OGC API Features provides only simple query capabilities
(bounding box, time interval or instant, discrete attribute values). Part 3 and CQL2 extend this
with support for more advanced filter expressions. The design described in this Engineering
Report extends this capability with additional capabilities necessary for this task, including the
following.

• A capability to not only filter the data, but also return only a subset of the properties.

• A capability for an authorized developer to restrict the query capabilities of the filtering
services at runtime.

Is the metadata required by the various OGC API-Features parts sufficient to allow clients to
fully understand the filtering capabilities of a service endpoint?

In general, the following information should be sufficient for many use cases.

• The APIs document the necessary metadata to query the data (spatial and temporal
extent, supported coordinate reference systems, etc.).

• The APIs document the schema of the response for each data collection.

• The APIs document the properties and their characteristics that can be queried for each
data collection (Queryables).

• The APIs document the properties and their characteristics that can be used to sort the
features of each data collection (Sortables).

• The Filter Services document the filtering rules / queries that can be executed including
the parameters for each rule / query.

OGC API — Features — Part 3: Filtering and the Common Query Language (CQL) supports
queryables that are not directly represented as resource properties in the content schema of
the resource. Is it possible to identify best practices for their usage?

OPEN GEOSPATIAL CONSORTIUM 22-024R2 38

https://portal.ogc.org/files/?artifact_id=100034#_problem_statement_and_research_questions_6

This aspect was not addressed in Testbed 18 as it was not necessary to implement the scenario
and use case.

Clients may know the content schema of offered resources. How best to use this knowledge
for advanced filtering beyond what is defined in OGC API — Features — Part 3: Filtering and
the Common Query Language (CQL)?

Additional capabilities are specified in the sections Clause 5 and Clause 6.

How does a filtering service look that supports advanced filtering for rather simple OGC API-
Features-based SWIM data endpoints?

If the Data Services are restricted to OGC API Features Part 1 with Schema support, a Filtering
Service that would implement all capabilities specified in this architecture would support the
following advanced Feature-based query capabilities that go beyond the Data Services.

• Rich filter expressions that include spatial and temporal characteristics are supported
through OGC API Features Part 3 as well as CQL2.

• Query multiple data collections with a single request.

• Filtering rules / queries are managed and stored in the service.

• These stored queries can be parameterized. The parameters are specified when the query
is executed.

• Not only filtering is supported. Changing the presentation of the matched features
through selection of properties to include in the response or by sorting according to an
order specified in the filtering rule or a parameter is also supported.

How does such a service work in situations where a data publisher has restricted filtering on
certain properties (for example, because the backend datastore has not been configured to
allow high-performance queries on those properties)?

In those cases, the data must be streamed to the filtering service and filtering has to occur in the
filtering service (if the service supports such a capability). There is no difference in the API, the
filtering rule / query / filter expressions are independent of the implementation at the backend
of the Filtering Service.

How can a client application support a customer that has knowledge of the content schema of
an offered resource in the creation of filter statements? What are the key requirements for a
developer GUI that allows visualization and management of these filtering tools?

To query a data collection, the Developer Client at least needs to understand the JSON
Schema that describes the Queryables (provided by the Filtering Service) and the supported
conformance classes describing the provided CQL2 and API capabilities (Conformance
Declaration of the Filtering Service).

To restrict the properties that can be returned for a data collection, the Developer Client needs
to be able to understand the JSON Schema that describes the content of the data (provided by
the Data Service or/and the Filtering Service).

OPEN GEOSPATIAL CONSORTIUM 22-024R2 39

To manage the filtering rules in a Filtering Service, the Developer Client needs to support the
Manage Stored Queries conformance class specified Clause 5.

Is it possible to easily create a new filtered dataset by creating machine readable filtering rules
based on the metadata required by the OGC API-Features standards?

Yes. Each filtering rule specifies a filtered and potentially restricted view on a dataset. In that
sense, this is a derived dataset.

How can these rules be provided to the Filtering Service at runtime?

Through the operations specified in the Manage Stored Queries conformance class.

8.2. Lessons learned

The architecture documented in this Engineering Report leveraged existing candidate
specifications and proposals for querying data from the Features API Standards Working Group
(SWG). These were in particular:

• the Common Query Language (CQL2) ([16]) as the language for filter expressions; and

• the proposed Search ([6]) extension to retrieve features from multiple collections in a
single query and to execute parameterized stored queries.

Pre-existing resources turned out to be a good match for addressing the requirements stated in
the Testbed 18 Call-for-Proposals. Therefore, these pre-existing specifications were used as a
starting point and feedback was provided to the SWG.

• Several issues were opened by participants based on their implementation experience.
These issues focused on improving the clarity of the CQL2 documentation and the
language design.

• The Search proposal is an initial draft that has not yet been discussed in detail. The
proposal was used as a starting point and an updated design was developed, discussed,
implemented, and tested in Testbed 18. While some of the updates were driven by the
Testbed 18 requirements, the design specified in this ER intentionally is applicable in
general, not just in the context of the scenario used in Testbed 18. These results will
be input to the work on the Search extension by the Features API SWG (expected for
2023). The results were initially presented to the Features API SWG in the October 2022
Member Meeting.

• One aspect that was out-of-scope for Testbed 18 was security/access control. In almost
all cases, the operations in the Manage Stored Queries conformance class will require
authentication and access control. Depending on the context, an API provider may also
want to control access to specific stored queries or the feature collections.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 40

8.3. Future work

• One research question was not addressed in Testbed 18 and could be subject to research
in future initiatives: queryables that are not directly represented as resource properties
in the content schema of the resource are explicitly supported by OGC API Features. Is it
possible to identify best practices for their usage?

• Support for queries that include joins between features of different collections was
discussed but considered out-of-scope of this Testbed 18.

• As mentioned above, authentication and access control were out-of-scope for the
testbed. In general, it would be helpful to also test the specification with APIs that use the
commonly used OAuth2 / OpenID Connect security scheme.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 41

A

ANNEX A (INFORMATIVE)
SAMPLE EXPRESSIONS AND
REQUESTS

OPEN GEOSPATIAL CONSORTIUM 22-024R2 42

A ANNEX A
(INFORMATIVE)
SAMPLE EXPRESSIONS AND REQUESTS

A.1. Example query expressions

A.1.1. A simple, single query
{
 "title": "Fetch all apron areas",
 "collections": ["apronelement"]
}

A.1.2. A simple query with a filter, property selection and sorting of the
response document
{
 "title": "Fetch all concrete apron areas of the main New York area airports
(JFK, EWR and LGA)",
 "description": "Returned are the geometry, the airport and the apron type,
sorted by airport.",
 "collections": ["apronelement"],
 "filter": {
 "op": "and",
 "args": [
 { "op": "=", "args": [{ "property": "composition" }, "CONC"] },
 { "op": "in", "args": [{ "property": "airport" }, ["JFK", "EWR", "LGA"]]
}
]
 },
 "properties": ["geometry", "airport", "type"],
 "sortby": ["airport"],
 "limit": 1000
}

A.1.3. The same query with two parameters (one string and one string
array)
{
 "title": "Fetch the apron areas of selected airports",

OPEN GEOSPATIAL CONSORTIUM 22-024R2 43

 "description": "Returned are the geometry, the airport, the apron type and
the material, sorted by airport. The query accepts two parameters: the airport
and the type of the apron area.",
 "collections": ["apronelement"],
 "filter": {
 "op": "and",
 "args": [
 {
 "op": "=",
 "args": [
 {"property": "type"},
 {
 "$parameter": {
 "type": {
 "title": "Type of the apron, runway or taxiway element",
 "description": "The following types are distinguished: normal
use, parking, shoulder, intersection.",
 "type": "string",
 "enum": ["NORMAL", "PARKING", "INTERS", "SHOULD"],
 "default": "NORMAL"
 }
 }
 }
]
 },
 {
 "op": "in",
 "args": [
 {"property": "airport"},
 "$parameter": {
 "airports": {
 "title": "Airports",
 "description": "The 3-letter IATA airport codes or the airports
to filter. Specify multiple values as a comma-separated list.",
 "type": "array",
 "items": {
 "type": "string",
 "enum": ["JFK", "EWR", "LGA", "BOS", "PIT", "PHL", "DCA",
"BWI", "IAD"]
 },
 "default": ["JFK", "EWR", "LGA"]
 }
 }
]
 }
]
 },
 "properties": ["geometry", "airport", "type", "composition"],
 "sortby": ["airport"],
 "limit": 1000
}

A.1.4. The same query with the two parameters declared at the top level
{
 "title": "Fetch the apron areas of selected airports",
 "description": "Returned are the geometry, the airport, the apron type and
the material, sorted by airport. The query accepts two parameters: the airport
and the type of the apron area.",
 "collections": ["apronelement"],
 "filter": {

OPEN GEOSPATIAL CONSORTIUM 22-024R2 44

 "op": "and",
 "args": [
 {
 "op": "=",
 "args": [
 {"property": "type"},
 {"$parameter": {"$ref": "#/parameters/type"}}
]
 },
 {
 "op": "in",
 "args": [
 {"property": "airport"},
 {"$parameter": {"$ref": "#/parameters/airport"}}
]
 }
]
 },
 "properties": ["geometry", "airport", "type", "composition"],
 "sortby": ["airport"],
 "limit": 1000,
 "parameters": {
 "airports": {
 "title": "Airports",
 "description": "The 3-letter IATA airport codes or the airports to
filter. Specify multiple values as a comma-separated list.",
 "type": "array",
 "items": {
 "type": "string",
 "enum": ["JFK", "EWR", "LGA", "BOS", "PIT", "PHL", "DCA", "BWI", "IAD"]
 },
 "default": ["JFK", "EWR", "LGA"]
 },
 "type": {
 "title": "Type of the apron, runway or taxiway element",
 "description": "The following types are distinguished: normal use,
parking, shoulder, intersection.",
 "type": "string",
 "enum": ["NORMAL", "PARKING", "INTERS", "SHOULD"],
 "default": "NORMAL"
 }
 }
}

A.1.5. A query on multiple collections
{
 "queries": [
 {"collections":["apronelement"]},
 {"collections":["runwayelement"]},
 {"collections":["taxiwayelement"]}
]
}

A.1.6. A query on mulitple collections with sorting as well as global
filtering and property selection
{

OPEN GEOSPATIAL CONSORTIUM 22-024R2 45

 "queries": [
 {"collections":["apronelement"], "sortby": ["airport"]},
 {"collections":["runwayelement"], "sortby": ["airport"]},
 {"collections":["taxiwayelement"], "sortby": ["airport"]}
],
 "filter": {
 "op": "and",
 "args": [
 { "op": "=", "args": [{ "property": "composition" }, "CONC"] },
 { "op": "in", "args": [{ "property": "airport" }, ["JFK", "EWR", "LGA"]]
}
]
 },
 "properties": ["geometry", "airport", "type"],
 "limit": 1000
}

A.1.7. A query on multiple collections with a different filter expressions for
each collection
{
 "queries": [
 {
 "collections":["apronelement"],
 "filter": { ... }
 },
 {
 "collections":["runwayelement"],
 "filter": { ... }
 },
 {
 "collections":["taxiwayelement"],
 "filter": { ... }
 }
],
 "limit": 1000
}

A.1.8. A query on multiple collections with sorting and a different filter for
each collection and a global filter plus property selection
{
 "queries": [
 {
 "collections":["apronelement"],
 "filter": { ... },
 "sortby": ["airport"]
 },
 {
 "collections":["runwayelement"],
 "filter": { ... },
 "sortby": ["airport"]
 },
 {
 "collections":["taxiwayelement"],
 "filter": { ... },
 "sortby": ["airport"]
 }

OPEN GEOSPATIAL CONSORTIUM 22-024R2 46

],
 "filter": {
 "op": "and",
 "args": [
 { "op": "=", "args": [{ "property": "composition" }, "CONC"] },
 { "op": "in", "args": [{ "property": "airport" }, ["JFK", "EWR", "LGA"]]
}
]
 },
 "properties": ["geometry", "airport", "type"],
 "limit": 1000
}

A.1.9. A single join query
{
 "collections": ["apronelement", "apron"],
 "filter": {
 "op": "and",
 "args": [
 { "op": "=", "args": [{ "property": "apronelement.associatedApron" }, {
"property": "apron.id" }] },
 { "op": "in", "args": [{ "property": "apronelement.airport" }, ["JFK",
"EWR", "LGA"]] }
]
 },
 "sortby": ["apronelement.airport"],
 "limit": 1000
}

A.2. Example requests

This section illustrates example requests and responses in the scenario.

A.2.1. Developer Client analyzes the available data
 

A.2.2. Developer Client creates a stored query (“filtering rule”)

With the following request, the Developer Client creates a parameterized stored query on a
dataset with AIXM-based airport data on the Filtering Service.

The query has three parameters.

• “collection”: The feature type that is queried. Restricted to one of “apronelement,”
“runwayelement,” or “taxiwayelement.” The default is “runwayelement” if no parameter
value is specified in the query.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 47

• “type”: The type of the apron/runway/taxiway element. One of “NORMAL,” “PARKING,”
“INTERS,” or “SHOULD”. If no parameter value is specified in the query the default is
“NORMAL.”

• “airports”: The airports for which the query should return data which is restricted to
selected airports. The default is “IAD” if no parameter value is specified in the query.

The query:

• returns only four feature properties (“geometry,” “airport,” “type,” “composition”), all
additional properties in the data are not returned;

• sorts the response by airport; and,

• limits the response to 10000 features: if more are matched, the response will include a
“next” link to the next page.

PUT /d103_airports/search/elements-by-type-and-airport HTTP/1.1
Host: t18.ldproxy.net
Content-Type: application/json

{
 "title": "Fetch apron, taxiway or runway elements based on their type and
airport",
 "description": "This query fetches apron, taxiway or runway elements based
on their type and airport. The response uses paging, if more than 10000
features match the query. The result is sorted by airport.",
 "query": {
 "collections": [
 {
 "$parameter": {
 "collection": { "type": "string", "enum": ["apronelement",
"runwayelement", "taxiwayelement"], "default": "apronelement" }
 }
 }
],
 "filter": {
 "op": "and",
 "args": [
 {
 "op": "=",
 "args": [
 {"property": "type"},
 {
 "$parameter": {
 "type": { "type": "string", "enum": ["NORMAL", "PARKING",
"INTERS", "SHOULD"], "default": "NORMAL" }
 }
 }
]
 },
 {
 "op": "in",
 "args": [
 {"property": "airport"},
 {
 "$parameter": {
 "airports": {

OPEN GEOSPATIAL CONSORTIUM 22-024R2 48

 "type": "array",
 "items": { "type": "string", "enum": ["JFK", "EWR", "LGA",
"BOS", "PIT", "DCA", "IAD", "BWI", "PHL"] },
 "default": ["IAD", "DCA", "BWI"]
 }
 }
 }
]
 }
]
 },
 "properties": ["geometry", "airport", "type", "composition"],
 "sortby": ["airport"]
 },
 "limit": 10000
}

The server creates the stored query. If the stored query already existed, the query would be
updated with the new definition.

HTTP/1.1 204 No Content

A.2.3. Business Client fetches the available queries

The Business Client wants to filter data and asks the Filtering Service for the available queries.

NOTEIn addition to the queries stored on the server, the Filtering Service can also allow the
execution of ad-hoc queries specified by a client. This scenario assumes that the Business Client
does not have the capability to construct query expressions, only the Developer Client has that
capability.

GET /d103_airports/search HTTP/1.1
Host: t18.ldproxy.net
Accept: application/json

The Filtering Service responds with the list of stored queries available on the server:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "queries": [
 {
 "id": "elements-by-type-and-airport",
 "title": "Fetch apron, taxiway or runway elements based on their type
and airport",
 "description": "This query fetches apron, taxiway or runway elements
based on their type and airport. The response uses paging, if more than 10000
features match the query. The result is sorted by airport.",
 "links": [
 {
 "rel": "self",
 "title": "Query 'Fetch apron, taxiway or runway elements based on
their type and airport'",
 "href": "https://t18.ldproxy.net/d103_airports/search/elements-by-
type-and-airport"
 },
 {
 "rel": "describedby",

OPEN GEOSPATIAL CONSORTIUM 22-024R2 49

 "title": "Definition of query 'Fetch apron, taxiway or runway
elements based on their type and airport'",
 "href": "https://t18.ldproxy.net/d103_airports/search/elements-by-
type-and-airport/definition"
 }
],
 "parameters": {
 "type": {
 "title": "Type of the apron, runway or taxiway element",
 "description": "The following types are distinguished: normal use,
parking, shoulder, intersection.",
 "type": "string",
 "enum": ["NORMAL", "PARKING", "SHOULD", "INTERS"],
 "default": "NORMAL"
 },
 "airports": {
 "title": "Airports",
 "description": "The 3-letter IATA airport codes or the airports to
filter. Specify multiple values as a comma-separated list.",
 "type": "array",
 "items": {
 "type": "string",
 "enum": ["JFK", "EWR", "LGA", "BOS", "PIT", "PHL", "DCA", "BWI",
"IAD"]
 },
 "default": ["IAD", "DCA", "BWI"]
 }
 }
 },
 ...
],
 "links": [
 {
 "rel": "self",
 "type": "application/json",
 "title": "This document",
 "href": "https://t18.ldproxy.net/d103_airports/search?f=json"
 }
]
}

The Business Client is interested in the first query and retrieves information about the
parameters of the query with the following request:

GET /d103_airports/search/elements-by-type-and-airport/parameters HTTP/1.1
Host: t18.ldproxy.net
Accept: application/json

The Filtering Service responds with the list of parameters specified for the query:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "parameters": {
 "collection": {
 "type": "string",
 "enum": ["apronelement", "runwayelement", "taxiwayelement"],
 "default": "runwayelement"
 },
 "type": {
 "type": "string",
 "enum": ["NORMAL", "PARKING", "INTERS", "SHOULD"],

OPEN GEOSPATIAL CONSORTIUM 22-024R2 50

 "default": "NORMAL"
 },
 "airports": {
 "type": "array",
 "items": {
 "type": "string",
 "enum": ["JFK", "EWR", "LGA", "BOS", "PIT", "DCA", "IAD", "BWI", "PHL"]
 },
 "default": [["IAD", "DCA", "BWI"]
 }
 }
}

A.2.4. Business Client executes the selected stored query and retrieves
data

With this information, the business client can execute the stored query.

Since the query has default values for all parameters, the simplest query is one without
parameter values.

GET /d103_airports/search/elements-by-type-and-airport HTTP/1.1
Host: t18.ldproxy.net
Accept: application/geo+json

The Filtering Service will respond with the normal runway elements of Dulles International
Airport:

HTTP/1.1 200 OK
Content-Type: application/geo+json

{
 "type": "FeatureCollection",
 "features": [
 ...
]
}

A query with other parameter values can be executed as a GET or a POST request. The apron
elements for parking from the three New York area airports will be requested.

First the GET variant:

GET /d103_airports/search/elements-by-type-and-airport?collection=
apronelement&type=PARKING&airports=EWR,JFK,LGA HTTP/1.1
Host: t18.ldproxy.net
Accept: application/geo+json

And the POST variant, which will typically be necessary for larger parameter values, e.g. a
polygon geometry:

POST /d103_airports/search/elements-by-type-and-airport HTTP/1.1
Host: t18.ldproxy.net
Content-Type: application/x-www-form-urlencoded
Content-Length: 57
Accept: application/geo+json

collection=apronelement&type=PARKING&airports=EWR,JFK,LGA

OPEN GEOSPATIAL CONSORTIUM 22-024R2 51

In both cases the Filtering Service will respond with the selected features as a GeoJSON feature
collection:

HTTP/1.1 200 OK
Content-Type: application/geo+json

{
 "type": "FeatureCollection",
 "features": [
 ...
]
}

OPEN GEOSPATIAL CONSORTIUM 22-024R2 52

B

ANNEX B (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 22-024R2 53

B ANNEX B
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE AUTHOR PRIMARY CLAUSES MODIFIED DESCRIPTION

2022-09-30 0.5 S. Taleisnik all Draft Engineering Report (DER)

2022-11-29 0.9 S. Taleisnik all Version Posted to Pending

2022-12-19 1.0 S. Taleisnik all Final Edits

OPEN GEOSPATIAL CONSORTIUM 22-024R2 54

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 22-024R2 55

BIBLIOGRAPHY

[1] Pross, B., Vretanos, P.A.,: OGC API — Processes- Part 1: Core. Open Geospatial
Consortium, https://docs.ogc.org/is/18-062r2/18-062r2.html.

[2] Masó, J., Jacovella-St-Louis, J.: OGC API — Tiles — Part 1: Core. Open Geospatial
Consortium, https://docs.ogc.org/is/20-057/20-057.html (2022).

[3] Portele, C.: OGC API — Styles. Open Geospatial Consortium, http://docs.opengeospatial.
org/DRAFTS/20-009.html .

[4] Taleisnik, S.: OGC Testbed-17: Aviation API ER. Open Geospatial Consortium, https://
docs.ogc.org/per/21-039r1.html, (2022).

[5] Vretanos, P.: OGC Filter Encoding 2.0 Encoding Standard. Open Geospatial Consortium,
http://docs.ogc.org/is/09-026r2/09-026r2.html, (2014).

[6] Vretanos, P.: OGC API — Features — Part 5: Search (PROPOSAL). Open Geospatial
Consortium, https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/
search, (2022)

[7] Jacovella-St-Louis, J., Vretanos, P.A.: OGC API — Processes — Part 3: Workflows and
Chaining (draft). Open Geospatial Consortium, https://opengeospatial.github.io/ogcna-
auto-review/21-009.html (2023).

[8] Dictionary of Computer Science — Oxford Quick Reference, (2016).

[9] Lóscio, B.F, Calegari, N., Burle, C.: Data on the Web Best Practices. W3C, https://www.
w3.org/TR/dwbp/ (2017).

[10] Service Facade Pattern, https://www.ibm.com/docs/pt-br/integration-bus/9.0.0?topic=
SSMKHH_9.0.0/com.ibm.etools.mft.pattern.sen.doc/sen/sf/overview.htm.

[11] SWIM Questions & Answers, https://www.faa.gov/air_traffic/technology/swim/
questions_answers/, (2021).

[12] Portele, C., Vretanos, P.A., Heazel, C.: OGC API — Features — Part 1: Core. Open
Geospatial Consortium, https://docs.opengeospatial.org/is/17-069r4/17-069r4.html
(2022).

[13] Portele, C., Vretanos, P.A.: OGC API — Features — Part 2: Coordinate Reference Systems
by Reference. Open Geospatial Consortium, https://docs.ogc.org/is/18-058r1/18-058r1.
html (2022).

[14] Vretanos, P.A., Portele, C.: OGC API — Features — Part 3: Filtering. Open Geospatial
Consortium, https://docs.ogc.org/DRAFTS/19-079.html .

[15] Taleisnik, S.: OGC Testbed-16: Aviation Engineering Report. Open Geospatial
Consortium, https://docs.ogc.org/per/20-020.html (2021).

OPEN GEOSPATIAL CONSORTIUM 22-024R2 56

https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/is/20-057/20-057.html
http://docs.opengeospatial.org/DRAFTS/20-009.html
http://docs.opengeospatial.org/DRAFTS/20-009.html
https://docs.ogc.org/per/21-039r1.html
https://docs.ogc.org/per/21-039r1.html
http://docs.ogc.org/is/09-026r2/09-026r2.html
https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/search
https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/search
https://opengeospatial.github.io/ogcna-auto-review/21-009.html
https://opengeospatial.github.io/ogcna-auto-review/21-009.html
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/dwbp/
https://www.ibm.com/docs/pt-br/integration-bus/9.0.0?topic=SSMKHH_9.0.0/com.ibm.etools.mft.pattern.sen.doc/sen/sf/overview.htm
https://www.ibm.com/docs/pt-br/integration-bus/9.0.0?topic=SSMKHH_9.0.0/com.ibm.etools.mft.pattern.sen.doc/sen/sf/overview.htm
https://www.faa.gov/air_traffic/technology/swim/questions_answers/
https://www.faa.gov/air_traffic/technology/swim/questions_answers/
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html
https://docs.ogc.org/is/18-058r1/18-058r1.html
https://docs.ogc.org/is/18-058r1/18-058r1.html
https://docs.ogc.org/DRAFTS/19-079.html
https://docs.ogc.org/per/20-020.html

[16] Vretanos, P.A., Portele, C.: Common Query Language (CQL2). Open Geospatial
Consortium, https://docs.ogc.org/DRAFTS/21-065.html.

OPEN GEOSPATIAL CONSORTIUM 22-024R2 57

https://docs.ogc.org/DRAFTS/21-065.html

	I. Abstract
	II. Executive Summary
	III. Keywords
	IV. Preface
	V. Security considerations
	VI. Submitters
	1. Scope
	2. Normative references
	3. Terms,​ definitions and abbreviated terms
	3.1. Terms and definitions
	3.3. sortable
	3.4. Abbreviated terms

	4. Introduction
	4.1. Background
	4.1.1. SWIM
	4.1.2. OGC API Standards
	4.1.3. Exploration of OGC API Standards by SWIM

	4.2. Requirements Statement
	4.3. Functional Overview
	4.3.1. Component Interactions

	5. Operations
	5.1. Conformance Classes

	6. Schemas
	6.1. Query Expression
	6.2. Stored Queries
	6.3. Parameters

	7. Processes ​—​ ​Part 3 approach
	7.1. Pre-​defining queries based on Processes ​—​ ​Part 3 extension
	7.2. Cross-​collections queries

	8. Conclusions
	8.1. Research questions
	8.2. Lessons learned
	8.3. Future work

	Annex A (informative) Sample Expressions and Requests
	A.1. Example query expressions
	A.1.1. A simple,​ single query
	A.1.2. A simple query with a filter,​ property selection and sorting of the response document
	A.1.3. The same query with two parameters (one string and one string array)
	A.1.4. The same query with the two parameters declared at the top level
	A.1.5. A query on multiple collections
	A.1.6. A query on mulitple collections with sorting as well as global filtering and property selection
	A.1.7. A query on multiple collections with a different filter expressions for each collection
	A.1.8. A query on multiple collections with sorting and a different filter for each collection and a global filter plus property selection
	A.1.9. A single join query

	A.2. Example requests
	A.2.1. Developer Client analyzes the available data
	A.2.2. Developer Client creates a stored query (“filtering rule”)
	A.2.3. Business Client fetches the available queries
	A.2.4. Business Client executes the selected stored query and retrieves data

	Annex B (informative) Revision History
	Bibliography

