
OGC® DOCUMENT: 22-023R2
External identifier of this OGC® document: http://www.opengis.net/doc/PER/T18-D001

TESTBED-18: FEATURES
FILTERING SUMMARY
ENGINEERING REPORT
 

ENGINEERING REPORT

PUBLISHED

Submission Date: 2022-12-24
Approval Date: 2023-01-19
Publication Date: 2023-07-14
Editor: Sergio Taleisnik

Notice:  This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC 
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change 
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions 
in this document could very well lead to the definition of an OGC Standard.



License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Copyright notice

Copyright © 2023 Open Geospatial Consortium 
To obtain additional rights of use, visit https://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial 
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property 
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide 
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 ii

https://www.ogc.org/license
https://www.ogc.org/legal


CONTENTS
 

I. ABSTRACT .................................................................................................................................vii

II. EXECUTIVE SUMMARY .........................................................................................................vii

III. KEYWORDS ................................................................................................................................ x

IV. PREFACE .....................................................................................................................................xi

V. SECURITY CONSIDERATIONS ............................................................................................ xii

VI. SUBMITTERS ............................................................................................................................ xii

1. SCOPE .......................................................................................................................................... 2

2. NORMATIVE REFERENCES ................................................................................................... 4

3. TERMS, DEFINITIONS AND ABBREVIATED TERMS ......................................................6
3.1. Terms and definitions ......................................................................................................................................6
3.2. Abbreviated terms ............................................................................................................................................8

4. INTRODUCTION .....................................................................................................................10
4.1. Background ......................................................................................................................................................10
4.2. Requirements Statement ..............................................................................................................................12
4.3. Functional Overview ..................................................................................................................................... 13

5. OGC API-FEATURES FAÇADE 1 (D100) ..........................................................................20
5.1. Internal Architecture ..................................................................................................................................... 20
5.2. Differences to the component from Testbed 17 ................................................................................... 24
5.3. Challenges and Lessons Learned ................................................................................................................26

6. OGC API-FEATURES FAÇADE 2 (D101) ..........................................................................29
6.1. Status Quo .......................................................................................................................................................29
6.2. Internal Architecture ..................................................................................................................................... 30
6.3. Feature collections .........................................................................................................................................33
6.4. Filtering Capabilities ......................................................................................................................................35
6.5. Challenges and Lessons Learned ................................................................................................................36

7. FILTERING SERVICE 1 (D102) ............................................................................................ 40
7.1. Status Quo .......................................................................................................................................................40
7.2. Internal Architecture ..................................................................................................................................... 40

OPEN GEOSPATIAL CONSORTIUM 22-023R2 iii



7.3. Challenges and Lessons Learned ................................................................................................................47
7.4. Recommendations and Future Work ........................................................................................................ 51

8. FILTERING SERVICE 2 (D103) ............................................................................................ 53
8.1. Internal Architecture ..................................................................................................................................... 53
8.2. ldproxy .............................................................................................................................................................. 53
8.3. Filtering Capabilities ......................................................................................................................................54
8.4. HTML Support ................................................................................................................................................66
8.5. Challenges and Lessons Learned ................................................................................................................68

9. BUSINESS USER CLIENT (D104) ........................................................................................71
9.1. Internal Architecture ..................................................................................................................................... 71
9.2. Recommendations and Future Work ........................................................................................................ 76

10. DEVELOPER CLIENT (D105) ............................................................................................... 78
10.1. Internal Architecture ...................................................................................................................................78
10.2. Challenges and Lessons Learned ............................................................................................................. 84
10.3. Recommendations and Future Work ......................................................................................................85

11. TECHNOLOGY INTEGRATION EXPERIMENTS (TIES) ..................................................88
11.1. TIE Summary Table ..................................................................................................................................... 88
11.2. TIE Functional Tests ....................................................................................................................................88

ANNEX A (INFORMATIVE) REVISION HISTORY ...................................................................99

BIBLIOGRAPHY .................................................................................................................... 101

LIST OF TABLES
 

Table 1 — Server Endpoints .........................................................................................................................32
Table 2 — AIXM Feature Collections from SWIM Data Services ....................................................... 33
Table 3 — FIXM and Traffic Flow Feature Collections from SWIM Data Services ..........................34
Table 4 — ITWS Weather Feature Collections from SWIM Data Services .......................................34
Table 5 — Technology Integration Experiments Overview ...................................................................88
Table 6 — TIE Overview of the Business User Client With the D103 Filtering Service .................94
Table 7 — TIE Overview of the Developer Client With the D103 Filtering Service .......................95

LIST OF FIGURES
 

Figure 1 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task ............. ix
Figure 2 — History of OGC experiments to enhance SWIM .............................................................. 12

OPEN GEOSPATIAL CONSORTIUM 22-023R2 iv



Figure 3 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task ........... 14
Figure 4 — Workflow from the perspective of a business user that needs filtered data ...............15
Figure 5 — First Workflow Sequence Diagram .......................................................................................16
Figure 6 — Workflow from the perspective of a filtering rules developer ....................................... 17
Figure 7 — Second Workflow Sequence Diagram ................................................................................. 18
Figure 8 — D100 Component Overview ..................................................................................................21
Figure 9 — Information Flow for Data Requests ....................................................................................23
Figure 10 — Communicating Data Changes to ldproxy ........................................................................24
Figure 11 — D100 Simple Filtering in the Web Browser .....................................................................26
Figure 12 — D101 Component Overview ............................................................................................... 30
Figure 13 — API-Features Data Interaction with Backend SWIM Messaging Services ................. 31
Figure 14 — Major Entity Relationship Diagram for Managed SWIM Features .............................. 31
Figure 15 ..........................................................................................................................................................36
Figure 16 — Single feature returned from CQL2 filter query on test collection ............................. 42
Figure 17 — Single flight plan feature cascaded from Skymantics service .......................................43
Figure 18 — Paging through an output collection resulting from the above filter query pre-
defined using OGC API - Processes - Part 3 .......................................................................................... 46
Figure 19 ..........................................................................................................................................................47
Figure 20 ..........................................................................................................................................................47
Figure 21 — Expressions UML Conceptual Model, covering CQL2 capabilities ..............................49
Figure 22 — Operators UML Conceptual Model, covering CQL2 capabilities .................................49
Figure 23 — Standard functions UML Conceptual Model, covering CQL2 capabilities .................50
Figure 24 ..........................................................................................................................................................57
Figure 25 — Executing a Stored Query from the Web Browser .........................................................67
Figure 26 — Response from a Stored Query in the Web Browser (all Pittsburgh airport features)
..............................................................................................................................................................................68
Figure 27 — Developer Client Component Breakdown ........................................................................71
Figure 28 — Business Client Query List ...................................................................................................73
Figure 29 — Business Client Showing Airspaces ....................................................................................73
Figure 30 — Business Client Showing Airports ...................................................................................... 74
Figure 31 — Business Client Showing Intersections ..............................................................................75
Figure 32 — Business Client Showing NOTAMs .................................................................................... 76
Figure 33 — Developer Client Component Breakdown ........................................................................78
Figure 34 — Developer Client Queries Table ..........................................................................................80
Figure 35 — Developer Client Collection Table ......................................................................................81
Figure 36 — Query Editing in the Developer Client ..............................................................................81
Figure 37 — Developer Client Query Creation .......................................................................................82
Figure 38 — Developer Client Collections Table ....................................................................................83
Figure 39 — Developer Client Displaying Queryables ..........................................................................83
Figure 40 — Developer Client Displaying Sortables ..............................................................................84
Figure 41 — Map of LAX (from interactive instruments' D100 service) as it appears on collection 
page ................................................................................................................................................................... 89

OPEN GEOSPATIAL CONSORTIUM 22-023R2 v



Figure 42 — Map of JFK airport from interactive instruments' D100 service .................................90
Figure 43 — Paginated filtered features returned for a query on the EWR collection .................. 90
Figure 44 — Feature #1413 from the EWR airport collection from interactive instruments' D100 
service ...............................................................................................................................................................91
Figure 45 — Ecere’s D102 Filtering Service cascading features from George Mason University’s 
D101 service ...................................................................................................................................................93
Figure 46 — Ecere’s D102 Filtering Service cascading and filtering features from Skymantics 
service ...............................................................................................................................................................94

OPEN GEOSPATIAL CONSORTIUM 22-023R2 vi



I ABSTRACT
 

This OGC Testbed-18 (TB-18) Features Filtering Summary Engineering Report (ER) summarizes 
the implementations, findings, and recommendations that emerged from the efforts to better 
understand the current OGC API-Features filtering capabilities and limitations and how filtering 
can be decoupled from data services.

This ER describes:

• two façades built to interface SWIM services and serve aviation data through APIs (built 
with OGC API Standards) including basic filtering capabilities;

• the two filtering services built to consume SWIM data and serve it through OGC based 
APIs featuring advanced filtering mechanism;

• the client application built to interface with the filtering services; and

• the developer client built to define filter statements that can be expressed in a machine-
readable way and exchanged with the filtering service.

I I EXECUTIVE SUMMARY
 

Previous OGC work has addressed the challenges of increasing interoperability between aviation 
data services. Recently, the OGC community has developed a new family of standardized 
OpenAPI-based Web API Standards for various geospatial resource types. These OGC APIs 
have the potential to enhance the way in which consumers can access geospatial data from 
various sources. Testbed-16 brought together previous work on the development of OGC 
API Standards, the use of semantics to enrich data, SWIM data processing, and demonstrated 
an OpenAPI-based API serving SWIM data. Testbed-17 used the lessons learned and 
recommendations from Testbed-16 and focused on further testing the value of standards-based 
APIs within the SWIM program.

OGC API-Features endpoints define their filtering capabilities. Filtering is standardized across 
different parts of OGC API-Features (see section Previous Work), with two parts still in draft 
status. Advanced filtering capabilities require sophisticated server software. Not all data 
providers will be able to operate such a powerful service endpoint. FAA SWIM Data Services 
currently produce data from the National Airspace System (NAS) that is provided to consumers 
using various protocols and service offerings in both synchronous and asynchronous messaging 
formats. Testbed-18 (TB-18) explored filtering mechanisms for feature data served by OGC 
API-Features instances. The experiments included filtering of native and fused SWIM data and 
experimented with filtering services.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 vii



The research questions for the Advanced Filtering of SWIM Feature Data Task were as listed 
below.

• How does filtering of SWIM data served by OGC API-Features endpoints work?

• Is the metadata required by the various OGC API-Features parts sufficient to allow clients 
to fully understand the filtering capabilities of a service endpoint?

• OGC API — Features — Part 3: Filtering and the Common Query Language (CQL) supports 
queryables that are not directly represented as resource properties in the content schema 
of the resource. Is it possible to identify best practices for their usage?

• Clients may know the content schema of offered resources. How should this knowledge 
be used for advanced filtering beyond what is defined in particular in OGC API — Features 
— Part 3: Filtering and the Common Query Language (CQL)?

• How does a filtering service that allows advanced filtering for rather simple OGC API-
Features-based SWIM data endpoints look like?

• How does such a service work in situations where a data publisher has restricted 
filtering on certain properties (for example, because the backend datastore has not been 
configured to allow high-performance queries on those properties)?

• How can a client application support a customer that has knowledge of the content 
schema of an offered resource in the creation of filter statements? What are the key 
requirements for a developer GUI that allows visualization and management of these 
filtering tools?

• Is it possible to easily create a new filtered dataset by creating machine readable filtering 
rules based on the metadata required by the OGC API-Features standards? How can these 
rules be provided to the Filtering Service at runtime?

To answer these questions, this Testbed-18 Task was organized into the development and 
testing of a system of six interconnected components, as seen on Figure 1 and listed below.

• Façades for SWIM services with simple filtering mechanisms, retrieving aviation data 
from multiple SWIM services, serving these data through APIs built based on OGC API 
standards, and featuring basic filtering mechanisms. Three Façades were built:

• the OGC API-Features Façade 1 (identified collectively as D100): Four APIs built to 
serve NOTAMs, Airport Layouts, and Airspaces;

• the OGC API-Features Façade 2 (identified collectively as D101): Three APIs built to 
serve aeronautical, flight, and weather features; and

• an extra façade, not originally included in the Task architecture, offered in-kind by the 
company Skymantics, and was named OGC API-Features Façade 3: An APIs built to 
serve flight plans from the SFDPS (FAA) Service.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 viii



• Components that serve aviation data with advanced filtering mechanisms. Two filtering 
services were built, each one featuring an API:

• the Filtering Service 1 (identified as D102): Built to serve SWIM data from D100 with 
advanced filtering mechanisms; and

• the Filtering Service 2 (identified as D103): Built to serve SWIM data from all three 
façades with advanced filtering mechanisms.

• Client components to demonstrate consumption of filtered data, and configuration of 
filtering mechanisms. Two clients were built: One meant to serve an aviation domain 
expert, and the other to serve a developer of aviation software applications:

• the Business User Client (identified as D104): A client built to query filtering services 
and demonstrate the usage of advanced filtering mechanisms; and

• the Developer Client (identified as D105): A client built to define filter statements that 
can be expressed in a machine-readable way and exchanged with the filtering services.

Figure 1 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task

All components were successfully developed and tested. The lessons learned throughout 
the Testbed are documented in this ER and help respond to the questions posed above. The 
following is a set of recommendations for future work.

• Technical Design and CQL Standard: The implementations in this Testbed provided 
feedback to the technical design and helped to improve the specification in Testbed-18 
Filtering Service and Rule Set Engineering Report (D002) as well as in the Common Query 
Language (CQL2) candidate standard.

• Filter close to the data: In this task, the deliverables architecture called for one component 
performing the filtering, while another acts as an OGC API façade. The Testbed initiative 
highlighted that this architecture is not ideal, suggesting the exploration of filtering 
performed as close to the source of data as possible.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 ix



• Explore the potential of spatial joins: Future work could explore, in the context of queries 
spanning multiple collections, the capability of performing queries that not only filter and 
combine the results from multiple collections, but also perform join operations on them, 
including spatiotemporal joins.

• First-Filtering: Future work could explore how the filtering service might be able to 
perform a first-filtering pass that requires retrieving less data from the original data source.

• Interactive Query Building Interface: Future initiatives could explore an Interactive query 
builder web interface providing graphical and pre-selectable queryables, sortables, and 
conformances that are fetched from the SWIM Filtering service. This has the potential to 
speed query building and validation.

• Smart Query Building Interface: Another shortcoming is the lack of real-time hints on the 
impact of changes to the query structure and on the results of the query. Having graphical 
query results that are tied back to the query expression helps the user understand the 
impact of each queryable or conformance used in the query as well as the result of 
the query. The results of the query would be graphically displayed in real-time to the 
Developer User while the query is being built, helping the Developer User to more quickly 
adjust the query to achieve the desired results.

• Data Correlation from multiple SWIM Services: In TB-18 the queries built using CQL2 
language are limited to each SWIM data service, and these queries are segregated from 
each other. Future work should explore filtering services supporting data fusion based on 
parameters in the data that are of similar type that support the same conformances.

I I I KEYWORDS
 

The following are keywords to be used by search engines and document catalogues.

testbed, web service, api, standard, filter, SWIM, aviation

OPEN GEOSPATIAL CONSORTIUM 22-023R2 x



IV PREFACE
 

It is possible that some of the elements of this document may be the subject of patent rights. 
The Open Geospatial Consortium shall not be held responsible for identifying any or all such 
patent rights.

Recipients of this document are requested to submit, with their comments, notification of any 
relevant patent claims or other intellectual property rights of which they may be aware that 
might be infringed upon by any implementation of the standard set forth in this document and 
to provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 xi



V SECURITY CONSIDERATIONS
 

No security considerations have been made for this document.

VI SUBMITTERS
 

All questions regarding this document should be directed to the editor or the contributors:

 

Name Organization Role

Sergio Taleisnik Skymantics, LLC Editor

Clemens Portele interactive instruments GmbH Contributor

Eugene Yu George Mason University Contributor

Jérôme Jacovella-St-Louis Ecere Corporation Contributor

Patrick Dion Ecere Corporation Contributor

Mohammad Moallemi Concepts Beyond LLC Contributor

OPEN GEOSPATIAL CONSORTIUM 22-023R2 xii



1

SCOPE
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 1



1 SCOPE
 

This OGC Testbed 18 Engineering Report (ER) summarizes the implementations, findings, 
and recommendations that emerged from Testbed-18 efforts regarding the current filtering 
capabilities and limitations with the OGC API — Features Standard and how filtering can be 
decoupled from data services. The ER describes two façades built to interface SWIM services 
and serve aviation data through APIs built using OGC API Standards.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 2



2

NORMATIVE REFERENCES
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 3



2 NORMATIVE REFERENCES
 

The following documents are referred to in the text in such a way that some or all of their 
content constitutes requirements of this document. For dated references, only the edition cited 
applies. For undated references, the latest edition of the referenced document (including any 
amendments) applies.

Open API Initiative: OpenAPI Specification 3.0.2, 2018 https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.2.md

van den Brink, L., Portele, C., Vretanos, P.: OGC 10-100r3, Geography Markup Language (GML) 
Simple Features Profile, 2012 http://portal.opengeospatial.org/files/?artifact_id=
42729

W3C: HTML5, W3C Recommendation, 2019 http://www.w3.org/TR/html5/

Schema.org: http://schema.org/docs/schemas.html

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee: IETF RFC 2616,
Hypertext Transfer Protocol — HTTP/1.1. RFC Publisher (1999). https://www.rfc-
editor.org/info/rfc2616.

E. Rescorla: IETF RFC 2818, HTTP Over TLS. RFC Publisher (2000). https://www.rfc-editor.org/
info/rfc2818.

G. Klyne, C. Newman: IETF RFC 3339, Date and Time on the Internet: Timestamps. RFC Publisher 
(2002). https://www.rfc-editor.org/info/rfc3339.

M. Nottingham: IETF RFC 8288, Web Linking. RFC Publisher (2017). https://www.rfc-editor.org/
info/rfc8288.

H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub: IETF RFC 7946, The GeoJSON Format. 
RFC Publisher (2016). https://www.rfc-editor.org/info/rfc7946.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 4

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
http://portal.opengeospatial.org/files/?artifact_id=42729
http://portal.opengeospatial.org/files/?artifact_id=42729
http://www.w3.org/TR/html5/
http://schema.org/docs/schemas.html
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc7946


3

TERMS, DEFINITIONS AND
ABBREVIATED TERMS
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 5



3 TERMS, DEFINITIONS AND ABBREVIATED
TERMS
 

This document uses the terms defined in OGC Policy Directive 49, which is based on the 
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In 
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be 
strictly followed to conform to this document and OGC documents do not use the equivalent 
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications 
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard, 
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

3.1. Terms and definitions
 

3.1.1. Application Programming Interface (API)  

 

an interface that is defined in terms of a set of functions and procedures, and enables a program 
to gain access to facilities within an application [7].

3.1.2. Façade Service  

 

a component that fetches data from a specific data source and makes it available through its 
own interface [9]. The main reason for building this type of service is the difficulty or inability to 
modify the original data source with the intent of modifying either:

• the underlying structure of the API; or

• the format in which the data is made available.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 6

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762


3.1.3. Standardized API  

 

an API that is intended to be deployed by multiple API providers with the same API definition.

Note 1 to entry: The only difference between the API definitions will be the URL(s) of the API 
deployment. All other aspects are identical (resources, content schemas, content constraints, 
business rules, content representations, parameters, etc.) so that any client that can use one 
deployment of the standardized API definition can also use all other deployments, too.

Note 2 to entry: If the API provides access to data, different deployments of the API will 
typically share different content.

3.1.4. Standards-based API  

 

an API that conforms to one or more conformance classes specified in one or more standards.

Note 1 to entry: Since almost all APIs will conform to some standard, the term is usually used in 
the context of a specific standard or a specific family of standards. This ER considers Web APIs 
with a specific focus on the OGC API standards. Therefore, whenever the term is used in this ER, 
it is meant as an alias for an API that conforms to one or more conformance classes as defined in 
the OGC API standards.

3.1.5. SWIM Data  

 

any data provided through the SWIM System.

3.1.6. Web API  

 

an API using an architectural style that is founded on the technologies of the Web [8].

Note 1 to entry: Best Practice 24: Use Web Standards as the foundation of APIs in the W3C 
Data on the Web Best Practices [8] provides more detail.

Note 2 to entry: A Web API is basically an API based on the HTTP standard(s).

OPEN GEOSPATIAL CONSORTIUM 22-023R2 7

https://www.w3.org/TR/dwbp/#APIHttpVerbs


3.2. Abbreviated terms
 

AIXM Aeronautical Information Exchange Model

API Application Programming Interface

CRS Coordinate Reference System

ER Engineering Report

FAA Federal Aviation Administration

FIXM Flight Information Exchange Model

NAS National Airspace System

NOTAM Notice to Airmen

OGC Open Geospatial Consortium

SCDS SWIM Cloud Distribution Service

SFDPS SWIM Flight Data Publication Service

SWIM System Wide Information Management

TB Testbed

TFMS Traffic Flow Management System

TIE Technology Integration Experiment

WFS Web Feature Service

WXXM Weather Information Exchange Model

OPEN GEOSPATIAL CONSORTIUM 22-023R2 8



4

INTRODUCTION
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 9



4 INTRODUCTION
 

4.1. Background
 

4.1.1. SWIM

The System-Wide Information Management (SWIM) initiative supports the sharing of 
aeronautical, air traffic, and weather information. This is accomplished by providing 
communications infrastructure and architectural solutions for identifying, developing, 
provisioning, and operating a network of highly distributed, interoperable, and reusable services.

As part of the SWIM architecture, data providers create services for consumers for data 
access. Each service is designed to be stand-alone. However, the value of data increases when 
combined with other data. Real-world situations are often not related to data from one but 
instead from several SWIM feeds. Since consumers can retrieve data from several SWIM 
services there is the need for interoperability between the services.

4.1.2. OGC API Standards

For several years, OGC members have worked on developing a family of OGC Web API 
standards for various geospatial resource types. These OGC API Standards are defined using 
OpenAPI. As the OGC API standards continue to evolve, are approved by the OGC, and are 
implemented by the community, the aviation industry can subsequently experiment with and 
implement them.

The following OGC API Standards and Draft Specifications were used for the development of 
APIs during Testbed 18.

OGC API – Features: A multi-part standard that defines the capability to create, modify, and 
query vector feature data on the Web and specifies requirements and recommendations for 
APIs to follow a standard way of accessing and sharing feature data. It currently consists of four 
parts and a fifth proposed part.

• OGC API — Features — Part 1: Core. Approved September 2019, this standard defines 
discovery and query operations. [11]

• OGC API — Features — Part 2: Coordinate Reference Systems by Reference. This standard, 
approved October 2020, extends the core capabilities specified in Part 1: Core with the 
ability to use coordinate reference system (CRS) identifiers other than the defaults defined 
in the core. [12]

OPEN GEOSPATIAL CONSORTIUM 22-023R2 10



• Draft OGC API — Features — Part 3: Filtering. Part 3 specifies an extension to the OGC 
API — Features — Part 1: Core standard that defines the behavior of a server that supports 
enhanced filtering capabilities. [13]

• Draft OGC API — Features — Part 4: Create, Replace, Update, and Delete. Part 4 specifies 
an extension that defines the behavior of a server that supports operations to add, 
replace, modify, or delete individual resources from a collection. [14]

• Proposal OGC API — Features — Part 5: Search. The proposal is an initial draft for query 
resources that support queries on multiple collections in the same request, parameterized 
stored queries, and join queries. [5]

A Common Query Language (CQL2) is being developed together with Part 3 to standardize a 
language that is recommended for filter expressions. [15]

OGC API – Processes: An approved (August 2021) OGC API Standard that specifies 
requirements for implementing a Web API that enables the execution of computing processes 
and the retrieval of metadata describing their purpose and functionality. Typically, these 
processes combine raster, vector, coverage, and/or point cloud data with well-defined 
algorithms to produce new information. [1]

Draft OGC API – Tiles: This recent OGC API Standard defines how to discover which resources 
offered by the Web API can be retrieved as tiles, retrieve metadata about the tile set (including 
the supported tile matrix sets, the limits of the tiled set inside the tile matrix set), and how to 
request a tile. [2]

Draft OGC API – Styles: This draft OGC API specifies building blocks for implementing OGC 
Standards based Web APIs that enables map servers, clients, and visual style editors to manage 
and fetch styles. [3]

4.1.3. Exploration of OGC API Standards by SWIM

Over the years, the FAA and OGC have jointly explored making SWIM data more easily 
accessible and more valuable. As part of these past efforts, Testbed-16 brought together 
previous work on the development of OGC APIs, the use of semantics to enrich data, and 
SWIM data processing. The objectives were to deliver the first demonstration of an OpenAPI-
based API serving SWIM data, a component generating aviation Linked Data, and two client 
applications querying and displaying that data [14].

Two of TB-16 recommendations were to integrate OGC API requirement classes within SWIM 
Data Services and to demonstrate interoperability between diverse Aviation APIs [14]. In 
order to advance these recommendations, TB-17 focused on the development of eleven APIs 
based on OGC API Standards, and the completion of Technology Integration Experiments (TIEs) 
between these APIs.

During TB-16, the development of the API serving aviation data resulted in numerous lessons 
learned and recommendations [14]. TB-16 saw the development of one aviation-related API 
based on an OGC API Standard (OGC API — Features). The APIs developed during TB-17 ([4]) 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 11



addressed many of those lessons learned and implemented additional OGC API Standards (draft 
and approved) which have been maturing since. This process is reflected in Figure 2.

Figure 2 — History of OGC experiments to enhance SWIM

4.2. Requirements Statement
 

Testbed-18 required investigating the potential of filtering using OGC API Standards in the 
context of the SWIM Program.

The original goals of the TB-18 Advanced Filtering of SWIM Feature Data Task were as follows

• Experiment with OGC API-Features filtering mechanisms.

• Explore if best practices for advertising filtering capabilities are required beyond what is 
already defined in the various OGC API-Features Parts.

• Demonstrate advanced filtering in situations where the data endpoints support only 
rudimentary filtering by introducing a new service type “Filtering Service.”

• Allow filtering rules for a specific data service to be provided at runtime in a machine-
readable manner.

The research questions for the Advanced Filtering of SWIM Feature Data Task were as follows.

• How does filtering of SWIM data served by OGC API-Features endpoints work?

• Is the metadata required by the various OGC API-Features parts sufficient to allow clients 
to fully “understand” the filtering capabilities of a service endpoint?

OPEN GEOSPATIAL CONSORTIUM 22-023R2 12



• OGC API — Features — Part 3: Filtering and the Common Query Language (CQL) supports 
queryables that are not directly represented as resource properties in the content schema 
of the resource. Is it possible to identify best practices for their usage?

• Clients may know the content schema of offered resources. How to use this knowledge 
for advanced filtering beyond what is defined in OGC API — Features — Part 3: Filtering 
and the Common Query Language (CQL)?

• How does a filtering service look like that allows advanced filtering for rather simple OGC 
API-Features-based SWIM data endpoints?

• How does such a service work in situations where a data publisher has restricted 
filtering on certain properties (for example, because the backend datastore has not been 
configured to allow high-performance queries on those properties)?

• How can a client application support a customer who has knowledge of the content 
schema of an offered resource in the creation of filter statements? What are the key 
requirements for a developer GUI that supports visualization and management of these 
filtering tools?

• Is easily creating a new filtered dataset possible by creating machine readable filtering 
rules based on the metadata required by the OGC API-Features standards? How can these 
rules be provided to the Filtering Service at runtime?

4.3. Functional Overview
 

As shown in Figure 3, the Advanced Filtering of SWIM Feature Data Task architecture was 
organized into a system of seven interconnected components. All seven components were 
developed simultaneously throughout the Testbed, with permanent communication and 
cooperation among participant organizations.

The components can be divided into three groups.

• Façades for SWIM services with simple filtering mechanisms. Retrieve aviation data 
from multiple SWIM services and serve these data through APIs built based on OGC API 
Standards featuring basic filtering mechanisms. Three Façades were built.

• The OGC API-Features Façade 1 (identified collectively as D100): Four APIs built to 
serve NOTAMs, Airport Layouts, and Airspaces

• The OGC API-Features Façade 2 (identified collectively as D101): Three APIs built to 
serve aeronautical, flight, and weather features.

• An extra façade, not originally included in the Task architecture, was offered in-kind by 
the company Skymantics, and was named OGC API-Features Façade 3: An API built to 
serve flight plans from the SFDPS (FAA) Service.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 13



• Components that serve aviation data with advanced filtering mechanisms. Two filtering 
services were built, each one featuring an API.

• The Filtering Service 1 (identified as D102): Built to serve SWIM data from D100 with 
advanced filtering mechanisms.

• The Filtering Service 2 (identified as D103): Built to serve SWIM data from all three 
façades with advanced filtering mechanisms.

• Client components to demonstrate consumption of filtered data, and configuration of 
filtering mechanisms. Two clients were built: One meant to serve an aviation domain 
expert and the other to serve a developer of aviation software applications.

• The Business User Client (identified as D104): A client built to query filtering services 
and demonstrate the usage of advanced filtering mechanisms.

• The Developer Client (identified as D105): A client built to define filter statements that 
can be expressed in a machine-readable way and can be exchanged with the filtering 
services.

Figure 3 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task

4.3.1. Component Interactions

The following two figures illustrate the intended interactions between the components 
described in the Work Items & Deliverables section of this ER. The two figures illustrate the 
workflows for using the filtering service for data subsetting (Figure 4) from the perspective of a 
business client and for configuring the filtering service at runtime (Figure 6) from the perspective 
of the filtering rules developer.

In the first workflow, illustrated in Figure 4, an OGC API-Features façade to SWIM Data Service
data service offers insufficient filtering capabilities to its customers. The Business User Client 
does not want to access large data sets and then perform filtering itself. Instead, the client wants 
to make use of a Filtering Service that can handle the filtering of the data and provide the subset 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 14



of the data that the client is interested in. If the filtering service receives a data request from the 
client, it connects to the data service to access the necessary data, filters out everything that is 
not requested by the client, and eventually delivers the result to the client.

Figure 4 — Workflow from the perspective of a business user that needs filtered data

OPEN GEOSPATIAL CONSORTIUM 22-023R2 15



Figure 5 — First Workflow Sequence Diagram

The second workflow, illustrated in Figure 6, demonstrates how a filtering service can be 
configured at run time. The assumption is that the Developer Client is aware of the API 
characteristics of the data service as well as the content schema of the data served by the data 
server. Based on both, the client supports the user with a GUI in the definition of the filtering 
rules. The user can then register these rules with the filtering service, which is now configured 
to run the data service specific filtering.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 16



Figure 6 — Workflow from the perspective of a filtering rules developer

OPEN GEOSPATIAL CONSORTIUM 22-023R2 17



Figure 7 — Second Workflow Sequence Diagram

OPEN GEOSPATIAL CONSORTIUM 22-023R2 18



5

OGC API-FEATURES
FAÇADE 1 (D100)
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 19



5 OGC API-FEATURES FAÇADE 1 (D100)
 

The OGC API-Features Façade 1, identified as deliverable 100 or D100, is a component built to 
demonstrate a service consuming data from a SWIM data service and serving that data through 
an API built based on OGC API standards offering a limited set of filtering capabilities. The 
component was demonstrated by interactive instruments GmbH.

The Façade Service was originally set up in Testbed 17 (see the description of D104 in chapter 4 
of [4]) and updated for Testbed 18.

5.1. Internal Architecture
 

5.1.1. Component Overview

This Façade Service features the following.

• Two data retrieval subcomponents: one for the Federal Notice to Airmen System (AIM-
FNS) and another one for airspace and airport static data sources.

• A database to store the extracted data.

• ldproxy which delivers the APIs that serve the extracted data. Figure 8 describes the 
Façade Service subcomponents, the data sources (note that for AIM-FNS the retriever also 
accesses static sources on some occasions), and the Testbed-18 components consuming 
from the Façade APIs.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 20



Figure 8 — D100 Component Overview

5.1.2. ldproxy (Web API)

The main component that delivers the Aeronautical Data APIs is ldproxy. ldproxy is a software 
product written in the Java programming language that implements the OGC API family 
of Standards. ldproxy enables sharing geospatial data using Web APIs based on OGC API 
Standards.

The component provides the following four Data APIs that have been deployed.

• Airports (access by AIXM feature type)

• Airports (access by airport)

• Airspaces

• Federal Notice to Airmen System (FNS)

Responses with feature data could be requested in the following representations/formats.

• GeoJSON (media type application/geo+json, query parameter f=json)

• JSON-FG (media type application/vnd.ogc.fg+json, query parameter f=jsonfg)

• HTML (media type text/html, query parameter f=html)

• FlatGeobuf (media type application/flatgeobuf, query parameter f=fgb)

In addition, some of the APIs also provided access to vector tiles and styles for those tiles. These 
can be useful for exploring the data but are not directly related to the research questions.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 21

https://github.com/interactive-instruments/ldproxy
https://t18.ldproxy.net/d100_airports
https://t18.ldproxy.net/d100_airports2
https://t18.ldproxy.net/d100_airspace
https://t18.ldproxy.net/d100_fns
https://www.rfc-editor.org/rfc/rfc7946.html
https://docs.ogc.org/DRAFTS/21-045.html
https://github.com/flatgeobuf/flatgeobuf


For more information about the APIs, see section 4.2 of the Testbed 17 Aviation API Engineering 
Report.

5.1.3. PostgreSQL/PostGIS (Database)

The data available for API access are stored in a PostgreSQL/PostGIS database. That is, the data 
are stored in tables with the geometries stored as Simple Features geometries in Well-Known-
Text format.

The following are the aeronautical datasets.

• All Controlled Airspaces of the Classes B, C, D, and E from the National Airspace System 
Resource (NASR) Subscription

• Airport data for the major airports in the United States provided by Hexagon (AIXM 5.1)

• Notices to Airmen (NOTAMs) received from a Federal Notice to Airmen System (AIM-
FNS) subscription in FAA’s SWIM Cloud Distribution Service (SCDS), a cloud-based 
infrastructure dedicated to providing near real-time FAA SWIM data to the public via 
Solace JMS messaging

5.1.3.1. Communication Between ldproxy and PostgreSQL

ldproxy converts API requests to SQL queries and processes the results to convert them to 
API responses in the GeoJSON, Features and Geometries JSON (JSON-FG), HTML, or Mapbox 
Vector Tile (MVT) formats.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 22

https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/NASR_Subscription/
https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/NASR_Subscription/
https://www.faa.gov/air_traffic/technology/swim/products/get_connected/


Figure 9 — Information Flow for Data Requests

While the first two datasets are static and do not change, the NOTAMs are dynamic. New 
NOTAMs are added to the database as they are received from the SCDS subscription. Since 
a new NOTAM may change information that is cached in ldproxy for performance reasons 
(in particular, the spatial and temporal extent of the NOTAM dataset, but also vector tiles) a 
database trigger is used to notify ldproxy about a new NOTAM. For each new NOTAM, the 
spatial and temporal extents are evaluated and, if needed, the extents of the NOTAM feature 
collection are updated. Additionally, vector tiles that include the spatial extent are invalidated in 
the tile cache.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 23



Figure 10 — Communicating Data Changes to ldproxy

The communication between ldproxy and PostgreSQL uses the standard PostgreSQL protocol, 
which is TCP/IP-based.

5.1.4. Data Retrieval

See sections 4.1.4 and 4.1.5 of the Tested-17 Aviation API Engineering Report on details how 
the SWIM datasets are loaded into the database.

5.2. Differences to the component from Testbed 17
 

The component was updated to the latest version of ldproxy and to the new version 1.0.1 of
OGC API Features Part 1: Core.

The APIs mainly supported simple access to the data, based on OGC API Features Part 1: Core. 
That is, paging was supported as well as filtering using bbox, datetime, and selected feature 
attributes.

Some sample requests for data requests with simple filter capabilities were included in the 
description of the NOTAM API, by clicking on “Sample requests to filter NOTAM events” on the 
HTML landing page for more information. This gave clients an idea of how to construct data 
requests with simple but already useful filter capabilities.

Example — Example simple filtering requests in the NOTAM API:
• For spatial filtering, the “bbox” query parameter can be used. https://t18.ldproxy.net/

d100_fns/collections/notam/items?bbox=-77.6,38.4,-76.2,39.6 selects events in the 
Washington area.

• For temporal filtering, the “datetime” query parameter can be used. https://t18.ldproxy.
net/d100_fns/collections/notam/items?datetime=now selects events that are currently 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 24

https://t18.ldproxy.net/d100_fns/collections/notam/items?bbox=-77.6,38.4,-76.2,39.6
https://t18.ldproxy.net/d100_fns/collections/notam/items?bbox=-77.6,38.4,-76.2,39.6
https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=now
https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=now


valid, https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=2021-06-

27T01:00:00Z selects events that are effective at 1AM UTC on 2021-06-27, and https://
t18.ldproxy.net/d100_fns/collections/notam/items?datetime=2021-07-01T00:00:00Z/
2021-07-31T23:59:59Z selects NOTAMs that are effective during July 2021.

• For filtering on attributes that are queryables, a query parameter with the attribute name 
can be used.

• https://t18.ldproxy.net/d100_fns/collections/notam/items?location=IAD selects 
events related to Dulles airport.

• https://t18.ldproxy.net/d100_fns/collections/notam/items?icao_location=KIAD also 
selects events related to Dulles airport.

• https://t18.ldproxy.net/d100_fns/collections/notam/items?notam_keyword=RWY
selects events related to runways.

• https://t18.ldproxy.net/d100_fns/collections/notam/items?affected_fir=ZDC selects 
events affecting the Washington Air Route Traffic Control Center (ZDC).

• https://t18.ldproxy.net/d100_fns/collections/notam/items?scenario=82 selects the 
events related to scenario 82 (no documentation about the meaning of the scenarios 
could be identified).

• Any of these query parameters can be combined. Events are selected that meet all 
predicates. https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=
now&notam_keyword=RWY&affected_fir=ZDC selects all NOTAMs that are currently 
in effect, related to runways and affecting the Washington Air Route Traffic Control 
Center (ZDC).

The HTML representation of the Features resource also included a simple HTML form to submit 
requests with these simple filters.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 25

https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=2021-06-27T01:00:00Z
https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=2021-06-27T01:00:00Z
https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=2021-07-01T00:00:00Z/2021-07-31T23:59:59Z
https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=2021-07-01T00:00:00Z/2021-07-31T23:59:59Z
https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=2021-07-01T00:00:00Z/2021-07-31T23:59:59Z
https://t18.ldproxy.net/d100_fns/collections/notam/items?location=IAD
https://t18.ldproxy.net/d100_fns/collections/notam/items?icao_location=KIAD
https://t18.ldproxy.net/d100_fns/collections/notam/items?notam_keyword=RWY
https://t18.ldproxy.net/d100_fns/collections/notam/items?affected_fir=ZDC
https://t18.ldproxy.net/d100_fns/collections/notam/items?scenario=82
https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=now&notam_keyword=RWY&affected_fir=ZDC
https://t18.ldproxy.net/d100_fns/collections/notam/items?datetime=now&notam_keyword=RWY&affected_fir=ZDC
https://t18.ldproxy.net/d100_fns/collections/notam/items


Figure 11 — D100 Simple Filtering in the Web Browser

In Testbed 17 the APIs supported more OGC API building blocks, in particular they supported 
filtering using OGC API — Features — Part 3: Filtering and the Text encoding of Common Query 
Language (CQL2). Since the Filtering Services D102 and D103 were used for Filtering in Testbed 
18, these capabilities were removed from the Façade Service in the testbed. In addition, other 
capabilities were removed, like the ability to request the data in various coordinate reference 
systems.

5.3. Challenges and Lessons Learned
 

Since the component was in large part reused for Testbed 18, there were no new challenges 
regarding the pre-existing APIs. See section 4.3 of the Tested-17 Aviation API Engineering 
Report for several challenges and lessons learned during Testbed 17.

Furthermore, there was a goal to add additional weather datasets to the component in Testbed 
18. However, getting access to weather data with a coverage of the continental United States 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 26



within the time frame of Testbed 18 was not possible. Therefore, no additional SWIM data was 
added during Testbed 18 to the component.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 27



6

OGC API-FEATURES
FAÇADE 2 (D101)
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 28



6 OGC API-FEATURES FAÇADE 2 (D101)
 

OGC API-Features Façade 2, identified as deliverable 101 or D101, is a component built to 
demonstrate a service consuming data from a SWIM data service and serving that data through 
an API built based on OGC API standards offering a limited set of filtering capabilities. George 
Mason University demonstrated the D101 component.

6.1. Status Quo
 

For Testbed 16 (OGC document 20-020) the OGC API-Feature façade for the SWIM data 
messaging services was initially implemented as a RESTful relay Web service using Java, Spring 
framework, and Java Messaging Service (JMS) clients. A Testbed 18 objective was to test 
integrated filtering capabilities of OGC API-Features, especially with the OGC API-Features 
draft Part 3 filtering capability of OGC document 19-079r1. The following summarizes the 
main gaps or the advances to be made to the API-Features façade Web service for the SWIM 
implemented in the Testbed 16.

• Filtering capabilities: The API-Features façade for the SWIM messaging services 
implemented for Testbed 16 lacks the support of advanced filtering as specified in the 
OGC API-Features Part 3 (OGC 19-079r1). There is a filter parameter declared in the 
OpenAPI specification of the OGC API — Features Standard. The OGC API — Features 
service will be enhanced with the support of filtering using Filtering / Common Query 
Language (CQL2) languages in both text and JSON encoding.

• Additional SWIM data: The Testbed 16 API-Feature façade service does not handle any 
weather data. That activity focused on relaying data and caching features from messages 
in Aeronautical Information Exchange Model (AIXM) and Flight Information Exchange 
Model (FIXM). Extensions to AIXM and FIXM were handled in Testbed 16, such as the US 
Federal Aviation Administration Notice to Air Missions System Event (FNSE) extension and 
the US National Airspace System (NAS) extension. The API-Features service in Testbed 18 
will add weather data provided in the Weather Information Exchange Model (WXXM) or 
its local extensions.

• Updates of OGC API-Features specification: The OGC API-Features Standard has evolved 
and been revised for several years. The core Standard has a new update officially released 
as version 1.0.1. The API-Features service in Testbed 18 adopted the latest revision. 
Related tools and software development kits (SDKs) for OpenAPI have also evolved and 
advanced recently from community efforts. The implementation of the API-Features 
service in Testbed 18 leverages the advancements of these SDKs, especially the evolutions 
in the open source community. The interface parsing and validation will be done with 
the API-first approach in the Python open source community. This would be a different 
experience from the previous Java development.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 29



6.2. Internal Architecture
 

The OGC API-Feature façade for SWIM services was re-implemented and enhanced using the 
OpenAPI stub generator (python-aiohttp) to support standard search and retrieval of SWIM 
messaging-accumulated feature data with filtering languages of Filtering / Common Query 
Language (CQL2) in text format or JSON format. In addition to the filtering capabilities, new data 
was added with new messaging-harvester for the Integrated Terminal Weather System (ITWS) of 
the System Wide Information Management (SWIM).

Figure 12 — D101 Component Overview

Filtering language support is primarily based on an extended version of the open source 
pygeofilter, a Python implementation of cql2-text and cql2-json parsers. There is an example 
backend translator for Django, SQLAlchemy, GeoPandas, and generic SQL. This implementation 
forked the open source pygeofilter to extend the SQL backend to work with the PostGIS 
backend spatiotemporal database.

The overall server-side API-Features library was implemented as a pluggable system to support 
extension of the server. Two parts are pluggable – backend data providers and frontend output 
formatters. The backend data providers provide customized interaction with the data source. 
Different types may require different providers. The current system implemented the data 
providers with a PostGIS spatiotemporal database. All collection metadata and features are 
managed with a set of relational entities (tables).

The frontend formatters produce the responses matching the request. In the Testbed 18 
implementation, GeoJSON and rendered HTML are supported. The jinja2 templates are used to 
render HTML output. The rendered HTML page embedded a light-weight JavaScript client to 
support the interactive retrieval and rendering of results on maps in browsers.

The following figure shows the interaction and data flow between OGC API — Features façade 
services and SWIM messaging services. In the implementation, the data are first harvested, 
translated, and cached in a unified spatiotemporal database from the messaging stream of 
SWIM services. The ingestion of streaming messages is completed with two steps: a Java 
Messaging Service (JMS) client to receive the messages and a harvester for each data type 
to load message into the spatiotemporal database. The harvesters implemented in Java in 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 30



Testbed 16 were reused for Testbed 18, including harvesters for AIM FNS, TFMS, and SFDPS. 
The SWIMITWS, the harvesters for ingesting ITWS Weather data from SWIM ITWS messages 
is newly implemented in Testbed 18. The data include 28 feature collections. Each feature 
collection has a specific handler to complete the necessary translation, reformatting, and loading 
into the intermediate spatiotemporal database.

OGCAPIUsers-> D101 : API-Features for SWIM features

D101-> SWIMServiceConsumer: Subscription requests
SWIMServiceConsumer -> SWIM: Request for services
SWIM -> SWIMAIMFNS: Subscribe to SWIM AIM FNS service
SWIMAIMFNS -> SWIM: AIM FNS notice to airmen messaging responses
SWIM -> SWIMTFMS: Subscribe to SWIM TFMS service
SWIMTFMS -> SWIM: TFMS traffic flow messaging responses
SWIM -> SWIMSFDPS: Subscribe to SWIM SFDPS service
SWIMSFDPS -> SWIM: SFDPS flight data messaging responses
SWIM -> SWIMITWS: Subscribe to SWIM ITWS service
SWIMITWS -> SWIM: ITWS Weather data messaging responses
SWIM -> SWIMServiceConsumer: Proxy service responses
SWIMServiceConsumer-> D101 : Document-based database indexing

D101->OGCAPIUsers : Resources (GeoJSON, HTML)

Figure 13 — API-Features Data Interaction with Backend SWIM Messaging Services

' hide the spot
hide circle

' avoid problems with angled crows feet
skinparam linetype ortho

entity "Collections" as e01 { 
  *e1_fid : number <<generated>>
  --
  *thegeom : geometry 
  *cid : varchar 
  table: varchar 
  title : varchar 
  description : text 
  bbox: varchar 
  temporal: varchar 
  itemtype: varchar 
  crs: varchar 
  links: varchar
}

entity "Collection.Queryables" as e07 { 
  *e7_id : number <<generated>>
  --
  *e2_id : number <<FK>>
  *cid : varchar <<FK>>
  type : varchar 
  encoding : text
}

entity "CollectionEncoding" as e02 { 
  *e2_id : number <<generated>>
  --
  *e1_id : number <<FK>>
  *type: varchar 
  *encoding : text
}

OPEN GEOSPATIAL CONSORTIUM 22-023R2 31



entity "Document" as e03 { 
  *e3_id : number <<generated>>
  --
  *file : varchar 
  *status : number
}

entity "Message" as e04 { 
  *e4_id : number <<generated>>
  --
  *e3_id : number <<FK>>
  xpath : varchar 
  type : number 
  encoding : text
}

entity "Feature" as e05 { 
  *e5_id : number <<generated>>
  --
  *thegeom : geometry 
  *gmlid : varchar 
  *gmlidtrace : varchar 
  *featuretype : varchar 
  *begintime : timestamp 
  *endtime : timestamp 
  *isinsttime : Boolean 
  elevation : double 
  verticalTop : double 
  elem: varchar
}

entity "FeatureEncoding" as e06 { 
  *e6_id : number <<generated>>
  --
  *e4_id : number <<FK>>
  *e5_id : number <<FK>>
  xpath : varchar 
  type : number 
  encoding : text
}

e01 ||..|{ e02
e05 ||..o{ e06
e06 ||..o{ e04
e03 ||..o{ e04

Figure 14 — Major Entity Relationship Diagram for Managed SWIM Features

 
Table 1 — Server Endpoints

SERVER NAME URL FOR LANDING PAGE

OPEN GEOSPATIAL CONSORTIUM 22-023R2 32



6.3. Feature collections
 

6.3.1. AIXM Features

The AIXM feature collections provide a façade the ability to access AIXM features available 
in SWIM services. The following table lists the collections. The direct access point for the 
collection can be formed by using a collection id as follows.

https://cat.csiss.gmu.edu/gmuwfs3/collections/<collection_id&gt;

For example, the direct access to collection of Apron Element: https://cat.csiss.gmu.edu/
gmuwfs3/collections/ApronElement

 
Table 2 — AIXM Feature Collections from SWIM Data Services

ID TITLE DESCRIPTION

ApronElement
Apron 
Element

Parts of a defined apron area. ApronElements may have functional characteristics 
defined in the ApronElement type. ApronElements may have jetway, fuel, towing, 
docking, and groundPower services.

Airspace Airspace A defined three dimensional region of space relevant to air traffic.

Taxiway
Element

Taxiway 
Element

Part of a Taxiway

Runway
Element

Runway 
Element

Runway element may consist of one or more polygons not defined as other portions 
of the runway class.

6.3.2. FIXM/Flight Features

The FIXM/Flight feature collections provide a façade with access to FIXM feature and traffic 
flow information in SWIM services. The traffic flow information is provided by the TFMData 
Service by the FAA’s Traffic Flow Management System (TFMS). The following table lists the 
collections. The direct access point for the collection can be formed by using a collection id as 
follows.

https://cat.csiss.gmu.edu/gmuwfs3/collections/<collection_id&gt;

For example, the direct access to collection of Track Information: https://cat.csiss.gmu.edu/
gmuwfs3/collections/trackinformation

 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 33

https://cat.csiss.gmu.edu/gmuwfs3/collections/%3Ccollection_id&gt
https://cat.csiss.gmu.edu/gmuwfs3/collections/ApronElement
https://cat.csiss.gmu.edu/gmuwfs3/collections/ApronElement
https://cat.csiss.gmu.edu/gmuwfs3/collections/%3Ccollection_id&gt
https://cat.csiss.gmu.edu/gmuwfs3/collections/trackinformation
https://cat.csiss.gmu.edu/gmuwfs3/collections/trackinformation


Table 3 — FIXM and Traffic Flow Feature Collections from SWIM Data Services

ID TITLE DESCRIPTION

trackinformation Track information Track information of flight.

RAPT RAPT Timeline Data
Route Availability Planning Tool (RAPT) Timeline 
Data.

flightPlanInformation Flight plan information Flight plan information.

flightPlanAmendment
Information

Flight plan amendment 
information

Flight plan amendment information.

NasFlightMessage
Flight Message in FIXM with 
US Extension

FIXM — Flight information with US Extension.
 Schemas are available at https://www.fixm.
aero/download.pl?view=e .

6.3.3. ITWS Features

ITWS feature collections provide a façade with access to ITWS weather data in SWIM services. 
The following table lists the collections. The direct access point for the collection can be formed 
by using collection id as follows. There are currently 28 feature collections available from the 
SWIM ITWS service.

https://cat.csiss.gmu.edu/gmuwfs3/collections/<collection_id&gt;

For example, the direct access to collection of Precipitation 5nm Product: https://cat.csiss.gmu.
edu/gmuwfs3/collections/ITWS9849

 
Table 4 — ITWS Weather Feature Collections from SWIM Data Services

ID TITLE DESCRIPTION

ITWS9849
Precipitation 
5nm Product

The 5nm precipitation product shows data from the TDWR surface level scan in 
National Weather Service (NWS) VIP 6-levels and areas indicated as attenuated data 
in a gridded format.

ITWS9845
Airport Lightning 
Warning

The airport lightning warning product is used to notify users that there is the 
potential for lightning in close proximity to predefined ‘critical regions’ near an 
airport. The source of the data is the National Lightning Detection Network (NLDN).

ITWS9911
SM SEP 5nm 
Product

The Storm Motion Storm Extrapolated Position (SM SEP) product shows motion 
vectors and contours which indicate the predicted future positions of storm cells.
 One set of data is generated for the current state and for 10 and 20 minutes in the 
future.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 34

https://www.fixm.aero/download.pl?view=e
https://www.fixm.aero/download.pl?view=e
https://cat.csiss.gmu.edu/gmuwfs3/collections/%3Ccollection_id&gt
https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849
https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849


ID TITLE DESCRIPTION

ITWS9838
Tornado 
Detections 
Product

The Tornado Detections product includes the location of a tornado as determined by 
the NEXRAD tornado algorithm.

ITWS9903
Forecast 
Contour Product

The Forecast Contour product contains four predicted contour lines corresponding 
to the outer edges of a storm cell for what ITWS calculates to be the position of the 
outer boundary of the storm cell for 30 and 60 minutes in the future and for both 
standard and winter forecasts.

6.4. Filtering Capabilities
 

The filtering capability of the API-Features supports both cql2-text and cql2-json. The parsing 
and translating of queries into backend SQL in PostGIS/Postgresql is achieved through a forked, 
revised open source library, pygeofilter. Two major revisions to pygeofilter are functional 
mapping and field (property) mapping. The functional mapping list enables the conversion 
of query functions to equivalent functions in the backend PostGIS/Postgresql database. For 
example, temporal comparison function “BEFORE” may have to be mapped to “<” in temporal 
field comparison with proper conversion (i.e., converting from string expression into internal sql 
timestamp).

The field mapping converts the property to field or extracted field value in a backend 
spatiotemporal database. The spatiotemporal database in this implementation uses a generic 
spatiotemporal database. The data for each feature are stored as an encoded blob/text in 
the encoding field with a corresponding media-type. The primary encoding is GeoJSON (i.e. 
application/geo+json) besides the native encoding (e.g., application/aixm+xml;version=3.0.1). 
The field mapping uses the JSON parsing and extraction capabilities of Postgresql database. The 
following list shows examples of mappings for ITWS weather data.

The parsing and validation of user requests is enabled using API-first approach. The API-
first approach assures the consistency of declarations in OpenAPI YAML or JSON. The 
implementation of OGC API — Features also uses the open-source server stub generator, 
OpenAPI Generator, to generate stubs for the server-side library. Models are generated using 
the Python-aiohttp generator specifically for Python programs. The models are linked to 
the interface parser, connexion. Connexion is a framework that automatically handles HTTP 
requests based on OpenAPI Specification. The tight links between parameters, models, and 
responses enable the consistency across-board.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 35

https://github.com/geopython/pygeofilter
https://connexion.readthedocs.io/en/latest/
https://www.openapis.org/


6.4.1. Query

6.4.1.1. Query with cql2-text

The following is an example request on ITWS9849 (Precipitation 5nm Product) — Search 
airports.

The cql2-text is: itws_sites = ‘CMH’

The URL encoded request is as follows.

https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=itws_sites
%20%3D%20%27CMH%27&filter-crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs
%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-text

6.4.1.2. Query with cql2-json

The cql2-json is as follows.

{
  "filter": {
    "op": "=",
    "args": [
      {
        "property": "itws_sites"
      },
      "CMH"
    ]
  }
}

Figure 15

The URL-encoded request is as follows.

https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=%7B%22filter
%22%3A%7B%22op%22%3A%22%3D%22%2C%22args%22%3A%5B%7B%22property
%22%3A%22itws_sites%22%7D%2C%22CMH%22%5D%7D%7D&filter-crs=http%3A%2F
%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-json

6.5. Challenges and Lessons Learned
 

The following summarizes challenges and lessons learned for the implementation and 
enablement of filtering capabilities in the API-Features services for SWIM data.

• Filtering enablement: The Filtering / Common Query Language (CQL2) standard is 
evolving. The open-source libraries for supporting the parsing and translation of CQL2 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 36

https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=itws_sites%20%3D%20%27CMH%27&filter-crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-text
https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=itws_sites%20%3D%20%27CMH%27&filter-crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-text
https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=itws_sites%20%3D%20%27CMH%27&filter-crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-text
https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=%7B%22filter%22%3A%7B%22op%22%3A%22%3D%22%2C%22args%22%3A%5B%7B%22property%22%3A%22itws_sites%22%7D%2C%22CMH%22%5D%7D%7D&filter-crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-json
https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=%7B%22filter%22%3A%7B%22op%22%3A%22%3D%22%2C%22args%22%3A%5B%7B%22property%22%3A%22itws_sites%22%7D%2C%22CMH%22%5D%7D%7D&filter-crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-json
https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=%7B%22filter%22%3A%7B%22op%22%3A%22%3D%22%2C%22args%22%3A%5B%7B%22property%22%3A%22itws_sites%22%7D%2C%22CMH%22%5D%7D%7D&filter-crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-json
https://cat.csiss.gmu.edu/gmuwfs3/collections/ITWS9849/items?limit=10&filter=%7B%22filter%22%3A%7B%22op%22%3A%22%3D%22%2C%22args%22%3A%5B%7B%22property%22%3A%22itws_sites%22%7D%2C%22CMH%22%5D%7D%7D&filter-crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&filter-lang=cql2-json


queries into common backend databases queries or query services such as SPARQL 
and GraphQL are not in sync with the changes to the draft standard. For example, the 
implementation of the OGC API — Features service in Testbed -18 using Python found 
pygeofilter as the library that supports both cql2-text and cql2-json.

However, the predicates for spatial and temporal conditions are still in the formats 
with prefixes s_ and t_ respectively. This leads to the mandatory forking and revision of 
pygeofilter to be usable for the latest version as defined in OGC 19-079r1 (OGC API – 
Features – Part 3: Filtering). The open-source library pygeofilter also has limited support 
on the backend. In Testbed 18, pygeofilter does not support the backend with PostGIS/
postgresql. The backend translator must be extensively edited to support the evaluation of 
CQL2 (either cql2-text or cql2-json) into valid a SQL command for PostGIS/Postgresql.

• Filtering capability description: SWIM messaging services provide different features with 
different information models. These schemas are not easily regenerated automatically 
from (for example) database schemas. The extraction and encoding of queryables were 
done manually with extensive study of the original data models, including AIXM, FIXM, 
WXXM, and specialized FAA extensions. The description of queryables is flexible, but this 
flexibility may lead the response to be too flexible to be used properly by clients.

The SWIM dataset has pre-defined codes for locations, facilities, and/or status. Some 
may not be fully expressed with “enum” attributes. For example, the International Air 
Transport Association’s (IATA) Location Identifier is another standard that is widely used in 
SWIM messages as attributes. Verifying if the code is valid unless the client checks with a 
registry service of IATA is not possible. The specification may specify how to describe the 
queryable in such a case and give examples for describing the queryable.

• Filtering performance: Performance is an implementation-specific experience based on 
balancing the general applicability and the specialization of information models in the 
backend spatiotemporal database. This Testbed’s implementation considers managing 
different features generated from SWIM messages. The harvester would create aa feature 
collection under the same type if the service has not recorded the collection. In order to 
achieve this flexibility, the implementation populates partially common attributes (e.g., 
spatial extent, temporal extent) in defined entities and encodes all into a blob field with 
corresponding media type (e.g., application/geo+json or native media type – application/
aixm+xml;version=3.0.1).

Most queryables are only accessible through an encoded blob. In defining the field-
mapping, we used JSON query against the blob. These properties/attributes for queries 
are directly managed by PostGIS/Postgresql. Therefore, the performance improvement 
with indexing these properties is not supported with this implementation. This setup used 
in Testbed 18 may work fine for SWIM data services if only a limited number of features 
are searchable within their valid time range.

• API-first approach for implementing services: The Testbed 18 implementation of OGC 
API — Features uses the API-first approach. In other words, the specification defined in 
YAML is used at the interface, intermediate internal information models, and response 
generation. This approach needs a well-defined OpenAPI specification in either JSON 
or YAML. The implementation starts to form a complete OpenAPI document using the 
examples in API-Features Core Standard GitHub and adds the filter parameters from the 
examples in swaggerhub. The API-Features (OGC 17-069r5 and OGC 19-079r) schema 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 37



does not include paths although these examples include paths. The paths should be an 
integrated part of the specification.

Having the specification schema repository including more concrete OpenAPI 
specification examples with fully defined paths at different levels of conformances in 
YAML or JSON would be helpful. Schemas can be used directly with little configuration 
changes with the API-first implementation approach. The internal models generated 
from the YAML specification or JSON have problems in dealing with “oneOf” for 
parameterization and Geometrycollection GeoJSON object. The generated models need 
to be revised before the stubs work. This may be an OpenAPI open-source tool issue. The 
open-source OpenAPI generator, specifically the Python-aiohttp generator, needs to be 
revised to support the proper generation of models.

The API-first library, connexion, needs to be revised to support proper validation. 
Alternatively, the specification may avoid this complexity by leaving out the validation of 
certain property constraints. For example, the BBOX parameter may just be defined as a 
simple array with the choice of 2-D or 3-D constraints which the connexion not properly 
validated against the specification. The Geometrycollection may be fully defined in the 
schema section to enable the generator tool to create inheritable objects in the generated 
models.

• Advanced filtering: SWIM messaging services are streaming data with validated time 
periods while they are ingested into separate feature collections. For example, the 
wind information is delivered through three feature collections: itws_9840_start for 
wind start time, itws_9840_expiration for wind alter information expiration time, and 
itws_9840_speed for wind speed update. A filter based on wind event would need to be 
formed as an integrated query against all three feature collections to get the valid wind 
event information.

Another case is the part-of relationship between SWIM feature collections which also 
needs an advanced filtering query to get valid information. For example, a Runway feature 
may consist of several RunwayElements, a Taxiway feature of multiple TaxiwayElements, 
and an Apron feature of multiple ApronElements. The classes at the highest level (e.g., 
Runway, Taxiway, Apron) are in different feature collections than their component classes 
(e.g., RunwayElement, TaxiwayElement, ApronElement). The CQL2 Standard is not 
designed to work against multiple feature collections even though they may be served in 
one OGC API — Features service.

• Light-weight client for rendering response in browsers: The implementation of OGC API 
— Features in Testbed 18 uses an embedded leaflet-based, light-weight JavaScript client 
to render the HTML response in browsers. This light-weight client helps in guiding users 
to input proper parameters. The jinja2 templates are used to create the templates for 
rendering results from different feature collections.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 38



7

FILTERING SERVICE 1
(D102)
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 39



7 FILTERING SERVICE 1 (D102)
 

Ecere Corporation provided the D102 Filtering Service as a Web API instance implementing
OGC API — Features supporting advanced filtering which can be applied to cascaded services 
that do not offer these capabilities themselves, such as D100 and D101. Filters can also be 
pre-defined using extended process execution requests. The service cascades the D100 and 
D101 service from interactive instruments, Skymantics and George Mason University OGC API — 
Features endpoints, with proper paging support whether filtering is used or not.

The endpoint is available at: https://maps.gnosis.earth/ogcapi/collections/swim .

7.1. Status Quo
 

Prior to the testbed, Ecere’s GNOSIS Map Server did not support filtering using the Common 
Query Language (CQL2) or cascading other map services.

7.2. Internal Architecture
 

This service is a deployment of the GNOSIS Map Server implementing OGC API Standards and 
draft specifications. The relevant collections from the deployed endpoint used for this testbed 
task are found at: (https://maps.gnosis.earth/ogcapi/collections/swim.

The GNOSIS Map Server product is a certified implementation of OGC API — Features 
— Part 1: Core Standard. The server product also supports extensions including Part 2: 
Coordinate Reference Systems by reference, as well as the draft Part 3: Filtering specification. The 
implementation also supports returning filtered results as tiled vector feature data (“vector tiles”) 
through the OGC API — Tiles — Part 1: Core Standard, including support for the Mapbox Vector 
Tiles encoding. The D102 service also acts as an OGC API — Features client for cascading to the 
D100, D101, and the Skymantics services.

Experiments were performed using GeoJSON and Features & Geometry JSON to encode vector 
features.

7.2.1. Filtering Capabilities

Filtering queries can be specified at request time using Features — Part 3: Filtering, using either 
the CMSS expression language or the OGC Common Query Language (CQL2) (new capability 
developed for this initiative). Filters can also be pre-defined using the OGC API — Processes — 
Part 3: Workflows & Chaining draft specification, supporting the creation of virtual collections.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 40

https://maps.gnosis.earth/ogcapi/collections/swim
https://ecere.ca/gnosis/
https://maps.gnosis.earth/ogcapi/collections/swim
http://docs.ogc.org/DRAFTS/21-065.html
https://opengeospatial.github.io/ogcna-auto-review/21-009.html
https://opengeospatial.github.io/ogcna-auto-review/21-009.html


Support for the OGC API — Features “Search” extension, discussed in more detail in the Filtering 
Service and Rule Set Engineering Report (ER) (OGC 22-024), is planned for future work. Ecere 
will be actively following the development of that extension, considering use cases relating to 
having common basic analytics and search capabilities across different OGC API Standards, such 
as planned for OGC API — Processes — Part 3: Workflows & Chaining Input and Output modifiers
requirements classes, as well as OGC API — Coverages, OGC API — DGGS. Some of these 
aspects were previously discussed in Testbed 17 — GeoDataCube API and in the May 2022
Space Partition Code Sprint.

7.2.1.1. CQL2

The Ecere implementation supports specifying filters using CQL2, including support for the
Basic, Property-Property, and Arithmetic Expressions conformance classes, and the cql2-text
encoding. Support for additional conformance classes, as well as the cql2-json encoding, is 
planned for future work.

Test collections, using Natural Earth data, for some of the CQL2 Abstract Tests are deployed at 
the following location.

https://maps.gnosis.earth/ogcapi/collections/cql2-test

The following are a couple of example requests using these test collections.

https://maps.gnosis.earth/ogcapi/collections/cql2-test:ne_110m_admin_0_countries/items?
filter=NAME=’Luxembourg’

https://maps.gnosis.earth/ogcapi/collections/cql2-test:ne_110m_populated_places_simple/
items?filter=NOT (start is NULL) AND (pop_other<1038288 OR name<’København’) AND NOT 
(“date” IS NOT NULL or NOT start is NULL) AND (“date” IS NOT NULL)&f=json

OPEN GEOSPATIAL CONSORTIUM 22-023R2 41

https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/search
https://github.com/opengeospatial/ogcapi-coverages/issues/164
https://github.com/opengeospatial/ogcapi-discrete-global-grid-systems/issues/47
https://docs.ogc.org/per/21-027.html
https://developer.ogc.org/sprints/16/
https://www.naturalearthdata.com/
https://maps.gnosis.earth/ogcapi/collections/cql2-test
https://maps.gnosis.earth/ogcapi/collections/cql2-test:ne_110m_admin_0_countries/items?filter=NAME=%27Luxembourg%27
https://maps.gnosis.earth/ogcapi/collections/cql2-test:ne_110m_admin_0_countries/items?filter=NAME=%27Luxembourg%27
https://maps.gnosis.earth/ogcapi/collections/cql2-test:ne_110m_populated_places_simple/items?filter=%28%28NOT%20%28start%20is%20NULL%29%20AND%20%28pop_other%3C1038288%29%29%20OR%20%28%28name%3C%27K%C3%B8benhavn%27%29%20AND%20NOT%20%28%22date%22%20IS%20NOT%20NULL%29%29%20or%20NOT%20%28%28start%20is%20NULL%29%20AND%20%28%22date%22%20IS%20NOT%20NULL%29%29%29&f=json
https://maps.gnosis.earth/ogcapi/collections/cql2-test:ne_110m_populated_places_simple/items?filter=%28%28NOT%20%28start%20is%20NULL%29%20AND%20%28pop_other%3C1038288%29%29%20OR%20%28%28name%3C%27K%C3%B8benhavn%27%29%20AND%20NOT%20%28%22date%22%20IS%20NOT%20NULL%29%29%20or%20NOT%20%28%28start%20is%20NULL%29%20AND%20%28%22date%22%20IS%20NOT%20NULL%29%29%29&f=json
https://maps.gnosis.earth/ogcapi/collections/cql2-test:ne_110m_populated_places_simple/items?filter=%28%28NOT%20%28start%20is%20NULL%29%20AND%20%28pop_other%3C1038288%29%29%20OR%20%28%28name%3C%27K%C3%B8benhavn%27%29%20AND%20NOT%20%28%22date%22%20IS%20NOT%20NULL%29%29%20or%20NOT%20%28%28start%20is%20NULL%29%20AND%20%28%22date%22%20IS%20NOT%20NULL%29%29%29&f=json


Figure 16 — Single feature returned from CQL2 filter query on test collection

7.2.2. Cascading

Ecere implemented the ability to provide access to cascaded services, while also supporting 
filtering features returned by those cascaded services, which may not themselves provide 
filtering support. Pagination challenges specific to this capability were addressed to reflect the 
fact that not all results returned by the cascaded service will be part of the filtering service 
responses.

The following link is an example items request to features originating from the cascaded service 
D100 service provided by interactive instruments.

http://maps.gnosis.earth/ogcapi/collections/swim:d100_airspace:class_c/items

OPEN GEOSPATIAL CONSORTIUM 22-023R2 42

http://maps.gnosis.earth/ogcapi/collections/swim:d100_airspace:class_c/items


Figure 17 — Single flight plan feature cascaded from Skymantics service

7.2.3. Pre-defining queries based on Processes — Part 3 extension

The OGC API — Features Search extension (described in detail in OGC 22-024 ER) has much 
in common with the idea of allowing filter, properties (for selection and derived fields/
properties), and sortBy to qualify inputs in OGC API — Processes — Part 3: Workflows and Chaining
(input and output modifiers requirements classes).

A well-known pass-through process (with support for collection input including filtering) could 
support an execution request with a syntax equivalent to the Search extension endpoint, similar 
to how the OGC API — Routes /routes endpoint shares a POST payload syntax with an eventual 
definition of a well-known routing process. Pre-defined queries could also be parameterized by 
deploying them as processes, as suggested in the Deployable workflows requirements class of
Processes — Part 3: Workflows and Chaining.

The modifiers introduced include the same filter, properties, and sortBy parameters to 
qualify inputs originating from a data collection or process, whether they are local or remote, 
as well as outputs resulting from a process. In addition to the ability to select specific fields/
properties, the properties parameter can also be used to derive new fields, for example using 
CQL2 arithmetic expressions.

Processes — Part 3 also defines a Collection output requirements class where the output of the 
workflow execution is either a dataset landing page (which can contain multiple collections), or a 
single collection.

For example, the following parameterized query addressing similar use case as the one described 
further in section 8.3.5 — Support for the Search resources‘s Example 2 taking two parameters, a 
string enumeration named composition, and a string array named airports, could be expressed 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 43

https://opengeospatial.github.io/ogcna-auto-review/21-009.html
https://opengeospatial.github.io/ogcna-auto-review/21-009.html#toc25


in a Part 3-extended OGC API — Processes execution request (using Collection input and Output 
modifiers) as follows.

Example 1 — Example parameterizable query as a Part 3-extended execution request
 

{
 "process" : "PassThrough",
 "inputs" : {
  "data" : [ {
    "collection" : "apronelement",
    "filter": {
      "op": "and",
      "args": [
        {
          "op": "=",
          "args": [
            {"property": "composition"},
            {
              "$input": {
                "composition": { "type": "string", "enum": ["CONC", "..."] }
              }
            }
          ]
        },
        {
          "op": "in",
          "args": [
            {"property": "airport"},
            {
              "$input": {
                "airports": {
                  "type": "array",
                  "items": { "type": "string", "enum": ["JFK", "EWR", "LGA", ".
.."] }
                }
              }
            }
          ]
        }
      ]
    },
    "properties": ["geometry", "airport", "type"],
    "sortBy": ["airport"]
  } ]
 }
}
 

In this example, data is an input defined in the PassThrough well-known process with multiplicity
1..* which is returned as the process output.

The collection property is defined in the Collection input requirements class of OGC API — 
Processes — Part 3, whereas the filter, properties, and sortby elements specifying a cql2-json
filtering expression, selected properties, and an ascending sort order by airport, are defined in 
Part 3’s Input modifiers requirements class.

These field modifiers can also be used in the context of the Output modifiers requirements 
class together with the Collection output requirement class or with regular process execution 
outputs. In the context of a feature collection output, these query parameter building blocks also 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 44



correspond to the functionality provided by OGC API — Features — Part 3: Filtering, as well as a 
planned extensions for Coverages and Discrete Global Grid Systems.

This execution request could be deployed as a new process, e.g., ApronFiltering, using the
Processes — Part 2: Deploy, Replace, Undeploy extension’s POST operation to /processes together 
with the Deployable workflows requirements class of Part 3. The resulting process would get 
listed at /processes with a process description including the input parameters (composition
and airports) and could itself be executed by POSTing to /processes/ApronFiltering/
execution as follows.

Example 2 — Example execution request of parameterized query deployed as a process
 

{
  "inputs" : {
    "composition" : "CONC",
    "airports": [ "JFK", "LGA" ]
  }
}
 

Posting this execution request to the execution endpoint without a Prefer: header would result 
in a synchronous execution that returns the features. With support for the Collection output
requirements class, specifying as parameter response=collection would instead return a 
collection description, as for a GET request to /collections/{collectionId} in Common — 
Part 2 and Features — Part 1. With response=landingPage, a landing page would be returned for 
the filtered dataset, allowing retrieval of multiple collections.

Such virtual collections could also be published to a dataset API as a persistent collection, e.g., 
as /collections/concApronsJFKLGA, using a non-parameterizable execution request as the 
payload of a POST operation to /collections to create the dynamic collection, with a Processes 
execution request content media type to be registered, e.g., application/ogcexecreq+json as 
suggested in Part 3 — Section 14. Media Types.

During this Testbed-18 advanced filtering task, Ecere successfully demonstrated the use of Part 
3 extensions to pre-define filtering queries to the cascading service, including the deployment of 
a sample PassThrough process with support for the filter and properties modifiers, as well as 
for the Collection Input and Collection output requirements class, with the following limitations:

• the filters were expressed using the cql2-text encoding rather than cql2-json;

• the input and output were limited to a single collection;

• the sortBy modifier (and sorted feature collections in general) remained to be 
implemented; and

• support for parameterized queries and deployable workflows was not yet implemented.

A sample pre-defined query is available from the endpoint:

https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=collection

including the following default pre-defined filter execution request.

Example 3 — Working execution request of filtering query from D100 cascaded collection
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 45

https://opengeospatial.github.io/ogcna-auto-review/21-009.html#toc36
https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=collection
https://maps.gnosis.earth/ogcapi/processes/PassThrough/execution?response=collection


{
   "process" : "https://maps.gnosis.earth/ogcapi/processes/PassThrough",
   "inputs" : {
      "data" : [
         {
            "collection" : "https://maps.gnosis.earth/ogcapi/collections/swim:
d100_airports:apronelement",
            "filter" : "composition = 'CONC' and airport in ('JFK', 'EWR', 
'LGA')",
            "properties" : [ "geometry", "airport", "type" ]
         }
      ]
   }
}
 

Figure 18 — Paging through an output collection resulting from the 
above filter query pre-defined using OGC API - Processes - Part 3

7.2.4. Cross-collections queries

Among advanced filtering capabilities are cross-collections queries, whereby the server is 
instructed to perform a join between data sources (which could potentially be hosted in two 
different servers) as a multi-collection query. Although there was no time to implement this 
capability during the Testbed, some thinking and discussion focused on researching that 
capability. Whereas the search extension defines a new endpoint at /search, Ecere suggested 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 46



supporting cross-collection queries for the usual /items endpoint. An example GET request 
would appear as follows.

GET /collections/apronelement/items? 
   collections=apron& 
   properties=*,apron.otherProperty& 
   filter=associatedApron=apron.id and airport in (JFK, EWR, LGA)& 
   sortby=airport& 
   limit=1000

Figure 19

If there are multiple airport aprons matching the same apronelement, this would likely return 
more entries than available in the apronelement collection. In this case, the items IDs would need 
to be disambiguated and would not correspond to the typical /collections/apronelement/
items/{itemId}.

The following request illustrates a weather use case, where wind speed information could be 
available either as OGC API — Features or as OGC API — Coverages (in the case of a coverage,
winds.geometry would refer to the geometry of each cell).

GET /collections/flightRoutes/items? 
   collections=https://weather.com/ogcapi/collections/winds& 
   filter=winds.speed > 100 and s_intersects(geometry, winds.geometry) and  
departingAirport in (JFK, EWR, LGA)& 
   sortby=-winds.speed,departingAirport& 
   limit=1000

Figure 20

If the winds collection supports OGC API — Environmental Data Retrieval (EDR), the flight routes 
service could use a trajectory request including the flight route geometry to the weather data 
API, as one potential way to make this efficient. This would avoid the client fetching the full set 
of weather data, then transmitting it all again to the flight route service, exchanging the full data 
collection twice, when in fact all that may have been needed is for the first service to send the 
smaller flight routes geometry to the second service in a trajectory request. In addition, the two 
services may often be hosted nearby (e.g., both being hosted on Amazon Web Services), while 
the client is located elsewhere.

7.3. Challenges and Lessons Learned
 

Building next and prev links that reflect both cascaded and filtered features, while respecting 
the limits of the original queries, in order to page features properly proved to be an important 
challenge. Issues with some of the cascaded implementations themselves also made the task 
more difficult, including the following issues that were filed upstream with pygeoapi:

• support for describing object feature properties (#1090);

• use of invalid JSON Schema types in queryables resource (#1091); and

OPEN GEOSPATIAL CONSORTIUM 22-023R2 47

https://github.com/geopython/pygeoapi/issues/1090
https://github.com/geopython/pygeoapi/issues/1091


• 500 server error returned when using application/geo+json as the media type for
Accept: header (#1108).

The use of complex objects and arrays in feature properties, as well as the occurrence of 
null geometry and of mixed geometry types by the cascaded services, were other major 
difficulties that required significant changes and improvements to Ecere’s GNOSIS Map Server 
implementation.

While implementing support for CQL2, Ecere reviewed the draft CQL2 specification and 
detected several important issues and suggested additional improvements such as simplifying 
the grammar to facilitate parser implementations. Several of the issues were resolved during the 
testbed, including the following.

• CQL2 division real or integer? data type dependent? (#711)

• /functions — out of scope for CQL2? (in Part 3: Filtering) (#715)

• POLYGON\(… in CQL2 examples (#716)

• CQL2: Permission 3 (binary comparison operators for time instants) targeting clients? 
(#719)

• CQL2: Clarify that DATE and TIMESTAMP literals are in basic, but not INTERVAL (#720)

• CQL2: Requirement 2C is a requirement on the client; 2B “literal value” (#721)

• CQL2: Basic Spatial Operators issues (#733)

• CQL2: Spatial Operators Issues (#734)

• CQL2 (AT): A.12 CQL2 Text A.13 CQL2 JSON (#750)

• CQL2: Remove — from list of valid identifier characters? (#766)

It was agreed that the following issues are to be addressed in a future revision of CQL2.

• Simplify the cql2-text grammar (future version improvements?) (#705)

• CQL2 as an expression language (not only boolean predicates) (#723)

Other issues were still pending completion at the time of writing this report.

• CQL2 Escaping (#717)

• CQL2: Thoughts on arrays and IN (#718)

• CQL2/AT1.6: {p2} and {p3} contribute nothing to result (#768)

Ecere also worked on a UML conceptual model for expressions, operators, and standardized 
functions as part of the Styles & Symbology SWG activities with the intent for it to be compatible 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 48

https://github.com/geopython/pygeoapi/issues/1108
https://github.com/opengeospatial/ogcapi-features/issues/705
https://github.com/opengeospatial/ogcapi-features/issues/705
https://github.com/opengeospatial/ogcapi-features/issues/711
https://github.com/opengeospatial/ogcapi-features/issues/715
https://github.com/opengeospatial/ogcapi-features/issues/716
https://github.com/opengeospatial/ogcapi-features/issues/719
https://github.com/opengeospatial/ogcapi-features/issues/720
https://github.com/opengeospatial/ogcapi-features/issues/721
https://github.com/opengeospatial/ogcapi-features/issues/733
https://github.com/opengeospatial/ogcapi-features/issues/734
https://github.com/opengeospatial/ogcapi-features/issues/750
https://github.com/opengeospatial/ogcapi-features/issues/766
https://github.com/opengeospatial/ogcapi-features/issues/705
https://github.com/opengeospatial/ogcapi-features/issues/723
https://github.com/opengeospatial/ogcapi-features/issues/717
https://github.com/opengeospatial/ogcapi-features/issues/718
https://github.com/opengeospatial/ogcapi-features/issues/768
https://github.com/opengeospatial/styles-and-symbology/blob/main/core/UML/mermaid/expressions.adoc
https://github.com/opengeospatial/styles-and-symbology/blob/main/core/UML/mermaid/operators.adoc
https://github.com/opengeospatial/styles-and-symbology/blob/main/core/UML/mermaid/standardFunctions.adoc
https://github.com/opengeospatial/styles-and-symbology/blob/main/core/UML/mermaid/standardFunctions.adoc


with the CQL2 conformance classes and support a similar modularity, and potentially provide 
the foundations of an OGC conceptual basis for expressions and filtering.

Figure 21 — Expressions UML Conceptual Model, covering CQL2 capabilities

Figure 22 — Operators UML Conceptual Model, covering CQL2 capabilities

OPEN GEOSPATIAL CONSORTIUM 22-023R2 49



Figure 23 — Standard functions UML Conceptual Model, covering CQL2 capabilities

An important lesson to take away from the Testbed-18 initiative is that while a filtering service 
can be implemented separately from a distinct OGC API — Features façade service, in many 
ways this architecture really defeats the purpose of the filtering capabilities. This is a result of a 
request returning the full unfiltered set of features must still be made to the cascaded service. A 
more efficient architecture would be required to perform the filtering as close to the data source 
as possible.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 50



7.4. Recommendations and Future Work
 

• Filter close to the data: In this task, the deliverables architecture called for one component 
to perform the filtering while another acts as an OGC API façade. The initiative highlighted 
that this architecture is not ideal, since the filtering service would still need to request 
the entire dataset prior to performing the filtering. Instead, for a practical application, the 
filtering should be performed as close to the source of data as possible, within the same 
component.

• Explore the potential of spatial joins: In the context of queries spanning multiple 
collections, participants briefly discussed the capability to perform queries that not only 
filter and combine the results from multiple collections, but also perform join operations, 
including spatiotemporal joins. A typical scenario that is relevant to aviation use cases 
is to query flight paths which would encounter bad weather. This could be achieved by 
correlating the geometry of the flight paths with the location of severe weather patterns.

The dataset used for such correlation would not necessarily need to be on the same 
server. Instead, the client could possibly direct a filtering service (e.g., one with flight paths) 
to retrieve data from a particular OGC API instance (e.g., one with weather data). It may 
in fact may faster for the two servers to talk to each other directly, for example if they are 
both hosted on the same cloud infrastructure, as opposed to the client first retrieving the 
data, then submitting it as part of its filtering query.

• First-Filtering: In addition, the filtering service may be able to perform a first filtering pass 
that requires retrieving less data from the other service. This capability could be explored 
in greater depth in a future activity.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 51



8

FILTERING SERVICE 2
(D103)
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 52



8 FILTERING SERVICE 2 (D103)
 

The Filtering Service 2, identified as deliverable 103 or D103, is an OGC Web API instance that 
supports advanced filtering for services that do not offer these capabilities themselves, such as 
D100 and D101. D103 was demonstrated by interactive instruments.

8.1. Internal Architecture
 

The component consists of the following three filter APIs that were deployed.

• Airports

• Airspaces

• Federal Notice to Airmen System (FNS)

These filter APIs provide access to the same feature data as the corresponding façade, but in 
addition also provide support for Part 2: Coordinate Reference Systems by Reference, Part 3: 
Filtering and Common Query Language (CQL2).

Responses with feature data could be requested in the following representations/formats:

• GeoJSON (media type application/geo+json, query parameter f=json)

• JSON-FG (media type application/vnd.ogc.fg+json, query parameter f=jsonfg)

• HTML (media type text/html, query parameter f=html)

• FlatGeobuf (media type application/flatgeobuf, query parameter f=fgb)

8.2. ldproxy
 

Like Clause 5, the APIs are provided by ldproxy. To support the requirements for advanced 
filtering of SWIM data, the following enhancements were been implemented in ldproxy during 
the testbed:

• updated to the latest draft version of OGC API — Features — Part 3: Filtering and
Common Query Language (CQL2);

• support for the CQL2-JSON encoding of the Common Query Language (CQL2);

OPEN GEOSPATIAL CONSORTIUM 22-023R2 53

https://t18.ldproxy.net/d103_airports
https://t18.ldproxy.net/d103_airspace
https://t18.ldproxy.net/d103_fns
https://docs.opengeospatial.org/is/18-058r1/18-058r1.html
https://docs.ogc.org/DRAFTS/19-079r1.html
https://docs.ogc.org/DRAFTS/19-079r1.html
https://docs.ogc.org/DRAFTS/21-065.html
https://www.rfc-editor.org/rfc/rfc7946.html
https://docs.ogc.org/DRAFTS/21-045.html
https://github.com/flatgeobuf/flatgeobuf
https://github.com/interactive-instruments/ldproxy


• support for all API building blocks specified in Clauses 4 and 5 of the Testbed-18 Filtering 
Service and Rule Set Engineering Report (D002); and

• support for JSON-FG was updated to the latest draft (version 0.1).

At the time of writing this ER, the updated code is in the branch “multi-queries” of ldproxy and 
the master branches of XtraPlatform and XtraPlatform Spatial.

8.3. Filtering Capabilities
 

8.3.1. Support for CQL2 and Part 3 (Filtering) of OGC API Features

All conformance classes of the Common Query Language (CQL2) were supported, except 
“Accent-insensitive Comparisons,” “Functions,” and “Arithmetic Expressions.” Both the CQL2-
Text and CQL2-JSON encodings were supported.

The conformance classes that are supported could be seen at the relative path conformance
from the API landing page, for example at https://t18.ldproxy.net/d103_fns/conformance. The 
CQL2 conformance classes all started with the base URI http://www.opengis.net/spec/
cql2/0.0/conf.

Example 1 — Conformance Declaration of the NOTAM Filter API
 

{
  "links": [
    {
      "rel": "self",
      "type": "application/json",
      "title": "Dieses Dokument",
      "href": "https://t18.ldproxy.net/d103_fns/conformance?f=json"
    },
    {
      "rel": "alternate",
      "type": "text/html",
      "title": "Dieses Dokument als HTML",
      "href": "https://t18.ldproxy.net/d103_fns/conformance?f=html"
    }
  ],
  "conformsTo": [
    "http://www.opengis.net/spec/cql2/0.0/conf/advanced-comparison-operators",
    "http://www.opengis.net/spec/cql2/0.0/conf/array-operators",
    "http://www.opengis.net/spec/cql2/0.0/conf/basic-cql2",
    "http://www.opengis.net/spec/cql2/0.0/conf/basic-spatial-operators",
    "http://www.opengis.net/spec/cql2/0.0/conf/case-insensitive-comparison",
    "http://www.opengis.net/spec/cql2/0.0/conf/cql2-json",
    "http://www.opengis.net/spec/cql2/0.0/conf/cql2-text",
    "http://www.opengis.net/spec/cql2/0.0/conf/property-property",
    "http://www.opengis.net/spec/cql2/0.0/conf/spatial-operators",
    "http://www.opengis.net/spec/cql2/0.0/conf/temporal-operators",
    "http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/core",
    "http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/html",
    "http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/json",

OPEN GEOSPATIAL CONSORTIUM 22-023R2 54

https://github.com/interactive-instruments/ldproxy/tree/multi-queries
https://github.com/interactive-instruments/xtraplatform
https://github.com/interactive-instruments/xtraplatform-spatial
https://docs.ogc.org/DRAFTS/21-065.html
https://t18.ldproxy.net/d103_fns/conformance
https://t18.ldproxy.net/d103_fns/conformance?f=json


    "http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/oas30",
    "http://www.opengis.net/spec/ogcapi-common-2/0.0/conf/collections",
    "http://www.opengis.net/spec/ogcapi-common-2/0.0/conf/html",
    "http://www.opengis.net/spec/ogcapi-common-2/0.0/conf/json",
    "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core",
    "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson",
    "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/html",
    "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/oas30",
    "http://www.opengis.net/spec/ogcapi-features-2/1.0/conf/crs",
    "http://www.opengis.net/spec/ogcapi-features-3/0.0/conf/features-filter",
    "http://www.opengis.net/spec/ogcapi-features-3/0.0/conf/filter",
    "http://www.opengis.net/spec/ogcapi-features-n/0.0/conf/ad-hoc-queries",
    "http://www.opengis.net/spec/ogcapi-features-n/0.0/conf/core",
    "http://www.opengis.net/spec/ogcapi-features-n/0.0/conf/manage-stored-
queries"
  ]
}
 

To construct a query with a richer filter than was supported by the D100 Data APIs, clients 
must inspect the queryable properties of the feature collection (“queryables”). The response is a 
JSON Schema and every property can be used in a filter expression. Each queryable is described 
with a title, a description, and a type. Where known, constraints on the range of values are also 
included. This should support generating meaningful queries as well as clients that dynamically 
generate a UI for the data. For example, a property with an enum constraint could be represented 
using a drop-down list.

Example 2 — Queryables of the NOTAM features
 

{
  "title" : "NOTAMs",
  "description" : "Notice to Airmen",
  "properties" : {
    "notam_keyword" : {
      "title" : "NOTAM Keyword",
      "description" : "Keyword associated with the NOTAM",
      "type" : "string",
      "enum" : [ "AD", "APRON", "AIRSPACE", "CHART", "COM", "IAP", "NAV", 
"OBST", "ODP", "ROUTE", "RWY", "SECURITY", "SID", "SPECIAL", "STAR", "SVC", 
"TWY", "VFP", "CONSTRUCTION", "LTA" ]
    },
    "notam_function" : {
      "title" : "NOTAM Function",
      "description" : "Function of the NOTAM (New, Replacement, Cancelled)",
      "type" : "string",
      "enum" : [ "NOTAMN", "NOTAMR", "NOTAMC" ]
    },
    "valid_time_begin" : {
      "title" : "Valid time (begin)",
      "format" : "date-time",
      "type" : "string"
    },
    "valid_time_end" : {
      "title" : "Valid time (end)",
      "format" : "date-time",
      "type" : "string"
    },
    "text" : {
      "title" : "Text",
      "description" : "NOTAM condition text.",
      "type" : "string"
    },

OPEN GEOSPATIAL CONSORTIUM 22-023R2 55

https://t18.ldproxy.net/d103_fns/collections/notam/queryables?f=json


    "selection_code" : {
      "title" : "Q Code",
      "description" : "Q Code value for the NOTAM.",
      "type" : "string"
    },
    "year" : {
      "title" : "Year",
      "description" : "NOTAM year values per ICAO Annex-15.",
      "type" : "string"
    },
    "number" : {
      "title" : "Number",
      "description" : "NOTAM number value per ICAO Annex-15.",
      "type" : "integer"
    },
    "scenario" : {
      "title" : "Scenario",
      "description" : "Identifier of the event scenario used for digital  
encoding. The mapping can be found in the Event Scenario documents.",
      "type" : "string"
    },
    "affected_fir" : {
      "title" : "Flight Information Region",
      "description" : "Flight Information Region (FIR) that is impacted by the  
NOTAM.",
      "type" : "string"
    },
    "location" : {
      "title" : "Location designator",
      "description" : "NOTAM location designator of the affected airport/
heliport or facility.",
      "type" : "string"
    },
    "icao_location" : {
      "title" : "ICAO location designator",
      "description" : "ICAO location designator, if published.",
      "type" : "string"
    },
    "series" : {
      "title" : "Series",
      "description" : "NOTAM series value per International Civil Aviation  
Organization (ICAO) Annex-15.",
      "type" : "string"
    },
    "type" : {
      "title" : "Type",
      "description" : "NOTAM type value per ICAO Annex-15. Accepted values are:
 New (N), Replace (R), Cancel (C).",
      "type" : "string",
      "enum" : [ "N", "R", "C" ]
    },
    "issued" : {
      "title" : "Issued",
      "description" : "Issue date/time of the NOTAM.",
      "format" : "date-time",
      "type" : "string"
    },
    "traffic" : {
      "title" : "Traffic",
      "description" : "NOTAM traffic value per ICAO Annex-15.",
      "type" : "string"
    },
    "purpose" : {

OPEN GEOSPATIAL CONSORTIUM 22-023R2 56



      "title" : "Purpose",
      "description" : "NOTAM purpose value per ICAO Annex-15.",
      "type" : "string"
    },
    "scope" : {
      "title" : "Scope",
      "description" : "NOTAM scope value per ICAO Annex-15.",
      "type" : "string"
    },
    "minimum_fl" : {
      "title" : "Minimum flight level",
      "description" : "NOTAM minimum flight level value per ICAO Annex-15.",
      "type" : "string"
    },
    "maximum_fl" : {
      "title" : "Maximum flight level",
      "description" : "NOTAM maximum flight level value per ICAO Annex-15.",
      "type" : "string"
    },
    "coordinates" : {
      "title" : "Coordinates",
      "type" : "string"
    },
    "radius" : {
      "title" : "Radius",
      "type" : "string"
    },
    "schedule" : {
      "title" : "Schedule",
      "description" : "Contains a schedule of activity/outage if the hours of  
effect are less than 24 hours a day.",
      "type" : "string"
    },
    "lower_limit" : {
      "title" : "Lower limit",
      "description" : "Specifies the lower height restriction of the NOTAM.",
      "type" : "string"
    },
    "upper_limit" : {
      "title" : "Upper limit",
      "description" : "Specifies the upper height restriction of the NOTAM.",
      "type" : "string"
    },
    "geometry" : {
      "$ref" : "https://geojson.org/schema/Geometry.json"
    }
  },
  "additionalProperties" : false,
  "type" : "object",
  "$schema" : "https://json-schema.org/draft/2019-09/schema",
  "$id" : "https://t18.ldproxy.net/d103_fns/collections/notam/queryables"
}
 

The code below shows an example of a query with a CQL2-Text filter expression. This request
selects events related to runways/taxiways/airspaces along a trajectory in Florida with a buffer 
that was effective between 6PM and 10PM UTC on July 12th, 2021.

Without the percent encoding:

https://t18.ldproxy.net/d103_fns/collections/notam/items?filter=
S_INTERSECTS(geometry,POLYGON((-79.53576165455738 25.18569533817705, -
79.50845450086926 25.091558846018916, -79.50003716505086 24.993903798755063, 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 57

https://t18.ldproxy.net/d103_fns/collections/notam/items?filter=S_INTERSECTS(geometry%252CPOLYGON-79.53576165455738%252025.18569533817705%252C%2520-79.50845450086926%252025.091558846018916%252C%2520-79.50003716505086%252024.993903798755063%252C%2520-79.51083312059717%252024.896483025086265%252C%2520-79.54042748499097%252024.803040350710415%252C%2520-79.58768296340534%252024.71716672520052%252C%2520-79.65078355430599%252024.64216222382644%252C%2520-79.7273043373718%252024.580909227512972%252C%2520-79.81430466182294%252024.53576165455737%252C%2520-79.90844115398109%252024.508454500869263%252C%2520-80.00609620124493%252024.50003716505086%252C%2520-80.10351697491373%252024.510833120597162%252C%2520-80.19695964928958%252024.54042748499097%252C%2520-80.28283327479947%252024.58768296340534%252C%2520-80.35783777617355%252024.650783554305985%252C%2520-80.41909077248702%252024.72730433737181%252C%2520-80.46423834544262%252024.81430466182295%252C%2520-82.46423834544262%252029.81430466182295%252C%2520-82.49154549913074%252029.908441153981084%252C%2520-82.49996283494914%252030.006096201244937%252C%2520-82.48916687940283%252030.103516974913735%252C%2520-82.45957251500903%252030.196959649289585%252C%2520-82.41231703659466%252030.28283327479948%252C%2520-82.34921644569401%252030.35783777617356%252C%2520-82.2726956626282%252030.419090772487028%252C%2520-82.18569533817706%252030.46423834544263%252C%2520-82.09155884601891%252030.491545499130737%252C%2520-81.99390379875507%252030.49996283494914%252C%2520-81.89648302508627%252030.489166879402838%252C%2520-81.80304035071042%252030.45957251500903%252C%2520-81.71716672520051%252030.41231703659466%252C%2520-81.64216222382645%252030.349216445694015%252C%2520-81.58090922751298%252030.27269566262819%252C%2520-81.53576165455738%252030.18569533817705%252C%2520-79.53576165455738%252025.18569533817705%3Cindex%3E%3Cprimary%3E-79.53576165455738%252025.18569533817705%252C%2520-79.50845450086926%252025.091558846018916%252C%2520-79.50003716505086%252024.993903798755063%252C%2520-79.51083312059717%252024.896483025086265%252C%2520-79.54042748499097%252024.803040350710415%252C%2520-79.58768296340534%252024.71716672520052%252C%2520-79.65078355430599%252024.64216222382644%252C%2520-79.7273043373718%252024.580909227512972%252C%2520-79.81430466182294%252024.53576165455737%252C%2520-79.90844115398109%252024.508454500869263%252C%2520-80.00609620124493%252024.50003716505086%252C%2520-80.10351697491373%252024.510833120597162%252C%2520-80.19695964928958%252024.54042748499097%252C%2520-80.28283327479947%252024.58768296340534%252C%2520-80.35783777617355%252024.650783554305985%252C%2520-80.41909077248702%252024.72730433737181%252C%2520-80.46423834544262%252024.81430466182295%252C%2520-82.46423834544262%252029.81430466182295%252C%2520-82.49154549913074%252029.908441153981084%252C%2520-82.49996283494914%252030.006096201244937%252C%2520-82.48916687940283%252030.103516974913735%252C%2520-82.45957251500903%252030.196959649289585%252C%2520-82.41231703659466%252030.28283327479948%252C%2520-82.34921644569401%252030.35783777617356%252C%2520-82.2726956626282%252030.419090772487028%252C%2520-82.18569533817706%252030.46423834544263%252C%2520-82.09155884601891%252030.491545499130737%252C%2520-81.99390379875507%252030.49996283494914%252C%2520-81.89648302508627%252030.489166879402838%252C%2520-81.80304035071042%252030.45957251500903%252C%2520-81.71716672520051%252030.41231703659466%252C%2520-81.64216222382645%252030.349216445694015%252C%2520-81.58090922751298%252030.27269566262819%252C%2520-81.53576165455738%252030.18569533817705%252C%2520-79.53576165455738%252025.18569533817705%3C/primary%3E%3C/index%3E)%2520AND%2520notam_keyword%2520IN%2520(%2527RWY%2527%252C%2527TWY%2527%252C%2527AIRSPACE%2527)%2520AND%2520T_INTERSECTS(INTERVAL(valid_time_begin%252Cvalid_time_end)%252CINTERVAL(%25272021-07-12T18:00:00Z%2527,%25272021-07-12T22:00:00Z%2527))


-79.51083312059717 24.896483025086265, -79.54042748499097 24.803040350710415,
 -79.58768296340534 24.71716672520052, -79.65078355430599 24.64216222382644,
 -79.7273043373718 24.580909227512972, -79.81430466182294 24.53576165455737,
 -79.90844115398109 24.508454500869263, -80.00609620124493 24.50003716505086,
 -80.10351697491373 24.510833120597162, -80.19695964928958 24.54042748499097,
 -80.28283327479947 24.58768296340534, -80.35783777617355 24.650783554305985,
 -80.41909077248702 24.72730433737181, -80.46423834544262 24.81430466182295, 
-82.46423834544262 29.81430466182295, -82.49154549913074 29.908441153981084, 
-82.49996283494914 30.006096201244937, -82.48916687940283 30.103516974913735,
 -82.45957251500903 30.196959649289585, -82.41231703659466 30.28283327479948,
 -82.34921644569401 30.35783777617356, -82.2726956626282 30.419090772487028, 
-82.18569533817706 30.46423834544263, -82.09155884601891 30.491545499130737, 
-81.99390379875507 30.49996283494914, -81.89648302508627 30.489166879402838, 
-81.80304035071042 30.45957251500903, -81.71716672520051 30.41231703659466, -
81.64216222382645 30.349216445694015, -81.58090922751298 30.27269566262819, -
81.53576165455738 30.18569533817705, -79.53576165455738 25.18569533817705)))  
AND
notam_keyword IN ('RWY, 'TWY', 'AIRSPACE') AND
T_INTERSECTS(INTERVAL(valid_time_begin,valid_time_end), INTERVAL('2021-07-
12T18:00:00Z','2021-07-12T22:00:00Z'))

Figure 24

8.3.2. Support for property selection

The Filter APIs not only supported filtering, but also supported restricting the feature properties 
that are returned by implementing the “Property Selection” proposal for OGC API — Features.

To reduce the properties in the response to a subset of all feature properties, these had to be 
listed in a query parameter properties, e.g., properties=text,notam_keyword,issued.

8.3.3. Support for sorting

In addition to selecting the properties to be included in the response, sorting the features in the 
response was supported by implementing the “Sorting” requirements class of OGC API Records.

To sort the features in the response, the feature properties that should be used to determine the 
sort order had to be listed in a query parameter sortby, e.g., sortby=notam_keyword,text.

Similar to the queryables, clients could identify the sortable properties of the feature collection 
(“sortables”). Again, the response was a JSON Schema, and every property could be used in the 
“sortby” query parameter.

Example — Sortables of the NOTAM features: The APIs were configured so that the same 
properties could be used for sorting and in filter expressions.
 

{
  "title" : "NOTAMs",
  "description" : "Notice to Airmen",
  "properties" : {
    "notam_keyword" : {
      "title" : "NOTAM Keyword",
      "description" : "Keyword associated with the NOTAM",
      "type" : "string",

OPEN GEOSPATIAL CONSORTIUM 22-023R2 58

https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/property-selection
https://docs.ogc.org/DRAFTS/20-004.html#clause-sorting
https://t18.ldproxy.net/d103_fns/collections/notam/sortables?f=json


      "enum" : [ "AD", "APRON", "AIRSPACE", "CHART", "COM", "IAP", "NAV", 
"OBST", "ODP", "ROUTE", "RWY", "SECURITY", "SID", "SPECIAL", "STAR", "SVC", 
"TWY", "VFP", "CONSTRUCTION", "LTA" ]
    },
    "notam_function" : {
      "title" : "NOTAM Function",
      "description" : "Function of the NOTAM (New, Replacement, Cancelled)",
      "type" : "string",
      "enum" : [ "NOTAMN", "NOTAMR", "NOTAMC" ]
    },
    "valid_time_begin" : {
      "title" : "Valid time (begin)",
      "format" : "date-time",
      "type" : "string"
    },
    "valid_time_end" : {
      "title" : "Valid time (end)",
      "format" : "date-time",
      "type" : "string"
    },
    "text" : {
      "title" : "Text",
      "description" : "NOTAM condition text.",
      "type" : "string"
    },
    "selection_code" : {
      "title" : "Q Code",
      "description" : "Q Code value for the NOTAM.",
      "type" : "string"
    },
    "year" : {
      "title" : "Year",
      "description" : "NOTAM year values per ICAO Annex-15.",
      "type" : "string"
    },
    "number" : {
      "title" : "Number",
      "description" : "NOTAM number value per ICAO Annex-15.",
      "type" : "integer"
    },
    "scenario" : {
      "title" : "Scenario",
      "description" : "Identifier of the event scenario used for digital  
encoding. The mapping can be found in the Event Scenario documents.",
      "type" : "string"
    },
    "affected_fir" : {
      "title" : "Flight Information Region",
      "description" : "Flight Information Region (FIR) that is impacted by the  
NOTAM.",
      "type" : "string"
    },
    "location" : {
      "title" : "Location designator",
      "description" : "NOTAM location designator of the affected airport/
heliport or facility.",
      "type" : "string"
    },
    "icao_location" : {
      "title" : "ICAO location designator",
      "description" : "ICAO location designator, if published.",
      "type" : "string"
    },

OPEN GEOSPATIAL CONSORTIUM 22-023R2 59



    "series" : {
      "title" : "Series",
      "description" : "NOTAM series value per International Civil Aviation  
Organization (ICAO) Annex-15.",
      "type" : "string"
    },
    "type" : {
      "title" : "Type",
      "description" : "NOTAM type value per ICAO Annex-15. Accepted values are:
 New (N), Replace (R), Cancel (C).",
      "type" : "string",
      "enum" : [ "N", "R", "C" ]
    },
    "issued" : {
      "title" : "Issued",
      "description" : "Issue date/time of the NOTAM.",
      "format" : "date-time",
      "type" : "string"
    },
    "traffic" : {
      "title" : "Traffic",
      "description" : "NOTAM traffic value per ICAO Annex-15.",
      "type" : "string"
    },
    "purpose" : {
      "title" : "Purpose",
      "description" : "NOTAM purpose value per ICAO Annex-15.",
      "type" : "string"
    },
    "scope" : {
      "title" : "Scope",
      "description" : "NOTAM scope value per ICAO Annex-15.",
      "type" : "string"
    },
    "minimum_fl" : {
      "title" : "Minimum flight level",
      "description" : "NOTAM minimum flight level value per ICAO Annex-15.",
      "type" : "string"
    },
    "maximum_fl" : {
      "title" : "Maximum flight level",
      "description" : "NOTAM maximum flight level value per ICAO Annex-15.",
      "type" : "string"
    },
    "coordinates" : {
      "title" : "Coordinates",
      "type" : "string"
    },
    "radius" : {
      "title" : "Radius",
      "type" : "string"
    },
    "schedule" : {
      "title" : "Schedule",
      "description" : "Contains a schedule of activity/outage if the hours of  
effect are less than 24 hours a day.",
      "type" : "string"
    },
    "lower_limit" : {
      "title" : "Lower limit",
      "description" : "Specifies the lower height restriction of the NOTAM.",
      "type" : "string"
    },

OPEN GEOSPATIAL CONSORTIUM 22-023R2 60



    "upper_limit" : {
      "title" : "Upper limit",
      "description" : "Specifies the upper height restriction of the NOTAM.",
      "type" : "string"
    }
  },
  "additionalProperties" : false,
  "type" : "object",
  "$schema" : "https://json-schema.org/draft/2019-09/schema",
  "$id" : "https://t18.ldproxy.net/d103_fns/collections/notam/sortables"
}
 

8.3.4. Support for basic filtering according to OGC API Features Core

The Filter APIs also supported the simple filtering mechanisms supported by the corresponding 
Data API in D100. See here for details and sample requests.

8.3.5. Support for the Search resources

The requirements for advanced filtering of SWIM data extended beyond these existing draft 
specifications, in particular:

• to retrieve features from multiple collections with a single request;

• to restrict the query capabilities of a business user; and

• to simplify the execution of queries by business users.

The additional API building blocks needed to support these requirements are specified in 
the Testbed-18 Filtering Service and Rule Set Engineering Report (D002) and have been 
implemented in the Filter Service D103.

The filtering rules / stored queries used in the scenario were generated by the Developer Client 
(D105), but as examples the following stored queries were published in the Filter APIs.

Default values were provided for all parameters so that all queries could be executed without 
providing a parameter.

Example 1 — Stored Query: Concrete apron, runway, and taxiway elements at NYC area 
airports: A simple query without parameters in the Airports API. It selects all apron, runway, and 
taxiway elements with concrete at the major NYC area airports.
The response was restricted to the properties “geometry,” “airport,” and “type”.
 

{
  "id": "nyc-concrete-surface-areas",
  "title": "Concrete apron, runway and taxiway elements at NYC area airports",
  "queries": [
    {"collections":["apronelement"]},
    {"collections":["runwayelement"]},
    {"collections":["taxiwayelement"]}
  ],
  "filter": {

OPEN GEOSPATIAL CONSORTIUM 22-023R2 61



    "op": "and",
    "args": [
      { "op": "=", "args": [{ "property": "composition" }, "CONC"] },
      { "op": "in", "args": [{ "property": "airport" }, ["JFK", "EWR", "LGA"]] 
}
    ]
  },
  "properties": ["geometry", "airport", "type"],
  "limit": 1000
}
 

Example 2 — Stored Query: Apron, runway, and taxiway elements of a specific type at one or 
more airports: A similar query in the Airports API, but with two parameters, the type (normal 
use, parking, shoulder, intersection) and the airports (one or more from a list of airports in the 
eastern US).
The response was restricted to the properties “geometry,” “airport,” “type,” and “composition”.
 

{
  "id": "surface-areas",
  "title": "Apron, runway and taxiway elements of a specific type at one or  
more airports.",
  "queries": [
    { "collections": ["apronelement"]   },
    { "collections": ["runwayelement"]  },
    { "collections": ["taxiwayelement"] }
  ],
  "filter": {
    "op": "and",
    "args": [
      {
        "op": "=",
        "args": [
          {"property": "type"},
          {
            "$parameter": {
              "type": {
                "title": "Type of the apron, runway or taxiway element",
                "description": "The following types are distinguished: normal  
use, parking, shoulder, intersection.",
                "type": "string",
                "enum": ["NORMAL", "PARKING", "SHOULD", "INTERS"],
                "default": "NORMAL"
              }
            }
          }
        ]
      },
      {
        "op": "in",
        "args": [
          {"property": "airport"},
          {
            "$parameter": {
              "airports": {
                "title": "Airports",
                "description": "The 3-letter IATA airport codes or the  
airports to filter. Specify multiple values as a comma-separated list.",
                "type": "array",
                "items": {
                  "type": "string",

OPEN GEOSPATIAL CONSORTIUM 22-023R2 62



                  "enum": ["JFK", "EWR", "LGA", "BOS", "PIT", "PHL", "DCA", 
"BWI", "IAD"]
                },
                "default": ["JFK", "EWR", "LGA"]
              }
            }
          }
        ]
      }
    ]
  },
  "properties": ["geometry", "airport", "type", "composition"],
  "limit": 1000
}
 

Example 3 — Stored Query: NOTAMS along the route IAD to JFK: This query in the NOTAM 
API filtered NOTAMs by location, by keyword, and by time interval. The default values for the 
parameters were: the route from IAD to JFK with a 50km buffer (location), airspace-related 
NOTAMs (keyword), and between 15:05 and 16:30 UTC on August 18th, 2022 (time interval).
 

{
  "id": "generic-notam-query",
  "title": "filter NOTAMS",
  "description": "NOTAMs filtered by location, by keyword and by time interval.
",
  "collections": ["notam"],
  "filter": {
    "op": "and",
    "args": [
      {
        "op": "s_intersects",
        "args": [
          {"property": "geometry"},
          {
            "$parameter": {
              "geometry": {
                "title": "NOTAM geometry",
                "description": "NOTAMs with a location that intersects the  
geometry are selected.",
                "type": "object",
                "required": ["type", "coordinates"],
                "properties": { "type": {"type": "string"}, "coordinates": 
{"type": "array"} },
                "default": {
                  "type": "Polygon",
                  "coordinates": [
                    [
                      [ -74.07517, 41.03269 ],
                      [ -73.96881, 41.06885 ],
                      [ -73.85509, 41.08851 ],
                      [ -73.73847, 41.09087 ],
                      [ -73.62351, 41.07587 ],
                      [ -73.51473, 41.04408 ],
                      [ -73.41637, 40.99675 ],
                      [ -73.33224, 40.93573 ],
                      [ -73.26558, 40.86340 ],
                      [ -73.21892, 40.78257 ],
                      [ -73.19399, 40.69637 ],
                      [ -73.19167, 40.60812 ],
                      [ -73.21195, 40.52123 ],
                      [ -73.25399, 40.43900 ],
                      [ -73.31608, 40.36459 ],

OPEN GEOSPATIAL CONSORTIUM 22-023R2 63



                      [ -73.39583, 40.30082 ],
                      [ -73.49016, 40.25010 ],
                      [ -77.14409, 38.57116 ],
                      [ -77.24494, 38.53223 ],
                      [ -77.35344, 38.50940 ],
                      [ -77.46549, 38.50353 ],
                      [ -77.57685, 38.51484 ],
                      [ -77.68334, 38.54291 ],
                      [ -77.78091, 38.58666 ],
                      [ -77.86586, 38.64445 ],
                      [ -77.93495, 38.71408 ],
                      [ -77.98551, 38.79290 ],
                      [ -78.01555, 38.87792 ],
                      [ -78.02384, 38.96588 ],
                      [ -78.01000, 39.05341 ],
                      [ -77.97446, 39.13715 ],
                      [ -77.91854, 39.21387 ],
                      [ -77.84433, 39.28058 ],
                      [ -77.75467, 39.33469 ],
                      [ -74.07517, 41.03269 ]
                    ]
                  ]
                }
              }
            }
          }
        ]
      },
      {
        "op": "in",
        "args": [
          {"property": "notam_keyword"},
          {
            "$parameter": {
              "notamKeywords": {
                "title": "NOTAM keywords",
                "description": "A list of NOTAM keywords to filter only NOTAMs  
with the selected keywords. For more information about the NOTAM keywords see  
https://www.faa.gov/air_traffic/publications/atpubs/notam_html/chap1_section_2.
html.",
                "type": "array",
                "items": {
                  "type": "string",
                  "enum": [
                    "AD", "APRON", "AIRSPACE", "CHART", "COM", "IAP", "NAV", 
"OBST", "ODP",
                    "ROUTE", "RWY", "SECURITY", "SID", "SPECIAL", "STAR", 
"SVC", "TWY", "VFP",
                    "CONSTRUCTION", "LTA"
                  ]
                },
                "default": ["AIRSPACE"]
              }
            }
          }
        ]
      },
      {
        "op": "t_intersects",
        "args": [
          {
            "interval": [ {"property": "valid_time_begin"}, {"property": 
"valid_time_end"} ]

OPEN GEOSPATIAL CONSORTIUM 22-023R2 64



          },
          {
            "interval": [
              {
                "$parameter": {
                  "begin": {
                    "title": "Begin of time interval",
                    "description": "UTC timestamp for the begin of time  
interval written according to RFC 3339. Example: '2022-08-18T15:05:00Z'. Only  
NOTAMs with temporal validity in the time interval are selected.",
                    "type": "string",
                    "format": "date-time",
                    "default": "2022-08-18T15:05:00Z"
                  }
                }
              },
              {
                "$parameter": {
                  "end": {
                    "title": "End of time interval",
                    "description": "UTC timestamp for the end of time interval  
written according to RFC 3339. Example: '2022-08-18T16:30:00Z'. Only NOTAMs  
with temporal validity in the time interval are selected.",
                    "type": "string",
                    "format": "date-time",
                    "default": "2022-08-18T16:30:00Z"
                  }
                }
              }
            ]
          }
        ]
      }
    ]
  },
  "limit": 10
}
 

Example 4 — Stored Query: All features of an airport: This query selects all features of an 
airport.
 

{
    "id": "features-yb-airport",
    "title": "All features of an airport",
    "queries": [
        { "collections": ["airportheliport"      ] },
        { "collections": ["apron"                ] },
        { "collections": ["apronelement"         ] },
        { "collections": ["guidanceline"         ] },
        { "collections": ["runway"               ] },
        { "collections": ["runwayblastpad"       ] },
        { "collections": ["runwaycentrelinepoint"] },
        { "collections": ["runwayelement"        ] },
        { "collections": ["runwaymarking"        ] },
        { "collections": ["surveycontrolpoint"   ] },
        { "collections": ["taxiholdingposition"  ] },
        { "collections": ["taxiway"              ] },
        { "collections": ["taxiwayelement"       ] },
        { "collections": ["taxiwaymarking"       ] },
        { "collections": ["verticalstructure"    ] }
    ],
    "filter": {
        "op": "=",

OPEN GEOSPATIAL CONSORTIUM 22-023R2 65



        "args": [
            {"property": "airport"},
            {
                "$parameter": {
                    "airport": {
                        "title": "Airport",
                        "description": "The 3-letter IATA airport codes of  
available airports.",
                        "type": "string",
                        "enum": ["JFK", "EWR", "LGA", "BOS", "PIT", "PHL", 
"DCA", "BWI", "IAD"],
                        "default": "JFK"
                    }
                }
            }
        ]
    },
    "limit": 10000
}
 

8.4. HTML Support
 

Support for HTML in the OGC API – Features Standard is recommended. A server that supports 
HTML will support browsing the data with a web browser and will enable search engines to 
crawl and index the dataset.

For these reasons, support for both the HTML and the JSON resources were implemented 
during Testbed 18. As a result, the site itself already provides a Business Client.

The HTML representation of the Stored Queries resource included an HTML form for each 
stored query. The form includes:

• the descriptive elements (title and descriptions);

• a drop-down list for the desired response format for the feature collection; and

• For each parameter:

• the descriptive elements (title, description and data type); and

• a field, drop-down list or multi-selection list depending on the schema of the 
parameter.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 66



Figure 25 — Executing a Stored Query from the Web Browser

If “HTML” is selected as the response format, the features in the response are presented in the 
browser. This is the response of the second stored query in the screenshot above, which selects 
all Pittsburgh airport features.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 67



Figure 26 — Response from a Stored Query in the Web Browser (all Pittsburgh airport features)

8.5. Challenges and Lessons Learned
 

The implementation helped to improve the specification in Testbed-18 Filtering Service and Rule 
Set Engineering Report (D002) as well as in the Common Query Language (CQL2) candidate 
standard.

No additional issues were identified in the TIEs.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 68



See also sections 6.2 and 6.3 of the Testbed-18 Filtering Service and Rule Set Engineering 
Report (D002).

OPEN GEOSPATIAL CONSORTIUM 22-023R2 69



9

BUSINESS USER CLIENT
(D104)
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 70



9 BUSINESS USER CLIENT (D104)
 

The Business User Client, identified as deliverable 104 or D104, is a component built to 
demonstrate a client that executes Technical Interoperability Experiments (TIEs) with the filter 
services D102/D103 and the data services D100/101. The component was demonstrated by 
Concepts Beyond LLC.

9.1. Internal Architecture
 

The Developer Client and the Business Client were built as part of a single web application that 
offers specific functionalities for each one of the demonstrated Clients. The web application was 
built using ASP.NET web development technology with the jQuery front-end component written 
in JavaScript programming language, and Model-View-Controller (MVC) back-end approach 
written in C#. The final application will be mounted on an Amazon Web Service (AWS) cloud 
server. The application is composed of the following three components that are also illustrated 
in Figure 27.

Figure 27 — Developer Client Component Breakdown

The Web Server is the module that acts as the back end for all user requests and is a 
communication hub between the clients and the SWIM Filtering Service (D102 and D103). This 
web server was built to interface the filtering services and fetch and relay data to and from the 
web application whenever a functionality of either or both clients require it. The following are 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 71

https://jquery.com/
https://aws.amazon.com/


the functionalities that the web server provides to the business and developer clients (Refer to 
TIE Summary Table for details of the API call for each function).

• Get Queryables of a Collection

• Get Sortables of a Collection

• Get Conformances of the Collection of Collections

• Test Query

• Save Query

• Modify Query

• Get List of Stored Queries

• Get Parameters of a Query

• Run Query

• Delete Query

The Developer Client enables more advanced users to build complex queries using CQL2 
constructs with access to the available sortables, queryables, and conformances for each data 
collection. As can be seen on the left side of the figure, the Developer client has access to all of 
the services provided by the Web Server that are being exchanged with the Filtering Service. 
Each service is achieved via a REST Web API call to the SWIM Filtering service in the associated 
format described in D102 and D103.

The Business Client enables end users of the SWIM data to input the parameters of each query 
(previously saved by the Developer user), run the query, and observe the results. The business 
client will be able to see the geographic data on a map, as described in D104.

The Business Client is designed to run predefined queries available by Filtering Services (D102 
and D103). Currently the Business Client is using D103 Airport and NOTAM API services. These 
services provide a tabular list of all available queries to the user. Currently the query parameters 
are not shown and are to be added in the future.

Figure 28 shows a snapshot of the Business Client with NOTAM queries.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 72



Figure 28 — Business Client Query List

After running each query, the result is presented to the user both textually and graphically.
Figure 29 shows an example of the result for NOTAMs related to airspaces along the planned 
flight path of DL 5517 from IAD to JFK with a 50km buffer on 2022-08-18.

Figure 29 — Business Client Showing Airspaces

OPEN GEOSPATIAL CONSORTIUM 22-023R2 73



Figure 30 shows an example of running an airport collection query returning apron, runway, and 
taxiway elements of a specific type at one or more airports. In this query the airport parameter 
was set to JFK.

Figure 30 — Business Client Showing Airports

In Figure 31, the same query was run, with the “type” parameter set to intersections. This query 
returns intersection geometries (blue diamonds in the picture) at airports, in this case DCA 
airport.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 74



Figure 31 — Business Client Showing Intersections

Figure 32 shows a NOTAM query result that is identifying NOTAMs published for APRONs at 
multiple airports in eastern US. The NOTAM Id is being displayed on the map.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 75



Figure 32 — Business Client Showing NOTAMs

9.2. Recommendations and Future Work
 

• Explore Graphical Interfaces: Creating a graphical interface for the user to be able to 
understand the result of the stored queries was a significant step that would require 
more investigation on how to represent data properties to the user that help the user in 
conceiving the impact of parameter selection on the result of the query.

• Security: Providing access and authorization to the data sets, properties, and even 
parameters of the queries will allow more control and security measures over the sensitive 
data.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 76



10

DEVELOPER CLIENT (D105)
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 77



10 DEVELOPER CLIENT (D105)
 

The Developer Client, identified as deliverable 105 or D105, was a component built to 
demonstrate a client application that supports the customer in defining filter statements that 
can be expressed in a machine-readable way and exchanged with the filtering service. The 
component was demonstrated by Concepts Beyond LLC.

10.1. Internal Architecture
 

The Developer Client and the Business Client were built as part of a single web application that 
offers specific functions for each one of the demonstrated clients. The web application was built 
using ASP.NET web development technology with the jQuery front-end component written in 
JavaScript programming language and Model-View-Controller (MVC) back-end approach written 
in C#. The final application will be deployed on an Amazon Web Service (AWS) cloud server. The 
application is composed of the following three components that are also illustrated in Figure 33.

Figure 33 — Developer Client Component Breakdown

The Web Server is the module that acts as the backend for all user requests and is a 
communication hub between the clients and the SWIM Filtering Service (D102 and D103). This 
web server is built to interface the filtering services and fetch and relay data to and from the 
web application whenever a functionality of any of both clients require it. The following are 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 78

https://jquery.com/
https://aws.amazon.com/


the functions that the web server provides to the business and developer clients (Refer to TIE 
Summary Table for details of the API call for each function).

• Get Queryables of a Collection

• Get Sortables of a Collection

• Get Conformances of the Collection of Collections

• Test Query

• Save Query

• Modify Query

• Get List of Stored Queries

• Get Parameters of a Query

• Run Query

• Delete Query

The Business Client enables end users of SWIM data to input the parameters for each query 
(previously saved by the Developer user), run the query, and observe the results. The business 
client will be able to see the geographic data on a map, as described in D104.

The Developer Client enables more advanced users to build complex queries using CQL2 
constructs with access to the available sortables, queryables, and conformances for each data 
collection. As can be seen on the left side of the figure, the Developer client has access to all 
the services provided by the Web Server that are being exchanged with the Filtering Service. 
Each service is achieved via a REST Web API call to the SWIM Filtering service in the associated 
format described in D102 and D103.

The Developer Client allows the user to create, test, and save queries that can then be used 
by the business user to retrieve operational data. The Client also allows users to edit, delete, 
and run previously saved queries. To this end, the Developer Client is provided with the 
queryables of each data collection, determining what properties of the SWIM data must be 
queries or filtered. Using the conformance list, the developer user can determine what logical, 
mathematical, or complex operation can be carried out on the queryables of that data collection. 
Using sortables, the client user can sequence the data returned for multiple queryables and 
present them is an order, useful to the Business user.

10.1.1. List of Stored Queries

The developer client retrieves queries stored on each Filtering Service and displays them on a 
table on the top of the developer client page. This table lists all the available/stored queries with 
their Id, title, description, list of parameters, and actions that can be taken on each query. The 
parameters column lists the parameters needed to run the query. Figure 34 shows a snapshot 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 79



of the Developer Client displaying the query table from the NOTAMs provided by the D103 
Filtering Service:

Figure 34 — Developer Client Queries Table

10.1.2. Running and Editing a Stored Query

When the “Run” button is pressed, a popup window opens and provides input entries for the 
parameters of the query. If the parameters have default values set by the creator of the query, 
the default values will automatically be populated in a drop-down selection box. These selection 
boxes appear for parameters with finite sets of values. Figure 35 shows a query run popup 
windows with the parameters to be input.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 80



Figure 35 — Developer Client Collection Table

When the user presses the “Edit” Button for any query, the associated query id and query JSON 
text are populated in the textbox below the table, as shown in Figure 36.

Figure 36 — Query Editing in the Developer Client

10.1.3. Creating A Query

The same textbox used for editing queries can also be used to create and test a new query. 
In order to first build and test the query, the user must write the JSON query text inside the 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 81



“JsonQuery” textbox. The “TestQuery” button allows the user to run the query before saving it. 
The “SaveQuery” button sends the query to the Filtering Service in order to store it there.

Figure 37 — Developer Client Query Creation

To assist the user in the query creation process, the developer client displays on a table the 
collections found on the filtering services it is connected to. Users can access the sortables and 
queryables for each collection by clicking on buttons located next to each collection description.
Figure 38 shows this list from D103 SWIM Filtering Service for Airports.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 82



Figure 38 — Developer Client Collections Table

Clicking on each “Queryables” or “Sortables” button for each collection will display a table 
of the queryables or sortables with names and types identified. A button at the end of the 
collections table opens a view of the conformance declaration for each collection. (see Figure 39
for queryables and Figure 40 for sortables).

Figure 39 — Developer Client Displaying Queryables

OPEN GEOSPATIAL CONSORTIUM 22-023R2 83



Figure 40 — Developer Client Displaying Sortables

10.2. Challenges and Lessons Learned
 

• Metadata Usage: The metadata provided by the Filtering Services seemed mature and 
flexible enough to be expanded for each collection. The queryables allowed for flexible 
and expandable definitions of metadata for each data collection

• Queryables not Represented as Properties: Making sure that the name and type of the 
queryables defined for a data collection exactly represent the associated property of 
the data is key to supporting queryables that are not directly represented as resource 
properties in the content schema of the resource.

• Benefits of a Filtering Service: Knowing ahead the content schema enables a developer 
client to write complex queries relating various data types and collections together, 
providing needed operational data to the business client.

• Best Practices for Filtering Services: Based on the experience gained in Testbed 18, 
the filtering service should provide testing and trial of the queries, storing queries, and 
definition of the parameters of the query.

In the future, the filtering service endpoint could potentially provide authorization to each 
API and access restrictions to certain types of data or queryables.

• Best Practices for Developer Clients:

• Having an interactive and graphical query building web client is key to helping the 
developer client to create complex queries rapidly. This includes providing a tree-based 
structure to the query in the textbox, with queryables, sortables, and conformance 
selection dropdown boxes to help build valid and complex queries. Developer clients 
should provide interactive access to the queryables, sortables, and conformances when 
writing a query to allow the user to rapidly create advanced queries.

• Graphically presenting the results of a query could help the user quickly validate and 
accelerate the query creation process. The client interface could include graphical 
display of query results. As an example, geographic data could be displayed on a map.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 84



• Developer clients could also provide smart data property aggregation between two or 
more data collections where specific data properties can be matched (e.g., location of 
weather with the coordinates of the route of flight).

10.3. Recommendations and Future Work
 

• Interactive Query Building Interface: One of the shortcomings of current TB-18 SWIM 
data filtering clients is the lack of an interactive ability, helping the developer to build 
complex and effective queries using CQL2 language. A web based Interactive query 
builder providing graphical and pre-selectable queryables, sortables, and conformances 
that are fetched from the SWIM Filtering service is needed.

Such an interface will help the Developer client use means such as dropdown boxes that 
are prepopulated with the specific queryables for each data collection that is selected to 
be queried, as well as offering prepopulated available conformances that can be applied 
to each expression, complemented with selection of the available sortable parameters for 
the data collection. This interface must convert the graphical query structure built by the 
developer user to the JSON query structure that can be saved and executed on the SWIM 
filtering service.

This client could speed query building and validation by saving the user the time and 
hassle of looking into queryables, sortables, and conformance lists to understand which 
one must be used at which statement. This interface must also validate and provide hints 
on potential syntax, and logical errors during query building.

• Smart Query Building Interface: Another shortcoming is the lack of real-time hints on the 
impact of changes to the query structure or on the results of the query. Having graphical 
query results that are tied back to the query expression helps the user understand the 
impact of each queryable or conformance used in the query on the result of the query. The 
results of the query will be graphically displayed in real-time to the Developer User while 
they are building the query helping them adjust the query to achieve the desired results 
much faster.

• Data Correlation from multiple SWIM Services: A major milestone that is needed for 
SWIM is data fusion using multiple services. In TB-18 the queries built using CQL2 
language are limited to each SWIM data service, and these queries are segregated from 
each other. For example, if a user wants to know the weather impacting their route of 
flight, they need to access at least two separate SWIM data services, 1- The Weather 
Data service, 2- the Flight Data service. However, writing such a query was not possible in 
TB-18.

The filtering service must be able to support this data fusion, based on parameters in 
the data that are of similar type that support the same conformances. This is essential in 
enabling SWIM users, such as airlines and Air Navigation Service Providers (ANSPs) to 
fuse various SWIM data and use them effectively. This feature will improve the SWIM data 
usability and attract more consumers to this technology. Concepts such as Flight and Flow 
Information for a Collaborative Environment (FF-ICE) require such SWIM fusion services 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 85



as enablers of the technology, helping airlines and ANSPs interact with various types of 
live data published on a SWIM network.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 86



11

TECHNOLOGY
INTEGRATION
EXPERIMENTS (TIES)
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 87



11 TECHNOLOGY INTEGRATION EXPERIMENTS
(TIES)
 

The TB-18 Technology Integration Experiments (TIEs) focused on the usage of filters within the 
exchange of aviation data through APIs built using OGC API standards. This chapter summarizes 
all TIEs performed during this testbed task.

11.1. TIE Summary Table
 

The following table summarizes the TIEs performed during Testbed-18

 
Table 5 — Technology Integration Experiments Overview

SERVER\CLIENT
D102 FILTERING 
SERVICE 1

D103 FILTERING 
SERVICE 2

D104 BUSINESS 
USER CLIENT

D105 
DEVELOPER 
CLIENT

D100 OGC API-Features 
Façade 1

Clause 11.2.1 Clause 11.2.2 N/A N/A

D101 OGC API-Features 
Façade 2

Clause 11.2.3 N/A N/A N/A

OGC API-Features 
Façade 3 (Skymantics)

Clause 11.2.4 N/A N/A N/A

D102 Filtering Service 1 N/A N/A Clause 11.2.5 Clause 11.2.6

D103 Filtering Service 2 N/A N/A Clause 11.2.7 Clause 11.2.8

11.2. TIE Functional Tests
 

11.2.1. D102 Filtering Service 1 cascading D100 OGC API — Features 
Façade 1

The D102 filtering service was demonstrated cascading successfully to the interactive 
instruments (D100) OGC API — Features façade.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 88

https://t18.ldproxy.net
https://t18.ldproxy.net


The corresponding collections for the filtering cascading service, supporting CQL2 expressions 
as value to the filter= parameter for the /items resources, are available from the following 
endpoints:

https://maps.gnosis.earth/ogcapi/collections/swim:d100_airports (by AIXM)

https://maps.gnosis.earth/ogcapi/collections/swim:d100_airports2 (by airport)

https://maps.gnosis.earth/ogcapi/collections/swim:d100_notam

https://maps.gnosis.earth/ogcapi/collections/swim:d100_airspace

Figure 41 — Map of LAX (from interactive instruments' 
D100 service) as it appears on collection page

OPEN GEOSPATIAL CONSORTIUM 22-023R2 89

https://maps.gnosis.earth/ogcapi/collections/swim:d100_airports
https://maps.gnosis.earth/ogcapi/collections/swim:d100_airports2
https://maps.gnosis.earth/ogcapi/collections/swim:d100_notam
https://maps.gnosis.earth/ogcapi/collections/swim:d100_airspace


Figure 42 — Map of JFK airport from interactive instruments' D100 service

Figure 43 — Paginated filtered features returned for a query on the EWR collection

OPEN GEOSPATIAL CONSORTIUM 22-023R2 90



Figure 44 — Feature #1413 from the EWR airport 
collection from interactive instruments' D100 service

11.2.2. D103 Filtering Service 2 for D100 OGC API — Features Façade 1

For the TIE, the Filter APIs for the SWIM data façades for the Airports, Airspaces, and NOTAMs
datasets were set up.

Like the corresponding D100 Data APIs, the D103 Filter APIs implement the OGC API building 
blocks for features, but there are the following differences.

• Scope of the D100 Data APIs:

• the D100 Data APIs intentionally did not support rich filtering capabilities. They were 
limited to the building blocks from OGC API Features Core, which support limited 
filtering capabilities; however,

• as Data APIs, they also provide the data as tiled vector data (aka vector tiles) together 
with associated styles to support presentation of the data in maps.

• Scope of the D103 Filter APIs:

• the D103 Filter APIs are focused on filtering and, therefore, do not support access to 
vector tiles or styles; and

• for feature data, they not only support OGC API Features Core, but also CRS support, 
filtering with CQL2-Text and CQL2-JSON, the new advanced filtering capabilities 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 91

https://t18.ldproxy.net/d103_airports
https://t18.ldproxy.net/d103_airspace
https://t18.ldproxy.net/d103_fns


specified in the Testbed-18 Filtering Service and Rule Set Engineering Report, and 
several proposed extensions for sorting and property selection.

As such, the D103 Filter APIs provide advanced filtering capabilities for the feature data 
published using the D100 Data APIs.

Several sample filtering rules (with and without parameters, for a single feature collection or 
multiple feature collections, with and without property selection and sorting, with and without 
paging of the response, etc.) were created. A representative set of filtering rules are documented 
in the description of component D103.

The filtering rules were executed in the Filter APIs, using both from the command line (cURL) 
and in the web browser using the HTML forms. For parameterized rules, several combinations of 
values were tested. All responses were checked to contain the correct results.

During the testing a few bugs were identified in the implementation of D103, which were 
corrected. Eventually all TIEs were executed successfully.

NOTEIn practice, supporting filtering capabilities already in the Data API may often be required. 
Otherwise, it may be necessary to transfer large amounts of data from the Data API to the Filter 
API, where a significant amount of that data does not match the filtering rule and will not be 
delivered to the client that submitted the filtering request. For large datasets (e.g., the D100 
NOTAM API provides access to more than 5 million NOTAMs), this will not be practical for many 
filters. The D103 Filter APIs for the corresponding D100 Data APIs were, therefore, optimized 
for the specific datasets. The component did not support filtering on other OGC Web APIs 
implementing OGC API Features, for example, the D101 Data APIs.

11.2.3. D102 Filtering Service 1 cascading D101 OGC API — Features 
Façade 2

The D102 filtering service was demonstrated cascading successfully to the GMU (D101) OGC 
API — Features façade.

The corresponding collections for the filtering cascading service, supporting CQL2 expressions 
as value to the filter= parameter for the /items resources, are available from the following 
endpoint.

https://maps.gnosis.earth/ogcapi/collections/swim:gmu

OPEN GEOSPATIAL CONSORTIUM 22-023R2 92

https://cat.csiss.gmu.edu/gmuwfs3
https://maps.gnosis.earth/ogcapi/collections/swim:gmu


Figure 45 — Ecere’s D102 Filtering Service cascading 
features from George Mason University’s D101 service

11.2.4. D102 Filtering Service 1 cascading OGC API — Features Façade 3 
(Skymantics)

The D102 filtering service was demonstrated cascading successfully to the Skymantics OGC API 
— Features endpoint.

The corresponding collections for the filtering cascading service, supporting CQL2 expressions 
as value to the filter= parameter for the /items resources, are available from the following 
endpoint.

https://maps.gnosis.earth/ogcapi/collections/swim:faa

OPEN GEOSPATIAL CONSORTIUM 22-023R2 93

https://aviationapi.skymantics.com/faa/
https://maps.gnosis.earth/ogcapi/collections/swim:faa


Figure 46 — Ecere’s D102 Filtering Service cascading 
and filtering features from Skymantics service

11.2.5. D104 Business User Client accessing D102 Filtering Service 1

This TIE was still in development at the time of writing this report.

11.2.6. D105 Developer Client acessing D102 Filtering Service 1

This TIE was still in development at the time of writing this report.

11.2.7. D104 Business User Client accessing D103 Filtering Service 2

 
Table 6 — TIE Overview of the Business User Client With the D103 Filtering Service

# FUNCTION CLIENT ACTION
SERVER 
RESPONSE

SUCCESS 
CRITERION

1
Get Query 
List

Once the Developer client page of a SWIM 
data is loading, the Developer Client front-
end page makes a request to the Web Server.
 The Webserver makes an HTTP Get call at
{FilteringServiceURL}/search on the SWIM 
Filtering Service

Receive query 
list in (f=
json) format

Developer Client 
displays the list of 
stored queries in 
a table

OPEN GEOSPATIAL CONSORTIUM 22-023R2 94



# FUNCTION CLIENT ACTION
SERVER 
RESPONSE

SUCCESS 
CRITERION

2
Get 
Parameters 
of a Query

Once the Developer client page of a SWIM 
data is loading, the Developer Client front-
end page makes a request to the Web Server.
 The Webserver makes an HTTP Get call 
at {FilteringServiceURL}/search/
{queryId}/parameters on the SWIM Filtering 
Service for each stored query

Receive 
parameter list 
in (f=json) 
format

Developer Client 
displays the list 
of parameters for 
each stored query 
in a table

3 Run Query

Once the request is received from Developer 
Client front-end page including the query Id, 
the Webserver makes an HTTP Post call at
{FilteringServiceURL}/search/{queryId}
on the SWIM Filtering Service

Receive query 
result in 
(f=json,
 geojson) 
format

Developer Client 
displays the 
results in simple 
text, or if the 
result is in Geo
JSON format, on 
a map

11.2.8. D105 Developer Client accessing D103 Filtering Service 2

 
Table 7 — TIE Overview of the Developer Client With the D103 Filtering Service

# FUNCTION CLIENT ACTION
SERVER 
RESPONSE

SUCCESS 
CRITERION

1
Get 
Queryables of 
a Collection

Once the request is received from 
Developer Client front-end page, 
the Webserver makes an HTTP Get 
call at {FilteringServiceURL}/
{CollectionId}/queryables on the 
SWIM Filtering Service

Receive list 
of queryables 
in (f=json) 
format

Developer Client 
displays the list of 
queryables in a table

2
Get Sortables 
of a Collection

Once the request is received from 
Developer Client front-end page, 
the Webserver makes an HTTP Get 
call at {FilteringServiceURL}/
{CollectionId}/sortables on the 
SWIM Filtering Service

Receive list of 
sortables in (f=
json) format

Developer Client 
displays the list of 
sortables in a table

3

Get 
Conformances 
of the 
Collection of 
Collections

Once the request is received from 
Developer Client front-end page, 
the Webserver makes an HTTP Get 
call at {FilteringServiceURL}/
conformance on the SWIM Filtering 
Service

Receive list of 
conformances 
in (f=json) 
format

Developer Client 
displays the list of 
conformances in a 
table

4 Test Query
Once the request is received from 
Developer Client front-end page 
including the query expression, the 

Receive query 
result in 
(f=json,

Developer Client 
displays the results in 
simple text, or if the 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 95



# FUNCTION CLIENT ACTION
SERVER 
RESPONSE

SUCCESS 
CRITERION

Webserver makes an HTTP Post call at
{FilteringServiceURL}/search
on the SWIM Filtering Service, with the 
JSON query string included in the body of 
the request

 geojson) 
format

result is in GeoJSON 
format, on a map

5 Save Query

Once the request is received from 
Developer Client front-end page 
including the query Id and expression, 
the Webserver makes an HTTP Put call 
at {FilteringServiceURL}/search/
{queryId} on the SWIM Filtering 
Service, with the JSON query string 
included in the body of the request

HTML OK 
code when 
successful

Developer Client 
displays a successful 
or error notification

6 Modify Query

Once the “Edit” button is pressed 
on the Developer Client, the 
client makes an HTTP Get call at
{FilteringServiceURL}/search/
{queryId}/definition on the SWIM 
Filtering Service to receive the full query 
definition.

HTML OK 
code when 
successful

Developer Client then 
populates two text 
boxes on the client 
page with the query 
Id and definition, 
allowing the user to 
modify the query 
expression. Then the 
Save Query function 
can be used to save 
the query on the 
Filtering Service

7 Get Query List

Once the Developer client page of a 
SWIM data is loading, the Developer 
Client front-end page makes a 
request to the Web Server. The 
Webserver makes an HTTP Get call at
{FilteringServiceURL}/search on 
the SWIM Filtering Service

Receive query 
list in (f=json) 
format

Developer Client 
displays the list of 
stored queries in a 
table

8
Get Parameters 
of a Query

Once the Developer client page of a 
SWIM data is loading, the Developer 
Client front-end page makes a 
request to the Web Server. The 
Webserver makes an HTTP Get call at
{FilteringServiceURL}/search/
{queryId}/parameters on the SWIM 
Filtering Service for each stored query

Receive 
parameter list 
in (f=json) 
format

Developer Client 
displays the list of 
parameters for each 
stored query in a 
table

9 Run Query

Once the request is received 
from Developer Client front-end 
page including the query Id, the 
Webserver makes an HTTP Post call at
{FilteringServiceURL}/search/

Receive query 
result in 
(f=json,
 geojson) 
format

Developer Client 
displays the results in 
simple text, or if the 
result is in GeoJSON 
format, on a map

OPEN GEOSPATIAL CONSORTIUM 22-023R2 96



# FUNCTION CLIENT ACTION
SERVER 
RESPONSE

SUCCESS 
CRITERION

{queryId} on the SWIM Filtering 
Service

10 Delete Query

Once the “Edit” button is pressed 
on the Developer Client, the client 
makes an HTTP Delete call at
{FilteringServiceURL}/search/
{queryId} on the SWIM Filtering 
Service to delete the query

HTML OK 
code when 
successful

Developer Client then 
reloads the page to 
update the table of 
query, removing the 
deleted query

OPEN GEOSPATIAL CONSORTIUM 22-023R2 97



A

ANNEX A ( INFORMATIVE)
REVISION HISTORY
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 98



A ANNEX A
(INFORMATIVE)
REVISION HISTORY
 

 

DATE RELEASE AUTHOR PRIMARY CLAUSES MODIFIED DESCRIPTION

2022-09-30 0.5 S. Taleisnik all Draft Engineering Report (DER)

2022-11-29 0.9 S. Taleisnik all Version Posted to Pending

2022-12-19 1.0 S. Taleisnik all Final Edits

OPEN GEOSPATIAL CONSORTIUM 22-023R2 99



BIBLIOGRAPHY
 

OPEN GEOSPATIAL CONSORTIUM 22-023R2 100



BIBLIOGRAPHY
 

[1] Pross, B., Vretanos, P.A.,: OGC API — Processes- Part 1: Core. Open Geospatial 
Consortium, https://docs.ogc.org/is/18-062r2/18-062r2.html.

[2] Masó, J., Jacovella-St-Louis, J.: OGC API — Tiles — Part 1: Core. Open Geospatial 
Consortium, https://docs.ogc.org/is/20-057/20-057.html (2022).

[3] Portele, C.: OGC API — Styles. Open Geospatial Consortium, http://docs.opengeospatial.
org/DRAFTS/20-009.html .

[4] Taleisnik, S.: OGC Testbed-17: Aviation API ER. Open Geospatial Consortium, https://
docs.ogc.org/per/21-039r1.html, (2022).

[5] Vretanos, P.: OGC API — Features — Part 5: Search (PROPOSAL). Open Geospatial 
Consortium, https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/
search, (2022)

[6] Jacovella-St-Louis, J., Vretanos, P.A.: OGC API — Processes — Part 3: Workflows and 
Chaining (draft). Open Geospatial Consortium, https://opengeospatial.github.io/ogcna-
auto-review/21-009.html (2023).

[7] Dictionary of Computer Science — Oxford Quick Reference, (2016).

[8] Lóscio, B.F, Calegari, N., Burle, C.: Data on the Web Best Practices. W3C, https://www.
w3.org/TR/dwbp/ (2017).

[9] Service Facade Pattern, https://www.ibm.com/docs/pt-br/integration-bus/9.0.0?topic=
SSMKHH_9.0.0/com.ibm.etools.mft.pattern.sen.doc/sen/sf/overview.htm.

[10] SWIM Questions & Answers, https://www.faa.gov/air_traffic/technology/swim/
questions_answers/, (2021).

[11] Portele, C., Vretanos, P.A., Heazel, C.: OGC API — Features — Part 1: Core. Open 
Geospatial Consortium, https://docs.opengeospatial.org/is/17-069r4/17-069r4.html
(2022).

[12] Portele, C., Vretanos, P.A.: OGC API — Features — Part 2: Coordinate Reference Systems 
by Reference. Open Geospatial Consortium, https://docs.ogc.org/is/18-058r1/18-058r1.
html (2022).

[13] Vretanos, P.A., Portele, C.: OGC API — Features — Part 3: Filtering. Open Geospatial 
Consortium, https://docs.ogc.org/DRAFTS/19-079.html .

[14] Taleisnik, S.: OGC Testbed-16: Aviation Engineering Report. Open Geospatial 
Consortium, https://docs.ogc.org/per/20-020.html (2021).

[15] Vretanos, P.A., Portele, C.: Common Query Language (CQL2). Open Geospatial 
Consortium, https://docs.ogc.org/DRAFTS/21-065.html.

OPEN GEOSPATIAL CONSORTIUM 22-023R2 101

https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/is/20-057/20-057.html
http://docs.opengeospatial.org/DRAFTS/20-009.html
http://docs.opengeospatial.org/DRAFTS/20-009.html
https://docs.ogc.org/per/21-039r1.html
https://docs.ogc.org/per/21-039r1.html
https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/search
https://github.com/opengeospatial/ogcapi-features/tree/master/proposals/search
https://opengeospatial.github.io/ogcna-auto-review/21-009.html
https://opengeospatial.github.io/ogcna-auto-review/21-009.html
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/dwbp/
https://www.ibm.com/docs/pt-br/integration-bus/9.0.0?topic=SSMKHH_9.0.0/com.ibm.etools.mft.pattern.sen.doc/sen/sf/overview.htm
https://www.ibm.com/docs/pt-br/integration-bus/9.0.0?topic=SSMKHH_9.0.0/com.ibm.etools.mft.pattern.sen.doc/sen/sf/overview.htm
https://www.faa.gov/air_traffic/technology/swim/questions_answers/
https://www.faa.gov/air_traffic/technology/swim/questions_answers/
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html
https://docs.ogc.org/is/18-058r1/18-058r1.html
https://docs.ogc.org/is/18-058r1/18-058r1.html
https://docs.ogc.org/DRAFTS/19-079.html
https://docs.ogc.org/per/20-020.html
https://docs.ogc.org/DRAFTS/21-065.html

	I. Abstract
	II. Executive Summary
	III. Keywords
	IV. Preface
	V. Security considerations
	VI. Submitters
	1. Scope
	2. Normative references
	3. Terms,​ definitions and abbreviated terms
	3.1. Terms and definitions
	3.2. Abbreviated terms

	4. Introduction
	4.1. Background
	4.1.1. SWIM
	4.1.2. OGC API Standards
	4.1.3. Exploration of OGC API Standards by SWIM

	4.2. Requirements Statement
	4.3. Functional Overview
	4.3.1. Component Interactions


	5. OGC API-​Features Façade 1 (D100)
	5.1. Internal Architecture
	5.1.1. Component Overview
	5.1.2. ldproxy (Web API)
	5.1.3. PostgreSQL/​PostGIS (Database)
	5.1.3.1. Communication Between ldproxy and PostgreSQL

	5.1.4. Data Retrieval

	5.2. Differences to the component from Testbed 17
	5.3. Challenges and Lessons Learned

	6. OGC API-​Features Façade 2 (D101)
	6.1. Status Quo
	6.2. Internal Architecture
	6.3. Feature collections
	6.3.1. AIXM Features
	6.3.2. FIXM/​Flight Features
	6.3.3. ITWS Features

	6.4. Filtering Capabilities
	6.4.1. Query
	6.4.1.1. Query with cql2-​text
	6.4.1.2. Query with cql2-​json


	6.5. Challenges and Lessons Learned

	7. Filtering Service 1 (D102)
	7.1. Status Quo
	7.2. Internal Architecture
	7.2.1. Filtering Capabilities
	7.2.1.1. CQL2

	7.2.2. Cascading
	7.2.3. Pre-​defining queries based on Processes ​—​ ​Part 3 extension
	7.2.4. Cross-​collections queries

	7.3. Challenges and Lessons Learned
	7.4. Recommendations and Future Work

	8. Filtering Service 2 (D103)
	8.1. Internal Architecture
	8.2. ldproxy
	8.3. Filtering Capabilities
	8.3.1. Support for CQL2 and Part 3 (Filtering) of OGC API Features
	8.3.2. Support for property selection
	8.3.3. Support for sorting
	8.3.4. Support for basic filtering according to OGC API Features Core
	8.3.5. Support for the Search resources

	8.4. HTML Support
	8.5. Challenges and Lessons Learned

	9. Business User Client (D104)
	9.1. Internal Architecture
	9.2. Recommendations and Future Work

	10. Developer Client (D105)
	10.1. Internal Architecture
	10.1.1. List of Stored Queries
	10.1.2. Running and Editing a Stored Query
	10.1.3. Creating A Query

	10.2. Challenges and Lessons Learned
	10.3. Recommendations and Future Work

	11. Technology Integration Experiments (TIEs)
	11.1. TIE Summary Table
	11.2. TIE Functional Tests
	11.2.1. D102 Filtering Service 1 cascading D100 OGC API ​—​ ​Features Façade 1
	11.2.2. D103 Filtering Service 2 for D100 OGC API ​—​ ​Features Façade 1
	11.2.3. D102 Filtering Service 1 cascading D101 OGC API ​—​ ​Features Façade 2
	11.2.4. D102 Filtering Service 1 cascading OGC API ​—​ ​Features Façade 3 (Skymantics)
	11.2.5. D104 Business User Client accessing D102 Filtering Service 1
	11.2.6. D105 Developer Client acessing D102 Filtering Service 1
	11.2.7. D104 Business User Client accessing D103 Filtering Service 2
	11.2.8. D105 Developer Client accessing D103 Filtering Service 2


	Annex A (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Server Endpoints 
	Table 2 — AIXM Feature Collections from SWIM Data Services 
	Table 3 — FIXM and Traffic Flow Feature Collections from SWIM Data Services 
	Table 4 — ITWS Weather Feature Collections from SWIM Data Services 
	Table 5 — Technology Integration Experiments Overview 
	Table 6 — TIE Overview of the Business User Client With the D103 Filtering Service 
	Table 7 — TIE Overview of the Developer Client With the D103 Filtering Service 

	List of Figures
	Figure 1 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task 
	Figure 2 — History of OGC experiments to enhance SWIM 
	Figure 3 — Component Diagram for the Advanced Filtering of SWIM Feature Data Task 
	Figure 4 — Workflow from the perspective of a business user that needs filtered data 
	Figure 5 — First Workflow Sequence Diagram 
	Figure 6 — Workflow from the perspective of a filtering rules developer 
	Figure 7 — Second Workflow Sequence Diagram 
	Figure 8 — D100 Component Overview 
	Figure 9 — Information Flow for Data Requests 
	Figure 10 — Communicating Data Changes to ldproxy 
	Figure 11 — D100 Simple Filtering in the Web Browser 
	Figure 12 — D101 Component Overview 
	Figure 13 — API-Features Data Interaction with Backend SWIM Messaging Services 
	Figure 14 — Major Entity Relationship Diagram for Managed SWIM Features 
	Figure 15 
	Figure 16 — Single feature returned from CQL2 filter query on test collection 
	Figure 17 — Single flight plan feature cascaded from Skymantics service 
	Figure 18 — Paging through an output collection resulting from the above filter query pre-defined using OGC API - Processes - Part 3 
	Figure 19 
	Figure 20 
	Figure 21 — Expressions UML Conceptual Model, covering CQL2 capabilities 
	Figure 22 — Operators UML Conceptual Model, covering CQL2 capabilities 
	Figure 23 — Standard functions UML Conceptual Model, covering CQL2 capabilities 
	Figure 24 
	Figure 25 — Executing a Stored Query from the Web Browser 
	Figure 26 — Response from a Stored Query in the Web Browser (all Pittsburgh airport features) 
	Figure 27 — Developer Client Component Breakdown 
	Figure 28 — Business Client Query List 
	Figure 29 — Business Client Showing Airspaces 
	Figure 30 — Business Client Showing Airports 
	Figure 31 — Business Client Showing Intersections 
	Figure 32 — Business Client Showing NOTAMs 
	Figure 33 — Developer Client Component Breakdown 
	Figure 34 — Developer Client Queries Table 
	Figure 35 — Developer Client Collection Table 
	Figure 36 — Query Editing in the Developer Client 
	Figure 37 — Developer Client Query Creation 
	Figure 38 — Developer Client Collections Table 
	Figure 39 — Developer Client Displaying Queryables 
	Figure 40 — Developer Client Displaying Sortables 
	Figure 41 — Map of LAX (from interactive instruments' D100 service) as it appears on collection page 
	Figure 42 — Map of JFK airport from interactive instruments' D100 service 
	Figure 43 — Paginated filtered features returned for a query on the EWR collection 
	Figure 44 — Feature #1413 from the EWR airport collection from interactive instruments' D100 service 
	Figure 45 — Ecere’s D102 Filtering Service cascading features from George Mason University’s D101 service 
	Figure 46 — Ecere’s D102 Filtering Service cascading and filtering features from Skymantics service 


