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I ABSTRACT
 

This OGC Testbed 18 Engineering Report (ER) documents work to develop a foundation for 
future standardization of Training Datasets (TDS) for Earth Observation (EO) applications. 
The work performed in the Testbed 18 activity is based on previous OGC Machine Learning 
(ML) activities. TDS are essential to ML models, supporting accurate predictions in performing 
the desired task. However, a historical absence of standards has resulted in inconsistent and 
heterogeneous TDSs with limited discoverability and interoperability. Therefore, there is a need 
for best practices and guidelines for generating, structuring, describing, and curating TDSs that 
would include developing example software/packages to support these activities. Community 
and parallel OGC activities are working on these topics. This ER reviews those activities in 
parallel with making recommendations.

I I EXECUTIVE SUMMARY
 

This OGC Testbed-18 ER begins by providing an introduction to Artificial Intelligence/ML in 
the context of EO. The introduction is followed by a review of existing approaches to creating 
and storing TDSs. Then, TDS formats are reviewed in terms of metadata, creating a catalog, 
expressing quality, and adherence to Findability, Accessibility, Interoperability, and Reuse (FAIR) 
principles. Finally, the summary reviews the next steps, best practice ideas, and the geoethics of 
generating and distributing training data.

I I I KEYWORDS
 

The following are keywords to be used by search engines and document catalogues.

Artificial Intelligence, Earth Observation, Machine Learning, Training Dataset
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1 SCOPE
 

The Open Geospatial Consortium (OGC) Testbed-18 initiative aimed to explore six tasks, 
including advanced Interoperability for: Building Energy; Secure; Asynchronous Catalogs; 
Identifiers for Reproducible Science; Moving Features and Sensor Integration; 3D+ Data 
Standards and Streaming; and Machine Learning (ML) Training Data (TD).

The goal of this Testbed-18 task is to develop the foundation for future standardization 
of Training Datasets (TDS) for Earth Observation (EO) applications. The task has included 
evaluating the status quo of TD formats, metadata models, and general questions of sharing 
and re-use. It has taken into account several initiatives, such as the European Space Agency’s 
Artificial Intelligence-Ready EO Training Datasets (AIREO), the Radiant MLHub, and the 
SpatioTemporal Asset Catalog (STAC) family of specifications.

For the purposes of this Engineering Report (ER), the authors define EO data as data that has 
been collected through remote sensing, including passive and active sensors carried on drones, 
airplanes, helicopters, or satellites.

In terms of ML applications, the most appropriate scope is supervised learning, as this type of 
ML directly leverages labeled training datasets. However, unsupervised learning will also be 
considered. These types of learning are also appropriate for the context of this work within the 
field of EO, as the application of ML in EO is often focused on the goal of identifying meaningful 
features from input EO data using a set of known mappings between inputs and desired outputs 
(the training dataset).

In laying out a path for future standardization of training datasets for EO applications, the ER 
has also taken into account and collaborated with the Training Data Markup Language (DML) 
for AI Standards Working Group (SWG). The SWG is chartered to develop the Unified Modelling 
Language (UML) model and encodings for geospatial ML training data. While these Testbed-18 
activities have progressed, the SWG have released draft versions of their Conceptual Model 
Standard (part 1) and JSON Encoding (part 2).
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2 NORMATIVE REFERENCES
 

The following documents are referred to in the text in such a way that some or all of their 
content constitutes requirements of this document. For dated references, only the edition cited 
applies. For undated references, the latest edition of the referenced document (including any 
amendments) applies.

AIREO: Best Practice Guidelines https://www.aireo.net/aireo-training-dataset-best-practice-
guidelines/

AIREO: Specification AIREO specification

W3C: Data on the Web Best Practices, W3C Best Practice, 2017 https://www.w3.org/TR/
dwbp/

Gebru, T. , J. Morgenstern , B. Vecchione, J.W. Vaughan, H. Wallach, H. Daume III, and K. 
Crawford. Datasheets for datasets. Communications of the ACM. 2021, 
64(12):86–92. https://doi.org/10.1145/3458723

Lavender, S. Detection of Waste Plastics in the Environment: Application of Copernicus Earth 
Observation Data. Remote Sens. 2022, 14, 4772. https://doi.org/10.3390/
rs14194772

McKee, L., C. Reed, and S. Ramage. 2011. “OGC Standards and Cloud Computing.” OGC White 
Paper. Accessed 29 March. http://www.opengeospatial.org/docs/whitepapers

OGC: API-Records https://github.com/opengeospatial/ogcapi-records/

Oxford Reference: Artificial intelligence https://www.oxfordreference.com/view/10.1093/oi/
authority.20110803095426960

Yue, P., Shangguan, B., Hu, L., Jiang, L., Zhang, C., Cao, Z., Pan, Y., 2022. Towards a training data 
model for artificial intelligence in earth observation. International Journal of 
Geographical Information Science, 36(11), pp. 2113-2137, https://doi.org/10.
1080/13658816.2022.2087223
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3 TERMS, DEFINITIONS AND ABBREVIATED
TERMS
 

This document uses the terms defined in OGC Policy Directive 49, which is based on the 
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In 
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be 
strictly followed to conform to this document and OGC documents do not use the equivalent 
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications 
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard, 
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

3.1. Application Programming Interface  

 

An Application Programming Interface (API) is a standard set of documented and supported 
functions and procedures that expose the capabilities or data of an operating system, 
application, or service to other applications (adapted from ISO/IEC TR 13066-2:2016).

3.2. OGC APIs  

 

The family of OGC standards developed to make it easy for anyone to provide geospatial data to 
the web.

3.3. Abbreviated terms
 

ADES Application Deployment and Execution Service

AI Artificial Intelligence

AP Application Package

ARD Analysis Ready Data
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AWS Amazon Web Services

CEOS Committee on Earth Observation Satellites

DML Data Markup Language

EMS Exploitation Platform Management Service

EO Earth Observation

ER Engineering Report

ESA European Space Agency

FAIR Findability, Accessibility, Interoperability, and Reuse

ML Machine Learning

OGC Open Geospatial Consortium

STAC SpatioTemporal Asset Catalog

SWG Standards Working Group

TD Training Data

TDS Training Dataset

TrainingDML-AI Training Data Markup Language for Artificial Intelligence

UML Unified Modelling Language
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4 ENGINEERING REPORT OVERVIEW
 

Artificial Intelligence (AI) and Machine Learning (ML) algorithms have great potential to advance 
processing and analysis of Earth Observation (EO) data. Among the top priorities for efficient 
machine learning algorithms is the availability of high-quality Training Datasets (TDSs). Training 
data (TD) is the initial dataset used to train ML algorithms. Models create and refine their rules 
using this data. Training data are also known as a training dataset (TDS), learning set, or training 
set.

TDSs are crucial for ML and AI applications, but they can also become a significant bottleneck in 
EO’s more widespread and the systematic application of AI/ML due to:

• the absence of standards resulting in inconsistent and heterogeneous TDS (data 
structures, file formats, quality control, meta data, repositories, licenses, etc.);

• limited discoverability and interoperability of TDS; and

• lack of best-practices and guidelines for generating, structuring, describing, and curating 
TDS.

The Engineering Report (ER) starts by providing an introduction to AI/ML in the context of EO 
(Clause 5) followed by a review of existing approaches to creating and storing TDSs (Clause 6). 
The relevant standards applicable in terms of metadata (Clause 7), creating a catalog (Clause 
8), and expressing quality (Clause 9) are reviewed in subsequent sections. Unlocking the power 
of geospatial resources requires that those resources are stored following the Findability, 
Accessibility, Interoperability, and Reuse (FAIR) principles. The FAIR principles are reviewed 
concerning TDS (Clause 10). Finally, the summary (Clause 11) reviews the next steps, best 
practice ideas, and geoethics of generating and distributing TD.
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5 INTRODUCTION TO AI/ML WITHIN THE
CONTEXT OF EARTH OBSERVATION
 

This section outlines the overall scope for this ER, beginning with a summary of Artificial 
Intelligence (AI) and Machine Learning (ML). Next is a discussion of how AI/ML are used in 
the field of Earth Observation (EO) followed by a series of case studies that demonstrate the 
application of ML techniques to EO data in a variety of contexts. Finally, this section concludes 
with a discussion of foreseen issues and opportunities in relation to the creation of an OGC 
standard for Training Datasets (TDSs).

5.1. Defining AI and ML
 

As a field, AI covers “the theory and development of computer systems able to perform tasks 
normally requiring human intelligence, such as visual perception, speech recognition, decision-
making, and translation between languages” Oxford Reference. ML is then a subset of the AI 
field, specifically focusing on the creation of algorithms that learn from data without explicit 
programming. The output of these algorithms is then a trained ML model, which can process 
new inputs.

Within the domain of ML, there are three categories of application, each distinguished by their 
learning method.

• Supervised learning: The algorithm is provided with a labeled TDS which pairs input data 
with a training label. The algorithm creates an output from the input data and compares 
this with the training label then iteratively updates itself to maximize its accuracy in 
comparison to the desired output.

• Unsupervised learning: The algorithm is provided with input data and attempts to identify 
commonalities and differences in the data that allow it to be grouped. Once groups are 
established, the algorithm is able to identify which group new input data should belong to.

• Reinforcement learning: The algorithm is exposed to an environment to which it must 
respond and is then rewarded if it responded appropriately.

This Engineering Report (ER) primarily focuses on supervised learning applications. Supervised 
learning algorithms include linear regression, decision trees, support vector machines, and neural 
networks. In particular convolutional neural networks are commonly used in EO applications 
due to their ability to identify features in images. Convolutional neural networks can be used 
for semantic segmentation (pixel-level classification) and object detection (bounding box 
identification).
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5.2. Typical formats for TDSs in EO Applications
 

A TDS is made up of two components: input data and training labels. For EO applications, the 
input data are remote sensing observations: Multispectral and hyperspectral satellite imagery, 
red, green, and blue (RGB) aerial photography, drone-mounted LiDAR point clouds, and so on. 
The training labels capture the classification and location of known features in the input data, 
such as the location and bounds of a building, or the type of crop at a given location. Training 
labels can be provided in vector or raster format, depending on the ML application. Supervised 
learning applications require both the input data and the training labels whereas unsupervised 
learning applications only require the input data.

5.3. Example use cases
 

This ER section describes some ML for EO use cases to provide context. The use cases are 
based on Testbed participants’ experience particularly where ML is used to create spatial data 
(vector and raster) from EO data for a broad range of use cases.

The use cases are from efforts from state and national governments to create spatial data from 
ML on jurisdictional areas as a method of automating the creation of these products. In these 
use cases, reusability is a key consideration. These agencies (for example) may wish to later 
extend the existing training set to keep the dataset current, as well as to explore new questions 
and produce new information products.

As part of each use case, the authors provide a summary of implications for a TDS standard. For 
a specific review of the suitability of the proposed TraningDML-AI standard for use cases, see
Table A.1.

5.3.1. Use case: Mapping vegetation from aerial imagery in Australia

Project Participants: The Department of Environment, Land, Water and Planning (Victoria, 
Australia), FrontierSI (Australia), Orbica (New Zealand).

Project Goal: Mapping tree cover consistently over time can help governments understand 
land use, urban heat, and fire risks. The Victorian Department of Environment, Land, Water and 
Planning sought to develop an automated machine learning approach that could map tree cover 
from collected high resolution aerial ortho-photography.

Challenge: Due to the labor-intensive process that was traditionally used to create and update 
the data, Vicmap Vegetation statewide data had not been updated for 20 years. The State of 
Victoria wanted to trial the use of ML for statewide data maintenance, using vegetation as a test 
case. Project participants wanted to create a repeatable method to update data as new imagery 
was acquired.
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Input data: The input data was 10-20cm red, green, and blue aerial ortho-photography. All 
imagery was resampled to 20cm before being labeled and provided to the ML algorithm.

Training labels: Training labels were created by hand digitizing vector polygons delineating 
areas of a range of tree coverage and density. Initial labels were then used to train a semantic 
segmentation algorithm to produce further Training Data (TD), which was then refined into 
polygons by human examination.

Training data selection: TD were stratified using a vector dataset of ecological bioregions to 
capture training data covering the range of tree species and ecosystems in Victoria.

Method: The project used semantic segmentation (U-Net) with transfer learning as the ML 
model architecture. The project successfully created a statewide dataset and delivered the 
resulting vector data, training data, and scripts to re-run the ML process in the future.

Key metadata

• Geographical extent and coverage

• Extent and data summarizing ecological bioregions

• Resolution, spectral wavelength range, date, seasonality, and quality of input data

• Method of generation (human only or ML with human revision)

• ID for association with ML model metadata to understand which data were used to train 
the model

Implications for a TDS standard

Input data may be modified from the original source for the purpose of creating a TDS. In this 
case study, all input data were resampled to a uniform resolution and labels were delineated 
from the resampled data. As such, the labels are appropriate for the resampled imagery and 
should be used with caution on imagery at a higher resolution. For input data supplied alongside 
training labels, a TDS standard should capture any modifications that have been made relating to 
the creation of the labels.

ML projects may use multiple methods to create TDSs. In this case study, humans provided 
an initial set of labels and used these to train an ML process to produce additional labels. For 
quality control, a TDS standard should capture how a given training data label was produced.

5.3.2. Use case: Capturing footprints of building roofs (roofprints) from 
aerial imagery in Australia

Project Participants: The Department of Environment, Land, Water and Planning (Victoria, 
Australia), DSM Geodata.

Project Goal: Detailed and accurate building outlines can assist decision making for planning, 
infrastructure, and risk modelling. The project goal was to derive high-accuracy building 
roofprint models from existing aerial ortho-photography.
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Challenge: The derived roofprints needed to be highly accurate to meet the needs of various 
sectors. At the time, no commercially available products met these needs. The project approach 
involved training an ML model and then manually revising the predicted rooflines to match the 
underlying imagery.

Input data: The input data was 10cm red, green, and blue aerial ortho-photography.

Training labels: Training labels were created by hand digitizing vector polygons delineating 
rooflines.

Training data selection: Validation data were collected from either the residential or non-
residential zones of a core urban area.

Method: Computer vision (exact model architecture unknown) with outputs reviewed and 
cleaned by humans to achieve high accuracy.

Key metadata

• Geographical extent and coverage

• Definition of residential and non-residential zones

• Designation of whether the data belongs to the training or validation set

• Resolution, spectral wavelength range, date, seasonality, and quality of input data

• Method of generation (human only or ML with human revision)

• ID for association with ML model metadata to understand which data were used to train 
the model

Implications for a TDS standard

The TDS in this use case contained a specific validation set with labels from both residential and 
non-residential zones of a specific area. Validation sets may be specifically designed to represent 
the expected variability and presence of features in the domain. A TDS standard should provide 
an optional way for a creator to distinguish between elements of the TDS that belong to 
the training, validation, and test sets. A future user could then review validation samples to 
understand the domain the training data were designed for or use the same validation set with a 
new ML process and fairly compare the performance of the new method with an existing one.

5.3.3. Use case: Capturing flood extent from aerial imagery in Australia

Project Participants: The Department of Customer Service, Spatial Services Division (New South 
Wales, Australia), Charles Sturt University (Australia), Deloitte (Australia), Intellify (Australia)

Project Goal: Emergency response efforts require timely access to flood boundaries to aid 
planning, rescue, recovery, and rebuilding. The project goal was to automatically delineate flood 
extent from post-flood aerial ortho-photography.
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Challenge: Imagery alone is challenging for humans to interpret, particularly those in emergency 
response that have not been trained to interpret four-band imagery. ML for automated 
boundary detection provides an opportunity to deliver an easily interpretable data product soon 
after imagery capture, aiding emergency response.

Input Data: The input data was 15cm red, green, blue, and near infra-red aerial ortho-
photography. For the final ML process, three-channel imagery was used containing the near 
infra-red, red, and green values.

Training labels: Areas identified as flood or non-flood for captured imagery.

Method: The project used an unsupervised Gaussian mixture model which identified clusters in 
the data. The identified clusters were then compared to labeled imagery to assign either flood 
or non-flood labels. When run on imagery the Gaussian mixture model returned each pixel’s 
probability of being drawn from each of the identified clusters. Once clusters were labeled as 
flood or non-flood, pixels that had a high probability of having been drawn from a flood cluster 
could be labeled as flood.

Key metadata

• Geographical extent and coverage

• Definition of flooded areas

• Resolution, spectral wavelength range, date, seasonality, and quality of input data

Implications for a TDS standard

While the ML process used in the case study was an unsupervised learning method, the project 
team still used training labels to identify clusters and then classify new input data as flood/not 
flood. A TDS standard should allow flexibility in how training labels are specified relative to the 
input imagery because the same TDS can be used as the input to many different ML approaches. 
Unnecessary rigidity in a TDS standard may prevent it from being applicable to newly developed 
TDS formats and ML applications.

5.3.4. Use case: Classifying crops by type from satellite imagery in Zambia

Project Participants: FrontierSI (Australia), Tetra Tech (United States of America), Digital Earth 
Africa (South Africa).

Project Goal: Food security is a key issue in Africa. Knowledge of crop extents and types can 
help governments ensure access to food and plan for future. The project goal was to use ML 
analysis of satellite imagery and other EO products to estimate the extent of major crop types 
and thus availability of produce to assist with food security management in Zambia.

Challenge: The use of on-ground surveys to understand distribution of crop extent for food 
security is a time consuming and expensive process. Zambia needed to develop a repeatable and 
scaled country-wide process to provide estimates of crop type to inform food availability in a 
timely manner.
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Input data: The input data was analysis-ready Sentinel-2 (multispectral) and Sentinel-1 (radar) 
satellite imagery between 10-60m resolution as well as ancillary data sets such as rainfall, digital 
elevation models, and analytic products derived from Landsat (multispectral) satellite imagery.

Training labels: Training labels were created using on-ground field collection with GPS-enabled 
mobile device to associate human identified crop type with point location. If the collector could 
not enter the field, the point was captured on the road and later moved into the area of the 
relevant crop. The vector points were labeled with the crop type with each point associated with 
a specific field.

Training data selection: Unsupervised learning was applied to satellite data over known cropping 
areas to identify clusters of spectral variability. These were then sampled to suggest locations 
for collecting training data randomly stratified by the area covered by each class from the 
unsupervised learning process.

Method: The project used supervised random forest as the ML model architecture. The project 
successfully created a country wide dataset and delivered the resulting raster data, training data, 
and scripts to re-run the process in future.

Key metadata

• Geographical extent and coverage

• Sampling strategy

• Date and time of field collected label

• Crop status at time of label (e.g., sown, ready for harvest, harvested, fallow)

• List of classes and number of observations of each

• Location of point relative to target field (e.g., center, roadside)

• GPS accuracy of the point location

• Whether the point has been updated by a human reviewer (e.g., moved from road to field 
while completing quality assurance)

Implications for a TDS standard

In this use case, the training data labels were collected through field sampling with a GPS-
enabled device, meaning that they are not specifically tied to an input data source. If the date 
of capture for the training data labels is supplied then the data should still be considered a valid 
TDS. This is because such information would be sufficient for a user to select appropriately 
matched input data. A TDS standard should be aware that TDSs do not necessarily require 
associated input data, even though most TDSs will have this.
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5.3.5. Use case: Detection of plastics and waste across the world in 
terrestrial and marine environments.

Project Participants: Pixalytics (UK), CLS (France & Indonesia), RisikoTek Pte Ltd(Singapore), 
rasdaman GmbH (Germany).

Project Goal: Focuses on the use of a ML TDS for the detection of waste plastics. It was 
developed in conjunction with two projects.

• Marlisat: European Space Agency (ESA) funded study with the overarching objective of 
developing a unique combination of three innovative components to constitute a plastic 
anthropogenic marine debris monitoring system. The components were EO for detecting 
the source and impact of plastics, a low-cost satellite tracker deployed at sea, and a 
modeling tool to understand the at-sea plastic debris transport.

• Space Detective: Singapore-funded project with the goal of detecting waste plastics, 
including tires on land, so they can be recycled.

Challenge: The detection of plastics, whether it be plastic, tires, or mixed waste in waste sites 
across the globe in multiple land cover environments.

Input data: The primary input data was Sentinel-2 and Sentinel-1 satellite data which was 
supplemented by a digital elevation model and vector layers for roads and coastlines for 
background mapping with high-resolution commercial data to support focused activities.

Training labels: Training pixels were manually identified using a combination of the high spatial 
resolution satellite imagery within Google Earth and the Sentinel-2 RGB color composites 
for the different land cover types. Where the locations of the plastics could not be reliably 
identified, these land cover classes were not digitized, and only the background land cover 
classes were digitized so as not to reduce the accuracy of the overall dataset.

Training data selection: The test sites were accumulated over several years by reviewing peer-
reviewed papers, reports, and news articles on plastic waste and its detection using remote 
sensing. This work continues as new sites are discovered and new versions of the model are 
generated. The test sites are separated into training/validation/testing datasets so that the data 
used to validate the model is not the same as the training data. Also, test data were chosen 
carefully as ML models often exhibit unexpectedly poor behavior when they are deployed 
in real-world domains which has identified as being caused by underspecification — where 
observed effects can have many possible causes. Also, as the plastics classes have low numbers 
of pixels compared to the broader land cover classes, such as clouds, there was class imbalance 
during the training. Therefore, in training the model, a re-weighting is applied to reduce the 
number of pixels for the classes with high numbers and increased the number of pixels for 
classes with low numbers through duplication.

Method: The project used a sequential artificial neural network (ANN) and post-ANN decision 
tree. The ANN on its own experienced confusion due to the broad range of environments it was 
applied within. A post-ANN decision tree allowed the user to decide whether the results were 
conservative or relaxed. For example, a conservative approach was adopted when time-series 
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datasets were automatically processed to prevent a build-up of false positives which became 
distracting to users when observing composite outputs. See Lavender 2022 for further details.

Key metadata:

• Geographical extent and coverage

• Resolution, spectral wavelength range, date, and quality of input data

• List of classes and number of observations of each

• Links to literature sources identifying test sites

• Designation of whether the data belongs to the training or test set

Implications for a TDS standard

In this use case, the TDS was compiled over multiple years due to the discovery of new test 
sites. Metadata identifying when a given TDS element was added, the test site it relates to, and 
whether it should be used within the training, validation, or test set, is valuable to a new user 
who may only want to use data related to a particular test site. A TDS standard must support 
a TDS to be updated over time including the addition of new entries which would also include 
being able to “version” the TDS, so that analyses can be compared over time as new entries are 
added.

While the entries in this use case came from the same input data, TDSs could be compiled 
from multiple input sources if they are maintained for a long period. This implies that individual 
elements of a TDS need to clearly capture the metadata of their associated input data.

5.3.6. Use case: mapping coastal bathymetry using ML by combining 
multiple data sources.

Project Participants: Satellite-Derived Bathymetry (SDB) activities to increase the global 
coverage of accurate bathymetry maps.

Project Goal: This use case focuses on the use of a ML TDS to support the extraction of 
information from multiple types of EO data in support of extending the limited bathymetric data 
collection possible from vessels and airplanes.

Challenge: The techniques used for the detection of bathymetry varies according to both water 
depth and turbidity, and the TDS could therefore contain data from multiple source types that 
have different operating characteristics and uncertainties.

Input data: The input data can be any of the following.

• Lidar optical data such as airborne LiDAR measurements, and satellite ICESat-2 data.

• Multispectral optical data sources such as high resolution Landsat and Sentinel-2 data 
alongside very-high resolution satellite missions such as WorldView.

• Sonar data from underwater instruments such as single and multi-beam echo sounders.
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Training labels: The input data will be labeled with the bathymetric depth.

Training data selection: Depending on the location of interest, e.g., whether it is small area such 
as a port or global coverage, the source of the training data will vary.

Method: The approaches use ML methods such as random forest, e.g., TCarta who used 
ICESat-2 and Sagawa et al. 2022 who used multi-temporal satellite EO data to create a 
generalized model, and Zhong et al. 2022 who used a deep learning framework containing a 2D 
convolutional neural network.

Key metadata:

• Geographical extent and coverage

• Input source, including spatial resolution

• So far, SDB data are not considered as hydrographic data (i.e., can be used for charting 
for navigational purposes) because of their lower accuracy and the difficulty of estimating 
uncertainties compared to data from conventional sensors (such as echo sounders and 
LiDAR). Therefore, uncertainties of the input TDS are vital for progress to be made.

Implications for a TDS standard

A TDS standard must consider how to describe data from multiple source types and their 
associated uncertainties. Also, the SDB TDS will need to store the location in terms of both 
horizontal (latitude, longitude) and vertical (depth below defined water surface or height above a 
reference surface) coordinates.

5.4. Opportunities
 

As highlighted in the above case studies, ML has become widely used in the automated creation 
of insightful data products from EO data. As TDSs form the basis of ML approaches, a TDS 
standard has the potential to improve the quality and consistency of the application of ML to 
EO. This section covers specific opportunities that a TDS standard could enable.

The generation of a TDS is context-specific. The process is directly linked to the geospatial and 
temporal domain over which it is created, as well as the features it includes. A TDS standard 
would encourage TDS creators to provide this context along with the TDS. This allows future 
users to understand the TDS’s applicability to a new domains, or to refresh or augment the 
TDS to capture different features of interest. As TDSs are often time- and resource-intensive to 
create, improved reusability of TDSs would be valuable for the EO community.

Our world is constantly changing, and features captured by a TDSs may become outdated over 
time. As such, the ability to describe and trace changes to features, along with versioning of 
TDSs, is important for ensuring ML applications are using valid data. A TDSs standard can aid 
the cataloging and versioning of TDSs.
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ML processes need high quality and consistent TDSs to perform well. This may relate to either 
consistency in labeling across the TDS, or measures of its similarity to associated ground truth 
data. Having provenance and automated quality metrics captured by the standard would serve 
to help creators serve reliable and consistent TDSs and provide users with confidence in the 
TDS.

As agencies begin to rely on ML to produce automated products from EO data, it is critical that 
they are well-informed when creating or procuring TDSs. A TDS standard would support these 
agencies to request metadata that enables use and reuse as described above, without needing 
deep ML expertise. Clear descriptions of TDS metadata would also allow ML projects to be 
worked on by multiple providers, helping set clear expectations between the TDS creator and 
the TDS user, and allowing for transfer of a TDS across multiple parties.

5.5. Challenges
 

The case studies presented in this ER also highlight several challenges that must be considered 
in the development of a TDS standard. This section describes specific challenges that arise when 
working with TDSs and how these relate to the creation of a standard.

The use cases demonstrate that TDSs are created for highly specific domain problems. The 
challenge for a TDS standard will be to support creators in providing sufficient information 
about the domain. Without this, a new user cannot easily assess whether the TDS can be 
leveraged in their domain. Relevant domain information includes the following.

• Total geographic extent

• Spatial distribution of individual TDS elements

• Date and time of labeling

• Date and time of input data capture

• Properties of the input data and labels, including (but not limited to):

• the source of the input data (e.g., a specific satellite or LiDAR instrument);

• any corrections applied to the source data (e.g., terrain correction, top of atmosphere 
correction);

• the features of the input data (e.g., spectral bands, derived features);

• any properties of those features (e.g., spectral range, definition of any derived features, 
spatial resolution); and

• uncertainties associated with the input data or labels (e.g., positional uncertainty from 
GPS, depth uncertainty from SDB).

• Designation to training, validation or test set, for individual TDS elements
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• Description of sampling strategy

• Description of methods used to stratify the data

• Description of class imbalances present in the TDS

There are many methods that can be used to create training labels or input data, and multiple of 
these may be used within a single TDS. This may affect the overall quality of a TDS (discussed 
further in Clause 9), and a new user may wish to include, exclude, or revise particular elements 
based on their creation method. A TDS standard will need to ensure each element in a TDS can 
be labeled with the following information.

• Who created the label (with each individual assigned a unique ID), including (but not 
limited to)

• a domain expert

• a non-expert

• a machine learning process

• The process for creating the label, including (but not limited to)

• labeled from imagery by a human

• generated by a machine learning process

• collected in the field by a human

• Version history of the label

• Any accuracy measures related to the label (e.g., GPS accuracy for field-collected labels)

• The path to corresponding input data

• The process for creating the corresponding input data, including (but not limited to)

• direct from source

• augmented from source (e.g., rotated, shifted, mirrored)

• synthesized (e.g., generated by a Generative Adversarial Network (GAN) or from 
simulations)

The development of a standard for TDSs should anticipate that TDSs will evolve over time, as 
new algorithms are developed and popularized. The challenge for a TDS standard will be in 
capturing the critical domain information described above while remaining flexible enough to 
accommodate future changes in the way TDSs are generated.

By having a TDS standard there is potential for TDSs to become more interoperable This is due 
to users having information on the limits of the domain of application for a given TDS. As such, 
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the standard needs to address the idea that a new TDS could comprise selected elements of 
existing TDSs and that the lineage is appropriately recorded.

OPEN GEOSPATIAL CONSORTIUM 22-017 22



6

CURRENT STATE OF ART
 

OPEN GEOSPATIAL CONSORTIUM 22-017 23



6 CURRENT STATE OF ART
 

This section reviews previous and on-going activities relevant to the definition of an Artificial 
Intelligence (AI)/Machine Learning (ML) Training Dataset (TDS) Standard.

6.1. Training Data Markup Language for Artificial 
Intelligence Draft Standard
 

[peng] recognized that existing TDS, including open source benchmarks, can lack discoverability 
and accessibility plus there is often no unified method to describe the Training Data (TD).

The Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) standard, 
released for internal review on August 2, 2022 is a conceptual model defined using Unified 
Modelling Language (UML) as a series of modules.

Figure 1 — TrainingDML-AI module overview.
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TrainingDML-AI is designed as a universal information model that defines elements and 
attributes which are useful for a broad range of AI/ML applications. Any TD element may be 
augmented by additional attributes and relations whose names, data types, and values can 
be provided by a running application without requiring extensions to the TrainingDML-AI 
conceptual schema and respective encodings.

TrainingDML-AI builds on the ISO 19100 family of standards.

Figure 2 — Use of ISO Standards in TrainingDML-AI.

Annex B of the specification showcases the JSON encoding of example TDSs.

OPEN GEOSPATIAL CONSORTIUM 22-017 25



6.2. SpatioTemporal Asset Catalog (STAC)
 

The goal of the SpatioTemporal Asset Catalog (STAC) family of specifications is to standardize 
the way geospatial asset metadata is structured and queried. Of relevance to this Testbed-18 
activity are the following extensions, which are currently (as of 03 August 2022) classed as Work 
In Progress.

• ML AOI: An Item and Collection extension to provide labeled training data for ML models.

• ML Model: An Item and Collection extension to describe ML models that operate on Earth 
observation data.

The ML AOI (Area of Interest) extension relies on, but is distinct from, the existing label 
extension. STAC items using the label extension link label assets with the source imagery for 
which they are valid. This is often as a result of human labeling effort. By contrast STAC items 
using the ‘ml-aoi’ extension link label assets with raster items for each specific ML model that is 
being trained.

6.3. ESA funded initiatives and projects such as AIREO
 

The European Space Agency (ESA) funded Artificial Intelligence (AI) Ready Earth Observation 
activity AIREO provides resources and tools to data creators and users to ensure their TDS are 
FAIR and to standardize aspects of TDS such as quality assurance and metadata completeness 
indicators.

The aim is for the AIREO TDS Specification to be applicable to all levels of predictive feature 
data and to other target variable types. The purpose of the first version of the specification 
was to generate feedback on the content and requirements from the community to ensure a 
more useful and relevant V1 specification. As such, the focus has been on a limited number of 
datasets with examples in the AIREO pilot datasets.
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Figure 3 — Overview of the AIREO TDS specification.

Figure 4 shows the STAC implementation of the data model.
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Figure 4 — STAC implementation of the AIREO data model.

There are also the AIREO Best Practice Guidelines that outline how to generate and document 
AIREO-compliant datasets following the AIREO specifications.

Separately, the AI4EO initiative supports the aims of ESA’s Φ-lab that are to accelerate the 
future of EO by means of transformational innovations. AI4EO hosts challenges that bring AI 
and EO together.

6.4. ANZLIC considerations of TDSs as foundational data
 

In the geospatial domain, the United Nations Committee of Experts on Global Geospatial 
Information Management (the UNGGIM) has identified 14 Global Fundamental Geospatial Data 
Themes. These data themes are considered fundamental to support global initiatives, such as 
reporting on the Sustainable Development Goals. These themes are being adopted by nations 
across the world and are driving the need to create and maintain these datasets in an efficient 
and effective manner. In Australia, the Australian and New Zealand Land Information Council
(ANZLIC) has adopted these themes and challenged jurisdictions to develop and maintain these 
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data. The ANZLIC community is considering the role of ML in this activity (as described in Clause 
5.3.1) and also how the TDSs themselves may be considered as a critical building block, and 
perhaps may in future be recognized as “foundational,” leading to the consideration of whether 
TDSs might in future become a recognized and authoritative data product.

6.5. Public TDS repositories
 

6.5.1. Kaggle

The TDS stored on Kaggle are in CSV, JSON, SQLite, and BigQuery as well as other formats.

When the word “satellite” is used to filter the datasets to find those that are most relevant, then 
CSV, JSON, and “other” are the predominant formats. NASA provides data in CSV, JSON, and 
NetCDF. “Other” includes a variety of image file formats, such as GeoTIFF, PNG, and JPG as 
well as Shapefiles. The commercial operator, Satellite Vu, has provided a wildfire dataset in the
Tensor tfRecords binary format with TD stored in features.

Kaggle has a usability rating index that is a single number, maximum of 10. This number is 
used to rate how easy-to-use a dataset is based on a number of factors, including level of 
documentation, availability of related public content like kernels as references, file types, and 
coverage of key metadata.

6.5.2. LuoJiaSET, Wuhan University

LuoJiaSET is an Open AI/ML Training Data Hub, with datasets collated from several sources 
including competitions, review articles and papers with code, Kaggle, blogs, and GitHub. 
LuoJiaSET is a draft TrainingDML-AI API implementation.

6.5.3. Radiant Earth Foundation & Radiant MLHub

Radiant Earth Foundation is focused on applying ML for EO to meet the UN Sustainable 
Development Goals and is developing the ML Model Extension to STAC.

The Radiant MLHub hosts open ML TDSs and models generated by Radiant Earth Foundation, 
partners, and community. A Python client allows users to search and download TDSs. Users may 
also use other scripting languages and the REST Application Programming Interface (API).

There are several online TDSs focused on applications such as building detection, crop 
classification, flooding, land cover, and marine debris.
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6.5.4. SpaceNet

SpaceNet is a nonprofit organization founded in 2016 by IQT Labs’ CosmiQ Works and Maxar to 
accelerate open source geospatial ML. They run data challenges and release the TDSs, baseline 
algorithms, winning algorithms, and detailed evaluations under an open-source license.

As of 2020, the Radiant Earth Foundation announced the registration of a STAC-compliant 
version of SpaceNet’s high-quality geospatial labeled datasets for roads and buildings on Radiant 
MLHub. The broader SpaceNet Dataset is hosted as an Amazon Web Services (AWS) Public 
Dataset.

6.5.5. Zenodo

Zenodo was originally developed by the European Organization for Nuclear Research (CERN) 
as part of an EC project to support Open Data. The goal was to be a catch-all repository for EC 
funded research. Through various sources of funding, CERN makes Zenodo publicly available. 
Advantages of using Zenodo are that DOIs are created and Zenodo automatically maintains a list 
of uses and citations.

Zenodo contains many ML TDS and users uploading data may choose the format of what 
is being uploaded. One example is the The WorldStrat Dataset that includes open high-
resolution satellite imagery from Airbus supplied SPOT 6/7(1.5 m spatial resolution) paired with 
multi-temporal low-resolution satellite imagery from Sentinel-2 (10 m spatial resolution). The 
metadata are stored in a CSV file within the datasets, which are held in TAR gzipped files. As the 
WorldStrat creators wanted to lower the barrier to entry, the dataset and PyTorch DataLoader 
are provided in a format most accessible to the ML community. The code is also open-source 
and available on GitHub.

6.6. Previous OGC activities
 

6.6.1. Testbed-16

The OGC Testbed-16 Machine Learning (ML) task focused on understanding the potential of 
existing and emerging OGC standards for supporting ML applications in the context of wildland 
fire safety and response. Relevant recommendations for this broader activity included the 
following.

• Make sure that datetimes are properly and accurately set in datasets.

• Provide accuracy information in the metadata of each training dataset.

• Establish a standard way to store and reuse a model.
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As future work, the following was suggested.

• There is a real need to work out a best practice for a generalizable metadata model 
(framework) for ML TDSs. The Key Elements for Metadata Content section contains 
several items that could form a basis of this best practice in the future.

• Furthermore, Earth Observation (EO) datasets should be rendered AI-ready as described, 
for example, by the aireo.net reference to this topic. Also in this context, efforts 
towards Analysis Ready Data (ARD) such as those proposed by the Committee on Earth 
Observation Satellites (CEOS) will likely become vital for future ML applications.

• Solid and reliable ground truth datasets should be developed, including accuracy levels of 
the ML training data.

6.6.1.1. Summary of the Testbed-16 Metadata Content Section

The main points in the Testbed-16 ER metadata content section are as follows.

• Metadata should at least contain statistical information about the data set, such as source, 
size, dimension, license, update status, and other elements, as well as of course features.

• Creating and generating metadata for ML or research data and datasets in the ML training 
data “lifecycle” preserves the data in the long run and will also facilitate the use of ML 
training data for non-experts.

• The reader is also referred to the CDB SWG research on metadata standards and common 
mandatory elements across standards.

A set of rules and recommendations from OGC Testbed-16 are as follows. (Source: DMPTool. 
Digital Curation: A How-To-Do-It Manual; Digital Curation Centre).

• Consider what information is needed for the data to be read and interpreted in the future.

• Understand requirements for data documentation and metadata. Several instructive 
examples can be found under the Funder Requirements section of the Data Management 
Plan Tool (DMPTool).

• Consult available metadata standards for the domain of interest. Refer to Common 
Metadata Standards and Domain Specific Metadata Standards for details.

• Describe data and datasets created in the research lifecycle, and use software programs 
and tools to assist in data documentation. Assign or capture administrative, descriptive, 
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technical, structural, and preservation metadata for the data. Some potential information 
to document includes the following.

• Descriptive metadata

• Name of creator of data set

• Name of author of document

• Title of document

• File name

• Location of file

• Size of file

• Structural metadata

• File relationships (e.g., child, parent)

• Technical metadata

• Format (e.g., text, SPSS, Stata, Excel, tiff, mpeg, 3D, Java, FITS, CIF)

• Compression or encoding algorithms

• Encryption and decryption keys

• Software (including release number) used to create or update the data

• Hardware on which the data were created

• Operating systems in which the data were created

• Application software in which the data were created

• Administrative metadata

• Information about data creation (e.g., date)

• Information about subsequent updates, transformation, versioning, summarization

• Descriptions of migration and replication

• Information about other events that have affected the files

• Preservation metadata

• File format (e.g., .txt, .pdf, .doc, .rtf, .xls, .xml, .spv, .jpg, .fits)

• Significant properties
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• Technical environment

• Fixity information

• Adopt a thesaurus in the relevant field [i.e., common terminology] or compile a data 
dictionary for the dataset.

• Obtain persistent identifiers (e.g., DOI) for datasets, if possible, to ensure data can be 
found in the future.

6.6.2. Testbed-15

The Testbed-15 activity explored the ability of ML to interact with and use OGC Web Service 
Standards (OWS) in the context of natural resources applications; including WPS, WFS, and 
CSW.

The work exercised OGC standards using five different scenarios incorporating use cases that 
included traditional ML techniques for image recognition; understanding the linkages between 
different terms to identify a dataset; and vectorization of identified water bodies using satellite 
imagery. The Testbed-15 Engineering Report noted that the web service-based standards would 
soon be complemented by OGC API Standards based on OpenAPI descriptions and RESTful 
principals.

The Testbed recommendations were primarily linked to the OGC standards. However, the ER 
noted that even if the source code used to implement predictive models is kept static, the 
behavior of the models can change due to the varying availability and constant evolution of their 
training data. This affects the reliability of models and reproducibility of the experiments, which 
is a cornerstone of scientific research. Keeping track of changes in data is not an easy task, as 
Version Control Systems (VCS) are not typically made to track large binary files and solutions for 
small projects are often limited to locally hosted datasets that are not frequently updated.

Adding rigorous metadata fields related to data sources and modification times to standardized 
web service requests were seen as greatly improving the robustness of ML training and 
evaluation services.

6.6.3. Testbed-14

The Testbed-14 ML activity also focused on how to support and integrate emerging AI and 
ML tools using OWS, as well as publishing their input and outputs. A proof-of-concept client 
application executed processes offered by the ML system and displayed its results found in an 
Image and Feature Repository.
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7 METADATA REQUIREMENTS AND
RECOMMENDATIONS
 

Metadata are crucial for ensuring lossless data interchange and their appropriate use. Metadata 
can be created automatically during data capture (e.g., timestamps of a data record, or an 
automatic label of data production software), or added before advertising the data object to 
provide context for understanding the creation of a dataset (e.g., through detailed description of 
dataset’s provenance information).

7.1. Current structure and usage of metadata in ML TDS
 

As outlined in Clause 6, most current ML TDS models use the STAC family of specifications 
as the basis to structure the TDS and related metadata. The STAC specification defines only 
a limited set of ‘STAC Core Metadata’ elements used for STAC Catalog ‘Collection’ and STAC 
Catalog ‘Item’. The following core metadata elements are required.

• Basic metadata to provide an overview of a STAC Item

• title

• description

• Date and Time definition

• datetime, created and updated — to allow recording of temporal capture via 
information about

• start_datetime and end_datetime — to allow specification of ranges of capture 
datetimes

• License information for data and metadata

• Provider information — to allow defining information about provider (e.g., name, 
description, and url) and their roles (e.g., processor, producer, licensor, host)

• Instrument information — to allow specifying the information about platform, instrument, 
mission, constellation and ground sampling distance used for data acquisition

Given its modular nature, the STAC specification allows enhancing the metadata definition 
of STAC objects through extensions. One of the stable STAC extensions recommended for 
definition of ML items and collections (see Clause 6) is the ‘Scientific Citation Extension’. This 
extends STAC core metadata elements with reference information about which publication a 
STAC object originates and how it should be cited or referenced. Additional scientific citation 
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metadata, such as the Digital Object Identifier (DOI), citation, and indication of relevant 
publications help to increase reproducibility and findability of a STAC object, and thus improving 
its FAIRness (more detail in Clause 10).

7.2. Review and application of ISO metadata standards 
for ML TDS
 

This section discusses four key ISO metadata standards: ISO 19115-1, ISO 19115-2, ISO 
19157-1, and ISO 19157-3.

7.2.1. ISO 19115-1 and ISO 19115-2 for geographic information

ISO 19115-1:2014 Geographic information — Metadata — Part 1: Fundamentals

ISO 19115-1:2014 defines the schema required for metadata about geographic datasets 
and services. The standard defines the structure for information about data and metadata 
identification, spatial and temporal extent, quality, distribution, and licenses. This standard is 
applicable to the definition of metadata catalogs (typically used in a Spatial Data Infrastructure 
— SDI) as well as for describing geographic resources of various kinds (i.e., datasets or services, 
maps, charts, or textual documents about geographic resources) and at various levels of detail 
(e.g., dataset, feature, or attribute). Figure 5 illustrates the metadata schema defined in ISO 
19115-1.
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Figure 5 — ISO 19115-1 Metadata schema.

ISO 19115-1:2014 also identifies the minimum metadata set required to serve most metadata 
applications, including data discovery, access, transfer, and use, and a decision on dataset’s 
fitness for use (see Table 1).

 
Table 1 — Metadata for the discovery of geographic datasets

METADATA ELEMENT OBLIGATION COMMENT

Metadata reference information Optional Unique identifier for the metadata

Resource title Mandatory Title by which the resource is known

Resource reference date Optional A date which is used to help identify the resource

Resource identifier Optional Unique identifier for the resource
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METADATA ELEMENT OBLIGATION COMMENT

Resource point of contact Optional
Name, affiliation, and role of the person 
responsible for the resource

Geographic location Conditional
Geographic coordinates or description of metadata 
location — Mandatory if the described resource is 
not a ‘dataset’.

Resource language Conditional
Language used to describe the resource — 
Mandatory if other than default (English).

Resource topic category Conditional
A selection from the list of topics defined in ISO 
19115-1 — Mandatory if the described resource is 
not a ‘dataset’ or a ‘dataset series’.

Spatial resolution Optional
The nominal scale and/or spatial resolution of the 
resource

Resource type Conditional

ISO 19115-1 standard code (e.g., dataset, feature, 
attribute, product) the metadata describe — 
Mandatory if the described resource is not a 
‘dataset’.

Resource abstract Mandatory A brief description of the content of the resource

Extent information for the dataset Optional Temporal or vertical extent of the resource

Resource lineage/provenance Optional
Source and production steps used in producing the 
resource.

Resource on-line link Optional URL for the resource.

Keywords Optional
Words and phrases describing the resource to be 
indexed and searched.

Constraint on the resource access 
and use

Optional Restrictions on the access and use of the resource.

Metadata date stamp Mandatory
Reference date for the creation (and update) of 
metadata

Metadata point of contact Mandatory The party responsible for the metadata.

Note in Table 1 that if a described resource is a ‘dataset’ or a ‘dataset series’ ISO 19115-1 
mandates only four metadata elements to describe a such resource.

1. Resource title

2. Resource abstract

3. Metadata date stamp

4. Metadata point of contact
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Arguably, this is insufficient to ensure findability, accessibility, interoperability, and reuse of a 
resource, especially by machines, which is often the case in ML.

ISO 19115-2:2019 Geographic information — Metadata — Part 2: Extensions for acquisition 
and processing

ISO 19115-2:2019 extends ISO 19115-1:2014 by defining the schema required for describing 
the acquisition and processing of geographic information, including imagery. This standard 
defines the structure for describing properties of measuring systems and the numerical methods 
and computational procedures used to derive geographic information from the acquired data.
Figure 6 illustrates the metadata schema defined in ISO 19115-2.

Figure 6 — ISO 19115-2 Metadata schema.

ISO 19115-1 and ISO 19115-2 are intentionally generic. Although they are applicable in most 
geospatial domains, some specific disciplines may need extensions or modifications to the 
model. ISO 19115-1:2014 allows the creation of metadata extensions. The following are the 
permitted types of extensions in the current metadata standard.

1. Adding a new metadata package

2. Creating new metadata codelist elements (expanding a codelist)

3. Adding new metadata elements

4. Adding new metadata classes
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5. Imposing a more stringent obligation on an existing metadata element

6. Imposing a more restrictive domain on an existing metadata element

An extension mechanism defined in item five in the list above would ensure more 
comprehensive discovery metadata, and thus help increase the FAIRness of a resource.

ISO 19157-1 Geographic information — Data quality — Part 1: Fundamentals

In the 19100 series of standards, data quality information is considered to be a specialized type 
of metadata about the quality of a geographic information resource. ISO 19157-1 provides a 
framework for defining the quality of geographic data. This includes principles for evaluating 
quality, a conceptual model for handling quality information, a structure and content of data 
quality measures, and guidelines for reporting a quality evaluation. The framework is extensible, 
with rules for how to add additional data quality measures including a provision for complex 
dimensions of data quality. Figure 7 illustrates the data quality model defined in ISO 19157-1.

Figure 7 — ISO 19157-1 Conceptual model of quality for geographic data.

According to the standard, working with data quality includes:

• understanding the concepts of data quality related to geographic data;
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• defining data quality conformance levels in data product specifications or based on user 
requirements;

• evaluating data quality and metaquality; and

• reporting data quality and metaquality.

Where metaquality is a way of describing the quality of the data quality evaluation.

A data quality evaluation can be applied at various scopes (see Figure 11) to dataset series, a 
dataset, or a subset of data within a dataset, sharing common characteristics so that its quality 
can be evaluated. Data quality elements and their descriptors are used to describe how well a 
dataset meets the criteria set forth in its data product specification or user requirements and 
provide quantitative quality information.

Data quality elements and their descriptors are used to describe how well a dataset meets the 
criteria set forth in its data product specification or user requirements and provide quantitative 
quality information. ISO 19157-1 defines the following data quality elements.

• positional accuracy: Closeness of agreement between a measured position of features and 
a position accepted as true within a spatial reference system. The following are the types 
of positional accuracy.

• absolute positional accuracy

• relative positional accuracy

• gridded data positional accuracy

• thematic accuracy: The accuracy of quantitative attributes and the correctness of non-
quantitative attributes and of the classifications of features and their relationships. 
Depending on the type of attribute, this can be expressed with the following.

• classification correctness

• non-quantitative attribute correctness

• quantitative attribute correctness

• completeness: The presence or absence of features, attributes, or relationships in a 
resource and can be expressed by the following.

• omission

• commission
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• logical consistency: The degree of adherence to logical rules of data structure, attribution, 
and relationships as follows.

• conceptual logical consistency

• domain consistency

• format consistency

• topological consistency

• temporal quality: The quality of the temporal attributes and temporal relationships of 
features. The following aspects can be used to express temporal accuracy.

• accuracy of time measurement

• temporal consistency

• temporal validity

In addition to the elements describing the quality of a geographic resource, the standard 
defines a way of describing the quality of the quality evaluation, i.e., metaquality of a resource. 
Confidence, representativity, and homogeneity are example elements suggested in the standard.

ISO 19157-1 recognizes that for many domain-specific purposes it is necessary or convenient 
to extend the standard data quality information model as defined in the standard. An extension 
includes adding data quality elements (e.g., ‘class balance degree’) and data quality measures 
(e.g., ‘number of imbalanced classes in the training dataset’).

ISO 19157-3 Geographic information — Data quality — Part 1: Data quality measures register

To facilitate comparisons of datasets expressing the quality in a comparable way and having 
a common understanding of the data quality measures that have been used is essential. 
These data quality measures provide descriptors of the quality of geographic data through 
comparison with the universe of discourse. ISO 19157-1 standardizes the components and 
structures of data quality measures, and ISO 19157-3 (currently under development) establishes 
a machine-actionable data quality measures register. An ISO 19157-3 compliant register will 
contain an extensible curated set of data quality measures. The structure of a data quality 
measure (as defined in ISO 19157-1) is illustrated in Figure 8 and an example is in [igure-
DQmeasureExample].
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Figure 8 — Data quality measure structure as defined in ISO 19157-1.
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Figure 9 — Example of a data quality measure.

7.2.2. Metadata reporting at various granularity levels

ISO 19115-1:2014, ISO 19115-2:2019, and ISO 19157-1 are applicable at various levels 
of detail. These are defined by the MD_Scope property in the metadata information 
(MD_Metadata) and of the resource (see Figure 10).
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Figure 10 — ISO 19115-1 Metatadata on Metadata.

The default scope for metadata is the ‘dataset’, but the domain of the scope is not restricted to 
the dataset. The MD_ScopeCode (see Figure 11) defines an extensible list of possible types of 
resources. The choice of suitable type is left to the data provider.
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Figure 11 — ISO 19115-1 Metatadata scope types

7.2.3. Applicability of ISO 19115-1 and ISO 19115-2 for ML TDS

From the ISO 19115-1 and ISO 19115-2 standards’ perspective, a TDS for an ML application 
is ‘just a dataset’ and thus both standards are applicable for the definition of TDS metadata. 
When looking at the current proposal of OGC specification for TrainingDML-AI, there is a need 
for more precise mapping between ISO 19115 scope terminology and the AI_TrainingDataset 
conceptual model — see Table 2.
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Table 2 — Mapping ISO 19115-1 scope codes into Draft TrainingDML-AI concepts

ISO 19115-1 SCOPE CODE TRAININGDML-AI CONCEPT

AI_AbstractTDQuality (and all child elements)

AI_TDSChangeset

AI_Task
metadata

AI_Labelling

dataset/dataset series AI_TrainingDataset

feature AI_TrainingData

attribute AI_Label (and all child elements)

7.3. Examples of human and machine-readable metadata 
for a TDS
 

Producers use metadata to advertise their resources. This is typically done through metadata 
catalogs or via embedded metadata in the resource that can be indexed by search engines. 
Metadata also serve as the essential vehicle for users’ (humans or machines) decision on 
resources’ fitness for use. Each type of user requires their own way of metadata expression, i.e., 
human readable (as in the example in Figure 12) or machine readable (as in the example in Figure 
13).
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Figure 12 — Human readable metadata documentation
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Figure 13 — Machine readable metadata documentation
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8 TDS CATALOGS
 

This section discusses key features that must be considered for how Machine Learning (ML) 
Training Datasets (TDS) are cataloged.

8.1. What is a catalog?
 

In an OGC White Paper on standards and cloud computing McKee et al. 2011, the cloud is 
described as based on a standards framework for service-oriented architectures that provides a 
“publish, find, bind” model.

• Publish: Resources can be hosted and their description, network location, and interfaces 
can be published in standards-based registries or catalogs.

• Find: Client applications can search the registries or catalogs to find a resource.

• Bind: The client application can invoke the server through standard interfaces.

As a result, catalogs are important for both publishing and finding information.

ISO 19115-1 and ISO 19115-2 are applicable to the metadata for cataloging geographic 
services/datasets as previously detailed in Clause 7.

OGC-API Records provide discovery and access to metadata about geospatial resources 
(e.g., data, services, ML models, etc.), and has three main building blocks: record, collection, 
and records Application Programming Interface (API) as a web interface. A record provides 
a description (i.e., metadata) about a resource that the provider of the resource wishes to 
make discoverable. A collection is used to describe a collection of resources. There are several 
ways that records can be deployed as a “collection of records” or a catalog. Three deployment 
patterns are envisioned as follows.

1. A catalog deployed as a crawlable collection of records

2. A catalog deployed as searchable endpoint(s)

3. A local resources catalog

For a SpatioTemporal Asset Catalog (STAC), the terms static and dynamic are used to describe 
these deployment patterns. However, a static catalog is not really static since additional records 
can be added at any time. Therefore, the terms crawlable and searchable are proposed for OGC-
API Records.
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8.2. Version control for TDS
 

The Data on the Web Best Practices (DWBP) states that datasets published on the Web may 
change over time and describes example scenarios. Even for small changes, it is important to 
keep track of the different dataset versions to make the dataset trustworthy. Publishers should 
remember that a given dataset may be in use by one or more data consumers. Therefore they 
should take reasonable steps to inform those consumers when a new version is released. Also, 
the publisher should take a consistent, informative approach to versioning, so data consumers 
can understand and work with the changing data.

For TDSs, questions include the following.

• In the context of maintaining fundamental data, new imagery sources may be added, and 
a trained model would need to be exposed to this imagery. Training data collection will 
expand, or may be updated. How is this tracked?

• Reprocessing of the used imagery: Many satellite missions have their data reprocessed, 
which creates a consistent dataset. When a TDS is made available, users may be 
downloading older versions of extracted data, which have anomalies that have since been 
corrected. Alternatively, if new versions of such data are download the ML model may not 
work as expected, e.g., if there is a change to the radiometric calibration of how the data is 
stored as has occurred with the Copernicus Sentinel-2.

• Temporal element: Training data is tied to imagery from a given date. What happens when 
the underlying landscape changes? Training data cannot necessarily be used on new 
imagery if the landscape has changed.

• Research papers would need to state which version of a training data set were used for 
future reproducibility of results.

For the Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) standard, and 
as shown in Figure 1, there is a Changeset module that defines changes in the Training Data (TD) 
between different versions. Three kinds changes to training samples are included: add, modify, 
and delete.

Public repositories, such as Zenodo (see Clause 6) provide a means to archive dataset versions 
with version-specific Digital Object Identifiers (DOIs). However, EO data is often processed, 
including sub-setting, so will not be in its original form and hence will probably have lost its 
original metadata. Therefore, keeping a record of the input dataset versions can be complicated 
as datasets may not be consistently processed. For example, Copernicus Sentinel-2 is a 
frequently used dataset where the processor has been updated during the mission lifetime and 
the archive has not currently (as of August 2022) been reprocessed consistently. Therefore, 
imagery from different dates will have different corrections applied that may influence the ML 
inputs, and hence, model.
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8.3. Splitting source data and annotated training data
 

Source data may change, either intentionally or unintentionally. Therefore, in storing a TDS, 
there is a question about what should be contained versus referenced by the catalog.

For example, if the underlying imagery is not provided, only a query for it or a description of how 
it was generated is? Is this the best approach, or should the extracted source data be included as 
well as any derived products that act as inputs to the ML model?

8.4. Making TDS catalogs self-explanatory
 

“Self-explanatory” should equate to sufficient metadata within the catalog, including onward 
web links, that enables a user to answer questions they might have. Difficulties can occur as 
time passes because web links become out-of-date/broken and the information becomes lost 
— a particular problem with online storage where storage is reliant on individuals/organizations 
paying for storage. Another example would be a disaster response scenario where users do 
not have access to the internet, or setups where the TDS is distributed to a disconnected 
environment.

The AIREO Best Practice Guidelines encourages data creators to describe the metadata and 
documentation in the catalog richly to enable attribute-based searches and facilitate data 
findability. The AIREO Best Practice Guidelines also discusses the need for eternally persistent 
identifiers, with the metadata containing machine-processable and verified elements for citation 
and version control.

Gebru et al. 2021 proposed datasheets for datasets to support a perceived gap in the 
standardized process for documenting ML TDS, which was applied by the WorldStrat TDS. 
The datasheet is as an appendix to the accompanying paper, and part of the accompanying 
documentation within the WorldStrat Zenodo archive. It contains more detailed information 
than is potentially feasible to store in the metadata alone.
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9 TDS QUALITY
 

The ability of a machine learning process to correctly classify data is highly dependent on the 
quality of examples it has been exposed to during training. Labelled training data is created by 
having an annotator (which could be a person or a process) assign a label to data. This could be 
through a field survey, noting the crop type present at a specific location as in Clause 5.3.4, or 
by the delineation of features directly from imagery as in Clause 5.3.2. For machine learning 
training data, there are two key factors that influence the quality: accuracy and consistency.

• Accuracy describes how well the training data labels reflect reality. This captures both 
the accuracy of individual training data labels as well as whether the validation and 
testing data sets have distributions that reflect reality. In Clause 5.3.1, the goal was to 
capture tree canopy, where a tree was defined as vegetation taller than two meters. 
Human annotators relied on the presence of shadow and vegetation texture to distinguish 
between trees and shrubs but, without explicit LiDAR height data, some shrubs were 
labelled as tree cover. This confusion on the part of the annotator lowers the accuracy of 
the training dataset, and may impact the performance of a model trained on this dataset.

• Consistency describes how frequently different annotators agree on the assigned label. 
Low consistency may indicate that the classes that need to be labelled do not have 
sufficiently clear definitions for annotators to consistently agree on the best classification. 
In the case of delineation of vector features from imagery, such as the identification of 
roofprints from aerial imagery in Clause 5.3.2, consistency could also describe how well-
matched different annotators’ delineations of roofprints are.

For each factor, there are several elements to be considered.

• Accuracy

• Inclusion of a benchmark set, with examples that have been delineated or created by a 
subject matter expert

• Statistical distribution of classes measured or expected in reality

• Spatial distribution of classes measured or expected in reality

• Description of methods used to select the training data instances, including any 
stratification criteria and resulting proportion of labels for each class

• Identification of outliers and duplicates

• Relative number of items in each class, indicating class balance
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• Consistency

• Inclusion of a labelling guide that demonstrates how to identify each class and any 
useful information for disambiguating classes

• Number of times each training data instance was labelled by independent annotators

• Ratio of training data instances with consistent labels to all training data instances

9.1. Biases and domains in TDS
 

The domain in which training data is created has significant influence on whether it can be 
reused. For example, the training dataset of roofprints created for Clause 5.3.2 was created 
for urban areas in the state of Victoria, Australia. Whether it can be reused in a new domain 
depends on the similarities between the original domain and the new domain. For example, the 
roofprint dataset might be reusable in other urban settings of Australian cities but might not 
be suitable to rural areas of Australia, due to differences in size, density, ground cover, or roof 
material.

When delineating and predicting features from Earth observation data, the year and season may 
also impact whether the training data can be applied to a new domain. This is particularly true 
in the case of training datasets that label the presence of vegetation, such as in Clause 5.3.1 and
Clause 5.3.4, as vegetation will have different spectral qualities depending on the time of year 
the associated satellite data was captured. By capturing domain information in training dataset 
metadata, future users can make informed decisions about whether existing training data can be 
considered accurate enough for a new application.

Domains for consideration include the following.

• Geographical extent

• Capture date of reference or ground truth data

• Seasonality of reference or ground truth data

Understanding any biases that may be present in the data is important. Bias can be thought 
of as any process that occurred during training data creation that led to the data being 
unrepresentative of the real world. For example, when conducting ground surveys such as in
Clause 5.3.4, the most efficient collection method may be to work along main roads, but this 
may mean the distribution of classes in the training data is not representative of the distribution 
across the whole area of interest. Lack of domain knowledge when producing labels may 
also lead to biases in the training data, such as through the systematic mislabeling of certain 
examples due to annotator confusion.
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Along with the domain description, training dataset metadata should also describe the method 
used to generate the training dataset, especially sampling strategies that were used to ensure 
the training dataset was representative of the real world.

9.2. Auto-generation of quality indicators
 

Consistency, measured as the ratio of consistently labelled instances to all instances, can be 
measured automatically, but will require each training data instance to be tagged with each 
annotator’s label.

Accuracy is more challenging and may require a subset of the training data to be identified 
as the benchmark for assessing correctness. With such a benchmark set, it would be possible 
to compare the agreement between labels from annotators with those from the benchmark. 
This would only give a representative idea of the accuracy but may be helpful in assessing the 
appropriateness of a training dataset for a new application.
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10 ENABLING FAIR IN THE FUTURE TDS
STANDARD
 

The FAIR (findable, accessible, interoperable and re-usable) data principles are a valuable 
framework in assessing the accessibility and usability of resources. This section introduces the 
principles and discusses how they apply to ML TDS.

10.1. The FAIR guiding principles
 

According to Wilkinson2016 resources are FAIR when they are findable, accessible, 
interoperable and reusable. A summary of the FAIR principles are found in Table 3:

 
Table 3 — The FAIR principles

ASPECT PRINCIPLES

F1. (meta)data are assigned a globally unique and persistent identifier

F2. data are described with rich metadata (defined by the R1 below)

F3. metadata clearly and explicitly include the identifier of the data it 
describes

Findable

F4. (meta)data are registered or indexed in searchable resource

A1. (meta)data are retrievable by their identifier using a standardized 
communications protocol

A1.1. the protocol is free, open and universally implementable

A1.2. the protocol allows for an authentication and authorisation procedure, 
where necessary

Accessible

A2. metadata are accessible, even when the data are no longer available

I1. (meta)data use a formal, accessible, shared, and broadly applicable 
language for knowledge representation

I2. (meta)data use vocabularies that follow FAIR principlesInteroperable

I3. (meta)data include qualified references to other (meta)data

OPEN GEOSPATIAL CONSORTIUM 22-017 59



ASPECT PRINCIPLES

R1 (meta)data are richly described with a plurality of accurate and relevant 
attributes

R1.1. (meta)data are released with a clear and accessible data usage license

R1.2. (meta)data are associated with data provenance

Reusable

R1.3. (meta)data meet domain relevant community standards

In more detail, data are findable when they are sufficiently described by their metadata and 
when they are registered and indexed in a searchable resource that is known and accessible to 
potential users (EC2018; Wilkinson2016).

Digital resources are accessible, when anyone (human or machine) with access to the Internet 
understands via provided metadata exactly how to access the digital resource and what the 
conditions on its reuse are (EC2018; Wilkinson2016). A common misinterpretation of this 
concept is the expectation that accessible (and hence FAIR) digital objects should be ‘open’ 
and/or ‘free’. This is not what FAIR guiding principles define. The only condition for FAIR digital 
objects is the clarity and transparency on the conditions of access and reuse of these objects 
(Mons2017).

Resources are interoperable when they use “normative and community recognized 
specifications, vocabularies, and standards that determine the precise meaning of concepts 
and qualities that the data represent” (EC2018, p.19). Although presence of these vocabularies 
and standards in a format compatible with semantic web would undoubtedly increase 
their interoperability (vanDenBrink2019;Mons2017), this requirement does not mean that 
vocabularies and standards used to describe the resource have to ‘be on the web.’ Use of a well-
defined community profile (e.g., an ISO 19115-1:2014 Metadata Profile) and providing metadata 
in a machine-readable format (e.g., XML) ensure sufficient interoperability of a resource.

License information and the description of the provenance are the two crucial factors 
determining the reuse of a digital resource by both humans and machines (Mons2017; EC2018). 
This requires that the description of the license and provenance information need to be provided 
in a suitable format (e.g., XML or RDF).

Implementation of FAIR varies by community regarding which data should be FAIR and to what 
degree. In this sense, FAIR needs to be understood as scale and various degrees of FAIRness for 
different types of digital objects, such as datasets, are hence possible.

10.2. Metadata – crucial element for ensuring FAIRness
 

Metadata are crucial for ensuring FAIRness of digital resources (Wilkinson2016; Musen2022). 
Metadata can be intrinsic or user-defined (Mons2017). Intrinsic metadata is created 
automatically during data capture (e.g., timestamp of a data record, or an automatic label 
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of a data production software) and user-defined metadata is added to provide context for 
understanding digital object’s creation through provenance information. Both types of metadata 
should be added to a digital resource to ensure its FAIRness.

10.3. Defining a TDS standard that enables FAIR 
Principles
 

In addition to general metadata requirements to meet the FAIR principles, a TDS standard 
should the following.

• Have all labels and input data (and any other descriptive metadata) link to the assigned 
globally linked and persistent identifier (F3)

• Provide clear links between labels and input data (R1)

• Capture provenance for both labels and input data (R1.2)

A review of compliance of the proposed TrainingDML-AI standard with the FAIR principles is in
Table A.2.
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11 SUMMARY
 

This section summarizes lessons learned from the Testbed-18 Machine Learning (ML) Training 
Dataset (TDS) activity and proposes future activities to build on this work and broader OGC 
activities. The use of Artificial Intelligence (AI), and in particular ML, is an area that is seeing 
exponential growth both in the Earth Observation (EO) and the broader geospatial community.

11.1. Standards
 

• Underlying geospatial standards have been developed by ISO that support the definition 
of a TDS, including the the data quality.

• These ISO standards are being built upon by the Training Data Markup Language (DML) 
for AI (TrainingDML-AI) Standards Working Group alongside community activities such as 
the AI Ready EO (AIREO) activity and SpatioTemporal Asset Catalog (STAC).

11.2. Next steps
 

• Feedback from this Tested-18 activity has been provided to the community drafting 
the TrainingDML-AI standard and this should continue alongside providing inputs 
to/collaboration with the broader community activities. A summary of open 
recommendations are within Annex A.

• TrainingDML-AI introduces proposals to standardize both Provenance and Versions for 
TDS. These two elements of a TDS standard could end up being exceptionally important in 
the future because of the centrality of TDS to AI/ML applications, and also because there 
is an increasing focus on reproducability as part of open science.

• Establish how the metadata of a ML model can link to the metadata of a TDS used to train 
the ML model.

11.3. Best practice ideas
 

• A TDS defines and delimits the operational competence of an ML model inferred from it. 
Therefore, to enable reusability, the domain of the TDS, such as geographical extent, date, 
and seasonality, must be sufficiently described so a new user can judge the suitability of 
a TDS for their application. Also, for applications such as object detection, it could also 

OPEN GEOSPATIAL CONSORTIUM 22-017 63



be helpful to describe the range of sensor orientations represented or the kinds of sensor 
distortions.

• There would be a benefit in having controlled vocabulary and semantics to specialize, 
generalize, or combine, etc., existing ML TDS within application domains. Current labeling 
regimes are almost always taxonomically “flat,” i.e., they seldom (if ever) reflect hierarchical 
concepts such as cars/volkswagons or animals/dogs. Yet such labeling will be required 
to sustain a healthy market for, and long-term maintenance and extension of, TDSs. One 
example of a hierachal system is the CORINE land cover nomenclature.

• It may be useful to distinguish the quality of particular labels in the TDS, such as those 
delineated by experts, as these could be used as a benchmark to assess the accuracy of 
labels from other annotators.

• To enable the automated generation of metrics such as TDS consistency, Training Data 
(TD) labels must be attributed with an ID that is unique for each annotator. This is so the 
number of annotators per label can be counted, as well as whether all unique annotators 
agreed on the label.

11.4. GeoEthics
 

• Encouraging the open availability of TDSs so training models can reuse an existing TDS 
rather than developing a new one. This is costly and time consuming. Still, application-
specific TD may be required, with more general TDs being a helpful starting point.

• Alternatively, it may be helpful to store and make the trained ML models publicly available 
and then “transfer learning” is applied for the specific application. This is a significant 
approach to reuse in AI/ML with reuse carried out at the model rather than TD level. In 
this case, knowledge of the used TDS would remain vital as additional TD would need 
to follow the same input specification. Also, it would be important to have developed an 
open standard for interoperability between ML architectures, e.g., as developed by ONYX.

• Supporting ML scientists in storing data within standard formats by developing open-
source tools/code that allows formatting data in standard formats and ingesting said data 
into typical ML tools/packages.
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A ANNEX A
(NORMATIVE)
FEEDBACK ON THE DRAFT TRAININGDML-AI
STANDARD
 

There are references within the document to the draft TrainingDML-AI Standard. The draft 
standard is described in the Current state of art section (Clause 6).

As part of a series of discussions between the Testbed-18 Machine Learning and TrainingDML-
AI groups, the following points have been raised and remain open as further discussion is 
needed.

A.1. How is the geometry specified in TDML?
 

Currently, the information is expressed as objects or pixels, and the object labels can be 
expressed by pixel labels. The group agreed that what is needed further is a clarification on 
what’s expected from a compliant training dataset.

A.2. Should there be an option to qualify Training Data 
with a probability or other confidence score?
 

The current class “AI_TDQuality” is inherited from the class “DQ_DataQuality” in ISO19157. 
“DQ_DataQuality” already includes a confidence element, which can show how confident the 
precision of the training data (TD) is. Also, finding a practical way to calculate quality metrics has 
not been possible. So, this issue needs more investigation so appropriate metadata can be added 
in a future version of the standard.

There is another possible meaning for a confidence score, i.e., the confidence of the training data 
set (TDS) annotator. Consider, for Clause 5.3.5. The resolution of the satellite Earth Observation 
(EO) data used for labeling means it is not always possible to see what is being labeled. Instead, 
a third data source is used to intimate that there are plastics, and it is assumed that EO data can 
positively detect it.
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A.3. Use of “Revision” in Update module
 

The Update module seems to be carrying the notion of “Revision,” which is how the software 
world would characterize changes in its code base. Since TDS are now essential parts of 
the definition of a codebase functionality, reliability, etc., it might be useful to align with the 
Software Engineering world.

The resulting discussion was unable to determine whether changing the module’s name to 
“Changeset” to match the class name “AI_TDChangeset” would be helpful for users.

A.4. Requirements identified by use cases
 

The use cases provided in Clause 5.3 demonstrate a variety of metadata requirements. Table 
A.1 captures these requirements, the related sections of the draft standard, and comments and 
recommendations from the ER authors.

 
Table A.1 — Use case metadata requirements and comments for the draft standard

USE CASE REQUIRED METADATA
TRANINGDML-AI 
IMPLEMENTATION

RECOMMENDATION

DELWP 
Vegetation

Provenance/
manipulation of input 
data (e.g., resampling, 
atmospheric corrections, 
terrain corrections).

AI_EODataSouce covers the whole 
dataset and does not describe 
individual EO inputs. AI_EOTraining
Data does not include an attribute for 
whether the data has had additional 
processing, but this may be covered 
by the genericAttributes attribute 
of AI_TrainingData. AI_Labeling 
supports the modelling of provenance 
information of the training dataset, 
but its classes and their attributes 
specifically capture provenance of the 
label, rather than the input datasets.

AI_Labeling class should include 
attributes that describe whether the 
input data has been manipulated 
(e.g, resampled, color corrected, 
atmospherically corrected, terrain 
corrected). This would address the 
use case from DELWP, which had 
imagery from multiple sources, 
with either 10cm, 15cm, or 20cm 
resolution. Imagery with 10cm and 
15cm resolution was resampled to 
20cm prior to labeling. 20cm imagery 
was not resampled.

Method of creation
Covered by the AI_Labeler and 
AI_LabelingProcedure classes.

None.

DELWP 
Roofprints

Designation of a label to 
training, validation, test.

Covered by the trainingType attribute 
of AI_AbstractTrainingData class.

None.

Spatial 
Services 
Floodmapping

The task should not 
restrict presence or type 
of label

AI_TrainingDataset has AI_Task 
and AI_Labeling as dependencies.
 AI_Labeling does not have AI_Task as 
a dependency.

None.
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USE CASE REQUIRED METADATA
TRANINGDML-AI 
IMPLEMENTATION

RECOMMENDATION

DE Africa 
Crop Type

If collected in the field, 
object labels may exist 
without associated EO 
data. They can later be 
tied to EO data as long 
as sufficient spatio-
temporal information 
is captured per object 
label.

AI_ObjectLabel does not have 
attributes that would cover the 
date and time of capture. The 
object attribute of AI_ObjectLabel is 
sufficient to cover spatial information 
associated with the object label.

A dateTime attribute should be 
added to AI_ObjectLabel as an 
optional obligation. The use-cases/
examples folder on the TrainingDML-
AI should include an example where 
labels were collected in the field, 
rather than annotated from EO.

Positional uncertainty of 
each label, for example, 
as measured by a GPS 
device in the field.

This is captured for the TDS as a 
whole as part of AI_TDQuality, but 
is not provided for individual labeled 
objects.

A label-level quality class should 
be included, which would capture 
label-specific quality information, 
such as positional accuracy. The 
label-level quality class could also 
include information about whether 
the labeler was a domain expert, 
which may help calculate automated 
quality metrics as discussed in Clause 
9.

The sampling strategy 
for selection of 
training data (such as 
stratification) should be 
documented.

Overall statistical distribution 
of training data is captured by 
statisticsInfo attribute of AI_Training
Dataset class, but this does not 
cover designed distribution (such as 
stratification conditions) if any.

Two optional attributes should be 
added to AI_TrainingDataset, one 
to describe the sampling strategy 
and one to provide any additional 
geospatial data that was used as 
part of the sampling strategy. For 
example, the Digital Earth Africa 
crop type use case conducted 
unsupervised classification to identify 
variability within the expected 
cropping regions. The sampling 
strategy was then developed to 
sample fields in proportion to their 
unsupervised class. The standard 
should include a description of the 
sampling method, and any additional 
data (in this case, a raster with the 
unsupervised classes) that was used 
to select training data samples. This 
will help future users understand 
potential biases in the data, as well 
as extend the dataset using the same 
sampling strategy, if required.

World 
Plastics

New entries must be 
able to be added.

Captured by the add, change, and 
delete attributes of AI_TDChangeset 
class.

None.
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USE CASE REQUIRED METADATA
TRANINGDML-AI 
IMPLEMENTATION

RECOMMENDATION

Individual entries 
must link to sufficient 
metadata for their 
associated EO data

Captured by the extent, dateTime, 
and dataSourceId attributes of the 
AI_EOTrainingData class. Additional 
information not specified may be 
covered by the genericAttributes 
attribute of AI_TrainingData.

None.

A whole TDS should be 
able to be versioned.

Covered by the version, createdTime 
and updatedTime attributes of AI_
AbstractTrainingDataset class, as well 
as AI_TDChangeset

None.

A.5. Compliance with FAIR principles
 

In the current TrainingDML-AI draft, attention is given to ensure metadata are defined for each 
training dataset. A review of compliance of proposed training dataset model with the FAIR 
principles is in Table A.2:

 
Table A.2 — TrainingDML-AI compliance with the FAIR principles

FAIR PRINCIPLE TRANINGDML-AI COMPLIANCE RECOMMENDATION

F1

The ‘id’ for the AI_AbstractTrainingDataset or 
its metadata (e.g., in AI_AbstractTDQuality) 
is defined as ‘CharacterString and there is 
no explicit element for recording persistent 
identifier (e.g., DOI or PID). There is an 
optional ‘doi’ property through the ‘metrics
InLIT’ property, but the full meaning of 
this property is unclear. Is this a DOI of 
related papers or is this a DOI of the training 
dataset?

DOI or PID should be added to the current 
model as a property of the AI_Abstract
TrainingDataset class

F2
TrainingDML-AI defines ISO 19115-1 
compliant metadata where applicable as well 
as W3C PROV compliant provenance model

None.

F3

Some part of metadata such as 
AI_TDChangeset clearly and explicitly include 
the identifier of the data it describes, some, 
such as AI_AbstractTDQuality, do not.

Although the model preserves these links, 
it is important to ensure there is a clear link 
between metadata and the data.

F4
This is not applicable as TrainingDML-AI 
defines a conceptual schema

None.
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FAIR PRINCIPLE TRANINGDML-AI COMPLIANCE RECOMMENDATION

A1
This is not applicable as TrainingDML-AI 
defines a conceptual schema

None

A1.1
This is not applicable as TrainingDML-AI 
defines a conceptual schema

None

A1.2.
This is not applicable as TrainingDML-AI 
defines a conceptual schema

None

A2
This is not applicable as TrainingDML-AI 
defines conceptual schema

None

I1.

Both ISO 19115-1 and W3C PROV are 
a formal, accessible, shared, and broadly 
applicable language for knowledge 
representation

None

I2. Not specified

ISO 19100 series is FAIR (see in 
<Ivanova2020>). Vocabularies not yet 
available in a machine-actionable way, but 
as this is currently in progress in ISO/TC211, 
compliance with ISO 19100 series ensures I2.

I3. Not specified
This can be achieved through ISO 19115-
1 compliant ‘Citation and responsible party’ 
information.

R1

Scope and usage limitations are not explicitly 
defined for a TDS, but there is an option, 
‘genericAttributes,’ that allows any additional 
attributes for a TDS.

More detailed model of provenance and 
license for TDS is required.

R1.1.
An optional ‘license’ property is defined in AI_
AbstractTrainingDataset class

The license information should be mandatory

R1.2.
Data are associated with data provenance 
through ‘AI_Labeling’ class

None.

R1.3.
Both metadata and data meet domain 
relevant community standards

None.
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