
OGC® DOCUMENT: 22-014
External identifier of this OGC® document: http://www.opengis.net/doc/PER/T18-D008

TESTBED-18: KEY
MANAGEMENT SERVICE
ENGINEERING REPORT

ENGINEERING REPORT

PUBLISHED

Submission Date: 2022-11-05
Approval Date: 2022-12-15
Publication Date: 2023-01-05
Editor: Andreas Matheus

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Copyright notice

Copyright © 2023 Open Geospatial Consortium
To obtain additional rights of use, visit https://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 22-014 ii

https://www.ogc.org/license
https://www.ogc.org/legal

CONTENTS

I. EXECUTIVE SUMMARY ...vii

II. KEYWORDS ..vii

III. SECURITY CONSIDERATIONS ... viii

IV. SUBMITTERS ... viii

V. ABSTRACT ... viii

1. SCOPE .. 2

2. NORMATIVE REFERENCES ... 4

3. TERMS, DEFINITIONS AND ABBREVIATED TERMS ..6
3.1. Terms and definitions ..6
3.3. Abbreviated terms ..7

4. INTRODUCTION ...10
4.1. KMS Interfaces and DCS Architecture ...11

5. DATA MODEL, OPERATIONS AND KEY REPRESENTATION 16
5.1. Data Model ..16
5.2. Key Variables and Their Meaning .. 17
5.3. Operations ... 18
5.4. Key Representation ... 20
5.5. Policy Representation ... 25

6. KEY MANAGEMENT SERVER API ...28
6.1. Overview ..28
6.2. Access Token Use .. 28
6.3. HTTP Media Types ..29
6.4. HTTP Methods and KMS Operations ...30
6.5. HTTP Status Codes ... 31
6.6. KMS API Parameters and Their Meanings .. 31
6.7. KMS API and Operations ...32

7. KEY MANAGEMENT SERVER BUSINESS LOGIC .. 48
7.1. Integrated Business Logic .. 48
7.2. Policy-Based Business Logic ..52

OPEN GEOSPATIAL CONSORTIUM 22-014 iii

7.3. Key Policy Operations .. 54
7.4. Implications to the integrated business logic ..54

8. KMS SECURITY CONSIDERATIONS ... 56
8.1. Encryption is Not a Solution “Until the End of Time” ...56
8.2. Trusted Applications ..56
8.3. Vulnerabilities Introduced by Malicious Code ...57
8.4. Vulnerabilities Introduced by XSS ..57
8.5. Key Delegation ... 57
8.6. Use of Policy-Based Access Control ... 57
8.7. Deletion of Keys .. 58
8.8. Never Exchange Keys in the Clear .. 58
8.9. Authentication .. 58
8.10. Authorization .. 58
8.11. OAuth2 Bearer Token Security Considerations ... 59

ANNEX A (INFORMATIVE) CONFORMANCE CLASSES ..61
A.1. Conformance Class DEK (Mandatory) ..61
A.2. Conformance Class KEK (Optional) ...61
A.3. Conformance Class PK (Optional) ... 61
A.4. OpenAPI (Mandatory) ...62
A.5. Authentication (Mandatory) ..62
A.6. Access Control (Mandatory) ..62
A.7. Conformance Class Policy (Optional) ..62
A.8. CORS (Optional) ...63
A.9. DPoP (Optional) ... 63

ANNEX B (INFORMATIVE) POLICY EXAMPLES ..65
B.1. Example of policy representing the integral business logic ...65

ANNEX C (INFORMATIVE) KMS INTERACTION EXAMPLES .. 69
C.1. DCS Consumer Triggers Data Encryption Via DCS Service .. 69
C.2. DCS Producer Triggers Data Encryption Via Own DCS Task ..71
C.3. DCS Consumer Triggers Data Signature Via DCS Service ...72
C.4. Illustration of Access Token Exchange ... 73

ANNEX D (INFORMATIVE) REVISION HISTORY ...76

BIBLIOGRAPHY ...78

LIST OF TABLES

Table 1 — Meaning of common variables .. 17
Table 2 — Meaning of DEK variables ..17

OPEN GEOSPATIAL CONSORTIUM 22-014 iv

Table 3 — Meaning of KEK variables .. 18
Table 4 — Meaning of PK variables ...18
Table 5 — Supported HTTP methods for the DEK and KEK endpoints ..30
Table 6 — Supported HTTP methods for the PK endpoints ..30
Table 7 — General HTTP (error) status codes ...31
Table 8 — Additional API parameters and their definition ...32
Table 9 — HTTP status code details for the register() operation ..37
Table 10 — Response details for the update() operation ..44

LIST OF FIGURES

Figure 1 — DCS OGC Testbed 18 DCS Architecture ..12
Figure 2 — Data Model .. 16
Figure 3 — JWK example of a DEK (symmetric key): ... 20
Figure 4 — JWK example of a KEK (asymmetric key): ..20
Figure 5 — JWK example of a PK (public part of the asymmetric key): ..21
Figure 6 — Specific properties of the DEK example above ...22
Figure 7 — Example of JWT including two DEK keys .. 23
Figure 8 — Example: JWT compact serialization of JSON above ...24
Figure 9 — Example DEK representation in JSON including policy ...25
Figure 10 — Example of the Integral Business Logic Expressed in ALFA ... 25
Figure 11 — Example: read of one DEK using application/jwk+json ...32
Figure 12 — Example: read of one DEK using application/jose ... 33
Figure 13 — Example JWE header for an encrypted DEK (key wrap) ...33
Figure 14 — Example: read of one KEK using application/jwk-set+json .. 33
Figure 15 — Example: read of one PK using application/jwk-set+json ...34
Figure 16 — Example: read of multiple DEKs ...35
Figure 17 — Example: single DEK registration using content-type application/jwk+json37
Figure 18 — Example: multiple DEK registration using content-type application/jwk-set+json
..38
Figure 19 — Example: multiple DEK registration using content-type application/jwk-set+json
..39
Figure 20 — Example: single DEK registration using content-type application/x-www-form-
urlencoded ... 40
Figure 21 — Example: single DEK generation using content-type application/jwk+json41
Figure 22 — Example: multiple DEK generation using content-type application/jwk-set+json
..42
Figure 23 — Example: successful DEK update using content-type application/jwk+json44
Figure 24 — Example: error DEK update using content-type application/jwk+json 44
Figure 25 — Example: successful DEK delete ...45

OPEN GEOSPATIAL CONSORTIUM 22-014 v

Figure 26 — Example: error DEK delete; not authenticated ... 45
Figure 27 — Example: error DEK delete; not authorized ... 45
Figure 28 — Read DEK or KEK .. 49
Figure 29 — Register DEK or KEK ...49
Figure 30 — Generate DEK or KEK .. 49
Figure 31 — Update DEK or KEK ..50
Figure 32 — Delete DEK or KEK ... 50
Figure 33 — Read PK .. 51
Figure 34 — Register PK .. 51
Figure 35 — Update PK ..52
Figure 36 — Delete PK ...52
Figure 37 — XACML Flow Diagram .. 53
Figure 38 — Conditions for executing a policy operation ..54
Figure A.1 — Example HTTP header WWW-Authenticate for Bearer Access Tokens 62
Figure B.1 — XML encoded example XACML3 Policy ..65
Figure B.2 — Base64 encoded policy using data URI scheme (truncated) 67
Figure C.1 — Component interactions to request encrypted data (simplified)70
Figure C.2 — Component interactions to decrypt the response (simplified)71
Figure C.3 — Component interactions to decrypt pre-encrypted data (simplified) 72
Figure C.4 — Component interactions to verify digitally signed data (simplified)73
Figure C.5 — Example component interactions including token exchange when DCS Service
generates DEK and registers DEK with KMS ...74

OPEN GEOSPATIAL CONSORTIUM 22-014 vi

I EXECUTIVE SUMMARY

Data Centric Security (DCS) defines the principles for applying security to the data itself. The
confidentiality of the data is ensured by applying encryption based on cryptographic keys.
Similarly, integrity and authenticity can be ensured based on cryptographic keys.

This document defines a cryptographic key data model, a flexible API, and conformance classes
to implement a Key Management Service.

The API of the KMS is separated into logical interfaces to generate, register, update, and delete
keys for encrypting / decrypting geospatial data (Data Encryption Key or DEK) and keys for
protecting the DEK (Key Encryption Key or KEK) as well as Public Key (PK). The DEK interface
focuses on the CRUD of symmetric keys that are used for the actual data ciphering. The KEK
interface focuses on the CRUD of asynchronous keys that are used to protect DEKs (key
wrapping) in formats, where the data and the actual data encryption key are stored together.
The PK interface focus on the exchange of public keys to support signature validation.

During the OGC Testbed 18, a reference implementation of the described KMS was used to
exchange confidential and integrity protected catalog metadata via the OGC API Records.

Concluding from the results of OGC Testbed 18 in the Secure and Asynchronous Catalog task,
one can say that the described KMS has proven to be a paramount OGC building block for
enabling Data Centric Security.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

key management service, KMS, API, DCS, security, testbed, web service, encryption, digital
signature

OPEN GEOSPATIAL CONSORTIUM 22-014 vii

I I I SECURITY CONSIDERATIONS

Regardless of the encryption solution, the weakest point is always the safety of the DEK; either
ensured via the KEK in the first case or by the KMS in the second case. This is because for the
self-contained solution where the DEK is available with the encrypted data, this solution can
only be considered secure as long as it takes to brute force the KEK. A brute-forced KEK gives
access to the DEK and thereby enables the decryption of the data. Therefore, this solution
requires the use of an extremely secure (large key length) KEK to further protect access to the
encrypted product. Because the cracking time of a key highly depends on computing speed
and power, one should only use this solution in real disconnected environments where physical
access to the device(s) — in addition to network-based access — can be controlled. Different
literature is available that publish the expected mean time to cracking a particular key based
on a given strength and algorithm. Any existence of the self-contained product longer than this
average cracking time should be interpreted as “data exists in the clear now.”

Additional security considerations specific for the Key Management Service are outlined in
Clause 8.

IV SUBMITTERS

All questions regarding this submission should be directed to the editor or the submitters:

NAME AFFILIATION ROLE

Andreas Matheus Secure Dimensions GmbH Editor

V ABSTRACT

This OGC Testbed 18 Engineering Report describes the Data Model and API of a Key
Management Service (KMS) that supports the flexible but secure exchange of cryptographic
keys for applying confidentiality and integrity protection to geographic information. The
described KMS is based on the design and implementation from previous OGC Testbeds 161

and 172.

1Aleksandar Balaban

OPEN GEOSPATIAL CONSORTIUM 22-014 viii

2Aleksandar Balaban, Andreas Matheus

OPEN GEOSPATIAL CONSORTIUM 22-014 ix

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 22-014 1

1 SCOPE

This OGC Testbed 18 Engineering Report defines a Key Management Service that supports the
secure management and exchange of cryptographic key material. This document defines a data
model and an API to register, create, update, and delete symmetric and asymmetric keys for the
purpose of applying confidentiality and integrity to geospatial information.

OPEN GEOSPATIAL CONSORTIUM 22-014 2

2

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 22-014 3

2 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Open API Initiative: OpenAPI Specification 3.0.2, 2018 https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.2.md

R. Fielding, J. Reschke (eds.): IETF RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC Publisher (2014). https://www.rfc-editor.org/info/rfc7231.

R. Fielding, J. Reschke (eds.): IETF RFC 7235, Hypertext Transfer Protocol (HTTP/1.1):
Authentication. RFC Publisher (2014). https://www.rfc-editor.org/info/rfc7235.

M. Jones: IETF RFC 7517, JSON Web Key (JWK). RFC Publisher (2015). https://www.rfc-
editor.org/info/rfc7517.

M. Jones: IETF RFC 7518, JSON Web Algorithms (JWA). RFC Publisher (2015). https://www.rfc-
editor.org/info/rfc7518.

M. Jones, J. Bradley, N. Sakimura: IETF RFC 7519, JSON Web Token (JWT). RFC Publisher (2015).
https://www.rfc-editor.org/info/rfc7519.

M. Jones, A. Nadalin, J. Bradley, C. Mortimore: IETF RFC 8693, OAuth 2.0 Token Exchange. RFC
Publisher (2020). https://www.rfc-editor.org/info/rfc8693.

M. McGloin, P. Hunt: IETF RFC 6819, OAuth 2.0 Threat Model and Security Considerations. RFC
Publisher (2013). https://www.rfc-editor.org/info/rfc6819.

W3C cors, Cross-Origin Resource Sharing. https://www.w3.org/TR/cors/.

W3C did-cbor-representation, The Plain CBOR Representation v1.0. https://www.w3.org/TR/did-
cbor-representation/.

eXtensible Access Control Markup Language (XACML) Version 3.0, OASIS, 2013, http://docs.
oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Geospatial eXtensible Access Control Markup Language (GeoXACML), OGC, 2011, https://
portal.ogc.org/files/?artifact_id=42734

OPEN GEOSPATIAL CONSORTIUM 22-014 4

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8693
https://www.rfc-editor.org/info/rfc6819
https://www.w3.org/TR/cors/
https://www.w3.org/TR/did-cbor-representation/
https://www.w3.org/TR/did-cbor-representation/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://portal.ogc.org/files/?artifact_id=42734
https://portal.ogc.org/files/?artifact_id=42734

3

TERMS, DEFINITIONS AND
ABBREVIATED TERMS

OPEN GEOSPATIAL CONSORTIUM 22-014 5

3 TERMS, DEFINITIONS AND ABBREVIATED
TERMS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

3.1. Terms and definitions

3.1.1. CRUD (in the context of KMS)

The HTTP principle *C*reate, *R*ead, *U*pdate and *D*elete is mapped to different HTTP
methods as defined in IETF RFC 7231. In REST interface design, the terms Create, Read, Update,
and Delete determine the operation on a resource that is triggered by an HTTP method. It
should not be confused with the operations on keys. For example, the registration of a key is
de facto triggered by the HTTP method POST or PUT. The term registration is preferred in this
document to not confuse the generation of a key, aka creation of a key.

3.1.2. DCS Application

An application that consumes DCS assets such as encrypted and/or digitally signed data.

OPEN GEOSPATIAL CONSORTIUM 22-014 6

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

3.1.3. DCS Consumer

The party that triggers the production of, or downloads, previously produced DCS assets.

3.1.4. DCS Service

A web-accessible implementation that supports the production of DCS assets.

3.1.5. DCS Task

A back-office functionality for producing DCS assets.

3.2. Cryptographic Key

A cryptographic key (or key for short) is a random secret used in combination with an algorithm
(cipher) to transform readable information into unreadable information and vice versa.

3.3. Abbreviated terms

DCS Data Centric Security

DEK Data Encryption Key

DPoP Demonstrating Proof of Possession

JWE JSON Web Encryption

JWK JSON Web Key

JWS JSON Web Signature

JWT JSON Web Token

KEK Key Encryption Key

OPEN GEOSPATIAL CONSORTIUM 22-014 7

KMS Key Management Service

kurl A custom JWE header invented in OGC Testbed initiative 16 to represent a key
resource via a resolvable URI

KVP Key Value Pair

PK Public Key

OPEN GEOSPATIAL CONSORTIUM 22-014 8

4

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 22-014 9

4 INTRODUCTION

In the context of Data Centric Security (DCS), the use of encryption is important to achieve
confidentiality. Encryption itself is based on the use of (symmetric) Data Encryption Keys (DEKs)
that jumble of the data into an unreadable format. The use of (asymmetric) Key Encryption
Keys (KEKs) is typically used to enable protection of the DEK. The use of digital signatures is
important to ensure integrity and authenticity of data assets. Integrity is based on a private /
public (asymmetric) key pair. Authenticity can be achieved when using X.509 certificates that
bundle the public key with identity information.

The following encryption use cases are important in the context of this Engineering Report.

• For the first case, the protected DEK is stored with the encrypted data.

• For the second case, the DEK is negotiated out of band between the involved parties — so
the DEK is referenced from the encrypted data.

Applying the first case creates a DCS product that is self-contained: encrypted data and the
wrapped DEK are stored together. To protect the actual DEK, a KEK is used that can only be
decrypted with the associated private key and optionally can only be activated by providing a
PIN or some other credential in addition (the private key is password protected). Therefore, a
self-contained DCS product is best used in disconnected, or offline environments. The limitation
is obvious: only the entity with the correct private key can decrypt the DEK. Sharing of private
keys is not allowed and therefore the slate of recipients must be known beforehand when
creating a self-contained DCS product.

The second DCS product, where the encrypted data and the DEK are separated, has the
advantage over the first solution in that it allows an independent sharing of the actual encrypted
data and the DEK. This flexibility comes with the requirement of network connectivity to a key
management service or the availability of another secure device like a protected USB stick.

A network accessible service, Key Management Service (KMS), is a flexible solution to manage
the DEK and the KEK independent from the encrypted data. Controls can be enabled at the
KMS that regulate access to the keys under given (but perhaps adaptable) conditions. The use of
network based key management provides flexibility but also requires that a client application has
network connectivity to obtain the required DEKs.

Applying digital signatures as a means for integrity or authenticity requires the ability to manage
the public keys (PKs). Well established methods for rolling out X.509 certificates exist in Public
Key Infrastructures, but the use of public keys and X.509 certificates within DCS requires an
interoperable, flexible, and trusted access.

The use of a KMS has the advantage in that the exchange of a DEK (and KEK) as well as PK to
applications and users can be controlled in a flexible way. An access control concept must exist
that controls the CRUD to keys to ensure key safety. Adopted access control aspects might be
relevant because the use of DEK, KEK, and PK are so essentially different.

An API for a KMS that allows the management of DEKs and KEKs for the encryption of
geographic information and the location of the user has one additional requirement over any

OPEN GEOSPATIAL CONSORTIUM 22-014 10

other mainstream IT solution: the location of the encrypted resource, the location of the device
(or application), and the user are potential characteristics that determine the access conditions.
In that sense, the KMS business logic must provide the ability to enforce spatio-temporal access
conditions on the DEK and perhaps on the KEK.

This Engineering Report introduces a data model, the API of a Key Management System for
DEK, KEK, and PK as well as conformance classes to ensure interoperability. Aspects of a typical
business logic are also discussed.

4.1. KMS Interfaces and DCS Architecture

A Key Management API cannot be designed in isolation. The DCS architecture as illustrated in
Figure 1 can be split into essentially two different methods to apply DCS.

• For the first method, the DCS Consumer is the active party that triggers the data assets
to be produced. Any DEK, generated by the DCS Service and registered with the KMS, is
owned by the DCS Consumer. Therefore, the DCS Consumer can determine with whom to
share the keys using the Key Management Endpoints of the KMS.

• For the second method, a DCS Producer leverages some DCS tasks in the own network
to create encrypted and/or digitally signed data assets. The involved DEKs and PKs are
owned by the DCS Producer and are registered with the KMS. After the DCS Consumer
has retrieved the DCS data assets, the DCS Application interacts with the KMS to obtain
the required key(s) for decryption and validation of digital signature(s). The DCS Producer
controls access to the keys via the Key Management Endpoints of the KMS.

OPEN GEOSPATIAL CONSORTIUM 22-014 11

Figure 1 — DCS OGC Testbed 18 DCS Architecture

4.1.1. DCS Consumer Initiates Production of DCS Assets

The protocol labelled (1.A) supports different interactions with the DCS Service. Some
interactions via (1.A) require interactions via (1.B). These interactions imply different
requirements to the KMS interface labelled (1.B).

Interactions via (1.A) that do not require interaction via (1.B) include the following.

• If the request (1.A) includes the DEK in the clear (not encrypted by a KEK), the DCS
Service will use the DEK from the request. Assuming the DEK from the request is “good
enough” for encryption, there is no need for the DCS Service to interact with the KMS.

• If the request (1.A) includes a protected DEK (encrypted by a KEK), the DCS Service will
use its private key to decrypt the DEK. This implies that the DEK was protected via the
public key of the DCS Service.

Interactions via (1.A) that do require interactions via (1.B) include the following.

• If the request (1.A) includes a protected DEK (encrypted by a KEK), and the KEK was
previously registered with the KMS (so the DCS Service’s public key was not used),

OPEN GEOSPATIAL CONSORTIUM 22-014 12

the DCS Service will interact with the KMS to obtain the KEK (private part) to be able
to decrypt the DEK. This requires that the KEK’s audience includes the DCS Service;
otherwise, the KMS would refuse the DCS Service’s request to obtain the KEK.

• If the request (1.A) includes a DEK by reference (using the JWE headers kid or kurl) to a
previously created and registered DEK, the DCS Service will fetch the DEK from the KMS.
This requires that (i) the DEK is accessible to the DCS Service if the DCS Service uses its
own access token to interact with the KMS; or (ii) the DCS Service can re-use the access
token from (1.A) to interact with the KMS via (1.B). This access token re-use is only
possible if its audience includes the KMS. For example, in the case that the access token is
bound to the DCS Client and DCS Service only, the KMS must reject the token as it is not
a white-listed receiver for that key. It is dangerous to accept access tokens that doe not
match the own audience as these tokens may include scopes and additional claims that
erroneously may grant access.

• If the request (1.A) does not include a DEK, but a public part from a KEK by value, the
DCS Service will create one or multiple DEKs to encrypt the requested data. The DCS
Service encrypts the DEK with the public key from the request and includes it into the
response along with the encrypted data.

• If the request (1.A) does not include a DEK but a public part from a KEK by reference,
the DCS Service will create one or multiple DEKs to encrypt the requested data. But
in order to encrypt the DEK, the DCS Service must fetch the public part from the KEK
from the KMS. As access to public keys is not restricted by the KMS, this can easily be
achieved. The DCS Service encrypts the DEK with that public key fetched from the KMS
and includes it into the response along with the encrypted data.

• If the request (1.A) does not include a DEK and also does not include a KEK (public part),
neither by value nor by reference, the DCS Service will create one or multiple DEKs and
will use the protocol with the KMS initiated via (1.B) to register these keys with the
KMS. At that point, it must be ensured that the DCS Service is allowed to register the
DEK on behalf of the DCS Consumer with the KMS and that the sole ownership over the
registered keys remains with the DCS Consumer.

4.1.2. DCS Producer Initiates production of DCS Assets

Interactions via (2) can be used by the DCS Producer to register DEKs and PKs that were
generated by the DCS Task to create DCS data assets.

Interactions via (3) can be used by the DCS Consumer to fetch the DCS data assets. It is also
possible that the DCS Producer pushes the DCS data assets to the DCS Consumer. The DCS
Consumer Application can fetch required keys via (4).

4.1.3. DCS Consumer Obtains Keys

Interactions via (4) allow the DCS Application to fetch a DEK to decrypt data and to fetch a PK
for signature verification.

OPEN GEOSPATIAL CONSORTIUM 22-014 13

4.1.4. DCS Consumer Manages Their Keys

Interactions via (5) symbolize the possibilities to create / update / delete keys and to update
access conditions for keys. The Key Management Applications can be used by the DCS
Consumer and the DCS Producer to manage their keys. The Key Management Application must
be trusted at a very high level as it can execute UPDATE, PATCH, and DELETE on a DEK or a
KEK which is not possible via the (1.B) or (2) API. These APIs are only allowed to register or
generate a key.

OPEN GEOSPATIAL CONSORTIUM 22-014 14

5

DATA MODEL,
OPERATIONS AND KEY
REPRESENTATION

OPEN GEOSPATIAL CONSORTIUM 22-014 15

5 DATA MODEL, OPERATIONS AND KEY
REPRESENTATION

The KMS can operate on different types of keys. The data model is relevant to understanding
the internal and external representation. The internal representation aligns with the business
logic and the external representation aligns with the HTTP request and response structure.

5.1. Data Model

The key data model is quite simple. The core uses the properties from the JWK ([rfc7515])
representation. The abstract class Key defines the basic properties of a key. Each supported key
type (DEK, KEK, and PK) is represented by a specialization. The implementation of the Policy
interface enables the compliance to the Policy Conformance Class.

Figure 2 — Data Model

NOTEThe class PK implements the operation generate() with private visibility. This ensures that
the class implementation is complete and there is no generate() operation for the public key
API.

OPEN GEOSPATIAL CONSORTIUM 22-014 16

5.2. Key Variables and Their Meaning

The key variables are based on extracting meaning from other specifications where possible.

Table 1 — Meaning of common variables

VARIABLE TYPE DESCRIPTION

kid String
An identifier for the key unique at the KMS as defined in RFC 7517,
section 4.5

active Boolean If true the key can be accessed via the API. Default false

naf Integer
The seconds since the epoch until this kid can be accessed via the API.
 Meaning according to RFC 7519, section 4.1.5 by replacing “before” with
“after”

nbf Integer
The seconds since the epoch after which this kid can be accessed via the
API. Meaning according to RFC 7519, section 4.1.5

iat Integer
The seconds since the epoch when this kid was registered. Meaning
according to RFC 7519, section 4.1.6

aud
Array of Strings
or URIs

All identifiers of application identifiers (e.g. OAuth2 client_id) that can
access and use the key. Meaning according to RFC 7519, section 4.1.3

subs
Array of Strings
or URIs

All identifiers of users (e.g OAuth2 user_id) that can access and use the
key

iss String or URI
The unique identifier (e.g. OAuth2 client_id) of the application that
originally created the key. Meaning according to RFC 7519, section 4.1.1

Table 2 — Meaning of DEK variables

VARIABLE TYPE DESCRIPTION

k String Key secret encoded according to RFC 7518, section 6.4.1

kty String Fixed value oct to represent a symmetric key

alg String
Value one of {A128CBC-HS256, A192CBC-HS384, A256CBC-HS512,
A128GCM, A192GCM, A256GCM} as defined in RFC 7518, section 4.1 for
symmetric keys

use String enc

OPEN GEOSPATIAL CONSORTIUM 22-014 17

Table 3 — Meaning of KEK variables

VARIABLE TYPE DESCRIPTION

kty String Fixed value rsa to represent an asymmetric key

alg String As defined in RFC 7518, section 4 for DEK wrapping (encryption)

use String enc

key_ops String [“wrapKey”, “unwrapKey”]

NOTE All variables to define a private and public key are allowed as defined in RFC 7518.

Table 4 — Meaning of PK variables

VARIABLE TYPE DESCRIPTION

n String The modulus value for the RSA public key as defined in RFC 7518

kty String Fixed value rsa to represent an asymmetric key

alg String As defined in RFC 7518, section 4 for asymmetric keys

use String enc | sig

key_ops String wrapKey if use == enc | verify if use == sig

NOTE No variables are allowed to define the private key with which the public key is associated.

5.3. Operations

5.3.1. Key Read

HTTP method GET fetches a key.

5.3.2. Key Bulk Read

HTTP method GET fetches a key-set.

OPEN GEOSPATIAL CONSORTIUM 22-014 18

5.3.3. Key Registration

The registration of a key with the KMS is the operation that triggers the key’s representation to
be stored at the KMS3. The KMS API protocol supports two HTTP methods for key registration
as follows.

• HTTP method POST can register one or multiple keys where the KMS business logic
generates the key identifier kid.

• HTTP method PUT can register one single key where the key identifier kid is provided with
the HTTP request.

5.3.4. Key Bulk Registration

The registration of a key-set.

5.3.5. Key Generation

The generation of a key, aka creation of a key, is the operation that triggers the KMS
implementation to create a key secret and eventually other key properties, based on the
information received with the HTTP method POST or PUT.

For example, the key generation operation is triggered if the HTTP request to register a DEK
does not contain the key’s secret. For using the IETF RFC 7517 compliant representation of a
key, this means that the property k is missing.

5.3.6. Key Activation / Deactivation

The operation that makes a key accessible via the API. The actual HTTP CRUD operations are
controlled via the KMS business logic.

In similar semantics to the activation, the deactivation disables API access to the key.

5.3.7. Key Bulk Generation

The generation of a key-set.

3The means of storage are implementation specific.

OPEN GEOSPATIAL CONSORTIUM 22-014 19

5.3.8. Key Update

The operation that makes changes to the key’s representation as JWT or JWE is limited to
certain properties that control access to and usage of the key. The properties kid, k, kty, alg,
and use cannot be changed.

5.3.9. Key Deletion

The operation that removes the key from the KMS storage4

5.4. Key Representation

The KMS API only supports one mandatory key encoding: JWK as defined in IETF RFC 7517.
Even though the key representation is using JWK, the actual representation of the key varies
depending on the requested content-type: JWT or JWE.

5.4.1. JWK representation of a DEK and KEK

{
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "use": "enc"
}

Figure 3 — JWK example of a DEK (symmetric key):

{
 "kty":"RSA",
 "kid":"juliet@capulet.lit",
 "use":"enc",
 "n":"t6Q8PWSi1dkJj9hTP8hNYFlvadM7DflW9mWepOJhJ66w7nyoK1gPNqFMSQRy
 O125Gp-TEkodhWr0iujjHVx7BcV0llS4w5ACGgPrcAd6ZcSR0-Iqom-QFcNP
 8Sjg086MwoqQU_LYywlAGZ21WSdS_PERyGFiNnj3QQlO8Yns5jCtLCRwLHL0
 Pb1fEv45AuRIuUfVcPySBWYnDyGxvjYGDSM-AqWS9zIQ2ZilgT-GqUmipg0X
 OC0Cc20rgLe2ymLHjpHciCKVAbY5-L32-lSeZO-Os6U15_aXrk9Gw8cPUaX1
 _I8sLGuSiVdt3C_Fn2PZ3Z8i744FPFGGcG1qs2Wz-Q",
 "e":"AQAB",
 "d":"GRtbIQmhOZtyszfgKdg4u_N-R_mZGU_9k7JQ_jn1DnfTuMdSNprTeaSTyWfS
 NkuaAwnOEbIQVy1IQbWVV25NY3ybc_IhUJtfri7bAXYEReWaCl3hdlPKXy9U

4A real removal is not recommended by implementation specific.

OPEN GEOSPATIAL CONSORTIUM 22-014 20

 vqPYGR0kIXTQRqns-dVJ7jahlI7LyckrpTmrM8dWBo4_PMaenNnPiQgO0xnu
 ToxutRZJfJvG4Ox4ka3GORQd9CsCZ2vsUDmsXOfUENOyMqADC6p1M3h33tsu
 rY15k9qMSpG9OX_IJAXmxzAh_tWiZOwk2K4yxH9tS3Lq1yX8C1EWmeRDkK2a
 hecG85-oLKQt5VEpWHKmjOi_gJSdSgqcN96X52esAQ",
 "p":"2rnSOV4hKSN8sS4CgcQHFbs08XboFDqKum3sc4h3GRxrTmQdl1ZK9uw-PIHf
 QP0FkxXVrx-WE-ZEbrqivH_2iCLUS7wAl6XvARt1KkIaUxPPSYB9yk31s0Q8
 UK96E3_OrADAYtAJs-M3JxCLfNgqh56HDnETTQhH3rCT5T3yJws",
 "q":"1u_RiFDP7LBYh3N4GXLT9OpSKYP0uQZyiaZwBtOCBNJgQxaj10RWjsZu0c6I
 edis4S7B_coSKB0Kj9PaPaBzg-IySRvvcQuPamQu66riMhjVtG6TlV8CLCYK
 rYl52ziqK0E_ym2QnkwsUX7eYTB7LbAHRK9GqocDE5B0f808I4s",
 "dp":"KkMTWqBUefVwZ2_Dbj1pPQqyHSHjj90L5x_MOzqYAJMcLMZtbUtwKqvVDq3
 tbEo3ZIcohbDtt6SbfmWzggabpQxNxuBpoOOf_a_HgMXK_lhqigI4y_kqS1w
 Y52IwjUn5rgRrJ-yYo1h41KR-vz2pYhEAeYrhttWtxVqLCRViD6c",
 "dq":"AvfS0-gRxvn0bwJoMSnFxYcK1WnuEjQFluMGfwGitQBWtfZ1Er7t1xDkbN9
 GQTB9yqpDoYaN06H7CFtrkxhJIBQaj6nkF5KKS3TQtQ5qCzkOkmxIe3KRbBy
 mXxkb5qwUpX5ELD5xFc6FeiafWYY63TmmEAu_lRFCOJ3xDea-ots",
 "qi":"lSQi-w9CpyUReMErP1RsBLk7wNtOvs5EQpPqmuMvqW57NBUczScEoPwmUqq
 abu9V0-Py4dQ57_bapoKRu1R90bvuFnU63SHWEFglZQvJDMeAvmj4sm-Fp0o
 Yu_neotgQ0hzbI5gry7ajdYy9-2lNx_76aBZoOUu9HCJ-UsfSOI8"
 }

Figure 4 — JWK example of a KEK (asymmetric key)5:

{
 "kid": "020e2b52-c793-814a-8526-387ce0571fb4",
 "kty": "RSA",
 "n": "5MPCfUAkhGG6w76Cw2b7vzmyM-K4-80bVn_aPMHHEBa4SQPfERmK_Q4L9fD6FD6krj_
RU_DCYENmMo0ceZQymePdSmeSHgbrkyU9vXfvLDHNftGPgH0xtQmc-gBWKMopRs6Svd13CCFaKn8P
66iF25yVwmc13-5WKGSLJV5oiDa3vOfiJKSqWnZAkejo2BaOSOl9R0qPjLt7z8B18LqTkNeOnsYig
MIeAjis4CrXWVYfbIpryOLFcGBC4gCHiF7tvP5YR3HtqDSmTNzK3xqSFNn_3PMRaGByV8yxcWDB3-
2lRr5JwznuZlm37r_RptgsU73AfhL1phFhYLdTQQ5kmQ",
 "e": "AQAB",
 "use": "enc",
 "key_ops": [
 "wrapKey",
 "unwrapKey"
]
}

Figure 5 — JWK example of a PK (public part of the asymmetric key):

5.4.2. DEK Specific Properties

For expressing access and use conditions, the standard compliant JWK key representation must
be extended with domain specific properties.

The following is JSON compliant encoding of the variables of the class DEK. The KMS returns
this representation when the Accept header has the value application/json or application/
jwk+json or the f parameter has the value JWK.

5Source: RFC 7517, C.1

OPEN GEOSPATIAL CONSORTIUM 22-014 21

To obtain a JWKS (JSON Web Key Set) compliant encoding as defined in IETF RFC 7517, the
Accept header must have the value application/jwk-set+json or the f parameter must have
the value JWKS.

{
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Client"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland"
]
}

Figure 6 — Specific properties of the DEK example above

The JWK representation of a DEK contains specific properties as follows.

• iss: The actual entity that created the key.

• iat: The seconds since the epoch when the key was registered.

• nbf: The minimum seconds since the epoch when this key can be accessed via the KMS
API.

• naf: The maximum seconds since the epoch when this key can be accessed via the KMS
API.

• active: If true, the key is accessible via the read() operation. The use of the active
enables to quickly disable key access.

• aud: The array of application identifiers (e.g. OAuth2 client_id values) that are allowed
to obtain the key from the KMS.

• sub: The owner of the key.

• subs: The array of user identifiers (e.g. OAuth2 user_id or OpenID Connect sub value)
that are allowed to obtain the key from the KMS.

5.4.3. JWT Representation of the DEK

The KMS returns a DEK in JWT format if the Accept header or the f query string parameter has
the value application/jwt. The JWT representation embeds the JWK representation and adds

OPEN GEOSPATIAL CONSORTIUM 22-014 22

additional claims to be IETF RFC 7519 compliant. The JWT claims are relevant for controlling
access and use of a DEK.

CAUTION

The use of a JWT introduces specific semantics that need to be clarified for
the use in the context of KMS.

• sub claim identifies the ‘subject’ of the JWT. The ‘subject’ for a JWT
that represents a key is the key itself. Therefore, the sub value must be
the value of the kid property.

• iat claim defines the seconds since the epoch as of when the JWT
was created and not the key itself. The iat property of the key defines
the creation (registration) time of the key.

• iss claim defines the entity that created the JWT and not the key.
The iss property of the key defines the issuer of the key.

{
 "iss": "KMS",
 "iat": 1631188475,
 "exp": 1631190197,
 "nbf": 1631189542,
 "aud": [
 "DCS Client",
 "019b7173-a9ed-7d9a-70d3-9502ad7c0575"
],
 "keys": [
 {
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Client"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 },
 {
 "kid": "006011ef-1181-492e-bb77-2efb3142c647",
 "alg": "A192CBC-HS384",
 "kty": "oct",
 "k": "lWgm6COZs5mgpDWbhg3gNA",
 "iss": "eb3cacc9-7f06-3af7-8583-ddb68ee1412d",
 "iat": 1637405944,

OPEN GEOSPATIAL CONSORTIUM 22-014 23

 "nbf": 1637405944,
 "naf": 1637406243,
 "active": true,
 "sub": "ff1045c2-a6de-31ad-8eb2-2be104fe27ea",
 "aud": [
 "019b7173-a9ed-7d9a-70d3-9502ad7c0575"
],
 "subs": [
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 }
]
}

Figure 7 — Example of JWT including two DEK keys

The semantics of the JWT properties are as follows.

• iss: The issuer of the JWT.

• iat: The issuing seconds since the epoch when the JWT was issued.

• exp: The maximum over all key expires.

• nbf: The minimum over all key nbf.

• aud: The union over all key aud.

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ijg5M2VmM2M4LWMyNDktNDdhMi05MWUyLTA
wMWEwYjIwMTY0NyIsImprdSI6Imh0dHBzOi8vb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbS9rbXMva2
VrLzg5M2VmM2M4LWMyNDktNDdhMi05MWUyLTAwMWEwYjIwMTY0NyJ9.eyJpc3MiOiJLTVMiLCJpYXQi
OjE2MzExODg0NzUsImV4cCI6MTYzMTE5MDE5NywibmJmIjoxNjMxMTg5NTQyLCJhdWQiOlsiRENTIEN
saWVudCIsIjAxOWI3MTczLWE5ZWQtN2Q5YS03MGQzLTk1MDJhZDdjMDU3NSJdLCJrZXlzIjpbeyJraW
QiOiIwMDFiZmQzMi0yMmM0LTQ0OTEtOTFlMC0xODg3ZTExZTc0NTMiLCJhbGciOiJBMTI4R0NNIiwia
3R5Ijoib2N0IiwiayI6IkpfVzk5UWh3NWdiUDcyWXBtQTYwS2ciLCJpc3N1ZXIiOiJEQ1MgU2VydmVy
IiwiaXNzdWVkX2F0IjoxNjMxMTg4Mzk3LCJub3RfYmVmb3JlIjoxNjMxMTg5NTQyLCJub3RfYWZ0ZXI
iOjE2MzEyMTAzNDIsImFjdGl2ZSI6dHJ1ZSwic3ViIjoiZmYxMDQ1YzItYTZkZS0zMWFkLThlYjItMm
JlMTA0ZmUyN2VhIiwiYXVkaWVuY2VzIjpbIkRDUyBDbGllbnQiXSwic3ViamVjdHMiOlsiTG9uZyBKb
2huIFNpbHZlciIsIkFsaWNlIGluIFdvbmRlcmxhbmQiLCJmZjEwNDVjMi1hNmRlLTMxYWQtOGViMi0y
YmUxMDRmZTI3ZWEiXX0seyJraWQiOiIwMDYwMTFlZi0xMTgxLTQ5MmUtYmI3Ny0yZWZiMzE0MmM2NDc
iLCJhbGciOiJBMTkyQ0JDLUhTMzg0Iiwia3R5Ijoib2N0IiwiayI6ImxXZ202Q09aczVtZ3BEV2JoZz
NnTkEiLCJpc3N1ZXIiOiJlYjNjYWNjOS03ZjA2LTNhZjctODU4My1kZGI2OGVlMTQxMmQiLCJpc3N1Z
WRfYXQiOjE2Mzc0MDU5NDQsIm5vdF9iZWZvcmUiOjE2Mzc0MDU5NDQsIm5vdF9hZnRlciI6MTYzNzQw
NjI0MywiYWN0aXZlIjp0cnVlLCJzdWIiOiJmZjEwNDVjMi1hNmRlLTMxYWQtOGViMi0yYmUxMDRmZTI
3ZWEiLCJhdWRpZW5jZXMiOlsiMDE5YjcxNzMtYTllZC03ZDlhLTcwZDMtOTUwMmFkN2MwNTc1Il0sIn
N1YmplY3RzIjpbImZmMTA0NWMyLWE2ZGUtMzFhZC04ZWIyLTJiZTEwNGZlMjdlYSJdfV19.Hiyncvcl
Fuw8Lrvx6Yaw2XkvzC75jNt6Le7ekDWjpvlzvxP_ZdQahUbGMe5jidfKQVfKnaPkyqQCeGe1AfMdhJs
Et7BE7uJhFNFvviI_dGLxOwZsfO_wmtpO5GjmP1NQHrAJXiE02dd70087gAcvm88VEgc1SK0kvc4WtW
dujuAVSwdbPGd5Cfy6QvA8ZW80cVGlUScKdnX2rtoC7QvmbiqpeI757GGNhpgBT1drKZp8UoR06Kw8D
pFzXNWdQzkGQ3bVJnue0d9gkofrGtLRE5_Erkokvd0bkfaQfNGCH0J6jYft5sNgYa5jZVeioxim7adL
wUblNZ8T3JBOYSEx0Q

Figure 8 — Example: JWT compact serialization of JSON above

OPEN GEOSPATIAL CONSORTIUM 22-014 24

5.5. Policy Representation

There is only one official XACML or GeoXACML policy structure defined in XML. To include an
XML encoded policy in the JSON representation of a key (policy property), one possibility is to
use the data URI scheme based on base64 encoding as the value.

{
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Client"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland"
],
 "policy": "data:application/xacml+xml;base64,PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNv
ZGluZz0iVVRGLTgiPz48IS0tVGhpcyBmaWxlIHdh..."
}

Figure 9 — Example DEK representation in JSON including policy

namespace KMS {
 import Attributes.*

 attribute key_subs {
 id = "urn:sd:key:subs"
 type = string
 category = resourceCat
 }

 attribute key_aud {
 id = "urn:sd:key:aud"
 type = string
 category = resourceCat
 }

 attribute key_nbf {
 id = "urn:sd:key:not-before"
 type = dateTime
 category = environmentCat
 }

 attribute key_naf {
 id = "urn:sd:key:not-after"
 type = dateTime
 category = environmentCat

OPEN GEOSPATIAL CONSORTIUM 22-014 25

 }

 attribute key_active {
 id = "urn:sd:key:active"
 type = boolean
 category = environmentCat
 }

 policy BusinessLogic {

 apply permitOverrides

 rule {
 target
 clause actionId == "read"
 permit
 condition
 key_active == true &&
 stringAtLeastOneMemberOf(subjectId,key_subs) &&
 stringAtLeastOneMemberOf(API.clientId,key_aud) &&
 currentDateTime >= key_nbf &&
 currentDateTime <= key_naf
 }
 }
}

Figure 10 — Example of the Integral Business Logic Expressed in ALFA6

The policy in XACML3 encoding can be found in Annex B.

6See OASIS for more details

OPEN GEOSPATIAL CONSORTIUM 22-014 26

6

KEY MANAGEMENT SERVER
API

OPEN GEOSPATIAL CONSORTIUM 22-014 27

6 KEY MANAGEMENT SERVER API

The Key Management Server consists of an API and a Business Logic that controls CRUD access
to the API for managing keys. A key can be seen as a resource (aka item), as defined by the
OGC API building blocks. In the context of the KMS, an OGC API building block collection
represents a key of a particular type as defined in Clause 5.1.

6.1. Overview

The KMS described in this document has different functionalities to access keys that are used
for different purposes. The following key types are supported by the KMS.

• DEK (Data Encryption Key) is used to encrypt and decrypt data.

• KEK (Key Encryption Key) is used to encrypt and decrypt a DEK.

• PK (Public Key) is used to validate digital signatures on a JWT or to encrypt a DEK.

For each key type a separate functionality is required. This separation leads to different APIs as
follows.

• DEK API: The interface to interact with data encryption keys. Endpoints are /
collections/dek/items and /collections/dek/items/{kid}.

• KEK API: The interface to interact with key encryption keys. Endpoints are /collections/
kek/items and /collections/kek/items/{kid}.

• PK API: The interface to interact with public keys. Endpoints are /collections/pk/items
and /collections/pk/items/{kid}.

Interaction diagrams with the KMS interfaces can be found in Annex C.

6.2. Access Token Use

The validation of Bearer or JWT access tokens is limited to the associated audience. According
to [rfc6750], an Authorization Server must link an audience with the generated token.
Furthermore, a resource server such as the DCS Service and KMS may only accept the token
if their client_id matches the aud from the token. This effectively reduces the re-use of an
access token when the DCS Service interacts with the KMS. It is only possible for the DCS

OPEN GEOSPATIAL CONSORTIUM 22-014 28

Service to re-use the received token if the KMS audience is also associated with the access
token.

As outlined in Clause 8, the Authorization Server should avoid releasing tokens with aud=['DCS
Service','KMS']. Such audience restrictions requires that the DCS Service exchange the
received access token with the Authorization Server to act on behalf of the user. Then, the DCS
Service uses its own access token to interact with the KMS. This has the following implications.

• The Authorization Server must never release access tokens where the aud contains the
KMS and another application.

• The DCS Service, DCS Application, and the KMS must all be registered with the same
Authorization Server.

• The DCS Service must use the token-exchange flow as defined in IETF RFC 8693 to obtain
an access token.

• The DCS Service needs to add the DCS Application explicitly as an audience when
registering the generated DEK. To ensure that the DCS Application can obtain the DEK,
the DCS Service must set the sub explicitly to the sub associated with the token received
from the DCS Application.

6.3. HTTP Media Types

The KMS supports the following content type values for request and response.

• application/jwk+json or application/json represents one single key using JWK
encoding.

• application/jwk-set+json represents a key-set (array of keys) encoded as JWKS.

• application/jwt represents a JWK or JWKS as claims of the JWT.

• application/jose is the encrypted version of the application/jwt.

The KMS also supports the following content type value for the POST, PUT and PATCH requests.

• application/x-www-form-urlencoded represents one single key using the &-encoding.

A request must either use the HTTP header Accept or the GET URL parameter f to specify the
media type for the return. If both are present (HTTP Accept and parameter f), the parameter f
has precedence. The default is application/jwt.

OPEN GEOSPATIAL CONSORTIUM 22-014 29

6.4. HTTP Methods and KMS Operations

The execution of KMS operations is triggered by a particular HTTP method, but also depends
on the presence of certain requested information. The requested information can be submitted
differently as the following list indicates.

• as HTTP header, e.g., Accept

• as HTTP GET parameter encoded as KVP, e.g., f

• as HTTP POST, PUT or PATCH message body using Content-Type application/x-www-
form-urlencoded, e.g., kid

• as HTTP POST, PUT or PATCH message body using Content-Type application/{jwk+json,
jwk-set+json} or application/jose, e.g., { "kid": "4711"}

• as part of the HTTP request path, e.g., /collections/dek/items/{kid}

Table 5 — Supported HTTP methods for the DEK and KEK endpoints

RESOURCE ENDPOINT HTTP METHOD

GET POST PUT PATCH DELETE

/collections/{dek,kek}/items bulk read

bulk
register
or bulk
generate

n/a n/a n/a

/collections/{dek,kek}/items/{kid} read n/a
register or
generate

update delete

NOTE All HTTP methods require authentication.

Table 6 — Supported HTTP methods for the PK endpoints

RESOURCE ENDPOINT HTTP METHOD

GET POST PUT PATCH DELETE

/collections/pk/items bulk read
bulk
register

n/a n/a n/a

/collections/pk/items/{kid} read n/a register update delete

NOTE The HTTP method GET allows anonymous access.

OPEN GEOSPATIAL CONSORTIUM 22-014 30

The logical segregation of the endpoints per key type requires that it is not possible to request
DEK, KEK, and PK keys in one request. In particular, the bulk operations are limited to return many
keys of the same type. This clear separation is important to ease the definition of the business
logic and ensures that a very secure implementation can be achieved as no key type specific
logic is mixed. Also, looking at the common use cases, it is never the case that a KEK or PK and
a DEK must be requested together. Why? The KEK protects (encrypts) the DEK. So, when the
KEK is received, the DEK can be decrypted. Even if the KEK encrypts just the DEK’s metadata,
an application must first decrypt that DEK metadata to then be able to fetch the DEK based on
the decrypted metadata.

6.5. HTTP Status Codes

The KMS uses HTTP status codes in compliance with IETF RFC 7231. The status codes below
are of particular importance to the KMS.

Table 7 — General HTTP (error) status codes

HTTP STATUS CODE
HTTP RESPONSE
BODY

HTTP HEADER DESCRIPTION

400 OGC API JSON error n/a Request data error

401 n/a WWW-Authenticate Authentication information missing or invalid

403 n/a n/a
KMS business logic refuses to process the
request

429 n/a Retry-After
KMS instructs the caller to wait x-many
seconds

500 JSON n/a KMS way to say “I’m sorry”

6.6. KMS API Parameters and Their Meanings

The API parameters represent the data model variables at the HTTP level. In addition to the
variables defined in the Clause 5.1 section, the following API parameters are also required.
These additional parameters mainly carry security context and trigger certain request and
response semantics.

OPEN GEOSPATIAL CONSORTIUM 22-014 31

Table 8 — Additional API parameters and their definition

PARAMETER TYPE DESCRIPTION

f String The media type of the response

access_token String Bearer Access Tokena

a The HTTP Authorization header with scheme Bearer should be used to avoid token leakage.

See Table 1 for the common parameters.

6.7. KMS API and Operations

The Data Encryption Key (DEK), Key Encryption Key (KEK), and Public Key (PK) APIs are similar
in behavior. They support the creating, registration, reading, updating, and deleting of keys for
the purpose of encrypting geospatial data. The DEK and KEK API also support key generation.

NOTEThe DEK API operates on symmetric, the KEK API operates on asymmetric, and
the PK API operates on public keys. This difference is reflected in the JWK compliant key
representation and the associated business logic, not at the API level.

6.7.1. Read

HTTP method GET on endpoint /collections/{dek,kek,pk}/items/{kid} executes the
read(String kid) operation. This returns one DEK, KEK, or PK in the requested format.

GET /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk+json
Authorization: Bearer 298fj39fh39bf892

HTTP/1.1 OK
Content-Type: application/jwk+json
Content-Length: 403

{
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,

OPEN GEOSPATIAL CONSORTIUM 22-014 32

 "sub": "Long John Silver",
 "aud": [
 "DCS Application"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
}

Figure 11 — Example: read of one DEK using application/jwk+json

GET /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453?public_kid=1234
Host: ogc.secure-dimensions.com/kms
Accept: application/jose
Authorization: Bearer 298fj39fh39bf892

HTTP/1.1 OK
Content-Type: application/jose
Content-Length: 914

eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00iLCJraWQiOiI0NzExIn0.
IQdC6pONHgOrY_I91q8Ufl8jDYWmF23qX1rsLIbWu5G0SPwdDFZMjWNg1bQlwjyCD_
scGzGhm2MR_UJLikmDiZ6ADvwxOpBUDsiNOFUoGZR-akEU3hMjFLkgxpfNGYOwOh_
PlXj9xUesq6NTUiU875pZgz1cGa5tNGeebme5r8XJnp0Y_bPBV4dvt-
OCXIZ2Sc0JgEQN6I-kw46AeQPHxvzhtuYJVFBJQQ8GCJ01ESxWv0GUx3v_
sEtqqwtINulUf7WbetdIMx8LjslHSNXIMq5yg1KqRMM0iVzzonTBsbDkJwRNA-
9WC2lRmavaF3yh6hYG6X66YoXp7fFhSg_h4Q.dCtk-Abgc3NcKjtAwaKjrQ.y7JM_
UrjGdg0M25sYVdTv2sWoE1HQuEkfp-T1SO3bU_
o9qIRDVYLYHS4Ecr7UuUH7LqPiNO6NCHdHzzWpPGuS3yM_sU-jf-
RwMEOKLpRxMRE3AWBVVcRw1a-RyLEJfnxWIt_BrnAzoz1panyMh_TZ44JQ3ZJSDRgAmYlMj-
sthagph7E7GFQuXKYi0V7MXtvuV_u5h4GWM-Pi-58q3Wk4HgYqByN6AodCN7DlxuRe_
HTsrVA4FQelxZb3c0E2VJ0f76RsYxA0-FWSlWL3UJmC8lsoyaHHjd_
K2xAlzqbQljRztdFDG5KaIP_xSqE5bcnKJHHn64KsLgfza1lVLVmEio7odrIEsPOcdifr_
AwjDdYqj65eQf8WlN1Tpg49sEJBNoihNPJEVH7o03Ivk6MUQ_yFdcVWGkHPlNOnljLHqveSPuxEAmmN
zcxOudl0cYrdVLlTSJxv2gu.t5Iye6YzNKjBkLEc1I5lcg

Figure 12 — Example: read of one DEK using application/jose

{
 "alg": "RSA-OAEP",
 "enc": "A128GCM",
 "kid": "4711"
}

Figure 13 — Example JWE header for an encrypted DEK (key wrap)

NOTEThe public key was previously registered with the KMS. The JWE header contains the kid
to the public key (‘4711’) which is used to protect the DEK. Decryption of the DEK requires use
of the associated private key.

GET /collections/kek/items/juliet@capulet.lit
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk-set+json

OPEN GEOSPATIAL CONSORTIUM 22-014 33

Authorization: Bearer 298fj39fh39bf892

HTTP/1.1 200 OK
Content-Type: application/jwk+json
Content-Length: 2179

{
 "keys": [
 {
 "kty":"RSA",
 "kid":"juliet@capulet.lit",
 "use":"enc",
 "n":"t6Q8PWSi1dkJj9hTP8hNYFlvadM7DflW9mWepOJhJ66w7nyoK1gPNqFMSQRy
 O125Gp-TEkodhWr0iujjHVx7BcV0llS4w5ACGgPrcAd6ZcSR0-Iqom-QFcNP
 8Sjg086MwoqQU_LYywlAGZ21WSdS_PERyGFiNnj3QQlO8Yns5jCtLCRwLHL0
 Pb1fEv45AuRIuUfVcPySBWYnDyGxvjYGDSM-AqWS9zIQ2ZilgT-GqUmipg0X
 OC0Cc20rgLe2ymLHjpHciCKVAbY5-L32-lSeZO-Os6U15_aXrk9Gw8cPUaX1
 _I8sLGuSiVdt3C_Fn2PZ3Z8i744FPFGGcG1qs2Wz-Q",
 "e":"AQAB",
 "d":"GRtbIQmhOZtyszfgKdg4u_N-R_mZGU_9k7JQ_jn1DnfTuMdSNprTeaSTyWfS
 NkuaAwnOEbIQVy1IQbWVV25NY3ybc_IhUJtfri7bAXYEReWaCl3hdlPKXy9U
 vqPYGR0kIXTQRqns-dVJ7jahlI7LyckrpTmrM8dWBo4_PMaenNnPiQgO0xnu
 ToxutRZJfJvG4Ox4ka3GORQd9CsCZ2vsUDmsXOfUENOyMqADC6p1M3h33tsu
 rY15k9qMSpG9OX_IJAXmxzAh_tWiZOwk2K4yxH9tS3Lq1yX8C1EWmeRDkK2a
 hecG85-oLKQt5VEpWHKmjOi_gJSdSgqcN96X52esAQ",
 "p":"2rnSOV4hKSN8sS4CgcQHFbs08XboFDqKum3sc4h3GRxrTmQdl1ZK9uw-PIHf
 QP0FkxXVrx-WE-ZEbrqivH_2iCLUS7wAl6XvARt1KkIaUxPPSYB9yk31s0Q8
 UK96E3_OrADAYtAJs-M3JxCLfNgqh56HDnETTQhH3rCT5T3yJws",
 "q":"1u_RiFDP7LBYh3N4GXLT9OpSKYP0uQZyiaZwBtOCBNJgQxaj10RWjsZu0c6I
 edis4S7B_coSKB0Kj9PaPaBzg-IySRvvcQuPamQu66riMhjVtG6TlV8CLCYK
 rYl52ziqK0E_ym2QnkwsUX7eYTB7LbAHRK9GqocDE5B0f808I4s",
 "dp":"KkMTWqBUefVwZ2_Dbj1pPQqyHSHjj90L5x_MOzqYAJMcLMZtbUtwKqvVDq3
 tbEo3ZIcohbDtt6SbfmWzggabpQxNxuBpoOOf_a_HgMXK_lhqigI4y_kqS1w
 Y52IwjUn5rgRrJ-yYo1h41KR-vz2pYhEAeYrhttWtxVqLCRViD6c",
 "dq":"AvfS0-gRxvn0bwJoMSnFxYcK1WnuEjQFluMGfwGitQBWtfZ1Er7t1xDkbN9
 GQTB9yqpDoYaN06H7CFtrkxhJIBQaj6nkF5KKS3TQtQ5qCzkOkmxIe3KRbBy
 mXxkb5qwUpX5ELD5xFc6FeiafWYY63TmmEAu_lRFCOJ3xDea-ots",
 "qi":"lSQi-w9CpyUReMErP1RsBLk7wNtOvs5EQpPqmuMvqW57NBUczScEoPwmUqq
 abu9V0-Py4dQ57_bapoKRu1R90bvuFnU63SHWEFglZQvJDMeAvmj4sm-Fp0o
 Yu_neotgQ0hzbI5gry7ajdYy9-2lNx_76aBZoOUu9HCJ-UsfSOI8"
 }
]
}

Figure 14 — Example: read of one KEK using application/jwk-set+json

GET /collections/pk/items/020e2b52-c793-814a-8526-387ce0571fb4
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk-set+json
Authorization: Bearer 298fj39fh39bf892

HTTP/1.1 200 OK
Content-Type: application/jwk-set+json
Content-Length: 637

{
 "keys": [
 {
 "kid": "020e2b52-c793-814a-8526-387ce0571fb4",

OPEN GEOSPATIAL CONSORTIUM 22-014 34

 "kty": "RSA",
 "n": "5MPCfUAkhGG6w76Cw2b7vzmyM-K4-80bVn_aPMHHEBa4SQPfERmK_
Q4L9fD6FD6krj_RU_DCYENmMo0ceZQymePdSmeSHgbrkyU9vXfvLDHNftGPgH0xtQmc-gBWKMop
Rs6Svd13CCFaKn8P66iF25yVwmc13-5WKGSLJV5oiDa3vOfiJKSqWnZAkejo2BaOSOl9R0qPjLt7
z8B18LqTkNeOnsYigMIeAjis4CrXWVYfbIpryOLFcGBC4gCHiF7tvP5YR3HtqDSmTNzK3xqSFNn_
3PMRaGByV8yxcWDB3-2lRr5JwznuZlm37r_RptgsU73AfhL1phFhYLdTQQ5kmQ",
 "e": "AQAB",
 "use": "enc",
 "key_ops": [
 "wrapKey",
 "unwrapKey"
]
 }
]
}

Figure 15 — Example: read of one PK using application/jwk-set+json

For the business logic, please see Clause 5.3.1.

6.7.2. Bulk Read

HTTP method GET on endpoint /collections/{dek,kek,pk}/items executes the
read(String[] kid) operation. The kid API parameter is a comma-separated list of key
identifiers. This returns all keys that the KMS is allowed to return in the requested format.

GET /collections/dek/items?kid=001bfd32-22c4-4491-91e0-1887e11e7453,006011ef-
1181-492e-bb77-2efb3142c647 HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk-set+json
Authorization: Bearer 298fj39fh39bf892

HTTP/1.1 200 OK
Content-Type: application/jwk-set+json
Content-Length: 1004

{
 "keys": [
 {
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Application"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]

OPEN GEOSPATIAL CONSORTIUM 22-014 35

 },
 {
 "kid": "006011ef-1181-492e-bb77-2efb3142c647",
 "alg": "A192CBC-HS384",
 "kty": "oct",
 "k": "lWgm6COZs5mgpDWbhg3gNA",
 "iss": "eb3cacc9-7f06-3af7-8583-ddb68ee1412d",
 "iat": 1637405944,
 "nbf": 1637405944,
 "naf": 1637406243,
 "active": true,
 "sub": "ff1045c2-a6de-31ad-8eb2-2be104fe27ea",
 "aud": [
 "019b7173-a9ed-7d9a-70d3-9502ad7c0575"
],
 "subs": [
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 }
]
}

Figure 16 — Example: read of multiple DEKs

For the business logic, please see Clause 5.3.2.

6.7.3. Register

The register operation supports registering a single DEK with complete representation in one
request.

HTTP method PUT on endpoint /collections/{dek,kek,pk}/items/{kid} executes the
register(String kid) operation if the HTTP request contains a full representation of the key.
In particular, the key secret variables as defined in IETF RFC 7518 must be present.

NOTE 1If the kid parameter is not present, but the implementation accepts the request, the
implementation must ensure that the execution of the register(kid) operation is idempotent!
In the case where the kid is an auto generated index in the database, the implementation cannot
ensure idempotent behavior and must reject the request returning HTTP status code 400.

Accepted content-types submitted via HTTP header Content-Type are as follows.

• application/x-www-form-urlencoded: The key parameters are sent form encoded.

• application/jwk+json: The key is encoded as JWK.

• application/jwt: The JWT payload represents the JSON encoding of the parameters
(claims in the JWT). The JWT encoding must only include one key and have the claim sub
which value is used to register the key.

• application/jose: The JWE is the encrypted version of the JWT representation. To
ensure that the KMS can decrypt the payload (JWT representation of the key), the KEK
expressed in the JWE header using kid or kurl must be fetchable for the KMS.

NOTE 2The JWT encoding must have the claims sub and iss. The values are used to register a key
when using the Content-Type application/jwt or application/jose

OPEN GEOSPATIAL CONSORTIUM 22-014 36

Table 9 — HTTP status code details for the register() operation

HTTP STATUS CODE HTTP HEADER DESCRIPTION

201 Location A new key was registered and the kid was created by the KMS.

204 n/a A new key was registered as requested and the URI can be re-used.

303 Location An identical key does already exist but using a different kid.

409 n/a A key with the {kid} already exists but has different parameters.

PUT /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453 HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk+json
Content-Type: application/jwk+json
Content-Length: 403
Authorization: Bearer 298fj39fh39bf892

{
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Application"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
}

HTTP/1.1 204 No Content

Figure 17 — Example: single DEK registration using content-type application/jwk+json

For the business logic, please see Clause 5.3.3.

6.7.4. Bulk Register

The bulk register operation supports registering a set of DEKs with complete representation in
one request.

OPEN GEOSPATIAL CONSORTIUM 22-014 37

HTTP method POST on endpoint /collections/{dek,kek,pk}/items executes the bulk_
register(String []kid) operation. Because a POST request can have any side-effect and
is not required to be idempotent, the execution of the bulk_register(String []kid) can
register one or many keys. If the kid parameter is not present for a key, an implementation can
generate a unique kid without idempotency conditions.

When using the Content-Type application/x-www-form-urlencoded, representing multiple
keys is theoretically possible, but such a request structuring is outside the scope of this
document. Therefore only sending one key when using the application/x-www-form-
urlencoded representation is recommended.

POST /collections/dek/items HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk-set+json
Content-Type: application/jwk-set+json
Content-Length: 1004
Authorization: Bearer 298fj39fh39bf892

{
 "keys": [
 {
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Application"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 },
 {
 "kid": "006011ef-1181-492e-bb77-2efb3142c647",
 "alg": "A192CBC-HS384",
 "kty": "oct",
 "k": "lWgm6COZs5mgpDWbhg3gNA",
 "iss": "eb3cacc9-7f06-3af7-8583-ddb68ee1412d",
 "iat": 1637405944,
 "nbf": 1637405944,
 "naf": 1637406243,
 "active": true,
 "sub": "ff1045c2-a6de-31ad-8eb2-2be104fe27ea",
 "aud": [
 "019b7173-a9ed-7d9a-70d3-9502ad7c0575"
],
 "subs": [
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 }
]

OPEN GEOSPATIAL CONSORTIUM 22-014 38

}

HTTP/1.1 204 No Content

Figure 18 — Example: multiple DEK registration
using content-type application/jwk-set+json

The KMS may return HTTP 204 status on a successful registration. This is because the complete
key information was already represented in the request.

The KMS returns HTTP status 400 if the request could not be processed.

POST /collections/dek/items HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk-set+json
Content-Type: application/jwk-set+json
Content-Length: 953
Authorization: Bearer 298fj39fh39bf892

{
 "keys": [
 {
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Application"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 },
 {
 "kid": "006011ef-1181-492e-bb77-2efb3142c647",
 "alg": "A192CBC-HS384",
 "kty": "oct",
 "k": "lWgm6COZs5mgpDWbhg3gNA",
 "iss": "eb3cacc9-7f06-3af7-8583-ddb68ee1412d",
 "iat": 1637405944,
 "nbf": 1637405944,
 "naf": 1637406243,
 "active": true,
 "sub": "ff1045c2-a6de-31ad-8eb2-2be104fe27ea",
 "aud": [
 "019b7173-a9ed-7d9a-70d3-9502ad7c0575"
],
 "subs": [
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 }
]

OPEN GEOSPATIAL CONSORTIUM 22-014 39

}

HTTP/1.1 200 OK
Content-Type: application/jwk-set+json
Content-Length: 163

{
 "keys": [
 {
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453"
 },
 {
 "kid": "006011ef-1181-492e-bb77-2efb3142c647"
 }
]
}

Figure 19 — Example: multiple DEK registration
using content-type application/jwk-set+json

NOTE 1The kid parameter is missing for the first key. Therefore, the KMS returns a response
body that contains the minimum JWK property for each key.

POST /collections/dek/items HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk-set+json
Content-Type: application/x-www-form-urlencoded
Content-Length: 314
Authorization: Bearer 298fj39fh39bf892

 alg=A128GCM&
 kty=oct&
 k=J_W99Qhw5gbP72YpmA60Kg&
 issuer=DCS%20Server&
 issued_at=1631188397&
 not_before=1631189542&
 not_after=1631210342&
 active=true&
 sub=Long%20John%20Silver&
 audiences=DCS%20Client&
 subjects=Long%02John%20Silver&
 subjects=Alice%20in%20Wonderland&
 subjects=ff1045c2-a6de-31ad-8eb2-2be104fe27ea&

HTTP/1.1 201 Created
Location: /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453

Figure 20 — Example: single DEK registration using
content-type application/x-www-form-urlencoded

NOTE 2The KMS returns 201 with location URI because the kid was generated by the KMS.

For the business logic, please see Clause 5.3.4.

OPEN GEOSPATIAL CONSORTIUM 22-014 40

6.7.5. Generate

The KMS executes the generate() operation instead of the register() operation if the key
is not fully represented as defined in IETF RFC 7518. For example, the KMS executes the
generate() operation and not the register() operation for a DEK if the request is missing the
parameter k.

The generate() operation creates a key secret and registers the key. On success, the KMS
returns the key’s representation according to the Accept header or f parameter.

IMPORTANT

The generate() operation is not supported for the PK API. Therefore, the KMS
must return HTTP status code 400.

POST /collections/dek/items HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk+json
Content-Type: application/jwk+json
Content-Length: 222
Authorization: Bearer 298fj39fh39bf892

{
 "alg": "A128GCM",
 "kty": "oct",
 "sub": "Long John Silver",
 "aud": [
 "DCS Application"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
}

HTTP/1.1 200 OK
Content-Type: application/jwk+json
Content-Length: 395

{
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "KMS",
 "iat": 1654611110,
 "nbf": 1654611110,
 "naf": 1654614256,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Application"

OPEN GEOSPATIAL CONSORTIUM 22-014 41

],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
}

Figure 21 — Example: single DEK generation using content-type application/jwk+json

For the business logic, please see Clause 5.3.5.

6.7.6. Bulk Generate

The bulk_generate() supports the generation of a set of DEKs or KEKs. Identical to the
register() and generate() operations, the bulk_generate() is executed if the key is not fully
represented.

POST /collections/dek/items HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk-set+json
Content-Type: application/jwk-set+json
Content-Length: 515
Authorization: Bearer 298fj39fh39bf892

{
 "keys": [
 {
 "alg": "A128GCM",
 "kty": "oct",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Application"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 },
 {
 "kid": "006011ef-1181-492e-bb77-2efb3142c647",
 "alg": "A192CBC-HS384"
 }
]
}

HTTP/1.1 200 OK
Content-Type: application/jwk-set+json
Content-Length: 1004

{
 "keys": [

OPEN GEOSPATIAL CONSORTIUM 22-014 42

 {
 "kid": "001bfd32-22c4-4491-91e0-1887e11e7453",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "J_W99Qhw5gbP72YpmA60Kg",
 "iss": "DCS Service",
 "iat": 1631188397,
 "nbf": 1631189542,
 "naf": 1631210342,
 "active": true,
 "sub": "Long John Silver",
 "aud": [
 "DCS Application"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 },
 {
 "kid": "006011ef-1181-492e-bb77-2efb3142c647",
 "alg": "A192CBC-HS384",
 "kty": "oct",
 "k": "lWgm6COZs5mgpDWbhg3gNA",
 "iss": "eb3cacc9-7f06-3af7-8583-ddb68ee1412d",
 "iat": 1637405944,
 "nbf": 1637405944,
 "naf": 1637406243,
 "active": true,
 "sub": "ff1045c2-a6de-31ad-8eb2-2be104fe27ea",
 "aud": [
 "019b7173-a9ed-7d9a-70d3-9502ad7c0575"
],
 "subs": [
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
 }
]
}

Figure 22 — Example: multiple DEK generation
using content-type application/jwk-set+json

For the business logic, please see Clause 5.3.7.

6.7.7. Update

The KMS executes the update() operation to change the access and use conditions for the key
represented by kid.

IMPORTANT

The update() operation cannot be used to change the key representation.

HTTP method PATCH on endpoint /collections/{dek,kek,pk}/items/{kid} executes the
update(String kid) operation.

OPEN GEOSPATIAL CONSORTIUM 22-014 43

Table 10 — Response details for the update() operation

HTTP STATUS
CODE

HTTP
RESPONSE
BODY

HTTP HEADER DESCRIPTION

200
{JSON, JWT,

JWE}a
n/a

Success and key representation in the
response body

204 n/a Location optional Success

400
OGC API
JSON error

n/a Request to update read-only parameter

NOTE Read-only parameters that cannot be changed: kid, sub, iss, and all key variables defined in IETF
RFC 7518.

a Type depends on the Accept header.

PATCH /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453 HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk+json
Content-Type: application/jwk+json
Content-Length: 243
Authorization: Bearer 298fj39fh39bf892

{
 "nbf": 1654611110,
 "naf": 1654614256,
 "active": true,
 "aud": [
 "DCS Application",
 "DCS Service"
],
 "subs": [
 "Long John Silver",
 "Alice in Wonderland",
 "ff1045c2-a6de-31ad-8eb2-2be104fe27ea"
]
}

HTTP/1.1 204 No Content

Figure 23 — Example: successful DEK update using content-type application/jwk+json

PATCH /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453 HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: application/jwk+json
Content-Type: application/jwk+json
Content-Length: 25
Authorization: Bearer 298fj39fh39bf892

{

OPEN GEOSPATIAL CONSORTIUM 22-014 44

 "alg": "A192GCM"
}

HTTP/1.1 400 Bad Request

Figure 24 — Example: error DEK update using content-type application/jwk+json

For the business logic, please see Clause 5.3.8.

6.7.8. Delete

The KMS executes the delete() operation for the given kid.

HTTP method DELETE on endpoint /collections/{dek,kek,pk}/items/{kid} executes the
delete(String kid) operation.

DELETE /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453 HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: *
Authorization: Bearer 298fj39fh39bf892

HTTP/1.1 204 No Content

Figure 25 — Example: successful DEK delete

As outlined in the Clause 7, the user associated to the access token is identical to the key.sub
value. HTTP status code 204 indicates that the request was processed successfully.

DELETE /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453 HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: *

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="KMS"

Figure 26 — Example: error DEK delete; not authenticated

As outlined in the Clause 7, authorization information must be presented.

DELETE /collections/dek/items/001bfd32-22c4-4491-91e0-1887e11e7453 HTTP/1.1
Host: ogc.secure-dimensions.com/kms
Accept: *
Authorization: Bearer 298fj39fh39bf892

HTTP/1.1 403 Forbidden

Figure 27 — Example: error DEK delete; not authorized

OPEN GEOSPATIAL CONSORTIUM 22-014 45

As outlined in the Clause 7, the request is rejected with 403 if the user associated with the
access token is not identical to key.sub.

For the business logic, please see Clause 5.3.9.

OPEN GEOSPATIAL CONSORTIUM 22-014 46

7

KEY MANAGEMENT SERVER
BUSINESS LOGIC

OPEN GEOSPATIAL CONSORTIUM 22-014 47

7 KEY MANAGEMENT SERVER BUSINESS LOGIC

The Key Management Server’s business logic tightly fits the API and the use cases. The use
cases involve the following.

• Reading of keys

• Generation of keys

• Registration of keys

• Updating of keys

• Deleting of keys

• Activating / Deactivating of keys

• Managing the access conditions of keys

One essential part of the business logic is the key data model as defined in section Clause 5.1.

7.1. Integrated Business Logic

The integrated business logic is ‘hardcoded’ into the implementation. The implemented logic
provides the minimum security of the registered keys. The implementation leverages the DEK,
KEK, and PK class variables to enforce the following logic.

• {DEK,KEK}.aud contains the whitelisting of application identifiers.

• {DEK,KEK}.subs contains the whitelisting of user identifiers.

• {DEK,KEK}.emails contains the whitelisting of user emails.

• {DEK,KEK,PK}.nbf defines the minimum seconds since the epoch.

• {DEK,KEK,PK}.naf defines the maximum seconds since epoch.

NOTEThe business logic described in this section is an example and is based on the results from OGC
Testbeds 16 (Aleksandar Balaban) and 17 (Aleksandar Balaban, Andreas Matheus).

The key.issuer variable can be used to support the authenticity of keys. The issuer of a DEK or
KEK typically is an application. The issuer of a PK can either be an application or a user.

OPEN GEOSPATIAL CONSORTIUM 22-014 48

7.1.1. Operations on a DEK or KEK

The business logic that defines the access conditions to the DEK and the KEK are identical.

IF
 key.aud contains request.client_id &&
 (key.subs contains request.sub || key.emails contains request.user_email) &&
 key.nbf > request.dateTime && key.naf < request.dateTime &&
 key.active
THEN
 read(key.kid)
ELSE
 return error

Figure 28 — Read DEK or KEK

IF
 request.sub != NULL &&
 request.alg != NULL &&
 IF
 key.type == 'DEK' &&
 request.k != NULL
 THEN
 continue
 ELSE
 return 400
 IF
 key.type == 'KEK' &&
 request.n != NULL &&
 ...
 THEN
 continue
 ELSE
 return 400

THEN
 properties = [
 request.sub,
 request.aud := request.client_id,
 request.nbf := now(), request.naf := NULL,
 request.alg, request.kty, request.enc := 'enc'
]
 IF
 request.kid != NULL
 THEN
 kid = request.kid
 ELSE
 kid = random()
 register(kid, properties)
ELSE
 return error

Figure 29 — Register DEK or KEK

OPEN GEOSPATIAL CONSORTIUM 22-014 49

IF
 request.sub != NULL &&
 request.alg != NULL &&
 IF
 key.type == 'DEK' &&
 request.k != NULL
 THEN
 continue
 ELSE
 return 400
 IF
 key.type == 'KEK' &&
 request.n != NULL &&
 ...
 THEN
 continue
 ELSE
 return 400
THEN
 properties = [
 request.sub,
 request.aud := request.client_id,
 request.nbf := now(), request.naf := NULL,
 request.alg, request.kty, request.enc := 'enc'
]
 IF
 request.kid != NULL
 THEN
 kid = request.kid
 ELSE
 kid = random()
 generate(kid, properties)
ELSE
 return error

Figure 30 — Generate DEK or KEK

IF
 request.sub != NULL &&
 request.sub == key.sub &&
THEN
 properties = [
 request.active,
 request.subs,
 request.emails,
 request.aud,
 request.nbf, request.naf
]
 IF
 request.kid does exist
 THEN
 update(request.kid, properties)
 ELSE
 return 404
ELSE
 return error

Figure 31 — Update DEK or KEK

OPEN GEOSPATIAL CONSORTIUM 22-014 50

IF
 request.sub != NULL &&
 request.sub == key.sub &&
THEN
 IF
 request.kid does exist
 THEN
 delete(request.kid)
 ELSE
 return 404
ELSE
 return error

Figure 32 — Delete DEK or KEK

7.1.2. Operations on a PK

The business logic defining access conditions to the PK operations is more lax compared to the
DEK and KEK. This is because the implications of unauthorized access are zero. The main reason
is that the KMS only stores the public part of the asynchronous key which can only be used for
two things:

• verification of a digital signature (by definition created by the user or application in
possession of the associated private key); and

• key encryption by any DCS application (client or server) where the receiving party is in
possession of the associated private key.

To support public key rotation using the nbf and naf time constraints is common practice.

IF
 key.nbf > request.dateTime && key.naf < request.dateTime
THEN
 read(key)
ELSE
 return 403

Figure 33 — Read PK

IF
 request.sub != NULL &&
 request.alg != NULL &&
 request.n != NULL
THEN
 properties = [
 request.nbf := now(), request.naf := NULL,
 request.alg, request.kty, request.enc := 'enc'
 request.n
]
 IF
 request.kid != NULL
 THEN
 kid = request.kid
 ELSE

OPEN GEOSPATIAL CONSORTIUM 22-014 51

 kid = random()
 register(kid, properties)
ELSE
 return error

Figure 34 — Register PK

IF
 request.sub != NULL &&
 request.sub == key.sub &&
THEN
 properties = [
 request.active
]
 IF
 request.kid does exist
 THEN
 update(request.kid, properties)
 ELSE
 return 404
ELSE
 return error

Figure 35 — Update PK

IF
 request.sub != NULL &&
 request.sub == key.sub &&
THEN
 IF
 request.kid does exist
 THEN
 delete(request.kid)
 ELSE
 return 404
ELSE
 return error

Figure 36 — Delete PK

7.2. Policy-Based Business Logic

The Policy-based business logic provides the key owner a standards-based solution for
specifying access conditions that control the read(kid) operation for the DEK and KEK. The logic
could even be extended to cover CRUD for a kid.

There is a huge advantage in using the Policy-based access control as the same logic can be used
when a DEK or KEK is requested from the KMS and used in the offline scenario. One example
use for the offline case could be a GeoPackage with encrypted data, as defined in the OGC

OPEN GEOSPATIAL CONSORTIUM 22-014 52

Disaster Pilot ’21 Engineering Report7 In the GeoPackage case, a JWE representation of the
DEK is stored in the gpkg_ext_keys table. The policy stored with the key determines the access
control for the application applying the key to encrypted information stored in the GeoPackage’s
data table(s).

To ensure interoperability of the policy across different implementations (KMS, client
applications, etc.) using a OAISIS XACML 3 or OGC GeoXACML8 is recommended. An
implementation that supports the use of the Policy-based access control must be able to
construct (Geo(XACML9 compliant Authorization Decision Response (ADR) and either be
integrated with or have access to the Policy Decision Point functionality that derives the
Authorization Decision (AD).

Figure 37 — XACML Flow Diagram

7Not yet published at the time of writing.

8v3 is currently a work in progress.

9(Geo)XACML is the abbreviation that means XACML or GeoXACML.

OPEN GEOSPATIAL CONSORTIUM 22-014 53

As illustrated in Figure 37, the KMS Policy-based business logic would basically have to
implement the following:

• the PEP which is the ‘gate keeper’ that executes the AD; and

• the context handler that collects the relevant information to create a XACML standard
compliant ADR.

7.3. Key Policy Operations

A KMS business logic that supports the policy-based control for access to a key of type DEK or
KEK must enforce conditions under which it is possible to attach a policy to a key, detach a policy
from the key (delete the policy), or replace and update the policy already attached to a key as
follows.

• attachPolicy(kid, policy): After a successful execution, the KMS uses the logic from
the policy for controlling read access to the DEK and KEK.

• detachPolicy(kid): After a successful execution, the KMS uses the integral business
logic for controlling read access to the DEK and KEK.

• updatePolicy(kid, policy): After a successful execution, the KMS immediately uses
the renewed logic.

The KMS business logic that controls these operations is an integral part of the implementation.
A policy operation is executed if the user is authenticated and can prove ownership of the key as
expressed in the following pseudocode.

if
 key.sub == request.sub &&
then
 execute policyOperation(...)
else
 deny

Figure 38 — Conditions for executing a policy operation

7.4. Implications to the integrated business logic

Once a policy is attached to a key, it overrides the integrated business logic for the read(kid)
operation on the DEK and KEK.

OPEN GEOSPATIAL CONSORTIUM 22-014 54

8

KMS SECURITY
CONSIDERATIONS

OPEN GEOSPATIAL CONSORTIUM 22-014 55

8 KMS SECURITY CONSIDERATIONS

Any solution that leverages encryption is only as secure as the entire system, in particular the
one managing the encryption keys. Any untrusted implementations that have access to the Key
Management Service in particular may jeopardize the entire approach.

This document describes a Key Management System including its API to support a flexible
generation, registration, modification, and deletion of encryption keys. The business logic
described in section Clause 7 outlines a minimal approach to control access to a key.

One of the paramount requirements for DCS is that the security solution is directly applied to
the data without reliance upon the security provided by the underlying communication layer. In
that sense, the KMS API supports the exchange of protected (encrypted) keys that are used to
encrypt data.

To operate a KMS in a production environment, more requirements must be considered that
are beyond the scope of this Testbed 18 activity. Any implementor and operator of a KMS
should consider that there are “bad people” out there who will look for the vulnerability in a
protocol or a bug in an implementation and, if found, exploit it. The NIST Recommendation for
Key Management: Part 1 provides good guidance on how to operate a Key Management Service.
The security best practices outlined in T. Lodderstedt et.al. should be considered as well as the
recommendations from W3C.

8.1. Encryption is Not a Solution “Until the End of Time”

Any encrypted information can be deciphered and given enough motivation and computing
power. Protection by encryption simply gives “you” time to take relevant action such as warning
your customers that personal record files have been stolen. But because the credit card
information is stored encrypted, your customers have the opportunity to cancel their credit
cards and prevent damage before the numbers are deciphered.

8.2. Trusted Applications

For any DCS solution to work securely, it is of paramount importance to also take the client
application into the equation. If a client is capable of decrypting information and storing a copy
of the original data without protection, the entire solution is questionable. To ensure the release
of DEKs and KEKs to client applications, the use of access token audiences should be used.
This is one way to establish 3rd party-based trust into client applications. Another model —
not considered as the model is only applicable to a certain type of applications — is based on
direct trust leveraging digital signatures. Regardless which model is followed, great care must be
applied when modifying the key.audiences list.

OPEN GEOSPATIAL CONSORTIUM 22-014 56

8.3. Vulnerabilities Introduced by Malicious Code

Any Web-browser based application that renders information to the user via HTML
is susceptible to malicious JavaScript code injection. If the malicious code intercepts
communication or can obtain sensitive information stored in main memory or in browser
storage, the leaking of access tokens and, even more dangerous, decryption of data or even
DEKs may happen. As soon as Web-browser based clients can be used in “your” federated
system, great assurance must exist that nowhere in the system malicious code injection is
possible! This is a difficult and time-consuming task but paramount when leveraging DCS to
protect sensitive data.

8.4. Vulnerabilities Introduced by XSS

Any Web-browser based application must be able to thwart cross-site scripting. Any attacker
who can execute XSS is capable of acting as the authenticated user. As such, authorization
codes and access tokens can be harvested and replayed to Resource Servers and the Key
Management Services without the knowledge of the actual user. As with malicious code
injection vulnerability, great care must be taken to ensure that any Web-browser based
application is free of XSS vulnerabilities before registration with the Authorization Server.

8.5. Key Delegation

The KMS API supports updating the access conditions for DEK and KEK. Great care must
be taken when adding users to the list of trusted key.subjects or key.emails as well as
application identifiers to the key.audiences. For example, when delegating key access via
emails, only those emails should be used for which the provider guarantees authenticity and
uniqueness (another user may never get the same email address some other user had before).
User identifiers (subject ids) need to be unique across the entire ecosystem. This is difficult for
federated systems. To avoid clashing of user ids, basing uniqueness on DIDs as defined by W3C
did-cbor-representation is recommended.

8.6. Use of Policy-Based Access Control

The use of policy-based access control offers great flexibility for the key owner to establish very
specific access conditions to a DEK and KEK. Great care must be taken to guarantee that the
policy actually permits only “wanted” conditions. A sophisticated test harness should be used

OPEN GEOSPATIAL CONSORTIUM 22-014 57

to ensure that the policy does not contain “oversights” and produce false positives (unintended
permits).

8.7. Deletion of Keys

The NIST Recommendation for Key Management: Part 1 introduces a state model for keys. One
of the recommendations is not to prune a key persistently but rather store a key deleted via
the API “somewhere else” to make it inaccessible for future access via the API. However, super
admin access must be allowed in case an encrypted artifact is discovered that is encrypted with
that deleted key.

8.8. Never Exchange Keys in the Clear

The paramount principle of DCS is to ensure integrity and confidentiality to data independent
from other security mechanisms. Therefore, the read, generate, and register operations should
never exchange DEK or KEK in plain JSON encoding. Following the DCS principle, JWE
encoding should always be used.

8.9. Authentication

Any operation on a DEK or KEK requires authentication. If the authentication information is
missing or invalid, the implementation should return a HTTP status code 401.

The PK API’s read operation does not require authentication, as obtaining a public key is not
restricted.

8.10. Authorization

The business logic defines the conditions under which a KMS operation is executed for the DEK
and KEK. Authorization is always based on authentication which allows identifying the acting
user.

To be HTTP compliant, an implementation must return HTTP status code 403 if the execution of
the operation is denied.

An implementation may decide to release different details to a user, such as why the execution
was rejected, based on the information about the user from the authentication.

OPEN GEOSPATIAL CONSORTIUM 22-014 58

8.11. OAuth2 Bearer Token Security Considerations

The use of OAuth2 bearer tokens is widely adopted. However, the ease of use for client
applications introduces the greatest danger: A bearer token is like cash — so long it is valid and
you know how to use it, you can get basically anything. When an attacker can sniff the network
(assuming the Internet threat model), it is possible for them not only to fetch a token but also
URLs and HTTP requests that the access token is used with. For OGC APIs with a given path
pattern, an attacker could easily use a harvested token and construct valid URLs once one
URL was captured. It would thereby be possible in a very short time (perhaps before the token
expires) to either fetch all protected resources or, maybe worse, simply delete all resources10.

As outlined in IETF RFC 6819, a bearer access token can be presented to any Resource Server
without additional proof of possession. The use of proof access tokens can thwart the re-use
of stolen access tokens. For any proof token, the client must submit some kind of additional
knowledge that the access token is being used legitimately. One approach linked to the
application is defined in D. Fett et.al.. The proof is via holder-of-key: The use of a private / public
key pair is required and the use of an additional HTTP header that contains a digitally signed
proof.

It is important that the KMS API avoid key leakage or key management constructed by an
attacker. This can be ensured by using DPoP access tokens as defined in D. Fett et.al. on the
DCS Service and KMS API. Depending on the HTTP operation and the resource, different
options for a DPoP access token can be used. The “simple” proof of processing DPoP HTTP
request headers seems to be sufficient when requesting encrypted data from the DCS Service.
However, on the KMS API, it is important to thwart request replay. Therefore, the KMS should
also leverage the strict resource URI and nonce option. The binding of the resource URI to an
access token prevents an attacker from using the access token for …/items/4711 on …/items/
007. When fetching a DEK from the KMS, the resource nonce should be used. This ensures that
the access token cannot be replayed from the attacker’s system as the nonce is valid only once.

The optional conformance class Annex A.9 allows an implementation to upgrade from Bearer to
DPoP access tokens.

10Executing a batch script that creates 100s of DELETE requests in parallel is very sufficient!

OPEN GEOSPATIAL CONSORTIUM 22-014 59

A

ANNEX A (INFORMATIVE)
CONFORMANCE CLASSES

OPEN GEOSPATIAL CONSORTIUM 22-014 60

A ANNEX A
(INFORMATIVE)
CONFORMANCE CLASSES

An implementation of the KMS must implement at least the mandatory conformance class. The
implementation of the optional conformance classes would extend the functionality to “deal”
with additional use cases.

A.1. Conformance Class DEK (Mandatory)

This conformance class is mandatory as it defines the core use of the KMS. An implementation
listing the conformance class DEK must implement the DEK Data Model, Business Logic, and API.

A.2. Conformance Class KEK (Optional)

This conformance class is optional. Any implementation listing this conformance class must
implement the KEK Data Model, Business Logic, and API.

This conformance class supports the creation of JWE encodings for a DEK which is important
for use with encrypted GeoPackages.

A.3. Conformance Class PK (Optional)

This conformance class is optional. Any implementation listing this conformance class must
implement the PK Data Model, Business Logic, and API.

This conformance class supports the reading of DEK in JWE format. The client can register the
public key to use the key encryption (wrapping).

OPEN GEOSPATIAL CONSORTIUM 22-014 61

A.4. OpenAPI (Mandatory)

This conformance class is mandatory. Any implementation listing this conformance class must
provide an OpenAPI description via the endpoint /api.

A.5. Authentication (Mandatory)

This conformance class is mandatory. Any implementation listing this conformance class
must use the appropriate OpenAPI security scheme to inform clients about the expected
authentication protocol.

An implementation must return HTTP status code 401 if required authentication information is
missing. The HTTP header WWW-Authenticate, as defined in IETF RFC 7235, is used to express
further metadata on supported authentication schemes and is recommended.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm=”KMS", type=“OAuth2”, scope=“DEK” as=“https://
www.authenix.eu”, title=”Access to DEK”

Figure A.1 — Example HTTP header WWW-Authenticate for Bearer Access Tokens

The parameters type, scope, and as are KMS specific additions to the basic requirement
expressing one authentication scheme (Bearer in this case).

A.6. Access Control (Mandatory)

This conformance class is mandatory. Any implementation listing this conformance class must
implement the integral business logic described in Clause 7.

An implementation must return HTTP status code 403 if the process request is denied by the
integral business logic.

A.7. Conformance Class Policy (Optional)

This conformance class is optional. Any implementation listing this conformance class must
implement the business logic for policy-based access control using XACML 3 or GeoXACML 3
policies.

OPEN GEOSPATIAL CONSORTIUM 22-014 62

An implementation must return HTTP status code 403 if the process request is denied by the
integral business logic or by the policy-based business logic.

NOTEThe implementation is capable of processing XACML 3 or GeoXACML 3 policies.

A.8. CORS (Optional)

This conformance class is optional but recommended. Any implementation listing this
conformance class must support W3C cors.

NOTEThe main aspect is that the implementation supports HTTP method OPTIONS.

A.9. DPoP (Optional)

This conformance class is optional but recommended. As an upgrade from a bearer access token,
it prevents the replay of stolen access tokens and thereby prevents the unwanted leakage of
DEKs and the management of access conditions for DEKs.

An implementation must be compliant with the Resource Server responsibilities defined in the
D. Fett et.al.. It is recommended that the nonce option be enforced on the DEK and KEK APIs.

NOTETo prevent the use of access tokens created by an attacker gained via XSS or malicious
code injection into a Web-browser based client application (see D. Fett et.al. section 11.4
“Untrusted Code in the Client Context”) specific code review and testing must be applied before
such a public client can be registered with the Authorization Server. To prevent an attacker
from harvesting authorization codes to independently create access (and refresh) tokens, only
Authorization Servers should be used that (i) do not allow the implicit flow and (ii) support DPoP
with the authorization request as described in D. Fett et.al. section 10.

OPEN GEOSPATIAL CONSORTIUM 22-014 63

B

ANNEX B (INFORMATIVE)
POLICY EXAMPLES

OPEN GEOSPATIAL CONSORTIUM 22-014 64

B ANNEX B
(INFORMATIVE)
POLICY EXAMPLES

B.1. Example of policy representing the integral business
logic

The following example of policy reflects the integral business logic in a XACML based fashion.

<xacml3:Policy xmlns:xacml3="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
 PolicyId="http://axiomatics.com/alfa/identifier/KMS.BusinessLogic"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:
permit-overrides"
 Version="1.0">
 <xacml3:Description/>
 <xacml3:PolicyDefaults>
 <xacml3:XPathVersion>http://www.w3.org/TR/1999/REC-xpath-19991116</xacml3:
XPathVersion>
 </xacml3:PolicyDefaults>
 <xacml3:Target/>
 <xacml3:Rule Effect="Permit" RuleId="KMS.BusinessLogic#rule_1">
 <xacml3:Description/>
 <xacml3:Target>
 <xacml3:AnyOf>
 <xacml3:AllOf>
 <xacml3:Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-
equal">
 <xacml3:AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string"
 >read</xacml3:AttributeValue>
 <xacml3:AttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent=
"false"
 />
 </xacml3:Match>
 </xacml3:AllOf>
 </xacml3:AnyOf>
 </xacml3:Target>
 <xacml3:Condition>
 <xacml3:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <xacml3:Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-of-
any">

OPEN GEOSPATIAL CONSORTIUM 22-014 65

 <xacml3:Function
 FunctionId="urn:oasis:names:tc:xacml:1.0:function:boolean-equal"/>
 <xacml3:AttributeDesignator AttributeId="urn:sd:key:active"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:
environment"
 DataType="http://www.w3.org/2001/XMLSchema#boolean" MustBePresent=
"false"/>
 <xacml3:AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#boolean"
 >true</xacml3:AttributeValue>
 </xacml3:Apply>
 <xacml3:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <xacml3:Apply
 FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-at-least-
one-member-of">
 <xacml3:AttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-
subject"
 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent=
"false"/>
 <xacml3:AttributeDesignator AttributeId="urn:sd:key:subjects"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:
resource"
 DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent=
"false"
 />
 </xacml3:Apply>
 <xacml3:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <xacml3:Apply
 FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-at-
least-one-member-of">
 <xacml3:AttributeDesignator AttributeId="urn:sd:client_id"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:
resource"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="false"/>
 <xacml3:AttributeDesignator AttributeId="urn:sd:key:audiences"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:
resource"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="false"/>
 </xacml3:Apply>
 <xacml3:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:
and">
 <xacml3:Apply
 FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-of-any">
 <xacml3:Function
 FunctionId="urn:oasis:names:tc:xacml:1.0:function:dateTime-
greater-than-or-equal"/>
 <xacml3:AttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:environment:
current-dateTime"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:
environment"
 DataType="http://www.w3.org/2001/XMLSchema#dateTime"
 MustBePresent="false"/>
 <xacml3:AttributeDesignator AttributeId="urn:sd:key:not-before"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:
environment"
 DataType="http://www.w3.org/2001/XMLSchema#dateTime"
 MustBePresent="false"/>
 </xacml3:Apply>

OPEN GEOSPATIAL CONSORTIUM 22-014 66

 <xacml3:Apply
 FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-of-any">
 <xacml3:Function
 FunctionId="urn:oasis:names:tc:xacml:1.0:function:dateTime-
less-than-or-equal"/>
 <xacml3:AttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:environment:
current-dateTime"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:
environment"
 DataType="http://www.w3.org/2001/XMLSchema#dateTime"
 MustBePresent="false"/>
 <xacml3:AttributeDesignator AttributeId="urn:sd:key:not-after"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:
environment"
 DataType="http://www.w3.org/2001/XMLSchema#dateTime"
 MustBePresent="false"/>
 </xacml3:Apply>
 </xacml3:Apply>
 </xacml3:Apply>
 </xacml3:Apply>
 </xacml3:Apply>
 </xacml3:Condition>
 </xacml3:Rule>
</xacml3:Policy>

Figure B.1 — XML encoded example XACML3 Policy

data:application/xacml+xml;base64,
PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz48IS0tVGhpcyBmaWxlIH
dhcyBnZW5lcmF0ZWQgYnkgdGhlIEFMRkEgUGx1Z2luIGZvciBFY2xpcHNlIGZyb20gQXhp
b21hdGljcyBBQiAoaHR0cDovL3d3dy5heGlvbWF0aWNzLmNvbSkuLS0+PCEtLUFueSBtb2
...

Figure B.2 — Base64 encoded policy using data URI scheme (truncated)

NOTEThe use of the data URI scheme maintains the original mime type which is application/
xacml+xml in this case.

OPEN GEOSPATIAL CONSORTIUM 22-014 67

C

ANNEX C (INFORMATIVE)
KMS INTERACTION
EXAMPLES

OPEN GEOSPATIAL CONSORTIUM 22-014 68

C ANNEX C
(INFORMATIVE)
KMS INTERACTION EXAMPLES

The following diagrams illustrate the basic protocols between DCS components. The purpose for
the diagrams is to show the different interactions with the KMS embedded in DCS use cases.

C.1. DCS Consumer Triggers Data Encryption Via DCS
Service

The activity starts from the DCS Application where the DCS Consumer requests encrypted data
from the DCS Service.

• For the first alternative, the DCS Service generates one or multiple DCSs to process the
request. All generated DEKs are registered with the KMS and their reference is included
in the DCS response. For a JWE, for example, the header contains the elements kid and
kurl. These elements can be used by the DCS Application to obtain the DEK. Therefore,
the DCS Service registers one or many DEKs on behalf of the DCS Consumer.

• For the second alternative, the DCS Service receives the DEK reference with the request.
The DCS Service uses the DEK fetched from the KMS to encrypt the data. The kid and
kurl elements refer to that DEK.

• For the third alternative, the DCS Application generates a DEK and encrypts it with a KEK.
The KEK (a private / public key pair) is registered with the KMS. For a GET request, the
DCS Service uses the DEK to encrypt the requested data. For a POST request, the DCS
Service uses the unwrapped DEK to decrypt the uploaded data.

OPEN GEOSPATIAL CONSORTIUM 22-014 69

Figure C.1 — Component interactions to request encrypted data (simplified)

OPEN GEOSPATIAL CONSORTIUM 22-014 70

Figure C.2 — Component interactions to decrypt the response (simplified)

C.2. DCS Producer Triggers Data Encryption Via Own
DCS Task

The activity starts when a DCS Producer encrypts data in the private network. The generated
DEKs get registered with the KMS accessible from an outside network (e.g., the Internet). The
DCS Producer uploads the encrypted data to accessible network services, shared drives, etc.
or pushes the encrypted data to DCS Consumers. It is also possible to load encrypted data or
GeoPackages with encrypted content on mobile devices. At some later time, the DCS Consumer
fetches the encrypted data and finds the kid or kurl. The KMS is contacted to obtain the
required DEK. The KMS returns the DEK to the DCS Application if the DCS Producer has set the
access conditions accordingly.

OPEN GEOSPATIAL CONSORTIUM 22-014 71

Figure C.3 — Component interactions to decrypt pre-encrypted data (simplified)

C.3. DCS Consumer Triggers Data Signature Via DCS
Service

For the first alternative, the DCS Consumer requests data digitally signed by the DCS Service.
The DCS Service uses its own private key to produce the digital signature. The DCS Application
can fetch the associated public key for signature verification from the `/.well-known/jwks.json
`endpoint.

For the second alternative, the DCS Producer can process digitally signed (static) data and make
it available to the DCS Consumer(s). In this case, it is assumed that the DCS Producer has no
"my domain"/.well-known endpoint available. Therefore, the PK gets registered with the KMS.
All digitally signed data (e.g., using the JWS encoding) contain the kid and kurl elements in
the header. This enables any application to verify the digital signature by leveraging the kurl
information. The use of the kid assumes an out of band negotiation of the KMS base URL.

OPEN GEOSPATIAL CONSORTIUM 22-014 72

Figure C.4 — Component interactions to verify digitally signed data (simplified)

C.4. Illustration of Access Token Exchange

For the interaction where the DCS Consumer triggers the production of encrypted data, the
DCS Service must act on behalf of the user towards the KMS. Assuming access tokens that are
properly tied to an aud11, it is bad practice to make an access token valid for the DCS Service
and KMS together. Only a few trusted applications or services should have the privilege of
requesting access token from the Authorization Server that are entitled to register (or generate)
a DEK with the KMS. In that sense, the DCS Service must exchange the access token received

11One or many audiences

OPEN GEOSPATIAL CONSORTIUM 22-014 73

from the DCS application into an access token to register DEKs on behalf of the acting user.
These interactions are illustrated in the figure below.

Figure C.5 — Example component interactions including token exchange
when DCS Service generates DEK and registers DEK with KMS

OPEN GEOSPATIAL CONSORTIUM 22-014 74

D

ANNEX D (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 22-014 75

D ANNEX D
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE AUTHOR
PRIMARY CLAUSES
MODIFIED

DESCRIPTION

2022-
05-31

0.1
A.
 Matheus

All Initial version

2022-
06-02

0.2
A.
 Matheus

Mainly section 4
and 5

Drafting data model and DEK API

2022-
06-15

0.3
A.
 Matheus

All main sections Clarification and soundness

2022-
10-19

0.4
A.
 Matheus

All main sections
Review and completeness, security
considerations extended, conformance class
DPoP added

2022-
10-24

0.5
A.
 Matheus

All main sections Integration of Carl Reed comments

2022-
11-02

0.6
A.
 Matheus

All main sections
Integration of Yves Coene comments, example
sequence diagrams moved to Appendix C

OPEN GEOSPATIAL CONSORTIUM 22-014 76

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 22-014 77

BIBLIOGRAPHY

[1] Dr. Ron S. Ross, Victoria Y. Pillitteri, Gary Guissanie, Ryan Wagner, Richard Graubart,
Deborah Bodeau: NIST SP 800-172, Enhanced Security Requirements for Protecting
Controlled Unclassified Information — A Supplement to NIST Special Publication 800-171.
Gaithersburg, MD (2021). https://csrc.nist.gov/publications/detail/sp/800-172/final.

[2] Abbreviated Language for Authorization Version 1.0, OASIS draft, 2015: https://www.
oasis-open.org/committees/download.php/55228/alfa-for-xacml-v1.0-wd01.doc

[3] Web Cryptography API, W3C (2017): https://www.w3.org/TR/WebCryptoAPI/

[4] OGC Testbed-16: Data Centric Security Engineering Report. OGC (2021): https://docs.
ogc.org/per/20-021r2.html

[5] OGC Testbed-17: Data Centric Security Engineering Report. OGC (2021): https://docs.
ogc.org/per/21-019.html

[6] OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer (DPoP), IETF
draft, 2022 : https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-11

[7] OAuth 2.0 Security Best Current Practice, IETF draft, 2022 : https://www.ietf.org/
archive/id/draft-ietf-oauth-security-topics-20.txt

[8] OGC Testbed-18: Secure Asynchronous Catalogs ER. OGC (2022): https://docs.ogc.org/
per/22-018.html

OPEN GEOSPATIAL CONSORTIUM 22-014 78

https://csrc.nist.gov/publications/detail/sp/800-172/final
https://www.oasis-open.org/committees/download.php/55228/alfa-for-xacml-v1.0-wd01.doc
https://www.oasis-open.org/committees/download.php/55228/alfa-for-xacml-v1.0-wd01.doc
https://www.w3.org/TR/WebCryptoAPI/
https://docs.ogc.org/per/20-021r2.html
https://docs.ogc.org/per/20-021r2.html
https://docs.ogc.org/per/21-019.html
https://docs.ogc.org/per/21-019.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-11
https://www.ietf.org/archive/id/draft-ietf-oauth-security-topics-20.txt
https://www.ietf.org/archive/id/draft-ietf-oauth-security-topics-20.txt
https://docs.ogc.org/per/22-018.html
https://docs.ogc.org/per/22-018.html

	I. Executive Summary
	II. Keywords
	III. Security Considerations
	IV. Submitters
	V. Abstract
	1. Scope
	2. Normative references
	3. Terms, definitions and abbreviated terms
	3.1. Terms and definitions
	3.3. Abbreviated terms

	4. Introduction
	4.1. KMS Interfaces and DCS Architecture
	4.1.1. DCS Consumer Initiates Production of DCS Assets
	4.1.2. DCS Producer Initiates production of DCS Assets
	4.1.3. DCS Consumer Obtains Keys
	4.1.4. DCS Consumer Manages Their Keys

	5. Data Model, Operations and Key Representation
	5.1. Data Model
	5.2. Key Variables and Their Meaning
	5.3. Operations
	5.3.1. Key Read
	5.3.2. Key Bulk Read
	5.3.3. Key Registration
	5.3.4. Key Bulk Registration
	5.3.5. Key Generation
	5.3.6. Key Activation / Deactivation
	5.3.7. Key Bulk Generation
	5.3.8. Key Update
	5.3.9. Key Deletion

	5.4. Key Representation
	5.4.1. JWK representation of a DEK and KEK
	5.4.2. DEK Specific Properties
	5.4.3. JWT Representation of the DEK

	5.5. Policy Representation

	6. Key Management Server API
	6.1. Overview
	6.2. Access Token Use
	6.3. HTTP Media Types
	6.4. HTTP Methods and KMS Operations
	6.5. HTTP Status Codes
	6.6. KMS API Parameters and Their Meanings
	6.7. KMS API and Operations
	6.7.1. Read
	6.7.2. Bulk Read
	6.7.3. Register
	6.7.4. Bulk Register
	6.7.5. Generate
	6.7.6. Bulk Generate
	6.7.7. Update
	6.7.8. Delete

	7. Key Management Server Business Logic
	7.1. Integrated Business Logic
	7.1.1. Operations on a DEK or KEK
	7.1.2. Operations on a PK

	7.2. Policy-Based Business Logic
	7.3. Key Policy Operations
	7.4. Implications to the integrated business logic

	8. KMS Security Considerations
	8.1. Encryption is Not a Solution “Until the End of Time”
	8.2. Trusted Applications
	8.3. Vulnerabilities Introduced by Malicious Code
	8.4. Vulnerabilities Introduced by XSS
	8.5. Key Delegation
	8.6. Use of Policy-Based Access Control
	8.7. Deletion of Keys
	8.8. Never Exchange Keys in the Clear
	8.9. Authentication
	8.10. Authorization
	8.11. OAuth2 Bearer Token Security Considerations

	Annex A (informative) Conformance Classes
	A.1. Conformance Class DEK (Mandatory)
	A.2. Conformance Class KEK (Optional)
	A.3. Conformance Class PK (Optional)
	A.4. OpenAPI (Mandatory)
	A.5. Authentication (Mandatory)
	A.6. Access Control (Mandatory)
	A.7. Conformance Class Policy (Optional)
	A.8. CORS (Optional)
	A.9. DPoP (Optional)

	Annex B (informative) Policy Examples
	B.1. Example of policy representing the integral business logic

	Annex C (informative) KMS Interaction Examples
	C.1. DCS Consumer Triggers Data Encryption Via DCS Service
	C.2. DCS Producer Triggers Data Encryption Via Own DCS Task
	C.3. DCS Consumer Triggers Data Signature Via DCS Service
	C.4. Illustration of Access Token Exchange

	Annex D (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Meaning of common variables
	Table 2 — Meaning of DEK variables
	Table 3 — Meaning of KEK variables
	Table 4 — Meaning of PK variables
	Table 5 — Supported HTTP methods for the DEK and KEK endpoints
	Table 6 — Supported HTTP methods for the PK endpoints
	Table 7 — General HTTP (error) status codes
	Table 8 — Additional API parameters and their definition
	Table 9 — HTTP status code details for the register() operation
	Table 10 — Response details for the update() operation

	List of Figures
	Figure 1 — DCS OGC Testbed 18 DCS Architecture
	Figure 2 — Data Model
	Figure 3 — JWK example of a DEK (symmetric key):
	Figure 4 — JWK example of a KEK (asymmetric key):
	Figure 5 — JWK example of a PK (public part of the asymmetric key):
	Figure 6 — Specific properties of the DEK example above
	Figure 7 — Example of JWT including two DEK keys
	Figure 8 — Example: JWT compact serialization of JSON above
	Figure 9 — Example DEK representation in JSON including policy
	Figure 10 — Example of the Integral Business Logic Expressed in ALFA
	Figure 11 — Example: read of one DEK using application/jwk+json
	Figure 12 — Example: read of one DEK using application/jose
	Figure 13 — Example JWE header for an encrypted DEK (key wrap)
	Figure 14 — Example: read of one KEK using application/jwk-set+json
	Figure 15 — Example: read of one PK using application/jwk-set+json
	Figure 16 — Example: read of multiple DEKs
	Figure 17 — Example: single DEK registration using content-type application/jwk+json
	Figure 18 — Example: multiple DEK registration using content-type application/jwk-set+json
	Figure 19 — Example: multiple DEK registration using content-type application/jwk-set+json
	Figure 20 — Example: single DEK registration using content-type application/x-www-form-urlencoded
	Figure 21 — Example: single DEK generation using content-type application/jwk+json
	Figure 22 — Example: multiple DEK generation using content-type application/jwk-set+json
	Figure 23 — Example: successful DEK update using content-type application/jwk+json
	Figure 24 — Example: error DEK update using content-type application/jwk+json
	Figure 25 — Example: successful DEK delete
	Figure 26 — Example: error DEK delete; not authenticated
	Figure 27 — Example: error DEK delete; not authorized
	Figure 28 — Read DEK or KEK
	Figure 29 — Register DEK or KEK
	Figure 30 — Generate DEK or KEK
	Figure 31 — Update DEK or KEK
	Figure 32 — Delete DEK or KEK
	Figure 33 — Read PK
	Figure 34 — Register PK
	Figure 35 — Update PK
	Figure 36 — Delete PK
	Figure 37 — XACML Flow Diagram
	Figure 38 — Conditions for executing a policy operation
	Figure A.1 — Example HTTP header WWW-Authenticate for Bearer Access Tokens
	Figure B.1 — XML encoded example XACML3 Policy
	Figure B.2 — Base64 encoded policy using data URI scheme (truncated)
	Figure C.1 — Component interactions to request encrypted data (simplified)
	Figure C.2 — Component interactions to decrypt the response (simplified)
	Figure C.3 — Component interactions to decrypt pre-encrypted data (simplified)
	Figure C.4 — Component interactions to verify digitally signed data (simplified)
	Figure C.5 — Example component interactions including token exchange when DCS Service generates DEK and registers DEK with KMS

