
OGC® DOCUMENT: 21-044
External identifier of this OGC® document: http://www.opengis.net/doc/PER/t17-D045

OGC TESTBED 17: CITE
ENGINEERING REPORT

ENGINEERING REPORT

PUBLISHED

Submission Date: 2021-11-19
Approval Date: 2021-12-09
Publication Date: 2022-04-08
Editor: Luis Bermudez

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, (“Licensor”), free of charge and subject to the terms set forth below, to any
person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction
(except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense
copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices
on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a
notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE
ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY
RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in
any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that
LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You
agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held
by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not
be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization
of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use
certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of
U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Copyright notice

Copyright © 2022 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.ogc.org/legal/

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-044 ii

http://www.ogc.org/legal/

CONTENTS

I. ABSTRACT ..vi

II. EXECUTIVE SUMMARY ..vi

III. KEYWORDS .. vii

IV. PREFACE ...viii

V. SECURITY CONSIDERATIONS ... ix

VI. SUBMITTING ORGANIZATIONS .. x

VII. SUBMITTERS .. x

1. NORMATIVE REFERENCES ...12

2. TERMS AND DEFINITIONS ...14

3. INTRODUCTION ...17

4. EXECUTABLE TEST SUITE ... 19
4.1. TestNG Test ...19

5. ALTERNATIVE TEST ENVIRONMENT .. 27
5.1. ETF test framework .. 27
5.2. NeoTL DSL ...27
5.3. Comparison with CTL ... 27
5.4. Structure of a NeoTL Test Case ... 30
5.5. Dynamic tests in NeoTL ...35
5.6. Extension Points ...39
5.7. Modularization ..41
5.8. Summary of executable Test developed ...42
5.9. TIE results ..56
5.10. Findings and Recommendations .. 56

6. IMPLEMENTATION CONSIDERATIONS ..59
6.1. Automatization of Tests from OGC Standards ... 59
6.2. Echo Process ...59
6.3. Execution Process ..67

7. CONCLUSIONS ... 72

OPEN GEOSPATIAL CONSORTIUM 21-044 iii

8. FUTURE WORK .. 74

ANNEX A (INFORMATIVE) REVISION HISTORY ...76

BIBLIOGRAPHY ...78

LIST OF TABLES

Table 1 .. 22
Table 2 .. 43
Table A.1 — Revision History .. 76

LIST OF FIGURES

Figure 1 .. 19
Figure 2 — Start screen of the TEAM Engine tests for the OGC API - Processes - Part 1 standard
..21
Figure 3 — Result screen of the TEAM Engine tests for the OGC API - Processes - Part 1
standard ..22
Figure 4 — CTL test case example .. 28
Figure 5 — NeoTL test case example ..29
Figure 6 — NeoTL IDE example ..30
Figure 7 — Test Suite .. 31
Figure 8 — Test Module ... 31
Figure 9 — Test Case .. 31
Figure 10 — Validation Step ..32
Figure 11 — ETF skipped status ...33
Figure 12 — Post request .. 33
Figure 13 — JSON assertion example exists or empty ...34
Figure 14 — JSON assertion example count ...34
Figure 15 — JSON assertion example contains ..34
Figure 16 — Generators ... 35
Figure 17 — NeoTL Generator report ... 37
Figure 18 — Extractors ... 37
Figure 19 — NeoTL Extractor report ...39
Figure 20 — XQuery extension .. 40
Figure 21 — Extractor calling XQuery .. 41

OPEN GEOSPATIAL CONSORTIUM 21-044 iv

Figure 22 — Assertion Groups ..41
Figure 23 — Import statement ..42
Figure 24 — File structure ... 42
Figure 25 — Example definition of the echo process ... 59
Figure 26 — Another example definition of the echo process ..64
Figure 27 — SwaggerUI without examples ..69
Figure 28 — SwaggerUI with additional paths and associated examples ... 70

OPEN GEOSPATIAL CONSORTIUM 21-044 v

I ABSTRACT

This OGC Testbed 17 Engineering Report (ER) documents the result of the work performed
in the CITE thread of the OGC Testbed-17 initiative. CITE is the Compliance Interoperability
& Testing Evaluation Subcommittee that provides a forum for an open, consensus discussion
regarding approaches and issues related to conformance and interoperability testing as part
of the OGC standards process. This ER provides information about the development of a
test suite for the OGC API — Processes Standard (OGC18-062r2) to be executed in the OGC
Test Evaluation tool (TEAM Engine). The ER also documents an evaluation of an alternative
environment for OGC compliance testing.

I I EXECUTIVE SUMMARY

This Engineering Report (ER) captures the result of the work performed in the CITE thread
as part of the OGC Testbed-17 initiative. The document provides information about the
development of a test suite for the OGC API – Processes standard to be executed in the
OGC Validator tool (which is implemented using open source TEAM Engine software product)
and evaluation of an alternative environment for OGC testing. The work is done under the
umbrella of the Compliance Interoperability & Testing Evaluation (CITE) Subcommittee (SC) that
provides a forum for an open, consensus discussion regarding approaches and issues related to
conformance and interoperability testing as part of the OGC Standardization process.

The content of this ER will inform OGC Standards Working Groups (SWGs) about how to
structure and write compliance tests for the most recent OGC API Standards. The ER also
documents the pros and cons of using a possible alternative testing environment. It will facilitate
enhancement of interoperability by providing the infrastructure to test and improve more
implementations that are seeking compliance certification towards OGC standards.

As at 2021, several OGC SWGs are developing API standards that enable easier interaction of
modern clients with servers. The OGC API — Processes standard is designed to enable a client
to explore and run processes available over the web. The work done in Testbed 17 provides both
the TestNG scripts and an alternative environment to write the tests to check if implementations
are compliant with the OGC API — Processes.

The OGC Validator is currently implemented using a Java-based application called TEAM Engine
to perform testing of software that claim compliance with one or more OGC standards. TEAM
Engine executes one or more tests written in either the Compliance Test Language (CTL) or
implemented using the TestNG Framework. The Testbed-17 participants explored the challenges
of using this testing framework for the most recent OGC APIs.

The work in this thread responded to the following research questions:

• What does a TEAM Engine test for OGC API — Processes looks like?

OPEN GEOSPATIAL CONSORTIUM 21-044 vi

https://www.ogc.org/projects/groups/citesc
https://docs.ogc.org/is/18-062r2/18-062r2.html

• What alternative test environment(s) should be used in the future and why?

• How do tests look like for this new test environment?

• Is it possible to automatically generate tests from the latest generation of OGC
specifications? If it is possible, then what level of automatization is possible? Does a
high level of automatization require a change to the format that the OGC standards are
currently encoded?

An overview of findings and recommendations is as follows:

• Creating compliance tests for the new OGC API Standards is possible.

• Two environments were tested, following TestNG and a new environment based on
the ETF test framework. The ETF framework is used in the European Union’s INSPIRE
Validator and uses NeoTL. Note that the INSPIRE Validator also uses OGC’s TEAM Engine
instance for some tests. The work in the CITE thread of Testbed-17 demonstrated that
OGC compliance testing can be performed using this environment. However, more work
is necessary to make this approach part of the OGC Testing tools, including improving
performance.

• Java stubs can be generated automatically from a Standards Abstract Test Suite (ATS) in
ASCII doc. This speeds up the process of developing the new tests.

• For tests that require inspection of the results (e.g. a process), providing a scenario where
the request and responses are known is important.

• The current TEAM Engine needs further enhancements such as supporting content type
“application/problem+json” and providing better feedback to the tester (e.g. header
content being sent).

I I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, CITE, API, compliance

OPEN GEOSPATIAL CONSORTIUM 21-044 vii

IV PREFACE

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-044 viii

V SECURITY CONSIDERATIONS

No security considerations have been made for this document.

OPEN GEOSPATIAL CONSORTIUM 21-044 ix

VI SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• GeoSolutions

VI I SUBMITTERS

All questions regarding this document should be directed to the editor or the contributors:

NAME ORGANIZATION ROLE

Luis Bermudez GeoSolutions Editor

Peter Vretanos CubeWerx Contributor

Benjamin Pross 52°North Contributor

Gérald Feony Geolabs Contributor

Jon, Herrmann interactive instruments Gmb
H Contributor

OPEN GEOSPATIAL CONSORTIUM 21-044 x

1

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 21-044 11

1 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

OGC 18-062r2, OGC API — Processes — Part 1: Core, Open Geospatial Consortium (2021)

OPEN GEOSPATIAL CONSORTIUM 21-044 12

2

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 21-044 13

2 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

2.1. Abstract Test Suite (ATS)

A set of testable assertions about the functionality of a standard, which an implementation must
support in order to achieve compliance to the standard. ATS are based on the conformance
clauses defined in the standard.

2.2. Compliance

A state of a specific software product, which implements an OGC Standard and has passed the
Compliance Testing Evaluation.

2.3. Executable Test Suite (ETS)

A set of code (e.g. Java and CTL) that provides runtime tests for the assertions defined by the
ATS. Test data required to do the tests are part of the ETS.

OPEN GEOSPATIAL CONSORTIUM 21-044 14

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

2.4. Process

A process p is a function that for each input returns a corresponding output

where denotes the domain of arguments and denotes the co-domain of values y. Within
this specification, process arguments are referred to as process inputs and result values are
referred to as process outputs. Processes that have no process inputs represent value generators
that deliver constant or random process outputs.

The term process is one of the most used terms both in the information and geosciences
domain. If not stated otherwise, this specification uses the term process as an umbrella term for
any algorithm, calculation or model that either generates new data or transforms some input
data into output data as defined in section 4.1 of the WPS 2.0 standard.

OPEN GEOSPATIAL CONSORTIUM 21-044 15

3

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 21-044 16

3 INTRODUCTION

The Compliance Program provides the resources, procedures, and policies to certify products for
compliance with one or more OGC standards. Amongst the resources provided by the program
are executable test suites that enable developers to test whether their products implement OGC
Standards correctly. This Engineering Report (ER) provides the following major sections:

• Considerations for implementing an Executable Test Suite for OGC API — Processes

• New test environment and comparison with the current TEAM Engine

• Description of an ETS for OGC API — Processes

• Future work

• Conclusions

OPEN GEOSPATIAL CONSORTIUM 21-044 17

4

EXECUTABLE TEST SUITE

OPEN GEOSPATIAL CONSORTIUM 21-044 18

4 EXECUTABLE TEST SUITE

This section provides information about the development of the Executable Test Suite (ETS) for
OGC API — Processes. The executable test suite was developed as a module for deployment
into TEAM Engine software. The following standards development organizations are known to
offer compliance testing using TEAM Engine:

• Open Geospatial Consortium (OGC)

• US Geospatial Intelligence Standards Working Group (GWG), with responsibility for
standards of the US National System for Geospatial Intelligence (NSG)

• Defence Geospatial Information Working Group (DGIWG)

The European Union’s INSPIRE Validator is also known to use the OGC’s TEAM Engine instance
for some INSPIRE validation tests.

4.1. TestNG Test

4.1.1. Overview

The executable test for OGC API — Processes 1.0 is available at the OGC GitHub repository:

https://github.com/opengeospatial/ets-ogcapi-processes10

The test has been developed in TestNG[https://testng.org/doc/], the current test framework
used by the OGC Compliance Program.

The following standards have been used:

• OGC API — Processes — Part 1: Core (OGC 18-062r2)

Each conformance class is represented as a TestNG Java class within its own package. The
package structure is shown in the following:

|
|_ org.opengis.cite.ogcapiprocesses10
|_ org.opengis.cite.ogcapiprocesses10.conformance
|_ org.opengis.cite.ogcapiprocesses10.general
|_ org.opengis.cite.ogcapiprocesses10.jobs
|_ org.opengis.cite.ogcapiprocesses10.landingpage
|_ org.opengis.cite.ogcapiprocesses10.openapi3
|_ org.opengis.cite.ogcapiprocesses10.process
|_ org.opengis.cite.ogcapiprocesses10.processlist

OPEN GEOSPATIAL CONSORTIUM 21-044 19

https://github.com/opengeospatial/ets-ogcapi-processes10
https://testng.org/doc/

|_ org.opengis.cite.ogcapiprocesses10.util

Figure 1

The following conformance classes were implemented:

• Landing Page /

• API Definition /api

• Conformance Path /conformance

• HTTP 1.1

• Processes /processes

• Jobs /jobs

The following conformance classes were not implemented:

• Joblist

• Dismiss

• Callback

The method stubs and code comments (JavaDoc) for the Java classes were created out of the
abstract test suite using an automated script.

A demonstration instance of the test suite is available here:

https://17.testbed.dev.52north.org/teamengine/

For the validation of the JSON requests/responses the OpenAPI4J library was used.

The following image shows the start screen of the user interface. The user can specify the
endpoint of the landing page of the OGC API — Processes implementation, as well as the
identifier of a testable process.

OPEN GEOSPATIAL CONSORTIUM 21-044 20

https://17.testbed.dev.52north.org/teamengine/

Figure 2 — Start screen of the TEAM Engine tests for the OGC API - Processes - Part 1 standard

OPEN GEOSPATIAL CONSORTIUM 21-044 21

Figure 3 — Result screen of the TEAM Engine tests
for the OGC API - Processes - Part 1 standard

During the testbed, 30 tests of the OGC API — Processes standard were implemented. An
unresolved issue with the validation of the schema for results prevents the completion of a
number of tests. The following table shows the test results using the OGC API — Processes
instance running at: http://tb17.geolabs.fr:8101/ogc-api using the process published by the
server that has the identifier “echo”:

Table 1

TEST RESULT REASON

test Job Results Sync Skipped
Did not find Link with value
rel=monitor, skipping test.

test Job Results Async Document Passed - =

test Job Creation Input Inline
Binary

Failed Not implemented yet.

OPEN GEOSPATIAL CONSORTIUM 21-044 22

http://tb17.geolabs.fr:8101/ogc-api

TEST RESULT REASON

test Job Creation Sync Raw Mixed
Multi

Failed Not implemented yet.

test Job Results No Such Job Passed -

test Job Results Exception Results
Not Ready

Failed Not implemented yet.

validate Conformance Operation
And Response

Passed -

test Job Creation Input Inline Passed -

test Job Creation Sync Raw Value
One

Failed Got unexpected status code: 500

test Job Exception No Such Job Passed -

test Job Creation Inputs Passed -

test Job Creation Input Ref Skipped No input with href detected.

test Job Creation Request Passed -

test Process Success Passed -

test Job Op Passed -

test Process Exception No Such
Process

Passed -

test Job Results Failed
body: Type expected ‘string’, found
‘object’. (code: 1027) (…)

test Job Results Failed Failed
body: Field ‘type’ is required.
 (code: 1026) From: body.
<required>

test Job Success Passed -

test Process List Success Passed -

landing Page Validation Passed -

test Process Passed -

test Job Creation Success Async Passed -

OPEN GEOSPATIAL CONSORTIUM 21-044 23

TEST RESULT REASON

test Job Creation Input Array Failed Not implemented yet.

test Pl Links Passed -

test Job Creation Input Inline
Mixed

Failed Not implemented yet.

test Job Creation Auto Execution
Mode

Passed -

test Job Creation Input Validation Failed
expected
[400] but found

[200]

test Job Creation Default Outputs Passed -

test Pl Limit Response Passed -

test Job Creation Sync Document Passed -

test Job Results Async Raw Ref Passed -

test Job Creation Input Inline Bbox Passed -

test Job Creation Input Inline
Object

Passed -

test Process List Passed -

test Job Results Async Raw Value
One

Failed Java exception

test Job Results Async Raw Mixed
Multi

Failed Not implemented yet.

test Job Creation Sync Raw Value
Multi

Failed Not implemented yet.

test Job Results Async Raw Value
Multi

Failed Not implemented yet.

test Pl Limit Definition Passed -

landing Page Retrieval Passed -

test Job Creation Sync Raw Ref Failed Not implemented yet.

test Job Creation Default
Execution Mode

Passed -

test Job Creation Op Passed -

OPEN GEOSPATIAL CONSORTIUM 21-044 24

4.1.2. Recommendations

• The TestNG framework works well with the executable test suite for the OGC API —
Processes — Part 1: Core. Except for the validation issue for the result schema no critical
issues were detected. The OpenAPI4J library reliably validates the JSON requests/
responses.

• OGC API — Processes — Part 1: Core consists of several conformance classes with
currently 44 tests. The tests are listed directly beneath each other. This way, it can be hard
to get an overview of the passing/failing tests. Thus, a possibility for better structuring of
the tests is recommended.

• The creation of new tests requires to execute the test repeatedly. Currently, single tests
cannot be run, only the complete test suite, which can take a considerable amount of time.
It is therefore recommended to investigate how single tests can be run.

• A large number of execute requests are sent to the implementation under test to evaluate
various combinations of parameters. It is recommended to investigate whether responses
to execute requests can be reused to cover different test cases.

• A number of the tests that fail seem to be a cascaded effect of the fact that the
TestNG-based ETS does not recognize the specification relation types. For example,
the test “landing Page Validation” fails because the ETS is looking for a link with
relation “processes” but the correct link relation according to the specification is “http://
www.opengis.net/def/rel/ogc/1.0/processes”. The ETS should be modified to address this.
The problem has been reported in the GitHub Issues log.

• The TestNG-based ETS does not seem to recognize the content type application/
problem+json as a valid content type for an exception response. The OGC API — Processes
specification, however, cites RFC 7807 where it specifies this as the correct MIME type
for error report. A GitHub issue has been recorded for implementing support for the MIME
type specified in RFC 7807.

• Improve feedback to the users. Good feedback enables a pseudo-interactive engagement
with the OGC Validator supporting incremental refinement of the server being tested. The
feedback should include the headers passed to the server, the URL that was accessed, and
the content of the body sent to the server under test, if applicable. It is recommended to
include this level of feedback on the TestNG-based ETS.

OPEN GEOSPATIAL CONSORTIUM 21-044 25

https://github.com/opengeospatial/ets-ogcapi-processes10/issues/15
https://datatracker.ietf.org/doc/html/rfc7807
https://github.com/opengeospatial/ets-ogcapi-processes10/issues/14
https://datatracker.ietf.org/doc/html/rfc7807

5

ALTERNATIVE TEST
ENVIRONMENT

OPEN GEOSPATIAL CONSORTIUM 21-044 26

5 ALTERNATIVE TEST ENVIRONMENT

An alternative test environment based on the ETF test framework was used to validate
implementations towards OGC standards, in particular focusing on the new OGC API standards.
The standard selected was OGC API — Process.

5.1. ETF test framework

The ETF test framework is an open-source application framework that can be used by the tester
to execute tests through a web interface. The ETF uses a modular software-architecture and is
designed to deliver user-friendly, self-explanatory test reports.

It is successfully used as a basis for the European INSPIRE Validator and in several projects for
German mapping agencies.

5.2. NeoTL DSL

For web service testing, ETF has leveraged SoapUI[https://www.soapui.org/], but for various
reasons a new solution was evaluated in 2020. A new ETF test driver for geoservice and Web
API testing was implemented in a prototype based on a new domain specific language (DSL).
The DSL was named NeoTL.

The goal was to simplify the definition of tests with the DSL as much as possible and thus
make it maintainable and accessible to subject matter experts without knowledge of a specific
programming language. Language concepts were adapted for Testbed 17 and the special
requirements for creating OGC API Processes tests.

To lower the entry barrier cloud-based tool support was leveraged. The test cases were
developed in the browser, a local installation was not required.

Another goal was to simplify the communication between the various experts; the SWG
members, test authors and implementers by using a DSL.

5.3. Comparison with CTL

Prior to 2014, executable test suites in the OGC Validator used the OGC Compliance Test
Language (CTL). Due to limitations of CTL, since 2014 all new executable test suites developed
for the OGC Validator are built using the TestNG framework instead of CTL. This section
presents a comparison between CTL and NeoTL, however, it should be noted that CTL is a

OPEN GEOSPATIAL CONSORTIUM 21-044 27

https://www.soapui.org/

legacy technology that is no longer used to develop new executable test suites in the OGC
Compliance Program.

Domain Specific Languages are distinguished between internal and external DSLs.

Examples of internal DSL include domain-specific UML profiles, domain-specific XML Schema,
the Gradle DSL of the Gradle build tool and also the CTL.

Internal DSL essentially use the language concepts of their host language. With Gradle these
language concepts are based on Groovy[https://groovy-lang.org/], with CTL the concepts are
based on XML elements and various XML schema. This means that the grammar is restricted
to the syntax of the host language and it adopts all the nice but also the less pleasant syntactic
features, as the following CTL test illustrates:

<test name= "wfs:wfs-1.1.0-Basic-GetCapabilities-tc1">
 <param name= "wfs.GetCapabilities.get.url"/>
 <assertion>The GET method request must be supported (using HTTP GET).
</assertion>
 <comment>GetCapabilities by GET. Pass if all of the following conditions
are true:
 (1) the response is schema valid;
 (2) the root document is an wfs:WFS_Capabilities document.
 </comment>
 <link title= "wfs-1.1.0-Basic-GetCapabilities-tc1">http://cite.
opengeospatial.org/te2/about/wfs/1.1.0/site/ats-wfs11-basic-cc/GetCapabilities/
GET/BasicGetCapabilities-GET-tc1.html</link>
 <link>OGC 04-094, 13.1, p.79</link>
 <code>

 <xsl:variable name= "request1">
 <request>
 <url>
 <xsl:value-of select= "$wfs.GetCapabilities.get.url"/>
 </url>
 <method>get</method>
 <param name= "service">WFS</param>
 <param name= "version">1.1.0</param>
 <param name= "request">GetCapabilities</param>
 <p:XMLValidatingParser.GMLSF1/>
 </request>
 </xsl:variable>

 <xsl:choose>
 <xsl:when test= "not($request1/*)">
 <ctl:message>FAILURE: Missing or invalid response entity.</ctl:
message>
 <ctl:fail/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:variable name= "expression">//wfs:WFS_Capabilities</xsl:
variable>
 <ctl:call-test name= "ctl:assert-xpath">
 <ctl:with-param name= "expr" select= "$expression"/>
 <ctl:with-param name= "doc" select= "$request1"/>
 </ctl:call-test>
 </xsl:otherwise>
 </xsl:choose>

 </code>

OPEN GEOSPATIAL CONSORTIUM 21-044 28

https://docs.gradle.org/current/dsl/index.html
https://groovy-lang.org/
https://github.com/opengeospatial/ets-wfs11/blob/master/src/main/scripts/ctl/basic/GetCapabilities/GetCapabilities-GET.xml#L213-L251

</test>

Figure 4 — CTL test case example

An external DSL is a language that’s parsed independently of the host general purpose language.
For example, regular expressions and CSS. The concrete syntax and the semantics are freely
defined. This means that external DSLs can be more flexible and expressive. The CTL example
would look something like this in NeoTL (the Request definition is externalized and referenced):

TestCase "The GET method request must be supported (using HTTP GET)" {
 id: wfs.1.1.0.Basic-GetCapabilities-tc1
 description: "GetCapabilities by GET. Pass if all of the following
 conditions are true:
 (1) the response is schema valid;
 (2) the root document is an wfs:WFS_Capabilities document."

 references:
 - "Abstract Test Case wfs-1.1.0-Basic-GetCapabilities-atc3, p.79"
 "https://portal.ogc.org/files/?artifact_id=8339"
 AbstractTestCase

 ValidationStep "GetCapabilities with GET method" {
 id: step
 description: "GetCapabilities with GET method and validate response
against
 GMLSF1 schema"

 given:
 - Service is "WFS 1.1.0"

 when: Request requests.wfs1.GetCapabilities executed

 then:
 - Assert XPath {
 /wfs:WFS_Capabilities/* exists
 }
 - Assert XmlSchema {
 schema "http://schemas.opengis.net/wfs/1.1.3/wfs.xsd"
 validates
 }
 }
}

GetRequest "GetCapabilities" {
 id: requests.wfs1.GetCapabilities

 query:
 - "service" = "WFS"
 - "version" = "1.1.0"
 - "request" = "GetCapabilities"
}

Figure 5 — NeoTL test case example

Furthermore, it is possible to tailor the IDE closely to the language. Thus, it is possible to
perform semantic checks in addition to syntactic checks, syntax highlighting and to simplify
the implementation of tests for the test developer with several other IDE services. Figure 6

OPEN GEOSPATIAL CONSORTIUM 21-044 29

shows the editor with some IDE services like the Outline and the Problem views as well as the
syntactically highlighted test definition for an OGC API — Processes test case.

Figure 6 — NeoTL IDE example

All currently implemented IDE services are described in the language workbench
documentation.

5.4. Structure of a NeoTL Test Case

The individual language concepts are described in detail in the documentation and additionally
also displayed directly in the IDE as help. The section briefly describes how a NeoTL Test Case is
structured and what concepts it is based on.

The basis for the structuring is the ISO 19105:2021 — Geographic information — Conformance
and testing , and thus executable tests are composed of the following concepts:

• test suites

• test modules

• and test cases.

OPEN GEOSPATIAL CONSORTIUM 21-044 30

https://github.com/interactive-instruments/ogc-api-processes-neotl-ets/blob/main/doc/Workbench.md
https://github.com/interactive-instruments/ogc-api-processes-neotl-ets/blob/main/doc/Workbench.md
https://github.com/interactive-instruments/ogc-api-processes-neotl-ets/blob/main/doc/Writing_tests.md
https://www.iso.org/obp/ui/#iso:std:iso:19105:dis:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:19105:dis:ed-2:v1:en

TestSuite "OGC API - Processes" {
 id: org.opengis.ets.ogcapi.processes
 version: 0.9.2-snapshot
 description: "Executable Test Suite for validating Web APIs that implement
 the 'OGC API - Processes - Part 1: Core' standard. The Test Suites
 are based on the normative Abstract Test Suites from Annex A of the
 OGC Implementation Specification draft 1.0-draft.7-SNAPSHOT."

 references:
 - "OGC Implementation Specification"
 "https://docs.ogc.org/DRAFTS/18-062.html"
 ImplementationSpecification

 executes:
 - oapi.processes.core
 - oapi.processes.joblist
 // ...

 defines:
 - URL $schemaUrl = "https://raw.githubusercontent.com/opengeospatial/
ogcapi-processes/master/core/openapi/schemas"
}

Figure 7 — Test Suite

TestModule "Job List" {
 id: oapi.processes.joblist

 description: "The Job list requirements class specifies how to retrieve a
job list from the API"

 references:
 - "Core ATS"
 "http://docs.ogc.org/DRAFTS/18-062.html#_conformance_class_core"
 AbstractTestSuite
 - "Conformance Class Job list"
 http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/job-list
 ConformanceClass

 executes:
 - joblist.list
 - joblist.list.links
 // ...
}

Figure 8 — Test Module

TestCase "Validate links section in job list" {
 id: joblist.list.links
 description: "Validate that the proper links are included in a response."

 references:
 - "Conformance Class Job list"
 "https://docs.ogc.org/DRAFTS/18-062.html#_conformance_class_job_
list"
 AbstractTestCase

OPEN GEOSPATIAL CONSORTIUM 21-044 31

 ValidationStep "Validate self link" {
 // ...
 }

 ValidationStep "Validate HTML link" {
 // ...
 }
}

Figure 9 — Test Case

The syntax for enumerations (see executes keyword in Figure 7) is influenced by YAML, but
unlike YAML, the number of spaces before indentation is ignored.

A test case can contain one or multiple validation steps. Validation steps define the interaction
with the implementation and the expected behavior. Their structure is based on the well-known
Given-Then-When scheme used by many test frameworks.

ValidationStep "Request the Landing Page as JSON document" {
 id: step
 description: "Request an JSON document with an Accept application/json
header"

 given:
 - ConformanceClass http://www.opengis.net/spec/ogcapi-processes-1/1.0/
conf/json

 when: Request requests.landing.json executed

 then:
 - Assert OpenAPI3 {
 schema "${schemaUrl}/landingPage.yaml"
 validates
 }
 - Assert HTTP { statusCode "200" }
 - Assert HTTP { contentType "application/json" }
}

Figure 10 — Validation Step

Related literature [1] suggests that the three main sections of a Validation Step are:

• the given section which describes the precondition for the whole Validation Step

• the when section is the action that is executed to interact with the implementation

• the then section verifies the results of the previous action with assertions

5.4.1. Given

If all preconditions in the given section are met, then the action defined in the when section is
executed. The result of the action must satisfy all assertions defined in the then section to result
in a passed validation. If at least one precondition is not fulfilled, the result of the validation
step is the status skipped, if a conformance class is prerequisite for the test case, which is not

OPEN GEOSPATIAL CONSORTIUM 21-044 32

implemented by the tested implementation, the status is not_applicable. Figure 11 shows how
the status skipped is displayed in an ETF test report when a test case with required information
has failed.

Figure 11 — ETF skipped status

5.4.2. When

In the When section, it can be specified which requests are sent to the implementation, whether
information is extracted from a response, or whether further tests are performed at runtime
based on a response. Figure 12 shows an example for a Post Request with a JSON payload.

 PostRequest "Execute Echo Process" {

OPEN GEOSPATIAL CONSORTIUM 21-044 33

 id: requests.echo

 path: "processes/${echoId}/execution"

 headers:
 - "Accept" = "application/json"
 - "Prefer" = ${preferHeader}

 body {
 "inputs": ${inputs},
 "outputs": ${outputs},
 "response": "document"
 } as application/json
 }

Figure 12 — Post request

Variables can be specified in the form ${variableName} and will be replaced at execution time.

5.4.3. Then

Querying JSON properties in the then section is done using the JSONPath syntax. The results of
the queries are checked with certain functions, which in turn are expressed in the DSL:

 - Assert JSON {
 $.jobs[?(@.type == 'process')] exists
 or $.jobs empty
 otherwise FAIL with "No job entry exists with the
 requested process type 'process'."
 }

Figure 13 — JSON assertion example exists or empty

 - Assert JSON {
 $.jobs count == 1
 otherwise FAIL with "Expected exactly one entry in the Job List"
 }

Figure 14 — JSON assertion example count

 - Assert JSON {
 $.conformsTo contains some
 "http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/core"
 otherwise FAIL with "Expected an 'conformsTo' array containing
 the value
 'http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/core'."
 }

Figure 15 — JSON assertion example contains

OPEN GEOSPATIAL CONSORTIUM 21-044 34

https://goessner.net/articles/JsonPath/

5.5. Dynamic tests in NeoTL

In addition to the declaration of conformance classes as precondition, the results of other
validation steps can also be specified as preconditions. During the interaction with the
implementation, further tests can be created based on the results. The concept of generators is
used for this purpose, shown in Figure 16.

TestCase "Process descriptions" {
 id: process.description
 description: "Validate that a process description can be retrieved from
the expected location."

 ValidationStep "Generate Requests" {
 id: process.desc.generator
 description: "Generate Process Description Requests"

 given:
 - ConformanceClass http://www.opengis.net/spec/ogcapi-
processes-1/1.0/conf/ogc-process-description
 - Response from process.list.encoding.json
 when: Generator generators.process.ids executed
 then:
 - Assert JSON {
 ${processIds} not empty
 otherwise FAIL with "No IDs in process list found"
 }
 }

 ValidationStep "Validate Process Description" {
 id: process.desc
 description: "Validated responses of the generated process
descriptions requests"

 given:
 - One ${processId} of ${processIds} from process.desc.generator
 when: Request requests.processes.description executed
 then:
 - Assert HTTP { statusCode "200" }
 - Assert HTTP { contentType "application/json" }
 - Assert OpenAPI3 {
 schema
 "${schemaUrl}/process.yaml"
 validates
 }
 - Assert JSON {
 $.id equals ${processId}
 otherwise FAIL with
 "The id in the returned response does not match the requested
id"
 }
 }
}

Generator "Generate Process IDs" {
 id: generators.process.ids

OPEN GEOSPATIAL CONSORTIUM 21-044 35

 from RESPONSE
 as ${processIds} query $..id
}

GetRequest "Get Process Description" {
 id: requests.processes.description

 path: "processes/${processId}"

 headers:
 - "Accept" = "application/json"
}

Figure 16 — Generators

The generator is specified within the when section. With the generator, a set of values is
extracted and a validation step is created and executed for each value in the set. The result in
the report can be seen in Figure 17.

OPEN GEOSPATIAL CONSORTIUM 21-044 36

Figure 17 — NeoTL Generator report

If only one test is to be executed, an extractor must be used.

TestCase "Check for an echo process" {
 // /conf/core/job-creation-op
 id: jobs.echo

OPEN GEOSPATIAL CONSORTIUM 21-044 37

 description: "Check that an echo process with the id 'echo' or
'EchoProcess' exists"
 references:
 - "Processes /processes"
 "https://docs.ogc.org/DRAFTS/18-062.html#_jobs"
 AbstractTestCase

 ValidationStep "Extract EchoProcess ID" {
 id: extract
 description: "Check that an echo process with the id 'echo' or
'EchoProcess' exists"

 given:
 - Response from process.list.encoding.json

 when: Extractor extractors.echo.id executed

 then:
 - Assert JSON {
 ${echoId} exists
 otherwise FAIL with "No echo ID could be extracted"
 }
 }
}

Extractor "Extract Echo Process ID" {
 id: extractors.echo.id

 from RESPONSE
 as ${echoId} query $.*[?(@.id == 'echo' || @.id == 'EchoProcess')].id
}

TestCase "Request the process description of the the echo process" {
 id: jobs.echo.description
 description: "Check that the echo process description can be retrieved"
 references:
 - "Processes /processes"
 "https://docs.ogc.org/DRAFTS/18-062.html#_jobs"
 AbstractTestCase

 ValidationStep "Request EchoProcess description" {
 id: request
 description: "Check that the echo process description can be retrieved"

 given:
 - Value ${echoId} from jobs.echo.extract

 when: Request requests.process.description executed

 then:
 - Assert OpenAPI3 {
 schema
 "${schemaUrl}/process.yaml"
 validates
 }
 }
}

Figure 18 — Extractors

OPEN GEOSPATIAL CONSORTIUM 21-044 38

In the first test case, the ID of the echo process is queried and it is checked that such a process
exists. If the validation step of the first test case does not fail, the validation step in the second
test case jobs.echo.description is executed, which uses the extracted job ID in a request.

Figure 19 — NeoTL Extractor report

5.6. Extension Points

A DSL usually describes what should happen, but not exactly how it should happen. Up to a
certain level, the NeoTL DSL allows to define assertions, such as:

• Does an element exist?

• Does there exist at least / exactly one element in a sequence / array?

• Does a property possess the given value?

• Does a JSON object have properties / is an array empty?

• How does it compare with other elements?

• Does a response validate against a schema?

OPEN GEOSPATIAL CONSORTIUM 21-044 39

• Is a specific content type returned?

• Is a specific status code returned?

• Does an HTML message validate against a W3C markup validator?

For many tests, these assertions are sufficient and they help the test developer to stay on an
abstract level. For more complex queries, a general purpose language, such as Java, is inevitably
required.

During the implementation of executable test cases, there were two areas where general
purpose languages had to be used:

1. A Java library was integrated to generate input data from a JSON schema
definition

2. A special case had to be considered for the generation of inputs for Qualified
Values. This was implemented in XQuery 3.1. Although XQuery is originally
designed for processing XML, it has a generic data model. It can be used to
process both XML and JSON, enabling processing of new OGC API services as
well as services that serve XML.

The listing in Figure 20 shows the second case with the XQuery extension.

(:~
 : Check if schema defines a Qualified Value.
 :
 : see https://docs.ogc.org/DRAFTS/18-062.html#req_core_process-execute-input-
inline-object
 :)
declare %private function oapip:mustBeQualified($schema) {
 exists($schema[type='object' and not(properties/bbox)]) or
exists($schema[oneOf or anyOf or allOf])
};

(:~
 : Wraps each qualified value into a 'value' JSON object
 :
 : see https://docs.ogc.org/DRAFTS/18-062.html#req_core_process-execute-input-
inline-object
 :)
declare function oapip:qualifiedSampleValues($nodes, $genFct as
function(item()) as item()*) {
 for $n in $nodes/*
 return element { $n/name() } {
 let $generated := $genFct($n/schema)
 return if (oapip:mustBeQualified($n/schema)) then
 element { "value" } {
 (: qualified value :)
 $generated
 }
 else
 $generated
 }

OPEN GEOSPATIAL CONSORTIUM 21-044 40

https://www.w3.org/TR/xquery-31/

};

Figure 20 — XQuery extension

The defined function is called an extractor.

Extractor "Extract the input and output values from the schema object" {
 id: extractors.inputs

 from RESPONSE
 as ${inputs} query {
 oapip:qualifiedSampleValues($.inputs, etf:sampleFromSchema)
 }
}

Figure 21 — Extractor calling XQuery

The etf:sampleFromSchema function is an XQuery wrapper for the Java library mentioned in the
first case and is not described here.

5.7. Modularization

All definitions are stored in files. For better overview, higher level structure definitions are only
allowed once per file, otherwise the test developer is free to split the definitions into multiple
files.

Assertions can also be externalized, combined into assertion groups and used in multiple
validation steps:

AssertionGroup "JSON response received" {
 id: assertions.json.success

 assertions:
 - Assert HTTP { statusCode "200" }
 - Assert HTTP { contentType "application/json" }
}

AssertionGroup "Processes Conformance Class in Json Array" {
 id: assertions.processes.cc.json.array

 assertions:
 - AssertionGroup assertions.json.success must pass
 - Assert OpenAPI3 {
 schema
 "${schemaUrl}/confClasses.yaml"
 validates
 }
}

Figure 22 — Assertion Groups

OPEN GEOSPATIAL CONSORTIUM 21-044 41

If assertions in another file are referenced, this must be specified via an import statement.

import "Assertions.neotl"

Figure 23 — Import statement

The following directory structure was created for the Executable Test Suite. The content is
described after the directory or file name.

.
├── ProcessesApi-testsuite.neotl # the Test Suite definition
├── extensions # the extension libraries that are used in this test suite
│ └── SampleGenerator.xqm
├── shared # definitions that are used in several Validation Steps
│ └── Assertions.neotl
├── tests
│ ├── 1_Core
│ │ ├── 1_Landing
│ │ │ ├── Actions.neotl
│ │ │ └── Landing-tcs.neotl # Test Case definitions
│ │ ├── 2_API
│ │ │ ├── Api-tcs.neotl
│ │ │ └── Actions.neotl
│ │ ├── 3_Conformance
│ │ │ ├── Actions.neotl # externalized Actions
│ │ │ ├── Assertions.neotl # externalized Assertions
│ │ │ └── Conformance-tcs.neotl # Test Case definitions
│ │ ├── 4_Processes
│ │ │ ├── Actions.neotl
│ │ │ ├── Assertions.neotl
│ │ │ └── Processes-tcs.neotl
│ │ ├── 5_Jobs
│ │ │ ├── Actions.neotl
│ │ │ └── Jobs-tcs.neotl
│ │ └── Core.neotl # the Test Module definition
│ ├── 2_Process_Description
etc.

Figure 24 — File structure

Currently, Java libraries can also be placed as JAR files in the extension folder and be imported.
They are loaded at test runtime with a separate Java ClassLoader to avoid conflicts between
different ETSs.

5.8. Summary of executable Test developed

The tests developed in NeoTL have been published in a public GitHub repository [2]

At the beginning of the implementation, the definitions of the abstract test cases were parsed
and templates were generated for the DSL. Since some abstract test cases describe the

OPEN GEOSPATIAL CONSORTIUM 21-044 42

https://github.com/interactive-instruments/ogc-api-processes-neotl-ets

validation of several aspects at once, they could not be implemented one-to-one, but had to be
adapted to the DSL.

A further degree of automation could have been achieved if:

• the dependencies between tests would have been hyperlinked in a structured way

• the interaction with the implementation would have been separated from the validation of
the results

Some abstract test cases could not be implemented because they require a sequence of events
with certain test data or require internal control of the implementation under test’s behavior
that cannot be realized with a black box test (see Abstract Test Case /conf/core/job-results-
failed or /conf/dismiss/job-dismiss-op).

Certain tests require the test framework to receive and analyze certain test data from the
application (e.g. Server) being tested, via HTTP Post or HTTP Get Request (see /conf/
callback/job-callback or /conf/core/job-results-async-raw-ref). These far-reaching framework
functionalities were also not implemented.

The following table contains an overview of all test cases implemented during Testbed 17. The
mapping of the abstract test case identifiers to the NeoTL executable test case identifiers can be
seen in the second and third columns.

Table 2

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

1 /conf/core/landingpage-op

core.landing.
any, core.
landing.json,
core.landing.
html

implemented

Validate that a
landing page can
be retrieved from
the expected
location.

2 /conf/core/landingpage-success

core.landing.
any, core.
landing.json,
core.landing.
html

implemented

Validate that
the landing page
complies with the
require structure
and contents.

3 /conf/core/api-definition-op core.api.json implemented

Validate that the
API Definition
document can be
retrieved from the
expected location.

4
/conf/core/api-definition-
success

core.api.json implemented
Validate that the
API Definition
complies with the

OPEN GEOSPATIAL CONSORTIUM 21-044 43

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

required structure
and contents.

5 /conf/core/conformance-op

core.
conformance,
core.
conformance.
link,core.
conformance.
links

implemented

Validate that a
Conformance
Declaration can be
retrieved from the
expected location.

6 /conf/core/conformance-success
core.
conformance.
links

implemented

Validate that the
Conformance
Declaration
response complies
with the required
structure and
contents.

7 /conf/core/http - -
not a test case
but a general
precondition

Validate that the
resource paths
advertised through
the API conform
with HTTP 1.
1 and, where
appropriate, TLS.

8 /conf/core/process-list core.process.list implemented

Validate that
information about
the processes
can be retrieved
from the expected
location.

9 /conf/core/pl-limit-definition
core.process.
list.limit

implemented

Validate that
the limit query
parameter is
constructed
correctly.

10 /conf/core/process-list-success core.process.list implemented

Validate that
the process list
content complies
with the required
structure and
contents.

11 /conf/core/pl-links
core.process.
list.links

implemented
Validate that
the proper links

OPEN GEOSPATIAL CONSORTIUM 21-044 44

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

are included in a
response.

12 /conf/core/pl-limit-response
core.process.
list.limit

implemented

Validate that
the limit query
parameter
is processed
correctly.

13 /conf/core/process
core.process.
description

implemented

Validate that
a process
description can be
retrieved from the
expected location.

14 /conf/core/process-success
core.process.
description

implemented

Validate that the
content complies
with the required
structure and
contents.

15
/conf/core/process-exception-
no-such-process

core.process.
exception.no.
such.process

implemented

Validate that an
invalid process
identifier is
handled correctly.

16 /conf/core/job-creation-op core.jobs.echo implemented
abstract
description

Validate the
creation of a new
job.

17
/conf/core/job-creation-auto-
execution-mode

core.jobs.echo implemented

Validate that the
server correctly
handles the
execution mode
for a process.

18
/conf/core/job-creation-default-
execution-mode

core.jobs.echo implemented

Validate that the
server correctly
handles the
default execution
mode for a
process.

19 /conf/core/job-creation-request core.jobs.echo implemented

Validate that the
body of a job
creation operation
complies with the
required structure
and contents.

OPEN GEOSPATIAL CONSORTIUM 21-044 45

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

20 /conf/core/job-creation-inputs core.jobs.echo implemented

Validate that
servers can accept
input values both
inline and by
reference.

21
/conf/core/job-creation-input-
inline

core.jobs.echo implemented

Validate in-
line process
input values are
validated against
the corresponding
schema from
the process
description.

22
/conf/core/job-creation-input-
ref

core.jobs.echo implemented

Validate that input
values specified
by reference in an
execute request
are correctly
processed.

23
/conf/core/job-creation-input-
array

core.jobs.echo implemented

Verify that the
server correctly
recognizes
the encoding
of parameter
values for input
parameters with
a maximum
cardinality greater
than one.

24
/conf/core/job-creation-input-
inline-object

core.jobs.echo implemented

Validate that
inputs with a
complex object
schema encoded
in-line in an
execute request
are correctly
processed.

25
/conf/core/job-creation-input-
inline-mixed

core.jobs.echo implemented

Validate that
inputs of mixed
content encoded
in-line in an
execute request

OPEN GEOSPATIAL CONSORTIUM 21-044 46

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

are correctly
processed.

26
/conf/core/job-creation-input-
inline-binary

core.jobs.echo implemented

Validate that
binary input values
encoded as base-
64 string in-line in
an execute request
are correctly
processes.

27
/conf/core/job-creation-input-
inline-bbox

core.jobs.echo implemented

Validate that
inputs with a
bounding box
schema encoded
in-line in an
execute request
are correctly
processed.

28
/conf/core/job-creation-input-
validation

core.jobs.echo implemented

Verify that the
server correctly
validates process
input values
according to the
definition obtained
from the process
description.

29
/conf/core/job-creation-sync-
raw-value-one

not
implemented

no implementation
for testing
sync mode was
available

Validate that the
server responds
as expected when
synchronous
execution is
negotiated, a
single output
value is requested,
the response
type is raw
and the output
transmission is
value.

30
/conf/core/job-creation-sync-
raw-value-multi

not
implemented

no implementation
for testing
sync mode was
available

Validate that the
server responds
as expected when
synchronous
execution is

OPEN GEOSPATIAL CONSORTIUM 21-044 47

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

negotiated,
the response
type is raw
and the output
transmission is
value.

31
/conf/core/job-creation-sync-
raw-ref

not
implemented

no implementation
for testing
sync mode was
available

Validate that the
server responds
as expected when
synchronous
execution is
negotiated, the
response type
is raw and the
transmission mode
is ref.

32
/conf/core/job-creation-sync-
raw-mixed-multi

not
implemented

no implementation
for testing
sync mode was
available

Validate that the
server responds
as expected when
synchronous
execution is
negotiated,
the response
type is raw
and the output
transmission is a
mix of value and
reference.

33
/conf/core/job-creation-sync-
document

core.jobs.echo implemented

Validate that the
server responds
as expected when
synchronous
execution is
negotiated and the
response type is
document.

34
/conf/core/job-creation-success-
async

core.jobs.echo implemented

Validate the results
of a job that has
been created
using the async
execution mode.

OPEN GEOSPATIAL CONSORTIUM 21-044 48

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

35 /conf/core/job-op core.jobs.echo implemented
Validate that the
status info of a job
can be retrieved.

36 /conf/core/job-success core.jobs.echo implemented

Validate that the
job status info
complies with the
require structure
and contents.

37
/conf/core/job-exception-no-
such-job

core.jobs.echo implemented

Validate that
an invalid job
identifier is
handled correctly.

38 /conf/core/job-results core.jobs.echo implemented
Validate that the
results of a job can
be retrieved.

39 /conf/core/job-results-sync core.jobs.echo implemented

Validate that the
server responds
as expected when
getting results
from a job for a
process that has
been executed
synchronously.

40
/conf/core/job-results-async-
raw-value-one

not
implemented

Not implemented
in favor of higher
priority tests

Validate that the
server responds
as expected when
asynchronous
execution is
negotiated,
one output
is requested,
the response
type is raw
and the output
transmission is
value.

41
/conf/core/job-results-async-
raw-value-multi

not
implemented

Not implemented
in favor of higher
priority tests

Validate that the
server responds
as expected when
asynchronous
execution is
negotiated, more

OPEN GEOSPATIAL CONSORTIUM 21-044 49

https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_execution_mode

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

than one output
is requested,
the response
type is raw
and the output
transmission is
value.

42
/conf/core/job-results-async-
raw-ref

not
implemented

Not implemented
in favor of higher
priority tests

Validate that the
server responds
as expected when
asynchronous
execution is
negotiated,
the response
type is raw
and the output
transmission is
reference.

43
/conf/core/job-results-async-
raw-mixed-multi

not
implemented

Not implemented
in favor of higher
priority tests

Validate that the
server responds
as expected when
asynchronous
execution is
negotiated, more
than one output
is requested,
the response
type is raw
and the output
transmission is a
mix of value and
reference.

44
/conf/core/job-results-async-
document

core.jobs.echo implemented

Validate that the
server responds
as expected when
the asynchronous
execution is
negotiated and the
response type is
document.

45 /conf/core/job-results-failed
not
implemented

Requires a
concrete,
reproducible data-

Validate that
the job results
retrieved using

OPEN GEOSPATIAL CONSORTIUM 21-044 50

https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_execution_mode

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

driven scenario
or white box test,
duplicate identifier
with ATC 47

an invalid job
identifier complies
with the require
structure and
contents.

46
/conf/core/job-results-
exception-results-not-ready

not
implemented

Requires a
concrete,
reproducible data-
driven scenario or
white box test

Validate that
the job results
retrieved for an
incomplete job
complies with the
require structure
and contents.

47 /conf/core/job-results-failed
core.jobs.
results.failed

implemented

Validate that the
job results for a
failed job complies
with the require
structure and
contents.

48
/conf/ogc-process-description/
json-encoding

core tests with
ogc-process-
description CC

indirectly
expressed by
dependencies on
‘core’

Verify that a
JSON-encoded
OGC Process
Description
complies with the
required structure
and contents.

49
/conf/ogc-process-description/
inputs-def

core tests with
ogc-process-
description CC

indirectly
expressed by
dependencies on
‘core’

Verify that the
definition of inputs
for each process
complies with the
required structure
and contents.

50
/conf/ogc-process-description/
input-def

core tests with
ogc-process-
description CC

indirectly
expressed by
dependencies on
‘core’

Verify that the
definition of each
input for each
process complies
with the required
structure and
contents.

51
/conf/ogc-process-description/
input-mixed-type

core tests with
ogc-process-
description CC

indirectly
expressed by
dependencies on
‘core’

Validate that each
input of mixed
type complies
with the required

OPEN GEOSPATIAL CONSORTIUM 21-044 51

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

structure and
contents.

52
/conf/ogc-process-description/
outputs-def

core tests with
ogc-process-
description CC

indirectly
expressed by
dependencies on
‘core’

Verify that the
definition of
outputs for each
process complies
with the required
structure and
contents.

53
/conf/ogc-process-description/
output-def

core tests with
ogc-process-
description CC

indirectly
expressed by
dependencies on
‘core’

Verify that the
definition of each
output for each
process complies
with the required
structure and
contents.

54
/conf/ogc-process-description/
output-mixed-type

core tests with
ogc-process-
description CC

indirectly
expressed by
dependencies on
‘core’

Validate that each
output of mixed
type complies
with the required
structure and
contents.

55 /conf/json/definition
core tests with
json CC

indirectly
expressed by
dependencies on
‘core’

Verify support for
JSON.

56 /conf/html/content
core tests with
html CC

indirectly
expressed by
dependencies on
‘core’

Verify the content
of an HTML
document given
an input document
and schema.

57 /conf/html/definition
core tests with
html CC

indirectly
expressed by
dependencies on
‘core’

Verify support for
HTML

58 /conf/oas30/completeness
openapi3.
definitions.
openapi

implemented
Checked with
OpenAPI3
Assertion

Verify the
completeness
of an OpenAPI
document.

59 /conf/oas30/exceptions-codes
openapi3.
definitions.
openapi

implemented
Checked with
OpenAPI3
Assertion

Verify that
the OpenAPI
document fully
describes potential
exception codes.

OPEN GEOSPATIAL CONSORTIUM 21-044 52

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

60 /conf/oas30/oas-definition-1

openapi3.
definitions.
openapi,
openapi3.
definitions.html

implemented

Verify that JSON
and HTML
versions of
the OpenAPI
document are
available.

61 /conf/oas30/oas-definition-2
openapi3.
definitions.
openapi

implemented

Verify that
the OpenAPI
document is valid
JSON.

62 /conf/oas30/oas-impl - implemented
The description is
too abstract

Verify that all
capabilities
specified in
the OpenAPI
definition are
implemented by
the API.

63 /conf/oas30/security
openapi3.
definitions.
openapi

implemented
Checked with
OpenAPI3
Assertion

Verify that any
authentication
protocols
implemented
by the API are
documented in
the OpenAPI
document.

64 /conf/job-list/job-list-op
oapi.processes.
joblist.list

implemented

Validate that
information
about jobs can be
retrieved from the
expected location.

65 /conf/job-list/type-definition
oapi.processes.
joblist.
parameter.type

implemented

Validate that
the type query
parameter is
constructed
correctly.

66
/conf/job-list/processID-
definition

core.jobs.echo indirectly
Indirectly through
other test case

Validate that
the processID
query parameter
is constructed
correctly.

67 /conf/job-list/status-definition
oapi.processes.
joblist.

implemented
Validate that
the status query

OPEN GEOSPATIAL CONSORTIUM 21-044 53

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

parameter.
status

parameter is
constructed
correctly.

68
/conf/job-list/datetime-
definition

not
implemented

Not implemented
in favor of higher
priority tests

Validate that
the datetime
query parameter
is constructed
correctly.

69 /conf/job-list/duration-definition
not
implemented

Not implemented
in favor of higher
priority tests

Validate that the
minDuration and
maxDuration
query parameter
are constructed
correctly.

70 /conf/job-list/limit-definition
oapi.processes.
joblist.
parameter.limit

implemented

Validate that
the limit query
parameter is
constructed
correctly.

71 /conf/job-list/job-list-success
oapi.processes.
joblist.list

implemented

Validate that the
job list content
complies with the
required structure
and contents.

72 /conf/job-list/links
oapi.processes.
joblist.links

implemented

Validate that
the proper links
are included in a
response.

73 /conf/job-list/type-response
oapi.processes.
joblist.list

implemented

Validate that
the type query
parameter
is processed
correctly.

74
/conf/job-list/processID-
mandatory

core.jobs.echo indirectly
Indirectly through
other test case

Validate that
the processID
property is present
in every job.

75
/conf/job-list/processID-
response

core.jobs.echo indirectly
Indirectly through
other test case

Validate that
the processID
query parameter
is processed
correctly.

OPEN GEOSPATIAL CONSORTIUM 21-044 54

ABSTRACT
TEST
CASE NO.

ABSTRACT TEST CASE
IDENTIFIER

NEOTL
EXECUTABLE
TEST CASE
IDENTIFIERS

STATUS COMMENT
ABSTRACT TEST
PURPOSE

76 /conf/job-list/status-response

oapi.processes.
joblist.
parameter.
status

implemented

Validate that
the status query
parameter
is processed
correctly.

77 /conf/job-list/datetime-response
not
implemented

Not implemented
in favor of higher
priority tests

Validate that
the datetime
query parameter
is processed
correctly.

78 /conf/job-list/duration-response
not
implemented

Not implemented
in favor of higher
priority tests

Validate that the
minDuration and
maxDuration
query parameter
are processed
correctly.

79 /conf/job-list/limit-response
oapi.processes.
joblist.
parameter.limit

implemented

Validate that
the limit query
parameter
is processed
correctly.

80 /conf/callback/job-callback
oapi.callback.
echo

not
implemented
…

Callback
implemented
in Framework,
Concept in DSL,
but not yet in the
Execution Engine

Validate the
passing of a
subscriber-URL
in an execute
request.

81 /conf/dismiss/job-dismiss-op
not
implemented

echo process
should have a
sleep parameter,
which can be set
by the framework

Validate that a
running job can be
dismissed.

82
/conf/dismiss/job-dismiss-
success

not
implemented

echo process
should have a
sleep parameter,
which can be set
by the framework

Validate that the
content returned
when dismissing
a job complies
with the required
structure and
contents.

OPEN GEOSPATIAL CONSORTIUM 21-044 55

5.9. TIE results

Out of the 82 abstract test cases, 65 executable test cases were implemented. The implemented
test cases were run against the OGC API — Processes implementation of GeoLabs which passed
47 tests.

Other implementations were tested, but these did not implement the latest version of the OGC
API — Processes standard and therefore stopped the test runs at a very early stage.

5.10. Findings and Recommendations

1. During the implementation phase of the tests, maintenance of the used open-
source validation library OpenAPI4J was discontinued. As an alternative, the
KaiZen OpenAPI parser was tested, which did not reliably return errors when
validating more complex schemas, especially when combining schemas with
oneOf, anyOf and allOf. The OpenAPI4j library provided verifiable results with
the GeoLabs implementation and therefore continued to be used.

2. Since a large number of JSON libraries are written in JavaScript, one could
consider supporting this language alongside Java and XQuery as an additional
extension language for NeoTL.

3. Currently, Java libraries can only be stored as JAR files in an ETS folder.
Referencing specific versions as known from Maven or Gradle could be
considered. However, the consideration could also be influenced by the second
question, whether JavaScript libraries should also be usable.

4. Since only one ETS was implemented, it was not possible to evaluate how well
the reusability of definitions between different ETSs works.

5. The abstract test cases should be referenceable via an URL so that the URL can
be embedded in the executable tests. This might be performed using the OGC
definition server[https://www.ogc.org/def-server].

6. The abstract test cases could be made more machine-readable so that
dependencies can be extracted and that a distinction can be made between
interaction with the implementation and expected behavior. A fully automated
transformation into tests is not be possible, but a number of information could be
pre-filled in templates.

7. Certain language concepts can be improved or simplified. This would require
further feedback from users of NeoTL.

8. The IDE currently lacks a function to execute the test cases or individual requests
locally. For a test, the ETS must currently be deployed.

OPEN GEOSPATIAL CONSORTIUM 21-044 56

https://github.com/openapi4j/openapi4j
https://www.ogc.org/def-server

9. In case of missing language concepts, the following approach has proven
successful during development: in the first step, the extension is developed in a
general purpose language. If it is used more often and could be useful for other
executable test suites, one can think about including it directly as a language
concept in the DSL.

10. The performance of the IDE can be improved, especially by caching constraint
checks.

11. With a high number of generated validation steps, saving the responses,
generating the report and viewing it in the browser takes a relatively long time.
A test run with the GeoLabs implementation involves the execution of over 700
generated requests and the validation of over 2800 assertions. The runtime of
the tests takes less than 40 seconds, while the whole report is available after
almost 1.5 minutes. This could be optimized in the framework.

OPEN GEOSPATIAL CONSORTIUM 21-044 57

6

IMPLEMENTATION
CONSIDERATIONS

OPEN GEOSPATIAL CONSORTIUM 21-044 58

6 IMPLEMENTATION CONSIDERATIONS

This section provides information about implementation considerations to the implementers of
implementations as well developers of OGC Compliance tests.

6.1. Automatization of Tests from OGC Standards

6.1.1. TestNG Test Suite

The Java method stubs for the TestNG test suite were automatically generated.

The Java doc and method stub are automatically generated from the ATS, which source code is
written in the AsciiDoc format.

The code to do the transformation of the tests was written by 52°North. Given that new OGC
standards are written in AsciiDoc, a common library for the transformation of Abstract Test
Suites to code in different programming languages would be useful.

6.2. Echo Process

In some cases, certain requirements of the specification (e.g. jobs conformance class) requires a
special mechanism for testing. For example, when a process has to run asynchronously for some
time. The test engine should monitor the execution and the intermediate status messages. But, if
the process is not known, the implementation of the test execution can become a challenge.

If the echo process is implemented, it will provide a scenario that a test engine can follow to
validate part of the test.

Here is an example definition of the echo process:

{
 "id":"EchoProcess",
 "title":"Echo Process",
 "description":"This process accepts and number of input and simply echoes
each input as an output.",
 "version":"1.0.0",
 "jobControlOptions":[
 "async-execute",
 "sync-execute"
],
 "outputTransmission":[
 "value",

OPEN GEOSPATIAL CONSORTIUM 21-044 59

 "reference"
],
 "inputs":{
 "pause":{
 "title":"Number of Pause Seconds",
 "description":"The number of seconds the EchoProcess process should
pause execution, to simulate actually doing something, and thus give the test
engine time to run the async execution tests. For example, get statuses from
the server, etc. If the server does not implement async-execute then this
parameter shall have no effect on the execution of the EchoProcess process and
test engines should simply ignore it.",
 "minOccurs":0,
 "schema":{
 "type":"double",
 "default":4.0
 }
 },
 "stringInput":{
 "title":"String Literal Input Example",
 "description":"This is an example of a STRING literal input.",
 "schema":{
 "type":"string",
 "enum":[
 "Value1",
 "Value2",
 "Value3"
],
 "example":[
 "Value2"
]
 }
 },
 "measureInput":{
 "title":"Numerical Value with UOM Example",
 "description":"This is an example of a NUMERIC literal with an
associated unit of measure.",
 "schema":{
 "type":"object",
 "required":[
 "value",
 "uom"
],
 "properties":{
 "measurement":{
 "type":"number"
 },
 "uom":{
 "type":"string"
 },
 "reference":{
 "type":"string",
 "format":"uri"
 }
 },
 "examples":[
 {
 "meansurement":10,
 "uom":"m"
 }
]
 }
 },
 "dateInput":{

OPEN GEOSPATIAL CONSORTIUM 21-044 60

 "title":"Date Literal Input Example",
 "description":"This is an example of a DATE literal input.",
 "schema":{
 "type":"string",
 "format":"dateTime",
 "examples":[
 "2021-10-31T23:59:59"
]
 }
 },
 "doubleInput":{
 "title":"Bounded Double Literal Input Example",
 "description":"This is an example of a DOUBLE literal input that is
bounded between a value greater than 0 and 10. The default value is 5.",
 "schema":{
 "type":"number",
 "format":"double",
 "minimum":0,
 "maximum":10,
 "default":5,
 "exclusiveMinimum":true,
 "examples":[
 3.14159
]
 }
 },
 "arrayInput":{
 "title":"Array Input Example",
 "description":"This is an example of a single process input that is
an array of values. In this case, the input array would be interpreted as a
single value and not as individual inputs.",
 "schema":{
 "type":"array",
 "minItems":2,
 "maxItems":10,
 "items":{
 "type":"integer"
 },
 "examples":[
 [
 1,
 7
],
 [
 2,
 4,
 6
]
]
 }
 },
 "complexObjectInput":{
 "title":"Complex Object Input Example",
 "description":"This is an example of a complex object input.",
 "schema":{
 "type":"object",
 "required":[
 "property1",
 "property5"
],
 "properties":{
 "property1":{
 "type":"string"

OPEN GEOSPATIAL CONSORTIUM 21-044 61

 },
 "property2":{
 "type":"string",
 "format":"uri"
 },
 "property3":{
 "type":"number"
 },
 "property4":{
 "type":"string",
 "format":"dateTime"
 },
 "property5":{
 "type":"boolean"
 }
 },
 "examples":[
 {
 "property1":"Some string.",
 "property2":"http://www.opengis.org",
 "property5":true
 }
]
 }
 }
 },
 "outputs":{
 "stringOutput":{
 "schema":{
 "type":"string",
 "enum":[
 "Value1",
 "Value2",
 "Value3"
]
 }
 },
 "measureOutput":{
 "schema":{
 "type":"object",
 "required":[
 "value",
 "uom"
],
 "properties":{
 "measurement":{
 "type":"number"
 },
 "uom":{
 "type":"string"
 },
 "reference":{
 "type":"string",
 "format":"uri"
 }
 }
 }
 },
 "dateOutput":{
 "schema":{
 "type":"string",
 "format":"dateTime"
 }

OPEN GEOSPATIAL CONSORTIUM 21-044 62

 },
 "doubleOutput":{
 "schema":{
 "type":"number",
 "format":"double",
 "minimum":0,
 "maximum":10,
 "default":5,
 "exclusiveMinimum":true
 }
 },
 "arrayOutput":{
 "schema":{
 "type":"array",
 "minItems":2,
 "maxItems":10,
 "items":{
 "type":"integer"
 }
 }
 },
 "complexObjectOutput":{
 "schema":{
 "type":"object",
 "required":[
 "property1",
 "property5"
],
 "properties":{
 "property1":{
 "type":"string"
 },
 "property2":{
 "type":"string",
 "format":"uri"
 },
 "property3":{
 "type":"number"
 },
 "property4":{
 "type":"string",
 "format":"dateTime"
 },
 "property5":{
 "type":"boolean"
 }
 }
 }
 }
 },
 "links":[
 {
 "href":"https://processing.example.org/oapi-p/processes/EchoProcess/ex
ecution",
 "rel":"http://www.opengis.net/def/rel/ogc/1.0/execute",
 "title":"Execute endpoint"
 }
]
}

Figure 25 — Example definition of the echo process

OPEN GEOSPATIAL CONSORTIUM 21-044 63

Another example is as follows:

{
 "id":"echo",
 "title":"Echo input",
 "description":"Simply echo the value provided as input",
 "version":"2.0.0",
 "jobControlOptions":[
 "sync-execute",
 "async-execute",
 "dismiss"
],
 "outputTransmission":[
 "value",
 "reference"
],
 "links":[
 {
 "rel":"execute",
 "type":"application/json",
 "title":"Execute End Point",
 "href":"http://tb17.geolabs.fr:8108/ogc-api/processes/echo/execution"
 },
 {
 "rel":"alternate",
 "type":"text/html",
 "title":"Execute End Point",
 "href":"http://tb17.geolabs.fr:8108/ogc-api/processes/echo/execution.
html"
 }
],
 "inputs":{
 "a":{
 "title":"Literal Input (string)",
 "description":"An input string",
 "schema":{
 "type":"string",
 "default":"Any value"
 }
 },
 "b":{
 "title":"Complex Input",
 "description":"A complex input ",
 "schema":{
 "oneOf":[
 {
 "type":"string",
 "contentEncoding":"utf-8",
 "contentMediaType":"text/xml"
 },
 {
 "type":"object"
 }
]
 }
 },
 "c":{
 "title":"BoundingBox Input ",
 "description":"A boundingbox input ",
 "schema":{
 "type":"object",

OPEN GEOSPATIAL CONSORTIUM 21-044 64

 "required":[
 "bbox",
 "crs"
],
 "properties":{
 "bbox":{
 "type":"array",
 "oneOf":[
 {
 "minItems":4,
 "maxItems":4
 },
 {
 "minItems":6,
 "maxItems":6
 }
],
 "items":{
 "type":"number",
 "format":"double"
 }
 },
 "crs":{
 "type":"string",
 "format":"uri",
 "default":"urn:ogc:def:crs:EPSG:6.6:4326",
 "enum":[
 "urn:ogc:def:crs:EPSG:6.6:4326",
 "urn:ogc:def:crs:EPSG:6.6:3785"
]
 }
 }
 }
 },
 "pause":{
 "title":"Literal Input (double)",
 "description":"An optional input which can be used to specify the
number of seconds to pause the service before returning",
 "schema":{
 "type":"number",
 "default":10,
 "format":"double",
 "nullable":true
 }
 }
 },
 "outputs":{
 "a":{
 "title":"The output a",
 "description":"The output a returned",
 "schema":{
 "type":"string",
 "default":"Any value"
 }
 },
 "b":{
 "title":"The output b",
 "description":"The output b returned",
 "schema":{
 "oneOf":[
 {
 "type":"string",
 "contentEncoding":"utf-8",

OPEN GEOSPATIAL CONSORTIUM 21-044 65

 "contentMediaType":"text/xml"
 },
 {
 "type":"object"
 }
]
 }
 },
 "c":{
 "title":"BoundingBox output ",
 "description":"A boundingbox output ",
 "schema":{
 "type":"object",
 "required":[
 "bbox",
 "crs"
],
 "properties":{
 "bbox":{
 "type":"array",
 "oneOf":[
 {
 "minItems":4,
 "maxItems":4
 },
 {
 "minItems":6,
 "maxItems":6
 }
],
 "items":{
 "type":"number",
 "format":"double"
 }
 },
 "crs":{
 "type":"string",
 "format":"uri",
 "default":"urn:ogc:def:crs:EPSG:6.6:4326",
 "enum":[
 "urn:ogc:def:crs:EPSG:6.6:4326",
 "urn:ogc:def:crs:EPSG:6.6:3785"
]
 }
 }
 }
 }
 }
}

Figure 26 — Another example definition of the echo process

At the exception of the pause input parameter, every input is returned with the same name as an
output. In the second case three inputs are present to illustrate the use of the three data types
that were available in the WPS specification:

• a: a simple string (LiteralData),

• b: a complex data (can be application/json or text/xml),

• c: a bounding box

OPEN GEOSPATIAL CONSORTIUM 21-044 66

The pause parameter has been added to give the opportunity to test long running jobs. This
way, the job list can be tested during the execution, especially the status and progress changes
but, also to dismiss the conformance class, if implemented.

Implementation guidance:

• Servers SHALL implement sync-execute.

• Servers SHOULD implement async-execute.

• Servers SHALL implement value for outputTransmission.

• Servers SHOULD implement reference for outputTransmission.

• If async-execute is not supported then the text engine should ignore the pause input. The
execution endpoint (link with rel=ogc:execute) should be adjusted to reflect the server
actual execution endpoint for the EchoProcess process.

The test engine should then follow each branch in the following response summary tables:
- https://docs.ogc.org/DRAFTS/18-062.html#sc_execute_response - https://docs.ogc.org/
DRAFTS/18-062.html#_response_7 and verify that the server behaves accordingly. So, for
example, in Table 7, the echo process is executed with:

• sync-execute

• response=document

• outputTransmission=reference

• and N outputs are returned

The server should respond with an HTTP status code of 200. The body of the response should
be of type application/json and it should validate against the results.yaml schema. The test
engine will also have to parse the response to verify that the value of each output in the
response matches the input value specified by the engine.

6.3. Execution Process

When implementing a very trivial echo service and deploying it on the GeoLabs prototype
Server Instance, the participants realized that it may be a great help for service developers to
expose a fully-featured scenario that can be used for testing a service execution. The initial echo
service accessible on the GeoLabs Server Instance was simply returning the output without
potentially converting the input into another format or reprojecting it, depending on its type.
In the sample implementation provided, 3 inputs are supported: one string, one complex,
and one bounding box. So, depending on the service complexity or the level of development
of a specific service, the Test Suite itself may have difficulty producing a relevant request
automatically. In consequence, experiments were performed including the definition of multiple

OPEN GEOSPATIAL CONSORTIUM 21-044 67

https://docs.ogc.org/DRAFTS/18-062.html#sc_execute_response
https://docs.ogc.org/DRAFTS/18-062.html#_response_7
https://docs.ogc.org/DRAFTS/18-062.html#_response_7

paths corresponding to services’ execution path with their associated request’s body examples
directly within the exposed OpenAPI.

So, we may consider adding one option to recommendation 24:

• Provide one or more example requests for a specific service in the exposed API.

Benefits of such an addition:

• Ease interactions with the published API using traditional OpenAPI tools, such as
SwaggerUI;

• Ensure working scenarios for specific services;

• Advertise specific server implementation capabilities, such as automatic OGC Web
Services publication;

• Give direct access to the Test Suites to a list of testable services without relying on
fetching every single process description;

• Provide the Executable Test Suites with a set of pre-generated request bodies that can be
used rather than having to generate the requests at run-time;

• Use external tools such as spectral to validate OpenAPI definition documents including the
bodies of the requests as examples implying requests body’s validation.

Identified issue:

• Introducing the requirement of testing external execute request body provided within the
OpenAPI from the Test Suite;

• Keep the specification and the request bodies in sync;

• Increased OpenAPI definition size.

OPEN GEOSPATIAL CONSORTIUM 21-044 68

https://github.com/stoplightio/spectral

Figure 27 — SwaggerUI without examples

OPEN GEOSPATIAL CONSORTIUM 21-044 69

Figure 28 — SwaggerUI with additional paths and associated examples

OPEN GEOSPATIAL CONSORTIUM 21-044 70

7

CONCLUSIONS

OPEN GEOSPATIAL CONSORTIUM 21-044 71

7 CONCLUSIONS

The OGC Testbed 17 initiative provided a thread to advance testing of implementations of
OGC Standards. The test for OGC API – Processes — Part 1: Core was developed using the
TestNG framework (the current recommended OGC approach), and using NeoTL as an alternate
approach.

The TestNG-based executable test suite needs to be improved to support better feedback
and to support media types defined in RFC 7807. These enhancements to the TestNG-based
executable test suite are planned for future implementation. NeoTL tests need to improve on
performance and a mechanism to be able to test a sequence of events needs to be implemented.
The NeoTL-based ETF framework also needs support for authentication and user profiles.

The Testbed-17 CITE thread also showed that part of the development of executable test scripts
could be automated starting from an ATS in an AsciiDoc document and generating Java stubs
that can then be implemented for TestNG and TEAM Engine. The generation of Java stubs from
an ATS encoded in asciidoc could potentially leverage the metanorma toolchain.

OPEN GEOSPATIAL CONSORTIUM 21-044 72

https://metanorma.org

8

FUTURE WORK

OPEN GEOSPATIAL CONSORTIUM 21-044 73

8 FUTURE WORK

The Testbed-17 CITE thread participants recommended that future work should include the
following work items.

The ETS with NeoTL test framework can also be used to develop ETS test. Future work would
require better integration with the OGC Validator, including performance, generating proper
feedback to the user, and finding a mechanism to execute tests that are sequential.

The TestNG-based ETS requires further enhancements to improve OGC API testing, such as
support for MIME types specified in RFC 7807 and provision of better feedback to the users
(e.g. header content).

As mentioned in a previous section, the CITE SC noted that it is important that there be a single
Executable Test Suite for each OGC Standard, to avoid ambiguity of test results. One suggestion
was to enhance ETF towards supporting DevOps, while TEAM Engine continues to be the only
tool used by the OGC Validator for compliance certification. This suggests that future testbeds
should focus on implementing more TestNG-based Executable Test Suites for use in TEAM
Engine.

OGC should consider making recommendations for tests that require inspection of the results
such as when returning the results of a process. This could be done by creating a sample process
that every implementer needs to implement or better creating an example documented scenario
where the required responses are known.

OPEN GEOSPATIAL CONSORTIUM 21-044 74

A

ANNEX A (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 21-044 75

A ANNEX A
(INFORMATIVE)
REVISION HISTORY

Table A.1 — Revision History

DATE EDITOR RELEASE
PRIMARY
CLAUSES
MODIFIED

DESCRIPTIONS

2021-11-
19 L. Bermudez .1 all Draft submitted to OGC

2022-01-
13 L. Bermudez .2 all Draft incorporating

comments from OGC staff

OPEN GEOSPATIAL CONSORTIUM 21-044 76

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 21-044 77

BIBLIOGRAPHY

1. Fowler, M.: GivenWhenThen, https://martinfowler.com/bliki/GivenWhenThen.html
(2013)

2. Interactive Instruments: NeoTL Executable Test Suites for OGC API Processes on
GitHub. https://github.com/interactive-instruments/ogc-api-processes-neotl-ets (2021)

OPEN GEOSPATIAL CONSORTIUM 21-044 78

https://martinfowler.com/bliki/GivenWhenThen.html
https://github.com/interactive-instruments/ogc-api-processes-neotl-ets

	I. Abstract
	II. Executive Summary
	III. Keywords
	IV. Preface
	V. Security considerations
	VI. Submitting Organizations
	VII. Submitters
	1. Normative references
	2. Terms and definitions
	3. Introduction
	4. Executable Test Suite
	4.1. TestNG Test
	4.1.1. Overview
	4.1.2. Recommendations

	5. Alternative Test Environment
	5.1. ETF test framework
	5.2. NeoTL DSL
	5.3. Comparison with CTL
	5.4. Structure of a NeoTL Test Case
	5.4.1. Given
	5.4.2. When
	5.4.3. Then

	5.5. Dynamic tests in NeoTL
	5.6. Extension Points
	5.7. Modularization
	5.8. Summary of executable Test developed
	5.9. TIE results
	5.10. Findings and Recommendations

	6. Implementation Considerations
	6.1. Automatization of Tests from OGC Standards
	6.1.1. TestNG Test Suite

	6.2. Echo Process
	6.3. Execution Process

	7. Conclusions
	8. Future Work
	Annex A (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1
	Table 2
	Table A.1 — Revision History

	List of Figures
	Figure 1
	Figure 2 — Start screen of the TEAM Engine tests for the OGC API - Processes - Part 1 standard
	Figure 3 — Result screen of the TEAM Engine tests for the OGC API - Processes - Part 1 standard
	Figure 4 — CTL test case example
	Figure 5 — NeoTL test case example
	Figure 6 — NeoTL IDE example
	Figure 7 — Test Suite
	Figure 8 — Test Module
	Figure 9 — Test Case
	Figure 10 — Validation Step
	Figure 11 — ETF skipped status
	Figure 12 — Post request
	Figure 13 — JSON assertion example exists or empty
	Figure 14 — JSON assertion example count
	Figure 15 — JSON assertion example contains
	Figure 16 — Generators
	Figure 17 — NeoTL Generator report
	Figure 18 — Extractors
	Figure 19 — NeoTL Extractor report
	Figure 20 — XQuery extension
	Figure 21 — Extractor calling XQuery
	Figure 22 — Assertion Groups
	Figure 23 — Import statement
	Figure 24 — File structure
	Figure 25 — Example definition of the echo process
	Figure 26 — Another example definition of the echo process
	Figure 27 — SwaggerUI without examples
	Figure 28 — SwaggerUI with additional paths and associated examples

