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LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the
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Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.
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Chapter 1. Subject
The subject of this Engineering Report (ER) is a code sprint that was held from 26 to 28 May 2021 to
advance the development of the OGC API - Maps draft standard, OGC API - Tiles draft standard, and
the OGC API – Styles draft standard. An Application Programming Interface (API) is a standard set
of documented and supported functions and procedures that expose the capabilities or data of an
operating system, application or service to other applications (adapted from ISO/IEC TR 13066-
2:2016). The code sprint was hosted online. The code sprint was sponsored by Ordnance Survey
(OS) and Natural Resources Canada (NRCan).
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Chapter 2. Executive Summary
This Engineering Report (ER) summarizes the main achievements of the May 2021 OGC API Virtual
Code Sprint, conducted between May 26 – 28, 2021. The goal of the code sprint was to progress the
development of the draft OGC API standards for Maps, Tiles and Styles. The sprint also sought to
help to identify issues and options for addressing those issues.

The objectives of the code sprint were to:

• Develop prototype implementations of OGC API – Maps

• Develop prototype implementations of OGC API – Tiles

• Develop prototype implementations of OGC API – Styles

• Test the prototype implementations

• Provide feedback to the Editor about what worked and what did not work

• Provide feedback about the specification document, especially what is missing from the
document

Part of the motivation for holding the sprint was:

• APIs have proven to be a popular and a very effective enabler of rapid software development

• There is an increasing need for optimizing geospatial interoperability between Web APIs

• There is phenomenal adoption of location-handling capabilities in software within and outside
of geospatial developer communities

The draft OGC API – Maps specification describes an API that presents data as maps by applying a
style. The draft specification enables a client application to request maps as images. This includes
the ability to specify or change parameters such as the size of an image and coordinate reference
systems at the time of request.

The draft OGC API – Tiles specification describes an API building block that can enable other OGC
API implementations to serve maps or tiled feature data divided into individual tiles. The draft
specification includes concepts such as tile matrix sets and tile schemes. The draft standard can be
used to publish map tiles and tiled feature data (e.g. GeoJSON Vector Tiles and Mapbox Vector Tiles).

The draft OGC API – Styles specification defines a Web API that enables map servers, clients as well
as visual style editors, to manage and fetch styles that consist of symbolizing instructions that can
be applied by a rendering engine on features and/or coverages.

The code sprint facilitated the development and testing of prototype implementations of the OGC
API - Maps draft standard, OGC API - Tiles draft standard, and the OGC API – Styles draft standard.
The code sprint therefore successfully met all of its objectives and achieved its goal of progressing
the development of the draft OGC API standards for Maps, Tiles and Styles.

2.1. Summary of Outcomes
The outcomes and findings of the sprint can be summarized as follows:
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• The Tiles API was found to be reasonably stable. However, there appears to be different
interpretations of how to apply styles to maps collections and maps of datasets.

• Evolution of the Well Known Scale Set (WKSS) concept into common Tile Matrix Set (TMS)
concepts was another outcome. The sprint participants suggested that information provided by
WKSS could be derived from a TMS. Further consultation with other OGC Working Groups will
be needed to determine the future role of WKSS in the 2D TMS Standard.

• Another key outcome is that interoperability of buildings blocks has been completely
demonstrated. The three APIs have been successfully demonstrated together.

• The sprint has shown that a lot that is common can be shared across the APIs i.e. how much
OGC API - Common - Part 2 facilitates the client implementation.

• The interaction between OGC APIs for Maps, Tiles, and Styles worked well. No major issues
came up that could not be verified and/or resolved.

• More work needs to be done on the Styles API in general e.g. to determine the impact on API
resources when styles are used.

• The code sprint focused on the API aspects of the styles but not on the formats of the styles.
More work is needed on the format aspects of the styles (e.g. in relation to the Symbology Core
[https://docs.ogc.org/is/18-067r3/18-067r3.html] standard).

• While in the Tiles API a metadata model has been developed, in the Maps API there has been
less interest in developing a specific metadata model.

The sprint participants considered what the APIs will do to help meet the needs of the National
Mapping Agency (NMA) community. The following is a summary:

• Providing the public with access to geospatial data and maps: The OGC APIs will make it
easier for the general public to access maps through regular web browser technologies. For
example, through OGC API - Maps it is now possible to access a complete map through a basic
URL (i.e. no query parameters). OGC API - Tiles will make it easier to publish maps as tiled
feature data (colloquially named 'vector tiles'), which are becoming increasingly popular in the
NMA community. The APIs are able to provide data in a way that 2.5D and 3D visualization
clients are able to handle.

• Facilitating analytics: OGC API - Tiles is able to publish tiled coverage data in such a way that
makes it easier to 'stream' coverages for analysis at the screen resolution. This makes it possible
to create histograms, vegetation indices, and other analytical reports all at the screen
resolution. The flexibility of specifying the origin of the tiles will make it easier to combine
regular OGC tiles with other tiles.

• Reducing barriers to accessing geospatial data: OGC APIs together make it easier to start with
a dataset and then find a way to generate tiles and other resources. The OGC APIs are integrated
in a very convenient way. The Styles API makes it possible for NMA’s to publish styles from a
central location in a way that is consistent with how they publish data. The integrated
environment makes it easier to manage things together.
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2.2. Plan outlining how the sprint’s outcomes will be
incorporated into future OGC activities
The following is a plan outlining how the sprint’s outcomes will be presented to the OGC Standards
Program and Innovation Program for potential consideration for future activities.

2.2.1. Potential activities for the Innovation Program

For the OGC Innovation Program, the sprint participants identified a need to:

• experiment with multidimensional data support in OGC APIs.

• explore how to turn legends into real data (objects) that can be combined by the client (e.g.
asking a client to provide the elements that are in a legend).

• research how simple a structure needs to be to meet the needs for a legend while also being
easily implementable.

• experiment with coverage tiles, as they are becoming increasingly important (e.g. in support of
rendering a Digital Surface Model (DSM)). Strategies for identifying suitable sizes of the tiles
need to tested/researched.

• experiment with non-grid coverages (e.g. point clouds).

• explore the possibility of an 'info' capability that supports different data sources and query
options (not just retrieval of the value at a point).

OGC Innovation Program activities rely on sponsorship to resource initiatives. Therefore, the
potential activities listed above will be presented to the OGC Technical Committee through the
Architecture Domain Working Group in order to raise interest from potential sponsors.

2.2.2. Potential activities for the Standards Program

For the OGC Standards Program, the sprint participants identified a need to:

• specify a legend conformance class for the OGC API - Maps and OGC API - Tiles draft
specifications.

• specify an 'info' conformance class for the OGC API - Maps and OGC API - Tiles draft
specifications.

• implement an OGC API - Maps conformance class/extension to support time dependent maps (in
a way similar to the OGC Best Practice for using Web Map Services (WMS) with Time-Dependent
or Elevation-Dependent Data (1.0) [https://portal.ogc.org/files/?artifact_id=56394]) e.g. the subset and
datetime parameters.

The OGC API - Maps and OGC API - Tiles Standards Working Groups will be tasked with specifying
requirements for the legend and info conformance classes. Once the requirements have been
specified, there may be a need to conduct further experimentation focusing on implementations of
the legend and info conformance classes.
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Ryan Ahola Natural Resources
Canada

Contributor

Ahmed Ragab Natural Resources
Canada

Contributor

Azadeh Ashoori Natural Resources
Canada

Contributor

Pradeep Alva National University of
Singapore

Contributor
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Bruno Kinoshita NIWA Contributor

Scott Simmons Open Geospatial
Consortium

Contributor

Scott Serich Open Geospatial
Consortium

Contributor

Angelos Tzotsos Open Source Geospatial
Foundation

Contributor

Michael Gordon Ordnance Survey Contributor

Chris Holmes Planet Contributor

Tim Schaub Planet Contributor

Basile Goussard Promethee Contributor

Tarron Newman Red Helmet Technology Contributor

Senthil Rajrndran RMSI Pvt Ltd  Contributor

Yohann Hazan SDIS33 Contributor

Darrel Ronald Spatiomatics Contributor

Davince Koyo Synergetic systems Contributor

Núria Julià Selvas Universitat Autònoma de
Barcelona (CREAF)

Contributor

Joan Maso Universitat Autònoma de
Barcelona (CREAF)

Contributor

Ingrid Santana UFMG Contributor

Matthew Walker UK Defence Science and
Technology Laboratory

Contributor

Paul Walsh UK Defence Science and
Technology Laboratory

Contributor

Nick Bennett UK Defence Science and
Technology Laboratory

Contributor

Jonathan Lewis UK Hydrographic Office Contributor

Pablo Zader UNC Contributor

Andres Herrera Univalle Contributor

Joseph Olusina University of Lagos Contributor

Amy Youmans US Army Geospatial
Center

Contributor

Jeff Harrison US Army Geospatial
Center

Contributor

Huajun Zhang US Census Contributor
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Ujjwal Yadav Uttar Pradesh Remote
Sensing Application
Center 

Contributor

2.4. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.
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Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● API

An Application Programming Interface (API) is a standard set of documented and supported
functions and procedures that expose the capabilities or data of an operating system,
application, or service to other applications (adapted from ISO/IEC TR 13066-2:2016).

● coordinate reference system

A coordinate system that is related to the real world by a datum term name (source: ISO 19111)

● OpenAPI Document

A document (or set of documents) that defines or describes an API. An OpenAPI definition uses
and conforms to the OpenAPI Specification (https://www.openapis.org)

● Web API

API using an architectural style that is founded on the technologies of the Web [source: OGC API -
Features - Part 1: Core]

4.1. Abbreviated terms
• API Application Programming Interface

• CRS Coordinate Reference System

• OGC Open Geospatial Consortium

• SLD Styled Layer Descriptor

• WMS Web Map Service

• WMTS Web Map Tile Service
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Chapter 5. Introduction
This Engineering Report (ER) summarizes the main achievements of the May 2021 OGC API Virtual
Code Sprint, conducted between May 26 – 28, 2021. The sprint had been organized to advance the
development of the draft OGC API - Maps, OGC API - Tiles and OGC API - Styles standards. Sprint
participants prototyped implementations of the draft standards, validating the requirements and
providing feedback so that the draft standards could be improved.

An OGC Code Sprint is a collaborative and inclusive event driven by innovative and rapid
programming with minimal process and organization constraints to support the development of
new applications and open standards. OGC Code Sprints experiment with emerging ideas in the
context of geospatial standards, help improve interoperability of existing standards by
experimenting with new extensions or profiles, and are used as a proof of concept for other OGC
Innovation Program initiatives, or support OGC Standards Program activities.

The code sprint was sponsored by Ordnance Survey (OS) and Natural Resources Canada (NRCan).

5.1. User Needs and Use Cases
To help the sprint participants prioritize their efforts, the sprint organizers invited NRCan to
outline User Needs from NRCan’s perspective as a National Mapping Agency (NMA). This section
summarizes the user needs.

5.1.1. Introduction to Natural Resources Canada

NRCan is a part of the Federal Government of Canada. NRCan is mandated to ensure the sustainable
development of Canada’s natural resources, allowing the department’s work to explore energy,
minerals and metals, forests, earth sciences, mapping, and remote sensing. Geospatial data plays a
key role in all of the aforementioned areas, hence NRCan’s interest in the development of OGC APIs.
As the NMA of Canada, NRCan plays a critical nation-wide role in the distribution of authoritative
geospatial data products, including cartographic products such as maps.

5.1.2. The Priorities that drive the Need for APIs

There are specific priorities that drive what NRCan would like to see from OGC APIs. These include
for example: climate change, response to disasters/extreme events, the Arctic, trade, sovereignty,
and Indigenous reconciliation. The government has a strong desire to have collaboration and
innovation within government processes in order to benefit Canadian society broadly. Innovation
provides a bridge between the government’s internal focus areas and how these will apply within
Canada and its position in the world. So, indeed, all the OGC APIs that are being developed through
this sprint will, in the future, help to benefit society.

5.1.3. Specific Needs

OGC APIs have a substantial role to play in the future of NMAs. At NRCan, this role is likely to
involve the development and provision of microservices in order to support the delivery of
geospatial data, maps and analytics. This role can be described in terms of the following needs:
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• Providing the public with access to geospatial data and maps: This is a key function of an
NMA. OGC APIs have the potential to help NMAs to provide open data in a way that conforms to
FAIR principles (Findable, Accessible, Interoperable, and Reusable). This enables the members
of the public to make use of the geospatial data and maps as they see fit (e.g. in support of other
parts of the community or economy).

• Facilitating analytics: Making geospatial a fundamental part of national decision making
requires consideration of how to optimize the use of location information. By focusing firstly on
analytics, geospatial experts can be enabled to help others, then those experts can make better
decisions through geospatial information analytics.

• Reducing barriers to accessing geospatial data: Geospatial data has become more accessible
over the past decade. However, there has also been a significant increase in the demand for
knowledge and expertise in all sorts of development to use geospatial information. Significant
need also exists to extend geospatial information accessibility to individuals with disabilities to
ensure everyone can benefit from geospatial data.

5.1.4. Sprint Areas of Interest

For demonstration purposes, Sprint participants were encouraged to publish specific data and
maps through OGC APIs for the following Areas of Interest (AOI):

Europe: The area around Bournemouth, England, within the extent specified by this GeoJSON file
[https://github.com/opengeospatial/ogcapi-code-sprint-2021-05/blob/main/BournemouthAOI.geojson] or this WKT
string in EPSG:4326 coordinates POLYGON -2.13384466616954 50.5343261657655,-2.14712951953212
50.822458640394,-1.77636133932212 50.8243659606517,-1.75884948716236 50.539699354356,-
2.13384466616954 50.5343261657655.

North America: Red River of the North, within the extent specified by this GeoJSON file
[https://github.com/opengeospatial/ogcapi-code-sprint-2021-05/blob/main/RedRiverAOI.geojson] or this WKT
string in EPSG:4326 coordinates POLYGON -97.8656275465241 50.1994331527875,-97.8290574091464
48.9215621457706,-96.475962326173 48.9305725567791,-96.4851048605174 50.2082107872824,-
97.8656275465241 50.1994331527875.

The datasets that were recommended for the code sprint included:

Ordnance Survey datasets for the Sprint’s Europe AOI

• OS Open Zoomstack data product [https://os.uk/business-government/products/open-zoomstack]: A
comprehensive basemap of the United Kingdom showing coverage from national level right
down to street detail.

• OS Open Zoomstack stylesheets [https://github.com/OrdnanceSurvey/OS-Open-Zoomstack-Stylesheets]:
These are OS Open Zoomstack stylesheets encoded in OGC SLD, Esri LYR, QGIS QML and
Mapbox GL Styles formats.

NRCan datasets for the Sprint’s North America AOI

• High Resolution Digital Elevation Model (HRDEM) [https://open.canada.ca/data/en/dataset/957782bf-

847c-4644-a757-e383c0057995]: Complete coverage of the Canadian territory in a Digital Terrain
Model (DTM), a Digital Surface Model (DSM) and other derived data.
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• Canada Base Map Transportation (CBMT) [https://open.canada.ca/data/en/dataset/296de17c-001c-4435-

8f9a-f5acab632e85]: Base map with a focus on transportation networks. Available as a tiled web
map service.

• National Hydrographic Network (NHN) [https://www.nrcan.gc.ca/science-and-data/science-and-research/
earth-sciences/geography/topographic-information/geobase-surface-water-program-geeau/national-

hydrographic-network/21361]: Data about Canada’s inland surface waters.

• RADARSAT-1 [https://www.asc-csa.gc.ca/eng/satellites/radarsat1/Default.asp]: An operational radar
satellite system, equipped with a Synthetic Aperture Radar (SAR) instrument, capable of
acquiring images of the Earth day or night, in all weather and through cloud cover, smoke and
haze.

• Open Maps [http://open.canada.ca/en/open-maps]: Approximately 4600 open geospatial datasets for
Canada.

5.2. Participants
Software developers and solutions architects from the following organizations registered to
participate in the code sprint:

• APCO

• Carmenta AB

• Connected places catapult

• CRTC

• CubeWerx Inc.

• Danish Defense

• EAD

• EarthPulse

• Ecere Corporation

• Elemental Earth Data Ltd.

• Esri

• Federal University of Technology Akure

• Fisheries and Oceans Canada

• FrontierSI

• GatewayGeo

• Geobeyond Srl

• GeoCat BV

• GeoLabs

• GeoSolutions

• Geus

• Global Nomad GIS Services
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• Heazeltech

• interactive instruments GmbH

• İstanbul Technical University

• ITU

• JLL

• European Commission - Joint Research Centre

• Kinder Institute at Rice University

• Kongsberg Geospatial

• Lexco Limited

• Luxembourg Institute of Science and Technology

• Manipal University Jaipur

• Meteorological Service of Canada

• Met Office

• Montefiore IT

• Natural Resources Canada

• NIWA

• National University of Singapore

• Open Source Geospatial Foundation

• Ordnance Survey

• Planet

• Promethee

• Red Helmet Technology

• RMSI Pvt Ltd

• SDIS33

• Spatiomatics

• Synergetic systems

• UAB-CREAF

• UFMG

• UK Defence Science and Technology Laboratory

• UK Hydrographic Office

• Unc

• Univalle

• University of Lagos

• US Army Geospatial Center

• US Census
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• uttar pradesh remote sensing application center
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Chapter 6. Architecture

6.1. High Level Overview
The focus of the sprint was on support of the development of the draft OGC API - Maps
[https://ogcapi.ogc.org/maps], OGC API - Tiles [https://ogcapi.ogc.org/tiles] and OGC API - Styles
[https://ogcapi.ogc.org/styles] standards. Implementations of these draft standards were deployed in
participants' own infrastructure in order to build a solution with the architecture shown below in
Figure 1.

Figure 1. High level overview of the architecture implemented during the sprint

As illustrated, the sprint architecture was designed with the view of enabling client applications to
connect to different servers that implement OGC APIs. The servers were provisioned with maps,
tiled feature data (colloquially named 'vector tiles'), map tiles, tiled coverage data, and styles.

6.2. Candidate Standards

6.2.1. OGC API - Maps

The draft OGC API - Maps standard describes an API that presents maps portraying data that has
been rendered according to a style. The maps served by implementations of the draft OGC API -
Maps standard are retrieved as images of any size, generated on-the-fly, and with the styling
determined by the client application. The draft standard can be considered the successor to the
widely implemented WMS standard. The draft OGC API – Maps standard is a multipart standard
that includes a Core (Part 1) and extensions that are planned to be developed in the future.

6.2.2. OGC API - Tiles

The draft OGC API - Tiles standard describes an API that implements the OGC Two Dimensional Tile
Matrix Set (TMS) [http://docs.opengeospatial.org/is/17-083r2/17-083r2.html] standard to enable access to
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tiled resources on the Web. The TMS standard defines the rules and requirements for a tile matrix
set as a way to index space based on a set of regular grids defining a domain (tile matrix) for a
limited list of scales in a CRS. The draft OGC API – Tiles standard is a multipart standard that
includes a Core (Part 1) and extensions that are planned to be developed in the future.

6.2.3. OGC API - Styles

OGC API - Styles describes the interface and exchange of styling parameters and instructions. The
construction of symbology components of styles is addressed in the OGC Symbology Conceptual
Model: Core Part [https://docs.ogc.org/is/18-067r3/18-067r3.html] standard and multiple OGC and other
style encoding standards.
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Chapter 7. Results
Multiple organizations provided servers, API implementations, and capabilities during the event.
The rest of this section describes each of the implementations.

7.1. Implementations

7.1.1. CubeWerx Inc.

The CubeWerx server ("cubeserv") supports a wide variety of back ends including Oracle, MariaDB,
SHAPE files, etc. It also supports a wide array of service-dependent output formats (e.g. GML,
GeoJSON, Mapbox Vector Tiles, MapMP, etc.) and coordinate reference systems. At the time of
publishing this engineering report, the CubeSERV OGC API - Features Server product is certified
OGC compliant [https://www.ogc.org/resource/products/details/?pid=1601] to the OGC API - Features - Part 1:
Core standard. A screenshot of the landing page of a CubeSERV instance from a demonstration of
the product during the code sprint is shown in Figure 2.

Figure 2. Screenshot from a demonstration of CubeSERV

Another screenshot of the CubeSERV instance, showing an HTML view of the API definition, is
shown in Figure 3.
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Figure 3. A second screenshot from a demonstration of CubeSERV

The cubeserv product is implemented in C and currently implements the following OGC
specifications:

• The draft OGC API - Maps - Part 1: Core specification

• The draft OGC API - Tiles - Part 1: Core specification

• The draft OGC API - Styles - Part 1: Core specification

• The draft OGC API - Records - Part 1: Core specification

• The draft OGC API - Coverages - Part 1: Core specification

• The draft OGC API - Processes - Part 1: Core specification

• The OGC API - Features - Part 1: Core Standard

• Multiple versions of the Web Map Service (WMS), Web Processing Service (WPS), Web Map Tile
Service (WMTS), Web Feature Service (WFS) and Web Coverage Service (WCS) standards

• A number of other "un-adopted" OGC web services including the Testbed-12 Web Integration
Service, OWS-7 Engineering Report - GeoSynchronization Service, Web Object Service
Implementation Specification.

During this code sprint, CubeWerx helped fine-tune and mature several aspects of the OGC API
Maps, Tiles and Tiles specifications, and refined its implementation accordingly.

7.1.2. EarthPulse

EarthPulse [https://earthpulse.pt/] is a Small-to-Medium-sized Enterprise (SME) which operates within
the fields of data engineering and data analytics. Its staff are experts in the areas of data analytics,
full-stack development, Big Data, product development and access, management and processing of
data sources such as geospatial or textual data.
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EarthPulse is committed to Free and Open Source software (FOSS) and open standards.

@doublebyte1 [https://github.com/doublebyte1/] and @PascalLike [https://github.com/PascalLike]
participated in this sprint.

Motivation to Participate

EarthPulse are participating in a Horizon 2020 research project (945307 - eMOTIONAL Cities
[https://cordis.europa.eu/project/id/945307]). The main task for EarthPulse in the project is to create a
spatial data infrastructure, using modern technologies.

The main motivation for EarthPulse to participate in this sprint was to learn more about OGC API
standards and current implementations of the standards, to assess what is feasible to adopt in the
project. At the same time, EarthPulse wanted to contribute to testing (and eventually improving) of
current OGC API implementations.

Sprint Activities and Outcomes

In this sprint EarthPulse staff decided to focus on the OGC API - Tiles specification. In order to get
familiar with it, EarthPulse staff decided to test some of its implementations.

The EarthPulse team started by installing and deploying the pygeoapi [https://pygeoapi.io/] product
(see Figure 4), and configured pygeoapi to use a neuroscience dataset:

http://ec2-3-65-14-187.eu-central-1.compute.amazonaws.com:5000/

Figure 4. Screenshot of pygeoapi instance deployed by EarthPulse

25

https://github.com/doublebyte1/
https://github.com/PascalLike
https://cordis.europa.eu/project/id/945307
https://pygeoapi.io/
http://ec2-3-65-14-187.eu-central-1.compute.amazonaws.com:5000/


During this process, the team became aware of a bug on pygeoapi’s OpenAPI representation of the
get tile request.

A Pull Request (PR) was created to address this issue and has since been merged to the core:

https://github.com/geopython/pygeoapi/pull/694

The team also became aware of an issue [https://github.com/geopython/pygeoapi/issues/567] with the
default background map on the example configuration file. It was addressed on this PR (also
merged):

https://github.com/geopython/pygeoapi/pull/697#partial-pull-merging

Finally, the team tested the OGC API - Tiles implementation of the spec, using postman:

https://www.getpostman.com/collections/3c54a654cb74f803b683

The team believes that not all the OGC API - Tiles requirements are currently implemented by
pygeoapi, in particular in what regards TileMatrixSets. This creates some difficulty when retrieving
a tile, i.e. when there are no requests to retrieve the TileMatrixSet.

The team also wanted to check a client-side implementation of the spec, and came across the
leaflet-ogc-layers [https://github.com/frontiersi/leaflet-ogc-layers] repository, developed during this sprint.

On the this [https://github.com/PascalLike/leaflet-ogc-layers] fork, the EarthPulse team created an
interactive map which uses this leaflet implementation:

http://ec2-3-65-14-187.eu-central-1.compute.amazonaws.com/

It was not possible to display the tiles from the deployed server on this client, as the current
implementation does not support vector tiles as shown in Figure 5. An issue was opened here
[https://github.com/frontiersi/leaflet-ogc-layers/issues/1], which clarifies the topic.
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Figure 5. Screenshot of pygeoapi issue relating to loading of tiles

Some Thoughts

The conclusion of the EarthPulse team, as final users, is that it is still hard to find server and client
implementations that can talk to each other.

For instance, maybe one server-side application may implement one building block, while a client
application may implement another building block.

This issue will tend to vanish as support for more building blocks is added to the applications, or
when a wider number of implementations of the draft OGC API - Tiles specification become
available.

7.1.3. Ecere Corporation

The GNOSIS Map Server is written in the eC programming language and supports multiple OGC API
specifications. Multiple encodings are supported including GNOSIS Map Tiles (which can contain
either vector data, gridded coverages, imagery, point clouds or 3D meshes), GeoTIFF, GeoJSON,
Mapbox Vector Tiles and MapML. An experimental server is available online at
https://maps.ecere.com/ogcapi and has been used in multiple OGC Innovation Program initiatives.
At the time of publishing this engineering report, the GNOSIS Map Server 1.0 product is certified
OGC compliant [https://www.ogc.org/resource/products/details/?pid=1670] to the OGC API - Features - Part 1:
Core standard.

During the code sprint, Ecere loaded high resolution digital terrain model data provided by Natural
Resources Canada for the Red River, Manitoba area of interest onto the experimental map server,
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including both 1-meter and 2-meter resolution. The API allows to retrieve coverages, maps and tiles
(both coverage and map tiles) of this dataset, for which a style was also prepared and made
available through the Styles API.

A screenshot of a Collection page for this dataset deployed on a GNOSIS Map Server instance is
shown in Figure 6.
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Figure 6. HRDEM of Red River, MB AoI from NRCan served by GNOSIS Map Server

Ecere also demonstrated visualizing data accessed via OGC APIs through GNOSIS Cartographer. A
screenshot of GNOSIS Cartographer used to visualize the Red River HRDEM is shown in Figure 7.
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Figure 7. Screenshot of GNOSIS Cartographer visualizing NRCan HRDEM data of Red River, MB AoI

Developers from Ecere worked on implementing support for the styles management conformance
class of OGC API - Styles in GNOSIS Map Server, which will allow authenticated users to create,
update and delete style resources.

Support for the new attribution field in the resources describing collections of geospatial data was
also implemented in the server.

Additionally, the Tiles API implementation of the GNOSIS Map Server was updated to reflect the
latest development of the TileMatrixSet and TileSet metadata specifications, including a transition
to JSON Schema to describe the vector features properties.

For this code sprint, the GNOSIS Map Server instance deployed for the sprint was configured to
offer an endpoint supporting:

• The draft OGC API - Maps - Part 1: Core specification

• The draft OGC API - Tiles - Part 1: Core specification

• The draft OGC API - Styles - Part 1: Core specification

• The draft OGC API - Coverages - Part 1: Core specification

• The draft OGC API - Processes - Part 3: Workflows specification

• The OGC API - Features - Part 1: Core Standard

7.1.4. GeoSolutions

GeoSolutions deployed an instance of the GeoServer product. GeoServer is a Java-based software
server that allows users to view and edit geospatial data. Using open standards by the OGC,
GeoServer allows for great flexibility in map creation and data sharing. For this code sprint, the
server was configured to offer an endpoint supporting:
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• Multiple conformance classes and recommendations of the draft OGC API - Maps - Part 1: Core
specification.

• Multiple conformance classes and recommendations of the draft OGC API - Tiles - Part 1: Core
specification.

• Multiple conformance classes and recommendations of the draft OGC API - Styles - Part 1: Core
specification.

• Multiple conformance classes and recommendations of the OGC API - Features - Part 1: Core
Standard.

The development focused on updating the OGC API - Tiles implementation to the latest evolution of
the spec, as well as setting up a permanent demonstration server for OGC API implementations

The demo server

The gs-main demo server [https://gs-main.geosolutionsgroup.com/geoserver] tracks the development
branch of GeoServer. With three deployments a day it closely tracks the latest evolutions of the
software. On the flip side, because of this, the server can be at times unstable.

In particular, the server offers:

• The classic GeoServer demo datasets, such as Manhattan roads, Spearfish, Tasmania and the
demographic "states" layers,

• The full ZoomStack dataset [https://www.ordnancesurvey.co.uk/business-government/products/open-

zoomstack] from Ordnance Survey, with full set of SLD styles alternatives [https://github.com/
OrdnanceSurvey/OS-Open-Zoomstack-Stylesheets/tree/master/GeoPackage/

Styled%20Layer%20Descriptors%20(SLD)] exposed by the Styles API.

• The Reseaux River basin digital elevation model from Natural Resources Canada

Table 1. ZoomStack, as displayed by OGC API Maps, in various styles (Contains OS data © Crown Copyright
and database right 2021)
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Figure 8. HRDEM from Natural Resources Canada

The server offers the following OGC APIs:

• Features

• Maps

• Styles

• Tiles

• DGGS (though currently there are no DGGS enabled datasets in it)

Updating OGC API Tiles

The GeoServer implementation of OGC API Tiles dated back to the Vector Tiles Pilot 2, the API got
significantly updated in the meantime.

In particular, before the update a single templated URL was offered to the clients, that was
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parameterized on a number of elements, e.g.:

../ogc/tiles/collections/testCollection/map/{styleId}/tiles/{tileMatrixSetId}/{tileMatrix}/{til
eRow}/{tileCol}?f=image%2Fpng

In order to fill the template, the client would pick the styles from the collection style list, and the tile
matrix set from the dedicated resource. However, in the current incarnation, new intermediate
resources have been added that progressively reveal the components of the path:

• A "styles" resource containing links to the available styles

• A "map" resource for each collection and style, providing a link to the available tilesets

• A "tileset" resource finally providing a templated link with the familiar "z/y/x" template
variables, e.g.:

http://gs-main.geosolutionsgroup.com/geoserver/ogc/tiles/collections/oszoom%3Aroads_regional/
styles/oszoom:roads_regional-road/map/tiles/WebMercatorQuad/{tileMatrix}/{tileRow}/{tileCol}?
f=image%2Fpng8

This eases usage for clients that happen to support generic xyz tilesets, at least as long as the
WebMercatorQuad tile matrix set is used.

7.1.5. interactive instruments GmbH

ldproxy is an implementation of the OGC API family of specifications. ldproxy is developed by
interactive instruments GmbH, written in Java (Source Code) and is typically deployed using docker
(DockerHub). The software originally started in 2015 as a Web API for feature data based on Web
Feature Service (WFS) 2.0 capabilities, inspired by the W3C/OGC Spatial Data on the Web Best
Practices. In addition to the JSON/XML encodings, an emphasis is placed on an intuitive HTML
representation.

The current version supports WFS 2.0 instances as well as PostgreSQL/PostGIS and GeoPackage
databases as backends. It implements all conformance classes and recommendations of "OGC API -
Features - Part 1: Core" and "OGC API - Features- Part 2: Coordinate Reference Systems By
Reference", as well as other draft extensions (including Part 3 and Part 4 of OGC API Features).
ldproxy also has draft implementations for additional resource types from OGC API Tiles and OGC
API Styles). At the time of publishing this engineering report, the ldproxy 2.0 product is certified
OGC compliant [https://www.ogc.org/resource/products/details/?pid=1598] to the OGC API - Features - Part 1:
Core standard and is one of the Reference Implementations of the standard.

For this code sprint, the server was configured to offer an endpoint supporting:

• The draft OGC API - Tiles - Part 1: Core specification

• The draft OGC API - Styles - Part 1: Core specification

• The OGC API - Features - Part 1: Core and OGC API - Features - Part 2: Coordinate Reference
Systems by Reference standards

• The draft OGC API - Features - Part 3: Filtering and CQL specification

A screenshot showing the landing page of an ldproxy instance during the code sprint is shown in
Figure 8. The instance had been configured before the sprint to serve OS Open Zoomstack vector
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tiles, OS Open Zoomstack styles and OS Open Zoomstack features through an API conforming to
OGC API - Styles and OGC API - Features. The instance also supported the capability to create,
update and delete styles and their metadata.

Figure 9. Screenshot from a demonstration of ldproxy, showing a landing page

A screenshot of the HTML version of the API definition of the ldproxy instance is shown in Figure 9.

Figure 10. Screenshot from a demonstration of ldproxy, showing the API definition
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During the sprint, ldproxy has been updated to implement the latest drafts of OGC API - Tiles and
the OGC Two Dimensional Tile Matrix Set and Tile Set Metadata specifications. This includes
changes that were agreed among the participants during the sprint.

7.1.6. Meteorological Service of Canada

The Meteorological Service of Canada (MSC) is a federal department of the Government of Canada.
MSC works in close collaboration with NRCan to align national spatial data infrastructure activities
in support of providing data to Canadians, as well as in meeting Canada’s international
commitments with the UN World Meteorological Organization (WMO).

MSC provides weather, climate, and water data via its MSC GeoMet API platform
[https://www.canada.ca/en/environment-climate-change/services/weather-general-tools-resources/weather-tools-

specialized-data/msc-geomet-api-geospatial-web-services.html], which offers both first generation OGC Web
Services (WMS, WCS) as well as OGC API standards (OGC API - Features, OGC API - Processes).

MSC’s participation in the sprint is driven by the need for lowering the barrier to entry to
weather/climate/water data for both existing and new information communities as well as the mass
market. The OGC API efforts are well positioned to extend the reach of MSC data, and the
availability of implementations further helps with this goal.

MSC’s evolving OGC API offerings are provided using the pygeoapi [https://pygeoapi.io] product - an
open source Python server implementation of the OGC API suite of standards. The product supports
the microservices approach and allows for scalability and cloud friendly deployment. At the time of
publishing this engineering report, the pygeoapi 0.9.0 product is certified OGC compliant
[https://www.ogc.org/resource/products/details/?pid=1663] to the OGC API - Features - Part 1: Core standard,
and additionally implements the following standards:

• The draft OGC API - Processes - Part 1: Core specification

• The draft OGC API - Tiles - Part 1: Core specification

• The draft OGC API - Coverages - Part 1: Core specification

• The draft OGC API - Records - Part 1: Core specification

• The OGC API - Environmental Data Retrieval Standard

• The OGC API - Features - Part 1: Core Standard

• SpatioTemporal Asset Catalog

During the sprint, MSC deployed an instance of pygeoapi and worked with OSGeo colleagues from
GeoCat BV and Geobeyond Srl to implement an endpoint supporting the abovementioned
standards, as well as the following feature enhancements developed during the sprint:

• The draft OGC API - Maps - Part 1: Core specification

• The draft OGC API - Styles - Part 1: Core specification

MSC also collaborated with Ecere in testing and updating OGC API - Tiles support in pygeoapi
[https://github.com/geopython/pygeoapi/issues/699] to align with recent iterations of the specification.

A screenshot from a demonstration of a pygeoapi instance during the code sprint is shown in
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Figure 10.

The resulting work can be found in a pygeoapi feature branch [https://github.com/tomkralidis/pygeoapi/

tree/oamaps]. The work will continue to evolve as the OGC API - Maps and OGC API - Styles
specifications evolve.

During the code sprint, MSC also extended the Python OWSLib [https://geopython.github.io/OWSLib]
client library to support OGC API - Maps and OGC API - Styles. The resulting work [https://github.com/

tomkralidis/OWSLib/tree/oamaps] will continue to evolve with specification development.

Finally, MSC raised support of dimensions in OGC API - Maps as a discussion [https://github.com/

opengeospatial/ogcapi-code-sprint-2021-05/issues/27] in the context of MetOcean requirements.

Figure 11. Screenshot from a demonstration of pygeoapi

7.1.7. Open Source Geospatial Foundation

The Open Source Geospatial Foundation (OSGeo) is a not-for-profit organization whose mission is to
foster global adoption of open geospatial technology by being an inclusive software foundation
devoted to an open philosophy and participatory community driven development. The foundation
consists of projects that develop open source software products. Multiple OSGeo projects and
community projects participated in the sprint, for example GeoServer, pygeoapi and OWSLib.

7.1.8. Universitat Autònoma de Barcelona

The Centre for Ecological Research and Forestry Applications (CREAF) is a public research institute
created in 1987 and located in Catalonia. It is part of the Autonomous University of Barcelona
(UAB). CREAF deployed an instance of the MiraMon Map Server. The MiraMon Map Server is a CGI
application encoded in C language that is part of the MiraMon Geographic Information System (GIS)
& Remote Sensing (RS) suite. The software originally started 10 years ago as a WMS server in
support of the Catalan Administration and CREAF data services. Currently the server implements
WMS, WMTS and partially implements WFS and WCS. It also partially implements the OGC Sensor
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Observation Service (SOS) standard. It also includes prototype support for the draft OGC API - Maps
and OGC API - Tiles specifications. In order to perform efficiently, it requires a process preparing
the data to be offered. The server can interoperate with other vendors' clients. When combined
with the MiraMon Map Client, the server offers additional functionality, including functionality
recently developed for the Catalan Data Cube. The MiraMon Map Client is built using client-side
JavaScript and can therefore run on any web browser.

7.2. Documentation

7.2.1. Quick Start Guide of OGC API - Styles

Sprint participants from the Defence Science and Technology Laboratory (Dstl) took the lead in
preparing an initial draft version of a Quick Start Guide for OGC API - Styles. The guide is intended
to focus a developer on the API’s capabilities in order to increase a developer’s understanding of
the API and to help them get started. The guide identifies a number of use cases, key concepts,
resources and provides examples.

Figure 12. Screenshot of Quick Start Guide of OGC API - Styles
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Chapter 8. Discussion
The participants used the Gitter platform for written discussion. This was in addition to using
Gotomeeting for discussion during the scheduled teleconferences. Individual issues were recorded
on the Issues board on GitHub. A screenshot of the Gitter channel is shown below in Figure 12. The
Gitter channel can be found at https://gitter.im/ogc-developer/Sprints

Figure 13. Screenshot of Gitter channel

A screenshot of the GitHub repository is shown below in Figure 13. The GitHub repository can be
found at https://github.com/opengeospatial/ogcapi-code-sprint-2021-05
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Figure 14. Screenshot of GitHub repository

The next subsections provide a summary of the discussion.

8.1. OGC API support for different approaches to
organizing styles, layers and data sources
There was a discussion [https://github.com/opengeospatial/ogcapi-code-sprint-2021-05/issues/15] on how OGC
APIs could support different approaches to organizing styles, layers and data sources. The sprint
participants observed that there are two different approaches of how SLD is used by
implementations. One approach involves having the SLD at the top level, whereas the other
approach does not. The sprint participants were asked the question "Should we have two
conformance classes for the different approaches?". Issue#5 on the OGC API - Styles repository
[https://github.com/opengeospatial/ogcapi-styles/issues/5] includes a proposal on how to change the
specification to better support SLD as an encoding. After discussing the topic during the sprint, the
sprint participants recommended that: There could be a need to have two separate conformance
classes to support the different paradigms, if both are needed in practice. There was also a
discussion, if the approach proposed in Issue#5 on the OGC API - Styles GitHub repository conforms
to the SLD/SE standards.

8.2. Support for legends
There was a discussion [https://github.com/opengeospatial/ogcapi-code-sprint-2021-05/issues/17] on the need
for support for legends. Currently legends are not supported in OGC API - Maps nor OGC API -
Styles, however it is expected that client applications will need or want to present a legend for the
information on a map. To facilitate the discussion, CubeWerx provided the paths to a Cubeserv
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implementation of a legend capability. The paths are listed in Annex A. A screenshot from a
prototype built using pygeoapi are shown in Figure 14.

Figure 15. Screenshot from a legend generated using pygeoapi

The sprint participants also noted that if a legend is a resource in OGC API - Maps, it could be a
bitmap graphic of a legend. However, if it is a resource in OGC API - Styles, then it should be a data
resource, so that clients can render the legend as they wish and that supports combining
information from multiple legends.

8.3. Changes to a style with multiple occurrences in an
API
There was a discussion [https://github.com/opengeospatial/ogcapi-code-sprint-2021-05/issues/18] regarding
how changes to a style with multiple occurrences in an API are executed. The sprint participants
were asked the question "If a style foo is used in several places in an API (that is, there are several
resources where the path includes /styles/foo somewhere), does a PUT/DELETE on that style affect
all occurrences of the style or only the one on which the operation is executed? In other words, is it
only one resource with multiple URIs or are these separate resources?". For example, for an
implementation that has a "night" style at /styles/night, the participants considered whether
changes to that style should be propagated to other instances of the same style e.g.
/collection/foo/styles/night.

After discussing this topic, the sprint participants proposed adding the following statement to the
OGC API - Styles specification:
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A service may implement HTTP PUT and/or HTTP DELETE methods for the
/collections/{collectionId}/styles/{styleId} endpoints. If implemented,
these methods shall have the effect of adding/replacing or deleting the
definition of the specified style as it pertains to the specified collection. E.g.,
after a DELETE of /collections/foo/styles/night, a future GET of
/collections/foo/styles/night should return a 404 Not Found, whereas a
future GET of /styles/night should return a style definition that lacks any
mention of collection foo.

8.4. Multiple dimensions in OGC API - Maps
The sprint participants observed that in the Meteorology and Oceanography (MetOcean) context,
there is a need to consider addressing dimensions as part of rendering in OGC API - Maps. This need
is similar, in part, to the need that triggered the development of the OGC Best Practice for using
Web Map Services (WMS) with Time-Dependent or Elevation-Dependent Data. So the Best Practice
document can be consulted for information on the approach taken by the previous generation of
OGC Web Service Standards. A given collection would need to advertise its dimensions and their
relevant extents (e.g. in a MetOcean/Numerical Weather Prediction (NWP) context there could be
dimensions for the model run/reference time, forecast time, elevation/pressure level, etc.)

It was noted that the Maps API already supports datetime and subset parameters, as demonstrated
by Ecere’s implementation from this sprint and the Hexagon implementation from a previous
sprint. Example queries from the Ecere implementation are below:

https://maps.ecere.com/ogcapi/collections/blueMarble/styles/default/map?datetime=2004-07

https://maps.ecere.com/ogcapi/collections/blueMarble/styles/default/map?subset=time(2004-11)

The sprint participants observed that the approach should ideally be the same for non-static tiles or
maps as the approach taken for the underlying source data.

If the source data is features, then there is a need to support parameters like datetime, filter,
collections, properties, etc. in a way similar to the OGC API - Features resources to filter the features
and reduce the properties that are returned. This approach was demonstrated by the ldproxy
product and was part of the experiments in the OGC Vector Tiles Pilot 2. An example is below:

https://demo.ldproxy.net/daraa/tiles/WebMercatorQuad/11/827/1229?
collections=AgricultureSrf,TransportationGroundCrv&datetime=2012-02-12T00:00:00Z/..&
properties=F_CODE

8.5. Styles, Tiles: Metadata review
The sprint participants conducted a review of the metadata elements specified by OGC APIs for
Maps, Tiles, and Styles. The review uncovered that there is significant overlap between the
metadata for a style and for a tileset. At the same time, there are issues and differences that should
be addressed. Harmonization of the metadata elements, should also be consistent with OGC API -
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Records. Specific observations and proposals are listed below:

• "title" and "version" are the same.

• "abstract" vs "description". Proposal: use "description".

• "keywords": Styles API uses strings, Tiles API uses a more complex model. Note that the Records
API uses strings for "keywords", too. For controlled vocabularies, "themes" is used. Proposal:
restrict "keywords" to strings.

• The Styles and Tiles API use "pointOfContact", whereas the Records API uses "contactpoint".
Proposal: agree on a single name.

• The Styles and Tiles APIs use "accessConstraints" with a fixed list from the intelligence domain.
At the same time more generally useful information like "license" is missing. Proposal: add
"license" and drop "accessConstraints". Communities that need the "accessConstraints" elements
can always add it through an extension.

• The Tiles API has "publisher", whereas the Styles API does not. The Records API has it, too.
Proposal: add "publisher" to the Styles API.

• The Styles API has a fixed "scope" (value "style"), whereas the Tiles API does not. The Records
API instead has "type", a URI. Proposal: harmonize.

• The Styles API has various dates in "dates", whereas the Tiles API has them in "date". The
Records API only has "created" and "updated", but not embedded in a data type. Proposal:
Follow the approach from the Records API.

• The Styles and Tiles APIs both have "layers", but with different content.

◦ "abstract" vs "description". Proposal: use "description. See #31.

◦ The Styles API has "type" (point, line, polygon, geometry, raster), whereas the Tiles API has
"dataType" (vector, coverage, map) and "geometryType" (points, lines, polygons). Proposal:
use "dataType" and "geometryType".

◦ The Styles API has "attributes" (the OpenAPI 3.0 schema for each attribute), whereas the
Tiles API has "propertiesSchema" (a subset of JSON Schema describing an object where each
attribute is a property plus some extensions to JSON Schema like "observedProperty" or
"uom"). Proposal: Use standard JSON Schema without restrictions. Add a recommendation
for a profile, similar to the approach taken by Features for Queryables.

• There is "mediaType" as a string, but the description implies that there can be multiple media
types. Proposal: Either change the element to an array, or revise the description to state a
maximum occurrence of 1.

There was also an observation made regarding the Tiles API, that the use of scaleDenominator,
cellSize and/or the tileMatrix could lead to confusion. This is because every client would have to be
able to handle all of them and convert them to the internal mechanism that the client uses. There
was a suggestion to pick one to make it easier for clients.

It was acknowledged across the sprint that there is a need to request feedback from Client
implementors regarding whether to keep scaleDenominator, cellSize, tileMatrix elements, and that
there are several benefits to keeping all of the elements. The sprint participants recommended that,
for the Executable Test Suite (ETS), if the server provides the scaleDenominator, cellSize, tileMatrix
elements, the ETS should check if they are consistent to a significant number of digits (e.g. at least
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12 digits).

After discussing the results of the metadata review, the sprint participants noted that there is a lot
of value in dropping the 'accessConstraints' field and going with 'license'. Whereas
'accessConstraints' is used more in implementations of ISO 19115, the term 'license' is used in
Dublin Core and DCAT implementations. Therefore, the term 'license' may be the more general term
to use - between the two terms.

The sprint participants recommended that a review of the metadata in OGC API - Common, - Maps ,
-Tiles be carried out and similarities/differences should be discussed in a future multi-SWG
meeting.

8.6. Suggested styleId when creating a style
The Styles API extends on the generic Create/Replace/Delete requirements class, i.e., styles are
always created with POST and the server assigns the styleId. The server is free to parse the
submitted stylesheet to determine a meaningful styleId, if it wants, but that is not possible in style
encodings that do not include an identifier.

The Sprint participants noted that this potentially could be addressed by adding an HTTP header
that clients could use to suggest a styleId with a HTTP POST request. The server would be free to
ignore the suggestion. It was also noted that HTTP PUT could also be used for a similar purpose, in
accordance with RFC 2616, as demonstrated by the CubeWerx implementation’s acceptance of an
HTTP PUT /styles/{styleId} request to create (or replace) a style with a specific ID. This issue was
highlighted for further discussion in the SWGs because HTTP PUT is the typical way of allowing a
client to create a resource with a client-defined URI, whereas HTTP POST is for situations where the
server should assign a URI.

8.7. Summary of Code Sprint Outcomes
This section presents a summary of the outcomes of the sprint.

8.7.1. Immediate Lessons

• The Tiles API was found to be reasonably stable. However, there appears to be different
interpretations of how to apply styles to maps collections and maps of datasets.

• Evolution of the Well Known Scale Set (WKSS) concept into common Tile Matrix Set (TMS)
concepts was another outcome. The sprint participants suggested that information provided by
WKSS could be derived from a TMS. Further consultation with other OGC Working Groups will
be needed to determine the future role of WKSS in the 2D TMS Standard.

• Another key outcome is that the interoperability of buildings blocks has been completely
demonstrated. The three APIs have been successfully demonstrated together.

• The sprint has shown that a lot that is common can be shared across the APIs i.e. how much
OGC API - Common - Part 2 facilitates the client implementation.

• The interaction between OGC APIs for Maps, Tiles, and Styles worked well. No major issues
came up that could not be verified and/or resolved.
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• More work needs to be done on the Styles API in general e.g. to determine the impact on API
resources when styles are used.

• The code sprint focused on the API aspects of the styles but not on the formats of the styles.
More work is needed on the format aspects of the styles (e.g. in relation to the Symbology Core
[https://docs.ogc.org/is/18-067r3/18-067r3.html] standard).

• While in the Tiles API a metadata model has been developed, in the Maps API there has been
less interest in developing a specific metadata model.

8.7.2. Implications for NMAs

The sprint participants considered what the APIs will do to help meet the needs of NMAs. The
following is a summary:

• Providing the public with access to geospatial data and maps: The OGC APIs will make it
easier for the general public to access maps through regular web browser technologies. For
example, through OGC API - Maps it is now possible to access a complete map through a basic
URL (i.e. no query parameters). OGC API - Tiles will make it easier to publish maps as vector
tiles, which are becoming increasingly popular in the NMA community. The APIs are able to
provide data in a way that 2.5D and 3D visualization clients are able to handle.

• Facilitating analytics: OGC API - Tiles is able to publish tiled coverage data in such a way that
makes it easier to 'stream' coverages for analysis at the screen resolution. This makes it possible
to create histograms, vegetation indices, and other analytical reports all at the screen
resolution. The flexibility of specifying the origin of the tiles will make it easier to combine
regular OGC tiles with other tiles.

• Reducing barriers to accessing geospatial data: OGC APIs together make it easier to start with
a dataset and then find a way to generate tiles and other resources. The OGC APIs are integrated
in a very convenient way. The Styles API makes it possible for NMA’s to publish styles from a
central location in a way that is consistent with how they publish data. The integrated
environment makes it easier to manage things together.
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Chapter 9. Conclusions
The code sprint successfully facilitated the development and testing of prototype implementations
of the OGC API - Maps draft standard, OGC API - Tiles draft standard, and the OGC API – Styles draft
standard. The code sprint built upon on the successes of recent code sprints that included the
aforementioned draft OGC API standards. Those previous code sprints had covered OGC API - Maps
[1] and also other draft OGC API standards [2].

The code sprint enabled the participating developers to provide feedback to the editors of OGC
standards. The feedback identified areas for improvement and potential solutions to issues
encountered. The participants of the code sprint were able to identify ways through which the OGC
APIs could help to meet the needs of NMAs. The code sprint therefore met all of its objectives and
achieved its goal of progressing the development of the draft OGC API standards for Maps, Tiles and
Styles.

9.1. Future Work
The sprint participants considered how the sprint’s outcomes could be incorporated into future
OGC Standards Program and Innovation Program activities.

9.1.1. Potential activities for the Innovation Program

For the OGC Innovation Program, the sprint participants identified a need to:

• experiment with multidimensional data support in OGC APIs.

• explore how to turn legends into real data (objects) that can be combined by the client (e.g.
asking a client to provide the elements that are in a legend).

• research how simple a structure needs to be to meet the needs for a legend while also being
easily implementable.

• experiment with coverage tiles, as they are becoming increasingly important (e.g. in support of
rendering a Digital Surface Model (DSM)). Strategies for identifying suitable sizes of the tiles
need to tested/researched.

• experiment with non-grid coverages (e.g. point clouds).

• explore the possibility of an 'info' capability that supports different data sources and query
options (not just retrieval of the value at a point).

• experiment with style editor clients using a secured API to create, update and delete styles and
related resources.

OGC Innovation Program activities rely on sponsorship to resource initiatives. Therefore, the
potential activities listed above will be presented to the OGC Technical Committee through the
Architecture Domain Working Group in order to raise interest from potential sponsors.

9.1.2. Potential activities for the Standards Program

For the OGC Standards Program, the sprint participants identified a need to:
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• specify a legend conformance class for the OGC API - Maps and OGC API - Styles draft
specifications.

• specify an 'info' conformance class for the OGC API - Maps and OGC API - Tiles draft
specifications.

• implement an OGC API - Maps conformance class/extension to support time dependent maps (in
a way similar to the OGC Best Practice for using Web Map Services (WMS) with Time-Dependent
or Elevation-Dependent Data (1.0) [https://portal.ogc.org/files/?artifact_id=56394]) e.g. the subset and
datetime parameters.

The OGC API - Maps and OGC API - Tiles Standards Working Groups will be tasked with specifying
requirements for the legend and info conformance classes. Once the requirements have been
specified, there may be a need to conduct further experimentation focusing on implementations of
the legend and info conformance classes.

The OGC API - Styles Standards Working Group will resolve all issues related to the specification
that were raised during the sprint.
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Appendix A: Prototype Legend Support
The map-level endpoints that the CubeWerx OGC API demo server that is running at
https://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa implemented for this sprint are:

/map/legend - A legend image showing a graphical representation of one or more collections as they
would appear in the corresponding map. e.g.: https://test.cubewerx.com/cubewerx/cubeserv/demo/
ogcapi/Daraa/map/legend?transparent=false https://test.cubewerx.com/cubewerx/cubeserv/demo/
ogcapi/Daraa/map/legend?scale=150000&transparent=false

/styles/{styleId}/map/legend - A legend image showing a graphical representation of one or more
collections as they would appear in the corresponding map in the specified style. e.g.:
https://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa/styles/Night/map/legend?
transparent=false

/collections{collectionId}/map/legend - A legend image showing a graphical representation of the
specified collection as it would appear in the corresponding map. e.g.: https://test.cubewerx.com/
cubewerx/cubeserv/demo/ogcapi/Daraa/collections/TransportationGroundCrv/map/legend?
transparent=false

/collections/{collectionId}/styles/{styleId}/map/legend - A legend image showing a graphical
representation of the specified collection as it would appear in the corresponding map in the
specified style. E.g.: https://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa/collections/
TransportationGroundCrv/styles/Night/map/legend?transparent=false

Each of these endpoints takes the following optional parameters:

• transparent - Whether or not the background of the image should be transparent (when
supported by the requested image format).

• bgcolor - Hexadecimal red-green-blue color value for the background color. If not specified, the
background color specified by the style (0xFFFFFF by default) will be used.

• textcolor - Hexadecimal red-green-blue color value for the text color. If not specified, a color
that contrasts the background color will be used.

• scale - If specified, a legend graphic specific to this scale (expressed as a scale denominator) will
be returned. Otherwise, a possibly-composite image providing a legend graphic for each of the
scale ranges defined by the style will be returned.

• pixelSize - The physical linear size of a display pixel in millimetres. If the display device has
non-square pixels, then sqrt(width * height) should be provided. The pixel units and scale rules
in a style definition are with respect to a standardized rendering pixel size of 0.28mm.
Knowledge of the actual pixel size of the display device will allow the renderer to produce a
map with the intended look even if the actual pixel size is significantly different from the
standardized rendering pixel size.

• f - A token indicating the content type to return. Overrides the HTTP "Accept" header if present.
A value of "jop" (content type "image/x-jpegorpng") indicates that either JPEG or PNG should be
returned, whichever the server deems to be most appropriate for this particular image.

The CubeWerx implementation also supports legends at the tile-level endpoints (which indicate
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their zoom level via the {tileMatrixSetId} and {tileMatrix} pathe elements):

/collections/{collectionId}/map/tiles/{tileMatrixSetId}/{tileMatrix}/legend - A legend image
showing a graphical representation of the specified collection as it would appear in the
corresponding map tiles of the specified zoom level. e.g:

https://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa/collections/CultureSrf/map/tiles/
smerc/12/legend?transparent=false

/collections/{collectionId}/styles/{styleId}/map/tiles/{tileMatrixSetId}/{tileMatrix}/legend -
A legend image showing a graphical representation of the specified collection as it would appear in
the corresponding map tiles of the specified zoom level in the specified style. E.g.:

https://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa/collections/CultureSrf/styles/
Night/map/tiles/smerc/12/legend?transparent=false

CubeWerx also experimented with the following legend endpoint:

/styles/{styleId}/legend - A legend image showing a graphical representation of the specified style,
broken down by each of the collections that it’s capable of rendering.

https://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa/styles/Night/legend?
transparent=false

However, this returns practically the same legend as `/styles/{styleId}/map/legend so it is unclear
whether a separate legend endpoint here is warranted.
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Appendix B: Revision History
Table 2. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

2021-05-26 G. Hobona .1 all initial version

2021-05-31 G. Hobona .2 all Revision after
NRCan feedback

2021-06-21 G. Hobona .3 7.2 Added section
on
documentation
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