
OGC® DOCUMENT: 21-031
External identifier of this OGC® document: http://www.opengis.net/doc/PER/t17-D023

OGC TESTBED-17:
UML MODELING
BEST PRACTICE
ENGINEERING REPORT

ENGINEERING REPORT

PUBLISHED

Submission Date: 2021-11-19
Approval Date: 2021-12-09
Publication Date: 2022-02-08
Editor: Sam Meek

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, (“Licensor”), free of charge and subject to the terms set forth below, to any
person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction
(except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense
copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices
on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a
notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE
ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY
RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in
any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that
LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You
agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held
by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not
be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization
of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use
certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of
U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Copyright notice

Copyright © 2022 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.ogc.org/legal/

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-031 ii

http://www.ogc.org/legal/

CONTENTS

I. ABSTRACT ...v

II. KEYWORDS ... vi

III. SECURITY CONSIDERATIONS .. vii

IV. SUBMITTING ORGANIZATIONS ... viii

V. SUBMITTERS ... viii

1. SCOPE .. 2
1.1. OGC Standards ... 2
1.2. UML ... 2
1.3. Model levels & terms .. 4
1.4. Model Driven Architecture (MDA) ...6
1.5. UML model technology agnosticism ... 7
1.6. Out of scope ... 7
1.7. Best practice criteria ... 8

2. NORMATIVE REFERENCES ...11

3. TERMS, DEFINITIONS AND ABBREVIATED TERMS ..13
3.1. Terms and definitions ..13
3.2. Abbreviated terms ... 14

4. BACKGROUND ... 17
4.1. UML to GML Pilots ...17
4.2. UGAS 2020 Pilot ... 17
4.3. OGC Testbed-16 OpenAPI ..18
4.4. Conceptual Modeling Discussion Paper ...19
4.5. Lessons learned .. 21
4.6. Discussion ..28

5. MODELING APPROACHES AND PURPOSE ...30
5.1. Modeling Purpose ..30
5.2. UML Class Diagrams ...34

6. TOOLING .. 37
6.1. UML diagramming ... 37

OPEN GEOSPATIAL CONSORTIUM 21-031 iii

7. PRINCIPLES ..40
7.1. Correctness ..40
7.2. Consistency ... 40
7.3. FAIRness ...41
7.4. Value ..41

8. BEST PRACTICES ... 43
8.1. Practice 1: UML models should follow OMG UML 2.5.1 Standard ratified in 2017. 43
8.2. Practice 2: OGC Conceptual Models should be represented as UML Class diagrams 43
8.3. Practice 3: OGC Conceptual Models should be platform independent .. 43
8.4. Practice 4: OGC Conceptual Models should use concepts consistently across standards44
8.5. Practice 5: OGC Standards should contain a UML model at least at the conceptual level of detail
..44
8.6. Practice 6: UML models for OGC standard should add value .. 44
8.7. Practice 7: UML models should describe structure and in the engineering process 45
8.8. Practice 8: Modeling artifacts should be provided in full. ..45
8.9. Practice 9: UML models should at least be consistent with supporting text, but ideally normative
..45
8.10. Practice 10: UML modeling tooling should produce interoperable artifacts 46
8.11. Practice 11: UML can be used for modeling semantics, although there are other technologies
that may be appropriate ...46
8.12. Practice 12: UML models should be machine readable ... 47

9. CONCLUSION ..49
9.1. Future Work ..49

ANNEX A (INFORMATIVE) REVISION HISTORY ...51

BIBLIOGRAPHY ...53

LIST OF TABLES

Table 1 — Comparison of a Conceptual Model and a Concept Model (adapted from Ross [6])
..20
Table 2 — The status of various standards with respect to UML modeling 23

LIST OF FIGURES

Figure 1 — Paths OpenAPI representation in UML. ..22
Figure 2 — Use of Specialization Relationship to describe OGC API Class types.31

OPEN GEOSPATIAL CONSORTIUM 21-031 iv

I ABSTRACT

This OGC Best Practice provides readers with guidance on how to use the Unified Modeling
Language (UML) within the scope of OGC work. Recently there has been a move to a resource-
based approach for OGC Application Programming Interface (API) definition through the
OpenAPI Specification and away from the service-based approach specified in OGC Web Service
(OWS) standards. Previously, the interface definitions were almost exclusively XML based,
therefore models described using UML class diagrams and conceptual models in general simply
mapped 1:1 to derive the XML schema. Using API resources has resulted in the possibility of
deriving multiple target technologies from a single standard and therefore, UML model. An
additional point of discussion within the OGC is the value added by conceptual modeling using
UML. Models included in OGC Standards vary from diagrams only, to conceptual models and
model fragments all the way through to Model Driven Architecture (MDA) where UML models
are used to directly derive implementable artifacts such as schemas.

UML has been the main modeling language of choice within the OGC, although up until now,
there has been little guidance within the OGC on appropriate use of UML. These Best Practices
do not seek to govern the use of UML within the OGC as it is recognized that UML is a flexible
language that has applications beyond the current OGC doctrine. However, the practices seek to
provide guidance to assist in adherence to the following principles:

• Correctness — Adherence to the Object Management Group (OMG) UML
standard.

• Consistency — UML artifacts should be consistent across OGC Standards and
with supporting standards such as those specified by ISO/TC 211.

• FAIRness — Findable, Accessible, Interoperable and Reusable models.

• Value — Any modeling done, UML or otherwise, should add value to the parent
standard. That is, the modeling should do work for the community that is not
done elsewhere.

The Practices are as follows:

• Practice 1: UML models should follow the OMG UML 2.5.1 Standard ratified in
2017.

• Practice 2: OGC Conceptual Models should be represented as UML Class
diagrams.

• Practice 3: OGC Conceptual Models should be platform independent.

• Practice 4: OGC Conceptual Models should use concepts consistently across
standards.

• Practice 5: OGC Standards should contain a UML model at least at the conceptual
level of detail.

OPEN GEOSPATIAL CONSORTIUM 21-031 v

https://www.omg.org/spec/UML/About-UML/

• Practice 6: UML models in OGC Standards should add value.

• Practice 7: UML models should describe structure in the engineering process.

• Practice 8: Modeling artifacts should be provided in full.

• Practice 9: UML models should at least be consistent with supporting text, but
ideally normative.

• Practice 10: UML tooling should produce interoperable artifacts.

• Practice 11: UML can be used for modeling semantics, although there are other
technologies that are more appropriate.

• Practice 12: OGC UML models should be machine readable (i.e. available in XMI
format, in addition to the format of the UML Editor used to create the model).

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, UML, best practice, model driven architecture, MDA

OPEN GEOSPATIAL CONSORTIUM 21-031 vi

I I I SECURITY CONSIDERATIONS

No security considerations have been made for this document.

OPEN GEOSPATIAL CONSORTIUM 21-031 vii

IV SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• Helyx Secure Information Systems

V SUBMITTERS

All questions regarding this document should be directed to the editor or the contributors:

NAME ORGANIZATION ROLE

Sam Meek Helyx Secure Information Systems Editor

OPEN GEOSPATIAL CONSORTIUM 21-031 viii

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 21-031 1

1 SCOPE

The scope of this document is UML modeling as part of standards and data models within the
OGC standards definition process. This paper is concerned with the UML aspects of conceptual
modeling within the development of OGC Standards; these aspects should be governed
elsewhere, possibly in other OGC Best Practice documents.

1.1. OGC Standards

The development of OGC standards is the primary driver behind this best practice document.
Standards are developed by the OGC community whose membership hails from a variety of
backgrounds including industry, academia, defense, and government. The standards definition
process is work completed in response to a domain need to standardize data and interactions.
Much of the actual work of creating a standard is completed from within the SWGs and DWGs
through voluntary contributions from the membership. Additionally, standards are developed
somewhat independently of each other; there are governing documents in the form the Abstract
Specification Topics that should be referenced during the standards definition process, although
this is not always the case.

Defining standards often includes the use of models to describe data and interface structures, as
these are the two main aspects to be standardized. The models are usually UML Class Diagrams
for describing structure although it is recognized that other modeling languages are more
suitable for describing different aspects of a standard. Semantic definitions and relationships
are used regularly to provide relationship information between standards, for example, a feature
in one standard should represent the same information as a feature in a different standard.
Although the structure of a feature can adequately be described using UML, semantic meaning
between elements of a standard may better be represented in a language built for semantic
description.

The state of existing models within OGC standards varies in quality, scope, approach and utility.
This is largely due to the independence of approaches to OGC standard development, but also
the variety of challenges that the standards are designed to address.

1.2. UML

Unified Modeling Language (2.5.1) is an Object Management Group (OMG) and later
International Organization for Standardization (ISO) standard with history stretching back over
20 years. It was primarily designed to describe the structure and the behavior of programs,
systems, and data models. UML consists of 14 diagrams, half representing structure and half
representing behavior with a few of these including interaction elements. Although UML is
suited to modeling the entire suite of system behavior, the paper is only interested with the

OPEN GEOSPATIAL CONSORTIUM 21-031 2

https://www.ogc.org/docs/as
https://www.ogc.org/docs/as
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/
https://www.iso.org/home.html

aspects of UML that assist with the OGC’s UML modeling aspirations, this is the Class Diagram.
Please note that unless explicitly stated, from this point forwards this paper uses the term UML
to refer to UML Class diagrams.

1.2.1. UML Class models

The purpose of conceptual modeling is to describe structure rather than behavior or architecture,
a suitable and robust approach is to use the UML_Class approach (referred to throughout this
document as the UML Class Diagram). It is recognized that UML Class diagrams are obviously
more than just pictographic representations of structure, when utilized correctly they are full
models and a diagram is simply a view on the model.

UML Class diagrams are utilized across the OGC in conceptual modeling and are the go-to
approach for carrying out this type of work. This paper is specifically focused on UML Class
diagrams and therefore it should be used where UML class diagrams are appropriate in the
standards definition process.

UML class diagrams, coupled with the Model Driven Architecture (MDA) process can be utilized
for code stubbing in Object Oriented (OO) languages such as Java. Although still utilized in niche
use cases, class diagrams are not the usual entry point in designing software programs, as there
are more efficient ways of doing so. However, class diagrams are useful for:

• Describing objects and their attributes.

• Describing the relationships between the different objects.

• Creating a conceptual view of a structure.

• Deriving lower-level models and schemas.

The remainder of this paper is concerned with a Best Practice for UML class diagrams.

1.2.1.1. Assumptions & Shortcomings

UML as a modeling approach is a defined language and therefore has its own rules and doctrine;
the inbuilt assumptions with UML do constrain how the language should be used and the kinds
of approaches that are easily represented and ones that require workarounds. An obvious
assumption with UML is that it is an Object-Oriented (OO) modeling language where concepts
are divided into classes that have attributes and relationships between them of varying type.
This approach works well for OO targets such as relational databases and Java classes, other
paradigms are modeled using UML, but require best practice to ensure correctness and
consistency.

1.2.2. Data modeling

UML Class diagrams lend themselves very well to modeling the structure of programs and by
extension, data. Data modeling in the abstract sense can be defined using classes, attributes

OPEN GEOSPATIAL CONSORTIUM 21-031 3

with types and even methods for operations. A key aspect of data modeling with UML is that
the representation is abstract and not tied to any particular technology. Data models can be
specialized into target technologies for physical storage and utilization, however, this is not
required for a model to be useful and valid. Data models may also simply be part of a program
running and therefore holding data in transit and use as well as at rest.

Although UML Class diagrams for Data Modeling are abstracted, they are inherently OO due to
the structure of UML Class diagrams. This does not mean that UML cannot be used to model
data of non-OO, but workarounds are required and it may not be appropriate to do so. In terms
of best practice, this decision should be up to the relevant SWG, DWG and modeler.

1.2.3. Interface modeling

Modeling an interface definition with UML is much like modeling a data model, except the data
is either in transit or in use rather than at rest as a typical data model for a target technology
would imply. There is potentially a larger focus on methods as well as classes and attributes
as interfaces exist to gain access to data or capability in someway. There are some extra
considerations for UML for interface modeling, these include:

• Target technology — APIs (whether REST or Services based) that are quite
different and may require different models.

• Methods — methods should be described consistently.

• Patterned attributes — interfaces can have patterned attributes such as Paths in
REST interfaces, UML prefers fixed attribute names.

• Object Orientation — the corresponding physical artifacts to an interface model
are less likely to be OO than data models which requires consideration and
workarounds.

The structure of interface definitions in UML are often more complex than data models,
especially when a target encoding is JSON. One approach to using UML for model JSON
interfaces is to define a new object or class when braces are used. This can result in many
objects within objects with a composition relationship and can make the visual aspects of the
model look cluttered.

1.3. Model levels & terms

When creating models using UML, the way the modeling artifacts are represented depends on
several factors:

• Model purpose

• Level of detail

OPEN GEOSPATIAL CONSORTIUM 21-031 4

• Value proposition & utility

One such way of organizing types of models is to describe the abstraction from the real-world
artifact. This hierarchy has crossover with other concepts such as level of detail, generalization
and purpose, but the driving factor is understanding how closely the model represents an
instance of the model. The levels are as follows:

• Conceptual

• Logical

• Physical

These are levels of data model first described in [7].

1.3.1. Conceptual models

Conceptual models are the highest level of abstraction and usually contain the smallest
amount of detail. These types of models may come in the form of a UML package diagram
that just shows the relationships between the different packages or occasionally the external
dependencies. Conceptual models may also only show the classes and the relationships between
the classes without any lower levels of detail. The purpose of the conceptual model is to
organize the important concepts in a domain. For the OGC, the conceptual model should show
the major aspects of the model target and also the model’s relationship to other models within
the OGC and ISO if appropriate.

1.3.2. Logical models

Logical models are a complete, platform independent description of a real-world artifact.
The model contains all of the information required to derive physical models, but without
the nuances and structures of a defined technology. The model will likely include class
attribution, code lists, data types and relationship descriptors such as multiplicity, direction and
qualifiers. The key aspect of the logical model is that it is detail complete in terms of its logical
components, but platform independent and may still be missing detail required for a specific
target technology.

1.3.3. Physical models

The lowest level of detail models are physical models that are by their nature, platform
dependent. It is possible that a physical model will not be constructed in UML but may be
created out of a target technology such as XSD or JSON schema. Importantly, the physical
model has the means to store the data.

OPEN GEOSPATIAL CONSORTIUM 21-031 5

1.4. Model Driven Architecture (MDA)

MDA has its own terminology that is similar to the model levels mentioned above, these concepts
are referenced from the OMG MDA Guide Revision 2.0:

• Platform Independent Model (PIM)

• Platform Specific Model (PSM)

In general, the PIM is closer to the business concepts and requirements, whereas the PSM is
closer to the technology.

1.4.1. Platform Independent Model (PIM)

A PIM is similar to either a conceptual model or a logical model in the above grouping in that
it is designed to support the auto-generation of target technologies from a single model.
As mentioned previously, this cannot be a complete free-for-all; there has to be some level
of logical representation that target technologies have in common in order to represent
all of the required concepts. One such example given is the use of relational databases, or
Representational State Transfer (REST) APIs or some other group of technologies for which there
are many implementations. This creates a logical abstraction layer that requires the following:

• All information should be captured to generate the target technologies is
somewhere in the model; this may be in the classes, the relationships or
somewhere else.

• The model must have a recognized, representative structure in order to perform a
transformation.

• The model must have a consistent, machine-readable output format to be utilized
by a target technology.

If one of these points is false, then the transformation is unlikely to be possible, specific to a
technology (negating the independence of the model) or at least inefficient. It should be noted
that transformation between logical and physical models is done by transformation software and
much of the logic to move a PIM to a PSM will be held in the transformation software.

1.4.2. Plaftorm Specific Model (PSM)

The platform specific model can either be the generated model to transform it into technology
specific concepts, for example a data type in a PIM might be String, the equivalent concept in
Postgresql is a VARCHAR and the generated data definition language (DDL) that can be ingested
specifically by Postgresql requires transformation of these concepts.

OPEN GEOSPATIAL CONSORTIUM 21-031 6

https://www.omg.org/cgi-bin/doc?ormsc/14-06-01

Another definition of a PSM is the artifacts required by a target technology that directly result in
an implementation, examples of this include:

• DDL for Postgresql

• XML Schema for XML

• JSON Schema for JSON

• JSON definition file and YAML for OpenAPI

The essential difference is that the model is derived to describe concepts in terms of the target
technology that should be implementation-ready regardless of the target technology.

1.5. UML model technology agnosticism

Conceptual UML models should capture all of the information required to express a standard
in multiple target technologies, this argument can vary in strength depending on the model
purpose. Extreme examples of this principle refer to MDA, where the model will be required to
capture a lot of information to generate the target technologies to a conceptual model that just
contains the relationships between internal and external dependencies and packages.

Technology agnosticism is achievable and has many examples in the OGC and elsewhere,
however, being completely approach independent is more challenging as the fundamental
concepts and assumptions may be different. A typical example of this is a relational database,
where creating a data model for a relational database approach can be quite easily abstracted
from a database technology; the concepts of primary keys, foreign keys, 1st and 3rd normal form
are well-known. However, it may not necessarily be possible to represent the same concept in a
NoSQL or Graph or triplestore structure as the fundamentals are different.

1.6. Out of scope

There are several topics that are of peripheral interest to the OGC and UML modeling but are
not covered as they are outside of the scope of the paper. The out-of-scope elements include:

• Platform or technology dependent requirements — UML is the focus of the paper
and technologies such as MDA are mentioned, however, specifics of potential
target technologies are not in scope.

• Other modeling languages beyond UML — There are many languages and
modeling paradigms that can be used to do conceptual modeling, however, the
focus of this paper is UML.

• Best practice and use of Model Driven Architecture (MDA).

OPEN GEOSPATIAL CONSORTIUM 21-031 7

• Use of UML to create implementations of overarching standards through class
specialization as it is inherently tied to machine readability and the MDA process
— the actual details of UML model construction beyond being correct and
consistent are not discussed.

• Specific recommendations for existing standards, this type of work should be
done by the relevant Domain Working Group (DWG) or Standards Working Group
(SWG) using this Best Practice as a reference.

1.7. Best practice criteria

The criteria for best practice is multi-faceted, although it has an overarching motivation to
provide value to standards implementers. Overall, OGC UML models should fulfill the following
criteria, OGC UML models should be;

• Correct in terms of their construction and adherence to OMG Unified Modeling
Language 2.5.1.

• Used consistently across the OGC; a representation of a concept or class should
be consistent across all of the standards that use it.

• Add value to the standard in which a model sits; this could be as an informative
set of diagrams or a normative model.

1.7.1. Correct UML models

Many recent discussions on UML within the OGC (for example this issue) have raised concerns
with the correctness of UML models, that is, they are incorrect according to the standard or they
do not represent the standard sufficiently to match the normative text. This, at best, causes the
standard implementer to ignore the UML model, so that it doesn’t add any value, or it causes
confusion and conflict when the model and the normative text contradict each other.

1.7.2. Consistency

UML models should be consistent across the OGC, that is, when an object or class is
represented in one standard then it should appear in other documents in the same way crucially
with the same semantic meaning. The best practices outlined in this document aim to provide
a framework for consistency of UML modeling across the OGC. For OGC API Standards,
one approach to ensuring consistency is to utilize OGC API — Common to formally produce
modeling for reusable, high-level concepts. Other suites of OGC Standards may also need
similar common conceptual models as has been achieved with CityGML 3, OWS Context, CDB,
Symbology Core, and Observations and Measurements (O&M) standards.

OPEN GEOSPATIAL CONSORTIUM 21-031 8

https://portal.ogc.org/?m=projects&a=view&project_id=228&tab=5&act=details&issue_id=1047

1.7.3. Adding value

Perhaps the most important driver of producing the best practices is to ensure that UML
models deliver value towards standards initiatives be it through fully implemented MDA or
simply providing a conceptual diagram to describe the objects, relationships and peripheral
information required to implement the standard outside of any modeling process. Modeling is a
time consuming endeavor and requires time investment and skills that are not necessarily held
by usual standards creators and implementers, therefore the end product has to deliver value
proportional to the investment required to create the model.

The value proposition of a model is dependent upon many things, initially this is model intent.
If a standard is structured to be derived using and MDA process, for example, then the value
of the model is realized when that process is complete. If the model is created and never
transformed, then it may be argued that there is no value in it. However, if the intent of the
model is to show diagrammatic relationships between one standard’s use of an object and
OGC API Common, then there is no need to have it in a state to perform transformations. This
criterion simply states that the model creator should understand the purpose of the finished
product prior to publication.

OPEN GEOSPATIAL CONSORTIUM 21-031 9

2

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 21-031 10

2 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

ISO: ISO 19101-1:2014, Geographic information — Reference model — Part 1: Fundamentals.
International Organization for Standardization, Geneva (2014). https://
www.iso.org/standard/59164.html

ISO: ISO 19103:2015, Geographic information — Conceptual schema language. International
Organization for Standardization, Geneva (2015). https://www.iso.org/
standard/56734.html

ISO: ISO 19115-1:2014, Geographic information — Metadata — Part 1: Fundamentals. International
Organization for Standardization, Geneva (2014). https://www.iso.org/
standard/53798.html

ISO: ISO 19157:2013, Geographic information — Data quality. International Organization for
Standardization, Geneva (2013). https://www.iso.org/standard/32575.html

ISO: ISO 19139:2007, ISO / TC 211: ISO 19139:2007 Geographic information — Metadata — XML
schema implementation (2007). ISO (2007).

ISO: ISO/DIS 19115-3, Geographic information — Metadata — Part 3: XML schema implementation
for fundamental concepts. International Organization for Standardization, Geneva
https://www.iso.org/standard/80874.html

OGC: OGC 15-097 OGC Geospatial User Feedback Standard. Conceptual Model (2016)

Gerhard Gröger, Thomas H. Kolbe, Claus Nagel, Karl-Heinz Häfele: OGC 12-019, OGC City
Geography Markup Language (CityGML) Encoding Standard. Open Geospatial
Consortium (2012). https://portal.ogc.org/files/?artifact_id=47842

OPEN GEOSPATIAL CONSORTIUM 21-031 11

https://www.iso.org/standard/59164.html
https://www.iso.org/standard/59164.html
https://www.iso.org/standard/56734.html
https://www.iso.org/standard/56734.html
https://www.iso.org/standard/53798.html
https://www.iso.org/standard/53798.html
https://www.iso.org/standard/32575.html
https://www.iso.org/standard/80874.html
https://portal.ogc.org/files/?artifact_id=47842

3

TERMS, DEFINITIONS AND
ABBREVIATED TERMS

OPEN GEOSPATIAL CONSORTIUM 21-031 12

3 TERMS, DEFINITIONS AND ABBREVIATED
TERMS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

3.1. Terms and definitions

3.1.1. Concept Model

Implementation independent representation of the nouns that are important for an organization,
domain or industry.

Note 1 to entry: A comparison to the term ‘conceptual model’ is presented in Clause 4.4.1 of
this Best Practice document.

3.1.2. Conceptual Model

model that defines concepts of a universe of discourse (Source: ISO 19101)

Note 1 to entry: For this OGC Best Practice, the term more specifically refers to a
representation of a system that consists of concepts used to help people know, understand or
simulate a subject the model represents.

OPEN GEOSPATIAL CONSORTIUM 21-031 13

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

3.1.3. Logical Model

A data model of a problem domain that is presented independently of the of a particular
database management product or storage technology.

3.1.4. Physical Model

A database or technology specific implementation of the logical model.

3.1.5. Platform Independent Model

A model of a software system or business system that is independent of the specific
technological platform used to implement it.

3.1.6. Platform Specific Model

A model of a software system or business system that is linked to a specific technological
platform.

3.1.7. Model Driven Architecture

A software design approach for the development of software systems. It provides the guidelines
for the structuring of the specifications that are expressed as models.

3.2. Abbreviated terms

PIM Platform Independent Model

PSM Platform Specific Model

OPEN GEOSPATIAL CONSORTIUM 21-031 14

UML Unified Modeling Language

OPEN GEOSPATIAL CONSORTIUM 21-031 15

4

BACKGROUND

OPEN GEOSPATIAL CONSORTIUM 21-031 16

4 BACKGROUND

This section provides grounding work for this OGC Best Practice paper.

UML modeling has been a part of the OGC’s standardization process almost since its inception;
whether it’s conceptual modeling for diagrammatic purposes or logical and physical models in
a full MDA pipeline as with CityGML 3.0 and OWS Context. The success of modeling efforts
has differed from case-to-case, as has the quality, conformance and harmonization of concepts
across models.

UML is used within the OGC in general to create data models and interface models in the
form of a class diagram. The following sub-sections focus on the UML aspects of the projects
specifically, although it is noted that many of the example projects provided more value to the
OGC than just their UML modeling aspects.

4.1. UML to GML Pilots

This section provides an overview of the history of the application schema and transformation
work completed over the last 20 years. The detailed information can be found in the Engineering
Reports for the different initiatives. The full list of documents numbers 18 at time of writing
which shows the legacy of this work within the OGC; it was supported by the OGC and Testbed
(OWS) initiative from the very beginning. The Testbeds span from the OGC Web Services
Testbed-2 (OWS-2) in 2004, all the way to UML-to-GML Application Schema Pilot 2020
(UGAS-2020), which is described in a later section.

The OWS-2 Application Schema Development Discussion Paper provides an introduction to
ShapeChange within the OGC with the goal of creating application schemas for NGA data [2].
The initial process is defined to create ISO 19109 Application Schemas in UML with the explicit
requirement for them to be machine readable and therefore transformable by the ShapeChange
software into GML representations. The process for generating the application schemas was
successful, although it was recognized that the time taken to generate the application schemas
via the UML process was quite lengthy and it was more efficient to make changes manually or
via an XML schema editor if time was precious.

The OGC Web Services (OWS) 3 UGAS Tool Discussion Paper provides an overview of
ShapeChange and its installation, use and maintenance [3]. It is the first time in the OGC that
ShapeChange is presented as a tool that can provide an Application Schema output.

4.2. UGAS 2020 Pilot

The UML to GML Pilot 2020 (UGAS 2020) was a multifaceted piece of work that sought to
derive methodologies for transformation activities enabling interoperability of data exchange

OPEN GEOSPATIAL CONSORTIUM 21-031 17

https://github.com/opengeospatial/CityGML-3.0CM
https://www.ogc.org/standards/owc
http://portal.opengeospatial.org/files/?artifact_id=8071
https://shapechange.net/
http://portal.opengeospatial.org/files/?artifact_id=12894

[4]. One aspect of interest in this piece of work was the transformation of UML to JSON schema
via an encoding rule. Schema encoding and conversion rules describe how UML models can
be converted using the rules into an encoding of choice, the ER provides GeoJSON and JSON
as two such examples. Some of the encoding rules described could potentially be generalized
beyond JSON type schemas. For example, the Section on inheritance is useful due to the
rules suggested, but also because inheritance as a concept is key to UML modeling in general.
Another reason to consider inheritance is because JSON schemas do not support inheritance
directly and therefore workarounds are described to utilize UML modeling for non-object
oriented output schemas. This section reviews some of the pertinent decisions made in the Pilot
that have possibilities for transference to the general case and therefore best practices. This
section is not a critique on the decisions made during the UGAS Pilot — it is used to provide
knowledge transfer into the Best Practices.

To summarize, the inheritance aspects of the UGAS 2020 Pilot include the concepts of
generalization and specialization. These two types of inheritance relationships are handled by
using the JSON schema keyword “allOf”, this inherits the properties of the generalized class
into the specialized class. This approach begs the question of how types or functions may be
overridden, if a use case for that relationship cannot be found. An additional observation is that
the practice of specialization offers limited value in the way it is used. This is due to the lack
of support for simple sub-typing of complex types (arrays for example). The authors describe a
complex methodology for enabling this feature, at least within a single schema, however, they
correctly point out the challenge of enabling this. A secondary concern for this approach is the
value offered.

The use of enumerations in JSON is good example of a UML → JSON match as both support
the concept of enumerations and are used in the same way. Code lists are slightly different
in that the representation of a code list in XML, for example, maps well to code lists in UML.
However, code lists in JSON schemas are different in that they rely on a linked object to achieve
the desired effect; a code list in UML/XML is a list of shorthand codes that have a lookup to a
more descriptive version of the code with peripheral, linked information. In the JSON version,
the ER describes the use of a linked object, but it is not clear how the code lists capture the
information attached to the code.

Basic types are described in UML by using a set of generalization relationships, each type
inheriting from its subtype. Although this approach provides the desired output schema, it is
a rather verbose way of describing type information. This is a feature of how JSON does its
pseudo-inheritance, as described above.

4.3. OGC Testbed-16 OpenAPI

OGC Testbed-16 saw the use of UML Class Diagrams to model interface specifications [1]. The
OGC is currently moving away from the WxS (WFS, WMS etc.) suite of standards based on XML
and towards the OpenAPI specification which uses JSON and YAML. The OpenAPI specification
differs from XML because OpenAPI is an interface standard. UML class diagrams are inherently
OO and can be represented in XML documents, therefore compromises are made to ensure that
all of the information is captured within the models — capturing all of the information is required

OPEN GEOSPATIAL CONSORTIUM 21-031 18

as the UML model was fed into an MDA pipeline and automatically transformed into a JSON
representation of an OpenAPI interface.

The approach to utilizing UML was derived using the following principles:

1. Pragmatism over idealism. The project required delivery of implementable
artifacts without stipulating a particular approach.

2. Use of specialization to enforce rules within the transformation process. The
OpenAPI specification describes rules at the Object level, these objects were
realized as classes in the metamodel and rules were written in the transformation
software to detect meta-classes and transform accordingly.

3. Appreciation of the transformation tool’s capabilities prior to model design.
ShapeChange was used within Testbed-17 and one of the considerations is
that ShapeChange does not recognize methods in UML classes out of the box.
Therefore, all of the OpenAPI object properties were captured as data items
regardless of whether that was appropriate.

There are several differences between interfaces and data models, although they are both
structured: an interface definition has far more flexibility in how it is realized. If a data model
is relational, then it will follow certain rules, such as the inclusion of primary and foreign keys.
Contrarily, an interface model has no such constraint and could vary wildly. This has implications
for best practice in that, although UML models may be logical and technology independent, they
are likely to be approach dependent.

4.4. Conceptual Modeling Discussion Paper

UML modeling within the OGC applies variable approaches. One of the objectives of this Best
Practice is to standardize the use of UML across the OGC. There is a discussion paper within
OGC (21-041r2) that was written to explore the possibility of a group within OGC to assist
with UML modeling in a standardized way across the OGC [5]. The paper re-visited some of the
discussions on conceptual modeling within the OGC, the focus was not specifically on UML, but
conceptual modeling more widely — it just so happens that the majority of conceptual modeling
within the OGC is UML. There are multiple criticisms leveled at some of the conceptual
modeling that exists within the OGC, the contents of the paper will not be repeated here.
Briefly, the main points included:

• There is an identified need for conceptual modeling within the OGC, although the
scope and remit is not clear.

• Conceptual Modeling across the OGC is inconsistent.

• Some standards have missing or incorrect conceptual models.

• Conceptual models are occasionally normative, but usually supportive.

OPEN GEOSPATIAL CONSORTIUM 21-031 19

The Discussion Paper provides much of the material that drives the need for this Best Practice
and is recommended reading as a companion to this work.

4.4.1. Architecture DWG sub-group for Conceptual Modeling

A conceptual modeling sub-group within the Architecture DWG was created following a vote
at the Virtual June 2021 Technical Committee Meeting. The full terms of reference for the
group are attached to the Conceptual Modeling discussion paper as an Annex. The purpose of
the sub-group is to manage the creation and maintenance of the created models in order to
ensure correctness, consistency, FAIRness (Findable, Accessible, Interoperable and Reusable)
and value. Although the group stops short of mandating a particular approach, language or
type of modeling and has no authority to govern models that are produced, it is in the process
of creating guidelines for modeling; one aspect under consideration is the appropriate use
of modeling languages for applications. At time of writing, the OGC Abstract specification
mentions Conceptual Modeling, the entry is as follows:

Conceptual Modeling addresses the following questions.

• What are the concepts of interest (things of importance) within the scope of the
standard (universe of discourse)?

• What are the relationships between these concepts?

• What information is significant about each concept? What are their attributes or
properties?

• What are the related concepts from outside the scope?

This use of the term Conceptual Modeling is in contrast to, for example, the use of Concept
Modeling that can be found here [6]. This table is included as a reference and update on the
discussions around conceptual modeling within the OGC, it is useful background information for
determining appropriate use of UML within the OGC. However, as mentioned previously, the
semantic work within the OGC is out of scope for this Best Practice and is left here to provide
context.

Table 1 — Comparison of a Conceptual Model and a Concept Model (adapted from Ross [6])

CHARACTERISTIC CONCEPTUAL MODEL CONCEPT MODEL

What is the core purpose of the concept
model?

To initiate and/or orient the engineering
of something

To create an inventory of defined
words to make statements and to
disambiguate those statements

What is the target of the model?

Some capability, which can pertain to
inventories, processes, locations, roles,
timing, or goals, or some combination
thereof

Always concepts and only
concepts, which can be about
anything

Where are the things referenced in the
model?

Often in the real world
Always in people’s heads source
‘https://rubygems.org’

OPEN GEOSPATIAL CONSORTIUM 21-031 20

https://www.brcommunity.com/articles.php?id=b977

CHARACTERISTIC CONCEPTUAL MODEL CONCEPT MODEL

What form does the model take?
Usually graphical, sometimes with
definitions

Always definitions and structural
statements, often illustrated
for convenience by a graphical
diagram

What kind of connections does the
model feature?

Structural, sequential, spatial,
collaborative, cyclic, or motivational -or
some combination thereof- depending
on the target of the model

Always semantic — either verbal
concepts that can be expressed by
verbs or verb phrases) or logical

What kind of engineering does the
model address?

Any kind Only knowledge, at least directly

How deep does the model go?

Usually the first in an ordered trio of
models — conceptual, logical, physical —
based on level of detail, consideration
to design, and conformity to platform
conventions

As deep as needed in expressing
business knowledge; no
counterpart kinds of model for
higher-level or lower-level views

How is the model represented?
Usually graphically, sometimes with
definitions

Always by vocabulary and
definitional criteria, usually
illustrated by a diagram

Disentangling the types of modeling (conceptual, logical, physical, etc) is part of the group’s
work. One important finding established is that UML may not be the most suitable modeling
language for modeling concepts. There are other models such as the Web Ontology Language
(OWL) that are more suited to other modeling concepts such as ontologies and semantics.

The membership of this special interest sub-group is involved with drafting of this Best Practice
document.

4.5. Lessons learned

Representations of different types of output schema (JSON, XML, etc.) lend themselves
to modeling in UML to different degrees. One of the more challenging aspects of JSON
representations is best described using indentations as an indicator of a new class in a UML
model. This was the approach adopted in Testbed-16 and is somewhat reflected in the UGAS
2020 Pilot. In very complex UML models, such as those that represent OpenAPI interfaces,
the number of classes and specialization relationships can become very large and difficult to
maintain. An example below is one of the Paths views from the Testbed-16 OpenAPI thread.

OPEN GEOSPATIAL CONSORTIUM 21-031 21

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/

Figure 1 — Paths OpenAPI representation in UML.

The use of UML as the de facto language for modeling is not an appropriate assumption. The
previous work described in this section, specifically the UGAS 2020 pilot, notes that RDF and
SHACL offer better semantic descriptions of relationships. Therefore, the UML best practices
should also include some description of relevance of UML as a modeling language and a call for
other types of modeling practice.

A lesson learned from the OpenAPI work and the UGAS 2020 work is that adoption of MDA
processes requires a lot of upfront work when working with a new encoding, standard or
transformation. In the examples given, the MDA process seems to follow the following broad
steps:

1. Create a strategy for building a UML model. Translation of domain knowledge
into a UML model is not a defined process and a strategy has to be adopted to
ensure consistency and correctness. This is not only critical for model readability,
but it is also required for simple transformation practices from the UML model
into the target technology.

2. Ensure all information is captured within the UML model to an appropriate level
of detail. In addition to creating a correct and consistent model, the model must
capture all of the information required to derive the target technology output
somewhere, otherwise it will have to be injected at another time which increases
complexity to the already complex process.

3. Create encoding rules to ensure a consistent and correct transformation. Even
with all of the information captured in a consistent and correct way, encoding
rules have to be created to define how the model is going to get from its UML
representation (described in a Sparx Enterprise Architect Project or XMI) into the
target representation.

4. Implement the encoding rules. Implementation is required to actually perform
the transformation. In addition to the normal testing required for development

OPEN GEOSPATIAL CONSORTIUM 21-031 22

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/shacl/

projects, several different models will likely have to be pushed through the
transformation technology to ensure that it is implemented correctly and generic.

5. Maintain the models and transformation software. Target technologies are not
static and have version uplifts, depending on requirements it is likely that the
models and transformation technology will have to be maintained to ensure
compliance with target versions of different technologies. Additionally, the
process has to be followed for each new transformation required.

Overall, the projects described highlight attempts to utilize UML models and downstream
technologies to add value to some or all of the standards definition process. Creating the UML
model is not a straightforward process, neither is utilizing the transformation technologies once
the UML model has been created.

This section again considers the value of UML modeling in different circumstances, it may
be that UML modeling is not appropriate in all situations if it offers no value to the overall
product. Additionally, the value threshold seems to increase as the complexity of the UML target
technologies approach increases; if a UML model maps 1:1 with a target technology, it may be
that an MDA process is suitable, as the threshold for implementing it is not very high. However,
if a UML model is representing a suite of target technologies over a complex domain, then the
value threshold for MDA is a lot higher because the time investment to create it also high.

4.5.1. Modeling status for each standard

The following table outlines the status of each standard with respect to UML modeling. Note
that only standards published after 2010 are included and are all taken from the OGC’s list of
approved standards. Additionally, the table does not provide an in-depth review of each of the
models and is there as a survey to understand the proliferation of UML rather than its quality or
appropriate use.

Table 2 — The status of various standards with respect to UML modeling

STANDARD
VERSION
(LATEST)

YEAR OF
PUBLICATION/
REVISION

MODEL
INCLUDED?

MODEL
TYPE/LEVEL

COMMENTS

3D Tiles
specification

1.0 2019 No N/A N/A

3D Portrayal
Service

1.0 2017 Yes
UML Class/
Package
Diagrams

Modeling extensively used
throughout the standard

Augmented Reality
Markup Language

1.0 2015 Yes
Semantic
generic object
model

Low-resolution image of model
only

Catalogue Services
Standard 2.0
Extension Package
for ebRIM Profile:

2.0 2010 Yes
UML models
used,
mixture of

UML package diagrams shown,
but the relationships between
the packages/classes are
unclear and given incorrect

OPEN GEOSPATIAL CONSORTIUM 21-031 23

https://www.ogc.org/docs/is

STANDARD
VERSION
(LATEST)

YEAR OF
PUBLICATION/
REVISION

MODEL
INCLUDED?

MODEL
TYPE/LEVEL

COMMENTS

 Earth Observation
Products

relationships
and classes

notation. The class diagrams
simply represent the tables,
value proposition unclear.

Catalogue Service 3.0 2016 Yes

UML models
used,
mixture of
relationships
and classes

UML class diagrams used,
but missing detail such as
multiplicities

CDB (note using
Volume 1 core
standard)

1.2 2021 Yes Conceptual
No overarching UML model,
snippets are used to illustrate
concepts.

CityGML
2.0 (latest
in standards
catalogue)

2012 Yes Logical
CityGML is a profile of GML,
therefore it uses the GML
UML models

EO Dataset
Metadata Geo
JSON(LD) Encoding
Standard

1.0 2020 Yes Logical
Model included in annexes to
describe the profile

GeoPackage 1.3 2021 Yes
Logical,
Physical

Extensive UML modeling
throughout

GeoSciML 4.1 2017 Yes
Conceptual,
logical

Points to WaterML, which
contains O&M UML models

GeoSPARQL 1.0 2012 No N/A No UML modeling

Geography Markup
Language

3.2.2 2016 Yes Logical
UML models covering
Primitives

GeoRSS 1.0 2017 Yes Logical
UML model in Annex
describing GeoRSS Application
Schema

GeoXACML
Version 1
Corrigendum

2011 No N/A N/A

GeoSpatial User
Feedback (GUF)
Conceptual Model

1.0 2016 Yes
Conceptual,
Logical

Separate document that is
specifically there to describe
the conceptual modeling
aspects

GeoTIFF 1.1. 2019 No N/A No modeling anywhere

OGC Water
ML 2: Part 4 —
GroundWaterML2
(GWML2)

2.2.1 2021 Yes Logical
GWML2 is Part 4 of WaterML,
therefore it reuses a lot of the
modeling done in WaterML

OPEN GEOSPATIAL CONSORTIUM 21-031 24

STANDARD
VERSION
(LATEST)

YEAR OF
PUBLICATION/
REVISION

MODEL
INCLUDED?

MODEL
TYPE/LEVEL

COMMENTS

Hierachical Data
Format

5 2019 No N/A
Contains conceptual modeling,
but not UML

Indexed 3d Scene
Layer (I3S)

1.1 2020 Yes Logical
Includes logical schema of
certain aspects

Indoor Mapping
Data Format

1.0.0 2021 No N/A
Contains many JSON snippets,
but no overarching model

Indoor GML 1.1 2020 Yes
Logical,
Physical

Contains logical and physical
aspects as it maps 1:1 with
XML via GML

KML 2.3 2015 No N/A
Modeling is described with
XML snippets

Land and
Infrastructure (Land
Infra)

1.0 2016 Yes
Conceptual,
Logical

Very extensive UML usage
including package and class
diagrams

LAS community
standard

1.4 2018 No N/A No modeling described at all

Moving Features 1.0.2 2019 Yes
Conceptual,
Logical

Extensive use of GML, maps 1:
1 with implementation

Network Common
Data Form (Net
CDF)

1.0 2011 Yes Logical
UML used to communicate
data model

Geographic
Information —
Observations &
Measurements

2.0 2013 Yes Logical
Models included, but are
displayed in low-resolution in
the standard

OGC-API Feature
Part 1:Core

1.0 2019 No N/A

The standard and bibliography
make reference to a UML
diagram, but it is not shown
in the standard document.
 Comments show that the
UML was removed from the
document because it was not
considered fit for purpose

Open GeoSMS
Standard — Core

1.0 2012 No N/A No model included

Open Modelling
Interface Standard

2.0 2014 Yes Logical

Contains a few logical models
of elements, although lacks
an overall model describing
relationships

OPEN GEOSPATIAL CONSORTIUM 21-031 25

https://github.com/opengeospatial/ogcapi-features/issues/217
https://github.com/opengeospatial/ogcapi-features/issues/217

STANDARD
VERSION
(LATEST)

YEAR OF
PUBLICATION/
REVISION

MODEL
INCLUDED?

MODEL
TYPE/LEVEL

COMMENTS

OWS Context
Conceptual Model

1.0 2014 Yes
Conceptual,
Logical

Full logical model included
with reference to other
standardized models. Maps 1:1
with XML

OGC Web Services
Security

1.0 2019 No N/A
Contains many XML snippets
that could be considered the
physical model

PipelineML
Conceptual Model
& Encoding
Standard

1.0 2019 Yes
Conceptual,
Logical

Contains a lot of UML
to describe classes and
relationships

Publish/Subscribe
Interface Standard

1.0 2016 Yes
Conceptual,
Logical

UML models used to describe
classes, also includes sequence
and timing diagrams

PUCK Protocol
Standard

1.4 2012 No N/A Modeling Absent

SWE Common Data
Model

2.0 2011 Yes
Conceptual,
Logical,
Physical

Contains the full suite of
models including packages,
classes and schemas.

SWE Service Model 2.0 2011 Yes
Conceptual,
Logical

Extensive UML modeling
throughout the standard

SensorML: Model
and XML Encoding
Standard

2.1 2020 Yes Logical
Extensive UML modeling
throughout the standard

Sensor Observation
Service Interface
Standard

2.0 2012 Yes
Conceptual,
Logical

Includes class and process
UML diagrams, very extensive
use

Sensor Planning
Service
Implementation
Standard

2.0 2011 Yes
Conceptual,
Logical,
Physical

Extensive UML modeling
throughout the standard

SensorThings API 1.0 2016 Yes Logical
UML class diagrams describing
objects and relationships, but
missing multiplicity detail

Semantic Sensor
Network

1.0 2017 No N/A
Standard contains semantic
modeling using OWL, UML
referenced through

Symbology Core 1.0 2020 Yes Conceptual
UML class diagrams with no
attributes included

OPEN GEOSPATIAL CONSORTIUM 21-031 26

STANDARD
VERSION
(LATEST)

YEAR OF
PUBLICATION/
REVISION

MODEL
INCLUDED?

MODEL
TYPE/LEVEL

COMMENTS

Geographic
Information —
Simple Features
Access Part
1: Common
Architecture

1.2.1 2011 Yes
Conceptual,
Logical

UML used to describe overall
relationships and detailed
classes including attributes

Georeferenced
Table Joining
Service
Implementation
Standard

1.0.0 2010 No N/A UML mentioned, but not used

Time Ontology in
OWL

1.0 2020 No N/A
Semantic standard, therefore
OWL is used

TimeseriesML 1.2 2018 Yes Logical
Extensive UML models, lots of
detail

Two Dimensional
Tile Matrix Set

1.0 2019 Yes Logical
UML diagrams are very
detailed, some are missing
attribute multiplicities

WaterML 2.0.1 2019 Yes Logical
UML inherited from
Observations and
Measurements

Web Coverage
Service — Core

2.1 2018 Yes Logical Extensive UML modeling

Web Feature
Service — With
Corrigendum

2.0.2 2014 Yes Logical
UML model snippets describe
Objects and interactions

Web Map Server 1.3 2006 No N/A No modeling

Web Map Tile
Service

1.0.0 2010 Yes Logical
Snippets used to describe
objects and interactions

Web Processing
Service
Corrigendum 2

2.0.2 2015 Yes
Conceptual,
Logical

UML snippets to describe
objects and relationships, UML
process diagrams also included

Web Service
Common

2.0.0 2010 Yes Conceptual
UML objects and attributes
described in snippets,
relationships are conceptual

Geographic
Information —
Well-known text
representation

2.0.6 2019 No N/A
UML mentioned, but not
included anywhere

OPEN GEOSPATIAL CONSORTIUM 21-031 27

STANDARD
VERSION
(LATEST)

YEAR OF
PUBLICATION/
REVISION

MODEL
INCLUDED?

MODEL
TYPE/LEVEL

COMMENTS

of coordinate
reference systems

4.6. Discussion

Uptake, utilization and quality of UML models is variable across the OGC. Additionally, the
concept of value is rarely considered explicitly with models sometimes added as an afterthought
without a maintenance and governance structure in place. There are examples of models within
OGC standards that are normative and therefore the source of truth, should there be a conflict
between the model and supporting documentation. There are also models that are utilized
as part of an MDA pipeline and schemas as derived directly from the model. However, the
most common use of UML models within OGC standards is for illustration of concepts within
standards as documents. It is not suggested that this use changes, as MDA can be more of a
burden to developers than the supposed value added by following the process. Descriptions of
the best practices will therefore not mandate or assume any downstream use of UML models
and will consider them to be standalone artifacts that offer value in their own right.

Referencing the Table of Standards in the previous section: many standard definition processes
attempt to use modeling within the standard, but this modeling varies from very high-level,
conceptual models to low-level encoding models for transformation. There are a few examples
of modeling being used to generate multiple outputs from a single model, this is evident in
CityGML, which is also used to generate CityJSON, and OWS Context which provide both an
XML and JSON encoding. Generating multiple encodings from UML models is utilization of
MDA applied to its full potential. However, this is not expected to become a normative process
within OGC.

In summary, the OGC utilizes UML modeling for description of concepts, modeling data, and
in MDA pipelines. The quality of the modeling varies throughout the OGC and has somewhat
fallen out of favor recently with the utilization of JSON encodings that can be created and
implemented very quickly.

OPEN GEOSPATIAL CONSORTIUM 21-031 28

5

MODELING APPROACHES
AND PURPOSE

OPEN GEOSPATIAL CONSORTIUM 21-031 29

5 MODELING APPROACHES AND PURPOSE

There are several approaches to modeling and UML is, in fact, a suite of models and diagrams
that describes the structure and the behavior of a given system. With interface and data
modeling, we are mostly concerned with structure, rather than behavior.

5.1. Modeling Purpose

Consideration should be given to modeling purpose. Modeling is a difficult, complex and often
time-consuming job, therefore the following should be understood:

• The value proposition of the work — why is a model being included?

• How the Standard fits into the overall suite of OGC standards, including concept
reuse.

• The skills required for the standard development and generation.

• Whether the model is normative in describing the standard.

As mentioned in the previous section, creating models of OpenAPI levels of complexity, as seen
in Testbed-16, is a labor-intensive process. Therefore, any modeling work undertaken should
have a purpose and add value or do work that the other aspects of a standard documentation
do not. Likewise, it is prudent to streamline the work required of a standard; communication of
the relevant aspects of a standard should be described in the text or in the model, but not both:
there should be no need to describe it multiple times. Adopting this approach will reduce the
likelihood of repetition and conflict between different aspects of a standard document.

Perhaps an outcome of this work is the creation of an OGC model repository to harmonize and
maintain all of the models through the OGC in a formal manner.

5.1.1. Communication & Diagram

UML is an effective communication method for describing data and interface structure. This
Best Practice is focused almost entirely on UML Class diagrams, therefore this section is
concerned with class diagrams used for communication purposes. UML class diagrams used
solely for communicative purposes have several advantages, such as:

• Well-defined relationships between classes

• Ability to fix field values

• Stereotypes

OPEN GEOSPATIAL CONSORTIUM 21-031 30

• Multiplicity

• Qualifiers

Additionally, UML is a well-known standard with a standardized graphical user interface, making
it ideal for diagrams. Another aspect of UML that has been useful for diagramming is the
specialization → generalization relationship, which essentially allows the capture of class type
and name. This mechanism was utilized in OGC Testbed-16 OpenAPI thread to describe OGC
API — Features Part 1: Core in terms of its OpenAPI meta-classes.

Figure 2 — Use of Specialization Relationship to describe OGC API Class types.

In summary, UML Class models can, as a minimum, be used for creating diagrams to represent
a standard. However, if the diagram is complete, correct and consistent, and built in modeling
software then it is highly recommended that the model artifacts be supplied for completeness.

5.1.2. Implementable & Machine Readable

There is some confusion about whether a model should be machine readable. Luckily, there are
standards governing the transformation of UML models into XMI (XML Metadata Interchange)
format, however it is unclear how much this standard is directly used within the community.
Transformation technologies such as ShapeChange often utilize plugins for modeling software
without using the XMI for interchange.

There are several pieces of software that are employed for UML modeling, these include:

• Sparx System Enterprise Architect (COTS)

OPEN GEOSPATIAL CONSORTIUM 21-031 31

shapechange.net

• OpenMDX (FOSS)

• Dassult CATIA MagicDraw (COTS)

• Papyrus UML (FOSS)

• PlantUML (FOSS)

• LutaML UML (FOSS)

From a best practice perspective, does a UML model need to be machine readable? This question
has two parts:

1. Does the UML model lend itself to machine readability?

2. Should the UML diagram be provided in a machine readable format?

The structure of the diagram should be consistent across the OGC; if a standard includes a
logical model with target technologies of JSON and XML, then provided they are consistent,
they should be machine readable. Likewise, a conceptual model that lacks the detail required for
transformation may be machine readable, but it may not be appropriate for a machine-readable
form to be supplied. The question around format is perhaps more important as it requires supply
of either an XMI file or a machine-readable version of the UML content (an EAPX file if using
Enterprise Architect). Mandating supply of this information for every standard for which a model
exists for is likely to be unworkable, however, if a standard is utilizing MDA or an equivalent
technology, then it stands to reason that the supporting files should be supplied and maintained
along with the rest of the standard.

Before addressing these two questions, it is important to reiterate that UML itself is a modeling
language that provides flexibility to data modellers: it provides both a modeling language and a
diagramming function, which supports a multitude of diagram types.

The OMG XMI specification allows serialization of both UML models and the UML diagrams in
a single XML file. For instance, a UML model can be serialized into the XMI XML format (“UML
XMI”) while the UML diagrams are provided in serialized form adjacent to that content, in the
same XMI file. In fact, this approach makes it possible to only encode machine-readable UML
models without any UML diagram.

Technically, with XMI, any UML model and diagram are machine readable since there is a defined
mechanism for their serialization into XML.

However, machine readability here takes on a more specific meaning: whether the UML models
and diagrams are useful for machines to perform processing.

In the case of implementation, while humans can typically identify and interpret semantic
ambiguity, machines require unambiguous information. For instance, an automated,
deterministic transform of a logical model to an implementation schema (or code) will require all
gaps and holes being filled.

Authors (or data modelers) typically provide UML models that lie between the two ends of a
spectrum that describes machine-readability of UML models:

OPEN GEOSPATIAL CONSORTIUM 21-031 32

• Strictly modeled UML models that are logically complete — they can be
transformed automatically into implementation schemas or software code; or

• vague and ambiguous models that may look natural in diagram form, but are
logically incomplete — they do not provide sufficient information for automated
transformation into implementation.

Clearly, the former approach lends itself well to machine readability, and hence implementation;
while the latter approach treats UML as a diagramming tool rather than as implementation
specification.

UML diagrams are useful to humans, but are practically useless for machines to understand in
processing a transformation, except for the case where the machine presents those diagrams to
humans.

There is an additional complication about compatibility of OMG XMI implementations.

In a perfect world, as long as the data modeler provides a set of logically complete UML models,
when encoded in the OMG XMI format, these models should be easily machine readable and
implementable.

However, while the OMG XMI specification provides a helpful model-view separation,
implementers of UML tools have been way less forgiving to those in the pursuit of data
interoperability of UML models.

It is well-known in the UML world that XMI files created using major UML editing tools are not
compatible with each other. For instance, XMI files generated using Enterprise Architect are
not understood by Papyrus or MagicDraw. This caveat originated from the fact that UML tools
typically do more than what is allowed by the UML and XMI specifications.

Most of these XMI generating tools create XMI files that are composed of two parts:

• An OMG XMI-compliant XML part, that contains basic UML models and UML
diagrams, encoded under the http://www.omg.org/spec/UML/20110701
schema’s <Model> tag; and

• A proprietary XML part that contains proprietary extensions to UML models
encoded under the http://www.omg.org/spec/XMI/20110701 schema’s
Extension tag.

The Extension tag contains the encoding of proprietary data related to UML models and
diagrams that may or may not be incorporated in the original UML XMI specification, such as:

• description, which can contain rich-text

• stereotype information

• tagged values

• annotations on model elements, such as notes or export format information

OPEN GEOSPATIAL CONSORTIUM 21-031 33

http://www.omg.org/spec/UML/20110701
http://www.omg.org/spec/XMI/20110701

• change information, such as last changed date and author information;

• appearance

In some tools, contents included in the OMG XMI-compliant part by default links to the
proprietary parts. This means that without an XMI-parser that understands the proprietary
information, it is challenging for a machine to understand the full picture presented by the UML
model.

For example, in Enterprise Architect, model element description and notes are entered into the
proprietary XML portion.

In order to facilitate implementation, machine readable UML models are necessary. The
distribution of the modeling source files and their corresponding exported XMI are required
in order for automated, deterministic transforms that lead to implementable schemas or
implementations. Even though the exported XMI files may not be fully interoperable across
tools, they provide a standards-based output that other UML ingestion tools could potentially
use for generation of platform-independent artifacts.

5.2. UML Class Diagrams

UML class diagrams remain a popular approach to describing the structure of artifacts. Initially
class diagrams were used for code stub generation through MDA, this has somewhat fallen out
of favor due to the complexity of the process and the overall utility of the outputs. Although still
used for describing structure, class diagrams are more likely to be implemented in data modeling
specifically for databases and more recently, modeling of interfaces definitions.

UML class diagrams assume object orientation, although other paradigms are supported with
standard interpretation. OO is a popular paradigm for programming and data models; relational
databases are implemented in many use cases. However, modern interchange and interface
description formats such as JSON and YAML are not object oriented, therefore the design of
models with a JSON target require some interpretation. A fuller explanation of utilizing XML to
create JSON schemas is in the UGAS 2020 Pilot Engineering Report.

5.2.1. OWL, SKOS & RDF

The graph data model Resource Description Framework (RDF), the modelling language Web
Ontology Language (OWL) that uses it, and more specialized systems built on them, such
as the Simple Knowledge Organization System (SKOS) are a set of technologies capable of
describing all sorts of domains in ontologies. The appropriateness of these technologies will
differ depending on the use case in hand. The main focus of these technologies is to produce
semantic descriptions of concepts including their relationship to other concepts both in and out
of a particular ontology.

The relationship of the Semantic Web technologies to UML and their appropriate use is a topic
which is currently under debate within the community. For the purposes of this paper, there is a

OPEN GEOSPATIAL CONSORTIUM 21-031 34

distinction between the engineering requirements, best handled by UML, and semantic models
of requirements that may best be handled by semantic technologies.

OPEN GEOSPATIAL CONSORTIUM 21-031 35

6

TOOLING

OPEN GEOSPATIAL CONSORTIUM 21-031 36

6 TOOLING

An aspect of creating models is the tooling available to do so. This section provides a brief
overview of some of the tools available to model creators to assist in their craft. As this paper
is focused on UML modeling, the tools considered must have a strong UML focus. Additionally,
this section does not report on any evaluation work on the tools, it exists to provide the reader
with the awareness of particular tools at the point of writing.

6.1. UML diagramming

6.1.1. Sparx Enterprise Architect

Sparx is possibly the most well-known of the UML modeling tools. It provides a full modeling
capability and enforces UML rules, although not strictly as some contradictions are allowed. The
tool can output the model in XMI and some transformation tools are able to read the native file
format. This tool is often used in the MDA process to perform the initial modeling work.

6.1.2. Sparx Cloud

One of the challenges with UML modeling is how to share, disseminate and version control
models created by different parties. Sparx Cloud is a piece of software designed to share
modeling at an enterprise level. At time of writing, the OGC are in discussion with Sparx
regarding a cloud solution for model collaboration. Additionally, the Conceptual Modeling sub-
group is concerned with all aspects of modeling within the OGC and are therefore assisting with
the possible adoption of Sparx Cloud.

6.1.3. interactive instruments ShapeChange

ShapeChange is an open source, extendable transformation software designed to generate
application schemas from UML class diagrams. Its ability to be extended has resulted it being
used in multiple OGC Testbeds and Pilots for generating XML, GML and JSON application
schemas.

6.1.4. yED

yEd is an open diagramming tool with support for UML class diagrams. Although the tool does
not provide an actionable model, it has a standardized, easy to use graphical interface with very
little learning required. The downside to the tool is that use of the model is somewhat restricted
to the tool.

OPEN GEOSPATIAL CONSORTIUM 21-031 37

https://sparxsystems.com/products/procloudserver/
https://www.yworks.com/products/yed

6.1.5. Microsoft PowerPoint

PowerPoint is often the software of choice for producing presentations. Although it does not
have out-of-the-box support for creating and validating UML diagrams, it is often the place
where they appear, even as an import from a specialized tool.

6.1.6. Microsoft Visio

The use of Visio for creating UML diagrams can be a point of contention as it is Microsoft’s
solution for doing so, but does not produce modeling artifacts. It can be used in conjunction with
PowerPoint for displaying and presenting UML models, however, it is obviously restricted in its
use due to a lack of modeling capabilities.

OPEN GEOSPATIAL CONSORTIUM 21-031 38

7

PRINCIPLES

OPEN GEOSPATIAL CONSORTIUM 21-031 39

7 PRINCIPLES

This paper runs on four main themes, this section describes each of the themes in turn and
makes note of their potential implications.

7.1. Correctness

UML models need to be correct in terms of OMG UML 2017 standard. The implications for
producing an incorrect model include the following:

• The model is likely to be misunderstood or not understood at all.

• UML is an abstraction from the things we are trying to represent, therefore
misrepresenting it simply introduces further levels of error.

• Having incorrect UML will likely violate many of the other principles

Perhaps a solution to the correctness issue is to have the user indicate that their modeling is
based upon OMG UML 2017 or if the notation has been partially used to illustrate an object,
concept or relationship only. An additional aspect of modeling is that semantics cannot be
ignored and may encroach on a model that was originally intended for MDA or other engineering
purposes. This is to be expected, but the author should at least note whether this is the full
explanation, or the model is stored alongside another semantic model using the appropriate
notation such as OWL.

7.2. Consistency

OGC Standards tend to reference other external documents such as standards from the ISO/
TC 211 committee. An additional consideration is that the reuse of concepts, classes and
relationships happens across the OGC in different standards, although some of this use should
be captured in the Abstract Specification topics. Regardless of their usage or otherwise, one
should be able to take an internal or external concept or class and reuse it with impunity — this
can only be accomplished if the object is reused consistently across the OGC.

Depending on the requirement or individual model, there is not necessarily a connection to an
outside organization or model. Therefore, the dependencies for a UML model should be clearly
indicated on the model. There may be a looser relationship between external models and the
model in question, these relationships should be documented as well and may be labeled as
inspired by or an equivalent.

OPEN GEOSPATIAL CONSORTIUM 21-031 40

https://www.iso.org/committee/54904.html
https://www.iso.org/committee/54904.html

7.3. FAIRness

The FAIR principles are as follows:

• Findable

• Accessible

• Interoperable

• Reusable

Whether models are findable or accessible will largely depend on how well a model conforms
to the first two principles. These principles will also feed into the practice to make models
accessible via sharing them along with the other artifacts that come with a standard. ISO
TC/211 already adopts this practice and it should also be adopted by the OGC. In the defense
of newer standards, there are a lot more UML models available than in older standards so the
practice of making models findable and accessible appears to be increasing.

7.4. Value

Value is an ethereal concept with many meanings, what is value? In this instance, value is about
doing work — i.e what work does a UML model do for us? If a model is normative, then it can do
all of the work, as there is nothing else required to describe a standard. The value added by a
UML model should also be proportional to the time and effort required to build it and to use it.
There are some immediate values that this practice can offer:

• It avoids recreating something that has already been created — new standards do
not have to be defined from scratch.

• Coalescence of multiple standards (or models) is a lot easier if the models
conform to the mentioned principles. This adds value to the standards definition
process in general as reuse of concepts should ensure a more rapid standard
development cycle. One such recent example of this is OGC API — Records, the
draft of which was available quickly after inception because it reuses the base
structure of OGC API — Features.

OPEN GEOSPATIAL CONSORTIUM 21-031 41

8

BEST PRACTICES

OPEN GEOSPATIAL CONSORTIUM 21-031 42

8 BEST PRACTICES

8.1. Practice 1: UML models should follow OMG UML
2.5.1 Standard ratified in 2017.

A minimum requirement for UML models within the OGC is that they are correct in terms of
the standard. Although obvious, this has not always been observed. This practice is also about
fitness for purpose of the UML modeling tool set, for example, UML class diagrams are very
good at describing structure, but not designed for describing process, for example.

Another consideration for using UML models is the use of stereotypes as there are many
standard stereotypes included within the 2.5.1 standard, there are also many in addition to this
in ISO/TC 211 that should be re-used where possible. Further discussion on stereotypes can be
found in OGC Testbed-17 Model Driven Standards ER.

8.2. Practice 2: OGC Conceptual Models should be
represented as UML Class diagrams

It is often taken for granted when talking about conceptual modeling that the term “UML” refers
to class diagrams, as in the case of this Best Practice paper. UML class diagrams are designed to
describe structure, which is suited to the OGC’s conceptual modeling use cases.

8.3. Practice 3: OGC Conceptual Models should be
platform independent

Going forward, the OGC is supporting different target technologies. As mentioned previously,
mapping for model to technology was 1:1, that is, in the web services (or GetCapabilities) era, all
of the output technologies and descriptions were in XML. However, since the move to OpenAPI
and more generally, a resource-based approach, there is the potential for multiple technologies
derived or represented from the same model.

There are some assumptions and things to consider regarding this practice. UML Class diagrams
are a standard and as such look to enforce rules regarding appropriate use — UML itself is a

OPEN GEOSPATIAL CONSORTIUM 21-031 43

https://portal.ogc.org/files/?artifact_id=99407&version=1

language and all descriptions must fit within the language, therefore, true platform independence
is constrained by the use of a modeling language.

8.4. Practice 4: OGC Conceptual Models should use
concepts consistently across standards

UML modeling is not suitable for describing the relationships between concepts in the same way
that a semantic language is, however, the concepts in use need to be represented within a UML
model in order to make them usable. The semantic descriptions of concepts can be described
elsewhere, however, when concepts are used and reused throughout the OGC, they should be
done consistently.

8.5. Practice 5: OGC Standards should contain a UML
model at least at the conceptual level of detail

OGC Standards should contain a UML model describing the structure of any interfaces or data
models, unless doing so violates Practice 6 or is otherwise inappropriate. A model that shows
the logical class and relationships between them should be the bare minimum for a standard
in order to at least show the use and reuse of top level concepts across the standards. This
approach provides a frame of reference for newcomers to the standard as well as allowing the
standards designers and implementers to understand where any standard fits in with the existing
and emerging suite of OGC standards.

8.6. Practice 6: UML models for OGC standard should
add value

There are many reasons to create a model for a standard and the appropriateness of a modeling
approach will largely depend on the standard in question. Regardless of the containing standard,
UML models should do work or add value that is not otherwise done by artifacts within the
documented standard. As mentioned throughout this Best Practice paper, UML models may be
used to simply diagram an approach, alternatively they may be used in an MDA pipeline. Both
of these approaches, as well as many more, are acceptable reasons to include a model within a
standard document.

OPEN GEOSPATIAL CONSORTIUM 21-031 44

8.7. Practice 7: UML models should describe structure
and in the engineering process

UML modeling is designed for engineering and description of structure, there are other
languages such as OWL that are designed to describe concepts. Therefore, we should not be
using UML to describe concepts when there are better tools available to us. The OGC approach
to modeling in general should be covered in further Best Practice papers. Structure is a key
aspect of standards and concepts should be represented in the structure as objects, attributes or
methods, the semantic meaning of the concepts should be covered elsewhere.

8.8. Practice 8: Modeling artifacts should be provided in
full.

The recent move to using version control seems to enable provision of modeling and other
artifacts such as schemas whilst enabling version control and provenance of changes. Although
this practice is more prevalent, it is not mandated and modeling artifacts can be lost. Full
modeling files and data should be supplied along with the working version of the standard.
Following this process is especially important when considering change requests and if the
model is normative. In the case of a normative model, any change requests to normative aspects
of the document should be led by the model and the supporting text updated accordingly.

Achieving this has been challenging for the OGC, with few discussions on collaboration and
version control on models. This is changing through the Conceptual Modeling sub-group of the
Architecture DWG and the OGC’s potential move to collaboration technologies such as Sparx
Cloud.

8.9. Practice 9: UML models should at least be consistent
with supporting text, but ideally normative

UML modeling is a powerful tool and done correctly can remove ambiguity associated with the
textual and diagrammatic explanations of standards. Additionally, if a model is normative then it
is the central location where changes can be made.

OPEN GEOSPATIAL CONSORTIUM 21-031 45

8.10. Practice 10: UML modeling tooling should produce
interoperable artifacts

There is now a large repository of UML modeling tools both open source and proprietary. The
actual choice of modeling software should be up to the modeler, however, the following should
be considered:

• Is your chosen tool a modeling tool or does it just produce diagrams?

• Does your chosen modeling tool produce an interoperable output, for example
XMI 1.0?

• How well does your chosen tool follow the standard? Does it allow you to create
illegal classes or relationships and do you have to do out of bounds work to ensure
compliance?

• If you are looking to implement MDA or some other form of transformation,
does your chosen tool have support with a downstream tool? For example, Sparx
Enterprise Architect works very well with Interactive Instruments ShapeChange
software using the native format. Therefore, the coupling of these tools makes
sense.

Overall, this practice is designed to stop vendor lock-in on different tooling and to encourage as
much knowledgeable participation as possible through not restricting the tools.

8.11. Practice 11: UML can be used for modeling
semantics, although there are other technologies that may
be appropriate

There are examples of semantic modeling in UML as relationships can be labeled accordingly
to show semantic meaning. ISO/TC 211 requires semantic information to be included in any
submitted UML models, therefore there are examples of producing semantic meaning in this
way. However, there are tools such as SKOS, RDF and OWL that are designed to do semantic
modeling and therefore may be a better choice depending on the use case.

OPEN GEOSPATIAL CONSORTIUM 21-031 46

8.12. Practice 12: UML models should be machine
readable

The MDA process is not mandated as many SWG leads and other implementers have issues
with its efficiency, reliability and overall goals. However, there is a recent push within the OGC,
along with the long-running UGAS work to re-look at MDA. The requirements for a model to
be suitable for MDA include consistency, correctness and value, however they additionally
require the models produced to be machine readable. Therefore machine readability of UML
models should be prioritized when creating UML models to ensure interoperability with future
endeavors and work with that standard. The models should be available in XMI format, in
addition to the format of the UML Editor used to create the model.

OPEN GEOSPATIAL CONSORTIUM 21-031 47

9

CONCLUSION

OPEN GEOSPATIAL CONSORTIUM 21-031 48

9 CONCLUSION

This engineering report has sought to address the inconsistencies with UML modeling across the
OGC. The engineering report has provided a series of Best Practices for UML modeling that are
high level enough to be integrated into current practice and low level enough to provide solid
guidance. Further work is needed to develop the proposed Best Practices to a stage where they
can be applied across future versions of the entire OGC Standards Baseline.

9.1. Future Work

9.1.1. Expand or rectify UML class models contained in existing standards

Currently the OGC has some UML modeling across many of its standards (see standards table).
However, some of the models are disconnected from one another. On a positive note, at time
of writing, many of the OGC Standards do have at least some UML modeling that could be
expanded upon or otherwise rectified to meet the best practice.

9.1.2. Conduct a trial of a shared model repository

There is currently interest in the Architecture DWG for establishment of a shared model
repository, similar to that used by TC/211. Future work in testbeds, could include development
of procedures and policies for SWGs to use the shared model repository. This could be coupled
with the OGC Definitions Server to help manage common concepts.

OPEN GEOSPATIAL CONSORTIUM 21-031 49

A

ANNEX A (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 21-031 50

A ANNEX A
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE AUTHOR
PRIMARY
CLAUSES
MODIFIED

DESCRIPTION

2021-11-19 0.9 S. Meek All sections Initial submission

OPEN GEOSPATIAL CONSORTIUM 21-031 51

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 21-031 52

BIBLIOGRAPHY

1. OGC Testbed-16: OpenAPI Engineering Report (2021)

2. OWS-2 Application Schema Development Discussion Paper (2005)

3. OGC Web Services (OWS) 3 UGAS Tool Discussion Paper (2005)

4. UML-to-GML Application Schema Pilot (UGAS-2020) Engineering Report (2021)

5. Sam Meek: OGC 21-041r2, Conceptual Modeling Discussion Paper. Open Geospatial
Consortium (2022). https://docs.ogc.org/dp/21-041r2.html

6. Ronald G. Ross: , “Conceptual Model vs. Concept Model: Not the Same!” Business Rules
Journal Vol. 20, No. 1, (Jan. 2019), http://www.brcommunity.com/a2019/b977.html

7. Simsion, G., Witt, G. : Data Modeling Essentials, 3rd edition. San Francisco, CA: Morgan
Kaufmann Publishers Inc. (2005)

OPEN GEOSPATIAL CONSORTIUM 21-031 53

https://docs.ogc.org/dp/21-041r2.html
http://www.brcommunity.com/a2019/b977.html

	I. Abstract
	II. Keywords
	III. Security considerations
	IV. Submitting Organizations
	V. Submitters
	1. Scope
	1.1. OGC Standards
	1.2. UML
	1.2.1. UML Class models
	1.2.1.1. Assumptions & Shortcomings

	1.2.2. Data modeling
	1.2.3. Interface modeling

	1.3. Model levels & terms
	1.3.1. Conceptual models
	1.3.2. Logical models
	1.3.3. Physical models

	1.4. Model Driven Architecture (MDA)
	1.4.1. Platform Independent Model (PIM)
	1.4.2. Plaftorm Specific Model (PSM)

	1.5. UML model technology agnosticism
	1.6. Out of scope
	1.7. Best practice criteria
	1.7.1. Correct UML models
	1.7.2. Consistency
	1.7.3. Adding value

	2. Normative references
	3. Terms, definitions and abbreviated terms
	3.1. Terms and definitions
	3.2. Abbreviated terms

	4. Background
	4.1. UML to GML Pilots
	4.2. UGAS 2020 Pilot
	4.3. OGC Testbed-16 OpenAPI
	4.4. Conceptual Modeling Discussion Paper
	4.4.1. Architecture DWG sub-group for Conceptual Modeling

	4.5. Lessons learned
	4.5.1. Modeling status for each standard

	4.6. Discussion

	5. Modeling approaches and purpose
	5.1. Modeling Purpose
	5.1.1. Communication & Diagram
	5.1.2. Implementable & Machine Readable

	5.2. UML Class Diagrams
	5.2.1. OWL, SKOS & RDF

	6. Tooling
	6.1. UML diagramming
	6.1.1. Sparx Enterprise Architect
	6.1.2. Sparx Cloud
	6.1.3. interactive instruments ShapeChange
	6.1.4. yED
	6.1.5. Microsoft PowerPoint
	6.1.6. Microsoft Visio

	7. Principles
	7.1. Correctness
	7.2. Consistency
	7.3. FAIRness
	7.4. Value

	8. Best Practices
	8.1. Practice 1: UML models should follow OMG UML 2.5.1 Standard ratified in 2017.
	8.2. Practice 2: OGC Conceptual Models should be represented as UML Class diagrams
	8.3. Practice 3: OGC Conceptual Models should be platform independent
	8.4. Practice 4: OGC Conceptual Models should use concepts consistently across standards
	8.5. Practice 5: OGC Standards should contain a UML model at least at the conceptual level of detail
	8.6. Practice 6: UML models for OGC standard should add value
	8.7. Practice 7: UML models should describe structure and in the engineering process
	8.8. Practice 8: Modeling artifacts should be provided in full.
	8.9. Practice 9: UML models should at least be consistent with supporting text, but ideally normative
	8.10. Practice 10: UML modeling tooling should produce interoperable artifacts
	8.11. Practice 11: UML can be used for modeling semantics, although there are other technologies that may be appropriate
	8.12. Practice 12: UML models should be machine readable

	9. Conclusion
	9.1. Future Work
	9.1.1. Expand or rectify UML class models contained in existing standards
	9.1.2. Conduct a trial of a shared model repository

	Annex A (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Comparison of a Conceptual Model and a Concept Model (adapted from Ross [6])
	Table 2 — The status of various standards with respect to UML modeling

	List of Figures
	Figure 1 — Paths OpenAPI representation in UML.
	Figure 2 — Use of Specialization Relationship to describe OGC API Class types.

