
OGC® DOCUMENT: 21-020R1
External identifier of this OGC® document: http://www.opengis.net/doc/PER/t17-D007

TESTBED-17: DATA
CENTRIC SECURITY ER

ENGINEERING REPORT

PUBLISHED

Submission Date: 2021-11-19
Approval Date: 2021-12-17
Publication Date: 2022-01-21
Editor: Aleksandar Balaban, Andreas Matheus

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, (“Licensor”), free of charge and subject to the terms set forth below, to any
person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction
(except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense
copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices
on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a
notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE
ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY
RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in
any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that
LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You
agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held
by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not
be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization
of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use
certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of
U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Copyright notice

Copyright © 2022 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.ogc.org/legal/

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 ii

http://www.ogc.org/legal/

CONTENTS

I. ABSTRACT ..vi

II. EXECUTIVE SUMMARY ..vi

III. KEYWORDS ...viii

IV. PREFACE ... ix

V. SECURITY CONSIDERATIONS .. x

VI. SUBMITTING ORGANIZATIONS ... xi

VII. SUBMITTERS ... xi

1. SCOPE .. 2

2. TERMS, DEFINITIONS AND ABBREVIATED TERMS ..6
2.1. Terms and definitions ..6
2.2. Abbreviated terms ..9

3. INTRODUCTION ...11

4. RESULTS ..13
4.1. Binary data formats for DCS .. 13
4.2. DCS GeoPackage Extension ..14
4.3. Implications for OGC API Standardization Development and Implementation14
4.4. Discovered Issues with GeoPackage as response format .. 15

5. IMPLEMENTATION ASPECTS ...18
5.1. Architecture Overview ... 18
5.2. DCS Server .. 20
5.3. DCS Client ... 28
5.4. Key Management System .. 46
5.5. Data Encryption Key Creation ..48
5.6. Data Encryption Key Registration ..49
5.7. Data Encryption Key Deletion ..50
5.8. Data Encryption Key Access Management ..50

6. TECHNOLOGY INTEGRATION EXPERIMENTS (TIES) ..55
6.1. TIE Setup ... 55

OPEN GEOSPATIAL CONSORTIUM 21-020R1 iii

6.2. DCS Server Tests ... 58
6.3. Provisioning and portrayal of DCS protected geospatial binary content ..66
6.4. TIE Results ...66
6.5. TIE Summary ...68

7. TOWARDS DATA CENTRIC SECURITY AND FEDERATED SECURITY 70
7.1. Overview ..70
7.2. Implications to Authentication ... 71
7.3. Implications to Access Control ...72
7.4. Implications for Key Management ...73
7.5. Implications to the DCS Server ..74
7.6. Implications on the DCS Client ..75
7.7. Implications to Security ..75

8. FUTURE WORK .. 78
8.1. Streaming-Ready Container Format .. 78
8.2. OGC APIs and Asynchronous Responses .. 78
8.3. Authenticity and Integrity of GeoPackage ...79
8.4. Standardization of a GeoPackage Encryption Extension to OGC APIs ... 79
8.5. Direct Encryption to prevent unauthorized disclosure in Web-Applications79
8.6. Encrypted GeoTIFF and GMLJP2 .. 79
8.7. Standardization of a Key Management System API .. 80
8.8. Sharing of a security context across administrative domains ..80
8.9. Harmonization of Access Policies ..80

ANNEX A (INFORMATIVE) GEOPACKAGE DATA CENTRIC SECURITY EXTENSIONS
...83

A.1. GeoPackage DCS Features Extension ... 83
A.2. GeoPackage DCS Tiles Extension .. 87

ANNEX B (INFORMATIVE) REVISION HISTORY ...92

BIBLIOGRAPHY ...94

LIST OF TABLES

Table 1 — OGC Testbed-17 DCS Media Types .. 21
Table 2 — OGC API DCS Media Types ...56
Table 3 — DCS parameters (m=mandatory, o=optional) ...66
Table 4 — DCS Client TIEs .. 67
Table 5 — DCS Server TIEs ... 68
Table 6 — TIE Summary for DCS Client and Server .. 68
Table A.1 — gpkg_extensions Table Rows ..84

OPEN GEOSPATIAL CONSORTIUM 21-020R1 iv

Table A.2 — gpkg_extensions Table Rows ..88

LIST OF FIGURES

Figure 1 — Testbed-17 Architecture ..3
Figure 2 — Testbed-17 Architecture ... 18
Figure 3 — Testbed-17 DCS Architecture Interactions Overview ..19
Figure 4 — DCS Testbed-17 OGC API Maps Interactions Overview .. 22
Figure 5 — OGC API Features returning encrypted features collection with metadata as JSON
..25
Figure 6 — OGC API Features returning encrypted features collection with metadata as JWS
..26
Figure 7 — OGC API Features returning encrypted features collection with metadata as JWE
..27
Figure 8 — OGC API Features returning GeoPackage with encrypted features plus metadata
..28
Figure 9 — OGC API Tiles returning GeoPackage with encrypted tiles plus metadata 28
Figure 10 — DCS Client — Authentication .. 30
Figure 11 — DCS Client — Server Selection ... 30
Figure 12 — DCS Client — Provider Selection ..31
Figure 13 — DCS Client — Redirect Selection ..32
Figure 14 — DCS Client — Authentication Success ...32
Figure 15 — DCS Client for OGC API — Features implementation ... 33
Figure 16 — DCS Client — OGC API Feature Formats ... 34
Figure 17 — DCS Client — OGC API Features — Manhattan (NY) Roads ...36
Figure 18 — DCS Client — OGC API Features — GeoPackage Download 37
Figure 19 — DCS Client — OGC API Features — GeoPackage Service ...37
Figure 20 — DCS Client — OGC API Features — GeoPackage — Points of Interest40
Figure 21 — DCS Client — OGC API Maps Service .. 41
Figure 22 — DCS Client — OGC API Maps Formats ...42
Figure 23 — DCS Client — OGC API Maps — Manhattan (NY) Roads/Landmarks43
Figure 24 — DCS Client — OGC API Tiles GeoPackage Download ... 44
Figure 25 — DCS Client — OGC Tiles API — GeoPackage Service .. 45
Figure 26 — DCS Client — OGC Tiles API — Geopackage Landmarks (NY)46
Figure 27 — KMS API in OpenAPI .. 47
Figure 28 — KMS Input form for Creating a Data Encryption Key .. 48
Figure 29 — KMS Ciphers for Data Encryption Key ... 49
Figure 30 — KMS Showing list of “my” keys ...51
Figure 31 — KMS Access Management Page ... 52

OPEN GEOSPATIAL CONSORTIUM 21-020R1 v

I ABSTRACT

This OGC Testbed-17 Engineering Report (ER) documents the enhancement of applying Data
Centric Security (DCS) to OGC API Features, OGC API Maps (draft), and OGC API Tiles (draft).

As organizations move to the cloud, it is important to incorporate DCS into the design of the
new cloud infrastructure, enabling the use of cloud computing, even for sensitive geospatial
data sets. The ER documents the applicability of Zero Trust through a Data Centric security
approach (DCS) when applied to vector and binary geospatial data sets (Maps, Tiles, GeoPackage
containers) and OGC APIs.

The defined architecture extends the typical Zero Trust Domain component by introducing a
Key Management System (KMS) to support key registration and the management of access
conditions for key retrieval. The prototype implementations (DCS Client, DCS Server and KMS)
demonstrate how to request encrypted geospatial data as JSON for encrypted vector data,
HTTP Multipart for encrypted map data or GeoPackage with encrypted content; how to obtain
decryption key(s) and how to decrypt and display the protected data in a mobile application on
Android.

I I EXECUTIVE SUMMARY

Data Centric Security (DCS) is an approach to apply security directly to data, independent from
security features provided by a network, servers or applications. For Data Centric Security in the
geospatial domain, proof-of-concept implementations were developed through work in OGC
Testbed-15 and Testbed-16. Initially Extensible Markup Language (XML) based standards to
label and protect geospatial feature data in Testbed-15 according to the NATO STANAG 4774
and 4778 specifications, the work expanded into JavaScript Object Notation (JSON) based
structures during Testbed-16.

For Testbed-17, the primary goal of the DCS task was to apply Data Centric Security in the
context of OGC API Standards that enable the delivery of binary data representations such as
images and GeoPackage.

The motivation for applying Data Centric Security is the ability to protect sensitive data
independently from controlling the access to systems storing and transferring such data.
An example of such systems is increasingly popular cloud-based data storage or content
delivery platforms. A fundamental requirement is that the data sets are always protected,
until an authorized actor makes use of the data. Additional requirements include the need for
representation of the source of the information, as well as an assurance that the information has
not been tampered with. When looking at drafting OGC Standards such as an OGC API in a Data
Centric Security scenario, standards need to include ways to classify the security requirements
around data access. Data Centric Security protected data could be stored locally at the client
location in order to be used within the validity period of time.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 vi

https://docs.ogc.org/per/19-016r1.html
https://docs.ogc.org/per/20-021r2.html

OGC members can derive business value from applying Data Centric Security in the following
areas:

• Similarities between the Data Centric Security approach in the geospatial domain
and the commercial/enterprise Digital Rights Management (DRM) architecture
improves marketing perspectives: Distributing protected geospatial binary
content (satellite imagery, sensitive content structured as a GeoPackge container)
is similar to DRM.

• Flexible control over the decryption via a fit-for-purpose Key Management
System.

• Interoperability through the support for different encoding standards such as
XML and JSON. Work in Testbed-17 demonstrated the interoperability for
DCS protected binary geospatial data sets and a way to protect and distribute
packaged content.

• Leverage a common Zero Trust Domain architecture whereby a common security
context is shared by all components based on Bearer Access Tokens as defined in
The OAuth 2.0 Authorization Framework: Bearer Token Usage.

• Use GeoPackage with (individually) encrypted data for OGC API — Features or —
Tiles that offer flexible decryption of content as necessary. This is an advantage
compared to the standard approach of encrypting entire GeoPackage files, as
these need to be decrypted as a whole before content can be extracted. The
introduced approach allows for example mobile applications to just decrypt
those tiles or features that are to be rendered on the display. This saves memory,
increases performance and thereby extends battery lifetime.

The Testbed-17 DCS work envelope is defined by the results from Testbed-16 and the ambition
to establish DCS for OGC API responses containing binary data. In particular, the following
questions were considered:

• How can an implementation of the draft OGC API — Maps specification be used
to return an encrypted image of a map request?

• How can an implementation of the OGC API — Features standard be used to
return a GeoPackage container that contains encrypted features?

• How can an implementation of the draft OGC API — Tiles specification be used to
return a GeoPackage container that contains encrypted tiles?

• Which metadata fields in the response allow a client application to successfully
decrypt the “blob” of data?

• How can one be assured that the decryption of the encrypted responses can only
be carried out with trusted applications and legitimate users?

• What are the implications of processing encrypted data regarding storage,
processing times for encryption and decryption, as well as CPU burden?

OPEN GEOSPATIAL CONSORTIUM 21-020R1 vii

https://www.rfc-editor.org/rfc/rfc6750.html

The Testbed-17 findings demonstrate the ability to support Data Centric Security applied to
binary geospatial data sets. A mobile client application running on the Android operating system
was implemented to request and decrypt protected binary content, such as encrypted images
(OGC API — Maps (draft)), encrypted features (OGC API — Features) as well as GeoPackages
with encrypted content based on OGC API — Features and OGC API — Tiles (draft).

In support of the experimentation in this Testbed, several Technology Integration Experiments
(TIEs)/scenarios were defined:

• The first scenario depicted the exchange of DCS-protected content from an OGC
API Maps implementation.

• The second scenario depicted the exchange of DCS-protected content from an
OGC API Features implementation.

• The third scenario depicted the exchange of DCS-protected GeoPackages
containing encrypted features or map tiles requested via implementations of OGC
API — Features or OGC API — Tiles.

This ER introduces GeoPackage encryption extensions for storing Features or Tiles in Annex A.

Future OGC Innovation Program activities should extend and implement access control based
on spatio-temporal policies to complement the Testbed-17 Data Centric Security architecture
towards a Zero Trust Domain architecture. In particular, further activities could demonstrate
how to implement the Data Centric Security architecture (including access control) in a
Federated Security environment as outlined in OGC Testbed-16: Federated Security. Another
future activity should focus on the standardization of a Key Management System API meeting
the specific requirements for key management with Data Centric Security enabled geospatial
data.

I I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, Data-Centric Security

OPEN GEOSPATIAL CONSORTIUM 21-020R1 viii

https://docs.opengeospatial.org/per/20-027.html

IV PREFACE

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 ix

V SECURITY CONSIDERATIONS

When applying Data Centric Security, a false assumption might be drawn that encryption of
data is the compulsory solution to everything. This is not true. Why? It is certainly possible to
tamper encrypted data so that it still decrypts, but would produce fraudulent information in
the “clear” (after being decrypted). Encryption provides confidentiality, as the encrypted data
can only be transformed into the “clear” by applications or users that are in possession of the
decryption key (and support for the cipher algorithm in use).

To completely trust encrypted data, assurance about integrity and most likely authenticity
must be implemented. Even though the implementation of integrity also relies on encryption,
it focuses on encrypting the hash value of the data (either before or after it was encrypted)
and not the data itself. Whereas encryption is usually based on a shared secret (as symmetric
key), digital signatures require the use of asymmetric keys (a public key shared with all relevant
entities and a private key under sole possession of the owning user). Extending integrity
to authenticity is quite simple, as it only requires that a certificate is created (by a trusted
Certificate Authority) that bundles the public key with the identity information of the entity that
owns (and is in single possession of) the associated private key.

Testbeds 15, 16 and 17 have successfully demonstrated how confidentiality can be applied to
geospatial data, returned via OGC APIs. The focus was to encrypt responses:

• OGC API Maps for DCS returns a HTTP Multipart response where the second
part represents the encrypted binary data of the map image

• OGC API Features for DCS returns a JSON container containing a collection of
encrypted features encoded in GeoJSON or a GeoPackage where each feature
entry is encrypted

• OGC API Tiles for DCS returns a GeoPackage where each tile data is encrypted

The Testbed 17 result GeoPackage Encryption Extension provides — as the name suggests
— an approach to ensure confidentiality of the data stored in a GeoPackage. There is no
guarantee about the integrity of the GeoPakage or even its authenticity. To ensure integrity
of a GeoPackage, and thereby making it possible to detect tampering, it would be required to
calculate the hash value for the entire GeoPackage and then create a digital signature. This
digital signature would then have to be stored with some trusted entity, like a Content Delivery
Network (CDN), that allows to retrieve the digital signature of a hash value. A similar process
is in place for the distribution of binary software packages: JavaScript download with integrity
check or Linux package distribution leverages SHA256 or SHA384 hash value verification.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 x

VI SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• m-click.aero GmbH

• Secure Dimensions GmbH

VI I SUBMITTERS

All questions regarding this document should be directed to the editor or the contributors:

NAME ORGANIZATION ROLE

Aleksandar Balaban m-click.aero GmbH Editor

Andreas Matheus Secure Dimensions GmbH Editor

Adam Parsons Compusult Ltd. Contributor

OPEN GEOSPATIAL CONSORTIUM 21-020R1 xi

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 21-020R1 1

1 SCOPE

This OGC Engineering Report (ER) is deliverable D007 of the OGC Testbed-17 activity (Data
Centric Security Across OGC APIs) performed as an OGC Innovation Program activity.

This document expands on the results in the area of geospatial Data Centric Security from OGC
Testbed-16 by evaluating options to request binary geospatial data formats via implementations
of the draft OGC API — Maps, and OGC API — Tiles, and the approved OGC API — Features
standard. In particular, this ER discusses and outlines the approaches for extending the OGC
GeoPackage Encoding Standard to support encrypted data (features or map tiles) plus adequate
metadata for enabling client applications to perform the integrity checking, decryption and
visualization. Regarding the use of image data formats, this ER also describes how the draft OGC
API Maps could be extended to return encrypted map images as a HTTP Multipart response.

Another addition in the anticipated usage scenarios (and therefore in TIEs) is that encrypted
content delivered as a GeoPackage container remains in the client’s (local) storage and can be
decrypted and displayed multiple times. It is also possible to share locally stored GeoPackage
content with other users and applications by adopting access conditions to the (decryption) key
via the Key Management System.

When it comes to identifying an architecture to solve a particular problem or challenge, it is wise
to not start from scratch if working solutions exist. In that sense, the Testbed-17 architecture
differs only slightly from the Testbed-16 architecture.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 2

Figure 1 — Testbed-17 Architecture

The Testbed-17 DCS architecture consists of the following components:

Authorization Server (AS)

This component remains unchanged from Testbed-16: It acts as an OAuth2 / OpenID Connect
compliant Authorization Server. The DCS Client application requests access tokens from this
component after the user has logged in. The DCS Server and Key Management Server use the
Authorization Server’s Token Introspection endpoint to validate access token.

Identity Management (IdM)

The Identity Management component supports social login from Facebook, Google and the
OGC, as well as approximately 2800 universities. When logging in via the OGC portal IdP, a
user’s active OGC projects become available as OpenID Connect claim ogc-is-member-of
which can be used to undertake access control. This component is tightly integrated with the AS
component.

Key Management Server (KMS)

This component ensures that (de/en)cryption keys can be created, registered and obtained
from applications and services by presenting an access token. The KMS also supports the
modification of access conditions of registered keys by owning users.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 3

DCS Server

This component is implemented as a plugin to GeoServer v2.20 that supports to request
encrypted responses for the OGC’s Maps, Features and Tiles APIs. In order to execute the
plugin, the standard OGC APIs must be extended with additional request parameters. On behalf
of a user, for each request, the DCS Server generates and registers (de/en)cryption keys with the
KMS.

NOTE 1: The DCS Server’s implementation changed from a generic OGC API Proxy to an
extension plugin (module) to GeoServer. This tight integration is necessary to accommodate a
high performance processing when creating GeoPackage containers with encrypted content.

DCS Client

This component was implemented as an Android mobile application that supports the DCS
protocol offered by the DCS Server to request, decrypt and visualize encrypted responses of
various encoding, as documented in the TIE section (See Clause 6).

NOTE 2: The DCS Client changed from a QGIS plugin to an Android mobile application.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 4

2

TERMS, DEFINITIONS AND
ABBREVIATED TERMS

OPEN GEOSPATIAL CONSORTIUM 21-020R1 5

2 TERMS, DEFINITIONS AND ABBREVIATED
TERMS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

2.1. Terms and definitions

2.1.1. Access token

A token that can be provided as part of a service request that grants access to the service being
invoked on. This is part of the OpenID Connect and OAuth 2.0 specification.

2.1.2. Assertion

Information about a user. This usually pertains to a JWT authentication response that provided
identity metadata about an authenticated user.

2.1.3. Authentication

The process of identifying and validating a user.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 6

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

2.1.4. Authorization

The process of granting access to a user.

2.1.5. Credentials

Credentials are pieces of data used to verify the identity of a user.

2.1.6. Client

Clients are applications that want to request identity information or an access token so that they
can securely invoke DCS secured services.

2.1.7. DCAP

Data centric audit and protection, term used by Gartner to describe an approach to information
security that combines data security and audit with discovery, classification, policy controls, user
and role-based access, and real-time data and user activity monitoring to help automate data
security and regulatory compliance.

2.1.8. Identity token

A token that provides identity information about the user. Part of the OpenID Connect
specification.

2.1.9. Identity provider

An identity provider (IdP) is a service that can authenticate a user.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 7

2.1.10. Federated identity

Federated identity defines linking and using the identities that a user has across several security
domains/realms and their identity providers.

2.1.11. OGC API

The OGC API family of standards is a suite of open standards for Web APIs that offer modular
building blocks that make it easy for anyone to publish or consume geospatial data on the web.

2.1.12. Realms

A realm contains a set of users and their attributes (credentials, roles). A user belongs to a realm.
Realms are isolated from one another and only manage and authenticate the users that they
control.

2.1.13. Roles

Roles identify a type or category of user. Admin, user, manager, and employee are all typical
roles that may exist in an organization. Applications often assign access and permissions to
specific roles rather than individual users.

2.1.14. Users

Users are entities that are able to log into a system. They can have attributes and have specific
roles assigned to them.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 8

2.2. Abbreviated terms

AS Authorization Server

CDN Content Delivery Network

DCAP Data centric audit and protection

DCS Data Centric Security

DEK Data Encryption Key

DRM Digital Rights Management

GeoXACML Geospatial eXtensible Access Control Markup Language

IdM Identity Management

JOSE Javascript Object Signing and Encryption

JSON JavaScript Object Notation

JWT JSON Web Token

KEK Key Encryption Key

KID Key ID

KMS Key Management Server

LBAC Label-based access control

OGC Open Geospatial Consortium

SAML Security Assertion Markup Language

STANAG NATO Standardization Agreement

TIE Technology Integration Experiment

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

ZTA Zero Trust (Architecture)

OPEN GEOSPATIAL CONSORTIUM 21-020R1 9

3

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 21-020R1 10

3 INTRODUCTION

The primary goal of the Testbed-17 Data Centric Security (DCS) task was to apply DCS in
the context of OGC API Standards that deliver binary data representations such as images
and GeoPackage. The motivation for applying Data Centric Security was the ability to protect
sensitive data independently from controlling the access to systems storing and transferring
such data.

The following questions were considered in the Testbed-17 Data Centric Security (DCS) task:

• How can an implementation of the draft OGC API — Maps specification be used
to return an encrypted image of a map request?

• How can an implementation of the OGC API — Features standard be used to
return a GeoPackage container that contains encrypted features?

• How can an implementation of the draft OGC API — Tiles specification be used to
return a GeoPackage container that contains encrypted tiles?

• Which metadata fields in the response allow a client application to successfully
decrypt the “blob” of data?

• How can one be assured that the decryption of the encrypted responses can only
be carried out with trusted applications and legitimate users?

• What are the implications of processing encrypted data regarding storage,
processing times for encryption and decryption, as well as CPU burden?

OPEN GEOSPATIAL CONSORTIUM 21-020R1 11

4

RESULTS

OPEN GEOSPATIAL CONSORTIUM 21-020R1 12

4 RESULTS

This chapter summarizes the key findings regarding DCS data formats and implications to
standardization when applying DCS to OGC APIs and the GeoPackage encoding. It further lists
issues and security implications when using the GeoPackage encoding.

4.1. Binary data formats for DCS

Depending on the OGC API Standard, different packaging and response encoding make sense.
In particular the OGC API Features does only support one binary response encoding that was
tested within this Testbed: GeoPackage. The capabilities of the OGC API Features limit request
features for only one collection_id. Therefore, a GeoPackage with encrypted content only
contains one DCS related table. However, the GeoPackage Encryption Extension for Features
defined in the Annex A does support storing features of different types into different tables.
This can be illustrated when requesting a DCS GeoPackage via the WFS 2.0 interface.

NOTE: The use of WFS 2.0 for requesting DCS GeoPackage was not an official part of the work
and therefore not included in the TIE.

For the OGC API Features standard, it is possible to apply the DCS data format as an extension
to XML and JSON. Both approaches were already implemented and documented during
Testbed-16. To summarize, the STANAG 4778 XML encoding is supported where the content
is GML encoded and JSON structured responses include JWE representations of GeoJSON
encoded Features. Please see OGC Testbed-16: Data Centric Security Engineering Report for
more details.

For the OGC API Maps and Tiles draft standards that support the return of binary image
data (media type image/*), the data could be encrypted by the DCS Server before returning
the response to the client. In this Testbed, the equivalent to DRM online streaming, where
the application and server negotiate an encryption key to be used for streaming encrypted
content, was not implemented. Instead, the more generic approach was implemented, where the
encryption key is managed by a KMS.

In this case, the client must obviously receive information about the DEK, aka key metadata with
the encrypted binary data. For conveying the encrypted image data and the DEK metadata for
the OGC API Maps, the HTTP Multipart response format is used. More details are illustrated in
Figure 4.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 13

https://docs.ogc.org/per/20-021r2.html

4.2. DCS GeoPackage Extension

A GeoPackage is the SQLite container and the OGC GeoPackage Encoding Standard governs the
rules and requirements of content stored in a GeoPackage container. The GeoPackage standard
defines the schema for a GeoPackage, including table definitions, integrity assertions, format
limitations, and content constraints. Defined by the Open Geospatial Consortium (OGC)[2]
membership with the backing of the US military[3] and published in 2014, GeoPackage has seen
wide support from various government, commercial, and open source organizations.

The GeoPackage standard describes a set of conventions for storing the following within a
SQLite database:

• Vector features

• Tile matrix sets of imagery and raster maps at various scales

• Attributes (non-spatial data)

• Extensions

This Testbed-17 Engineering Report defines two GeoPackage extensions to store encrypted
data:

• GeoPackage Encryption Extension to store Features

• GeoPackage Encryption Extension to store Tiles

See Annex A for more details.

4.2.1. General Containerized Format

Inspired by previous work using XML structures defined in STANAG 4778 and 4774, previous
Testbeds already defined a general containerized format based on JSON encoding: OGC
Testbed-16: Data Centric Security Engineering Report.

Testbed-17 continued this response format for the OGC API Features via the media type
application/dcs+geo.

4.3. Implications for OGC API Standardization
Development and Implementation

For applying the concepts of Data Centric Security as a building block to OGC (Features, Maps,
Tiles, etc.) APIs being able to easily extend the protocol with additional parameters is important.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 14

https://docs.ogc.org/per/20-021r2.html#_jose_jws_jwe_based_containers_for_json
https://docs.ogc.org/per/20-021r2.html#_jose_jws_jwe_based_containers_for_json

Of related importance is that implementations of OGC APIs — that have potential wider use
beyond just the “traditional” GIS Community — support flexible processing of additional request
parameters and support returning “custom” response formats.

When applying DCS relevant parameters to the OGC APIs leveraging a POST request (www-url-
form-encoded) as a secure alternative for the HTTP GET must be possible. This is in particular
important if Bearer Access Tokens cannot be added to the HTTP Authorization Header or, when
a user requests encrypted content but does not want to disclose the “layers” or “feature types”
within the HTTP GET request!

IMPORTANT

OGC APIs and their implementations must support the declaration and
processing of extensions that define new building block with specific request
parameters.

IMPORTANT

OGC APIs and their implementations must support a security building block
classed “HTTP Bearer Token” (RFC 6750).

IMPORTANT

OGC APIs and their implementations must support HTTP POST as a secured
alternative to HTTP GET. This is in particular important when sending
sensitive parameters to the server.

4.4. Discovered Issues with GeoPackage as response
format

When applying encryption to data, the processing burden must obviously be considered. When
extending APIs (such as the OGC APIs) that are designed to quickly return short to medium size
responses (up to some MBs), the potentially large size, as well as long time required to DCS-
protect returning GeoPackage container can turn out to become a kind of Denial-Of-Service
attack.

Most OGC API Standards define synchronous RESTful web services, which means that the
service returns a HTTP 200 OK success status and the response on the same socket pair as the
one used to receive the request. This interaction pattern is acceptable, if the requested response
format is streaming-ready. A streaming-ready response format is ZIP. The server can open a
Zipped output stream and start immediately to push data down to the client. In the case of
GeoPackage, this is not possible as a GeoPackage container is a binary file format that must first
be completely created (on the server’s storage) before the stream towards the client can start.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 15

https://datatracker.ietf.org/doc/html/rfc6750

For large GeoPackages, or for those where the creation takes a long time due to encryption,
different issues may arise:

• The user client might disconnect from the socket after the TCP standard timeout.
The DCS client was not aware of the requirement to set an extra-long (endless)
timeout before making the request. Unfortunately, the service — meanwhile
creating the GeoPackage — remains unaware of client disconnection, finishes
package generation and eventually starts an attempt to deliver the data to the
client. Therefore, the service might generate a large GeoPackage and waste CPU
and memory by processing a request for which there is no longer a receiver.

• The creation of the (temporary) GeoPackage on the Server produces no space
left on device error. In this case, the user would receive an error but most
likely retry. This is a dangerous situation, as the server’s storage might become
spammed with long running GeoPackage processing tasks, which were started on
behalf of perhaps disconnected clients.

• Inattentive or malicious users might produce a sequence of requests by click —
cancel — repeat. The issue arises that all requests but the last are lost, as the
cancel most likely disconnected the TCP socket.

These situations can quickly turn into a denial-of-service (DoS) attack, if resource quotas that
limit resource consumption (per service request) aren’t put in place.

In this testbed, the participants created GeoPackage sizes of 12GB for the default GeoServer
data set (Tiger Roads) when requesting TileMatrixSet 0-21. The processing time on a medium
size server took approximately 6 hours to create the container. Without a resource quota, the
server resources are quickly not available.

A possible solution for problems mentioned above would be to utilize an asynchronous service
design allowing clients to submit a GeoPackage processing request, disconnect and wait for the
service to generate the required package (a long time running backend task). In order to prevent
multiple service calls caused by malicious or unintentional repeated data requests, clients should
further be limited on how many of such tasks they are allowed to submit at a time. Finally, The
OGC API — Processes standard may fit right to implement such interaction in an OGC compliant
way. OGC API — Processes defines an API that supports both synchronous and asynchronous
execution of computing processes (and the retrieval of metadata describing their purpose and
functionality).

OPEN GEOSPATIAL CONSORTIUM 21-020R1 16

https://ogcapi.ogc.org/processes/
https://ogcapi.ogc.org/processes/

5

IMPLEMENTATION
ASPECTS

OPEN GEOSPATIAL CONSORTIUM 21-020R1 17

5 IMPLEMENTATION ASPECTS

The Testbed-17 DCS architecture extends the Testbed 15 and 16 architectures by supporting
encryption of binary responses for the OGC API Features, Maps (draft), and Tiles (draft)
standards. This feature is implemented in the DCS Server. The DCS client is a mobile application
running on Android.

NOTE: The aim of this section is to provide a detailed Overview about all aspects of design and
component development.

5.1. Architecture Overview

The overall architecture supporting the DCS goal is very similar to the one from Testbed-16
(see OGC Testbed-16: Data Centric Security Engineering Report for more details). The following
figure illustrates the overall architecture.

Figure 2 — Testbed-17 Architecture

OPEN GEOSPATIAL CONSORTIUM 21-020R1 18

https://docs.ogc.org/per/20-021r2.html

The Testbed-17 DCS architecture is inspired by the Zero Trust definition as outlined in the OGC
Testbed-16: Federated Security Engineering Report: Each request to a DCS enriched OGC API
and the KMS requires authentication. This is achieved through the DCS Client that requires an
acting user to login first. This results in a Bearer Access Token that the DCS Client requests from
the AS. The Bearer Access Token must be used for all requests to the DCS Server and the Key
Management Server. Based on the user’s identity that is linked to the Access Token, the DCS
Server and KMS apply access control based on the user’s access rights.

Before making a request to the DCS Server, the user has to provide a PIN or secret to the DCS
Client. This PIN is added to the request and used as a proof of ownership to the Data Encryption
Key (DEK), generated by the DCS Server. The PIN is required to manage the access conditions
for the DEK with the KMS at a later stage. Upon a successful request, the DCS Server returns
the DCS specific response. In all cases, the encrypted data in the response is based on a cipher
key that was created by the DCS Server and registered with the KMS. Therefore, to decrypt
the response, the client first parses the response to find the DEK metadata; in particular the
kid (key identifier) and the kurl the URL to fetch the key from the KMS. Depending on the
actual response format, this information is at different places but is always in a standardized
format, leveraging the JSON Web Key specification (RFC 7517). Before undertaking the actual
decryption of the response, the client interacts with the KMS and fetches the DEK. In case
the KMS returns “forbidden”, the acting user should verify the access conditions for the key, in
particular the expiration time. Amendment to the conditions and in particular to the expiration
time can be done via the KMS admin pages. To change the access conditions for a DEK, the user
has to provide the PIN.

Figure 3 — Testbed-17 DCS Architecture Interactions Overview

As illustrated in Figure 3, the interactions can be categorized as follows:

Category (A)

Interactions from the client to the server are based on an extension to the parameters defined
for the OGC APIs:

• access_token parameter (mandatory) contains the value of the Bearer Access
Token

• key_challenge parameter (mandatory) that contains the (hashed) PIN

OPEN GEOSPATIAL CONSORTIUM 21-020R1 19

https://docs.ogc.org/per/20-027.html
https://docs.ogc.org/per/20-027.html
https://datatracker.ietf.org/doc/html/rfc7517

• key_challenge_method parameter (mandatory) is either plain or S256. When
using S256, the value of the key_challenge must be hashed according to Proof
Key for Code Exchange by OAuth Public Clients, Sect. 4.2.

Responses from the server to the client contain the encrypted data.

Category (B)

The server interacts with the KMS to register the DEK that was generated to encrypt the
content for the current request.

The response from the KMS contains the DEK identifier (kid).

Category (C)

Interactions between the client and the KMS to fetch a DEK for decrypting the actual response
from the server or a GeoPackage that was loaded from (local) storage. The request parameters
are

• access_token (mandatory) as defined above

• kid (mandatory) as part of the path (/dek/{kid})

• kek_kid (optional) contains the key identifier for a registered public key that is to
be used by the KMS to return the DEK encrypted

The response from the KMS to the client is the JWK encoding of the DEK, including the key’s
secret. When the request contains the kek_kid parameter, the response is a JWE where the
payload is the JWK encoding of the key. (The referenced public key is used for key wrapping)

Category (D)

In case that the client wants to request encrypted key material defined by interactions of
category (C), the client can use the KMS KEK (Key Encryption Key) API to register a public key
in JWK format. The key identifier received in the response can be used as illustrated above in
category (C).

5.2. DCS Server

The DCS Server implementation by Secure Dimensions is realized as a GeoServer Plugin,
available from Github: GeoServer DCS Plugin. For the OGC Testbed-17 initiative, the
implementation demonstrates the ability to apply Data Centric Security to geospatial data,
requested via implementations of the OGC’s Features, Tiles (draft) and Maps (draft) APIs. In
order to support the DCS feature, the OGC API requests are extended with additional query
parameters:

• access_token (mandatory) as defined above

OPEN GEOSPATIAL CONSORTIUM 21-020R1 20

https://datatracker.ietf.org/doc/html/rfc7636#section-4.2
https://datatracker.ietf.org/doc/html/rfc7636#section-4.2
https://github.com/securedimensions/geoserver-dcs-plugin

• kid (mandatory) as part of the path (/dek/{kid})

• kek_kid (optional) contains the key identifier for a registered public key that is to
be used by the KMS to return the DEK encrypted

The request parameter f determines the response format based on DCS specific media types,
valid in the context of this Testbed. The DCS Server implementation supports different response
formats specific to an OGC API. The response format for OGC API Maps is a HTTP Multipart
response where the first part contains the key metadata in JSON encoding and the encrypted
image is an octet-stream provided as part two. For the OGC API — Features standard, two
different response formats are supported: (i) encrypted features in JSON container and (ii)
GeoPackage container holding encrypted features. For the OGC API — Tiles draft specification,
only GeoPackages holding encrypted tiles are supported.

Table 1 — OGC Testbed-17 DCS Media Types

OGC-API DCS MEDIA TYPE DESCRIPTION

Features application/dcs+geo

DCS container
structure encrypted
features, metadata as
JSON

Features application/dcs+geo;profile=metaSign

DCS container
structure encrypted
features, metadata as
JWS

Features application/dcs+geo;profile=metaEncrypt

DCS container
structure encrypted
features, metadata as
JWE

Features application/gpkg+dcs
GeoPackage with
encrypted features

Tiles application/gpkg+dcs
GeoPackage with
encrypted tiled
coverages

Maps application/dcs+{png,jpeg,…}
Multipart response with
encrypted map tiles

The actual GeoPackage extensions for encrypted Tiles and Features are described in section
“GeoPackage Data Centric Security Extensions” (Annex A).

OPEN GEOSPATIAL CONSORTIUM 21-020R1 21

5.2.1. OGC API Maps Response Format

The OGC API Maps implementation returns an image in the format requested. Typical formats
are PNG or JPEG. The DCS response format can be requested via the f parameter using the
DCS specific media type `application/dcs+{<image format>}.

The structure of the response as a HTTP Multipart is illustrated in the following figure.

Figure 4 — DCS Testbed-17 OGC API Maps Interactions Overview

As illustrated in Figure 4, the response uses content type multipart/encrypted;
protocol=application/json. This is a standard way to ‘alert’ the client about the encodings
of the different parts. The response header further contains the boundary identifier of the multi
part message (f92d9092-6c6b-48e0-a4b3-16fc71be9d63 in the example above).

The following is an example first part:

{
 "metadata": {
 "originator_confidentiality_label": {
 "confidentiality_information": {
 "policy_identifier": "TB17",
 "classification": "Confidential"

OPEN GEOSPATIAL CONSORTIUM 21-020R1 22

 }
 },
 "data_producer": {
 "origin": "Not NGA",
 "date": "2021-10-01T14:03:08.409Z"
 },
 "data_description": {
 "type": "Feature",
 "properties": {
 "name": "tiger:tiger_roads",
 "content_type": "application/geo+json"
 },
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [
 -74.02722,
 40.684221
],
 [
 -73.907005,
 40.684221
],
 [
 -73.907005,
 40.878178
],
 [
 -74.02722,
 40.878178
],
 [
 -74.02722,
 40.684221
]
]
]
 }
 }
 },
 "dek_info":
 "eyJqa3UiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwvZGNzXC8ud2VsbC1rbm93blwvandrcy5qc29uIiwia2lkIjoiRHIuIE5vIiwiYWxnIjoiUlMyNTYifQ.
eyJzdWIiOiI5NWQzODI3ZC1lZmVmLTMwNTItYTJkZi00NmQxYzdjZTc3YTUiLCJhdWQiOiIwMTliNzE3My1hOWVkLTdkOWEtNzBkMy05NTAyYWQ3YzA1NzUiLCJrdXJsIjoiaHR0cHM6XC9cL29nYy5zZWN1cmUtZGltZW5zaW9ucy5jb21cL2ttc1wva2V5c1wvMTU1MTdlOTUtYzc2NC00NjAyLTllMDktN2FhYWQxMDRkNDgwIiwia2lkIjoiMTU1MTdlOTUtYzc2NC00NjAyLTllMDktN2FhYWQxMDRkNDgwIiwiaXNzIjoiaHR0cHM6XC9cL29nYy5zZWN1cmUtZGltZW5zaW9ucy5jb20iLCJleHAiOjE2MzMwOTgsImFsZyI6IkExMjhHQ00iLCJpYXQiOjE2MzMwOTY5ODYzNzJ9.
T5BeNmsSLPSfZniVziJe_
7tobLBaA7wxP1wqKGliHq37JbLFMzlqLXmAnSDtSqNjQUtNycRXgkGKADbKUkBsht6o7GrI24Ox3h41F_
HGTVCnxIwr1AlQtA0xEK9QqP-CYjOiRITuHlBDZis6AjF-NCxLdXuplZ5OY9R_
Y3uaduoV4Klczy4xBXOFI2iA8qA8O1wCUUcYpaNm8-EalS5Jx0ve_xOT_
wVquC6Q2Gyz9LF0gjGQ01mhEmw6ZAOWLtiW6xphK34gakp1_oJXeqPWFPo2mDtlCi3DXe2yLhTrY_
uA0_7QAAGPOK9gskHotTZ9FJ-UffKPbs-TkPVEHTapQQ"
}

Part 1 of the Multipart response

In clear JSON encoding, the client can determine information about the confidentiality labelling,
the data producer and the actual data structure. In particular, the boundary of the map images
is presented which allows a GIS client to associate the image with the correct location on the
rendered display.

For decryption, the client must use the information from the dek_info element. This is a JWT in
compact decoding. After decoding, the following information becomes available:

OPEN GEOSPATIAL CONSORTIUM 21-020R1 23

{
 "jku": "https://ogc.secure-dimensions.com/dcs/.well-known/jwks.json",
 "kid": "Dr. No",
 "alg": "RS256"
}

Header of the JWT defining the public key used for signature

{
 "sub": "95d3827d-efef-3052-a2df-46d1c7ce77a5",
 "aud": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "kurl": "https://ogc.secure-dimensions.com/kms/keys/15517e95-c764-4602-9e09-
7aaad104d480",
 "kid": "15517e95-c764-4602-9e09-7aaad104d480",
 "iss": "https://ogc.secure-dimensions.com",
 "exp": 1633098986372,
 "alg": "A128GCM",
 "iat": 1633096986372
}

Payload of the JWT describing the key’s metadata

Important information for the client is the kid or the kurl which can be used to fetch the
actual decryption key from the KMS. The elements sub and aud can be used to verify that the
key is actually designated to the acting user (identified by the sub) and the application itself
(identified by the aud). Additional information when the key was created (iat) by whom (iss)
and expiration (exp) can be used to test applicability and fitness of the key.

The actual key that corresponds to the kid = 15517e95-c764-4602-9e09-7aaad104d480 is
illustrated in the following code listing:

{
 "kid": "15517e95-c764-4602-9e09-7aaad104d480",
 "alg": "A128GCM",
 "kty": "oct",
 "k": "4rE7puBVzdMeXpv1Z3eyHQ",
 "issuer": "4bf1cb21-9ff7-f443-f736-70781d89d413",
 "expires": 1633098786,
 "issued_at": 1633096988,
 "aud": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "sub": "95d3827d-efef-3052-a2df-46d1c7ce77a5"
}

Decryption Key in JWK encoding

5.2.2. OGC API — Features JSON Container

The OGC API — Features service implementation returns a JSON encoded container with
encrypted features plus relevant metadata. Different format values trigger different encoding
for the metadata; the data is always encrypted. All response structures are described in the Data
Centric Security ER from Testbed 16.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 24

https://docs.ogc.org/per/20-021r2.html
https://docs.ogc.org/per/20-021r2.html

Figure 5 — OGC API Features returning encrypted features collection with metadata as JSON

For a response including digitally signed metadata, the f parameter must be set to
application/dcs+geo.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 25

Figure 6 — OGC API Features returning encrypted features collection with metadata as JWS

For a response including digitally signed metadata, the f parameter must be set to
application/dcs+geo;profile=metaSign.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 26

Figure 7 — OGC API Features returning encrypted features collection with metadata as JWE

For a response including digitally signed metadata, the f parameter must be set to
application/dcs+geo;profile=metaEncrypt. The DCS server returns the encrypted metadata
as JWE when the request includes the kek_kid which refers to the public key of the user,
registered with the KMS. The DCS Server uses that public key to encrypt the cipher key used to
encrypt the metadata. This is visible from the JWE header:

{
 "cty": "JWS",
 "enc": "A256GCM",
 "alg": "RSA-OAEP-256"
}

5.2.3. OGC API — Features GeoPackage Response

The OGC API — Features implementation returns a GeoPackage with encrypted features
as described in Annex A.1. This response type can be requested via the f parameter set to
application/gpkg+dcs.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 27

Figure 8 — OGC API Features returning GeoPackage with encrypted features plus metadata

5.2.4. OGC API — Tiles GeoPackage Response

The OGC API — Tiles implementation returns a GeoPackage with encrypted tiles as described in
Annex A.2. This response type can be requested via the f parameter set to application/gpkg
+dcs.

Figure 9 — OGC API Tiles returning GeoPackage with encrypted tiles plus metadata

5.3. DCS Client

The DCS Client implementation for the OGC Testbed 17 demonstrates the ability to request and
ingest encrypted geospatial content using OGC APIs.

The actual Compusult implementation is realized using the Compusult GO Mobile Android
application, which provides a standards-based geospatial and mapping solution for data
discovery and visualization.

• Supports Android 5.0 (API Level 21) and above

• Supports many approved and draft OGC API standards (Maps, Tiles, Features,
Styles, Images)

• Supports GeoPackage 1.3.0 and below

• Supports OpenID based authentication

• Supports The Key Management System (KMS) operations

OPEN GEOSPATIAL CONSORTIUM 21-020R1 28

https://developer.android.com/studio/releases/platforms#5.0
https://ogcapi.ogc.org/
https://www.geopackage.org/
https://openid.net/
https://ogc.secure-dimensions.com/kms/

• Supports decoding, verifying and decrypting JOSE and JWT content using
Nimbus JOSE + JWT and Bouncy Castle

• Supports decoding and decrypting multi-part binary content using JCA and
apache-mim4j

5.3.1. Client Registration

The DCS Client must first register its application with the AUTHENIX service to access the
OGC APIs and KMS services. A global private/public key pair is created on the first load of the
application and stored in the database for future client requests and decryption.

The client performs a registration request https://www.authenix.eu/oauth/register with the
request body below.

{
 "redirect_uris": [
 "http:\/\/www.gomobile_dcs.com\/oauth2redirect"
],
 "grant_types": [
 "authorization_code",
 "refresh_token"
],
 "response_types": [
 "code",
 "id_token",
 "code id_token"
],
 "client_name": "Compusult DCS Application - Mobile",
 "logo_uri": "https:\/\/www.compusult.com\/image\/layout_set_logo?img_id=
12133&t=1615550967456",
 "scope": "openid profile offline_access",
 "contacts": [
 "aparsons@compusult.net"
],
 "tos_uri": "http:\/\/127.0.0.1:4711\/TermsOfUse.php",
 "policy_uri": "http:\/\/127.0.0.1:4711\/PrivacyStatement.php",
 "software_id": "4ef5dcfd-22a7-4947-a636-4a46a1cf8d43",
 "software_version": "1.0",
 "post_logout_redirect_uris": [
 "https:\/\/www.example.com\/oauth2logout"
]
}

The server responds with a registration response including the client_id required for
authorization. See below for an example of the server response.

{
 "client_id": "8d90bc42-4401-5f2a-9054-cb407a876ad8",
 "client_id_issued_at": 1629899374,
 "client_name": "Compusult DCS Application - Mobile",
 "client_secret": "...",
 "client_secret_expires_at": 1629928174,
 "contacts": [
 "aparsons@compusult.net"
],
 "grant_types": [
 "authorization_code",

OPEN GEOSPATIAL CONSORTIUM 21-020R1 29

https://connect2id.com/products/nimbus-jose-jwt
https://www.bouncycastle.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://mvnrepository.com/artifact/org.apache.james/apache-mime4j
https://www.authenix.eu/oauth/register

 "refresh_token"
],
 "jwks": null,
 "post_logout_redirect_uris": [
 "https:\/\/www.example.com\/oauth2logout"
],
 "redirect_uris": [
 "http:\/\/www.gomobile_dcs.com\/oauth2redirect"
],
 "response_types": [
 "code",
 "id_token",
 "code id_token"
],
 "scope": "openid profile offline_access",
 "token_endpoint_auth_method": "client_secret_basic"
}

5.3.2. Client Authorization

The DCS client will require the user to authorize against any services that are known to
contain Data Centric Security content. For OGC APIs compatible services this is determined
by inspecting the format types available for request. For GeoPackages this is determined
by checking the registered extensions. If a service/geopackage is determined to require
authentication, a user is required to login.

Figure 10 — DCS Client — Authentication

Before authenticating the user is required to select the server they wish to authenticate against.
The OpenID configuration is parsed and used to determine how to construct the appropriate
authorization and token requests.

Figure 11 — DCS Client — Server Selection

After selecting the server, the user provides an authorization request including the registered
client_id as well as the user specified code_challenge. An example authorization request will take
the form of :

https://www.authenix.eu/oauth/authorize?scope=openid+profile+offline_
access&response_type=code+id_token&redirect_uri=http%3A%2F%2Fwww.gomobile_

OPEN GEOSPATIAL CONSORTIUM 21-020R1 30

https://www.authenix.eu/oauth/authorize?scope=openid+profile+offline_access&response_type=code+id_token&redirect_uri=http%3A%2F%2Fwww.gomobile_dcs.com%2Foauth2redirect&state=xyz&code_challenge_method=S256&nonce=123&client_id=8d90bc42-4401-5f2a-9054-cb407a876ad8&code_challenge=14L0XjF8uRH5IPrEm8RfiPlZilPTFKwxvZqtD9NLxs0
https://www.authenix.eu/oauth/authorize?scope=openid+profile+offline_access&response_type=code+id_token&redirect_uri=http%3A%2F%2Fwww.gomobile_dcs.com%2Foauth2redirect&state=xyz&code_challenge_method=S256&nonce=123&client_id=8d90bc42-4401-5f2a-9054-cb407a876ad8&code_challenge=14L0XjF8uRH5IPrEm8RfiPlZilPTFKwxvZqtD9NLxs0

dcs.com%2Foauth2redirect&state=xyz&code_challenge_method=S256&nonce=
123&client_id=8d90bc42-4401-5f2a-9054-cb407a876ad8&code_challenge=
14L0XjF8uRH5IPrEm8RfiPlZilPTFKwxvZqtD9NLxs0

The Client is then asked to select a provider, and provide credentials to authorize the user.

Figure 12 — DCS Client — Provider Selection

After providing the credentials an authorization response is returned containing the
authorization code.

http://www.gomobile_dcs.com/oauth2redirect?code=
bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.
eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.
gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-
utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_
GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_
kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_
nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-
ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw

The authorization redirect URL is handled by the app, and prompts the user to allow the
application to ingest the response. Note the user is asked to select the appropriate app one time,
and all subsequent requests afterwards are automatically redirected.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 31

https://www.authenix.eu/oauth/authorize?scope=openid+profile+offline_access&response_type=code+id_token&redirect_uri=http%3A%2F%2Fwww.gomobile_dcs.com%2Foauth2redirect&state=xyz&code_challenge_method=S256&nonce=123&client_id=8d90bc42-4401-5f2a-9054-cb407a876ad8&code_challenge=14L0XjF8uRH5IPrEm8RfiPlZilPTFKwxvZqtD9NLxs0
https://www.authenix.eu/oauth/authorize?scope=openid+profile+offline_access&response_type=code+id_token&redirect_uri=http%3A%2F%2Fwww.gomobile_dcs.com%2Foauth2redirect&state=xyz&code_challenge_method=S256&nonce=123&client_id=8d90bc42-4401-5f2a-9054-cb407a876ad8&code_challenge=14L0XjF8uRH5IPrEm8RfiPlZilPTFKwxvZqtD9NLxs0
https://www.authenix.eu/oauth/authorize?scope=openid+profile+offline_access&response_type=code+id_token&redirect_uri=http%3A%2F%2Fwww.gomobile_dcs.com%2Foauth2redirect&state=xyz&code_challenge_method=S256&nonce=123&client_id=8d90bc42-4401-5f2a-9054-cb407a876ad8&code_challenge=14L0XjF8uRH5IPrEm8RfiPlZilPTFKwxvZqtD9NLxs0
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw
http://www.gomobile_dcs.com/oauth2redirect?code=bdc1634ddb2dd598327da3537064781948fd4ef0&state=xyz&id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IkFTUHVibGljS2V5In0.eyJpc3MiOiJodHRwczpcL1wvd3d3LmF1dGhlbml4LmV1Iiwic3ViIjoiYzBmYjJlZWEtMTg1Ni0zNjczLTgwZmMtNzlkMGUxZWZkZmRiIiwiYXVkIjoiOGQ5MGJjNDItNDQwMS01ZjJhLTkwNTQtY2I0MDdhODc2YWQ4IiwiaWF0IjoxNjI5ODk5NTEwLCJleHAiOjE2Mjk5MDMxMTAsImF1dGhfdGltZSI6MTYyOTg5OTUwOCwibm9uY2UiOiIxMjMiLCJnaXZlbl9uYW1lIjoiQWRhbSIsIm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJmYW1pbHlfbmFtZSI6IlBhcnNvbnMiLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJBZGFtIFBhcnNvbnMiLCJzaWQiOiI2N2I1MDcwY2FmNzg2OWJlZjU2ZTZjZDAxNzlkOTQ3ZSIsImNfaGFzaCI6IkV0bjFYNzU3RFZQSks2djZETktOcVEifQ.gV44NNYQmdTI9FU6XwewecwzqfTbA3Pud_oRzFvI9cxnCyzQ5Kx5K7-utnJ5AdmsCzhxkuWyjz3nT9p6PfkywL9akdst58qhSjfNFAinnhIHfnHl_GUvm3vBNXhTxR7tJxzhrm5vycdGnHx2bLej_Awk-wRLncGyWGBn_kRJdePncYO78kBK3A4becIMGXkX8VDTO2Xx3vsrmmEx7NIam9RIN2s4P_nGpgtYfGw5dX1qv2nFP6D2d9JbgoCsqqcfLCs0arktRZepSE4pAwbmzhKNd1rRCnIscNZsw3nOmNrIbXGkCPfizG-ZfROP0zLRWq4JSrORX6uCFxfzyBhlPw

Figure 13 — DCS Client — Redirect Selection

After selecting the app to handle redirection, the application retrieves the authorization code
and uses this code to retrieve a valid token for use for the following url : https://www.authenix.
eu/oauth/token. Basic Auth request headers are added to the request using the client_secret
supplied by the user.

code=bdc1634ddb2dd598327da3537064781948fd4ef0&grant_type=authorization_
code&redirect_uri=http%3A%2F%2Fwww.gomobile_dcs.com%2Foauth2redirect&code_
verifier=Hlp9DyvxEm0XPxnsb3Mjuut77nI7oHwO57nEuaejxsMwgdKBqeKV6BYdq-lEd2tk_
htpdj67u2otTShpws20sw

The server responds with a valid token response. The response contains the access_token
required to be used with the KMS and OGC APIs.

{
 "access_token": "741e31abc7c6ec5444036b94fca79796b0925e09",
 "expires_in": 1800,
 "token_type": "bearer",
 "scope": "openid profile offline_access",
 "refresh_token": "c0ea4ca04432f47af977374a94dc8dc6e8b41f31"
}

If the request was successful, the client is then re-directed and updates the Authorization button
to indicate authorization has been successful and that the client can now be used to request
Data Centric Security content.

Figure 14 — DCS Client — Authentication Success

5.3.3. OGC APIs

The DCS client supports ingesting and requesting OGC API services including Tiles, Maps,
Features, Styles and Images. Given an OpenAPI definition file the client auto-detects the
capabilities of the server and provides the user with options to change formats and styles, as

OPEN GEOSPATIAL CONSORTIUM 21-020R1 32

https://www.authenix.eu/oauth/token
https://www.authenix.eu/oauth/token

well as downloading GeoPackage content on a service and layer level. For this testbed the
following services were utilized:

• OGC API — Features

• OGC API — Maps

• OGC API — Tiles

5.3.3.1. OGC API — Features

The DCS client reads the OpenAPI definition for an OGC API — Features service and through
successive calls to /collections/{collectionId} produces a service with all of its required metadata
for requesting content, including available styles and formats.

Figure 15 — DCS Client for OGC API — Features implementation

To request Data Centric Security content a user must select one of the available DCS formats.
After selecting one of the appropriate formats, the client ensures the user is authorized and adds
the appropriate request parameters/headers to request the encrypted content.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 33

https://ogc.secure-dimensions.com/geoserver/ogc/features/api?f=json
https://ogc.secure-dimensions.com/geoserver/ogc/maps
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/api?f=json

Figure 16 — DCS Client — OGC API Feature Formats

After receiving the content the client determines the data content-type by decoding and
decrypting the data_description.

 "data_description":
 "eyJqa3UiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwvZGNzXC8ud2VsbC1rbm93blwvandrcy5qc29uIiwia2lkIjoiRHIuIE5vIiwiYWxnIjoiUlMyNTYifQ.
eyJ0eXBlIjoiRmVhdHVyZSIsInByb3BlcnRpZXMiOnsibmFtZSI6InBvbHlfbGFuZG1hcmtzIiwibmFtZXNwYWNlIjoiaHR0cDovL3d3dy5jZW5zdXMuZ292IiwiY29udGVudF90eXBlIjoiYXBwbGljYXRpb24vZ2VvK2pzb24ifSwiZ2VvbWV0cnkiOnsidHlwZSI6Ik11bHRpUG9seWdvbiIsImNvb3JkaW5hdGVzIjpbW1tbNDAuNzMwNjQ3LC03My45OTYwMzVdLFs0MC43Mjk5OSwtNzMuOTk2NDQ5XSxbNDAuNzMwNDM3LC03My45OTczNTZdLFs0MC43MzA4MzQsLTczLjk5ODA0N10sWzQwLjczMTE2NiwtNzMuOTk4NzZdLFs0MC43MzE1OCwtNzMuOTk5NTU5XSxbNDAuNzMyMTg4LC03My45OTkwNzldLFs0MC43MzI3OTUsLTczLjk5ODU1N10sWzQwLjczMTk4NCwtNzMuOTk2OTM3XSxbNDAuNzMxMzA0LC03My45OTU0OV0sWzQwLjczMDY0NywtNzMuOTk2MDM1XV1dXX19.
fi4XeIgcMKurVsew3IewJpSXIH4n8TKs3SJpMsFCUQ0yteH6VSeT1qGNz4_
PGADbWyCxOh4LZy8WB7tIR95PyIOix_D0cxS6YPI47k_eBDQ11WznyrHRs80iItXMCVxRr9o_
eHevPVARts63fxg-x-esw9clhU4CexQEjPAOsT9ETAVjRgidSweS0Sva5INJ53BsYrhDiaR5at-
dzuNI0BEoz-
S8bCUF9KFgVBjnkA5mYbWNS7KNGd6htXoJoujdGaA1TfucRLLGlUJib6iL3wdnY5cplelyC9JO3MVnJjk4tsOFehtJ5KemBzFB59EROPjSDEET_
Eub3fnY_VXA2Q"

After decoding the content, the header is used to retrieve the JWK and decrypt the content.

{
 "jku": "https:\/\/ogc.secure-dimensions.com\/dcs\/.well-known\/jwks.json",
 "kid": "Dr. No",
 "alg": "RS256"
}

The result is a GeoJSON feature which describes the features extents, content-type and other
application specific metadata.

{
 "type": "Feature",
 "properties": {
 "name": "poly_landmarks",
 "namespace": "http://www.census.gov",
 "content_type": "application/geo+json"
 },

OPEN GEOSPATIAL CONSORTIUM 21-020R1 34

 "geometry": {
 "type": "MultiPolygon",
 "coordinates": [
 [
 [
 [
 40.87822,
 -73.926377
],
 [
 40.87042,
 -73.932477
],
 [
 40.874699,
 -73.938081
],
 [
 40.882078,
 -73.933406
],
 [
 40.87901,
 -73.924598
],
 [
 40.878978,
 -73.924506
],
 [
 40.87822,
 -73.926377
]
]
]
]
 }
}

After determining the content-type of the encrypted content a similar approach is taken to
decrypt the data in the response. Here the header contains a KMS request that allows the user
to reach out to the KMS service and retrieves the appropriate key given the user credentials.

{
 "iss": "https:\/\/ogc.secure-dimensions.com",
 "cty": "application\/geo+json",
 "alg": "RS256",
 "jku": "https:\/\/ogc.secure-dimensions.com\/dcs\/.well-known\/jwks.json"
}

After the decryption the client converts the GeoJSON features and renders the content on the
map.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 35

Figure 17 — DCS Client — OGC API Features — Manhattan (NY) Roads

5.3.3.1.1. GeoPackage from OGC API — Features

The DCS client checks the available formats from the OGC API — Features service and
determines if it supports requesting encrypted GeoPackages. If it finds the format of
application/dcs+gpkg, an option is made available for the user to download a GeoPackage.

{
 "href": "https://ogc.secure-dimensions.com/geoserver/ogc/features/
collections/tiger:giant_polygon/items?f=application%2Fgpkg%2Bdcs",
 "rel": "items",
 "type": "application/gpkg+dcs",
 "title": "tiger:giant_polygon items as application/gpkg+dcs"
}

OPEN GEOSPATIAL CONSORTIUM 21-020R1 36

https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:giant_polygon?f=json

Figure 18 — DCS Client — OGC API Features — GeoPackage Download

Once downloaded the GeoPackage metadata is read from gpkg_contents and the GeoPackage
service is generated. The gpkg_extensions table is then read to determine if the GeoPackage
is a Data Centric Security compliant Feature GeoPackage based on the extension_name
sd_dcs_features. The encrypted format of the content can also be determined by reading the
gpkg_data_columns table. See the GeoPackage DCS Features Extension for more details.

Figure 19 — DCS Client — OGC API Features — GeoPackage Service

The client then requests the feature content based on the map extents like any other
GeoPackage Simple Feature layer. The structure column must first be decrypted to determine
the content-type and the extents of the feature along with other metadata.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 37

eyJraWQiOiI3MzBiMWJkOC0xNDE0LTQ2ZjAtOGRjMy02NzEzZjdlODZhZjgiLCJjdHkiOiJKV0UiLCJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.
gxAXPp36uoNBC9WiTghy1sEgSG9iKwyYtaRGDunItQq5KmFKaOAUb06cBdnbOb2CvY3c-
sAVPT-21VZ6F1fmjG1uUV_sLmRxdjiW7XZKs1T3hc-Zn9Oy4Ak-3iOTukdtv883j0q_
fNMatTbdxWJh3tGRzTHMAwf_
lVNmqo0fAYKilIr6160AN6QxF97gGVFqHKfvXzY2l7thJV9poQtGXi8_e31iAJEyj38m_
XN91nXhuqocJxe4mWPifZuRa5B2LpVhw3BRSjLAVJ0mIZesKlUoQpM0Gn0HlaVGE4UGavize0KrLcKq34kWmt787_
rAHfq9vlpL0b3rQn87J8pOUw.M_S4vt6kGIapv8SY.
AUx5Tnq5s3fs8qbkjFGU0Zqg6qUKl2CjVfctOMrHE3O4szdiKlPDlMsO2mLWqiZPcyHdXVjIOGZ5769YHnMyQp8tN69WUc7crEMb19_
WggaqUiYq8lFWeuNb2mjjylA1okuYMM0GZfEh6F0vqYIf2wLpw7mw28FMcfoO6v-
sYThF0yDglUV3i0X0bDlU18uhgH1HNGyNsepEBg_
Mj9i6hr9pcWeyb22iTNuKj7useXC6KRHrgzyWu8UeqJkQLFxGLo_kZuutjw3H-6_
CRpPXAETb5MubJVCo05jISx1btnJu5UX8S8L5LjcXwBCpAKVL_eHOF_OnKersgnN-
6H6FygtamS6RPkg_
b9Fshtwny6LxsnaDNxG3tXMyMaB02qGBwaOMkTHijCY7tJWyvlR9kZI8jsxccTeWxncVGJ128ge2H3MR40V8rof2uIpuEP0zmP3maNQsKsJ0iCt49LfWANu2LAnjHkyxpwxXJbq3L5Zq3jkILFD8wL2bqaV1iGWltRZSLepyTDh0n_
Eb1u9u7OCnLd-
2EyKWfdbWPcHseiEhNb6u6RfHqC2xcLfnnA7ZTJIZH0tDDwhLASODhSvFfaolIkxda-
3fd6IbaDh6S0r_IdH_Zlt6LObo6A7ESstFKUHiExT5YAKmM6FCg_t_BGt8jvVnxL9N-
Xe94p77bnoPUDWYJv-
y1yYRq4ExeJDuejv1uBbBnG0vLDxa7Hm8vwrNLcJVNeyUVtkwolEGdMZ1cg97geoKo7scQ85kJiZy6CBXaBcVl7Ou6ojuKPGY1Rx5KMzQ4aK3je8h9UKLfcyPcUUEl_
uIbDxUB7yCTpuA6uKA-lbFiXSk2bEokGPdInTO8liLYWCoYqhn3NujJOnJ-
RYuMdQ8yvOYWJGHKZFHD9Lbr1MnGPPhVFq0ZovOdvbLFTsEuWxSKJaM-9LfBPmFyuoEE2OZRN3dDtu_
cBe7_KS7qriO3sltCPSK1-00Wehcxx4bXFCDC2arnCAMx0rMAtYJPhaL_
p6ibkGPrApJWxs529MefgGi5WRe3ImOWOGEPHJDsXSiHIaGJudzE57QhQQp6fQTOZR-
H8fLiuy_krC1ykJkeuGJX_Cpnr_nNnz2SHuiSr_Hve2piKI1JGzilU_
PcIyv8fguiCk_XIjcDhioclcYSR99XYJ_scCSuntALoVMbMRVvI7dXHEKTPjOR-
mZ6WVYPyClBe7OFd0EK6fdtyIDvNoaRX0DW2U8aeYE-1_fOg5F2EvO-wsEd7BgJ100C15ik_
AsOYJjlHbkLhL5B246Z2A8dIillSE913XMKrEWcYf25SKVp1KEzDFFx9v193hZOZn4OB95DgVuqe23PWBzsexlwLGTdRpH4XoyLMzln81K6uoZXg.
3ubTT3yYZBIInUOUFeKQWQ

The client then requests the encryption key from KMS using the information available in the
header.

{
 "kid": "730b1bd8-1414-46f0-8dc3-6713f7e86af8",
 "cty": "JWE",
 "enc": "A256GCM",
 "alg": "RSA-OAEP-256"
}

After retrieving the key, the structure is decrypted and verified to ensure the user has
permission to consume the content. Using the content_type property the client determines
what type of data to inspect in the encrypted data column.

{
 "type": "Feature",
 "properties": {
 "name": "DCSD6E1C05C8A81C2AE74C7AEDEA5EC92C1",
 "namespace": "tiger",
 "namespace_uri": "http://www.census.gov",
 "content_type": "application/geo+json",
 "attributes": [
 "the_geom",
 "NAME",
 "THUMBNAIL",
 "MAINPAGE"
]
 },
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [
 40.70754684,

OPEN GEOSPATIAL CONSORTIUM 21-020R1 38

 -74.01083751
],
 [
 40.70754684,
 -74.01083751
],
 [
 40.70754684,
 -74.01083751
],
 [
 40.70754684,
 -74.01083751
],
 [
 40.70754684,
 -74.01083751
]
]
]
 }
}

A similar process is followed to decode, decrypt and verify the data content containing the
GeoJSON features. After decrypting the content, the GeoJSON is rendered on the map.

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 40.7075,
 -74.0108
]
 },
 "properties": {
 "NAME": "stock",
 "THUMBNAIL": "pics\/22037829-Ti.jpg",
 "MAINPAGE": "pics\/22037829-L.jpg"
 },
 "id": "poi.2"
}

OPEN GEOSPATIAL CONSORTIUM 21-020R1 39

Figure 20 — DCS Client — OGC API Features — GeoPackage — Points of Interest

5.3.3.2. OGC API — Maps

The DCS client reads the OpenAPI definition for an OGC API Maps service and through
successive calls to /collections/{collectionId} and /collections/{collectionId}/styles produces a
service with all of its required metadata for requesting content, including available styles and
formats.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 40

Figure 21 — DCS Client — OGC API Maps Service

To request Data Centric Security content a user must select one of the available DCS formats.
After selecting one of the appropriate formats, the client ensures the user is authorized and adds
the appropriate request parameters/headers to request the encrypted content.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 41

Figure 22 — DCS Client — OGC API Maps Formats

After receiving the content the client decodes and decrypts multi-part binary content based on
its format type. External keys are retrieved from the KMS. These along with the applications
stored private key are used to decrypt the content and metadata and display the images on the
map.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 42

Figure 23 — DCS Client — OGC API Maps — Manhattan (NY) Roads/Landmarks

5.3.4. OGC API Tiles — GeoPackage

The DCS client checks the available formats from the OGC API — Tiles service and determines
if it supports requesting encrypted GeoPackages. If it finds the format tilematrixset-dcs or
tilematrix-dcs an option is made available for the user to download a GeoPackage.

{
 "href": "https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/
tiger:giant_polygon/map/giant_polygon/tiles/EPSG:4326?f-tile=image/png&f=
application/gpkg%2Bdcs&multiTileType=tiles",
 "rel": "tilematrixset-dcs",
 "type": "image/png",
 "title": "tiger:giant_polygon tile matrix set as DCS GeoPackage"
},
{
 "href": "https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/
tiger:giant_polygon/map/giant_polygon/tiles/EPSG:4326/{tileMatrix}?f-tile=
image/png&f=application/gpkg%2Bdcs&multiTileType=tiles",
 "rel": "tilematrix-dcs",
 "type": "image/png",
 "title": "tiger:giant_polygon tile matrix {tileMatrix} as DCS GeoPackage"
}

OPEN GEOSPATIAL CONSORTIUM 21-020R1 43

https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:giant_polygon/styles/giant_polygon/map/tiles/EPSG:4326?f=json

Figure 24 — DCS Client — OGC API Tiles GeoPackage Download

After selecting the layer to download and choosing to download a GeoPackage the client
generates a request using the users access token and selected format type and projection.

https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/
tiger:poi/map/poi/tiles/EPSG:4326?f-tile=image/png&f=application/gpkg
%2Bdcs&multiTileType=tiles&key_challenge=secret&key_challenge_method=
plain&access_token=998abda1e387e99003c8a9ff5a314d1a51381b72&kek_kid=730b1bd8-
1414-46f0-8dc3-6713f7e86af8

Once downloaded, the GeoPackage metadata is read from gpkg_contents and the GeoPackage
service is generated. The gpkg_extensions table is then read to determine if the GeoPackage
is a Data Centric Security compliant Feature GeoPackage based on the extension_name
sd_dcs_tiles. The encrypted format of the content can also be determined by reading the
gpkg_data_columns table. See the GeoPackage DCS Tiles Extension for more details.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 44

https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/poi/tiles/EPSG:4326?f-tile=image/png&f=application/gpkg%2Bdcs&multiTileType=tiles&key_challenge=secret&key_challenge_method=plain&access_token=998abda1e387e99003c8a9ff5a314d1a51381b72&kek_kid=730b1bd8-1414-46f0-8dc3-6713f7e86af8
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/poi/tiles/EPSG:4326?f-tile=image/png&f=application/gpkg%2Bdcs&multiTileType=tiles&key_challenge=secret&key_challenge_method=plain&access_token=998abda1e387e99003c8a9ff5a314d1a51381b72&kek_kid=730b1bd8-1414-46f0-8dc3-6713f7e86af8
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/poi/tiles/EPSG:4326?f-tile=image/png&f=application/gpkg%2Bdcs&multiTileType=tiles&key_challenge=secret&key_challenge_method=plain&access_token=998abda1e387e99003c8a9ff5a314d1a51381b72&kek_kid=730b1bd8-1414-46f0-8dc3-6713f7e86af8
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/poi/tiles/EPSG:4326?f-tile=image/png&f=application/gpkg%2Bdcs&multiTileType=tiles&key_challenge=secret&key_challenge_method=plain&access_token=998abda1e387e99003c8a9ff5a314d1a51381b72&kek_kid=730b1bd8-1414-46f0-8dc3-6713f7e86af8
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/poi/tiles/EPSG:4326?f-tile=image/png&f=application/gpkg%2Bdcs&multiTileType=tiles&key_challenge=secret&key_challenge_method=plain&access_token=998abda1e387e99003c8a9ff5a314d1a51381b72&kek_kid=730b1bd8-1414-46f0-8dc3-6713f7e86af8

Figure 25 — DCS Client — OGC Tiles API — GeoPackage Service

The client then requests the feature content based on the map extents like any other
GeoPackage Tiled layer. The result is encoded metadata dcs_info, encrypted key information
dek_info and the encrypted tiled images tile_data.

First dcs_info is decoded, and the header is used to retrieve the key. The parameter jku is used
to retrieve the keyset and load it.

{
 "keys": [
 {
 "kty": "RSA",
 "e": "AQAB",
 "use": "sig",
 "kid": "Dr. No",
 "n": "kHGuPCEyY4adIpPgMuw7H5H5zh03eADvj_
Tc12zFR3LavpAHrkC8XxGbdgXmknIfN2uV_jcg5uM4crbJGfqnS1elznJjAEZ3e1kwZOTKPiqGqrL-
6DgvFjLgdh8JcT95z1Q5MIO7u9-Ru-YR-
DxXQzYN9Pq3lee8VmaRSRICLgvi9D08m2GwUvIlerac2WG04xB4FbFw7NuiDoQEAHuppTK6aWusiiOSwd31Nvg6b8Ein4nFyhxGMaZKrtegpnUa5eZZdKetzzvsCcRP_
4pt5rjOof46jjjM_YbRd0IIyIq0vufGogB_C5yndIQa2odcY2_rVEayqKFBu2VuFGSmtw"
 }
]
}

The key defined in the header is then used from the response to decode the JWT content.

{
 "originator_confidentiality_label": {
 "confidentiality_information": {
 "policy_identifier": "TB17",
 "classification": "Top Secret"
 }
 },
 "data_producer": {
 "origin": "Not NGA",
 "date": "2021-08-25T18:38:23.957Z"
 },
 "tile_information": {
 "zoom_level": 14,
 "tile_column": 9647,
 "tile_row": 4486
 },
 "data_information": {
 "hash_alg": "SHA-384",
 "hash_value":
 "c5c48da9f073c0a0e477d5d7bced25c81e5dc0258b670d9450b33f96275a9f66fea6c81b1ef3475695144e07f547ee11"

OPEN GEOSPATIAL CONSORTIUM 21-020R1 45

https://ogc.secure-dimensions.com/dcs/.well-known/jwks.json

 }
}

A similar process is followed to decode the JWS dek_info using the key defined in the header
to decode the payload resulting in the decryption key required for the data.

{
 "sub": "c0fb2eea-1856-3673-80fc-79d0e1efdfdb",
 "aud": "8d90bc42-4401-5f2a-9054-cb407a876ad8",
 "kurl": "https:\/\/ogc.secure-dimensions.com\/kms\/keys\/c2e5dc56-b14b-4f28-
8e72-a78779271744",
 "kid": "c2e5dc56-b14b-4f28-8e72-a78779271744",
 "iss": "https:\/\/ogc.secure-dimensions.com",
 "exp": 1629918,
 "alg": "A256GCM",
 "iat": 1629916703949
}

The decryption key is then used in conjunction with the Java Cryptography Architecture
framework to decrypt the image. The first 16 bytes are read from the data column and used
as the IvParameterSpec input to the cipher. The result are decrypted tiles based on the format
requested by the client.

Figure 26 — DCS Client — OGC Tiles API — Geopackage Landmarks (NY)

5.4. Key Management System

The Key Management System (KMS) for Testbed-17 provides an API that offers the registration
and fetching of Data Encryption Keys (DEK). The KMS supports key creation and key owners
to specify access conditions for each of their DEK via portal pages, accessible after login. In

OPEN GEOSPATIAL CONSORTIUM 21-020R1 46

https://ogc.secure-dimensions.com/kms/
https://ogc.secure-dimensions.com/kms/developers

addition, the KMS also offers an API for the registration of Key Encryption Keys (KEK) in order
to encrypt responses that contain a DEK.

Figure 27 — KMS API in OpenAPI

OPEN GEOSPATIAL CONSORTIUM 21-020R1 47

5.5. Data Encryption Key Creation

A keys’ lifetime begins with its creation. This can take place in an encryption service like the
DCS Server, offline or via the KMS admin interface. After the time of creation, no data has been
ciphered yet and so the usage of the key is encryption. At the stage of encryption, the key
might not be available for decryption purposes.

The following figure shows the KMS portal page for creating a Data Encryption Key.

Figure 28 — KMS Input form for Creating a Data Encryption Key

When creating a DEK via the KMS, the user must provide different types of information:

• PIN or secret that is required when adopting the access conditions of the key via
the KMS Admin Portal.

• Audience is the UUID of the application that gets immediate access the key (if
the Check to activate key option is selected). Additional applications can be
added via the KMS Admin Portal). In the case where the DCS client shall be used
for creating encrypted content based on the created key, the DCS client’s UUID
must be provided. If AUTHENIX is used as the Authorization Server, the UUID of
the application can be found here.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 48

https://www.authenix.eu/Operators

• Expires determines the initial expiration time of the key. The expiration time can
be changed via the KMS Admin Portal.

• Cipher Algorithm is a list of symmetric ciphers as illustrated in Figure 29.
The top of the list is used with JWK and the list identified with URIs is used
specifically for XML Encryption.

• Check to activate key option allows to make the key available immediately to
the application specified above and until the expiration time.

Figure 29 — KMS Ciphers for Data Encryption Key

In case a key was created offline or created by the DCS Server, the key must be registered with
the KMS as no protocol exists that would allow the direct exchange of the DEK between the
DCS client and the DCS Server.

5.6. Data Encryption Key Registration

The KMS offers an API for the (automated) DEK registration. The KMS API supports different
options:

OPEN GEOSPATIAL CONSORTIUM 21-020R1 49

https://ogc.secure-dimensions.com/kms/developers

• the DEK can be uploaded via HTTP POST and the KMS created the key’s identifier
(kid in JWK terminology) via the DEK/addKey operation

• the client application creates a UUID based identifier for the DEK and uploads
the key via HTTP PUT to a URI including the key’s identifier via the DEK/
addKEyById operation. In case that another key with that UUID already exists,
the response is HTTP Conflict.

The HTTP response to the POST and PUT operation will contain the key identifier(s) that can be
used with the GET operation to fetch the key details including the key’s secret.

5.7. Data Encryption Key Deletion

A DEK can be deleted from the KMS via the DEK/delKeyById operation. Compliant to the NIST
800-57 recommendation and to ensure that key identifiers are unique, the HTTP DELETE option
does delete the key’s secret and deactivates the key so that is can no longer be fetched via the
KMS API (the KMS will return a HTTP GONE if the key is requested after the deletion). Even
though the key could still be reactivated via the Admin Portal, it is useless as the secret (k) value
is set to NULL.

5.8. Data Encryption Key Access Management

Once a DEK is registered with the KMS, the owner of the key can modify the access conditions
after login. Key ownership is identified via the PIN that a user submitted when creating a DEK
via the portal pages or the DCS client submitted with the request for encrypted content via the
key_challenge parameter.

The user must login to the KMS for viewing and adjusting access conditions to their DEK(s).
Once logged in, the KMS displays a list of all keys accessible to the user (see Figure 30).

OPEN GEOSPATIAL CONSORTIUM 21-020R1 50

https://ogc.secure-dimensions.com/kms/developers#/DEK/addKey
https://ogc.secure-dimensions.com/kms/developers#/DEK/addKeyById
https://ogc.secure-dimensions.com/kms/developers#/DEK/addKeyById
https://ogc.secure-dimensions.com/kms/developers#/DEK/delKeyById

Figure 30 — KMS Showing list of “my” keys

The user can open the access management page by clicking on the link for a particular key. As
illustrated in Figure 31, the use has different options to constraint access.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 51

Figure 31 — KMS Access Management Page

OPEN GEOSPATIAL CONSORTIUM 21-020R1 52

• PIN: In order to change access conditions for the key, the user must provide the
PIN. The blue ? can be clicked to check if the PIN is correct. If so, the icon will
change to a green check-mark; if incorrect, the icon will change to a red X.

• activate: The activate option controls whether the key can be requested via
the DEK/getKeyById operation at all. If unset, the key cannot be fetched from the
KMS, regardless of the conditions specified. This is a kind of emergency override
to stop release of the key.

• shared via email: The next option allows to make the key available to users
based on their email address(es). Please note that the email address of a user
depends on the login provider chosen when logging in via AUTHENIX. If the OGC
IdP is used for login, then the email address is equivalent to the email address
shown in the OGC Portal; if logged in via Google, the user’s Gmail address must
be used for sharing.

• shared via user Id: In case that the key shall be shared with user(s) but the
users do not want to provide their email address(es), the user can provide their
UUID. The UUID is displayed once logged into AUTHENIX. The user’s identifier
UUID is displayed at the bottom of the page. It is the value for the Sub attribute
name. This honors the privacy of the users as coined in European Union’s General
Data Protection Regulation (GDPR).

• shared via application Id: Any application that needs to obtain a DEK
from the KMS must first be registered with AUTHENIX and the client_id
UUID from the registration result must be put into the application UUID
box. Any application that is currently registered with AUTHENIX can be found
following the Operators link. For example, the OGC Token App used for various
demonstrations has UUID 019b7173-a9ed-7d9a-70d3-9502ad7c0575 and the
DCS client that supports decryption of GeoPackages with Encryption Extension
has UUID 8d90bc42-4401-5f2a-9054-cb407a876ad8.

• temporal conditions: Next, the user can specify the time window of access.
The from time can be set to the future which is an important feature if encrypted
data is packaged on some mobile devices and they are shipped to their final
destination. While the devices are in transit, the associated decryption key cannot
be accessed.

• spatial conditions: In addition to the temporal conditions, also geospatial
conditions can be added. The selection of multiple polygons allows access to be
constrained to particular areas. This ensures for example that mobile devices can
only obtain the decryption key if within the ‘green’ area.

The registration and fetching of DEKs require that the request contains a Bearer access token
issued by AUTHENIX. From the Bearer access token, the KMS determines the acting user (sub)
and the application that issued the API request (aud). These two pieces of information are
essential key access conditions.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 53

https://ogc.secure-dimensions.com/kms/developers#/DEK/getKeyById
https://portal.ogc.org
https://www.authenix.eu/saml/sessioninfo
https://www.authenix.eu/Operators
https://ogc.secure-dimensions.com/dcs/token-app/
https://www.authenix.eu

6

TECHNOLOGY
INTEGRATION
EXPERIMENTS (TIES)

OPEN GEOSPATIAL CONSORTIUM 21-020R1 54

6 TECHNOLOGY INTEGRATION EXPERIMENTS
(TIES)

The TIEs for the Testbed-17 DCS task were grouped into multiple tests for each of two
scenarios. Testbed-17 primarily focused on applying DCS to binary geospatial data (maps and
tiles) and geospatial data sets in GeoPackage container format (tiles and features). The TIEs are
divided into sub-TIEs as follows:

• Provisioning and portrayal of DCS protected geospatial binary content.

• Provisioning and portrayal of DCS protected layers of geospatial vector and
binary content in GeoPackage format.

The TIEs are executed between the DCS Server and the DCS Client, both implemented within
Testbed-17.

6.1. TIE Setup

Common to all tests is that the DCS Server provides the DCS capabilities “on top” of regular
OGC API requests by requiring the calling application to submit additional parameters:

• OAuth2 Bearer Token as specified in RFC 6750. The bearer token identifies the
acting user.

• key_challenge as specified for code_challenge in RFC 7636

• key_challenge_method as specified for code_challenge_method in RFC 7636

• kek_kid or kek_uri as specified in Annex Clause 5.2: A private RSA key
previously registered with the KMS.

6.1.1. Client prepares to send request to DCS Server

For Testbed-17, the DCS Client is implemented as a Mobile Application. This is a short summary
of the interactions between the client application and the DCS Server:

• Mobile application uses the OAuth2 Authorization Code Flow to obtain a
Bearer Token from the Authorization Server AUTHENIX.

• Mobile application creates private key for acting user and registers the RSA
asymmetric key with the KMS.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 55

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://ogc.secure-dimensions.com/kms
https://www.authenix.eu
https://ogc.secure-dimensions.com/kms

• Mobile application asks the user for a password, pin or secret to protect
the Data Encryption Key. This user input is used by the application as value
for key_challenge parameter. It is recommended that the application uses
key_challenge_method=S256.

• Mobile application sends OGC API request to DCS Server accompanied by the
specific parameters outlined above. Parameter f controls the response format.

The client application must undertake the following steps (simplified summary) to decrypt the
response from the DCS Server:

• The DCS Server response contains data and metadata encrypted with different
DEKs (Data Encryption Keys). The keys are not included in the response. The
client application must process the response to find the key identifier and/or the
key URL to fetch the DEKs from the KMS.

• Mobile client starts interaction with the KMS retrieving cryptographic keys
required to decrypt previously fetched protected content (binary geospatial data
and GeoPackages).

• The resulting data set was retrieved, and the key_id values were extracted from
the metadata section of the response.

• Key retrieval is done via the KMS component implemented in Testbed-16. The
interaction with its API occurs by passing key identification strings extracted from
the metadata section of protected content as well as a Bearer Token identifying
the acting user and client application.

• Mobile client decrypts the payload and renders the content.

6.1.2. DCS Media Types and OGC APIs

NOTE: A future standardization should fix the media types and have them registered with the
appropriate authority — i.e. IANA.

Testbed-17, as an extension to Testbed-16, allows fetching different kinds of DCS content from
different OGC API implementations:

Table 2 — OGC API DCS Media Types

OGC-API DCS MEDIA TYPE DESCRIPTION
URL
EXAMPLE

Features application/dcs+geo

DCS container
structure encrypted
features, metadata
as JSON

URL_1a

Features application/dcs+geo;profile=metaSign
DCS container
structure encrypted

URL_1b

OPEN GEOSPATIAL CONSORTIUM 21-020R1 56

OGC-API DCS MEDIA TYPE DESCRIPTION
URL
EXAMPLE

features, metadata
as JWS

Features application/dcs+geo;profile=metaEncrypt

DCS container
structure encrypted
features, metadata
as JWE

URL_1c

Features application/gpkg+dcs
GeoPackage with
encrypted features

URL_2

Tiles application/gpkg+dcs
GeoPackage with
encrypted tiles

URL_3a and
URL_3b

Maps application/dcs+{png,jpeg,…}
MultiPart response
with encrypted map

URL_4

URL_1a https://ogc.secure-dimensions.com/geoserver/ogc/features/
collections/tiger:poi/items?access_token=<your_access_
token>&key_challenge=secret&key_challenge_method=plain&f=
application%2Fdcs%2Bgeo&limit=1

URL_1b https://ogc.secure-dimensions.com/geoserver/ogc/features/
collections/tiger:poi/items?access_token=<your_access_
token>&key_challenge=secret&key_challenge_method=plain&f=
application%2Fdcs%2Bgeo;profile=metaSign&limit=1

URL_1c https://ogc.secure-dimensions.com/geoserver/ogc/features/
collections/tiger:poi/items?access_token=<your_access_
token>&key_challenge=secret&key_challenge_method=plain&f=
application%2Fdcs%2Bgeo;profile=MetaEncrypt&kek_kid=
859f22b4-1ce1-42c0-8668-aac789c79242&limit=1

URL_2 https://ogc.secure-dimensions.com/geoserver/ogc/features/
collections/tiger:poi/items?access_token=<your_access_
token>&key_challenge=secret&key_challenge_method=plain&kek_kid=
859f22b4-1ce1-42c0-8668-aac789c79242&f=application%2Fgpkg%2Bdcs

URL_3a Loading all tiles of a TileMatrix https://ogc.secure-dimensions.
com/geoserver/ogc/tiles/collections/tiger:tiger_roads/
tiles/EPSG:4326/EPSG:4326:1?f-tile=image/png&multiTileType=
tiles&f=application/gpkg%2Bdcs&key_challenge=secret&key_
challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-
aac789c79242&access_token=<your_access_token>

Large size and processing time

Please use this option with care! Encrypting all tiles for a TileMatrix might
take a very long processing time and produce large responses!!! For example,
changing the URL below to process TileMatrix EPSG:4326:21 produces a
12GB response with processing time of some 6 hours!!!

OPEN GEOSPATIAL CONSORTIUM 21-020R1 57

https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=metaSign&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=metaSign&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=metaSign&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=metaSign&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=MetaEncrypt&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=MetaEncrypt&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=MetaEncrypt&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=MetaEncrypt&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&f=application%252Fdcs%252Bgeo;profile=MetaEncrypt&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&limit=1
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&f=application%252Fgpkg%252Bdcs
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&f=application%252Fgpkg%252Bdcs
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&f=application%252Fgpkg%252Bdcs
https://ogc.secure-dimensions.com/geoserver/ogc/features/collections/tiger:poi/items?access_token=%3Cyour_access_token%3E&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&f=application%252Fgpkg%252Bdcs
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:tiger_roads/tiles/EPSG:4326/EPSG:4326:1?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&access_token=%3Cyour_access_token>
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:tiger_roads/tiles/EPSG:4326/EPSG:4326:1?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&access_token=%3Cyour_access_token>
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:tiger_roads/tiles/EPSG:4326/EPSG:4326:1?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&access_token=%3Cyour_access_token>
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:tiger_roads/tiles/EPSG:4326/EPSG:4326:1?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&access_token=%3Cyour_access_token>
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:tiger_roads/tiles/EPSG:4326/EPSG:4326:1?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&access_token=%3Cyour_access_token>
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:tiger_roads/tiles/EPSG:4326/EPSG:4326:1?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242&access_token=%3Cyour_access_token>

URL_3b Loading all tiles of a TileMatrixSet https://ogc.secure-dimensions.
com/geoserver/ogc/tiles/collections/tiger:poi/map/point/
tiles/EPSG:4326?f-tile=image/png&multiTileType=tiles&f=
application/gpkg%2Bdcs&key_challenge=secret&key_challenge_
method=plain&access_token=<your_access_token>&kek_kid=
859f22b4-1ce1-42c0-8668-aac789c79242

Large size and processing time

Please use this option with care! Encrypting all tiles for a TileMatrixSet might
take a very long processing time and produce large responses!!! E.g. for the
example URL below, the f=application/zip produces a 7.5MB file that is
returned after some seconds. Using the f=application/gpkg+dcs produces a
92MB response in some 30 seconds.

URL_4 https://ogc.secure-dimensions.com/geoserver/ogc/maps/
collections/tiger:tiger_roads/styles/tiger_roads/map?key_
challenge=secret&key_challenge_method=plain&access_token=<your_
access_token>&transparent=true&f=application/dcs%2Bpng&width=
641&height=768&crs=EPSG%3A4326&width=641&height=768&bbox=-74.
01012361049652%2C40.70959210395813%2C-74.00324642658234%2C40.
71783185005188

Use valid Access Token

Please use the Token App to obtain a valid access token and replace the
<access_token> in the URL accordingly.

6.2. DCS Server Tests

This section introduces tests for validating manually that the DCS Server responses are as
expected.

6.2.1. OGC API Features

The DCS Server provides two different response formats, recognized by the f parameter of the
request: application/dcs+geo and application/gpkg+dcs.

6.2.1.1. Media Type application/dcs+geo

The application/dcs+geo media type returns a JSON encoded DCS container format that was
developed during Testbed 16.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 58

https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/point/tiles/EPSG:4326?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/point/tiles/EPSG:4326?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/point/tiles/EPSG:4326?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/point/tiles/EPSG:4326?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/point/tiles/EPSG:4326?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242
https://ogc.secure-dimensions.com/geoserver/ogc/tiles/collections/tiger:poi/map/point/tiles/EPSG:4326?f-tile=image/png&multiTileType=tiles&f=application/gpkg%252Bdcs&key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&kek_kid=859f22b4-1ce1-42c0-8668-aac789c79242
https://ogc.secure-dimensions.com/geoserver/ogc/maps/collections/tiger:tiger_roads/styles/tiger_roads/map?key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&transparent=true&f=application/dcs%252Bpng&width=641&height=768&crs=EPSG%253A4326&width=641&height=768&bbox=-74.01012361049652%252C40.70959210395813%252C-74.00324642658234%252C40.71783185005188
https://ogc.secure-dimensions.com/geoserver/ogc/maps/collections/tiger:tiger_roads/styles/tiger_roads/map?key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&transparent=true&f=application/dcs%252Bpng&width=641&height=768&crs=EPSG%253A4326&width=641&height=768&bbox=-74.01012361049652%252C40.70959210395813%252C-74.00324642658234%252C40.71783185005188
https://ogc.secure-dimensions.com/geoserver/ogc/maps/collections/tiger:tiger_roads/styles/tiger_roads/map?key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&transparent=true&f=application/dcs%252Bpng&width=641&height=768&crs=EPSG%253A4326&width=641&height=768&bbox=-74.01012361049652%252C40.70959210395813%252C-74.00324642658234%252C40.71783185005188
https://ogc.secure-dimensions.com/geoserver/ogc/maps/collections/tiger:tiger_roads/styles/tiger_roads/map?key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&transparent=true&f=application/dcs%252Bpng&width=641&height=768&crs=EPSG%253A4326&width=641&height=768&bbox=-74.01012361049652%252C40.70959210395813%252C-74.00324642658234%252C40.71783185005188
https://ogc.secure-dimensions.com/geoserver/ogc/maps/collections/tiger:tiger_roads/styles/tiger_roads/map?key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&transparent=true&f=application/dcs%252Bpng&width=641&height=768&crs=EPSG%253A4326&width=641&height=768&bbox=-74.01012361049652%252C40.70959210395813%252C-74.00324642658234%252C40.71783185005188
https://ogc.secure-dimensions.com/geoserver/ogc/maps/collections/tiger:tiger_roads/styles/tiger_roads/map?key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&transparent=true&f=application/dcs%252Bpng&width=641&height=768&crs=EPSG%253A4326&width=641&height=768&bbox=-74.01012361049652%252C40.70959210395813%252C-74.00324642658234%252C40.71783185005188
https://ogc.secure-dimensions.com/geoserver/ogc/maps/collections/tiger:tiger_roads/styles/tiger_roads/map?key_challenge=secret&key_challenge_method=plain&access_token=%3Cyour_access_token%3E&transparent=true&f=application/dcs%252Bpng&width=641&height=768&crs=EPSG%253A4326&width=641&height=768&bbox=-74.01012361049652%252C40.70959210395813%252C-74.00324642658234%252C40.71783185005188
https://ogc.secure-dimensions.com/dcs/token-app/

The expected response is a JSON encoded DCS container comprised of a metadata and a data
element. The data element contains the encrypted feature in JWE encoding with compact
serialization. The metadata element is JSON encoded.

{
 "type": "DCS",
 "objects": [
 {
 "metadata": {
 "originator_confidentiality_label": {
 "confidentiality_information": {
 "policy_identifier": "TB17",
 "classification": "Top Secret"
 }
 },
 "data_producer": {
 "origin": "Not NGA",
 "date": "2021-08-31T10:22:37.537Z"
 },
 "data_description": {
 "type": "Feature",
 "properties": {
 "name": "poi",
 "namespace": "http://www.census.gov",
 "content_type": "application/geo+json"
 },
 "geometry": {
 "type": "Point",
 "coordinates": [
 -74.0104611,
 40.70758763
]
 }
 }
 },
 "data":
 "eyJpc3MiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbSIsImN0eSI6ImFwcGxpY2F0aW9uXC9kY3MrZ2VvIiwiZW5jIjoiQTI1NkdDTSIsImFsZyI6ImRpciIsImt1cmwiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwva21zXC9rZXlzXC80Yzk4ZmEwYS1hMjEyLTRkNmEtOGNlZC1kOGNiNWQ2YjJlN2UiLCJraWQiOiI0Yzk4ZmEwYS1hMjEyLTRkNmEtOGNlZC1kOGNiNWQ2YjJlN2UifQ.
.LONNO9mf_oqXGEvY.l3axe9IMILYX-mvIy-3MTUYh_PT-
9KAwAdjXOlFsP9DiDdhbEeaOWOiJiDF30PM6rHw4uA7to-
HYCdusIqNjKU4fQkEKDLxJnE47jlmFS4zWQoIbnWvZpcIr4HD1hmIsa8dsMrccNqifwn_
YpQpSEtQh8H1-4k_GIt7M9lBvQUYVsRcauAJhOXaMMB7L-47_
ZiqRWAW08Bpe3wA49FjbSzbs0oUGgYl6d9O6eG3c5eZEE2tFvQlmfJLLvEi6bMu_
65adbq4KEIBC7UuXHQgi7v-JLzhNIh_5CXDlpqQcT3xz6wno81r-
EnLrqSjNDsLxwLd5Z3Mi3-ZzsDIBiHGG0TlfWFIqKtl6G-
sPdr0DHkpVXYZTh3FOVgejwckXITo3vlaDdVcTUtXvAvxNRdtnUgWEItOOy3vCRggyrFfFlD9YMq5JzjOilCU1JMdrsgWgUpDj3XFfDp6YqVvj9ynNI6pK3iiwQ4U_
m7_riM_p_XOkmrvCCgNbm3LJJADoXc_33S0e-xKHcwZ08PDgqK2H23RHBdGyIgh-
yvcohHBeqc3hQMKcSPMkYb6nPIRVMY6Vk6fUvyYjBZUyP7CMk09DfLjSTBd1qfbjyVQpwgVxdhdHLEiGVJqzK3sagRbqrTl9sKpOkhT_
ziJH4UaPSNmnqDzYhuIBwqOGaM74wIIastKFjvOYnh67XdTKVfFRM7DUqZIjfkH3Yye6YT5fa8Flqzi6xdYhEWP7UhOJfUu_
QLi6KFoh4cLfUU-Pc_r01HcGI0OGrVs4Xqgv4CP9atlAeGELWIHQnQITpUTioi3Fq6-
AeFuBDcXlD_6k3bVX-nSRHIPqAsMgTpiwM0GZ0LFu2u22Lyq804MJ3MEcA-S6u4vj9ZO40QRbi3-
DwIcSnwYLlCJN20e4p3V_
h25JHOFzgmkBTVNyh2gdVzwHFUW2Km5jrAicJeCWUNp6bR0SflMmhFNVpuiZ6m8cI5qQAPqCsGTIEP334QCrxzbVRh1V0r7orhnOn7GIaEIOTn34AM7NH8vcJK6i98Szk5zZqoYvxzD1ph4UODvt1OH0LMrdHZd4w33Gc6UQ0JRx5-
RUdS26x5saAv2Zi8APFyn9IrDgo_LXFWXOeyH_yMXfScnU-BcMs0Wc4uh-dHdS7r4.
9NLNpMuwkd2MUINu4VBF2w"
 }
],
 "totalObjects": 6,
 "numberMatched": 6,
 "numberReturned": 1,
 "timeStamp": "2021-08-31T10:22:37.541Z",
 "links": [
 {

OPEN GEOSPATIAL CONSORTIUM 21-020R1 59

 "title": "next page",
 "type": "application/dcs+geo",
 "rel": "next",
 "href": "https://ogc.secure-dimensions.com/geoserver/
ogc/features/collections/tiger%3Apoi/items?access_token=
a7b05c5df39c47bb94148a1cdcf081876da54f50&key_challenge=secret&key_
challenge_method=plain&f=application%2Fdcs%2Bgeo&limit=1&bustCache=0.
7411873339750994&startIndex=1"
 }
]
}

Expected response for URL_1a

The JWE in the data element must contain the DEK’s kid.

{
 "iss": "https://ogc.secure-dimensions.com",
 "cty": "application/dcs+geo",
 "enc": "A256GCM",
 "alg": "dir",
 "kurl": "https://ogc.secure-dimensions.com/kms/keys/4c98fa0a-a212-4d6a-8ced-
d8cb5d6b2e7e",
 "kid": "4c98fa0a-a212-4d6a-8ced-d8cb5d6b2e7e"
}

Base 64 decoded JWE header

6.2.1.2. Media Type application/gpkg+dcs;profile=metaSign

The expected response is a JSON encoded DCS container comprised of a metadata and a data
element. The data element contains the encrypted feature in JWE encoding with compact
serialization. The data_description element of the metadata element is JWS encoded with
compact serialization.

{
 "type": "DCS",
 "objects": [
 {
 "metadata": {
 "originator_confidentiality_label": {
 "confidentiality_information": {
 "policy_identifier": "TB17",
 "classification": "Top Secret"
 }
 },
 "data_producer": {
 "origin": "Not NGA",
 "date": "2021-08-31T10:33:42.957Z"
 },
 "data_description":
 "eyJqa3UiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwvZGNzXC8ud2VsbC1rbm93blwvandrcy5qc29uIiwia2lkIjoiRHIuIE5vIiwiYWxnIjoiUlMyNTYifQ.
eyJ0eXBlIjoiRmVhdHVyZSIsInByb3BlcnRpZXMiOnsibmFtZSI6InBvaSIsIm5hbWVzcGFjZSI6Imh0dHA6Ly93d3cuY2Vuc3VzLmdvdiIsImNvbnRlbnRfdHlwZSI6ImFwcGxpY2F0aW9uL2dlbytqc29uIn0sImdlb21ldHJ5Ijp7InR5cGUiOiJQb2ludCIsImNvb3JkaW5hdGVzIjpbLTc0LjAxMDQ2MTEsNDAuNzA3NTg3NjNdfX0.
eQKyi9iy54OdUE6UghkAn5_51SYoELW2PaSnmECu7Kcb-gejQpd5KA5n1UplDqSJK-tq-
xwOv1JqKI6mACPoD0DBZws296e1cRUMTv4vQt54BGJarJ3CCip7YMCbyYB1dUCRJi5Mr-
wgw6JAdJpVBMCMmn4fIzvGLo3FxhzghoRsAEvte5vGOEBnG-K4SDrqvDIVDAlCHr_
uibPNV3SnlZQZhY_
R0iCjGiP2X5uOj9FXL3JFgDuteHoyLoiIfhH5yYosmJygAOgJeQbBKHZ3TR97sire4cq84Y51MP9eCd7-
9wyoRzQISXbiUF22O0cmqtp-eX3NfiL3tam8RrA5LQ"
 },

OPEN GEOSPATIAL CONSORTIUM 21-020R1 60

 "data":
 "eyJpc3MiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbSIsImN0eSI6ImFwcGxpY2F0aW9uXC9kY3MrZ2VvIiwiZW5jIjoiQTI1NkdDTSIsImFsZyI6ImRpciIsImt1cmwiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwva21zXC9rZXlzXC8yODQ0NDM2ZS1jMzZhLTQ0ZmItODRjMy00M2YwMjk4OWVlN2UiLCJraWQiOiIyODQ0NDM2ZS1jMzZhLTQ0ZmItODRjMy00M2YwMjk4OWVlN2UifQ.
.yulhMbph5H97cOg1.cGRL7hAq1_-oyZvJ-erDcqtjluo-lgO6XcqHwLYVVFx-
0HNd2fYmF4chihmUX2bgkMc_cNJ5FaiTuQXhQVkMmlfAyw2mRK6vAkEJO0X9jCQytbycR_
lmG7hgiQF1MtXZEocyP73g748D-
E38GLkJkEJHO0jKe7nOeBynHJjkN2zQD0lqznj4d5tMCpUxh71S13Bz3UDIGxdY-
2QOZw9v7hJCnpRBvGKeMNZamgcK21LXtBBN3pfvsApZBsUvpW8ELNjyQlcZGSVD_
QLwXWvoVXDKlcSep2pEltz5YVwgnhXasmBqjr-eq9rPU-
4Aah9Q5F9CFFKGTpZtAS85lLqeNCBYAZUXkmYpX31cXZhbRTLuJfww3Sm8KAZGj4NxVV_
aEPbNiQM7XaZMSRXPqN8tV2h0htU1Vs7XgZGnHRnoNB8gQHgynmi7gGlM49K35lWpP0pn_
AKTS2lTRyCj9jkOoFZfxwv5G512vLzxtg5untsvyhUFHGOtF8vPPicG-
hSTroO7qqbVbvPmVN5sZ1skuhyM18Axr1-
GGwVb1QHyjH8I2QO7JBBmvxQ2led7nZPs6GbEkbv8y9YS1jY8A4DtTE767irKNvYEOBYM2ZeE3QMRQIw_
d2LKm5XVOeRMIiXVOIr42MaAuo1f6QuE61ARmUg8oc_e9GBkIicMeoHLRu__
VGUnoFjND6eCAuVo6gyz0fcDdTtCY9oQxVMgqy-xjEP4SEyOoj63d5rObUKdAgmFn9A6H5FF_
97s5_u1KlXK8vBO0-mcpqFwgBF-UrDshoswTSVTjAx52Z_1Vc_-kUnUHBLz_
WHfA9qaC2ljvy9XSWuFAWfvODuhSeDycJW6_VWJq8ueTCWwDjE2wD4oi6dsJ1jNSaHzxvykerR-
5Hd1_B1xfD3hg7RpCyw07zKnbr2X8PZBRK51D0vLU-KyLRbQXMfW-j6RbLCtOS_9_
wcGxZmsjOsQyy9_2dONzx5ojxyiUsLjsOgqtB0gnx8M_mZL-QS34fwSs5MT-IZNdm4IkO60j-iw-
IQGBEjtO8YhThzKfilOikLpTM7KdAydlzFvlKcYqNTbAE8HbXQSxTKZ2fNi8DhVzucRgTTvOlQ3GpeDYPtwo2YLNjO0R5tWQor6-
KW5Q9vv8rprFTY.cEe9OC7lP3qlvc_q3WZAaQ"
 }
],
 "totalObjects": 6,
 "numberMatched": 6,
 "numberReturned": 1,
 "timeStamp": "2021-08-31T10:33:42.961Z",
 "links": [
 {
 "title": "next page",
 "type": "application/dcs+geo",
 "rel": "next",
 "href": "https://ogc.secure-dimensions.com/geoserver/
ogc/features/collections/tiger%3Apoi/items?access_token=
a7b05c5df39c47bb94148a1cdcf081876da54f50&key_challenge=secret&key_challenge_
method=plain&f=application%2Fdcs%2Bgeo%3Bprofile%3DmetaSign&limit=1&bustCache=
0.7067005135391409&startIndex=1"
 }
]
}

Expected Response for URL_1b

The JWE in the data element must contain the DEK’s kid.

{
 "iss": "https://ogc.secure-dimensions.com",
 "cty": "application/dcs+geo",
 "enc": "A256GCM",
 "alg": "dir",
 "kurl": "https://ogc.secure-dimensions.com/kms/keys/2844436e-c36a-44fb-84c3-
43f02989ee7e",
 "kid": "2844436e-c36a-44fb-84c3-43f02989ee7e"
}

Base 64 decoded JWE header

The JWS in the data_description element must specify the public key reference (jku) of the
issuer’s public key and the kid.

{
 "jku": "https://ogc.secure-dimensions.com/dcs/.well-known/jwks.json",

OPEN GEOSPATIAL CONSORTIUM 21-020R1 61

 "kid": "Dr. No",
 "alg": "RS256"
}

Base 64 decoded JWS header

6.2.1.3. Media Type application/gpkg+dcs;profile=metaEncrypt

The expected response is a JSON encoded DCS container comprised of a metadata and a data
element. The data element contains the encrypted feature in JWE encoding with compact
serialization. The data_description element of the metadata element is JWE encoded with
compact serialization.

{
 "type": "DCS",
 "objects": [
 {
 "metadata": {
 "originator_confidentiality_label": {
 "confidentiality_information": {
 "policy_identifier": "TB17",
 "classification": "Top Secret"
 }
 },
 "data_producer": {
 "origin": "Not NGA",
 "date": "2021-08-31T10:43:16.005Z"
 },
 "data_description":
 "eyJraWQiOiI4NTlmMjJiNC0xY2UxLTQyYzAtODY2OC1hYWM3ODljNzkyNDIiLCJjdHkiOiJKV0UiLCJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.
Xyyi-3P38QPvtTS5z7gQ_II_Br88uXHWLzn5zoCYFEYXljBp73v3syBUvpRRh6N_
ihZLlH8rAI4aJ34pEDS9vn4ufdsp7wbJdSXojT0d-YA1-LZ3VtvUiz5VeGyLKD5njqaGoGm_xXc-
hM8L4PTbIlgTul_
h2OWbyAEGgeRIGpcS5dqLEjb8sA8E0bZF4hsugGKOCvv0nyciWOVzH1VzSlepUa1DerqY7uKtLCwdO7QeUnjZQUGLijU0tETYzyMl8WkzIitK_
y8Ui6ZyEn_NQDvPymilJK5kGfNFGO807GHIjJToTFOCD0X_Huew4x8pHCKcj5orMMfUr-nmTaL6Hw.
kX3q83LN7MVAw4oq.hacw3EBp0mY3rCfoyBR5bWCAW_YsA_IujwIMZwPhpyfHrCeTufZWU-
rgv1kPsT10ZmQZ67RuZN7S-ci3B7d9Mv2hr74TUOpzgrKMsaT4ow4jOiE-
rAJj48dOb1JkVEd9QbpDPpZH5xO4H4br0AKsO6kQh68Wa_
wQOvlsRbAWu99ImuUpZ0XswoAulgmDPdOOBHPrBbEDurH4o_
s7ih84KsZa5X8OOzDetnJOfzQsTVesvRMi3VltfX-
Bkyape1dM8Dxddzzf7429oHWVxEnsJ2QQBJq1hexYSnVeHNk04KqN_
BrzvDrYeR2B0Yin6oxEAFbxlFsBjc10kNoB1rGk-9DcirmeLI9Pn9HlTgl_Dz-
yOMX5P9h4tjEN7NnlU7YS1hU7YPJjIpKKgoff608E8KTDI0pyBnF8lkGnug4zt3mY7Qw1KMUPydvfe09lOJpXAiyWVBBf8HHqpPQk8jfl42GhwEQlN8uKGX6fni6AdGl3_
92i4XwaHXdNnx3NQSjjD1VK4RoLUgBn4iIBmEMPPILuCc8Sg_
rv5qnNhaMpLkyU5hMvzFcaLH9nZRGWO-iM7-uZ_rfA5oBPSpLYeROtjUQ3FIClGr0zFnuo-
psphlpoqo3kDw5ZjB6QgrOOLQZmDc-
yADGVDMXwDlucCWmIwOmEzDW1f84htkSdhdePH9SKYC1b54khXiUD4621txd8nJ7FZfuM2dgn_
nHETYYJs36hYbwunXRnHia7vlCdZxxOefN7uE_
WFVZ1suGC7v06ajXei2NSyV2ty6FVV72o2L5DcnglJ7rVMOxLkuz8oesx363m_
b8eAm0pK_f3RdBVQ66bIF_EIUGYQ9udQMEJ0SgQO19pDGBMWKTMhQ5qXm-6t0Sa92qb6u_
JIuchKBCcvn6RjFe0JV_H7-JaNkRfWV6PG9EgcyxOf30ZjoCYm66rJ-JWiMM9IiF03g4UA_SP9B-
t8AUzbL0UUIK5Tg.bdy026MSYkNWFKIEAB74bw"
 },
 "data":
 "eyJpc3MiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbSIsImN0eSI6ImFwcGxpY2F0aW9uXC9kY3MrZ2VvIiwiZW5jIjoiQTI1NkdDTSIsImFsZyI6ImRpciIsImt1cmwiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwva21zXC9rZXlzXC85M2RmMjdjNi01MTc0LTRiMWQtYjY1Mi03MDRhNDJkNGRmMzEiLCJraWQiOiI5M2RmMjdjNi01MTc0LTRiMWQtYjY1Mi03MDRhNDJkNGRmMzEifQ.
.x4HVYSDjm6CqAVCd.xoaVF6G7aK4jMGkw9YFW_osVDlnB92eEBgqVVdsnwGE1-
aHeVBas-xtnlptpN2pT2u59eG5Y9TZ9HerhlnClKkJyf3WVApkJXdGGbedsEefjIuaiJf-
yYe6wYHXr-ZBq_ANHVRvbAru2pO2aZj1quvLhuG3YGt-pCX0IZ7R9c9E5l-
MYxkU5jZtAJ8gQIHnkc7ZRrZls-VdwGrT7ogq0CVG4S_VG6vYwSh_
iRdbY17n749DgISxSWh-n3sQ8o_Xp3OveeYrJjdxXYOE3ThLbRJHkgzZ-

OPEN GEOSPATIAL CONSORTIUM 21-020R1 62

57VH7xL0kk3QJoGrJ0g8m6vrRcVY5EnUAXkUDvjtNfcRBnoFMf6BGDg5jFPfM3iMy3k1n8yXWKQ_
fKsIdSjEkqEkE-YM-9pqH8qYI7ShC_wnlkyBaZI38cXA1FaUxj3D3O3uTEXmO7tyrBgMX_
1R6NEQDyVRBZntOMhp0xyBprTxmG7823Nz1hgRQDd6rqqPPULqWIaq7NMXjc5nEyaMSkgU4cPgyRa7i3rPjdbNztOlUEVC5wdSNuHl1VoJQ8LRxkFokSo27DZfmky4pouaYqkmGh7C_
k57D8tnJmsdEICV0VAXPukUCPh3hHtYnuvC0StFhcNJ9xmeI4hwDYxFPnvFUoIhUPJcv9jUXsNYk4QiX6b9dytLHLhmDbZwBjuGngCeNlOJjbra2YPcWp7Nv16EP7IPKoxARsbcnd1um1egw_
1ncMgJoI5sT3wzu6sdHM9-RBt2VXU2QFhRnKWLhSK_t1Zg8VcY29c-
dHdSuTq9KQuzAtpCG0HRLr27ZZO3SLLUL1BftRLSu-
LxufthohDmg5gaB4WapgF2poevGDyzpPTYZ3GVuENWkTQdamCI1Wgu2lrKifgbaLTyWJpxx-
nzyRNce9W7UWhRqGSd_
diEqznEbgFfGJCqZOPpxm6jN7BvfWHqDI9F2t8G7GCrLAl55lh9Q8NOWvxFLiCCrc4m6IJQqjNQNWefLnjN7TLAj-
SA4Xy9hz50KJPNIsEdGzotW_3a76CXd_C6hjs2uThersj5G3Kpt4Y-
fgJv7g4oD5L8YiXK0264lr_Qy3lZbMUugRgO-MWWImbZ_i8D_
JOYKIbn4Uoihyg5QHBh9t4QRRRYMDRLVdycpQOwVeNU9spSUtG0xW0.g-nV2GyDYTNzTH0qLuBEQQ"
 }
],
 "totalObjects": 6,
 "numberMatched": 6,
 "numberReturned": 1,
 "timeStamp": "2021-08-31T10:43:16.009Z",
 "links": [
 {
 "title": "next page",
 "type": "application/dcs+geo",
 "rel": "next",
 "href": "https://ogc.secure-dimensions.com/geoserver/
ogc/features/collections/tiger%3Apoi/items?access_token=
a7b05c5df39c47bb94148a1cdcf081876da54f50&key_challenge=secret&key_challenge_
method=plain&f=application%2Fdcs%2Bgeo%3Bprofile%3DmetaEncrypt&kek_
kid=859f22b4-1ce1-42c0-8668-aac789c79242&limit=1&bustCache=0.
5590496976910175&startIndex=1"
 }
]
}

Expected Response for URL_1c

The JWE in the data element must contain the DEK’s kid.

{
 "iss": "https://ogc.secure-dimensions.com",
 "cty": "application/dcs+geo",
 "enc": "A256GCM",
 "alg": "dir",
 "kurl": "https://ogc.secure-dimensions.com/kms/keys/93df27c6-5174-4b1d-b652-
704a42d4df31",
 "kid": "93df27c6-5174-4b1d-b652-704a42d4df31"
}

Base 64 decoded JWE header

The JWS in the data_description element must contain the KEK’s kid. The value of the kid
must be equivalent to the value of the request parameter kek_id. The private key, associated to
the public key, must be used to decrypt the content.

{
 "kid": "859f22b4-1ce1-42c0-8668-aac789c79242",
 "cty": "JWE",
 "enc": "A256GCM",
 "alg": "RSA-OAEP-256"
}

Base 64 decoded JWS header

OPEN GEOSPATIAL CONSORTIUM 21-020R1 63

6.2.1.4. Media Type application/gpkg+dcs

The application/gpkg+dcs media type returns a GeoPackage extension that stores encrypted
features as described in Annex A — GeoPackage DCS Features Extension.

6.2.2. OGC API Tiles

The DCS Server provides one response format, recognized by the f parameter of the request:
application/gpkg+dcs. The actual image format of the tile is controlled via the f-tile
parameter. Valid values for the f-tile parameter depend on the actual data deployment; most
often image/png and image/jpeg are supported.

NOTE: For simplification, the TIEs and tests use the image/png format only.

6.2.2.1. Media Type application/gpkg+dcs

The application/gpkg+dcs media type in combination with image/png returns a GeoPackage
container that contains all requested tiles honoring the GeoPackage extension defined in Annex
Annex A — GeoPackage DCS Tiles Extension.

6.2.3. OGC API Maps

The DCS Server provides one response format, recognized by the f parameter of the request:
application/dcs+png or application/dcs+jpeg.

NOTE: For simplification, the TIEs and tests use the PNG format only.

6.2.3.1. Media Type application/dcs+png

The application/dcs+png media type must return a HTTP Multipart response, where the first
part contains the JSON encoded metadata and the second part the encrypted image as octet-
stream. The response content-type must be multipart/encrypted denoting as a profile the
protocol format that provides the metadata for the encrypted binary data.

Message-ID: 35d58964-dd70-4c99-b163-d4de161a48a1
Content-Type: multipart/encrypted; protocol="application/json"; boundary=
ce5b9207-6e4b-4ba0-8632-9964aea0b927
Date: 2021-08-31T12:41:33+0100

--ce5b9207-6e4b-4ba0-8632-9964aea0b927
Content-Disposition: inline
Content-Type: application/json
Content-Length: 1420

{"metadata":{"originator_confidentiality_label":{"confidentiality_information":
{"policy_identifier":"TB17","classification":"Confidential"}},"data_

OPEN GEOSPATIAL CONSORTIUM 21-020R1 64

producer":{"origin":"Not NGA","date":"2021-08-31T11:41:33.062Z"},"data_
description":{"type":"Feature","properties":{"name":"tiger:tiger_
roads","content_type":"application/geo+json"},"geometry":{"type":
"Polygon","coordinates":[[[-74.02722,40.684221],[-73.907005,40.684221],[-73.
907005,40.878178],[-74.02722,40.878178],[-74.02722,40.684221]]]}}},"dek_info":
"eyJqa3UiOiJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwvZGNzXC8ud2VsbC1rbm93blwvandrcy5qc29uIiwia2lkIjoiRHIuIE5vIiwiYWxnIjoiUlMyNTYifQ.
eyJzdWIiOiJmZjEwNDVjMi1hNmRlLTMxYWQtOGViMi0yYmUxMDRmZTI3ZWEiLCJhdWQiOiIwMTliNzE3My1hOWVkLTdkOWEtNzBkMy05NTAyYWQ3YzA1NzUiLCJrdXJsIjoiaHR0cHM6XC9cL29nYy5zZWN1cmUtZGltZW5zaW9ucy5jb21cL2ttc1wva2V5c1wvYTJlNDNkMWYtMzc2MS00NTJiLWI1NWEtOWY1ZjY4MzA0YWZlIiwia2lkIjoiYTJlNDNkMWYtMzc2MS00NTJiLWI1NWEtOWY1ZjY4MzA0YWZlIiwiaXNzIjoiaHR0cHM6XC9cL29nYy5zZWN1cmUtZGltZW5zaW9ucy5jb20iLCJleHAiOjE2MzA0MTEsImFsZyI6IkExMjhHQ00iLCJpYXQiOjE2MzA0MTAwOTE4MjJ9.
gFENFhsCc61ZbX4phIiUFXtMp7fWJigILbzUyfaSZaPfA1k-
CuuHX975Ot4I3dLxvOLxerOlxIfUNnKJ9jHcZZUpxnZ5X0nyeYKt563ipKYnmCxptGz4C85dFskOvvRYHW1e4EHz3OlYWywUPPa4G4hGX7SysUz2YfB1XiPWeLYf1h_
JP6lIofq_NeDklhYhq_
LSQnFwYzSFnowAQZqlRswR6aUGeGFgPG2APX3J1Otx9vLJcQh0UxQG6O2gFxGyX54sv1z5mlqb3fUyjm5uJxJqfR7egcOTLYz6xco35ML4Bxnss22Us88qp2Ss87fRCGECLpxx8jzDHPk4AD3bng"}
--ce5b9207-6e4b-4ba0-8632-9964aea0b927
Content-Disposition: inline
Content-Type: application/octet-stream

t######e#####u##3
--ce5b9207-6e4b-4ba0-8632-9964aea0b927

Expected Response for URL_1c

The metadata returned as the first part must include a dek_info element that contains a JWT
defining the issuer of the response as well as DEK information.

{
 "jku": "https://ogc.secure-dimensions.com/dcs/.well-known/jwks.json",
 "kid": "Dr. No",
 "alg": "RS256"
}

Base 64 decoded JWT header

{
 "sub": "ff1045c2-a6de-31ad-8eb2-2be104fe27ea",
 "aud": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "kurl": "https://ogc.secure-dimensions.com/kms/keys/a2e43d1f-3761-452b-b55a-
9f5f68304afe",
 "kid": "a2e43d1f-3761-452b-b55a-9f5f68304afe",
 "iss": "https://ogc.secure-dimensions.com",
 "exp": 1630411,
 "alg": "A128GCM",
 "iat": 1630410091822
}

Base 64 decoded JWT payload

The second part must use Content-Disposition: inline and Content-Type: application/
octet-stream. Using the kid=a2e43d1f-3761-452b-b55a-9f5f68304afe must allow to
decrypt part two of the response.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 65

6.3. Provisioning and portrayal of DCS protected
geospatial binary content

The DCS enablement requires an extension to a standard OGC API request with additional
query parameters. Depending on the API and the response format, different additional
parameters are mandatory.

The following table illustrates which parameters are required:

Table 3 — DCS parameters (m=mandatory, o=optional)

OGC-API F
ACCESS_
TOKEN

KEY_
CHALLENGE

KEY_
CHALLENGE_
METHOD

KEK_
ID
XOR
KEK_
URI

Features application/dcs+geo m m m o

Features application/dcs+geo;profile=metaSign m m m o

Features application/dcs+geo;profile=metaEncrypt m m m m

Features application/gpkg+dcs m m m m

Maps application/dcs+png m m m o

Maps application/dcs+jpeg m m m o

Tiles application/gpkg+dcs m m m m

6.4. TIE Results

TIEs are conducted between the DCS Client Application (Mobile App) and the DCS Server. A
successful TIE requires that the DCS Client and the DCS Server interact with the Authorization
Server (AUTHENIX) and the Key Management System (KMS).

6.4.1. DCS Client TIE

As illustrated in an earlier section, the DCS Client Application must obtain a valid OAuth2
Bearer Token from the Authorization Server. Depending on the requested response format

OPEN GEOSPATIAL CONSORTIUM 21-020R1 66

(profile=metaEncrypt), the Client Application must register the user’s public key (once) with the
KMS. Because a public key (for this Testbed) does not expire, the Client Application can re-use a
previously registered public key, but still the one-time registration is required.

Therefore, the TIE for the DCS Client is split into these individual TIEs:

• Interaction with the Authorization Server

• Interaction with the Key Management System

• for registration of user’s public key

• for fetching DEK(s) to decrypt the response

• Interaction with the DCS Server

A final TIE determines whether the Client Application is capable of decrypting the response
from the DCS Server and is able to render and display the geospatial content.

Table 4 — DCS Client TIEs

STEP STATUS

1. Interaction with the Authorization Server ✓

Interaction with the Key Management System

2a. for registration of user’s public key ✓

2b. for fetching DEK(s) to decrypt the response ✓

3. Interaction with the DCS Server ✓

6.4.2. DCS Server TIE

The DCS Server must accept an OGC API DCS request as defined above. A valid request must
produce the expected result as outlined above. In order to produce the response, the DCS
Server must interact with the Authorization Server and the Key Management System.

Therefore, the TIE for the DCS Server can be separated into these individual TIEs:

• Interaction with the Authorization Server (for the purpose of validating Bearer
Tokens — aka access_token)

• Interacting with the KMS to register generated DEKs

OPEN GEOSPATIAL CONSORTIUM 21-020R1 67

• Interacting with the KMS to fetch public key (determined by the kek_kid or
kek_uri parameter)

Table 5 — DCS Server TIEs

STEP STATUS

1. Interaction with the Authorization Server ✓

Interaction with the Key Management System

2a. for fetching the user’s public key ✓

2b. for registration of the DEK(s) used for encryption ✓

6.5. TIE Summary

A successful TIE can be determined by the ability of the DCS Client to query, decrypt (and
display) the encrypted DCS response from the DCS Server. When that is the case, all outlined
interactions must have worked as a whole.

Table 6 — TIE Summary for DCS Client and Server

OGC-API F TIE RESULT

Features application/dcs+geo ✓

Features application/dcs+geo;profile=metaSign ✓

Features application/dcs+geo;profile=metaEncrypt ✓

Features application/gpkg+dcs ✓

Maps application/dcs+png ✓

Maps application/dcs+jpeg ✓

Tiles application/gpkg+dcs ✓

The successful TIEs were conducted between DCS Client Application and DCS Server.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 68

7

TOWARDS DATA CENTRIC
SECURITY AND FEDERATED
SECURITY

OPEN GEOSPATIAL CONSORTIUM 21-020R1 69

7 TOWARDS DATA CENTRIC SECURITY AND
FEDERATED SECURITY

NOTE: The goal of this section is to analyze the gaps between the DCS architecture and
implementation solution developed in Testbed-17 towards its use in Federated Security.

During OGC Testbed 15-17 Data Centric Security activities, an architecture was developed that
supports adding security when requesting geospatial data using one or more OGC APIs. The
components of the architecture, as illustrated in Figure 1, require having access to a common
(shared) security context. For the implemented solution, the exchange of the security context is
coupled with the Bearer Access Token, created with a single Authorization Server. For a single
security domain, as defined by the Authorization Server, this is common practice. Different
major solutions in mainstream IT function exactly like this: Resources are protected by Security
Proxies that check OAuth2 tokens for validity, user and audience conditions. With the extension
of OAuth2 based on OpenID Connect, hybrid flows are used that also allow exchanging personal
information as part of the security context. However, these solutions do not allow, for example,
a user that has authenticated with Google to access Facebook resources. The user must
authenticate with Facebook which will then give the application a Facebook token.

With Federated Security, users from different security domains are able to act on resources
provided by operators from different security domains with applications from different security
domains. As outlined in the Federated Security ER, different approaches exist to establish trust
between applications, services and actors from different security domains.

This section analyses gaps between the existing DCS architecture and functioning in a Federated
Security setup.

7.1. Overview

So far, the DCS solutions developed in Testbed 15-17 were demonstrated inside of an individual
“Administrative Domain” (AD) that essentially comprised of:

• An Authorization Server that connects to an Identity Provider (IdP).

• A (Cloud) Service Provider (SP).

• A (mobile) client application.

• A user authenticated within the AD.

The relevant context of Federated Security is described in different (complex) publications:

• https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-332.pdf

OPEN GEOSPATIAL CONSORTIUM 21-020R1 70

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-332.pdf

• http://docs.opengeospatial.org/per/20-027.html

The target architecture for supporting DCS with Federated Security is based on the Zero Trust
Domain definition, where, in contrast to perimeter-based security, each interaction requires
authentication and is subject to access control; literally trust nobody — verify all (users). With
such a target architecture, where all interactions between a user-controlled application and
secured services require authentication, there needs to be a solution for how to trust users that
are authenticated in another domain. This implies the first topic to be analyzed: How can the
existing DCS architecture be extended to support federated authentication?

As the Zero Trust can be coined to be data centric — each data flow is subject to being
controlled — the question arises of how to establish such a control mechanism for encrypted
data. With encrypted data, the typical access control approach no longer works, as the
encrypted data must be treated as a BLOB or a black box. With data in the clear, the data itself
can be used to derive fine grained access control, as it is possible with OASIS’s XACML or OGC’s
GeoXACML. This challenge can be identified as the second important topic to be analyzed: How
can access to encrypted (geospatial) data be controlled towards users authenticated in their own
domains, as well as authenticated in another (federated) domain?

The overall question to analyze can be summarized as follows: “Is it actually possible to extend
a single-domain DCS architecture to function equivalent in a Federated Security environment?
Or, must limitations / constraints be defined that reduce the flexibility of the architecture with
transiting towards federated support?

7.2. Implications to Authentication

The existing DCS architecture causes all authentication to be performed in one single
Authorization Server. Even though the Authorization Server in place (AUTHENIX) is based
on federated identity management — it allows users to login with accounts from multiple
domains — the Bearer Access Token linked to the user is validated with AUTHENIX. Also, the
personal data that is linked to the access token can only be fetched from AUTHENIX. Extending
the architecture from a single domain to multiple domains implies that either all domains
trust the authentication to be done by AUTHENIX or that each domain operates their own
Authentication Service.

At this point, the option that one Authorization Server operates as the only trusted
authentication service can be ignored. So, assuming that each (Zero Trust) domain will operate
their own Authorization Server, what implications to the remaining architecture exist? Each
service in a Zero Trust Domain environment that provides access to data must be able to
validate the (claimed) identity of the acting user.

One typical solution to extend authentication from one single to a federated infrastructure
can be based on digitally signed assertions. These assertions can be either authentication,
authorization or other security context statements. The OASIS Security Assertion Markup
Language (SAML) is, for example, the backbone of federated identity management for eduGAIN,
the federation of many academic institutions around the globe. In a nutshell, the setup of
federated identity management requires to roll-out a PKI where typically Certificates vouch

OPEN GEOSPATIAL CONSORTIUM 21-020R1 71

http://docs.opengeospatial.org/per/20-027.html
https://www.authenix.eu

for the identity of an assertion. The assertion is trusted by the receiving party, if the digital
signature can be verified to be from one of the trusted domains. Each domain operating an
Identity Provider must exchange their X.509 certificate in advance. Applying such a concept
to the existing DCS solution, the use of Bearer access tokens could be changed to Digitally
Signed access tokens. The use of JWT, as described in JSON Web Token (JWT) is a possibility.
Establishing a trust federation of Authorization Servers and what it all needs is described in
OpenID Connect Federation 1.0 — draft 17. Comparing the approach with SAML, it seems that
the principles are somehow identical, but the protocol is more modern: JSON instead of XML.

Another interesting effort is the one regarding W3C Secure Payment Confirmation where
the objective is “… to scale authentication across merchants, to be used within a wide range of
authentication protocols, and to produce cryptographic evidence that the user has confirmed
transaction details.”

Any extension from one single authentication source to a federated variation has direct
implications to access control.

7.3. Implications to Access Control

When users reside in a single security domain, the authentication process can ensure that all
user attributes become available that are required to undertake access control. However, when
extending authentication into a federation, the access control decision, derived locally, might
lack required user attributes. The cause of that could be that either the required attribute is
not available at the other authentication service or that the attribute is simply not released
to another domain. An example for the first case can be found when using the Testbed-17
Authorization Server and the login via the OGC Portal IdP. An authenticated user from OGC will
have the OGC related claim ogc-is-member-of which is part of access control in Testbed-17.
This claim lists all the user’s active OGC projects (DWG, SWG and project membership). When
the same user uses Facebook, Google, or a University login, this particular claim is not available.
Examples for withheld attributes can be found in the intelligence but also eduGAIN domain: user
attributes that are considered sensitive (e.g. military ranking, personal information stored at a
University) may not be released to other domains.

The other implication / complication to access control is the harmonization of access rights
and their interoperable exchange. Based on the fact that in each Zero Trust Domain access
control is done in isolation from other domains, how can it be ensured that one user gets access
granted to a composite of services as required. As an example, a disaster management first
responder requires access to information that is provided by services from different (Zero Trust)
domains. There must be some (pseudonymize) unique identifier of the user that allows binding
access rights in the local domain. This access control management objective has implication to
authentication: All users — regardless of origin domain — must be identified via a globally unique
identifier (unique and persistent across all acting authorization servers).

Assuming that each user can be uniquely identified, it is still possible that the user gets an HTTP
status code 403 meaning access to the requested resource was forbidden. As the user is stuck in
security, this message may not be particularly helpful. The resulting challenge is how to help the
user or the application to “understand” what the issue is. This opens the challenge to know how

OPEN GEOSPATIAL CONSORTIUM 21-020R1 72

https://datatracker.ietf.org/doc/html/rfc7519
https://openid.net/specs/openid-connect-federation-1_0.html
https://w3c.github.io/secure-payment-confirmation/

much information can be exposed securely; remember: a Zero Trust Domain means “don’t trust
anybody”. This implies that there won’t be any information available to help the user, as they are
not trusted (and could be an adversary). But still, there must be some mechanism or protocol
that helps to “bootstrap” a solution, assuming there was a legitimate request issued in the first
place. Further analysis is required towards the question: How to determine the trustworthiness
of a user in particular cross domain.

Another daring challenge is the exchange of access conditions among administrators of different
domains for the purpose of harmonizing the access rights of users. The assumption is that the
actual access control realization in each domain is done specifically, honoring different facets
specific to the domain. But how can access conditions be exchanged with other domain admins
to ensure that access requirements can be managed? Further analysis should determine how far
the use of Access Control Markup Languages like XACML or GeoXACML help to (automatically)
harmonize access conditions across domains.

Extending access control to encrypted data has implications for Key Management.

7.4. Implications for Key Management

During OGC Testbed 16, a Key Management System (KMS) was developed to protect the
data decryption keys used to encrypt geospatial data. The functionality of the KMS was
inspired by the NIST Special Publication 800-57 Part 1, Revision 5, Recommendation for Key
Management: Part 1 – General publication. In particular the key’s lifecycle and the separation
of data encryption and key encryption keys was implemented. A Data Encryption Key (DEK) is
the actual cipher key that scrambles the data. The possession of DEK enables decrypting the
actual data. A Key Encryption Key (KEK) is a cipher key that is used to encrypt a DEK for storage
or transit. Typically, a DEK is a symmetric key (shared secret) and a KEK is an asymmetric key
(private — public key pair). In that regard, the use of the keys is different and so are implemented
options for constraining access to the keys. Regardless if DEK or KEK, the key registration
requires the user to authenticate. The registration of the KEK is limited to public keys. The
assumption is that the matching private key is securely stored with the owning user. The
fetching of the public KEK is open to all users as encryption based on the public key can only be
decrypted by the associated private key. Further, per definition, their key is only in permission
of the user. However, to prevent misuse in case the private key is leaked, the KMS supports the
owner of the KEK deleting the key.

The KMS allows the owning user to apply fine grained access control to a DEK, as illustrated
in Clause 5.8. However, the access control is not tied to the actual content that originally
existed before encryption. For example, constraining access to encrypted information based on
feature_type or classification is not possible via the KMS. Further analysis is required to
determine how far the encryption process itself can reflect the original data’s characteristics. For
example, the Testbed-17 DCS Server uses different cipher algorithms for data that is (artificially
marked as CLASSIFIED, SECRET, TOP SECRET). However, the KMS does not constrain access
based on the key algorithm. So, what seems to be missing is metadata on the usage of the key
and which characteristics of the encrypted data exist that should be considered for access
control to the DEK.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 73

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5

What are the implications imposed by federated authentication? The Testbed KMS relies on
authentication from the single Authorization Server. Sharing of encrypted data, based on sharing
access to the associated DEK can be based on the user’s email or unique identifier. But what is
the user’s email or identifier in a federated setup? How does the KMS know which Authorization
Server to contact if users from multiple domains are considered?

Assuming that each Zero Trust Domain wants to operate their own DC Server, what implications
to the protocol between the DC Server and the KMS exist? What about the protocol between
the DCS Client application and the KMS?

7.5. Implications to the DCS Server

The Testbed-17 DCS Server offers requesting encrypted (geospatial) data hosted on a
GeoServer implementation of the OGC Maps, Features and Tiles APIs. Regarding the encryption
key, the DCS generates a DEK on behalf of the user. However, different options are possible:

a) The user requests encrypted content but leaves it to the DCS Server to generate
the encryption key (DEK) on behalf of the user;

b) The user generates the encryption key (DEK), registers it with the KMS and
submits the key ID with the request.

c) The user generates the encryption key and submits it with the request to the
DCS.

For the first option, where the DCS Server generates the DEK on behalf of the user, the
question is which KMS to use for key registration. To enable the DCS Server to register a key on
the user’s behalf requires that the DCS server has sufficient access rights on the KMS. In order
to refrain from complex access condition management across domains, perhaps the DCS Server
should always register the DEK with the own KMS — the KMS operated in the same security
domain.

The second option implies that the DCS Server can resolve the actual encryption key from
the KMS used by the user. When not constraining which KMS that user could have registered
the key, the DCS Server needs sufficient access to fetch the key. But, would a KMS release
a symmetric key to a DCS Server? Assuming that a DEK is a symmetric key, it could also be
used to decrypt data. So, a copy of the key stored at the KMS or exposed via an attack might
jeopardize all data previously encrypted with that key. Perhaps a DEK never crosses security
domains? Perhaps a DEK only can only be fetched by trusted applications? If so, how could
applications verified to be trusted?

Regarding the third option, the DEK must be protected while in transit (the request is sent
via the network). Even though leveraging HTTPS does protect information sent through the
TLS channel, it leaves the URL in the clear. Therefore, submitting the DEK with a HTTP GET
is “unwise”, even when the key is protected by a KEK. This brings an implication to OGC API
standardization: OGC API Standards should support HTTP POST as an alternative to HTTP
GET. Even though the use of HTTP POST over TLS would secure the DEK while in transit, but

OPEN GEOSPATIAL CONSORTIUM 21-020R1 74

leveraging the transport level security mechanism is still against the philosophy of DCS: Apply
security to the data — to the DEK in this case. Investigation of options applicable to protect the
DEK when being submitted with the OGC API request is recommended. Is it possible / sufficient
if the DEK is encrypted based on the public key of the DCS Server?

Would it be “wise” that the DCS Server accepts the (encrypted) DEK with the request? If so,
would the DCS Server need to validate that the DEK actually belongs to the acting user? If not,
a man in the middle attack might have replaced the encryption key with the own. It should be
analyzed how a DEK’s origin (issuer and owner) can be verified in a federated environment.

7.6. Implications on the DCS Client

The DCS Client for Testbed-17 implements the OAuth2 / OpenID Connect hybrid flow to obtain
a Bearer access token from the single Authorization Server for the acting user. This access token
is sent with each request to the DCS Server and KMS.

The implications of extending the single domain solution to a federated “mash” of Authorization
Servers would impact the client application. The application would need to know which
Authorization Server to contact for login. This complexity is currently proxied by AUTHENIX
as it offers the login provider discovery (IdP Discovery). Would it make sense to implement
such a complex and trust intense protocol as the IdP discovery into a client application? It is
possible / recommended in the first place to think of Web-based, desktop, mobile and server-
side applications.

When leveraging multiple Authorization Servers, how would the client application know which
access token needs to send to which service endpoint? The proper matching would require that
the client application knows which service accepts tokens from what Authorization Server. Is it
wise to disclose all that information to the client application? Is this feasible?

What other approaches exist to lift the burden of access token and Authorization Server /
Resource Server linking management off the client application?

For decrypting data, the client application must get access to the KMS. How can a key owner
associate access conditions to the client application; it might have different identities with
different Authorization Servers. How to not over-complicate access condition management? The
more difficult the access condition management to keys get, the more difficult the validation of
the effective conditions becomes.

7.7. Implications to Security

The transition from a single source solution to a solution that works in a federated environment
potentially introduces protocol vulnerabilities. How can vulnerabilities in protocols be identified
to prevent or mitigate successfully attacks?

OPEN GEOSPATIAL CONSORTIUM 21-020R1 75

Potential security hazards must be considered when defining an interoperable protocol for a
federated security DCS solution.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 76

8

FUTURE WORK

OPEN GEOSPATIAL CONSORTIUM 21-020R1 77

8 FUTURE WORK

The following topics — more or less closely related to DCS — represent recommendations for
future work.

8.1. Streaming-Ready Container Format

The GeoPackage container is a capable data storage format, but should not be created at the
general user’s request. Further, when making a GeoPackage container available as an output
format for a service on the Internet, establishing a resource quota is recommended.

Alternative encodings like ZIP are considered streaming-ready and do not produce a storage
burden on the server. Future investigation into how far the use of a ZIP container format can be
used as an alternative to GeoPackage should be considered. Perhaps the SQLite 3 ZIP extension
can be used as a start. When doing this investigation, it should also be evaluated whether other
alternative storage structures allow to create, store and distribute large amounts of multi-part,
encrypted geospatial data in a more efficient way.

8.2. OGC APIs and Asynchronous Responses

The current protocol for most (but not all) OGC API Standards requires that a HTTP GET request
returns the resource as part of the response body. This can be characterized as synchronous
request and response — the client and server are maintaining a TCP channel to exchange the
request and response. In situations, where the production of the response takes a very long
time or the size of the container is extraordinarily large (e.g. in Testbed-17 production of an
encrypted GeoPackage for all Tiles from zoom level zero to twenty one took approximately 6
hours and required 21GB of storage). By the time the response was ready to be streamed to the
client, the TCP socket was already closed. For Testbed-17, the DCS Server pushed the produced
GeoPackage to a Content Delivery Network (CDN), where the client could fetch the response
for the request at any later time.

An important response alternative could be that an API implementation reports to the client
response will be ready in 6 hours - please go 'here (URL)' to fetch it. OGC API
– Processes supports such asynchronous capability. Future work should investigate how other
OGC API Standards could inform the client about an alternative location of the response. If an
API implementation supports the persistent storage of previously requested resources (on a
CDN), there could be a ‘smart cache’ at the API that redirects requests for previously created
resources to their ‘persistent’ URL right away. Such a smart cache could reduce network and
processing burden and improve response times.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 78

8.3. Authenticity and Integrity of GeoPackage

How can a GeoPackage container be made tamper-resistant or how far can Integrity be
applied to a GeoPackage container (perhaps as an extension) that enables the consumer to
verify that the actual copy has not been tampered with since its production. In addition to (or
as an extension of) Integrity, it should be evaluated how authenticity could be applied to a
GeoPackage. It seems strange that a DCS extension to GeoPackage supports storing encrypted
(rows of) data but that the consumer cannot verify the origin and integrity of the GeoPackage
container.

8.4. Standardization of a GeoPackage Encryption
Extension to OGC APIs

The results from Testbeds 15, 16 and 17 indicate that there is a common set of requirements
that exists and defines a “DCS” Building Block for OGC APIs. However, in order to achieve an
interoperable solution, the overall results from these Testbeds should be collected and brought
forward as an Engineering Report, written as a Draft Implementation Standard. The OGC
#17-007 OGC Web Services Security standard emerged in such a way.

8.5. Direct Encryption to prevent unauthorized disclosure
in Web-Applications

When the client provides the Data Encryption Key (DEK) directly to the DCS Server, it is
possible to ‘simply’ encrypt the response with the provided key. This simplistic scenario is
equivalent to DRM direct streaming and would apply to protect data from being captured by
Web-Applications, like JavaScript based clients. In the content of (one-page) Web-Applications it
should be investigated in how far the encrypted data can be protected for being captured in its
original format to prevent unauthorized disclosure.

8.6. Encrypted GeoTIFF and GMLJP2

Testbed-17 participants evaluated the options for packaging encrypted geospatial data into a
GeoPackage container by defining suitable extensions (for Features and Tiles). The applicability
of similar approaches for GeoTIFF and GMLJP2 should also be investigated along with the

OPEN GEOSPATIAL CONSORTIUM 21-020R1 79

https://docs.ogc.org/is/17-007r1/17-007r1.html

implications regarding the data and processing burden. If a solution exists, a standardization
approach should be identified.

8.7. Standardization of a Key Management System API

For Testbed-16 and Testbed-17, a Key Management System amended the DCS components.
The main responsibility of the KMS was to create a symmetric cipher key, its registration if
created offline, and the administration of access conditions. The implementation from Secure
Dimensions, based on NIST 800-57, was proven to do a “pretty good” job. However, the
API is not standardized. In order to ensure the productive use of Data Centric Security, the
standardization of the KMS API is paramount.

8.8. Sharing of a security context across administrative
domains

For Testbed-17, a security context is exchanged with Bearer Access Tokens that are released and
validated at one central Authorization Server. The Authorization server acts as the single trusted
3rd party to the DCS Server and DCS Client.

8.8.1. Federation of Authorization Servers

The first opportunity towards a federation of Zero Trust Domains could be based on establishing
trust between Authorization Servers of each administrative domain. This architecture follows
a recommendation from Figure 12 of the OGC Testbed-16: Federated Security Engineering
Report.

8.8.2. Distributed Ledgers

Future work should evaluate the option to utilize a distributed ledger or blockchain technology
to establish exchange of a security context without one single trusted party. With such
an approach, perhaps trust for service catalogs, roles and attributes, policies in federation
environments could be established.

8.9. Harmonization of Access Policies

Any Zero Trust Domain comprises of Authentication and Access Control, as illustrated in
Figure 16 of the OGC Testbed-16: Federated Security Engineering Report. Even though the

OPEN GEOSPATIAL CONSORTIUM 21-020R1 80

https://docs.ogc.org/per/20-027.html
https://docs.ogc.org/per/20-027.html
https://docs.ogc.org/per/20-027.html

enforcement of access conditions must not rely on any standard, the exchange of access policies
to facilitate policy harmonization across domains in a federated architecture should. Also, self-
contained decision ready information GeoPackages with encrypted content should include the
access policy that expresses — in a standardized fashion — the conditions for an application to
decrypt and render the encrypted content. Further work should evaluate the latest work of the
GeoXACML 3.0 standardization (see GeoXACML SWG for more details).

OPEN GEOSPATIAL CONSORTIUM 21-020R1 81

https://www.ogc.org/projects/groups/geoxacmlswg

A

ANNEX A (INFORMATIVE)
GEOPACKAGE DATA
CENTRIC SECURITY
EXTENSIONS

OPEN GEOSPATIAL CONSORTIUM 21-020R1 82

A ANNEX A
(INFORMATIVE)
GEOPACKAGE DATA CENTRIC SECURITY
EXTENSIONS

The Data Centric Security (DCS) work within OGC Testbed 17 results in two GeoPackage
extensions: the first extension for storing encrypted Features and the second extension for
storing encrypted Tiles. Either extension defines how encrypted data (features or tiles) and the
associated decryption key as well as related metadata information can be stored.

The client implementation for reading and decrypting features and tiles was implemented
by Compusult. The DCS GeoPackage Server was implemented by Secure Dimensions as a
Geoserver plugin. The implementation allows to create a DCS GeoPackage leveraging OGC API
Features and Tiles as well as OGC Web Feature Service 2.0.

A.1. GeoPackage DCS Features Extension

WARNING

This subsection is a Testbed result and may change radically.

A.1.1. Extension Title

DCS-Features

A.1.2. Introduction

This extension provides a mechanism for storing encrypted Features encoded in GeoJSON as
JWE in a GeoPackage.

A.1.3. Extension Author

Secure Dimensions GmbH, in collaboration with the participants of OGC Testbed-17, and the
OGC Disaster Pilot 2021.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 83

A.1.4. Extension Name or Template

sd_dcs_features (will become gpkg_dcs_features if adopted by the OGC)

A.1.5. Extension Type

New requirement dependent on GeoPackage Core (Clause 1).

A.1.6. Applicability

This extension allows to store Simple Features, encoded in GeoJSON, encrypted as JWE as
defined in RFC 7516 — JSON Web Encryption (JWE). This extension does not constraint how
the data is encrypted. It is outside the scope of this specification how the cipher key information
is protected and securely communicated to the client application that is supposed to decrypt the
data.

NOTE: For Testbed 17, a working prototype was implemented that is described in more detail in
the Testbed 17 Data Centric Security ER.

A.1.7. Scope

read-write

A.1.8. Specification

A.1.8.1. gpkg_extensions

To use this extension, add the following rows to this table.

Table A.1 — gpkg_extensions Table Rows

TABLE_NAME COLUMN_
NAME EXTENSION_NAME DEFINITION SCOPE

gpkgext_
contents

data_type sd_dcs_features a reference to this file read-
write

gpkgext_dcs_
layers

null sd_dcs_features a reference to this file read-
write

NOTE: The values in the definition column SHOULD refer in some human-readable way to this
extension specification. If the extension is adopted by the OGC, it will gain the “gpkg_” prefix (replacing
“sd_”) and get a different definition permalink.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 84

http://www.geopackage.org/spec/#core
https://datatracker.ietf.org/doc/html/rfc7516

A.1.8.2. New Table Definitions

Following are definitions of the tables for this extension.

As with other GeoPackage tables, this extension takes no position on how either of these tables
are to be used by a client.

A.1.8.2.1. sd_dcs_features_<identifier>

This table contains encrypted features. The identifier is a string, uniquely representing the
encrypted features stored in this table. The identifier may be an obfuscation of the actual
feature type in cases where naming the table after the feature type might disclose sensitive
information.

NOTE 1: For the Testbed 17 implementation, the identifier is a md5 hash of the feature type.

The columns of this table are:

• fid is a primary key

• the_geom is the bounding box of the encrypted feature or null in case it is
withheld for sensitivity reasons

• confidentiality is a JSON Object describing the confidentiality labelling and
additional information about the encrypted feature. The actual structure of the
JSON is outside the scope of this specification

• structure is a GeoJSON based description of the structure of the feature type.

• data is the encrypted feature using compact JWE encoding

NOTE 2: === The confidentiality and structure columns may contain JSON, JWS or JWE. The
exact type is specified via the mime-type column in the gpkg_data_columns ===

A.1.8.2.2. gpkg_data_columns

This table contains the information about the data type for the columns in the
sd_dcs_features_<identifier> table.

To use this extension, add the following rows to this table.

Row 1: Definition of the data column

• table_name has the value sd_dcs_features_<identifier>

• column_name data

OPEN GEOSPATIAL CONSORTIUM 21-020R1 85

• name has the value sd_dcs_features_<identifier>-data

• title has value Encrypted Feature Data

• description description, e.g. The encrypted data of the feature using
JWE compact encoding with symmetric cipher

• mime_type has value application/jose

• constraint_name has the value null

Row 2: Definition of the structure column

• table_name has the value sd_dcs_features_<identifier>

• column_name structure

• name has the value sd_dcs_features_<identifier>-structure

• title has value Feature Type Data

• description description, e.g. The feature type description represented
as JSON, JWS or JWE

• mime_type has value application/json or application/jose to represent JWE
or JWS encoded data

• constraint_name has the value null

Row 3: Definition of the confidentiality column

• table_name has the value sd_dcs_features_<identifier>

• column_name confidentiality

• name has the value sd_dcs_features_<identifier>-confidentiality

• title has value The confidentiality labelling and producer
information

• description description, e.g. The confidentiality labelling and producer
information encoded as JSON or JWS

• mime_type has value application/json or application/jose

• constraint_name has the value null

NOTE: No explicit media type exists for JWS or JWE encoded data. IANA media type
“application/jose” must be used and from counting the dots, an application can defer whether
the structure refers to JWS (2 dots) or JWE (4 dots). Some applications use the value “JWE” and
“JWS” to determine between JWE and JWS encodings. For Testbed 17, the IANA media type
“application/jose” was used.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 86

A.2. GeoPackage DCS Tiles Extension

WARNING

This subsection is a Testbed result and may change radically.

A.2.1. Extension Title

DCS-Tiles

A.2.2. Introduction

This extension provides a mechanism for storing encrypted Tiles and associated metadata such
as integrity and confidentiality labelling in a GeoPackage.

A.2.3. Extension Author

Secure Dimensions GmbH, in collaboration with the participants of OGC Testbed-17, and the
OGC Disaster Pilot 2021.

A.2.4. Extension Name or Template

sd_dcs_tiles (will become gpkg_dcs_tiles if adopted by the OGC)

A.2.5. Extension Type

New requirement dependent on GeoPackage Core (Clause 1).

A.2.6. Applicability

This extension allows to store encrypted binary image data (e.g. Tile) as a BLOB. This extension
does not constraint how the data is encrypted. It is outside the scope of this specification how
the cipher key information is protected and securely communicated to the client application that
is supposed to decrypt the data.

This extension also defines the mechanism how to store cipher key information such that an
application can decrypt the data.

To ensure tamper resistance of the encrypted tile data, an integrity check is stored that relates
the data with the mandatory meta information zoom_level, tile_column, tile_row.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 87

http://www.geopackage.org/spec/#core

NOTE: For Testbed 17, a working prototype was implemented that is described in more detail in
the Testbed 17 Data Centric Security ER.

A.2.7. Scope

read-write

A.2.8. Specification

A.2.8.1. gpkg_extensions

To use this extension, add the following rows to this table.

Table A.2 — gpkg_extensions Table Rows

TABLE_NAME COLUMN_
NAME EXTENSION_NAME DEFINITION SCOPE

gpkgext_
contents

data_type sd_dcs_tiles a reference to this file read-
write

NOTE: The values in the definition column SHOULD refer in some human-readable way to this
extension specification. If the extension is adopted by the OGC, it will gain the “gpkg_” prefix (replacing
“sd_”) and get a different definition permalink.

A.2.8.2. New Table Definitions

Following are definitions of the tables for this extension. As with other GeoPackage tables, this
extension takes no position on how either of these tables are to be used by a client.

A.2.8.2.1. sd_dcs_tiles_<identifier>

This table contains encrypted tiles. The identifier is a string, uniquely representing the encrypted
tile layer stored in this table. The identifier may be an obfuscation of the actual feature type in
cases where naming the table after the feature type might disclose sensitive information.

NOTE: For the Testbed 17 implementation, the identifier is a md5 hash of the feature type.

The columns of this table are:

• id is a primary key

• zoom_level as specified by GeoPackage

OPEN GEOSPATIAL CONSORTIUM 21-020R1 88

• tile_column as specified by GeoPackage

• tile_row as specified by GeoPackage

• dcs_info is a JSON Object describing the confidentiality labelling and additional
information about the encrypted feature. The actual structure of the JSON is
outside the scope of this specification

• dek_info is a JWT defining the kid used for encryption. Also, the JWK payload
contains additional information about the key origin such as issuer, creating
application and user.

• tile_data is the encrypted tile using symmetric key encryption with the key
described in dek_info column.

A.2.8.2.2. gpkg_data_columns

This table contains the information about the data type for the columns in the
sd_dcs_tiles_<identifier> table.

To use this extension, add the following rows to this table.

Row 1: Definition of the tile_data column

• table_name has the value sd_dcs_tiles_<identifier>

• column_name tile_data

• name has the value sd_dcs_tiles_<identifier>-tile_data

• title has value Encrypted Tile Data

• description description, e.g. The encrypted data of the tile using
symmetric cipher

• mime_type has value application/octet-stream

• constraint_name has the value null

Row 2: Definition of the dcs_info column

• table_name has the value sd_dcs_tiles_<identifer>

• column_name dcs_info

• name has the value sd_dcs_tiles_<identifer>-dcs_info

• title has value DCS Metadata

• description description, e.g. The tile description

OPEN GEOSPATIAL CONSORTIUM 21-020R1 89

• mime_type has value application/jose to represent JWE or JWS encoded data

• constraint_name has the value null

Row 3: Definition of the dek_info column

• table_name has the value sd_dcs_tiles_<identifer>

• column_name dek_info

• name has the value sd_dcs_tiles_<identifer>-dek_info

• title has value The information about the encryption key as JWT

• description description, e.g. The key can be fetched via kid or kurl

• mime_type has value application/jose

• constraint_name has the value null

NOTE: No explicit media type exists for JWS or JWE encoded data. IANA media type
“application/jose” must be used and from counting the dots, an application can defer whether
the structure refers to JWS (2 dots) or JWE (4 dots). Some applications use the value “JWE” and
“JWS” to determine between JWE and JWS encodings. For Testbed 17, the IANA media type
“application/jose” was used.

OPEN GEOSPATIAL CONSORTIUM 21-020R1 90

B

ANNEX B (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 21-020R1 91

B ANNEX B
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE AUTHOR
PRIMARY
CLAUSES
MODIFIED

DESCRIPTION

2021-05-
18 0.1 A. Balaban all initial version

2021-07-
22 0.2 A. Matheus Annex A initial version

2021-08-
31 0.3 A. Balaban, A.

Matheus TIEs initial version

2021-10-
04 0.4 A.Matheus Annex B initial version

2021-10-
11 0.5 A.Matheus Sections 4, 5, 7 revision and additional

content

2021-10-
20 0.6 A.Matheus All sections streamlining content and

adopting template

2021-11-
05 0.7 A.Parsons Section 5, Client aspects

2021-11-
05 0.8 G.Buehler All sections Re-align with template

2021-11-
15 0.9 A. Balaban, A.

Matheus All sections Incorperating editorial
comments

OPEN GEOSPATIAL CONSORTIUM 21-020R1 92

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 21-020R1 93

BIBLIOGRAPHY

1. OGC API — Features, http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

2. NATO: “ADatP-4774” Confidentiality Metadata Label Syntax, edition A version 1, NSO,
2017. https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.
pdf

3. Metadata Binding Mechanism, edition A version 1, NSO, 2018. https://nso.nato.int/nso/
zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf

4. H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub: IETF RFC 7946,
The GeoJSON Format. Internet Engineering Task Force, Fremont, CA (2016).
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/
reference.RFC.7946.xml

5. M. Jones, J. Bradley, N. Sakimura: IETF RFC 7519, JSON Web Token (JWT). Internet
Engineering Task Force, Fremont, CA (2015). https://raw.githubusercontent.com/
relaton/relaton-data-ietf/master/data/reference.RFC.7519.xml

6. D. Hardt: IETF RFC 6749, The OAuth 2.0 Authorization Framework. Internet Engineering
Task Force, Fremont, CA (2012). https://raw.githubusercontent.com/relaton/relaton-
data-ietf/master/data/reference.RFC.6749.xml

7. M. Jones, D. Hardt: IETF RFC 6750, The OAuth 2.0 Authorization Framework:
Bearer Token Usage. Internet Engineering Task Force, Fremont, CA (2012).
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/
reference.RFC.6750.xml

8. OGC GML in JPEG 2000 (GMLJP2) Encoding Standard. http://docs.opengeospatial.org/
is/08-085r8/08-085r8.html

9. OGC: GeoXACML 1.0, OGC Implementation Specification. http://portal.opengeospatial.
org/files/11-017

10. OGC 19-016r1, Testbed-15: Data Centric Security Engineering Report. http://docs.
opengeospatial.org/per/19-016r1.html

11. OGC 20-021r2, Testbed-16: Data Centric Security Engineering Report. https://docs.ogc.
org/per/20-021r2.html

12. OGC 20-027, Testbed-16: Federated Security Engineering Report. http://docs.
opengeospatial.org/per/20-027.html#OIDC_Fed_Spec

13. OGC GeoPackage Encoding Standard. https://www.geopackage.org/spec130/index.html

14. OWS-9: SSI Security Rules Service Engineering Report. https://portal.opengeospatial.
org/files/?artifact_id=51833

OPEN GEOSPATIAL CONSORTIUM 21-020R1 94

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.7946.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.7946.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.7519.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.7519.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.6749.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.6749.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.6750.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.6750.xml
http://docs.opengeospatial.org/is/08-085r8/08-085r8.html
http://docs.opengeospatial.org/is/08-085r8/08-085r8.html
http://portal.opengeospatial.org/files/11-017
http://portal.opengeospatial.org/files/11-017
http://docs.opengeospatial.org/per/19-016r1.html
http://docs.opengeospatial.org/per/19-016r1.html
https://docs.ogc.org/per/20-021r2.html
https://docs.ogc.org/per/20-021r2.html
http://docs.opengeospatial.org/per/20-027.html#OIDC_Fed_Spec
http://docs.opengeospatial.org/per/20-027.html#OIDC_Fed_Spec
https://www.geopackage.org/spec130/index.html
https://portal.opengeospatial.org/files/?artifact_id=51833
https://portal.opengeospatial.org/files/?artifact_id=51833

15. OASIS Key Management Interoperability Protocol Specification Version 2.1. https://docs.
oasis-open.org/kmip/kmip-spec/v2.1/cs01/kmip-spec-v2.1-cs01.html

16. A Python implementation of the Key Management Interoperability Protocol (KMIP).
https://pykmip.readthedocs.io/en/latest/

17. OGC API — Maps — Part 1: Core. http://docs.ogc.org/DRAFTS/20-058.html

18. OGC API — Tiles — Part 1: Core. http://docs.ogc.org/DRAFTS/20-057.html

OPEN GEOSPATIAL CONSORTIUM 21-020R1 95

https://docs.oasis-open.org/kmip/kmip-spec/v2.1/cs01/kmip-spec-v2.1-cs01.html
https://docs.oasis-open.org/kmip/kmip-spec/v2.1/cs01/kmip-spec-v2.1-cs01.html
https://pykmip.readthedocs.io/en/latest/
http://docs.ogc.org/DRAFTS/20-058.html
http://docs.ogc.org/DRAFTS/20-057.html

	I. Abstract
	II. Executive Summary
	III. Keywords
	IV. Preface
	V. Security Considerations
	VI. Submitting Organizations
	VII. Submitters
	1. Scope
	2. Terms, definitions and abbreviated terms
	2.1. Terms and definitions
	2.2. Abbreviated terms

	3. Introduction
	4. Results
	4.1. Binary data formats for DCS
	4.2. DCS GeoPackage Extension
	4.2.1. General Containerized Format

	4.3. Implications for OGC API Standardization Development and Implementation
	4.4. Discovered Issues with GeoPackage as response format

	5. Implementation Aspects
	5.1. Architecture Overview
	5.2. DCS Server
	5.2.1. OGC API Maps Response Format
	5.2.2. OGC API — Features JSON Container
	5.2.3. OGC API — Features GeoPackage Response
	5.2.4. OGC API — Tiles GeoPackage Response

	5.3. DCS Client
	5.3.1. Client Registration
	5.3.2. Client Authorization
	5.3.3. OGC APIs
	5.3.3.1. OGC API — Features
	5.3.3.1.1. GeoPackage from OGC API — Features

	5.3.3.2. OGC API — Maps

	5.3.4. OGC API Tiles — GeoPackage

	5.4. Key Management System
	5.5. Data Encryption Key Creation
	5.6. Data Encryption Key Registration
	5.7. Data Encryption Key Deletion
	5.8. Data Encryption Key Access Management

	6. Technology Integration Experiments (TIEs)
	6.1. TIE Setup
	6.1.1. Client prepares to send request to DCS Server
	6.1.2. DCS Media Types and OGC APIs

	6.2. DCS Server Tests
	6.2.1. OGC API Features
	6.2.1.1. Media Type application/dcs+geo
	6.2.1.2. Media Type application/gpkg+dcs;profile=metaSign
	6.2.1.3. Media Type application/gpkg+dcs;profile=metaEncrypt
	6.2.1.4. Media Type application/gpkg+dcs

	6.2.2. OGC API Tiles
	6.2.2.1. Media Type application/gpkg+dcs

	6.2.3. OGC API Maps
	6.2.3.1. Media Type application/dcs+png

	6.3. Provisioning and portrayal of DCS protected geospatial binary content
	6.4. TIE Results
	6.4.1. DCS Client TIE
	6.4.2. DCS Server TIE

	6.5. TIE Summary

	7. Towards Data Centric Security and Federated Security
	7.1. Overview
	7.2. Implications to Authentication
	7.3. Implications to Access Control
	7.4. Implications for Key Management
	7.5. Implications to the DCS Server
	7.6. Implications on the DCS Client
	7.7. Implications to Security

	8. Future Work
	8.1. Streaming-Ready Container Format
	8.2. OGC APIs and Asynchronous Responses
	8.3. Authenticity and Integrity of GeoPackage
	8.4. Standardization of a GeoPackage Encryption Extension to OGC APIs
	8.5. Direct Encryption to prevent unauthorized disclosure in Web-Applications
	8.6. Encrypted GeoTIFF and GMLJP2
	8.7. Standardization of a Key Management System API
	8.8. Sharing of a security context across administrative domains
	8.8.1. Federation of Authorization Servers
	8.8.2. Distributed Ledgers

	8.9. Harmonization of Access Policies

	Annex A (informative) GeoPackage Data Centric Security Extensions
	A.1. GeoPackage DCS Features Extension
	A.1.1. Extension Title
	A.1.2. Introduction
	A.1.3. Extension Author
	A.1.4. Extension Name or Template
	A.1.5. Extension Type
	A.1.6. Applicability
	A.1.7. Scope
	A.1.8. Specification
	A.1.8.1. gpkg_extensions
	A.1.8.2. New Table Definitions
	A.1.8.2.1. sd_dcs_features_<identifier>
	A.1.8.2.2. gpkg_data_columns

	A.2. GeoPackage DCS Tiles Extension
	A.2.1. Extension Title
	A.2.2. Introduction
	A.2.3. Extension Author
	A.2.4. Extension Name or Template
	A.2.5. Extension Type
	A.2.6. Applicability
	A.2.7. Scope
	A.2.8. Specification
	A.2.8.1. gpkg_extensions
	A.2.8.2. New Table Definitions
	A.2.8.2.1. sd_dcs_tiles_<identifier>
	A.2.8.2.2. gpkg_data_columns

	Annex B (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — OGC Testbed-17 DCS Media Types
	Table 2 — OGC API DCS Media Types
	Table 3 — DCS parameters (m=mandatory, o=optional)
	Table 4 — DCS Client TIEs
	Table 5 — DCS Server TIEs
	Table 6 — TIE Summary for DCS Client and Server
	Table A.1 — gpkg_extensions Table Rows
	Table A.2 — gpkg_extensions Table Rows

	List of Figures
	Figure 1 — Testbed-17 Architecture
	Figure 2 — Testbed-17 Architecture
	Figure 3 — Testbed-17 DCS Architecture Interactions Overview
	Figure 4 — DCS Testbed-17 OGC API Maps Interactions Overview
	Figure 5 — OGC API Features returning encrypted features collection with metadata as JSON
	Figure 6 — OGC API Features returning encrypted features collection with metadata as JWS
	Figure 7 — OGC API Features returning encrypted features collection with metadata as JWE
	Figure 8 — OGC API Features returning GeoPackage with encrypted features plus metadata
	Figure 9 — OGC API Tiles returning GeoPackage with encrypted tiles plus metadata
	Figure 10 — DCS Client — Authentication
	Figure 11 — DCS Client — Server Selection
	Figure 12 — DCS Client — Provider Selection
	Figure 13 — DCS Client — Redirect Selection
	Figure 14 — DCS Client — Authentication Success
	Figure 15 — DCS Client for OGC API — Features implementation
	Figure 16 — DCS Client — OGC API Feature Formats
	Figure 17 — DCS Client — OGC API Features — Manhattan (NY) Roads
	Figure 18 — DCS Client — OGC API Features — GeoPackage Download
	Figure 19 — DCS Client — OGC API Features — GeoPackage Service
	Figure 20 — DCS Client — OGC API Features — GeoPackage — Points of Interest
	Figure 21 — DCS Client — OGC API Maps Service
	Figure 22 — DCS Client — OGC API Maps Formats
	Figure 23 — DCS Client — OGC API Maps — Manhattan (NY) Roads/Landmarks
	Figure 24 — DCS Client — OGC API Tiles GeoPackage Download
	Figure 25 — DCS Client — OGC Tiles API — GeoPackage Service
	Figure 26 — DCS Client — OGC Tiles API — Geopackage Landmarks (NY)
	Figure 27 — KMS API in OpenAPI
	Figure 28 — KMS Input form for Creating a Data Encryption Key
	Figure 29 — KMS Ciphers for Data Encryption Key
	Figure 30 — KMS Showing list of “my” keys
	Figure 31 — KMS Access Management Page

