
OGC® DOCUMENT: 21-019
External identifier of this OGC® document: http://www.opengis.net/doc/PER/t17-D040

OGC TESTBED-17:
ATTRACTING
DEVELOPERS:
LOWERING THE
ENTRY BARRIER FOR
IMPLEMENTING OGC
WEB APIS

ENGINEERING REPORT

PUBLISHED

Submission Date: 2021-11-19
Approval Date: 2021-12-17
Publication Date: 2022-01-21
Editor: Aleksandar Balaban

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, (“Licensor”), free of charge and subject to the terms set forth below, to any
person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction
(except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense
copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices
on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a
notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE
ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY
RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in
any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that
LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You
agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held
by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not
be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization
of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use
certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of
U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Copyright notice

Copyright © 2022 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.ogc.org/legal/

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-019 ii

http://www.ogc.org/legal/

CONTENTS

I. ABSTRACT ... viii

II. EXECUTIVE SUMMARY ..viii

III. KEYWORDS ... ix

IV. PREFACE ..x

V. SECURITY CONSIDERATIONS ... xi

VI. SUBMITTING ORGANIZATIONS .. xii

VII. SUBMITTERS .. xii

1. SCOPE .. 2

2. TERMS, DEFINITIONS AND ABBREVIATED TERMS ..4
2.1. Terms and definitions ..4
2.2. Abbreviated terms ..6

3. INTRODUCTION ... 8

4. DEVELOPER SURVEY ..10
4.1. Who are our developers? .. 10
4.2. Technology Stack ... 11
4.3. Learning Habits ...13
4.4. Familiarity with OGC (API) Standards ...14
4.5. Summary .. 15

5. API EXPERIMENTS SCENARIOS OVERVIEW ... 17
5.1. Participants .. 17
5.2. API experiment scenarios .. 18

6. ARCHITECTURE AND COMPONENTS .. 21
6.1. Key Features of a Cloud-Native Application Architecture ...21
6.2. Component Description Template ...22

7. COMPONENT DESIGN AND IMPLEMENTATION DETAILS25
7.1. D165 API Experiments Server (Python) ...25
7.2. D166 API Experiments Server (JavaScript) ..30
7.3. D167 Data Backend and Deployment ..45

OPEN GEOSPATIAL CONSORTIUM 21-019 iii

7.4. D168 Data Backend and Deployment ..51
7.5. D175 API Experiments Client — Python ... 55
7.6. D176 API Experiments Client — TypeScript ... 59

8. OPENAPI CODE GENERATION ... 64
8.1. Overview of OpenAPI .. 64
8.2. Examples of Code Generation ..65
8.3. Caveats with Generated Code and Code Generators ...65
8.4. Generating Code based on OGC OpenAPI Specifications ...66
8.5. Recommendations to the OGC for using OpenAPI ...68

9. RESULTS AND FINDINGS ..70

10. FUTURE WORK .. 74

11. TECHNOLOGY INTEGRATION EXPERIMENTS (TIE) ..76
11.1. Data backend and deployment .. 76
11.2. Service invocations and data consumptions ...77

ANNEX A (INFORMATIVE) OGC INNOVATION PROGRAM DEVELOPER SURVEY
...80

ANNEX B (INFORMATIVE) REVISION HISTORY ...118

BIBLIOGRAPHY .. 120

LIST OF TABLES

Table 1 — Server-Backend TIE Summary Table .. 76
Table 2 — TIE Functional Test ...77
Table 3 — Server-Client TIE Summary Table ... 77
Table 4 — TIE Functional Test ...78

LIST OF FIGURES

Figure 1 .. 11
Figure 2 .. 12
Figure 3 .. 13
Figure 4 .. 14
Figure 5 — Deliverables and Packages ... 17

OPEN GEOSPATIAL CONSORTIUM 21-019 iv

Figure 6 — Generic API experiments scenario ... 19
Figure 7 — schematic representation of the architecture of the OGC API — Features
implementation with two data backends ...26
Figure 8 — schematic representation of the architecture of the OGC API — EDR implementation
with a single data backend ..28
Figure 9 — Overall architecture ..31
Figure 10 — Landing page of the demonstration OGC API — Features server 40
Figure 11 — Collection item page of the demonstration OGC API — Features server 41
Figure 12 — Landing page of the demonstration OGC API — EDR server42
Figure 13 — The Collections page of the demonstration OGC API — EDR server43
Figure 14 — Collection item page of the demonstration OGC API — EDR server 44
Figure 15 — Component diagram .. 46
Figure 16 — NetCDF tiling concept .. 48
Figure 17 — Representation of the D168 GitHub repository with the code folders (light blue) and
code components (dark blue) ..52
Figure 18 — Client architecture ..56
Figure 19 — Demonstrator application using NASA WebWorldWind ...59
Figure 20 — Demonstrator application showing DGGS zones ... 61
Figure 21 — The OGC API Family ... 70
Figure A.1 .. 81
Figure A.2 .. 81
Figure A.3 .. 82
Figure A.4 .. 82
Figure A.5 .. 83
Figure A.6 .. 83
Figure A.7 .. 84
Figure A.8 .. 84
Figure A.9 .. 85
Figure A.10 .. 85
Figure A.11 .. 86
Figure A.12 .. 86
Figure A.13 .. 87
Figure A.14 .. 87
Figure A.15 .. 88
Figure A.16 .. 88
Figure A.17 .. 89
Figure A.18 .. 89
Figure A.19 .. 90
Figure A.20 .. 90
Figure A.21 .. 91
Figure A.22 .. 91
Figure A.23 .. 92

OPEN GEOSPATIAL CONSORTIUM 21-019 v

Figure A.24 .. 92
Figure A.25 .. 93
Figure A.26 .. 93
Figure A.27 .. 94
Figure A.28 .. 94
Figure A.29 .. 95
Figure A.30 .. 95
Figure A.31 .. 96
Figure A.32 .. 96
Figure A.33 .. 97
Figure A.34 .. 97
Figure A.35 .. 98
Figure A.36 .. 98
Figure A.37 .. 99
Figure A.38 .. 99
Figure A.39 ..100
Figure A.40 ..101
Figure A.41 ..101
Figure A.42 ..101
Figure A.43 ..102
Figure A.44 ..102
Figure A.45 ..103
Figure A.46 ..103
Figure A.47 ..104
Figure A.48 ..104
Figure A.49 ..105
Figure A.50 ..105
Figure A.51 ..106
Figure A.52 ..107
Figure A.53 ..108
Figure A.54 ..108
Figure A.55 ..109
Figure A.56 ..110
Figure A.57 ..111
Figure A.58 ..111
Figure A.59 ..112
Figure A.60 ..112
Figure A.61 ..113
Figure A.62 ..113
Figure A.63 ..114
Figure A.64 ..114

OPEN GEOSPATIAL CONSORTIUM 21-019 vi

Figure A.65 ..115
Figure A.66 ..115
Figure A.67 ..116
Figure A.68 ..116

OPEN GEOSPATIAL CONSORTIUM 21-019 vii

I ABSTRACT

This OGC Testbed 17 Engineering Report (ER) documents the work completed in the “Attracting
Developers: Lowering the entry hurdle for OGC Web API experiments” task.

OGC Web API Standards are being developed to make it easy to provide geospatial data
over the web. These standards provide a certain level of formality to ensure high levels of
interoperability. They rigorously define requirements and rules to reduce room for error during
interpretation. This rigor sometimes makes the standard documents difficult to read and hence
implement. Rather than direct examination of a standard, the majority of developers often prefer
to start with implementation guidelines, sample code, and best practice documentation and then
refer to the standards document for guidance and clarity.

The Testbed-17 (TB-17) API task served as a foundation for further development and
exploration and delivers knowledge necessary for agile development, deployment, and executing
OGC Standards-based applications following a “How-To” philosophy with hands-on experiments,
examples, and instructions.

I I EXECUTIVE SUMMARY

The Testbed-17 API work began with design and conduction of an online Clause 4 and then
focused on the results derived from the answers given by the participants: The developers
were mostly from the OGC community. The outcome of this survey is that a typical profile
of a geospatial developer is generally comparable with the results of similar surveys, such as
StackOverflow Developer Survey 2021, which have been done having considered much larger
groups of developers with broader interests. The conclusion is that a typical developer from
the OGC/geospatial community is an experienced person focused on stable, well-established
technologies. Therefore, this ER focuses on newer technologies and approaches to fill the gap
between “stable maturity” and “contemporary/emerging trends”.

The value of this ER to interoperability is the exploration of different options for OGC APIs in
the context of contemporary development and deployment practices. For interoperability, cloud
native services are often based on open source and standards based technology. This helps
reduce vendor lock-in and results in increased portability. The ER establishes the repository
of How To-examples (GitHub) enabling faster and more efficient geospatial data provision
and consumption based on OGC APIs and modern/emerging technology stacks. The API
experiments further advance location-based technologies by investigating the compatibility to
OGC API Standards with, and the applicability to, technologies such as source code generation
and cloud to OGC API Standards. The final result is more efficient development processes,
which make building new tools cheaper, more efficient, and less stressful, as well as a broader
developer audience attracted to OGC APIs.

The requirements addressed by the work documented in this ER were:

OPEN GEOSPATIAL CONSORTIUM 21-019 viii

https://ogcapi.ogc.org/
https://insights.stackoverflow.com/survey/2021

a) Provide easy to understand documentation as a starting point for Web
developers to explore OGC APIs standards.

b) Establish and demonstrate a culture of continuous learning and experimentation
in the OGC APIs context utilizing DevOps practices.

c) Provide instructions/guidelines to get started with OGC APIs within cloud
environments.

d) Expose data sets from cloud storages for consumption using selected technology
stacks and compatible OGC APIs.

e) Explore the compatibility of client/server code generation approach in
conjunction with OGC APIs.

An overview of recommendations on how to further proceed with the achievements
documented in this ER is given in sections Clause 9 and Clause 10.

I I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, API

OPEN GEOSPATIAL CONSORTIUM 21-019 ix

IV PREFACE

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-019 x

V SECURITY CONSIDERATIONS

No security considerations have been made for this document.

OPEN GEOSPATIAL CONSORTIUM 21-019 xi

VI SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• m-click.aero GmbH

VI I SUBMITTERS

All questions regarding this document should be directed to the editor or the contributors:

NAME ORGANIZATION ROLE

Aleksandar Balaban m-click.aero GmbH Editor

Arne Vogt 52°North GmbH Contributor

Ignacio Correas Skymantics Europe SL Contributor

Sam Lavender Pixalytics Ltd Contributor

Karri Ojala Solenix GmbH Contributor

Alexander Lais Solenix GmbH Contributor

OPEN GEOSPATIAL CONSORTIUM 21-019 xii

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 21-019 1

1 SCOPE

The scope of this OGC Testbed 17 ER covers the following topics:

• Clause 3 introduces the problem that appears when starting with OGC APIs
development. The overview describes the current situation and discusses the
requirements set by the testbed Sponsors.

• Clause 4 presents the results of developer survey.

• Clause 5 illustrates the scenarios and experiments of this task.

• Clause 6 describes the task architecture and the services/components.

• Clause 8 explains the concept of code generation for OGC API.

• Clause 9 summarizes the results of this API experiments.

• Clause 10 provides conclusions and gives recommendations for future Work.

• Clause 11 covers the Technology Integration Experiments between the DCS
Server and DCS Client.

• Annex A lists the questions used in the developer survey.

OPEN GEOSPATIAL CONSORTIUM 21-019 2

2

TERMS, DEFINITIONS AND
ABBREVIATED TERMS

OPEN GEOSPATIAL CONSORTIUM 21-019 3

2 TERMS, DEFINITIONS AND ABBREVIATED
TERMS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

2.1. Terms and definitions

2.1.1. Application Programming Interface

An Application Programming Interface (API) is a standard set of documented and supported
functions and procedures that expose the capabilities or data of an operating system, application
or service to other applications (adapted from ISO/IEC TR 13066-2:2016).

2.1.2. CI/CD

Continuous Integration, Continuous Delivery is a method to frequently deliver apps to customers
by introducing automation into the stages of app development. (source: RedHat)

2.1.3. DevOps

a set of practices that combines software development (Dev) and IT operations (Ops).

OPEN GEOSPATIAL CONSORTIUM 21-019 4

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762
https://www.redhat.com/en/topics/devops/what-is-ci-cd

2.1.4. Cloud

a network of computing resources, such as storage, servers, applications and services, that can
be used on-demand anywhere and anytime via the Internet NIST.

2.1.5. Cloud-native

The concept of building and running applications to take advantage of the distributed computing
offered by the cloud delivery model. Cloud native apps are designed and built to exploit the
scale, elasticity, resiliency, and flexibility the cloud provides, Oracle.

2.1.6. Code Generation

Source code generation is the process of creating programming code from a model such as one
of OGC APIs data schemas.

2.1.7. Containerization

the packaging of software code with just the operating system (OS) libraries and dependencies
required to run the code to create a single lightweight executable—called a container—that runs
consistently on any infrastructure, IBM.

2.1.8. CRUD

In computer programming, create, read (aka retrieve), update, and delete are the four basic
functions of persistent storage.

OPEN GEOSPATIAL CONSORTIUM 21-019 5

https://www.nist.gov/publications/nist-definition-cloud-computing
https://www.oracle.com/cloud/cloud-native/what-is-cloud-native/
https://www.ibm.com/cloud/learn/containerization

2.1.9. OGC APIs

Family of OGC standards developed to make it easy for anyone to provide geospatial data to the
web.

2.1.10. Technology Stack

A technology stack or tech stack refers to a set of technologies, software, and tools that are
used in the development of applications.

2.2. Abbreviated terms

API Application Programming Interface

CI/CD Continuous Integration / Continuous Delivery

CNCF Cloud Native Computing Foundation

COTS Commercial Off The Shelf

DevOps Software development (Dev) and IT operations (Ops)

EDR Environmental Data Retrieval

IDL Interface Definition Language

JSON JavaScript Object Notation

OGC Open Geospatial Consortium

OWS OGC Web Services

STAC Spatio temporal Asset Catalog

OPEN GEOSPATIAL CONSORTIUM 21-019 6

https://ogcapi.ogc.org/

3

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 21-019 7

3 INTRODUCTION

This OGC Testbed 17 ER documents the experiments performed with OGC API Standards for
lowering the entry barrier for developers implementing OGC API Standards. The ER describes
all developed services and components, the results of Technology Integration Experiments (TIE),
provides an executive summary, and describes recommended future work.

OPEN GEOSPATIAL CONSORTIUM 21-019 8

4

DEVELOPER SURVEY

OPEN GEOSPATIAL CONSORTIUM 21-019 9

4 DEVELOPER SURVEY

A pivotal activity within the TB-17 API experiments task was to design and conduct an online
survey. The target survey universe was developers from the geospatial community. The survey
objective was to collect information about their profile and behaviors, as well as their needs and
their satisfaction with current and emerging OGC API Standards. The survey received responses
from 125 participants. Answers from the survey helped the testbed participants understand
the current situation, design the API experiments, recommend improvements for OGC APIs
documentation, and provide useful tutorials with code examples for the community.

The answers were evaluated graphically and are available in Annex A. The following sections
provide a detailed summary of survey’s findings:

4.1. Who are our developers?

More than 80% of the respondents reside in Europe and the United States of America; and many
of the respondents were experienced developers.

OPEN GEOSPATIAL CONSORTIUM 21-019 10

Figure 1

• Almost 75% of developers are older than 35!

• More than 70% of the respondents have Masters degrees or/and doctorates.

• Almost 80% are full-time employed, 20% work for public agencies, 30% for small
businesses.

• 53% of the respondents currently reside in Europe and almost 29% in North
America

• 60% of them stated that they spend 21 hours or more per week on tasks related
to geospatial technologies (Q19).

• 71% of the respondents have been coding for more than 8 years.

4.2. Technology Stack

As expected, Python and JavaScript are the most popular programming languages.

OPEN GEOSPATIAL CONSORTIUM 21-019 11

Figure 2

• Regarding programming languages preferences (Q11), developers are most
familiar with Python (about 80%) followed by JavaScript (58%). Many of them are
also fluent in more traditional C/C++ programming languages (about 38%). Java is
still well presented in their technology stacks.

• Developers are very familiar with the mainstream open-source geospatial
projects. The most popular is the QGIS framework (for 90.40% of survey
participants) followed by PostGIS 82.40%, GeoServer 65.60%, and MapServer
48.80%. This also reflects the fact that features and maps are the most significant
and prominent geospatial data formats.

OPEN GEOSPATIAL CONSORTIUM 21-019 12

Figure 3

4.3. Learning Habits

• The preferable way to learn a technology seems to be to “follow a documented
how-to/tutorial” (30%) and “to read a tutorial” (20%).

• When learning about a new topic from the internet, “full written descriptions” are
the most preferable sources.

• Portal Stack Overflow (Q29) seems to be the most important tool for getting
support from the community (80%).

OPEN GEOSPATIAL CONSORTIUM 21-019 13

4.4. Familiarity with OGC (API) Standards

• About 20% of the respondents have contributed to the development of OGC
API Standards on GitHub. Still, these standards are not yet widely used in the
community because, although 75% of respondents have either used an OGC
Standard or read one of the documentations (Q24), a high percentage (30%)
answered that they don’t have any experience involving OGC API Standards
(Q25).

Figure 4

• Features, Maps and Tiles are the most important geospatial standards and
therefore the corresponding OGC APIs are of equal importance (Q27).

• Some of the respondents believe OGC API Standards are not easy to learn. On
the question of whether OGC API Standards are easy to learn (Q30) almost
30% answered that “Mastering the first API is hard, but then it becomes easier
to learn” while 40% thinks that “Some are very easy and others are extremely
difficult to learn”.

• About 57% believes that there is a lack of best-practice guides that help
differentiate the dos and don’ts”, as well as 38% that technical documentation is
hard to read or understand (Q32)!

OPEN GEOSPATIAL CONSORTIUM 21-019 14

4.5. Summary

The survey results suggest that a typical developer from the OGC/geospatial domain is an
experienced, well-educated individual focused on stable, well-established technologies.
Traditional and new technologies are equally used. For example they follow the recent trends
regarding scripting programming languages as they are predominant today.

Considering the results, the API experiments focused on developing examples and how-to
documentation as well as newer technologies and approaches to fill the gap between “stable
maturity” and “contemporary/emerging trends”.

Annex A lists the questions used to conduct developers survey.

OPEN GEOSPATIAL CONSORTIUM 21-019 15

5

API EXPERIMENTS
SCENARIOS OVERVIEW

OPEN GEOSPATIAL CONSORTIUM 21-019 16

5 API EXPERIMENTS SCENARIOS OVERVIEW

The following figure illustrates the work items and deliverables of this task.

Figure 5 — Deliverables and Packages

5.1. Participants

To test all components and guidance material, the work in this task was shared by participants
acting as:

a) Client developers

b) Server developers

c) Data providers

Client developers: Organization O1 implemented and delivered a client-side software library
in Python for both OGC API Features and OGC API Environmental Data Retrieval (EDR).

OPEN GEOSPATIAL CONSORTIUM 21-019 17

Organization O2 delivered a similar library in JavaScript and TypeScript. Both organizations
demonstrated their library in a client application.

Server developers: Organization O3 implemented and delivered a server-side software library
in Python for both OGC API — Features and OGC API — EDR. The library supported access
and exploration of both OGC API — Feature and OGC API — EDR resources and supported
data hosted on cloud object storage, cloud databases, and OGC Web Feature Service (WFS)
instances (with constraint functionality). O3 provided a deployable instance together with
deployment and execution documentation that allows third parties to test the deliverable(s) as
a microservice in different cloud environments. Organization O4 delivered a similar library in
JavaScript (alternatively TypeScript).

Data providers: Organization O5 deployed a microservice based on deliverables provided
by O3 and O4 in at least two different cloud environments (to the extent possible, as some
data backends are cloud specific, others work across cloud environments or are fully cloud
independent). In addition, O5 provided data in a database, cloud object storage, and as a Web
Feature Service instance to test data access (reuse of existing WFS and/or Web Coverage
Service (WCS) instances, even outside of the target cloud environment, is admitted). All of the
data sources were available to all organizations in this task and are freely accessible (i.e. object
storage and WFS/WCS endpoints are fully accessible, together with cloud native databases as
much as possible). Organization O6 performed similarly to O5.

Participants:

• Data providers:

• Skymantics: D167 Data Backend and Deployment 1

• Pixalytics: D168 Data Backend and Deployment 2

• Services (server developers):

• 52N: D165 API Experiments Server (Python)

• GMU: D166 API Experiments Server (JavaScript)

• Client developers:

• Skymantics: D175 API Experiments Client (Python)

• Solenix: D176 API Experiments Client (TypeScript)

5.2. API experiment scenarios

The figure below illustrates a generic Testbed-17 OGC APIs experiment component diagram
with interactions. A client with a dedicated OGC API software library (1) interacts with a data
service that implements one of the OGC APIs (2) at the front-end and includes a cloud native

OPEN GEOSPATIAL CONSORTIUM 21-019 18

data storage software library (3) at the backend that interacts with cloud native storage, such as
cloud databases, cloud object storage, or existing OGC Web Service instances such as WFS.

Figure 6 — Generic API experiments scenario

OPEN GEOSPATIAL CONSORTIUM 21-019 19

6

ARCHITECTURE AND
COMPONENTS

OPEN GEOSPATIAL CONSORTIUM 21-019 20

6 ARCHITECTURE AND COMPONENTS

This chapter describes the experiment architecture, focusing on addressing the concepts of
cloud-native architecture in conjunction with OGC APIs. Component diagrams are primarily used
to describe the structure, while process, deployment and other diagrams were used on demand.
Another chapter, on TIE experiments, lists all interactions among components which were used
to validate the approach.

6.1. Key Features of a Cloud-Native Application
Architecture

“Cloud native” is a design paradigm governed by the Cloud Native Computing Foundation
(CNCF). Cloud native applications can be defined as applications running in a containerized
environment, capable of moving in and out of the cloud, and that scale horizontally based on
varying workloads. They are deployed as microservices, abstracted to underlying infrastructure,
and delivered through a DevOps pipeline. Often, cloud-native applications are orchestrated by
an orchestration infrastructure. Following are the characteristics as defined by CNCF:

Containerization Cloud native applications are infrastructure agnostic
and use containers. Containers provide the application
with a lightweight runtime, libraries, and dependencies
that allow the application to run as a stand-alone
environment able to move in and out of the cloud
—independent of the nuances of a certain cloud
provider’s virtual servers or computer instances. With
this, containers are able to increase mobility between
different environments.

API Driven The term means to ensure compatibility across
platforms and simplify complexity by using APIs. The
most common API pattern used in the industry is
RESTful API. RESTful APIs are a component of loosely
coupled architecture. REST systems interact through
standard operations on resources, and do not rely on
the implementation of interfaces.

Microservices The term “microservice” is a design paradigm used
in cloud-native applications to break down large
components into multiple stand-alone deployable
parts. The component is divided and deployed into
smaller functional units. This way, maintenance in a
module does not affect the other functionalities, since
they can independently work on their own.

OPEN GEOSPATIAL CONSORTIUM 21-019 21

https://cloudnative101.dev/concepts/cloud-native/

Horizontal Scaling A key property of cloud-native applications is the
ability to horizontally scale in and out based on the
size of their payload.

Service Mesh A service mesh is a dedicated infrastructure layer
for handling service-to-service communication. The
service mesh is responsible for the reliable delivery
of requests through the potentially complex network
topology of services. In practice, the service mesh
is implemented as an array of lightweight network
proxies that are deployed alongside application code,
without the application needing to be aware.

Delivery Pipeline The state-of-the art software delivery pipeline is
supported by the concepts of Continuous Integration/
Continuous Delivery (CI/CD). CI/CD has the following
stages/components:

a) Source code is stored in a Repository

b) Each time new code is pushed to a
Repository, CI is automatically triggered
to create a build (image).

c) The images are then stored in a Registry
or Storage Bucket.

d) Through CD, images are pulled from the
registry for deployment.

e) CD then pushes the image to the target
environment (e.g., the Kubernetes
cluster).

6.2. Component Description Template

This section provides a template for formal description of components involved in the API
experiments. The template is structured based on the following characteristics:

• Functional Description

• Implemented, supported or required OGC APIs

• Used data sources

• Technology Stack

• Components, libraries, configurations

OPEN GEOSPATIAL CONSORTIUM 21-019 22

• Development paradigm/process/approach:

• Model Drives Software Development (MDSD), Domain Specific Language
(DSL), Code/API generation?

• Microservices? Service mesh?

• Cloud native design/implementation?

• CI/CD:

• Pipeline

• Containerization

• Container orchestration

• Cloud deployment

OPEN GEOSPATIAL CONSORTIUM 21-019 23

7

COMPONENT DESIGN AND
IMPLEMENTATION DETAILS

OPEN GEOSPATIAL CONSORTIUM 21-019 24

7 COMPONENT DESIGN AND
IMPLEMENTATION DETAILS

7.1. D165 API Experiments Server (Python)

The API Experiments Server implementation comprised separate implementations of OGC
API — Features (Features) and OGC API — Environmental Data Retrieval (EDR). Both server
implementations were developed in the Python programming language and around the Flask
web framework. Flask provides the core capabilities to implement web interfaces. The basic
implementation of both OGC API Standards is supported by the use of code generators.
The model classes and controller classes (server stubs) are automatically generated from the
respective OpenAPI specifications of Features and EDR by using the OpenAPI Generator
project. OpenAPI Generator offers a specific code generator that produces basic Flask-based
executable server applications.

The source code, corresponding documentation and deployment instructions are available on
Github.

7.1.1. OGC API — Features Server

The architecture of the Features implementation is structured into modules. The modular
approach enables different types of data backends to be easily integrated in a similar way.
Within this task, connectivity’s for OGC Web Feature Service (WFS) and Elasticsearch backends
were implemented.

7.1.1.1. Core Architecture

• Controller: Controller classes accept API requests, choose the correct backend
to handle a request and return the result to the client. The controller classes
(empty stubs) are generated by the OpenAPI code generator along with the
model classes.

• Request transformer: A request transformer is specific to the backend type.
Request transformers convert a request to the OGC API — Features into a
corresponding request to the specific data backend. For example a request to the
/items endpoint is converted into a WFS GetFeature request.

• Query transformer: A query transformer is a backend specific implementation
that translates query parameters into the domain specific language of the
backend. For example a query transformer translates the datetime filter
parameter of the /items endpoint into a WFS filter expression.

OPEN GEOSPATIAL CONSORTIUM 21-019 25

https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/edr/
https://flask.palletsprojects.com/en/2.0.x/
https://gitlab.ogc.org/ogc/T17-D040-API-Experiments-ER/-/blob/master/ER/code_generation.adoc
https://github.com/OpenAPITools/openapi-generator
https://github.com/opengeospatial/T17-API-D165
https://www.elastic.co

• Format transformer: A format transformer is optionally interposed if a data
backend has no support for the GeoJSON format.

• Backend: A backend stores the configuration for an instance of a backend type
(e.g URL of a WFS instance) and determines which type of request transformer
has to be used for that specific backend type.

Figure 7 — schematic representation of the architecture of the
OGC API — Features implementation with two data backends

7.1.1.2. Data Backends

7.1.1.2.1. OGC Web Feature Service Backend

The WFS backend can be used to create an OGC API — Features wrapper for an arbitrary WFS
(2.x) instance. A request to the /items endpoint is converted to a GetFeature WFS request. The
metadata for the collection endpoints of Features is automatically obtained and parsed from the
WFS capabilities document.

OPEN GEOSPATIAL CONSORTIUM 21-019 26

7.1.1.2.2. Elasticsearch Backend

The Elasticsearch backend implementation is mainly meant to be used with the OGC API —
Records GeoJSON features that were generated and indexed in the D168 Data Backend and
Deployment task. With the Elasticsearch backend the Features implementation can be used as
an OGC API — Records implementation at the same time since the API endpoints are identical.
The Elasticsearch backend is able to connect to Amazon Web Service (AWS) Elasticsearch
Service/OpenSearch Service instances. Therefore the Elasticsearch Python package version
7.13.4 must be used because newer versions of the package do not connect to the AWS flavor
of Elasticsearch.

In general the Elasticsearch backend is able to serve generic GeoJSON features indexed in an
Elasticsearch index. An Elasticsearch index corresponds to a collection. The assumption is made
that the GeoJSON features match the general structure of the OGC API — Records definitions in
order to implement the filter capabilities (e.g. datetime filter) of OGC API — Features.

7.1.2. OGI API — EDR (Environmental Data Retrieval) Server

In the same way as the Features implementation, the EDR implementation has a modular
structure in order to enable seamless integration of different data backend types. Within this
task the capability to perform data queries on NetCDF files was implemented. The EDR server
application supports the position, radius and area data query endpoints of the EDR Standard.
Though the OGC API — Features and — EDR implementations are separate applications the
overall architecture is roughly the same.

When using the code generator there were originally many errors in the generated code for the
EDR OpenAPI specification. The main reasons for the errors are the frequent use of the anyOf
and oneOf keywords in the OpenAPI specification and the fact that the EDR specification is
more comprehensive and complex compared to the Features specification. In order to mitigate
these issues a custom, lean and simplified version of the OpenAPI EDR Standard was created.
This custom version supports only two-dimensional, temporal data and only serves netCDF data
as response. All data query endpoints that were not planned to be implemented — that means
all except position, radius and area — were removed from the implementation to keep it as lean
as possible. This resulted in fewer errors in the generated code which could be fixed manually
afterwards.

7.1.2.1. Core Architecture

• Controller: Controller classes accept API requests, choose the correct backend
to handle a request and return the result to the client. The controller classes
(empty stubs) are generated by the OpenAPI code generator along with the
model classes.

• Request transformer: A request transformer is specific to the backend type. A
Request transformer converts a request to the OGC API — EDR interface into

OPEN GEOSPATIAL CONSORTIUM 21-019 27

https://ogcapi.ogc.org/records/
https://ogcapi.ogc.org/records/
https://gitlab.ogc.org/ogc/T17-D040-API-Experiments-ER/-/blob/master/ER/arc_comp_d168.adoc
https://gitlab.ogc.org/ogc/T17-D040-API-Experiments-ER/-/blob/master/ER/arc_comp_d168.adoc
https://gitlab.ogc.org/ogc/T17-D040-API-Experiments-ER/-/blob/master/ER/arc_comp_d168.adoc#user-content-catalogs-deployed-via-amazon-opensearch-previously-called-elasticsearch-service
https://gitlab.ogc.org/ogc/T17-D040-API-Experiments-ER/-/blob/master/ER/arc_comp_d168.adoc#user-content-catalogs-deployed-via-amazon-opensearch-previously-called-elasticsearch-service
https://gitlab.ogc.org/ogc/T17-D040-API-Experiments-ER/-/blob/master/ER/code_generation.adoc#user-content-caveats-with-generated-code-and-code-generators
https://gitlab.ogc.org/ogc/T17-D040-API-Experiments-ER/-/blob/master/ER/code_generation.adoc#user-content-caveats-with-generated-code-and-code-generators

a corresponding request to the specific data backend. A request transformer
delegates the execution of data query requests to a data query transformer.

• Data query transformer: A query transformer is a backend specific
implementation that executes data query requests for data served by a data
backend.

• Format transformer: A format transformer is optionally interposed if a data
backend has no support for the NetCDF format. Since the OGC API — EDR
implementation only serves netCDF files and has only a NetCDF backend there
are no format transformers used.

• Backend: A backend stores the configuration for an instance of a backend type
(e.g location of a NetCDF file) and determines which type of request transformer
has to be used for the specific backend type.

Figure 8 — schematic representation of the architecture of the
OGC API — EDR implementation with a single data backend

7.1.2.2. Data Backends

7.1.2.2.1. netCDF backend

The NetCDF backend parses NetCDF files. Each file corresponds to an instance of a collection.
The backend is adapted to the use of NetCDF land cover classification data provided by the

OPEN GEOSPATIAL CONSORTIUM 21-019 28

D168 Data Backend and Deployment task. The general assumptions about the internal structure
of these files is that each file contains a single data array, which has the dimensions x, y and time.

To implement data queries the NetCDF backend implementation mainly uses the Python
packages Rasterio, xarray and Shapely. In addition, a package called rioxarray is used. Rasterio is
used to clip raster data to a specific geometry and xarray is used to implement filter capabilities
like the optional datetime filter. The internal data structure of xarray resembles the structure
of a NetCDF file. rioxarray combines the functionalities of Rasterio and xarray which supports
convenient use without transformation between (internal) data formats. Shapely is used to parse
WKT geometries that are passed to the data query endpoints as query parameters.

7.1.3. Overall Design Decisions

7.1.3.1. Separating Implementations of OGC API — Features and OGC API — EDR

The implementation of OGC API — Features and OGC API — EDR was split into two separate
services that do not share any common code base. Integrating Features and EDR into a single
API instance was considered but rejected.

Another approach that was also rejected was the creation of a Python package that contained
the (common) data model classes and then imported by both applications. The decision for
separate applications was based on the difficulties that arose with code generation and that
both OGC API Standards contain a few deviations or different concepts despite many similarities
in detail.

Regarding code generation, the results for OGC API — Features and especially OGC API — EDR
already showed that code generation becomes more error prone with increasing complexity of
the underlying OpenAPI specification. The generated code for OGC API — EDR contained more
errors compared to the code for the (simpler) Features specification. This led to the necessity
to simplify the OpenAPI definition document provided with the OGC API — EDR. An OpenAPI
specification that integrates Features and OGC API — EDR would have been even more complex
and therefore the generated code would have been flawed and hard to rectify.

From the conceptual point of view, there are some concepts that have similar names but
the meaning is slightly different. For example both APIs specify the /collections/{collectionID}
endpoint to retrieve metadata for collection of data. In Features a collection is always a set of
features while in OGC API — EDR Standard a collection can also be a coverage. In addition,
in OGC API — EDR a collection can have multiple instances such as distinguishing multiple
measurement series. These conceptual differences lead to slight differences in the data
model. In OGC API — EDR a collection has additional attributes compared to the OGC API —
Features Standard. As described, in OGC API — EDR a collection has multiple instances (a list of
collections) and furthermore has supplemental attributes to describe measurement parameters.

A common data model for both implementations would also have had to meet the requirements
of the OGC API — EDR Standard although some attributes are not required in the OGC API —
Features Standard. This means that the same class of data model is used differently in different
contexts. This can be seen as an anti-pattern. The OGC API Standards are not yet fully aligned
with OGC API — Common, partly because OGC API – Common was still a candidate standard at

OPEN GEOSPATIAL CONSORTIUM 21-019 29

https://gitlab.ogc.org/ogc/T17-D040-API-Experiments-ER/-/blob/master/ER/arc_comp_d168.adoc#D168
https://rasterio.readthedocs.io/en/latest/
http://xarray.pydata.org/en/stable/
https://shapely.readthedocs.io/en/stable/manual.html
https://corteva.github.io/rioxarray/stable/readme.html
https://ogcapi.ogc.org/common/

the time of this testbed. As such, the data models have a few (minor) deviations. Since the first
version of the OGC API — EDR Standard was only recently published and adjustments to the
specification and data model are to be expected; this could also make a common code base hard
to maintain.

7.1.3.2. Development and Deployment

Development, testing and deployment of both server applications was performed using a
container-based platform for building applications called Docker. Docker simplifies service
dependency management as the developer/user does not need to install dependencies on a
local system (except the Docker engine itself). However, deploying and running the applications
without Docker is still possible if all dependencies are installed manually. The decision to
primarily use Docker stems from the need to have other software libraries installed in addition
to simple Python packages. In particular the EDR implementation (respectively the used Python
packages like Rasterio) require an installation of GDAL. While the Python package can easily
be installed in a virtual environment with simple tools like Venv, the installation of GDAL
needs more advanced tools like Conda. The assumption is that Docker is more known and
better understood by most developers and users. In addition, with Docker the applications are
completely separated from the environment and operation system.

In order to support development and production-ready deployment, the code repository
contains Docker files and Docker Compose definitions with development and production
profiles. The development profile uses the built-in Flask development server (which is not meant
to be used in a production environment) and installs additional debugging dependencies. This
allows developers to attach a remote debugger to the running Docker container and debug
the application in the development environment of their choice (e.g. Visual Studio Code). The
production profile does not contain any debugging dependencies and uses nginx and uWSGI
instead of the development server and in order to serve requests fast and securely.

7.2. D166 API Experiments Server (JavaScript)

This section describes the server component as developed, documented and delivered by task
D166 (JavaScript) and communicates all experiences and lessons learned back to the server
provider to help optimizing documentation and scripts.

7.2.1. Development Environment

This implementation uses JavaScript to develop servers of OGC API-Features and API-
Environmental Data Retrieval (EDR). The base system is as follows.

• Debian-based Linux systems (Debian 10 or higher or Ubuntu 18.04 or higher)

• NodeJS >= 10.6

OPEN GEOSPATIAL CONSORTIUM 21-019 30

https://gdal.org/
https://docs.python.org/3/library/venv.html
https://docs.conda.io/en/latest/
https://www.nginx.com/
https://uwsgi-docs.readthedocs.io/en/latest/
https://www.ogc.org/
https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/edr/
https://ogcapi.ogc.org/edr/

• NPM >= 6.10.0

• GDAL 2 or higher

• PostgreSQL 12+/Proj 6+/PostGIS 3+(optional)

7.2.2. Architecture

Figure 9 — Overall architecture

OPEN GEOSPATIAL CONSORTIUM 21-019 31

7.2.3. Deployment and Test Services

The demonstration service was deployed at https://aws4ogc17.webmapengine.com/ . This
deployment is based on an Amazon Machine Image (AMI).

7.2.3.1. Deployment Through Source Code

This section contains information on how to deploy the JavaScript server implementation
through cloning the source code with configuration.

7.2.3.1.1. Requirements of Virtual Machine

The following are tested and recommended system configurations:

• Ubuntu 18.04 or higher or Debian 10 (Buster) or higher

• NodeJS (>= 10.6) and NPM (>= 6.10.0)

• git

• GDAL 2 or higher

• PM2 Process Management

• HTTP server (e.g. Apache or nginx) for proxy

7.2.3.1.2. Cloning of Source

Use git to clone the source into a local work directory.

git clone https://github.com/opengeospatial/T17-API-D166.git

7.2.3.1.3. OGC API — Features

Change working directory to “T17-API-D166/features”. The following command will pre-install
all required libraries.

npm install

Start the Service

Run the following command to start the server as a service.

sudo pm2 start index.js

Run the following command to stop the server.

OPEN GEOSPATIAL CONSORTIUM 21-019 32

https://aws4ogc17.webmapengine.com/

sudo pm2 stop index.js

Configurations

Service Endpoints

Edit config.js to configure the running port and the external service endpoint. The external
service endpoint can be different from the local server endpoint with port if the proxy is set up
to redirect the service. If both services (API-Features and EDR) run on the same virtual machine,
different ports should be configured.

Configuring Back-end PostGIS Database

Edit the file ‘data/collections.json’ to add a new back-end PostGIS database. The new element
should be added under node ‘resources’. The following is one example -

"tl_2020_us_county": {
 "type": "collection",
 "title": "Tiger Line US Counties",
 "description": "Counties, US Census, TIGER/Line",
 "keywords": [
 "counties",
 "US",
 "TIGER/Line"
],
 "links": [
 {
 "type": "text/html",
 "rel": "canonical",
 "title": "information",
 "href": "https://www.census.gov/geographies/mapping-files/time-series/
geo/tiger-line-file.html",
 "hreflang": "en-US"
 }
],
 "extents": {
 "spatial": {
 "bbox": [
 -179.231086,
 -14.601813,
 179.859681,
 71.439786
],
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 }
 },
 "providers": [
 {
 "type": "feature",
 "name": "PostGIS",
 "data": "postgresql://tluser:tl2020@localhost:5432/tl",
 "id_field": "ogc_fid",
 "title_field": "name",
 "table": "tl_2020_us_county",
 "geometry":{
 "geom_field":"wkb_geometry",
 "geom_format":"ewkb"
 }
 }
]
},

OPEN GEOSPATIAL CONSORTIUM 21-019 33

Configuring Back-end WFS Service Endpoints

Edit the file ‘data/collections.json’ to add new back-end WFS Service Endpoints. The new
element should be added under node ‘resources’. The following is one example to add one single
feature collection -

"DC_Building_Footprints": {
 "type": "collection",
 "title": "DC Building Footprints",
 "description": "DC building footprints.",
 "keywords": [
 "DC",
 "US",
 "building",
 "footprint"
],
 "links": [
 {
 "type": "text/html",
 "rel": "canonical",
 "title": "information",
 "href": "https://cubewerx.pvretano.com/cubewerx/cubeserv/default/ogcapi/
usbuildingfootprints/collections/DC_Building_Footprints",
 "hreflang": "en-US"
 }
],
 "extents": {
 "spatial": {
 "bbox": [
 -77.115085,
 38.810444,
 -76.909707,
 38.99561
],
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 }
 },
 "providers": [
 {
 "type": "feature",
 "name": "WFS202",
 "id_field": "gml_id",
 "typename": "DC_Building_Footprints",
 "data": "https://www.pvretano.com/cubewerx/cubeserv?datastore=
usbuildingfootprints&"
 }
]
},

All feature collections may be added as the back-end service. The following resource
configuration shows an example using WFS capabilities.

"daraa": {
 "type": "collections",
 "title": "CubeSERV WFS - Daraa",
 "description": "CubeSERV WFS - Daraa service, support version 2.0.2.",
 "keywords": [
 "WFS",
 "feature",
 "capabilities"
],
 "links": [

OPEN GEOSPATIAL CONSORTIUM 21-019 34

 {
 "type": "text/html",
 "rel": "canonical",
 "title": "information",
 "href": "https://www.pvretano.com/cubewerx/cubeserv?DATASTORE=
daraa&SERVICE=WFS",
 "hreflang": "en-US"
 }
],
 "providers": [
 {
 "type": "collection",
 "name": "WFS202Capabilities",
 "data": "https://test.cubewerx.com/cubewerx/cubeserv/demo?DATASTORE=
Daraa&SERVICE=WFS&REQUEST=GetCapabilities&AcceptVersions=2.0.2&AcceptFormats=
text/xml",
 "removeprefix":"cw"
 }
]
},

7.2.3.1.4. OGC API — Environmental Data Retrieval

Change working directory to “T17-API-D166/edr”. The following command will pre-install all
required libraries.

npm install

Start the Service

Run the following command to start the server as a service.

sudo pm2 start index.js

Run the following command to stop the server.

sudo pm2 stop index.js

Configurations

Service Endpoints

Edit config.js to configure the running port and the external service endpoint. The external
service endpoint can be different from the local server endpoint with port if the proxy is set up
to redirect the service.

Configuring Back-end PostGIS Database

Edit the file ‘data/collections.json’ to add new back-end PostGIS database. The new element
should be added under node ‘resources’. The following is one example -

"noaa_global_hourly_surface": {
 "type": "collection",
 "title": "The Integrated Surface Dataset (global, hourly)",
 "description": "The Integrated Surface Dataset (ISD) is composed of worldwide
 surface weather observations from over 35,000 stations, though the best
 spatial coverage is evident in North America, Europe, Australia, and parts of
 Asia. Parameters included are: air quality, atmospheric pressure, atmospheric
 temperature/dew point, atmospheric winds, clouds, precipitation, ocean waves,

OPEN GEOSPATIAL CONSORTIUM 21-019 35

 tides and more. ISD refers to the data contained within the digital database
 as well as the format in which the hourly, synoptic (3-hourly), and daily
 weather observations are stored. The format conforms to Federal Information
 Processing Standards (FIPS). ISD provides hourly data that can be used in
 a wide range of climatological applications. For some stations, data may go
 as far back as 1901, though most data show a substantial increase in volume
 in the 1940s and again in the early 1970s. Currently, there are over 14,000
 'active' stations updated daily in the database. For user convenience, a
 subset of just the hourly data is available to users for download. It is
 referred to as Integrated Surface Global Hourly data, see associated download
 links for access to this subset.",
 "keywords": [
 "Integrated Surface Dataset",
 "Global",
 "NOAA"
],
 "links": [
 {
 "type": "text/html",
 "rel": "canonical",
 "title": "information",
 "href": "https://www.ncdc.noaa.gov/isd",
 "hreflang": "en-US"
 }
],
 "extents": {
 "spatial": {
 "bbox": [
 -180.00,
 -90.00,
 180.00,
 90.00
],
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 },
 "temporal": {
 "interval": [{
 "begin":"1972-01-01T00:00:00Z",
 "end":"1972-12-31T23:59:59Z"
 }],
 "trs": "TIMECRS[\"DateTime\",TDATUM[\"Gregorian Calendar
\"],CS[TemporalDateTime,1],AXIS[\"Time (T)\",future]"
 }
 },
 "data_queries" : {
 "position": {
 "link": {
 "href": "/collections/noaa_global_hourly_surface/position?coords=
{coords}",
 "hreflang": "en",
 "rel": "data",
 "templated": true,
 "variables": {
 "title": "Position query",
 "description": "Position query",
 "query_type": "position",
 "coords" :{
 "description": "Well Known Text POINT value i.e. POINT(-
120, 55)"
 },
 "output_formats": [
 "CoverageJSON",
 "GeoJSON",

OPEN GEOSPATIAL CONSORTIUM 21-019 36

 "IWXXM"
],
 "default_output_format": "IWXXM",
 "crs_details": [
 {
 "crs": "CRS84",
 "wkt": "GEOGCS[\"WGS 84\",DATUM[\"WGS_
1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG
\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich
\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.
01745329251994328,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4326\"]]"
 }
]
 }
 },
 "linkrel":"relative"
 },
 "radius": {
 "link": {
 "href": "/collections/noaa_global_hourly_surface/radius?coords=
{coords}",
 "hreflang": "en",
 "rel": "data",
 "templated": true,
 "variables": {
 "title": "Radius query",
 "description": "Radius query",
 "query_type": "radius",
 "coords" :{
 "description": "Well Known Text POINT value i.e. POINT(-
120, 55)"
 },
 "output_formats": [
 "CoverageJSON",
 "GeoJSON",
 "IWXXM"
],
 "default_output_format": "GeoJSON",
 "within_units": [
 "km",
 "miles"
],
 "crs_details": [
 {
 "crs": "CRS84",
 "wkt": "GEOGCS[\"WGS 84\",DATUM[\"WGS_
1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG
\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich
\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.
01745329251994328,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4326\"]]"
 }
]
 }
 },
 "linkrel":"relative"
 },
 "area": {
 "link": {
 "href": "http://www.example.org/edr/collections/hrly_obs/area?
coords={coords}",
 "hreflang": "en",
 "rel": "data",
 "templated": true,

OPEN GEOSPATIAL CONSORTIUM 21-019 37

 "variables": {
 "title": "Area query",
 "description": "Area query",
 "query_type": "area",
 "coords" :{
 "description": "Well Known Text POLYGON value i.e.
 POLYGON((-79 40,-79 38,-75 38,-75 41,-79 40))"
 },
 "output_formats": [
 "CoverageJSON",
 "GeoJSON",
 "BUFR",
 "IWXXM"
],
 "default_output_format": "CoverageJSON",
 "crs_details": [
 {
 "crs": "CRS84",
 "wkt": "GEOGCS[\"WGS 84\",DATUM[\"WGS_
1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG
\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich
\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.
01745329251994328,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4326\"]]"
 }
]
 }
 }
 },
 "locations": {
 "link": {
 "href": "/collections/noaa_global_hourly_surface/locations",
 "hreflang": "en",
 "rel": "data",
 "templated": false,
 "variables": {
 "title": "Location query",
 "description": "Location query",
 "query_type": "locations",
 "output_formats": [
 "application%2Fgeo%2Bjson",
 "text%2Fhtml"
],
 "default_output_format": "application%2Fgeo%2Bjson",
 "crs_details": [
 {
 "crs": "CRS84",
 "wkt": "GEOGCS[\"WGS 84\",DATUM[\"WGS_
1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG
\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich
\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.
01745329251994328,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4326\"]]"
 }
]
 }
 },
 "linkrel":"relative"
 }
 },
 "crs": [
 "CRS84"
],
 "output_formats": [
 "application/geo+json",

OPEN GEOSPATIAL CONSORTIUM 21-019 38

 "text/html"
],
 "parameter_names": {
 },
 "providers": [
 {
 "type": "feature",
 "name": "PostGIS",
 "data": "postgresql://noaauser:noaa2020@localhost:5432/noaa",
 "id_field": "ogc_id",
 "locid_field": "station",
 "title_field": "station",
 "table": "noaa_global_surface",
 "geometry":{
 "geom_field":"the_geom",
 "geom_format":"ewkb"
 },
 "time_field":{
 "time_format":"datetime",
 "datetime":"date"
 }
 }
]
},

Configuring Back-end WFS Service Endpoints

Service instances can be added as back-end. This is especially useful for those with “instances”
path.

7.2.4. Running Through Docker

Docker images have to be created for a quick-start of the servers.

7.2.4.1. Running OGC API — Features Through Docker

The following command runs the service directly using Docker:

docker run -p 8080:8080 -d eugenegmu/ogc-api-features-javascript

To test the server, you may browse to http://localhost:8080 to test the results. This image
does not have the PostGIS set up locally. The first three collections do not work properly.
Configuration needs to be done if a proper PostGIS database is set up with populated data. If a
port is redirected to a different port other than 8080, the configuration needs to be updated. To
get into the image, the following command may be used.

docker exec -it <container id or name> /bin/bash

The container ID or name can be found by running “docker container ls”.

7.2.4.2. Running OGC API — EDR Through Docker

The following command runs the service directly using Docker:

OPEN GEOSPATIAL CONSORTIUM 21-019 39

http://localhost:8080

docker run -p 8080:8080 -d eugenegmu/ogc-api-edr-javascript

To test the server, browse to http://localhost:8080/edr/ to test the results. This image does not
have the PostGIS set up locally. Again, configuration needs to be done with a proper PostGIS
database set up with populated data. If a port is redirected to a different port other than 8080,
the configuration needs to be updated. To get into the image, the following command may be
used.

docker exec -it <container id or name> /bin/bash

The container ID or name can be found by running “docker container ls”.

7.2.5. Test Services

The demonstration deployments can be found at Demonstration Services for OGC Testbed 17.

7.2.6. OGC API — Features Test Service

The test service is deployed at API-Features.

Landing Page

The implementation of the OGC API — Features Standard supports two media content types by
default: application/json and text/html. Encoding negotiation is supported. For browsers, “text/
html” would be the matching format. The following figure shows one example landing page.

Figure 10 — Landing page of the demonstration OGC API — Features server

Testing API using SwaggerUI: The SwaggerUI is enabled for users to test each API path. This is
the response of an API document in text/html.

Features in a collection: The response for collection data supports encodings in both application/
geo+json and text/html. The text/html shows a linked map and table for browsing items by
pages. The following shows one example of a collection in the browser.

OPEN GEOSPATIAL CONSORTIUM 21-019 40

http://localhost:8080/edr/
https://aws4ogc17.webmapengine.com/
https://aws4ogc17.webmapengine.com/wfs3/

Figure 11 — Collection item page of the demonstration OGC API — Features server

7.2.7. Test Service for OGC API — EDR

The test service is deployed at API-EDR.

Landing Page

The implementation of the API — EDR supports two formats by default: application/json and
text/html. Encoding negotiation is supported. For browsers, “text/html” would be the matching
format. The following figure shows one example landing page.

OPEN GEOSPATIAL CONSORTIUM 21-019 41

https://aws4ogc17.webmapengine.com/edr/

Figure 12 — Landing page of the demonstration OGC API — EDR server

Testing API using SwaggerUI: The SwaggerUI is enabled for users to test each API path. This is
the response of an API document in text/html.

Data query in a collection: Several data queries are supported for each collection in the API-EDR
service. The following figure shows one example collection which supports queries of position,
radius, area, and location.

OPEN GEOSPATIAL CONSORTIUM 21-019 42

Figure 13 — The Collections page of the demonstration OGC API — EDR server

The response for collection data supports encodings in both application/geo+json and
text/html. The text/html shows a linked map and table for browsing features by pages.
The following shows one example of a collection in the browser. The request is https://
aws4ogc17.webmapengine.com/edr/collections/noaa_global_hourly_surface/items?f=text
%2Fhtml&datetime=1972-07-25T00:00:00.000Z/1972-07-25T23:59:59.000Z

OPEN GEOSPATIAL CONSORTIUM 21-019 43

https://aws4ogc17.webmapengine.com/edr/collections/noaa_global_hourly_surface/items?f=text%2Fhtml&datetime=1972-07-25T00:00:00.000Z/1972-07-25T23:59:59.000Z
https://aws4ogc17.webmapengine.com/edr/collections/noaa_global_hourly_surface/items?f=text%2Fhtml&datetime=1972-07-25T00:00:00.000Z/1972-07-25T23:59:59.000Z
https://aws4ogc17.webmapengine.com/edr/collections/noaa_global_hourly_surface/items?f=text%2Fhtml&datetime=1972-07-25T00:00:00.000Z/1972-07-25T23:59:59.000Z

Figure 14 — Collection item page of the demonstration OGC API — EDR server

7.2.8. Extensions to the Library

The implementation of the library for both API-Features and API-Environmental Data Retrieval
supports extension through the following mechanisms: One is the extension to support different
back-end data sources and another is the extension to support different response formats.

7.2.8.1. Add a new backend data source

The Model extension manages the backend data models. The Data provider extension needs to
support query interfaces as defined. An example provider can be seen in PostGIS.js.

OPEN GEOSPATIAL CONSORTIUM 21-019 44

7.2.8.2. Support new format

The Writer extension manages the supported formats. Each writer needs to support both
collection items and individual features. TextHtml.js is an example writer.

7.2.9. Lessons learned

The following cover discussions about the implementation of API -Features and API — EDR
services using JavaScript.

• Usability of OpenAPI-Generator: The stubs generated by the OpenAPI-
Generator provide a solid base for implementing the service. Minor modifications
are necessary to work with specific data types.

• Limitations of supporting libraries in pure JavaScript: There are fewer libraries
available in pure JavaScript. Many require a system call to libraries from modules
or programs implemented in other languages, such as C/C++ and Python. This
increases the complexity in deployment and running environment.

• Working with different backend data sources: Different backend data have
different levels of support on realizing the interface functions. File-based dataset
may require specific programs to support the spatiotemporal queries. Databases
with spatial modules have full spatiotemporal query support with proper indexing.
Legacy services, such as old versions of WFS, have various capabilities on
supporting queries depending on their implementations.

• Extensibility of API libraries: Response format supports media type negotiation.
Backend services are pluggables with different modules. Extensions are
supported in two aspects — backend data source provider and output data.

• Performances: Certain profiled query-functions of API-EDR may not be easy to
achieve ideal response time when a large dataset is in process. In the AWS cloud,
one approach may be to set up a high-performance data service to serve data.
For example, AWS RDS database service can be used to serve data. The PostGIS
module can be configured to connect with AWS RDS PostgreSQL/PostGIS. The
capability of handling big data can be achieved through a similar cloud-based
database as the service.

7.3. D167 Data Backend and Deployment

The D167 Data Backend and Deployment consists of three different components:

OPEN GEOSPATIAL CONSORTIUM 21-019 45

a) A tiles server generator, generating the tiles from OpenStreetMap data and
publishing them through an Apache Web Server

b) An OpenStreetMap dataset generator, storing the data in PostGIS datasets (in
AWS, CloudFerro or CloudSigma) or as cloud objects in AWS S3 buckets

c) A system to publish array-oriented datasets in a tiled manner, through a STAC
catalog and storing the resulting NetCDF files in AWS S3 buckets

Figure 15 — Component diagram

The focus for all the components was in automation and ease of execution, following a DevOps
approach and lowering the learning curve for new developers to deploy advanced environments.
For example, the script for the tiles server generator covers the following actions:

a) Installs/compiles all the software dependencies.

b) Installs a PostgreSQL/PostGIS database and sets it up.

c) Downloads and configures a stylesheet.

OPEN GEOSPATIAL CONSORTIUM 21-019 46

d) Downloads OSM data for the specific country and inserts it into the database.

e) Downloads additional shapefiles and fonts.

f) Sets up Apache HTTP Server with rendered.

g) Launches Apache Server.

The process for deploying a tiles server using a Docker container was also tested and
documented. In addition, a simple HTML/JavaScript client to test the tiles server was developed
and added to the repository.

The idea of tiling NetCDF files was to experiment with solutions for data providers to offer array
oriented datasets to service providers that can be consumed on demand or to select the data
of interest based on the bounding boxes extension. As the concept of tiling is well understood
in the geospatial world, instead of publishing a large NetCDF covering the whole world, the
content can be tiled by levels, chopping the content into smaller chunks that are more easily
transferable through the network. These smaller NetCDF files can be published through a STAC
catalog that documents the extent of each file, allowing service providers to automate the
search for the data of interest.

OPEN GEOSPATIAL CONSORTIUM 21-019 47

Figure 16 — NetCDF tiling concept

The source code and detailed documentation on how to deploy these components are available
at https://github.com/opengeospatial/T17-API-D167. The datasets are deployed in the
following endpoints:

Database Access

OPEN GEOSPATIAL CONSORTIUM 21-019 48

https://github.com/opengeospatial/T17-API-D167

• AWS:

• IP: 18.189.112.137

• Port: 5432

• User: apipostgres

• Pwd: @P$_2021!

• Database: dbapi4

• Tables: geojson_places, geojson_waterways, geojson_polygons

• CloudSigma:

• IP: 162.213.36.126

• Port: 5432

• User: dbasigma

• Pwd: Db@_S$gma2021!

• Database: gis

• Tables: geojson_places, geojson_waterways, geojson_polygons

• CloudFerro:

• IP: 185.178.85.176

• Port: 5432

• User: apipostgres

• Pwd: Db@_F$rro2021!

• Database: dbferro01

• Tables: geojson_places, geojson_waterways, geojson_polygons

• Example: psql -W -U apipostgres -p 5432 -h 185.178.85.176 dbferro01

AWS S3 buckets

OPEN GEOSPATIAL CONSORTIUM 21-019 49

• Polygons (2883 elements):

• https://ogc-polygons.s3.us-east-2.amazonaws.com/

• Examples: https://ogc-polygons.s3.us-east-2.amazonaws.
com/332195921.json, https://ogc-polygons.s3.us-east-2.amazonaws.
com/704263360.json

• Points (1776 elements):

• https://ogc-points.s3.us-east-2.amazonaws.com/

• Examples: https://ogc-points.s3.us-east-2.amazonaws.com/1143922944.
json, https://ogc-points.s3.us-east-2.amazonaws.com/1242125200.json

Tiles server

• Area: Northeast Spain

• End point: http://3.143.92.80/tileserver/{z}/{x}/{y}.png

• Example: http://3.143.92.80/tileserver/0/0/0.png

7.3.1. Challenges and lessons learned

The scripting and automation approach used in completing this deliverable was to deploy
datasets and services in the cloud. This approach provides numerous benefits such as:

a) The deployed datasets and their environments are similar, easing the maintenance
effort.

b) Human errors are minimized.

c) The time required for deployment is greatly reduced.

d) Deep technical knowledge is not needed, lowering the learning curve and
allowing for new developers to quickly become productive.

However, developing these scripts required considerably more effort than a single deployment
and they also require more technical knowledge. Scripts need to be structured and be reusable,
as well as handle errors or generic configurations.

Besides, configuring cloud services and storage needs to be carefully set up and tested, because
an error or untidiness in a deployment might result in security risks or unnecessary high costs.
These risks are multiplied when developing a script that will be reused, especially if users are
different and have a lower technical knowledge than the original developer.

OPEN GEOSPATIAL CONSORTIUM 21-019 50

https://ogc-polygons.s3.us-east-2.amazonaws.com/
https://ogc-polygons.s3.us-east-2.amazonaws.com/332195921.json
https://ogc-polygons.s3.us-east-2.amazonaws.com/332195921.json
https://ogc-polygons.s3.us-east-2.amazonaws.com/704263360.json
https://ogc-polygons.s3.us-east-2.amazonaws.com/704263360.json
https://ogc-points.s3.us-east-2.amazonaws.com/
https://ogc-points.s3.us-east-2.amazonaws.com/1143922944.json
https://ogc-points.s3.us-east-2.amazonaws.com/1143922944.json
https://ogc-points.s3.us-east-2.amazonaws.com/1242125200.json
http://3.143.92.80/tileserver/%7Bz%7D/%7Bx%7D/%7By%7D.png
http://3.143.92.80/tileserver/0/0/0.png

The databases were deployed in three different clouds: AWS, CloudSigma and CloudFerro.
There were not substantial differences among them from the functional point of view. AWS
seemed more usable but eventually all three offered a similar set of features.

The extraction and handling of OpenStreetMap data was more troublesome than initially
expected, with complex SQL queries required to extract specific datasets, including coordinate
reference system transformation. These queries are not an important challenge for a seasoned
geospatial developer, but they might be a major blocker for newcomers.

The NetCDF tiling concept resulted in a relatively easy-to-understand concept and its
implementation was simple enough. However, testing with 0 tiling levels, it required 10 times
more storage space as the same data needed to be packed for all the levels, and each file had
considerable overhead. Moreover, the structure of the STAC catalog became more complex.
Instead of the original NetCDF file being an item in a STAC catalog, the tiling structure required
a sub-catalog containing a collection for each tiling level which then would publish each tiled file
as an item.

During the TIEs, the server API implementations were deployed in AWS following the
instructions documented in the repositories. The technical level required for these deployments
was adequate for an experienced IT professional, but it was too high for newcomers. As part
of future work, documentation in the repositories should be improved to ease access for less
experienced professionals.

The experience with Docker when deploying D165 and D166 server APIs was positive: The
process was simple and easily encapsulated. However, in real-life environments the risks of over-
architecting should be considered among different alternatives before making a decision on how
to deploy a server API.

7.4. D168 Data Backend and Deployment

The aim of D168 was to be the provider of data and deploy a server component as developed,
documented and delivered: Communicating all experience and lessons learned back to the
server provider to help with optimizing documentation and scripts.

The testing involved storing the data in specific cloud environments, primarily AWS with some
parallel testing of CreoDIAS, with a specific focus on cloud object storage. The API Experiments
Server tested was D165.

7.4.1. Development & Experiments

7.4.1.1. Experiment 1: Data catalogs stored within AWS S3 bucket & OpenSearch

Pixalytics has an Earth Observation (EO) dataset that is currently stored in a directory/file
structure on an AWS Expandable File Storage (EFS).

OPEN GEOSPATIAL CONSORTIUM 21-019 51

Copernicus Sentinel-1 and Sentinel-2 data were used to generate a land cover classification at
10-meter resolution to investigate sand dams as part of a project that focuses on sustainable
sand extraction in Kenya. In addition, the datasets include other products derived from
Sentinel-2 (vegetation related) and products derived from other satellite missions at coarser
spatial resolutions.The dataset can be viewed online at https://voila.notebook.eo4sas.com/ as
CaseStudy1 (one of three Jupyter Notebooks running as interactive webpages).

Within the framework of this activity, the dataset was transitioned to an accessible S3 bucket
with the catalogue defined through the two options of STAC (https://stacspec.org/) and OGC
API — Records. The image files were originally in GeoTIFF format but transitioned to Cloud
Optimized GeoTIFF (COG) and NetCDF for the experiments.

This experiment involved five steps, with the code stored as shown in Figure 1:

a) Convert GeoTIFF files to COG and NetCDF format using convert_gtiff.py in
utils folder

b) Create OGC Record or STACcatalogs using create_catalog.py in build_catalog
folder of D168

c) Manual push of catalogs to AWS S3 buckets

d) Push catalogs to Elasticsearch using upload_esearch.py in deploy_catalog folder
of D168

e) Deployment of D165 server providing API access to the catalogs with the
specification in JSON files

Figure 17 — Representation of the D168 GitHub repository with
the code folders (light blue) and code components (dark blue)

7.4.1.1.1. Catalogs within AWS S3 bucket

The catalogs were created using Python code shared via the T17-API-D168 GitHub repository,
under the build_catalog subfolder. The code uses yaml files (test-configuration.yaml and eo4sas-
record.yml) to store configuration information, and rely on existing open-source code for STAC

OPEN GEOSPATIAL CONSORTIUM 21-019 52

https://voila.notebook.eo4sas.com/
https://stacspec.org/
https://github.com/opengeospatial/T17-API-D168/

(pystac) and OGC API — Records (modified version of pygeometa to create the main catalog file)
catalog creation. The GitHub ReadMe describes how to install the used anaconda environment
and run the catalog creatin code.

Once created, the static catalogs are manually uploaded to the specifically setup S3 bucket that
has public read access.

Examples of what is currently available via the S3 bucket include:

• STAC catalog v0-8 created using pystac for GeoTiFFs:

• main JSON: https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/
eo4sas-catalog-stac-v0-8/collection.json

• image JSONs, e.g. https://pixalytics-ogc-api.s3.eu-west-2.
amazonaws.com/eo4sas-catalog-stac-v0-8/20200831T101156_rgb_
classification/20200831T101156_rgb_classification.json

• STAC catalog v0-8 created using pystac for NetCDFs:

• main JSON: https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/
eo4sas-catalog-stac-nc-v0-8/collection.json

• OGC API — Records catalog v0-8 created using pygeometa for GeoTiFFs:

• main JSON: https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/
eo4sas-catalog-records-v0-8/catalog.json

• image JSONs e.g.: https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.
com/eo4sas-catalog-records-v0-8/eo4sas-record1.json

• OGC API — Records catalog v0-8 created using pygeometa for NetCDFs:

• main JSON: https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/
eo4sas-catalog-records-nc-v0-8/catalog.json

7.4.1.1.2. Catalogs deployed via Amazon OpenSearch (previously called Elasticsearch) Service
with D165 Server

To support querying the catalogs, they were also deployed to Elasticsearch using Python code
shared via the T17-API-D168 GitHub repository, under the deploy_catalog subfolder. The code
uses a YAML file (es_upload_conf.yaml) for configuration of the deployment and then upload to
Elasticsearch.

At the start of the Testbed 17 activity, OpenSearch was called Elasticsearch but since then the
two have diverged. To maintain compatibility with what was developed the AWS deployment to
Elasticsearch 7.10 was used. Also, version 7.13.4 of the Python Elasticsearch library needs to be
used as more recent versions produce critical error messages.

OPEN GEOSPATIAL CONSORTIUM 21-019 53

https://github.com/stac-utils/pystac
https://github.com/pixalytics-ltd/pygeometa/tree/t17-rcatalog
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-stac-v0-8/collection.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-stac-v0-8/collection.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-stac-v0-8/20200831T101156_rgb_classification/20200831T101156_rgb_classification.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-stac-v0-8/20200831T101156_rgb_classification/20200831T101156_rgb_classification.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-stac-v0-8/20200831T101156_rgb_classification/20200831T101156_rgb_classification.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-stac-nc-v0-8/collection.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-stac-nc-v0-8/collection.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-records-v0-8/catalog.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-records-v0-8/catalog.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-records-v0-8/eo4sas-record1.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-records-v0-8/eo4sas-record1.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-records-nc-v0-8/catalog.json
https://pixalytics-ogc-api.s3.eu-west-2.amazonaws.com/eo4sas-catalog-records-nc-v0-8/catalog.json
https://github.com/opengeospatial/T17-API-D168/
https://github.com/elastic/elasticsearch-py

• Elasticsearch endpoint on AWS [needs an IAM user account with authentication
for access]: https://search-ogc-t17-d168-yhvlgzft2zhuvdssiaejkyq5lq.eu-west-2.
es.amazonaws.com

• STAC Catalog indices (for version 0-8): STAC-index (GeoTIFFs) STAC-
index-nc (NetCDFs)

• OGC Records indices (for version 0-8): records-index (GeoTIFFs) records-
index-nc (NetCDFs)

7.4.1.1.3. Deployment using D165 server

The deployment as an API using the D165 server is available at:

• OGC API — Features server with three catalogs (CubeWerx’s alongside
Elasticsearch versions of Records and STAC GeoTiFF catalogs): http://ogcapi.
pixalytics.com:8080/

• OGI API — EDR implementation with a single multi time-step NetCDF: http://
ogcapiedr.pixalytics.com:8080/

7.4.1.2. Experiment 2: Catalogs created and deployed using the CloudFerro CreoDIAS
platform

As a second test, the D168 code was also run on the CreoDIAS platform. The data was still
stored in the AWS S3 bucket, but pulled to CreoDIAS and the catalogs generated and deployed
using the D165 server. These deployments have not been kept active so cannot be accessed.

7.4.2. Lessons learned

A summary of lessons learned is:

• Existing GitHub repositories for STAC (pystac) and OGC API Records (pygeometa)
were helpful to both understand the catalog structure and implement the Python
code to generate the catalogs.

• To create the Records catalog, API weekly discussions alongside the
documentation in ogcapi-records repository were very helpful.

• For AWS, a combination of the online documentation and virtual training/events
was used to get the necessary knowledge to setup the required IAM permissions
and Amazon OpenSearch configuration.

• For CreoDIAS, an introductory webinar was attended and then the Virtual
Machine setup following the provided guidance and what was already understood
from using AWS.

OPEN GEOSPATIAL CONSORTIUM 21-019 54

https://search-ogc-t17-d168-yhvlgzft2zhuvdssiaejkyq5lq.eu-west-2.es.amazonaws.com
https://search-ogc-t17-d168-yhvlgzft2zhuvdssiaejkyq5lq.eu-west-2.es.amazonaws.com
http://ogcapi.pixalytics.com:8080/
http://ogcapi.pixalytics.com:8080/
http://ogcapiedr.pixalytics.com:8080/
http://ogcapiedr.pixalytics.com:8080/
https://github.com/opengeospatial/ogcapi-records/blob/master/implementations.md

• At the start of the activity Pixalytics had not deployed catalogs. From what was
learnt during the API Experiments, the participants feel confident about future
deployment of catalogs using the approaches tested.

7.5. D175 API Experiments Client — Python

The D175 API Experiments Client — Python implements three different OGC APIs, each
available in its own GitHub repository:

• OGC API — Features, available at https://github.com/opengeospatial/T17-API-
D175-Features

• OGC API — EDR, available at https://github.com/opengeospatial/T17-API-D175-
EDR

• OGC API — Routes, available at https://github.com/opengeospatial/T17-API-
D175-Routes

All of the implemented APIs share a common structure and base code, as well as an automated
and encapsulated deployment process that pulls the code from the respective repository. These
implementations were conceived as data-centric clients, focusing the efforts in making them
easy and quick to deploy and providing immediate access to the data.

Experiments were carried out in the auto-generation of client libraries for OGC API — Features
and — EDR, based on the definition of a specific server API. The software used to auto generate
the client libraries was OpenAPI Generator, in particular the python client (experimental). One
of these experiments, auto generated against CubeWerx’s Daraa API, has been registered in its
own repository and is available for deployment and tests at https://github.com/opengeospatial/
T17-API-D175-Features_autogenerated.

Each client implementation consists of two different components:

a) A backend, built in Python 3 on top of Flask, a popular micro web framework. The
backend implements the OGC API client calls to interact with the API server and
fetch the data.

b) A frontend, built in HTML/JavaScript, receiving the interactions from the user
through a web browser and translating those to the client backend, as well as
visually displaying the data fetched from the server.

OPEN GEOSPATIAL CONSORTIUM 21-019 55

https://github.com/opengeospatial/T17-API-D175-Features
https://github.com/opengeospatial/T17-API-D175-Features
https://github.com/opengeospatial/T17-API-D175-EDR
https://github.com/opengeospatial/T17-API-D175-EDR
https://github.com/opengeospatial/T17-API-D175-Routes
https://github.com/opengeospatial/T17-API-D175-Routes
https://openapi-generator.tech/
https://openapi-generator.tech/docs/generators/python
https://github.com/opengeospatial/T17-API-D175-Features_autogenerated
https://github.com/opengeospatial/T17-API-D175-Features_autogenerated

Figure 18 — Client architecture

This two-layered architecture enables separating the browser-client interface from the client-
server interface, providing a greater flexibility in the design of the user interface. Clients can
be deployed locally, but also remotely, at a different location than the API server or the user’s
browser.

Clients use two common design patterns with this framework: The application dispatching
pattern and the application as a package. This allows for a clean directory structure and readable
code, making the different clients easy to maintain and deploy. Each client is launched in its own
Python virtual environment, installing its own version of the required libraries without messing
with the existing installation in the operative system.

Once the client is launched, it automatically reaches the server landing page and fetches all the
important information, which is offered to the user via buttons, texts and drop-down menus.
The goal is for the user to explore the API capabilities in a graphical and convenient way.

The User Interface for all clients have similar designs, with a main map to display results, a list of
buttons to easily explore the API and a series of buttons and fields to make the most common
queries. This user interface is stored in HTML, CSS and JavaScript files with a very simplistic
design, but there is no limit as to the level of sophistication they can attain.

OPEN GEOSPATIAL CONSORTIUM 21-019 56

7.5.1. Challenges and lessons learned

7.5.1.1. Client auto-generation

Although in theory code auto-generation seems like a very interesting idea, the reality is that
it is an error-prone process that requires a well-defined API and might not be worth the effort.
This is particularly true considering that implementing a REST API client is not particularly
difficult. The main challenges encountered in the client auto-generation can be summarized in
the following points:

a) The OpenAPI Generator is not really stable. The latest versions are too buggy and
can crash in many ways. For our case, OpenAPI Generator v4.0.0 was considered
stable enough and could be useful but it was yet not perfect. There were still
some minor bugs, which could be mitigated by editing the API definition.

b) Server API definition must comply with OpenAPI v3. The generator is particularly
picky with numeric data types.

c) OpenAPI Generator has extensive parameterization and it requires a lot of
documentation reading before being able to use it.

d) Generated libraries can be used only with the target API.

e) Changes in the target API can easily break the compatibility with auto generated
clients.

f) Reality check: OpenAPI Generator is a good idea in theory but in reality, there are
plenty of APIs with incomplete definitions, typos in OpenAPI docs, inconsistent
definitions or published data are inconsistent with OpenAPI definitions.

On the other hand, client auto-generation did provide important benefits:

a) It is an API-oriented approach, the focus shifts away from code.

b) It moves towards standardization of the API structure and methods across
programming languages.

c) It is easy to expand to other OGC APIs.

d) It is easy to maintain/update existing APIs.

e) Documentation and unit tests can be auto generated along with the source code.

OPEN GEOSPATIAL CONSORTIUM 21-019 57

7.5.1.2. Data-centric clients

A second important set of lessons learned came from the experiments with data-centric clients.
Such clients are more focused on quick access to the data than on the feature completion.

The main challenges in the development of these clients were to set up an installation in a
properly isolated environment, as well as the implementation of the invisible automation that
allows the immediate visualization of data. The use of standard OGC API building blocks is
instrumental in solving the latter.

However, there was an aspect that showed some limitations in the current definition of OGC
API standards. The approach was for the client to automatically connect to a server API, explore
it and populate the user interface with all the options and capabilities offered through the API.
Having a standard and easy way to request from the server API landing page which methods and
encodings are accepted before making the first request would be very useful. This could be done
using the HTTP method OPTIONS and could facilitate the automation of API exploration.

When carrying out the integration experiments, some approaches to implementing the server
APIs added extra complexity in the client side. For example, although type is not a property
strictly required for link objects, it saves considerable implementation time when developing
a client that automates the API exploration. A significant amount of effort had to be spent in
adding the code necessary to handle link objects that did not include a type property that could
lead to requests for non-GeoJSON formats. An interesting improvement would be to require the
property type in all link objects, or at least to recommend its use in the standard documentation.

Alternatively, the client could have added the format in the request with the parameter f=json
to ensure the format of the response. However, there is no specification for the value of this
parameter in the standard and, in fact, other participants used different values in their server
implementations, such as f=application/json and f=application/geo+json. The proper way
would be to access the API definition, if it exists, and find the possible values for parameter f,
but the automation for this is cumbersome.

Overall, data-centric clients have proven an interesting approach, providing the following
benefits:

a) All deployed environments are similar, even for different types of APIs and clients,
which facilitates maintenance.

b) Human error factors are minimized during the environment configuration and
deployment.

c) The time required to complete a deployment is minimal, which makes it useful for
test environments or pilots.

d) Users do not need advanced technical knowledge to set up the environment or
deploy a client, lowering the entry barriers, and facilitating the entry-level for new
developers to OGC APIs.

OPEN GEOSPATIAL CONSORTIUM 21-019 58

e) Clients are light-weight and performant and allow for an automated exploration
of APIs, which can become a handy tool for experienced OGC server developers
and deployers to test their deployments or visually explore the data they publish.

7.6. D176 API Experiments Client — TypeScript

The TypeScript API Experiment client consists of three main components:

a) The API clients that are generated based on the corresponding OpenAPI
specifications. (https://github.com/opengeospatial/T17-API-D176)

b) A connector for Web WorldWind that ties in the API responses into visual layers
on WorldWind. (https://github.com/karriojala/WebWorldWind-OGCTB17)

c) A demonstrator that shows the API client’s capabilities in a real-world use case
integrating with WorldWind, which bridges to plain JavaScript usage. (https://
github.com/opengeospatial/T17-API-D176-dev)

The demonstrator is available to try here: https://ogctb17-apis-breithorn.solenix.ch/#/earth

Figure 19 — Demonstrator application using NASA WebWorldWind

The most interesting aspects about this experiment are:

• Execution in a Browser
Browsers exhibit particular challenges for the execution and communication with
remote services as they are executed in the restricted JavaScript sandbox in a

OPEN GEOSPATIAL CONSORTIUM 21-019 59

https://github.com/opengeospatial/T17-API-D176
https://github.com/karriojala/WebWorldWind-OGCTB17
https://github.com/opengeospatial/T17-API-D176-dev
https://github.com/opengeospatial/T17-API-D176-dev
https://ogctb17-apis-breithorn.solenix.ch/#/earth

browser. Considerations such as HTTP vs. HTTPS access, Cross-Origin Resource
Sharing (CORS) and limitations in processing of data are to be considered.

• Exploration of the API Client in a real world scenario, using Web WorldWind.

• TypeScript with strong typing that significantly improves the available tooling for
developers.

TypeScript is suitable for NodeJS environments and browsers, which spans a wide range of use
cases.

The demonstration and discussed use cases focus on front-end development and visualizations
in browsers, and less on complex processing or workflows of the results. Consequently, the
developed use cases demonstrate the integration and common data request patterns for such
web-based applications.

In addition to the OGC APIs Client source code, the documentation accompanying the source
code provides examples for common use cases and explains the utility of specific end points and
collections.

An important aspect of getting started with the OGC APIs is to get the initial bearings and
identify where to find specific data, to learn the names and concepts used, and to learn how to
explore available data sets. The documentation touches on these points as well, guiding a new
user in getting started with the OGC APIs, data providers and data sets alike.

7.6.1. API Clients and Code Generation

This component focused on exploration and experimentation with OGC API — Features and
OGC API — EDR.

Following the findings for generating code based on OpenAPI specifications for OGC APIs and
considering the goal of creating a generic client that follows the standards as closely as possible,
having an independent client API for each of the supported OGC API Standards was the final
decision.

The back-end used was the typescript-angular generator, which a strongly typed client
library that uses Angular’s HttpClient and various reactive patterns in the backend. This
backend was chosen to demonstrate the generic use of code generators and as excellent fit for
the angular based demonstrator.

The Web WorldWind API is plain JavaScript with basic (require.js based) dependency
management and no awareness of TypeScript or Angular. The extension to WorldWind was
thus made in a way that allows consuming resources retrieved via the APIs, independent of the
specific client. Consequently, a developer could also generate a pure JavaScript or non-Angular
TypeScript client that would be able to provide those same responses, which could be rendered
appropriately by WorldWind.

OPEN GEOSPATIAL CONSORTIUM 21-019 60

https://ogcapi.ogc.org/features
https://ogcapi.ogc.org/edr

Finally, the OpenAPI specification provided by the Daraa-data server that is hosted by
CubeWerx was used to exercise a compound API client, which can be found as api-daraa in the
API clients repository.

7.6.2. OGC Code Sprint and Discrete Global Grid Systems

During October 2021 OGC API Code Sprint the client was extended with a demonstration for
retrieving and visualizing DGGS (Discrete Global Grid Systems) zones. For this purpose, auto-
generated TypeScript client was used in the same way as with OGC API — EDR and OGC API —
Features.

Figure 20 — Demonstrator application showing DGGS zones

The top-level H3 zones were retrieved from the server and visualized on the globe. Clicking on
the zones loads the children of the zones.

This demonstrates that code-generation can be a quick way to extend the capabilities of an
existing client to support new APIs.

7.6.3. Technology Integration Experiments

The client is integrated with the API servers from George Mason University (GMU) and
52°North (52N). For the former, both OGC API — EDR and OGC API — Features were
integrated. For the latter, only retrieval of data in NetCDF format is not yet supported on the
client. Users can select the server using a drop-down menu where the configured endpoints are
displayed. The client proxies the 52N server to add HTTPS compatibility.

The following functionality was implemented:

• Select server.

OPEN GEOSPATIAL CONSORTIUM 21-019 61

• Select collection.

• (EDR) Select location.

• (EDR) Select parameters (temperature, wind etc.).

• (EDR) Select time (slider between temporal extend start and end).

• (EDR) Data is displayed as a point on the map with a number label.

• (Features) Define bounding box.

• (Features) Data is displayed as polygons, lines or points.

Issues detected were related to inconsistencies with bounding box definition format varying
between collections, and the temporal extent of the EDR collections not fully matching the
available data.

The generated APIs work largely out of the box with the servers and helped to reduce the
implementation effort and focus on the data visualization demonstration.

7.6.4. Future improvements

Further improvements can be made to improve quality of presentation:

• Support for paginating the data (instead of just showing first 1000 entries)

• Better visualization of EDR data (colors, plots, etc.)

• Support for NetCDF data visualization

The testbed participants also considered whether to publish the source code in a dedicated
WorldWind fork and make it available for users and developers. This action would require
clarification of which parts of the source code would be the most beneficial for the community.
The generated code for APIs could also be published in the npm package Registry for JavaScript.

OPEN GEOSPATIAL CONSORTIUM 21-019 62

8

OPENAPI CODE
GENERATION

OPEN GEOSPATIAL CONSORTIUM 21-019 63

8 OPENAPI CODE GENERATION

The OpenAPI specification language, previously called Swagger, can be used to express the
details of a RESTful API.

Resource paths, examples, data payload schemas, mandatory and optional parameters, as well as
alternative representations can be expressed using OpenAPI.

The OGC APIs to be used in this activity are all backed by corresponding OpenAPI
specifications. Because the APIs are very versatile and the OpenAPI specifications are
comprehensive, the participants in this testbed activity explored the use of code generators
for creating server and client-side code with the goal of accelerating development, easing new
developers into the OGC APIs and providing example client and server implementations that can
be used to explain concepts, yet cover the full range of capabilities.

The following sections discuss the use of OpenAPI in the OGC and the findings, issues,
workarounds and recommendations that were the result of the work described in this ER.

8.1. Overview of OpenAPI

There are two goals for using OpenAPI:

a) Create comprehensive documentation of an intended communication interface.

b) Automatic generation of server and client-side code stubs as well as data transfer
objects or structs.

The first point aids in the design, discussion and formalization of APIs during their inception and
can be refined or adapted based on later implementation details.

The second point is particularly useful for creating compatible and comprehensive clients
in a new programming language without requiring one to develop the boilerplate code for
communication, message exchange, data representation, encoding and other well-understood
challenges.

The OGC has embraced OpenAPI for documenting the new generation of OGC APIs and has
used OpenAPI to design, iterate and ratify the new versions of the respective successor APIs to
WMS, WFS, WPS and others.

OpenAPI is also an excellent means of providing the currently applicable capabilities of a
particular server, where the server can provide an OpenAPI document on one of its endpoints.
This is mandated by the OGC API — Common candidate standard.

In the frame of this testbed activity, the focus was on the use of OGC API — Features and
OGC API — EDR and in demonstrating in an understandable fashion how to use those APIs

OPEN GEOSPATIAL CONSORTIUM 21-019 64

http://openapis.org
https://ogcapi.ogc.org/common
https://ogcapi.ogc.org/features
https://ogcapi.ogc.org/edr

in a manner that is accessible to developers that are not necessarily familiar with geospatial
processing in general or the new OGC APIs in particular.

The following sections discuss various aspects that were identified in the course of this activity.

8.2. Examples of Code Generation

OpenAPI based code generators are popular throughout the industry, wherever REST APIs are
used and where OpenAPI has been used to formalize the interface.

Examples for successful use of generated clients are:

• The Kubernetes API clients that are available in a variety of languages. Similar to
OGC API based servers, Kubernetes provides access to the extensible REST API
that is currently available via OpenAPI specification endpoint.

• Cloud providers (Amazon, Google, Microsoft) provide REST APIs for
communicating with their services. Software that interfaces with said services will
often use generated communication stubs to interface with those services.

Large API surfaces — the part of a program that your users can openly interact with — having
a large number of endpoints, data types, and/or implementations in different programming
languages can benefit from code generation of the ‘boilerplate’ code to interface with a
particular API. This leaves developers with more time to develop the added value by consuming
or providing the services behind those APIs.

As mentioned in the introduction, the OGC API compliant servers are similarly set up with
detailed APIs, which make it more difficult to create a comprehensive client implementation.
Similarly, server implementations need to start somewhere as well and can benefit from a
generated foundation.

8.3. Caveats with Generated Code and Code Generators

The OpenAPI specification is very accommodating for API designers and developers in getting
their ideas across and provides many degrees of freedom. Some of the aspects that would be
beneficial for a more formal specification are optional and can be left out.

There are a limited number of functional OpenAPI code generators, which in turn have a
large number of different back-ends that support the programming language, framework and
programming style of choice.

The generated code is generally self-contained with proper namespaces, which is the desired
behavior for any client library, or starting point for a server implementation.

OPEN GEOSPATIAL CONSORTIUM 21-019 65

There are a few caveats with using generated code:

• A new self-contained set of code with namespaces is generated for each
OpenAPI specification.
In the case of the OGC APIs, the OGC API — Features and OGC API — EDR
standards are two separate such specifications.
Any declarations in the API, even if they were included from the same underlying
fragment, become part of the specific namespace. A Coverage response data
structure for Features and for EDR will become two different structs or classes.
There was no automated way to consolidate such shared declarations at the time
of writing this ER.

• Manually changed code may be destroyed on re-generation.
Inheritance or composition can work around these issues, where the needed
manual changes are added to the generated functionality.

• Not all of the features of OpenAPI are easily transferable to all programming
languages.
A specific case identified during this activity were responses with anyOf or oneOf
declarations, which would require union types, a higher-level abstraction or
appropriate ‘holders’ and ‘markers’ that indicate which of the possible data types
was returned.

Finally, there were also caveats with using the code generators themselves:

• The OpenAPI specification, which started as Swagger and was originally
developed by the commercial entity SmartBear, is now an open standard. Multiple
implementations of code generators are available with various back-ends of
varying completeness and maturity.

• Because programming languages have different functionality, paradigms,
supporting runtime frameworks and varying degrees of developer participation,
the generated code can vary significantly in terms of resilience, error detection,
recovery and verbosity of error messages during code generation.

Fortunately, there were no issues identified with the software license of the resulting generated
code, which should encourage experimentation and use of OpenAPI code generators.

8.4. Generating Code based on OGC OpenAPI
Specifications

Code generators rely on consistent and clear instructions. Any ambiguity that would be fine for
a human developer may trip up the code generator. This includes typos in declarations, missing
links to other resources or incompatible data structure declarations.

OPEN GEOSPATIAL CONSORTIUM 21-019 66

Considering that the various OGC API Standards can be combined into a single server that
provides the functionality of different APIs, some of the commonly available resources are
shared or augmented with additional fields by the various APIs.

The approved OGC APIs, or those that are in development at the moment, are primarily aimed
at human implementers. When using code generators, a few typos, inconsistent specifications of
common endpoints and limitations of the code generators (as mentioned before) were identified.

There are three possible approaches for handling this circumstance:

a) Create distinct API clients for the different OGC API Standards and have the
application decide, based on configuration, which client to use for a particular
endpoint, the metadata provided for a particular collection or using other
heuristics. This is the most standards-compliant approach that covers the
functionality provided by the OGC API Standards. However, at the same time
functionality is limited as it will not cover any server-specific extensions.

b) Generate clients for different APIs and manually merge them into a single client.
This is the most work for a developer and is closest to developing a client from
scratch. At the same time, it might be the most interesting solution for a server
implementation, where the majority of work is in filling out the business logic
behind the various resource handlers.

c) Implement a server endpoint that provides an OpenAPI definition document that
is specific to this server. This definition document can also be used to bootstrap
server development. A client based on such a server-specific OpenAPI definition
document can utilize any specific extensions provided by the server, but is
not guaranteed to work with any other implementation. The solution could be
considered for highly-specialized servers that push the boundaries of what an
existing OGC API provides.

The right approach depends on the scenario, desired level of interoperability and control that
developers exert over the resulting code.

Approach 1 is the closest to the standards but also the most susceptible to minor deviations and
errors in the OpenAPI definition documents used.

Approach 2 is the standards-adhering way to develop a multi-API server based on generated
code.

Approach 3 leaves the most flexibility and gets the most out of the generated code in a coherent
and unified code base, but may be limited in terms of interoperability if the developer is not
careful.

In the frame of this activity, the generators for Python, JavaScript and TypeScript were exercised
in more detail and information on those is provided in detail in the respective component
descriptions in the Components Overview.

OPEN GEOSPATIAL CONSORTIUM 21-019 67

8.5. Recommendations to the OGC for using OpenAPI

The main recommendations as outcome from using OpenAPI code generators as part of this
activity are the following:

• Use code generators, in addition to SwaggerUI, ReDoc and other OpenAPI tools,
in order to verify the consistency, completeness and correctness of OGC APIs in
accordance with OpenAPI specifications.

• Provide feedback to the generator developers when bugs or issues are found in
the general generator framework or a particular language back-end.

• Include commonly used declarations for common endpoints, data transfer types
and responses in order to ensure full consistency.

• Find an agreed upon approach for the composition of different APIs in a single
server and/or client, which allow implementation in a single server and single
client side by side.

These recommendations, if considered, may lead to such OGC API Standards (or profiles of
those standards), which would be more suitable for composition and code generation.

OPEN GEOSPATIAL CONSORTIUM 21-019 68

9

RESULTS AND FINDINGS

OPEN GEOSPATIAL CONSORTIUM 21-019 69

9 RESULTS AND FINDINGS

This task conducted six distinctive API experiments to validate the applicability (and provide
documentation and How-Tos) of OGC APIs in the combination with some of the most popular
technology stacks and cloud solutions. While detailed elaboration can be found in the section
dedicated to a specific component, this one provides the recap.

OGC APIs define state of the art RESTful web interfaces and JSON encoded data types in order
to support the development of standardized geospatial web applications. The following figure
represents the variety of APIs. Note that, as of the 1st of December 2021, only two of them
(framed in green) had been published as approved OGC Standards while all others were draft
specifications. By the end of December 2021, OGC API — Processes had also been published as
an approved OGC Standard (raising the number of published approved OGC API Standards to
three).

Figure 21 — The OGC API Family

API experiments performed several exercises with OGC API — Features and — EDR, as well as
draft OGC API — Records, and OGC API — Routes.

All services created for experiments can be considered as being microservices because they are
independent, technologically heterogeneous, containerized, and communicate over well-defined,
lightweight APIs. They can be deployed in the cloud, as well.

Source code and detailed installation guidelines for all of six API Experiments are located in the
GitLab repository under following URLs:

a) D165 Server (Python)

OPEN GEOSPATIAL CONSORTIUM 21-019 70

https://github.com/opengeospatial/T17-API-D165

b) D166 Server (JS/TypeScript)

c) D167 Data Backend (AWS, CloudFerro and CloudSigma)

d) D168 Data Backend (AWS, CloudFerro and OGC API — Records)

e) D175 Client — Python

f) D176 Client — TypeScript

API Experiments Clause 7.1 successfully implemented two microservices based on OGC API
— Features (Features) and OGC API — Environmental Data Retrieval (EDR). Both services are
developed using Python programming language and geospatial libraries. The source code was
partially generated out of specifications using Open API Generator.

When using the code generator there were originally many errors in the generated code for
the EDR OpenAPI specification. The main reasons for the errors are in the OpenAPI Standard
and the fact that the OGC API EDR Standard is more comprehensive and complex compared
to the OGC API — Features specification. In order to mitigate these issues a simple profile of
the OpenAPI based OGC API — EDR Standard was created. It supports only two-dimensional,
temporal data.

The Elasticsearch search engine was used as backend data storage for features and records
(OGC API — Features and Records implementations).

An Earth Observation (EO) dataset, Copernicus Sentinel-1 and Sentinel-2 data, was used to
generate a land cover classification to monitor/investigate certain natural resources (sand
dams) in Kenya. Within the framework of Clause 7.4 activity, the dataset was transitioned to an
accessible Amazon Simple Storage Service (Amazon S3) bucket with the catalog defined through
the two options of OGC API — Records and STAC. These were then dynamically deployed using
Elasticsearch, through AWS OpenSearch, so they could be accessed by Clause 7.1.

Experiment Clause 7.2 demonstrated the applicability of JavaScript programming language
for geospatial microservice implementations. The Technology Stack validated here was based
on a server-side JavaScript environment Node JS, accompanied with widely used and mature
geospatial databases PostGIS, and PostgreSQL.

The experiments carried out in Clause 7.3 (Data Backend and Deployment) were based on
an idea of tiling NetCDF files (array oriented scientific data sets) to select them based on
geographic extension of bounding boxes via OGC API — Tiles. Doing so, smaller NetCDF files
can be published through a STAC catalog that documents the extent of each file, allowing a
service provider to automate the search for the data of interest.

The following methods/technologies were demonstrated:

a) Generate and deploy a server for OGC API — Tiles

b) Use of 3 distinctive cloud environments (AWS, CloudSigma, CloudFerro) with
PostGIS deployments.

c) AWS S3 deployment of a set of GeoJSON objects

OPEN GEOSPATIAL CONSORTIUM 21-019 71

https://github.com/opengeospatial/T17-API-D166
https://github.com/opengeospatial/T17-API-D167
https://github.com/opengeospatial/T17-API-D168
https://github.com/opengeospatial/T17-API-D175
https://github.com/opengeospatial/T17-API-D176
https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/edr/
https://openapi-generator.tech/
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access
https://aws.amazon.com/s3/
https://ogcapi.ogc.org/tiles
https://www.cloudsigma.com/
https://cloudferro.com/en/

d) NetCDF files publishing following a tiles approach.

Operating System-level virtualization service Docker was used (as container environment) to
render the tiles before launching the service.

The D176 API Experiments Client — TypeScript demonstrated the use of TypeScript to
request the data and a virtual globe API called NASA WorldWind to create 3D visualization of
geographical information. A client code was partially generated based on the corresponding
OpenAPI endpoint specifications. A connector for NASA Web WorldWind was created that
loads API call response data sets into visual layers on WorldWind. A demonstrator showed the
API client’s capabilities in a real-world use case integrating with WorldWind, which bridges to
plain JavaScript usage.

The D175 API Experiments Client — Python API Experiments Client was implemented
in Python. Several geospatial Python libraries were tested, as well. The software used to
automatically generate the client libraries was OpenAPI Generator. Code generation tests were
successful for microservice implementations compatible with OGC API — Features and OGC API
— EDR. Generated client libraries were capable of making requests to those servers endpoints
and receive the subsequent responses.

OPEN GEOSPATIAL CONSORTIUM 21-019 72

https://www.unidata.ucar.edu/software/netcdf/
https://worldwind.arc.nasa.gov/

10

FUTURE WORK

OPEN GEOSPATIAL CONSORTIUM 21-019 73

10 FUTURE WORK

The OGC API approach is based on newer technologies that did not exist during development
of initial OGC Web Services (OWS). As OGC APIs mature towards official, approved standards
(during this experiment only two specifications, OGC API — Features and OGC API — EDR were
officially released by OGC, while others were available as drafts and partially used), the demand
for tutorials, and code examples which would cover all API specifications will certainly grow.

A recommendation for future work would be to provide code examples and tutorials for each of
OGC API Standards. The examples would specify data, cloud, server and client implementations,
and CI/CD pipeline including deployment and integration tests. The code examples should
preferably be made available on GitHub (or another online Git repository service) and the CI/CD
pipeline also be specified using services from that repository.

In the context of cloud-native applications and OGC APIs, the future work recommendation is to
conduct more advanced experiments with geospatial microservices applied on OGC APIs. Cloud-
native applications use microservices. They share the following characteristics:

a) Implement a specific task within a larger domain context.

b) Each is developed autonomously and can be deployed independently.

c) Each is self-contained encapsulating its own data storage technology,
dependencies, and programming platform.

d) Each runs in its own container and communicates using standard communication
protocols such as HTTP or AMQP.

Some of these concepts were demonstrated during this task. Individual microservices utilizing
OGC APIs were developed and deployed in cloud environments. More advanced experiments
are recommended for future experiments. For example, an experiment including all OGC APIs
compatible services (Feature, Maps, Tiles, EDR, etc.) covering a whole application domain
created for demonstration purposes, and featuring services, which offer distinctive data sets and
work all together in a service mash to fulfil a geospatial “business objective”. Such “experiments”
would therefore test the fitness of, and provide referent examples for all OGC API Standards
presented in a more complex geospatial application domain context.

It will not always be possible to respond to queries synchronously. Currently only OGC API
– Processes specifies support for asynchronous communication, whereas other OGC API
Standards do not specify how to handle any asynchrony. Different services may propose
different best practices. Future work might explore different implementation options in the
context of OGC APIs and provide code examples.

OGC APIs are RESTful web APIs. In certain situations, an alternative API approach for geospatial
data might be useful as a service model for OGC APIs to address specific needs. That alternative
API technology could be GraphQL. GraphQL is a query language and server-side runtime for
application programming interfaces (APIs) that is especially well suitable to query on demand
from complex graphs of linked, dependent data.

OPEN GEOSPATIAL CONSORTIUM 21-019 74

11

TECHNOLOGY
INTEGRATION
EXPERIMENTS (TIE)

OPEN GEOSPATIAL CONSORTIUM 21-019 75

11 TECHNOLOGY INTEGRATION EXPERIMENTS
(TIE)

The TIEs for the API Experiments task are documented around the interactions between the
server, client, and data storage components:

• Data:

• D167 Data Backend and Deployment 1

• D168 Data Backend and Deployment 2

• Services:

• D165 Server (Python)

• D166 Server (JavaScript)

• Clients:

• D175 API Experiments Client (Python)

• D176 API Experiments Client (TypeScript)

The TIEs are divided into the part dedicated to the data deployment (preparation for the
provision) and the client/service interactions. OGC API — Features, EDR, and Tiles were used
to access services and the interaction with client components via these APIs were tested and
documented.

11.1. Data backend and deployment

Table 1 — Server-Backend TIE Summary Table

SERVER\\BACKEND D167 SKYMANTICS D168 PIXALYTICS

D165 52N 2/4 4/4

D166 GMU 2/4 2/4

OPEN GEOSPATIAL CONSORTIUM 21-019 76

Table 2 — TIE Functional Test

FUNCTION DESCRIPTION CLIENT ACTION
SERVER
RESPONSE

SUCCESS
CRITERION

1
DockerDeploy
Features Server

Pull OGC API —
Features container
and deploy server

Pull the Docker
container and
then deploy the
server using the
default backend
configuration

Landing page is
deployed

Landing page is
visible and can be
interacted with

2
DockerDeploy
Features Server
with backend data

Edit the default
backend
configuration and
then deploy the
server

Deploy the
server using the
modified backend
configuration

Landing page is
deployed

Landing page is
visible and the
information for the
backend datasets is
available

3
DockerDeploy EDR
Server

Pull container
and deploy the
Environmental Data
Retrieval (EDR)
server

Pull the Docker
container and
then deploy the
server using the
default backend
configuration

Landing page is
deployed

Landing page is
visible and can be
interacted with

4
DockerDeploy
EDR Server with
backend data

Edit the default
backend
configuration and
then deploy the
server

Deploy the
server using the
modified backend
configuration

Landing page is
deployed

Landing page is
visible and the
information for the
backend datasets is
available

11.2. Service invocations and data consumptions

Table 3 — Server-Client TIE Summary Table

SERVER\\CLIENT D175 SKYMANTICS D176 SOLENIX

D165 52N 6/6 5/6

D166 GMU 6/6 6/6

OPEN GEOSPATIAL CONSORTIUM 21-019 77

Table 4 — TIE Functional Test

FUNCTION DESCRIPTION CLIENT ACTION
SERVER
RESPONSE

SUCCESS
CRITERION

1
LandingPage
Features

Request, receive,
parse landing page

Form landing page
request, parse
response, display
and/or act on it

Receive landing
page request,
response with
accepted /
requested format
(f=json, html)

Client displays API
“data” link and/or
navigates to it

2 Collection Features
Request, receive,
parse collection
page

Form collection
page request, parse
response, display
and/or act on it

Receive collection
page request,
response with
accepted /
requested format
(f=json, html)

Client displays
list of collections
available or
processes it

3 Items Features
Request, receive,
parse items page

Form items page
request, parse
response, display
and/or act on it

Receive items page
request, response
with accepted /
requested format
(f=json, html)

Client displays
feature items
received

4 LandingPage EDR
Request, receive,
parse landing page

Form landing page
request, parse
response, display
and/or act on it

Receive landing
page request,
response with
accepted /
requested format
(f=json, html)

Client displays API
“data” link and/or
navigates to it

5 Collection EDR
Request, receive,
parse collection
page

Form collection
page request, parse
response, display
and/or act on it

Receive collection
page request,
response with
accepted /
requested format
(f=json, html)

Client displays
list of collections
available or
processes it

6 Items EDR
Request, receive,
parse items page

Form items page
request, parse
response, display
and/or act on it

Receive items page
request, response
with accepted /
requested format
(f=json, html)

Client displays
feature items
received

OPEN GEOSPATIAL CONSORTIUM 21-019 78

A

ANNEX A (INFORMATIVE)
OGC INNOVATION
PROGRAM DEVELOPER
SURVEY

OPEN GEOSPATIAL CONSORTIUM 21-019 79

A ANNEX A
(INFORMATIVE)
OGC INNOVATION PROGRAM DEVELOPER
SURVEY

The objective of this survey was to deliver the ideas to improve the code resources, tools, and
documentation available for developers of geospatial enabled applications, by learning directly
from them what works best.

OPEN GEOSPATIAL CONSORTIUM 21-019 80

a) What is your age group?

Figure A.1

Figure A.2

OPEN GEOSPATIAL CONSORTIUM 21-019 81

b) Which region do you currently reside in?

Figure A.3

Figure A.4

OPEN GEOSPATIAL CONSORTIUM 21-019 82

c) What is the highest degree or level of school you have completed?

Figure A.5

Figure A.6

OPEN GEOSPATIAL CONSORTIUM 21-019 83

d) What of the following options best describes you?

Figure A.7

Figure A.8

OPEN GEOSPATIAL CONSORTIUM 21-019 84

e) What is your employment status?

Figure A.9

Figure A.10

OPEN GEOSPATIAL CONSORTIUM 21-019 85

f) If employed, what best describes your organization?

Figure A.11

Figure A.12

OPEN GEOSPATIAL CONSORTIUM 21-019 86

g) Which of the following positions is closest to yours?

Figure A.13

Figure A.14

OPEN GEOSPATIAL CONSORTIUM 21-019 87

h) How long have you been coding?

Figure A.15

Figure A.16

OPEN GEOSPATIAL CONSORTIUM 21-019 88

i) Please select the one sentence that best describes your software development
role (If none apply, please specify other):

Figure A.17

Figure A.18

OPEN GEOSPATIAL CONSORTIUM 21-019 89

j) What Operating Systems are you most familiar with?

Figure A.19

Figure A.20

OPEN GEOSPATIAL CONSORTIUM 21-019 90

k) What programming languages are you most familiar with (mark all that apply)?

Figure A.21

Figure A.22

OPEN GEOSPATIAL CONSORTIUM 21-019 91

l) You prefer a presenter who:

Figure A.23

Figure A.24

OPEN GEOSPATIAL CONSORTIUM 21-019 92

m) You want to learn to use a new technology. You would most likely:

Figure A.25

Figure A.26

OPEN GEOSPATIAL CONSORTIUM 21-019 93

n) You want to learn how to play a new card game. You would most likely:

Figure A.27

Figure A.28

OPEN GEOSPATIAL CONSORTIUM 21-019 94

o) You just bought a new camera and want to learn how to use it. You would most
likely:

Figure A.29

Figure A.30

OPEN GEOSPATIAL CONSORTIUM 21-019 95

p) When learning on a new topic from the Internet you prefer:

Figure A.31

Figure A.32

OPEN GEOSPATIAL CONSORTIUM 21-019 96

q) You just purchased a wooden table that came in parts but you cannot find the
documentation. What would you look for on the Internet?

Figure A.33

Figure A.34

OPEN GEOSPATIAL CONSORTIUM 21-019 97

r) Do you have experience with geospatial technology?

Figure A.35

Figure A.36

OPEN GEOSPATIAL CONSORTIUM 21-019 98

s) How many hours per week do you spend in tasks related in one way or another
to geospatial technology?

Figure A.37

Figure A.38

OPEN GEOSPATIAL CONSORTIUM 21-019 99

t) Which of these open-source geospatial projects are you familiar with (mark all
that apply)?

Figure A.39

OPEN GEOSPATIAL CONSORTIUM 21-019 100

Figure A.40

u) Are you involved in any FOSS projects?

Figure A.41

Figure A.42

OPEN GEOSPATIAL CONSORTIUM 21-019 101

v) If you replied yes to the previous question, is this something you do at work?

Figure A.43

Figure A.44

OPEN GEOSPATIAL CONSORTIUM 21-019 102

w) What is the use of Geospatial technology in your work? What problems do they
solve in your organization or for your customers?

Figure A.45

Figure A.46

OPEN GEOSPATIAL CONSORTIUM 21-019 103

x) What experience do you have with OGC and OGC standards (mark all that
apply)?

Figure A.47

Figure A.48

OPEN GEOSPATIAL CONSORTIUM 21-019 104

y) What experience do you have with OGC APIs?

Figure A.49

Figure A.50

OPEN GEOSPATIAL CONSORTIUM 21-019 105

z) Which OGC APIs are important for your work (mark all that apply)?

Figure A.51

OPEN GEOSPATIAL CONSORTIUM 21-019 106

Figure A.52

OPEN GEOSPATIAL CONSORTIUM 21-019 107

aa) What technology do you use to implement or deploy OGC APIs?

Figure A.53

Figure A.54

OPEN GEOSPATIAL CONSORTIUM 21-019 108

ab) Which tools do you use regularly in your work (please select all that apply)?

Figure A.55

OPEN GEOSPATIAL CONSORTIUM 21-019 109

Figure A.56

OPEN GEOSPATIAL CONSORTIUM 21-019 110

ac) Which tools or channels do you use to get support from the developer
community (please select all that apply)?

Figure A.57

Figure A.58

OPEN GEOSPATIAL CONSORTIUM 21-019 111

ad) Do you consider OGC APIs easy to learn?

Figure A.59

Figure A.60

OPEN GEOSPATIAL CONSORTIUM 21-019 112

ae) Have you read an OGC standard specification document?

Figure A.61

Figure A.62

OPEN GEOSPATIAL CONSORTIUM 21-019 113

af) What are the main challenges you face when developing, deploying and
maintaining Geospatial technology (mark all that apply)?

Figure A.63

Figure A.64

OPEN GEOSPATIAL CONSORTIUM 21-019 114

ag) What sources of documentation and support do you use to answer questions
and resolve issues related to Geospatial technologies (mark all that apply)?

Figure A.65

Figure A.66

OPEN GEOSPATIAL CONSORTIUM 21-019 115

ah) Have you ever contributed to a draft specification using Github?

Figure A.67

Figure A.68

OPEN GEOSPATIAL CONSORTIUM 21-019 116

B

ANNEX B (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 21-019 117

B ANNEX B
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE AUTHOR
PRIMARY
CLAUSES
MODIFIED

DESCRIPTION

May 15,
2021 .1 A. Balaban all initial version

Nov 01,
2021 .2 A. Balaban all initial draft version

Nov 15,
2021 .3 A. Balaban all second draft version

Nov 15,
2021 .4 A. Balaban all second draft version

Nov 18,
2021 .5 A. Balaban all final draft version

OPEN GEOSPATIAL CONSORTIUM 21-019 118

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 21-019 119

BIBLIOGRAPHY

1. H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub: IETF RFC 7946,
The GeoJSON Format. Internet Engineering Task Force, Fremont, CA (2016).
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/
reference.RFC.7946.xml

2. M. Jones, J. Bradley, N. Sakimura: IETF RFC 7519, JSON Web Token (JWT). Internet
Engineering Task Force, Fremont, CA (2015). https://raw.githubusercontent.com/
relaton/relaton-data-ietf/master/data/reference.RFC.7519.xml

3. OGC GML in JPEG 2000 (GMLJP2) Encoding Standard, http://docs.opengeospatial.org/
is/08-085r8/08-085r8.html

4. OGC API — Features, http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

5. OGC API — Environmental Data Retrieval Standard, https://docs.ogc.org/is/19-
086r4/19-086r4.html

OPEN GEOSPATIAL CONSORTIUM 21-019 120

https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.7946.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.7946.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.7519.xml
https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.7519.xml
http://docs.opengeospatial.org/is/08-085r8/08-085r8.html
http://docs.opengeospatial.org/is/08-085r8/08-085r8.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://docs.ogc.org/is/19-086r4/19-086r4.html
https://docs.ogc.org/is/19-086r4/19-086r4.html

	I. Abstract
	II. Executive Summary
	III. Keywords
	IV. Preface
	V. Security considerations
	VI. Submitting Organizations
	VII. Submitters
	1. Scope
	2. Terms, definitions and abbreviated terms
	2.1. Terms and definitions
	2.2. Abbreviated terms

	3. Introduction
	4. Developer Survey
	4.1. Who are our developers?
	4.2. Technology Stack
	4.3. Learning Habits
	4.4. Familiarity with OGC (API) Standards
	4.5. Summary

	5. API Experiments Scenarios Overview
	5.1. Participants
	5.2. API experiment scenarios

	6. Architecture and Components
	6.1. Key Features of a Cloud-Native Application Architecture
	6.2. Component Description Template

	7. Component Design and Implementation Details
	7.1. D165 API Experiments Server (Python)
	7.1.1. OGC API — Features Server
	7.1.1.1. Core Architecture
	7.1.1.2. Data Backends
	7.1.1.2.1. OGC Web Feature Service Backend
	7.1.1.2.2. Elasticsearch Backend

	7.1.2. OGI API — EDR (Environmental Data Retrieval) Server
	7.1.2.1. Core Architecture
	7.1.2.2. Data Backends
	7.1.2.2.1. netCDF backend

	7.1.3. Overall Design Decisions
	7.1.3.1. Separating Implementations of OGC API — Features and OGC API — EDR
	7.1.3.2. Development and Deployment

	7.2. D166 API Experiments Server (JavaScript)
	7.2.1. Development Environment
	7.2.2. Architecture
	7.2.3. Deployment and Test Services
	7.2.3.1. Deployment Through Source Code
	7.2.3.1.1. Requirements of Virtual Machine
	7.2.3.1.2. Cloning of Source
	7.2.3.1.3. OGC API — Features
	7.2.3.1.4. OGC API — Environmental Data Retrieval

	7.2.4. Running Through Docker
	7.2.4.1. Running OGC API — Features Through Docker
	7.2.4.2. Running OGC API — EDR Through Docker

	7.2.5. Test Services
	7.2.6. OGC API — Features Test Service
	7.2.7. Test Service for OGC API — EDR
	7.2.8. Extensions to the Library
	7.2.8.1. Add a new backend data source
	7.2.8.2. Support new format

	7.2.9. Lessons learned

	7.3. D167 Data Backend and Deployment
	7.3.1. Challenges and lessons learned

	7.4. D168 Data Backend and Deployment
	7.4.1. Development & Experiments
	7.4.1.1. Experiment 1: Data catalogs stored within AWS S3 bucket & OpenSearch
	7.4.1.1.1. Catalogs within AWS S3 bucket
	7.4.1.1.2. Catalogs deployed via Amazon OpenSearch (previously called Elasticsearch) Service with D165 Server
	7.4.1.1.3. Deployment using D165 server

	7.4.1.2. Experiment 2: Catalogs created and deployed using the CloudFerro CreoDIAS platform

	7.4.2. Lessons learned

	7.5. D175 API Experiments Client — Python
	7.5.1. Challenges and lessons learned
	7.5.1.1. Client auto-generation
	7.5.1.2. Data-centric clients

	7.6. D176 API Experiments Client — TypeScript
	7.6.1. API Clients and Code Generation
	7.6.2. OGC Code Sprint and Discrete Global Grid Systems
	7.6.3. Technology Integration Experiments
	7.6.4. Future improvements

	8. OpenAPI Code Generation
	8.1. Overview of OpenAPI
	8.2. Examples of Code Generation
	8.3. Caveats with Generated Code and Code Generators
	8.4. Generating Code based on OGC OpenAPI Specifications
	8.5. Recommendations to the OGC for using OpenAPI

	9. Results and Findings
	10. Future Work
	11. Technology Integration Experiments (TIE)
	11.1. Data backend and deployment
	11.2. Service invocations and data consumptions

	Annex A (informative) OGC Innovation Program Developer Survey
	Annex B (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Server-Backend TIE Summary Table
	Table 2 — TIE Functional Test
	Table 3 — Server-Client TIE Summary Table
	Table 4 — TIE Functional Test

	List of Figures
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5 — Deliverables and Packages
	Figure 6 — Generic API experiments scenario
	Figure 7 — schematic representation of the architecture of the OGC API — Features implementation with two data backends
	Figure 8 — schematic representation of the architecture of the OGC API — EDR implementation with a single data backend
	Figure 9 — Overall architecture
	Figure 10 — Landing page of the demonstration OGC API — Features server
	Figure 11 — Collection item page of the demonstration OGC API — Features server
	Figure 12 — Landing page of the demonstration OGC API — EDR server
	Figure 13 — The Collections page of the demonstration OGC API — EDR server
	Figure 14 — Collection item page of the demonstration OGC API — EDR server
	Figure 15 — Component diagram
	Figure 16 — NetCDF tiling concept
	Figure 17 — Representation of the D168 GitHub repository with the code folders (light blue) and code components (dark blue)
	Figure 18 — Client architecture
	Figure 19 — Demonstrator application using NASA WebWorldWind
	Figure 20 — Demonstrator application showing DGGS zones
	Figure 21 — The OGC API Family
	Figure A.1
	Figure A.2
	Figure A.3
	Figure A.4
	Figure A.5
	Figure A.6
	Figure A.7
	Figure A.8
	Figure A.9
	Figure A.10
	Figure A.11
	Figure A.12
	Figure A.13
	Figure A.14
	Figure A.15
	Figure A.16
	Figure A.17
	Figure A.18
	Figure A.19
	Figure A.20
	Figure A.21
	Figure A.22
	Figure A.23
	Figure A.24
	Figure A.25
	Figure A.26
	Figure A.27
	Figure A.28
	Figure A.29
	Figure A.30
	Figure A.31
	Figure A.32
	Figure A.33
	Figure A.34
	Figure A.35
	Figure A.36
	Figure A.37
	Figure A.38
	Figure A.39
	Figure A.40
	Figure A.41
	Figure A.42
	Figure A.43
	Figure A.44
	Figure A.45
	Figure A.46
	Figure A.47
	Figure A.48
	Figure A.49
	Figure A.50
	Figure A.51
	Figure A.52
	Figure A.53
	Figure A.54
	Figure A.55
	Figure A.56
	Figure A.57
	Figure A.58
	Figure A.59
	Figure A.60
	Figure A.61
	Figure A.62
	Figure A.63
	Figure A.64
	Figure A.65
	Figure A.66
	Figure A.67
	Figure A.68

