
Interoperable Simulation and Gaming
Sprint Engineering Report

Publication Date: 2021-01-26

Approval Date: 2020-12-11

Submission Date: 2020-11-20

Reference number of this document: OGC 20-087

Reference URL for this document: http://www.opengis.net/doc/PER/ISG-Sprint

Category: OGC Public Engineering Report

Editors: Leonard Daly, Scott Serich

Title: Interoperable Simulation and Gaming Sprint Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright ©2021, Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/ISG-Sprint
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 9

2. Executive Summary. 10

2.1. Operation . 10

2.2. Accomplishments . 11

2.3. Issues . 11

2.4. Recommendations . 12

2.5. Document contributor contact points . 12

2.6. Foreword . 13

3. References . 14

4. Terms and definitions . 15

5. Overview . 17

6. Material and Purpose . 18

6.1. Call for Participation . 18

6.2. Data Sets . 18

6.3. 3D GeoVolume Servers . 20

6.4. GeoVolumes API Pilot Engineering Report . 21

6.5. Architecture diagrams. 21

6.6. Discussion of Scenarios . 23

7. Findings . 24

7.1. Introduction. 24

7.2. Aspects of Investigation . 24

7.3. Cooperative Efforts. 25

7.4. General Results . 26

7.5. Dynamic Dataset Updates. 26

7.6. Performance Comments . 26

7.7. Discovered Inconsistencies . 27

7.7.1. URLs . 27

7.7.2. Request Methods . 27

7.7.3. Media Type . 27

7.7.4. Request Attributes . 28

7.7.5. Other Friction Points . 28

7.8. Game Engine Interface . 28

8. Conclusions . 29

9. Component Implementation: CAE . 30

9.1. Introduction. 30

9.2. Data . 30

9.3. Workflows . 32

9.3.1. CDB to OGC 3D Tiles . 33

4

9.3.2. FMV to CDB to glTF . 34

9.4. Analysis . 35

9.5. Recommendations . 39

10. Component Implementation: Cesium . 40

10.1. Introduction. 40

10.2. CDB to OGC 3D Tiles . 40

10.2.1. Organization of Test Data . 40

10.2.2. The Converter Architecture . 42

10.2.3. Future Improvements . 46

10.3. GeoVolumes API . 46

10.4. Conclusion . 47

11. Component Implementation: Cognitics . 48

11.1. Abstract. 48

11.2. Architecture. 48

11.3. Damascus, Syria Vricon SurfaceMesh . 50

11.4. Fort Story Rapid 3D Data . 51

12. Component Implementation: Ecere. 53

12.1. Overview . 53

12.1.1. Components Wiring Architecture. 53

12.2. Server Implementation. 54

12.2.1. Improvements to CDB preprocessing . 54

12.2.2. Improvements to 3D Tiles generation . 55

12.2.3. OGC API - Common end-points . 57

12.2.4. 3D Tiles Bounding Volume Hierarchy end-points. 58

12.2.5. OGC API - Tiles and 3D Models extension end-points . 58

12.2.6. Other OGC API end-points . 65

12.2.7. Technology Integration Experiments . 72

12.3. Updating the 3D content . 76

12.3.1. Simple Transactions. 76

12.3.2. Updating 3D models . 76

12.3.3. Updating terrain elevation . 77

12.3.4. Change Sets. 77

12.3.5. Implementation progress . 77

12.4. Client Implementation . 81

12.5. GeoVolumes API Considerations. 84

12.5.1. Building upon OGC API - Common foundations . 84

12.5.2. Proper relation types, registered media types and links . 85

12.5.3. Common bounding boxes . 85

12.5.4. Hierarchies of collections . 85

12.5.5. GeoVolumes API’s raison d’être and name. 85

12.5.6. Tiles API & 3D Models Extension . 86

5

13. Component Implementation: Helyx . 87

13.1. Types of alternate distribution in scope of GeoVolumes API. 89

13.2. What is an alternate distribution? . 89

13.3. Representing Alternate Distributions at the Data Level . 90

13.4. Representing Alternate Distributions at the Service Level . 90

13.5. Representing Alternate Distributions at the API Level . 91

13.6. What Datasets, Services or Tiling Schemes are ‘In Scope’ of the GeoVolumes API? 91

13.7. Representing Alternate Distributions at the Collection(s) Level. 92

13.8. Representing Alternate Distributions within one API – endpoints . 92

13.9. Representing Alternate Distributions within one API – parameters . 92

13.10. A note on path format . 93

13.11. Representing Alternate Distributions within one API - Link Relations. 93

13.12. Representing Alternate Distributions as Media Types . 94

13.13. What is the difference between an alternate distribution and an alternate resource? 95

13.14. Practical use of alternate distributions at the client side . 95

13.15. OpenAPI Shapechange Workflow Perspective . 95

13.16. Benefits . 96

14. Component Implementation: Hexagon GSP . 97

14.1. Abstract. 97

14.2. Test Data . 98

14.3. Organization of CDB for 3D Models . 99

14.3.1. GSFeatures and GSModelGeometry . 99

14.3.2. GTFeature and GTModelGeometry. 99

14.3.3. CDB Technical Specification Recommendations . 99

14.4. Pre-processing CDB 3D Models to OGC 3DTiles. 100

14.4.1. Mesh Simplification . 102

14.4.2. Parameterization and texture baking . 102

14.4.3. Tile size . 105

14.4.4. Metadata and selection . 105

14.4.5. Conversion speed . 105

14.4.6. Referencing . 105

14.4.7. 3D data organization recommendations . 105

14.5. Serving OGC 3DTiles from CDB with on the fly tiling . 105

14.5.1. CDB 3D data organization recommendations . 106

14.6. Handling terrain updates . 106

14.6.1. Proxy Server Approach. 107

14.6.2. GPU Expression Approach . 108

14.7. Handling CDB Model Updates . 108

14.7.1. Deleted Model . 109

14.7.2. Updated Model . 109

14.7.3. Added Model . 109

6

15. Component Implementation: InfoDao . 110

15.1. GeoVolumes API and its role in the ISG Sprint . 110

15.2. Source Data: Display and Tie Tables . 110

15.3. Future Discussion. 114

15.3.1. GeoVolumes API Discussion: CDB comparisons and OGC API discussion. 114

15.3.2. Wrapping it up . 115

16. Component Implementation: SimBlocks.io . 116

16.1. Subject. 116

16.2. Summary . 116

16.3. Previous Work. 116

16.4. Architecture. 117

16.5. Proposed Activities . 118

16.6. Server Testing . 118

16.7. Conversion Methods . 121

16.7.1. Method 1 - NASA Unity3DTiles Library . 121

16.7.2. Method 2 - B3DM to OBJ . 122

16.7.3. Method 3 - Directly load B3DM . 123

16.8. Future Work . 124

17. Component Implementation: Steinbeis . 125

17.1. Overview . 125

17.2. Server Implementation. 125

17.2.1. GeoVolumes API Server. 125

17.2.2. SensorThings API Server for Urban Mobility . 126

17.3. Client Implementation . 127

17.3.1. Visualizing Contents from GeoVolumes API Servers . 128

17.3.2. Mobility Routes . 131

17.4. Automatic Updates. 133

17.4.1. CDB to 3D Tiles Using FME . 133

17.4.2. Automatic Update Workflow . 136

17.4.3. Delete. 136

17.4.4. Add . 137

17.4.5. Future Recommendations . 139

17.5. Discussion . 139

17.5.1. 3D GeoVolumes API Query - Polygon with a Hole . 139

17.5.2. 3D GeoVolumes API Organization Different Semantic Parts . 140

18. Future Recommendations . 141

18.1. Introduction. 141

18.2. Topics of Future Work. 141

18.2.1. External to OGC. 141

18.2.2. OGC Projects. 142

Appendix A: Technology Integration Experiment (TIE) Table . 144

7

Appendix B: Revision History . 148

Appendix C: Bibliography . 149

8

Chapter 1. Subject
The OGC Interoperable Simulation and Gaming Sprint advanced the use of relevant OGC and
Khronos standards in the modeling and simulation community through practical exercise and
testing of the GeoVolumes API draft specification produced by the 3D Data Container and Tiles API
Pilot [https://docs.ogc.org/per/20-031.html]. Of particular interest was the handling and integration of
glTF models coming from multiple sources, but the sprint also examined the specification’s
implementability, consistency, completeness, and maturity.

9

https://docs.ogc.org/per/20-031.html
https://docs.ogc.org/per/20-031.html

Chapter 2. Executive Summary
The Interactive Simulation and Gaming Sprint ("Sprint") was undertaken by OGC to verify the
results of the 3D Data Container and Tiles API Pilot ("Pilot"). The Pilot produced the OGC
GeoVolumes API draft specification [https://docs.ogc.org/per/20-030.html] ("draft spec" [1]). The Sprint
was specifically designed to test the coverage and consistency of the draft spec and with respect to
other OGC APIs. It was expected that the Sprint would uncover no major issues with the draft spec,
but would identify interoperability issues with multiple data stores and between other OGC APIs.
The Sprint was not intended as a full-coverage verification and validation of the draft spec.

As indicated in the OGC 3D Data Container and Tiles API Pilot Summary Engineering Report
[https://docs.ogc.org/per/20-031.html] [2], it was important from a business perspective that additional
integration tests and real-world deployment demonstrations further explore the potential of the
GeoVolumes API draft spec. The implementation and testing work conducted in this initiative went
a long way toward resolving any outstanding interoperability issues and exploring best practices
for the organization of GeoVolumes within the interoperable simulation and gaming domain.

Another important component in the Sprint was the use of 3D models in (graphics language
transmission format [https://github.com/KhronosGroup/glTF/tree/master/specification/2.0] (glTF) [3]). This
format is of particular interest to OGC because of its emergence as a common (i.e., de facto
standard) web transmission model format. The format was developed and is supported by the
Khronos Group, which was a partner in the Sprint.

Please also visit the OGC ISG Sprint YouTube Playlist [https://www.youtube.com/playlist?

list=PLQsQNjNIDU87AM0K__5pWfKYvApzA4old] to view participant video recordings.

2.1. Operation
The Sprint implementation work lasted six weeks, primarily during September 2020. The original
plan called for a week-long in-person coding effort; however, due to the Covid-19 pandemic, this
was changed to a virtual event with each participant providing their own development support.

The primary source data used in the Sprint was from the San Diego CDB dataset, which
implemented the OGC CDB Standard [https://www.ogc.org/standards/cdb] [4]. Other data formats such as
OpenFlight [https://www.presagis.com/en/glossary/detail/openflight] [5] were also used.

Figure 1. The orientation images for the San Diego CDB dataset. The left image is an overhead shot of the
San Diego coastline from La Jolla to the US/Mexico border. The red square indicates the data set region. The
right image is a rendering of a portion of this dataset. Up is approximately north-east with the San Diego
Convention Center at bottom center-right. The rendering was created by CAE.

10

https://docs.ogc.org/per/20-030.html
https://docs.ogc.org/per/20-030.html
https://docs.ogc.org/per/20-031.html
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://www.youtube.com/playlist?list=PLQsQNjNIDU87AM0K__5pWfKYvApzA4old
https://www.ogc.org/standards/cdb
https://www.presagis.com/en/glossary/detail/openflight

The participants for the Sprint were (in alphabetical order): CAE, Cesium, Cognitics, Ecere, Helyx,
Hexagon, InfoDao, SimBlocks, and Steinbeis. Most participants had experience participating in
prior OGC projects. All participants were OGC member organizations.

The Sprint Call for Participation [https://portal.ogc.org/files/?artifact_id=94059] (CfP) [6] provided three
scenarios. Participants could also propose their own scenario provided that fit within Sprint
guidelines. Table 2 provides a summary description of the selected scenarios. Table 3 shows the
coverage of scenarios by the participants.

2.2. Accomplishments
All of the participants worked together using each other’s resources and expertise to augment their
work. The Technology Integration Experiment (TIE) Table shows the full results of their cooperative
work testing their GeoVolumes API implementations and those of others.

Through the development and testing work undertaken in the Sprint, the participants tested a wide
range of GeoVolumes API draft spec coverage. No serious defects were discovered, and no major
problems with correctness, completeness, or consistency were reported. Significant results that
were reported include:

• Use of a previously unused dataset (San Diego CDB) with the draft spec,

• Hosting a GeoVolumes API service on Amazon Web Services without issue,

• Partial integration with OGC’s SensorThings API,

• Dynamic update of models in the datastore,

• Dynamic update of terrain used in the datastore, and

• Partial integration with Unity’s game engine.

2.3. Issues
As expected, the Sprint did identify several issues. Most of these were not with the GeoVolumes API
draft spec but with the underlying support. One item that all participants noted (and no solution
was provided) was the lack of an optimized conversion between the various data formats that were
used. This included CDB, glTF, and OpenFlight.

The participants did investigate issues arising from differences between various OGC APIs. The
primary finding was that the OGC API - Common - Part 2: Geospatial Data
[http://docs.opengeospatial.org/DRAFTS/20-024.html] was a key document. Issues would have arisen if the
various functional specifications were inconsistent with this specification. At the time of the
investigation, no inconsistencies had been discovered.

Most of the issues with the GeoVolumes API draft spec were in the areas of definitions and use of
URLs and HTTP requests and replies. These issues did not prevent the APIs from working, but
differences could arise between different implementations in areas where the draft spec does not
go into that level of detail.

Three items were identified as involving URLs. Mostly it was a case of determining how the URL

11

https://portal.ogc.org/files/?artifact_id=94059
http://docs.opengeospatial.org/DRAFTS/20-024.html

path end-point (final component of the path) was used to access specific data format. This is tied in
with the issue noted in Media Type. A minor note is that the GeoVolumes draft specification is not
completely clear on the server environment. An issue might arise if the server (the part of the
system that provides the data through the API) is configured as a file server (responds to the file
protocol).

Issues involving HTTP concerned the use of Request Methods, Media Type, and Request Attributes.
These issues did not prevent the API from working, but could cause some interoperability issues in
larger-scale environments.

Issues with Request Methods addressed how a data change should be made to the datastore. Media
types allow the client and server to communicate as to the format of the data. This interacted with
the URL issues (described above) by controlling how a specific format of data is requested and
received. Request attributes assist in the means to specify alternate or roll-over data sources.

2.4. Recommendations
Seventeen recommendations were made for future work. These items are generally referred to as
"projects," but they could be fairly brief and small undertakings by a Domain or Standards Working
Group or as part of another effort (Sprint, Pilot, Testbed, etc.) within OGC. Items not directly part of
OGC could also be addressed through appropriate joint projects or liaison arrangements with
external organizations/groups.

These range from projects external to OGC (four projects) generally carried out by other
organizations or community efforts, three data based projects (generally conversion from one
format to another), three projects to enhance the GeoVolumes API draft spec, four projects to
develop a clear definition of feature (model or terrain) change (part to HTTP Request Method
discussed above), and three on API infrastructure (to address the URL and HTTP issues described
above).

2.5. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Leonard Daly Daly Realism
representing Khronos
Group

Contributor & Editor

Scott Serich Open Geospatial
Consortium

Contributor & Editor

Holly Black CAE Contributor

Sean Lilley Cesium Contributor

12

Name Organization Role

Michala Hill Cognitics Contributor

Jerome St-Louis Ecere Contributor

Anneley Hadland Helyx Contributor

Emeric Beaufays Hexagon Contributor

Joshua Rentrope InfoDao Contributor

Jordan Dauble SimBlocks.io Contributor

Patrick Caughey SimBlocks.io Contributor

Barbara Cotter SimBlocks.io Contributor

Glenn Johnson SimBlocks.io Contributor

Joseph Kaile SimBlocks.io Contributor

Volker Coors Steinbeis, HFT Stuttgart Contributor

Thunyathep
Santhanavanich (Joe)

Steinbeis, HFT Stuttgart Contributor

Harpreet Singh Steinbeis, HFT Stuttgart Contributor

Patrick Würstle Steinbeis, HFT Stuttgart Contributor

2.6. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

13

Chapter 3. References
The following normative documents are referenced in this document:

• 3D Tiles Specification 1.0. (c) 2016-2019, Cesium and Open Geospatial Consortium
[http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html],

• CDB V1.0 Standard. (c)2016, Open Geospatial Consortium [https://www.ogc.org/standards/cdb],

• glTF V2.0 Specification, 9 June 2017. (c) 2017, The Khronos Group [https://github.com/KhronosGroup/

glTF/tree/master/specification/2.0],

• GeoVolumes Draft Specification. (c)2020, Open Geospatial Consortium [https://portal.ogc.org/files/?

artifact_id=94029],

• Uniform Resource Identifier (URI): Generic Syntax. RFC 3986, IETF. [https://tools.ietf.org/html/

rfc3986], and

• SensorThings API Specification. (c)2015,2017; Open Geospatial Consortium [https://www.ogc.org/

standards/sensorthings].

14

http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html
https://www.ogc.org/standards/cdb
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://portal.ogc.org/files/?artifact_id=94029
https://tools.ietf.org/html/rfc3986
https://www.ogc.org/standards/sensorthings

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● 3D Tiles

3D Tiles [7] is designed for streaming and rendering massive 3D geospatial content such as
Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. It defines a
hierarchical data structure and a set of tile formats which deliver renderable content. 3D Tiles
does not define explicit rules for visualization of the content; a client may visualize 3D Tiles data
however it sees fit.

● b3dm

Batched 3D Model (b3dm) [8] allows offline batching of heterogeneous 3D models, such as
different buildings in a city, for efficient streaming to a web client for rendering and interaction.
Efficiency comes from transferring multiple models in a single request and rendering them in
the least number of WebGL draw calls necessary. Using the core 3D Tiles spec language, each
model is a feature.

● CDB

The CDB standard [4] defines a standardized model and structure for a single, “versionable,”
virtual representation of the earth. A CDB structured data store provides for a geospatial content
and model definition repository that is plug-and-play interoperable between database authoring
workstations. Moreover, a CDB structured data store can be used as a common online (or
runtime) repository from which various simulator client-devices can simultaneously retrieve
and modify, in real-time, relevant information to perform their respective runtime simulation
tasks. In this case, a CDB is plug-and-play interoperable between CDB-compliant simulators. A
CDB can be readily used by existing simulation client-devices (legacy Image Generators, Radar
simulator, Computer Generated Forces, etc.) through a data publishing process that is performed
on-demand in real-time.

● Full Motion Video (FMV)

Full Motion Video (FMV)-compliant refers to the combination of a video stream and associated
metadata into one video file, which makes the video geospatially aware. The sensor systems
collect camera pointing information, platform position and attitude, and other data, and encode
it into the video stream so that each video frame is associated with geopositional information [9].

● GeoVolumes

GeoVolumes [10] follow one conceptual organization of space applied by humans, which is a
nested collection of spaces where every space contains either a number of sub-spaces or a set of
objects. As an example, the GeoVolume “Earth” contains a set of child GeoVolumes, one for each
continent. Each continent then may have a set of child GeoVolumes for the various countries, or,
if countries are irrelevant in that scenario, a number of datasets that represent the topography,
rivers, and human settlements.

15

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

● IANA

Internet Assigned Numbers Authority is the organization responsible for oversight of the
architecture of the Internet. They are ultimately responsible for assignment of IP addresses and
management of Media Types.

● jp2 | JPEG2000

It is an advanced lossy compression algorithm for representing 2D data. It is currently not
widely supported in browsers, requiring a (CPU-intensive) conversion to JPEG or PNG/GIF.

● OpenFlight

OpenFlight [5] is a file format originally designed as a nonproprietary 3D geometry model
format for use by real-time 3D visual simulation image generators. The OpenFlight file format is
used today in the high end real-time visual simulation industry as the standard interchange
format between different IG systems, and is currently administrated by Presagis [11].

● URL/URI

At one time Uniform Resource Location (URL) was a subset of Uniform Resource Identifier (URI).
Now both are considered the same [12].

● W3C

World Wide Web Consortium is responsible for all standards that make the Web operate,
including URIs, HTTP, etc.

16

Chapter 5. Overview
Section 6 describes the Material and Purpose of the Sprint. All of the material that was provided to
the participants is either included here or referenced.

Section 7 presents the overall Findings from the Sprint. The discussion includes material learned
from all participants and the Sprint leadership team in carrying out the Sprint.

Section 8 presents the major Conclusions from the Sprint. This represents the collective knowledge
and experience of the participants and editor.

Sections 9-17 contain the Participant Detailed Reports.

Section 18 contains the consolidated Future Recommendations. Much of this content was gathered
from participant detailed reports.

Appendix A contains a copy of the Sprint Technology Integration Experiments (TIE) Table, with
additional notes and comments.

Appendix B contains the document Revision History.

Appendix C contains the document Bibliography.

17

Chapter 6. Material and Purpose

6.1. Call for Participation
The ISG Sprint: Call for Participation [https://portal.ogc.org/files/?artifact_id=94059] (CfP) [6] was released
on 7 July 2020 by the Open Geospatial Consortium for the purpose of obtaining proposals from
organizations interested in furthering study of the GeoVolumes draft specification
[https://docs.ogc.org/per/20-030.html] [1]. The CfP provided all of the material necessary for organizations
to make a proposal for participation either by direct inclusion in the document or publicly available
links.

The CfP specified a schedule from kickoff meeting (1 September) through the Sprint Week (21-25
September), and participant final report inputs (5 October). The Sprint was originally desired to be
in-person; however, pandemic lockdown restrictions required that all participant work be done
remotely during the sprint week. This decision was made prior to the due date for proposals.

6.2. Data Sets
The primary data set for the Sprint is known as San Diego CDB (licensed under the SanGIS Legal
Notice - SanGIS GIS Data End User Use Agreement and Disclaimer for Data Released to the Public
[https://www.sangis.org/Legal_Notice.htm] [13]). This data set was collected using a number of sensors
and methods from <start> to <end> and encompassed nearly all of the downtown San Diego and
vicinity, including the port, sports stadium, recreational facilities, commercial, and housing areas.

18

https://portal.ogc.org/files/?artifact_id=94059
https://docs.ogc.org/per/20-030.html
https://www.sangis.org/Legal_Notice.htm
https://www.sangis.org/Legal_Notice.htm

Figure 2. An overview of the coverage of the San Diego CDB V4.1. It is a single geocell with the southwest
corner at N33 V118.

Figure 3. A rendering of a portion of this dataset. Up is approximately north-east with the San Diego
Convention Center at bottom center-right. The rendering was done by CAE.

All participants could elect to use other datasets, particularly any of those from the OGC 3D Data
Container and Tiles API Pilot [https://www.ogc.org/projects/initiatives/3dt] (aka "Pilot") [2]. In particular,
much use was made of the New York data set.

19

https://www.ogc.org/projects/initiatives/3dt
https://www.ogc.org/projects/initiatives/3dt

Figure 4. A rendering of a portion of the New York City dataset. The rendering was done by InfoDao using
the Ecere data server.

The San Diego CDB was available for download by all participants. Many of the participants made
that data available to all participants through the GeoVolumes API on their servers. New York data
was also made available through multiple APIs implemented during the Pilot. See Table 1 for a list
of available servers.

6.3. 3D GeoVolume Servers
Several of the Sprint participants also participated in the Pilot. These organizations provided their
GeoVolumes API servers for use to everyone during the Sprint. These servers were generally
populated with both the New York and San Diego data.

Table 1. Servers providing GeoVolumes API access to the indicated dataset

Organizatio
n

URL Notes

Cesium https://3d.hypotheticalhors
e.com

Server

Cesium https://map.hypotheticalho
rse.com/

Client

Cognitics http://cdb.cognitics.net:300
0/

n/a

Ecere http://maps.ecere.com/
ogcapi

/collections/SanDiegoCDB in particular, with Tiles API
and GeoVolumes/3D Tiles

https://maps.ecere.com/
3DAPI/

New York City 3D Tiles dataset (static server)

20

https://3d.hypotheticalhorse.com
https://3d.hypotheticalhorse.com
https://map.hypotheticalhorse.com/
https://map.hypotheticalhorse.com/
http://cdb.cognitics.net:3000/
http://cdb.cognitics.net:3000/
http://maps.ecere.com/ogcapi
http://maps.ecere.com/ogcapi
https://maps.ecere.com/3DAPI/
https://maps.ecere.com/3DAPI/

Organizatio
n

URL Notes

Helyx http://helyxapache2.eastus.
azurecontainer.io/

n/a

InfoDao http://pygeoapi.isg-sprint-
hub.infodaollc.com/stac

PyGeoAPI serving San Diego and Copenhagen CDB
(base url has rest of API)

Skymantics http://13.82.99.186:5050/ n/a

Steinbeis https://steinbeis-3dps.eu/
3DGeoVolumes

New Steinbeis 3D GeoVolumes server for OGC-ISG

http://steinbeis-
3dps.eu:8080/
3DContainerTile/

Existing Steinbeis 3D GeoVolumes server from the 3D
Container and Tiles pilot, containing New York City 3D
Tiles dataset, New York City I3S dataset

http://steinbeis-3dps.eu/
STT3DClient/

STT 3D Client (based on CesiumJS & ArcGIS for
JavaScript)

https://ogc3dc.igd.fraunhof
er.de/

STT 3D Client (by Fraunhofer and GeoRocket)

6.4. GeoVolumes API Pilot Engineering Report
The three 3D Data Container and Tiles API Pilot engineering reports (collectively referred to as
"Pilot ER") [14, 1, 2] were made available to all participants prior to kickoff. Subsequent to the start
of the Sprint, the Pilot ER was made publicly available. The draft specification is part 2
[https://docs.ogc.org/per/20-030.html] [1] of the document set. This contained the API specification that
was the primary target of the Sprint.

6.5. Architecture diagrams
These architecture diagrams were provided with the CfP. Figure 5 illustrates the service
architecture of the 3D Data Container and Tiles environment that includes the GeoVolumes API.
Figure 6 illustrates access to city-based datasets (in particular for New York, US and Montreal, CA),
but only showing the detail for New York City.

21

http://helyxapache2.eastus.azurecontainer.io/
http://helyxapache2.eastus.azurecontainer.io/
http://pygeoapi.isg-sprint-hub.infodaollc.com/stac
http://pygeoapi.isg-sprint-hub.infodaollc.com/stac
http://13.82.99.186:5050/
https://steinbeis-3dps.eu/3DGeoVolumes
https://steinbeis-3dps.eu/3DGeoVolumes
http://steinbeis-3dps.eu:8080/3DContainerTile/
http://steinbeis-3dps.eu:8080/3DContainerTile/
http://steinbeis-3dps.eu:8080/3DContainerTile/
http://steinbeis-3dps.eu/STT3DClient/
http://steinbeis-3dps.eu/STT3DClient/
https://ogc3dc.igd.fraunhofer.de/
https://ogc3dc.igd.fraunhofer.de/
https://docs.ogc.org/per/20-030.html

Figure 5. The architecture of the various Pilot capabilities is shown with connecting arrows indicating
request flow. Each client has a built-in Globe model that provides a base coordinate system for all
additional data.

Arrows show the potential paths of requests from the clients; data flow is in the reverse direction.
The connecting lines indicate conceptual requests and data flows. The actual connections may be
distributed across several physical devices.

Figure 6. Pilot data architecture illustrating access to datasets for two North American cities (Montreal and
New York). The architecture supporting New York City is shown in detail.

This figure is presented as an illustration of possible connections. It is not intended to be a complete
illustration of all connections or possible data sets.

22

6.6. Discussion of Scenarios
The CfP described three possible scenarios [https://portal.ogc.org/files/?artifact_id=94059#SprintScenario] [6].
Participants could choose to work on any number of these, any variant of these, or one (or more) of
their choosing.

1. Investigate how model and terrain updates, originating (preferred) from a CDB data store and
delivered as glTF, are integrated with 3D Tiles into the client environment. The questions to be
examined should include the following.

a. How are terrain changes handled with existing structures?

b. How are new models integrated with existing elevation terrain?

c. How are existing models handled when CDB updates indicate change
(additions/deletions/configurations)?

2. Containers may specify 0 or 1 datasets. A dataset indicates a primary and potentially one or
more alternate distributions. Investigate whether there are implementation issues with
accessing multiple distributions.

3. What should be the organization of the underlying 3D data? It is unlikely that there is a single
best solution to these problems, so identifying use cases for particular choices will be important.

a. Is there one bounding volume hierarchy per county, region, city, or some other geo-political
boundaries?

b. How are features (buildings, vegetation, transportation networks, etc.) structured in the data
store? Are they layers in geo-political sets, or are geo-political data layers in feature sets?

These scenarios were designed to test and explore portions of the draft GeoVolumes specification
that OGC and the sponsors felt were not sufficiently explored in the Pilot. They derive directly from
the discussion from Chapter 10 [https://docs.ogc.org/per/20-031.html#WayForward] of the Extended
Executive Summary [2]. In addition to the listed scenarios, participants were invited to explore
other areas that fit within the opportunities described in Chapter 10. Some of the participants did
use this option to explore other capabilities, especially related to game-engine integration. The
Findings chapter of this report discusses the participant’s scenario choices.

23

https://portal.ogc.org/files/?artifact_id=94059#SprintScenario
https://docs.ogc.org/per/20-031.html#WayForward

Chapter 7. Findings

7.1. Introduction
This section describes findings of the Sprint participants. Each finding presented here is significant
in that is was reported by at least two participants or it was a serious issue reported by a single
participant.

Not all participants investigated the same aspects of the draft Specification. This approach enabled
fairly expansive testing of the draft Specification and related areas.

7.2. Aspects of Investigation
Each participant was free to choose which one (or more) scenarios to pursue. Three scenarios
[https://portal.ogc.org/files/?artifact_id=94059#SprintScenario] were discussed in the CfP [6]. Participants
could also create their own scenario. OGC reviewed each participant’s proposal and suggested
revisions to better align with the goals of the Sprint, the interest of the Sponsor, and the coverage by
the other participants. Table 2 provides a summary description of the selected scenarios. Table 3
shows the coverage of scenarios by the participants.

Table 2. A summary of the scenarios used during the Sprint. Scenarios 1-3 were in the Call for Participation.
Other-1 and Other-2 were proposed by Cognitics and SimBlocks, respectively.

Scenario Summary Desription

1 Investigate model and terrain updates

2 Investigate alternate and multiple distributions

3 Investigate organization of underlying 3D data

Other-1 Investigate integration with Rapid3D (Full Motion Video)

Other-2 Investigate the integration of GeoVolumes API with Unity game engine

Table 3. The pre-declared the scenarios for each participant. These are the
primary areas of work, though their work may have touched on other scenarios.
Cognitics worked with creating models from full-motion video (Other-1), and
SimBlocks worked with their Unity integration (Other-2). The participant name
links to their report section.

Participant Scenario 1 Scenario 2 Scenario 3 Other

CAE ✓

Cesium ✓

Cognitics ✓ 1

Ecere ✓

Helyx ✓

Hexagon ✓

24

https://portal.ogc.org/files/?artifact_id=94059#SprintScenario

Participant Scenario 1 Scenario 2 Scenario 3 Other

InfoDao ✓ ✓

SimBlocks 2

Steinbeis ✓ ✓

7.3. Cooperative Efforts
All participants cooperated with each other in various aspects of the Sprint. This included a team
entry, providing data services for the Sprint, and use and testing of other OGC API services.

Two teams were formed. Three participants, CAE, Cesium, and Cognitics, teamed together to
produce a combined result. This was done with the knowledge and approval of the sponsor. A two
participant team (Ecere and Steinbeis) was formed to test the insertion, modification, and deletion
of 3D objects and terrain into the base scene.

All participants cooperated and included the test and use of other participant services during the
Sprint. Use and testing was performed by all members agains OGC GeoVolumes API services offered
by others. Table 4 shows the interoperation between offered services (servers) and uses (clients).

Table 4. The inter-participant testing is shown here. The Client is show across the table with the Service
provider going down. ✓ means that the server was able to successfully deliver and the client was to
successfully receive the data when using the GeoVolumes API. The text in brackets indicate the data that
was transferred. [pilot] means the data used during the Pilot project (primarily New York City). This table
summarizes the information presented in the Technology Integration Experiment (TIE) Table.

Client → Hexagon InfoDao SimBlocks Steinbeis

Service

Cesium ✓ (+ fdbk) ✓ [pilot] ✓ [pilot] ✓ [pilot]

Cognitics ✓ [pilot] NA ✓ [pilot] ✓ [pilot]

Ecere ✓ [San Diego] ✓ [San Diego] ✓ [San Diego] ✓ [San Diego]

(Pilot
functions)
Ecere

✓ [pilot] ✓ [pilot] ✓ [pilot] ✓ [pilot]

PyGeoAPI-
InfoDao

✓ using CDB server NA not pass

Helyx ✓ [pilot, San Diego] ✓ [pilot, San Diego] ✓ [pilot, San Diego] ✓ [pilot, San Diego]

Steinbeis
New

✓(+ fdbk) ✓ [San Diego] ✓ [San Diego] ✓ [San Diego]

(Pilot
functions)
Steinbeis
Existing

✓ [pilot] ✓ [pilot] ✓ [pilot] ✓ [pilot]

25

7.4. General Results
The work done for the Sprint was closely tied to the work done for the Pilot, even though some of
the participants were different between the two initiatives. The mix of participants allowed some
with extensive experience in GeoVolumes to dig deeper into areas that were not fully explored
during the Pilot. Participants who were not part of the Pilot brought a fresh read to the document
along with potential solutions.

No defects in the draft specification were discovered, though several items need further
investigation. These are discussed in the Discovered Inconsistencies section. Several participants
discussed the importance of GeoVolumes following the OGC API Core, Volume 2: 3D Data
specification to ensure compatibility throughout the suite of OGC APIs.

In addition to the results shown in Table 4 the participants were able to use their existing
GeoVolume client software to access data-stores that had not been previously used by OGC and OGC
projects. These data-stores included data in CDB and other formats that either were served directly
(as 3D Tiles static files) or generated on-the-fly from CDB and other sources.

Steinbeis extended one of the scenarios to include the integration of SensorThings API
[https://www.ogc.org/standards/sensorthings] [15] to illustrate how these two APIs could work together
(SensorThings API Server for Urban Mobility). There were no inconsistencies or other issues found.

It is worth mentioning that two participants (CAE and Cognitics) have hosted their services on
Amazon Web Services (AWS) to improve throughput and allow for easy load expansion when
needed. The use of cloud services was smooth and without issues. These were not tested for heavy
loads, load balancing capabilities, or performance.

7.5. Dynamic Dataset Updates
Several of the participants developed the capability to update part of the dataset during operation.
These updates do not require regeneration of the entire dataset from the data-store. There are
mechanisms to ensure that any generated and cached files are appropriately rebuilt on the next
request.

Ecere, Steinbeis, and Hexagon addressed the insert/update/removal models using the OGC API -
Features [https://www.ogc.org/standards/ogcapi-features] standard. The specified API proved sufficient
(but not necessarily ideal) to perform these functions within the context of GeoVolumes API and the
Sprint. Ecere proposed an extension that provided a better interface to refer to models. All of these
participants did note that getting the models to align with the local terrain was not a simple matter
and required different solutions depending on how the client was designed and configured.

7.6. Performance Comments
Nearly all of the participants noted that conversion of CDB to 3D Tiles was an expensive operation
and needed to be avoided especially for on-the-fly requests. Cesium noted that in addition to the
performance issues associated with conversion, the high-detailed building files are (generally) very
large (50-100MB), and improving the tiling scheme is needed to maintain performance of the server
and client.

26

https://www.ogc.org/standards/sensorthings
https://www.ogc.org/standards/ogcapi-features
https://www.ogc.org/standards/ogcapi-features

Another issue noted by Ecere and Cesium (among others) was handling the creation of glTF files. In
particular the manipulation of meshes. Some of the supporting libraries may require a particular
condition (e.g., each mesh only uses a single material) while the output may require a single mesh
with multiple materials.

7.7. Discovered Inconsistencies
Several of the participants discovered various issues related to HTTP transactions. These include
issues in the URL, request method, content-type, and, request attributes. The issues and possible
solutions are interrelated. Each issue is linked to the section of the participants report where it is
discussed in detail.

7.7.1. URLs

Issues with the URL were noted by several participants. These include

• Different servers using GeoVolumes API use different relative URLs for models. In some cases it
is a full path, other cases it is relative to the current document. It is consistent within a sever.
SimBlocks discusses this in Server Testing.

• The end-point requirements for are not always sufficiently clear. Helyx observed (Representing
Alternate Distributions at the Collection(s) Level) that there is a lack of clarity in how to specify
the alternate distributions. It may be specified as the final element in a path (endpoint), via
search parameters, or through content-type negotiation.

• Conflicts between OGC specifications and operating system requirements for use of the
characters / (slash) and : (colon). See the Helyx A note on Path Format.

NOTE

"Uniform Resource Identifier (URI): Generic Syntax" [16] specifies that the colon (":")
is a reserved character and needs to be URL-encoded. This requirement may be
sufficient for URI access, but if the system needs to support static file-mode access;
there may be issues with Windows-based servers.

7.7.2. Request Methods

Ecere, Steinbeis, and Hexagon investigated providing model and terrain change services. These
include adding a new model, changing and existing model or terrain, deleting an existing model,
replacing an existing model. From the discussion in the participant reports, there was no standard
for executing those operations. The HTTP standard defines the methods GET (retrieve), POST (add
new), PUT (replace existing), PATCH (update), and DELETE (delete) request methods that can be used for
these operations. Ecere discusses the operation in detail in Updating the 3D content.

7.7.3. Media Type

The HTTP specification allows the client to specify the allowed media types that the server is
allowed to return. The server may return a "Not Found" or other responses if the requested media
type for that content is not available. If the various 3D data types have unique media types, the
client may request a specific one through this mechanism. Helyx discussed some of these options in
Representing Alternate Distributions as Media Types.

27

NOTE

Media types do not have to be approved by Internet Assigned Numbers Authority
(IANA). There are provision for experimental and vendor-specific content types. It is
generally easier to get IANA approval after a specification is approved by standards
organization.

7.7.4. Request Attributes

HTTP allows for an alternate or roll-over reference. This allows for the client code to indicate
alternate distributions of the content-equivalent data. For example the primary reference may be
3D Tiles with a roll-over of i3s and CDB. Helyx discussed some of the issues and options in
Representing Alternate Distributions within one API - Link Relations.

7.7.5. Other Friction Points

InfoDao noted that (GeoVolumes API Discussion: CDB comparisons and OGC API discussion) CDB
and GeoVolumes APIs exist separately, but need to work together. The existing specifications (draft
and approved) allow that to happen. There are issues with knowledge of the data structures are not
necessarily known or easily handled on both the client and server sides of the communication link.

7.8. Game Engine Interface
SimBlocks.io worked on integrating their solution into the Unity game engine. There was quite a bit
of work to do bringing in the 3D data as glTF or 3D Tiles into Unity. The solution they developed
during the Sprint is sub-optimal, but it did work. They reported that they felt the solution for the
Unreal engine would likely require a similar amount of work.

28

Chapter 8. Conclusions
The basics of the GeoVolumes draft specification are complete and well-specified (consistent and
complete). There may still be some edge cases that are poorly defined there were not investigated
in the Sprint. A number of the participants indicated the importance of GeoVolumes and other OGC
APIs to retain full consistency and compatibility with OGC API - Common, especially Draft OGC API -
Common - Part 2: Geospatial Data [http://docs.opengeospatial.org/DRAFTS/20-024.html].

Several participants noted issues with URLs and other HTTP issues. In a review of the statements by
the participants and OGC API documents, it appears that various HTTP capabilities are not fully,
correctly, or completely specified. This is highlighted in the Discovered Inconsistencies section.
HTTP provides definitions for URLs, request methods, content types, and request attributes. Their
use does not appear to be fully defined in the various OGC APIs.

Perhaps a more serious problem is with the location and data content naming convention. There
appears to be substantial flexibility in the naming of locations and data that two different servers
could have significantly different naming for the same data at the same location. If there is an
intent to form a large federation of servers from different organization, that naming convention
needs further definition.

OGC should continue to examine Best Current Practice "URI Design and Ownership" [17] which
states that the best practice is to not specify the path of an application as that is the responsibility of
the URI owner (generally the owner of the [sub-]domain).

Finally it was shown that GeoVolumes could be integrated with a game engine (Unity). This would
allow Unity to act as a GeoVolumes client that could easily use the API to communicate with
multiple GeoVolumes servers and enable other Unity-based applications to utilize the API without
the need for extensive graphics development. It was hypothesized that a similar level of effort
would be required to integrate with Unreal.

29

http://docs.opengeospatial.org/DRAFTS/20-024.html
http://docs.opengeospatial.org/DRAFTS/20-024.html

Chapter 9. Component Implementation: CAE

9.1. Introduction
The focus of the analysis of data was centered upon the generation of 3D Tiles and glTF models
from a CDB data store. This activity exercised the National Geospatial Intelligence Agency’s
Foundation in GEOINT 3D (FG3D) pipeline and the United States Special Operation Command Rapid
3D (R3D) architecture. The resultant data was reviewed for anomalies encountered with those 3D
formats from the original CDB content.

Figure 7. CAE High Level Workflow

9.2. Data
CAE provided the San Diego v4.1 CDB for participant use in the OGC ISG Sprint [13].

The San Diego CDB v4.1 is a single geocell (1° latitude by 1° longitude) with the southwest corner at
N33 W118. The CDB coverage is considered Medium Resolution and contains a High Resolution
inset in the San Diego area.

30

Figure 8. CAE San Diego Coverage

The CDB dataset contained elevation (GeoTIFF), imagery (jpeg2000), 3D models with textures
(OpenFlight [5]), road and hydrography vectors (ESRI shapefiles). The 3D models were a mixture of
GSFeature and GTFeature representations. The base imagery was populated in the high resolution
area to CDB Level of Detail 9; equivalent to 0.0212354 meter resolution.

31

Figure 9. Three views of San Diego High Resolution Area generated by CAE

The dataset was created with open source data provided by the United States Geological Survey and
the San Diego Geographic Information Source.

9.3. Workflows
From the full CDB geocell, a smaller subset of data was used as a focus for this analysis.

Table 5. Focus Area Bounding Box

Northwest Corner N32.710
W117.167

Northwest Corner N32.710
W117.153

Southwest Corner N32.702
W117.167

Southeast Corner N32.702 W117.153

32

Figure 10. CAE GRID AOI

Two independent workflows were employed for CDB data generation and conversion. One for the
translation of CDB datasets to 3D Tiles. The other for the creation of a new CDB OpenFlight model
from full motion video converted to glTF.

Figure 11. CAE Data Production Workflow

9.3.1. CDB to OGC 3D Tiles

The CDB to 3D tile workflow utilized a FG3D 3D Tile microservice initiated from within the Rapid3D
architecture.

33

Figure 12. CAE R3D 3D Tile CDB Conversion

The CDB data was hosted in an S3 container on the Amazon Web Service Cloud. The conversion was
conducted within the AWS environment.

The newly created 3D Tiles were shared with other experiment participants for their testing
purposes.

9.3.2. FMV to CDB to glTF

The generation of the glTF 3D model began by uploading full motion video (FMV) via the R3D
browser user interface. Microservices were invoked within the R3D AWS environment generating a
point cloud from the FMV, segmenting the point cloud to and independent single model geometry,
and then creating a CDB compliant OpenFlight model.

The model was then translated to glTF format using an FG3D data translator for glTF.

34

Figure 13. CAE glTF Translation and Export

The 3D Tiles and the glTF model were then brought together for rendering. The glTF model was
geopositioned at coordinate N32.704 W117.164 in order to reside within the same San Diego focus
area for the experiment.

9.4. Analysis
Original CDB content rendered in Presagis VegaPrime showed no apparent content loss once the
data was converted to 3D Tile. The comparison was made as rendered in Cesium ion and Cognitics
Dragonfly.

Figure 14. CDB Displayed in VegaPrime

35

Figure 15. 3D Tiles Displayed in Cesium ion

Figure 16. 3D Tiles Displayed in Cognitics Dragonfly

The initial 3D Tile rendering in Dragonfly appeared too dark compared to the original content and
surrounding basemap. To mitigate the noticeable difference in brightness the Cesium3DTileset
object was created with the property imageBasedLightingFactor: new Cesium.Cartesian2(5,5) set.

36

Figure 17. 3D Tile Dark Rendering

Figure 18. 3D Tile Modified Rendering

The glTF model generated using FMV source was visually no different then the CDB OpenFlight
model.

37

Figure 19. CAE Full Motion Video Source

Figure 20. glTF Model From FMV

The original CDB to glTF convertor utilized in the FG3D data translation service, placed all textures
associated with the glTF in a subfolder. This proved problematic for several of the glTF rendering
platforms that were used to verify glTF compliance. Therefore, modifications were completed to
collocate the textures with the model geometry.

The final result of placing the glTF model in the 3D Tile scene required manual editing for
geopositional placement. In CDB a corresponding shapefile would provide the positioning
information for transmission.

38

Figure 21. CAE glTF Rendered in Dragonfly with 3D Tiles

9.5. Recommendations
Further analysis and consideration needs to be conducted in the following areas:

• Assess the accuracy, data loss, or resolution degradation of the conversion of CDB content to 3D
Tiles,

• A common method for storing and transmitting the geoposition information for glTF models,

• Deconfliction of CDB or 3D Tile data when a new glTF model is added to a scene or datastore,

• 3D rendering performance of large scale content of glTF models, and

• Development of a robust batch converter of CDB models to glTF complete with geolocation
information.

39

Chapter 10. Component Implementation:
Cesium

10.1. Introduction
In this Sprint, the Cesium team focused on investigating the optimal method of serving 3D content
from a CDB dataset into a web viewer. The team achieved this by developing a CDB to 3D Tiles
converter and evaluating runtime performance by loading the converted San Diego test data in
CesiumJS. The idea of converting the test data to 3D Tiles on-the-fly with partial updates was
explored, however, there was not enough time to implement that in this Sprint.

A parallel stream of effort involved building on our work in the 3D Container and Tiles API Pilot
and integrating the GeoVolumes API into Dragonfly, a web based 2D/3D common operational
picture (COP) platform built in support of the Global Situational Awareness (GSA) program.

10.2. CDB to OGC 3D Tiles

10.2.1. Organization of Test Data

40

Figure 22. Structure of the San-Diego CDB database

The San Diego CDB database’s size was approximately 26 GB. It contains a single GeoCell that covers
the San Diego area. The GeoCell contains the following layers:

• Elevation layer, which was approximately 1.7 GB and stored in the TIF format,

• Imagery layer, which was approximately 17.2 GB and stored in the jp2 format,

• 3D Model layer, which was approximately 6.0 GB and stored in the OpenFlight [5] format. Their
features, orientations, and positions were stored in GSFeatures and GTFeatures directories, in
the ESRI Shapefile format, and

• Vector layer, which was approximately 128 MB and describes road and hydrography networks.
They were stored in the ESRI Shapefile format.

Each layer was organized according to the same level of detail scheme. Each negative level covered
the entire GeoCell area. However, the positive levels were organized as a quadtree data structure.

41

Each positive level subdivided the area into 4 smaller sections at the subsequent level. The amount
of data stored in each level was specified differently for each layer by the CDB specification.
However, generally, higher levels contained more data to increase the detail of the layer.

10.2.2. The Converter Architecture

Tiling Scheme

In this Sprint, the team focused only on the Elevation, Imagery, and GSModel layer. Each layer was
converted into a separate tileset.

For the 3D Tiles structure, each node representing a negative level only had one child node with the
bounding region being the region of the GeoCell. For positive levels, a node had a maximum of 4
children representing a quadtree data structure. Each child only covered a quarter of the region of
the parent node.

42

Figure 23. Structure of the converted tileset

Elevation and Imagery Conversion

The Elevation and Imagery were converted together into one tileset. The heightmap of each tile in
the Elevation layer was triangulated into a mesh, and the imagery of the tile was used as the texture
of the mesh.

43

Figure 24. San-Diego terrain and imagery

There were 2 edge cases for the above tiling scheme. It was noticed that for the Elevation layer, the
child nodes did not necessarily cover the full area occupied by the parent. As the camera zoomed in
close to the surface, there were holes appearing due to missing data for higher levels. The solution
for this case was to sample the parent’s vertices where the child node doesn’t have data. This
solution, however, was wasteful.

Figure 25. Gaps between tiles appeared due to missing data in the higher levels

Another edge case that was encountered was that the Imagery layer could have more levels than
the Elevation layer. The solution was to repeat the elevation mesh in the child node until there
were no more levels for imagery. This was also a wasteful solution.

44

Figure 26. Difference in levels of detail between the elevation and imagery dataset.

GSModel Conversion

For the 3D Model, the team combined multiple OpenFlight files within a tile into one single batched
3D model (b3dm) file and organized the tileset similar to the tileset of terrain and imagery. The
team also batched models that had the same material into a single mesh to reduce the number of
draw calls at runtime. As a result, the team was able to obtain 40-60 frames per second, which was
acceptable. However, the approach of combining multiple files into one single b3dm can yield very
large file sizes for tiles at high levels of detail. For example, at level 4, there were b3dm files whose
sizes were approximately 50 to 100 MB. As a result, the user had to wait 1 or 2 seconds to see the
models appear. Better tiling schemes should be investigated in the future to reduce tile sizes while
maintaining low impact on the rendering performance.

45

Figure 27. San-Diego’s GSModels

10.2.3. Future Improvements

To support on-the-fly conversion, listed below were some improvements the team would need to
make to its conversion pipeline.

• Provide concurrency support. Currently, the Cesium converter works on a single thread. The
conversion time for the San Diego CDB was about 35 minutes. With concurrency support, the
runtime could be reduced further, and fortunately, the CDB database scheme was suitable for
such architecture.

• Since CDB specification defines the fixed extent a tile can cover, tileset.json can be generated
quickly without reading into the data files of each layer.

• The team also noticed that the San Diego CDB contains a lot of OpenFlight and Imagery files, so
it was essential to reduce the number of IO operations to increase performance of the
converter. It would also help if the multiple 3D models could be combined into one single
OpenFlight file.

10.3. GeoVolumes API
In collaboration with Cognitics and CAE, the team aimed to build on work done in the OGC 3D
Container and Tile API Pilot. The goal was to integrate the GeoVolumes API into Dragonfly, a
common operational picture platform built to provide global situational awareness. Dragonfly uses
OGC WMS [https://ogcapi.ogc.org/maps/] as the vehicle for organizing and serving 2D data, but there
was a need for a container for all the 3D data that was available to the user. The chosen format for
3D data was the OGC 3D Tiles [https://www.ogc.org/standards/3DTiles] format.

On the backend, the team set up the GeoVolumes API to enable querying data on the client side,
based on the bounding box of the current view of the map. The second part of the work involved
setting up an endpoint to ingest 3D Tiles created by Rapid3D, a tool to used to generate 3D data
from full motion video, and adding it to the available GeoVolumes collections. In the user interface,
the team added the ability for a user to "discover" the bounding box of a 3D collection by hovering
over it in the GeoVolumes list, as shown below.

46

https://ogcapi.ogc.org/maps/
https://www.ogc.org/standards/3DTiles

Figure 28. GeoVolumes UI in Dragonfly

10.4. Conclusion
Cesium worked on two different tracks during the Sprint - CDB to 3D Tiles conversion and
GeoVolumes experimentation in Dragonfly - and a future goal was to see how these two efforts
converge. For example, future work could extend the GeoVolumes API to support on-the-fly CDB to
3D Tiles conversion when a particular area of interest was selected.

Another future goal is to explore the conversion process from CDB X to 3D Tiles next, once those
specifications are further along. This would improve interoperability between CDB and the Well-
Formed Format for One World Terrain. Efforts were already underway to use glTF in both formats,
and this Sprint helped identify other areas that need more convergence - specifically implicit tiling
schemes, raster layers, and per-texel metadata.

47

Chapter 11. Component Implementation:
Cognitics

11.1. Abstract
In cooperation with CAE and Cesium, the Cognitics team used GeoVolumes to enhance integration
between the Global Situational Awareness (GSA) and Rapid3D (R3D) efforts. The current phase of
the GSA effort has produced a prototype infrastructure/service called Dragonfly.

Within Dragonfly, a user has the ability to send full motion video (FMV) into Rapid3D for the
generation of 3D content. When a production task has completed, Rapid3D provides the content
back into Dragonfly for visualization in 2D and 3D (Cesium).

Currently, all content produced in this manner was incorporated into the visualization. It lacked
any method for organizing the content for user filtering.

In this Sprint, the Cognitics team:

• Implemented a GeoVolumes service providing Rapid3D result content, and

• Implemented a GeoVolumes client in the Dragonfly web interface, allowing a user to select
content based on source or geographic area.

This provided a realistic scenario for the Sprint while also addressing a real sponsor need.

11.2. Architecture
Dragonfly is deployed in the commercial Amazon Web Services cloud as a series of Docker
containers. The Dragonfly web based user interface supports 2D and 3D content and is currently
hosted at https://dragonfly.caeusa.com/. The Dragonfly datastore contained both static 3D content
and processed content from Rapid3D which was indexed using GeoVolumes and filtered by a visible
bounding box. Dragonfly utilized GeoServer for 2D streaming and Cesium Ion for streaming of 3D
Tiles. Ion is a robust, scalable, and secure platform for 3D geospatial data that optimizes and tiles it
for the web, serves it up in the cloud, and streams it to any device. Cesium 3D content shown in
Dragonfly included Cesium World Terrain, and Cesium OSM Buildings. PostgreSQL/PostGIS, OGC
CDB, 3D Tiles were all used for data storage.

48

https://dragonfly.caeusa.com/

Figure 29. High level system architecture for Dragonfly

Dragonfly utilized the GeoVolumes API for selection and of 3D content based on bounding box,
rather than displaying all content at all zoom levels. While in 3D view, GeoVolumes was displayed
under Overlays in the Main Menu.

Figure 30. Dragonfly user interface (UI) in 3D mode, showing GeoVolumes in menu

When the user was zoomed out to the globe level, the effective bounding box was the entire globe,
and all available GeoVolumes overlays were displayed in the table of contents.

49

Figure 31. Dragonfly in 3D mode showing all available GeoVolume overlays.

As the user zoomed in, the bounding box encompassed only the area shown in the user interface
and only the corresponding GeoVolumes overlays are shown. In the figure below, the bounding box
includes Beirut and Damascus. When the user hovered over a GeoVolumes overlay, the extent of
that overlay was highlighted, as seen in the figure below of the Damascus overlay.

Figure 32. Damascus bounding box extent highlighted

11.3. Damascus, Syria Vricon SurfaceMesh
The Vricon SurfaceMesh of Damascus, Syria was static 3D content in the Dragonfly datastore. The
figures below show the data in directly overhead and oblique views.

50

Figure 33. Overhead view of Vricon SurfaceMesh in Dragonfly.

Figure 34. Oblique view of Vricon SurfaceMesh in Dragonfly.

11.4. Fort Story Rapid 3D Data
The Fort Story dataset was constructed from full motion video (FMV) that was uploaded via the
Dragonfly user interface and sent through the Rapid3D process to generate the 3D content. The
figures below show the data in directly overhead and oblique views.

51

Figure 35. Overhead view of Rapid 3D Fort Story lighthouse dataset.

Figure 36. Oblique view of Rapid 3D Fort Story lighthouse dataset.

52

Chapter 12. Component Implementation:
Ecere

Figure 37. San Diego CDB data visualized in Ecere’s GNOSIS Cartographer (Petco Park)

12.1. Overview
In the OGC Interoperable Simulation and Gaming Sprint, Ecere improved its GeoVolumes API
service implementation, based on its GNOSIS Map Server. Some issues were resolved with the CDB
importing process. The 3D Tiles tileset generation was improved with support for textures. Caching
and other optimizations were also implemented to achieve better performance. Other Sprint
participants were able to successfully access and display the 3D data from the San Diego CDB
served by the service.

Ecere, in collaboration with Steinbeis, also investigated a mechanism to update 3D content, such as
adding, removing or updating 3D models, based on the Simple Transactions extension defined for
the OGC API - Features specifications.

Although Ecere focused on the server-side aspect during the ISG Sprint, some performance
improvements were still made to the client to better deal with the large dataset used.

In this report, Ecere also presents some considerations for the standardization of the GeoVolumes
API based on its experience as both client and server developers, as well as involvement in other
OGC Innovation and Standards Program activities.

12.1.1. Components Wiring Architecture

53

Figure 38. Connectivity and APIs between Ecere and other participants components

12.2. Server Implementation
The server provided by Ecere is based on its GNOSIS Map Server which implements support for the
new OGC API family of standards. The GeoVolumes API defines the bridge between the OGC API -
Common - Part 2: Geospatial data and 3D data. This 3D data is typically defined as Bounding Volume
Hierarchy to facilitate culling out data outside the view frustum as well as to retrieve and display
the right amount of detail. This is the case with both the 3D Tiles and i3s OGC Community
Standards. However the same collection of data could also be accessed using other OGC API
specifications, such as Features and Tiles, as demonstrated in this implementation. The GNOSIS Map
Server implementation currently support generation of 3D Tiles on-the-fly from a source data store.

12.2.1. Improvements to CDB preprocessing

Figure 39. Preprocessing step to import CDB into GNOSIS Data Store

Ecere’s dynamic 3D data server is based on the GNOSIS Map Server, which can serve data from a

54

number of data stores (e.g. GeoPackages), but works best with the data optimized to its native
GNOSIS Data Store [http://docs.opengeospatial.org/per/17-041.html#

_gnosis_data_store_to_hold_vector_raster_or_gridded_coverage_with_shared_tiling_structure]. Content is stored
in a way which bears many similarities with CDB, except the GNOSIS Global Grid
[https://maps.ecere.com/ogcapi/tileMatrixSets/GNOSISGlobalGrid] is used for tiling, which compared to the
CDB Global Grid [https://maps.ecere.com/ogcapi/tileMatrixSets/CDBGlobalGrid] (i.e., CDB Zones and Level of
Details), better approximates equal area for polar regions, and features more practical sizes for
overview tiles. Another advantage of the GNOSIS Data Store is grouping of Level of Details to
balance file size and file count. Both of these improvements, along with embracing GeoPackage and
extensions, are being considered for a future revision of the CDB standard. In the latest version of
the GNOSIS Data Store, a SQLite database is used for attributes and spatial indexing, while tiled
geometry (encoded according to the GNOSIS Map Tiles specifications [https://docs.ogc.org/per/18-

025.html#GMTSpecs]) is stored in Ecere archives [http://manpages.ubuntu.com/manpages/focal/man1/

ear.1.html]. For 3D models, point geometry tiles encode 3D positions, orientations, scaling and model
identifiers to instantiate 3D models. The 3D models themselves are encoded following the E3D
specifications [https://docs.ogc.org/per/18-025.html#E3DSpecs].

Ecere’s GNOSIS Cartographer can import CDB to a GNOSIS Data Store in a preprocessing step. Issues
with this process were identified and resolved during the Sprint. Among these issues, one caused an
inconsistent data store, which resulted in broken links from the Features API access to the 3D
buildings data.

12.2.2. Improvements to 3D Tiles generation

Figure 40. Generating Batched 3D Models 3D Tiles on demand

Improved functionality

One important improvement made to the 3D Tiles and glTF generation for the Sprint is support for
textures, including referencing shared external textures to minimize the amount of texture
memory required, since many buildings in the San Diego CDB dataset re-use the same textures.

55

http://docs.opengeospatial.org/per/17-041.html#_gnosis_data_store_to_hold_vector_raster_or_gridded_coverage_with_shared_tiling_structure
https://maps.ecere.com/ogcapi/tileMatrixSets/GNOSISGlobalGrid
https://maps.ecere.com/ogcapi/tileMatrixSets/CDBGlobalGrid
https://docs.ogc.org/per/18-025.html#GMTSpecs
http://manpages.ubuntu.com/manpages/focal/man1/ear.1.html
https://docs.ogc.org/per/18-025.html#E3DSpecs
https://docs.ogc.org/per/18-025.html#E3DSpecs

Another improvement concerned avoiding to list empty tiles in the tilesets, which resulted in error
messages being printed out in the CesiumJS console when the library attempted to load these tiles
and received an empty file.

The testing by other participants during the Sprint allowed us to identify and resolve other issues
with the dynamic 3D data server. This was a welcomed opportunity as this dynamic server was not
ready in time for Technology Integration Experiments during the 3D Container & Tiles Pilot.

It was originally planned to improve additional aspects of the 3D Tiles tileset generation, such as
generating multiple Level of Details and improving the accuracy of the bounding volumes, but as
there was not enough time to complete this during the Sprint, it will be the subject of further
development.

Vertical datum implications of CDB and 3D Tiles

Ecere also grasped a better understanding of the vertical datum implications of CDB and 3D Tiles,
clarifying with the help of other participants that the elevation model is always relative to the
WGS84 ellipsoid. However, for the generated 3D Tiles of 3D models from the San Diego CDB to sit
properly on the CesiumJS world terrain mesh (a terrain provider created by the
Cesium.createWorldTerrain() method), the ECF coordinates translation transformation for the 3D
Tiles specified in the tileset had to be based on the geoid (i.e., adding the geoid offset from the
ellipsoid). This seems odd, as it would have been expected to be based on the ellipsoid, since CDB
elevation, and all transforms are Earth centric. It is still not clear whether this is an issue with the
San Diego CDB, with the CesiumJS worldTerrain terrain provider, or a misunderstanding on Ecere’s
part.

Performance Improvements

Because the GNOSIS Map Server generates 3D Tiles on-the-fly as they are being requested, it can
easily support dynamic updates. However, this requires this generation capability to be very fast.
Especially because multiple level of details are not yet provided, the performance turned out to be
an important issue with the TIEs.

Ecere identified that the Open Asset Import Library [https://assimp.org] (libassimp) currently used by
the GNOSIS Map Server to export glTF 2.0 3D models suffers from a number of critical performance
issues. As an example of the scale of the problem, while exporting a 3D model to E3D takes a
fraction of a second, exporting the same model to glTF 2.0 using the libassimp would take over a
minute.

Ecere reached out to the developers community of that library and performed profiling to identify
bottlenecks in the export process. For the most important bottleneck (the library wasting a lot of
processing power generating unique glTF buffer identifiers), a work around was implemented, and
an issue [https://github.com/assimp/assimp/issues/3444] was filed with the project.

The second most important bottleneck has also been identified as being the merging of all meshes
of a single node (even if they use different materials), prior to exporting to glTF 2.0. The meshes
must be provided separately to libassimp, as its model definition structures require each mesh to
have a single material.

To further mitigate the performance issues, caching of the glTF 2 models was implemented in the

56

https://assimp.org
https://github.com/assimp/assimp/issues/3444

GNOSIS Map Server. As a result, any affected cached model should be cleared when updates to the
source data occur.

12.2.3. OGC API - Common end-points

The following end-points are implemented in the GNOSIS Map Server, based on OGC API - Common
specifications.

Common - Part 1: Core

Landing Page: https://maps.ecere.com/ogcapi

NOTE
API description (/api) and conformance declaration (/conformance) end-points are
still under development.

Common - Part 2: Geospatial Data

List of data layers: https://maps.ecere.com/ogcapi/collections

San Diego CDB composite data layer: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB

The component layers making up the composite data layer are separate data layers, but hierarchy is
implied from the : separator, as proposed at https://github.com/opengeospatial/oapi_common/
issues/11#issuecomment-677947387. Additional discussion on this topic is found below under the
GeoVolumes API Considerations / Hierarchies of collections topic.

San Diego CDB elevation data layer: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Elevation

San Diego CDB geotypical trees data layer: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Trees

San Diego CDB Coronado bridge data layer: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:CoronadoBridge

NOTE
It is odd that this 3D model of a very specific bridge was found in the geotypical
man-made features CDB dataset component selector.

San Diego CDB geospecific buildings data layer: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings

San Diego CDB hydrography vector data layer: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Hydrography

San Diego CDB roads vector data layer: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Roads

San Diego CDB medium resolution imagery data layer: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:ImageryL07

57

https://maps.ecere.com/ogcapi
https://maps.ecere.com/ogcapi/collections
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB
https://github.com/opengeospatial/oapi_common/issues/11#issuecomment-677947387
https://github.com/opengeospatial/oapi_common/issues/11#issuecomment-677947387
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:CoronadoBridge
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:CoronadoBridge
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Hydrography
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Hydrography
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL07
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL07

San Diego CDB higher resolution imagery data layer:
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL09

12.2.4. 3D Tiles Bounding Volume Hierarchy end-points

The following end-points implement a Bounding Volume Hierarchy tileset based on 3D Tiles
specifications.

3D Buildings 3D Tiles tileset: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/
3DTiles/tileset.json

Example Batched 3D Models 3D Tile: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.b3dm

These tilesets can be used directly with clients based on CesiumJS, or other clients supporting 3D
Tiles.

Figure 41. San Diego CDB 3D Tiles tileset visualized in CesiumJS

Although this is not required, since it follows a fixed tiling scheme (called implicit tiling in 3D Tiles),
the individual tiles end-points also coincide with the OGC API - Tiles end-points described below.

12.2.5. OGC API - Tiles and 3D Models extension end-points

In additions to tilesets of 3D Tiles organized as a Bounding Volume Hierarchy, the GNOSIS Map
Server implements an alternative approach to accessing the 3D data which is closer to the CDB
access and data model. For example, tiles contain reference points with transformation information
which reference individual 3D models. These models are available at /models/{modelID} resources.
This approach was first introduced and used in the OGC - Testbed 14 - CityGML and Augmented
Reality work package, as a continuation of work done in OGC - Testbed 13 - 3D Performance Clients
work package [https://docs.ogc.org/per/17-046.html#Experiment7], tested with a detailed CDB of New York

58

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL09
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL09
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/3DTiles/tileset.json
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/3DTiles/tileset.json
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.b3dm
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.b3dm
https://docs.ogc.org/per/17-046.html#Experiment7

City from Flight Safety, and detailed in the engineering report [http://docs.opengeospatial.org/per/18-

025.html#ClientServerCommunication].

It was demonstrated again in the 3D Container & Tiles pilot with the Camp Pendleton CDB from
Presagis (see video [https://www.youtube.com/watch?v=mzGy2nRLgzY]), and again in this ISG Sprint with
the sample San Diego CDB from CAE.

A variation of this approach still implements a Tiles API, but rather than vector points referencing
3D models, the models contained within a tile are all embedded in a single 3D model making up the
whole tile. This is supported for E3D, binary glTF, and Batched 3D Models. The batched 3D models
resources are referenced by the 3D Tile tileset nodes, so the two approaches are not entirely
separate.

A notable improvement to the implementation of this approach in the Sprint is the new support for
glTF and Batched 3D Models 3D Tiles in addition to E3D, including support for textures.

In both variations, as well as in the 3D Tiles tileset approach, the tiles and individual models
reference shared textures at the /textures end-point. Those textures are also available in different
formats, e.g., pre-compressed as ETC2 mipmaps series (when requesting etc2 format), and different
resolutions (currently implemented by appending a ?resolution=512 or ?resolution=256 query
parameter for 512 x 512 and 256 x 256 versions of the texture).

The Ecere service also serves other data layers (from the San Diego CDB dataset as well as others)
using the Tiles API, including elevation data coverages, imagery, vector features, and tiled rendered
maps.

Sample OGC API - Tiles end-points for the San Diego dataset are listed below:

Tiles API

The following end-points are standard 2D tiles end-points, but some also provide 3D information
(e.g., heights for elevation models and 3D points, scaling and orientations positioning 3D models).

3D Buildings Tiles API tilesets: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/
tiles

3D Buildings Tiles API GNOSIS Global Grid tileset: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid

Example tile referencing models (Mapbox Vector Tile): https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.mvt

59

http://docs.opengeospatial.org/per/18-025.html#ClientServerCommunication
https://www.youtube.com/watch?v=mzGy2nRLgzY
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.mvt
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.mvt

Figure 42. Mapbox Vector Tile of points positioning 3D buildings visualized in QGIS

Example tile referencing models (GeoJSON): https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.json

Example Elevation Tile (GeoTIFF): https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Elevation/tiles/GNOSISGlobalGrid/14/10425/11425.tif

Figure 43. Elevation Tile visualized in QGIS

Example Elevation Map Tile (PNG): https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Elevation/map/tiles/GNOSISGlobalGrid/14/10425/11425.png

60

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.json
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.json
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation/tiles/GNOSISGlobalGrid/14/10425/11425.tif
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation/tiles/GNOSISGlobalGrid/14/10425/11425.tif
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation/map/tiles/GNOSISGlobalGrid/14/10425/11425.png
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation/map/tiles/GNOSISGlobalGrid/14/10425/11425.png

Figure 44. Elevation Map Tile

Example Imagery Tile (PNG): https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL09/
tiles/GNOSISGlobalGrid/16/41700/45700.png

Figure 45. Imagery Tile

Example Roads Map Tile (JPG): https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads/map/
tiles/GNOSISGlobalGrid/11/1300/1430.jpg

Figure 46. Roads Map Tile

61

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL09/tiles/GNOSISGlobalGrid/16/41700/45700.png
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL09/tiles/GNOSISGlobalGrid/16/41700/45700.png
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads/map/tiles/GNOSISGlobalGrid/11/1300/1430.jpg
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads/map/tiles/GNOSISGlobalGrid/11/1300/1430.jpg

The following end-points also are standard 2D tiles end-points, but binary glTF and Batched 3D
Models formats allow to retrieve 3D content tiled according to a tile matrix set defined by the 2D
Tiled Matrix Set standard [http://docs.opengeospatial.org/is/17-083r2/17-083r2.html]:

Example E3D Batched 3D Models tile: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.e3d

Example binary glTF Batched 3D Models tile: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.glb

Figure 47. glTF batched 3D models tile visualized in glTF model viewer [https://gltf-viewer.donmccurdy.com/#

model=https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.glb]

Example 3D Tile Batched 3D Models tile: https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.b3dm (the b3dm tiles are what the 3D
Tiles tilesets refer to).

Referenced 3D Models Extensions

The following end-points implement a proposed extension specific to 3D Models, consisting
primarily of /models/{modelID}:

Example Trees 3D Model (glTF): https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/
models/1207959554.glb

62

http://docs.opengeospatial.org/is/17-083r2/17-083r2.html
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.e3d
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.e3d
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.glb
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.glb
https://gltf-viewer.donmccurdy.com/#model=https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.glb
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.b3dm
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/tiles/GNOSISGlobalGrid/13/5229/5730.b3dm
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/models/1207959554.glb
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/models/1207959554.glb

Figure 48. glTF Palm tree model visualized in glTF model viewer [https://gltf-viewer.donmccurdy.com/#

model=https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/models/1207959554.glb]

Coronado Bridge 3D Model (glTF): https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:CoronadoBridge/models/1207959553.glb

Figure 49. glTF Coronado Bridge visualized in glTF model viewer [https://gltf-viewer.donmccurdy.com/#

model=https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:CoronadoBridge/models/1207959553.glb]

63

https://gltf-viewer.donmccurdy.com/#model=https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/models/1207959554.glb
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:CoronadoBridge/models/1207959553.glb
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:CoronadoBridge/models/1207959553.glb
https://gltf-viewer.donmccurdy.com/#model=https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:CoronadoBridge/models/1207959553.glb

Petco Park (Buildings) 3D Model (E3D): https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/models/1208101246.e3d

Petco Park (Buildings) 3D Model (glTF): https://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Buildings/models/1208101246.glb

Figure 50. glTF 3D building visualized in glTF model viewer [https://gltf-viewer.donmccurdy.com/#model=https://

maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/models/1208101246.glb]

Currently, model identifiers are stored in model::id property of vector points, while orientation is
stored in model::orientation, and scaling in model::scale.

Example texture: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/textures/59.png

64

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/models/1208101246.e3d
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/models/1208101246.e3d
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/models/1208101246.glb
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/models/1208101246.glb
https://gltf-viewer.donmccurdy.com/#model=https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/models/1208101246.glb
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/textures/59.png

Figure 51. Texture for San Diego CDB Petco Park 3D model

The textures references are encoded as relative paths within the glTF 3D models.

12.2.6. Other OGC API end-points

The GNOSIS Map Server offers access to the San Diego CDB data through additional OGC API access
mechanisms, including the Features, Maps and Coverages APIs.

Features

Buildings Features: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/items

Trees Features: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/items

Roads Features: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads/items

Hydrography Features: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Hydrography/items

Maps

Hydrography Map: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Hydrography/map/
default.jpg

65

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/items
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/items
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads/items
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Hydrography/items
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Hydrography/map/default.jpg
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Hydrography/map/default.jpg

Figure 52. San Diego CDB hydrography map

Roads Map: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads/map/default.jpg?
width=2048

66

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads/map/default.jpg?width=2048
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Roads/map/default.jpg?width=2048

67

Figure 53. San Diego CDB roads map

Imagery Map: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL09/map/default.png

68

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:ImageryL09/map/default.png

69

Figure 54. San Diego CDB medium resolution imagery

Figure 55. San Diego CDB high resolution imagery

Elevation Map: https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation/map/default.png

70

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation/map/default.png

Figure 56. San Diego CDB elevation map

Coverages

Elevation (GeoTIFF): https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation/coverage.tif

71

https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Elevation/coverage.tif

Figure 57. Coverage for San Diego CDB elevation visualized in QGIS

12.2.7. Technology Integration Experiments

Several of the other Sprint participants were able to successfully access and display the dynamic 3D
Tiles tilest generated from the San Diego CDB data on-the-fly by the new Ecere service end-point
(https://maps.ecere.com/ogcapi) for the GNOSIS Map Server, specfically the San Diego CDB set of
data layers [https://maps.ecere.com/ogcapi/collections/SanDiegoCDB]. Hexagon, InfoDao, SimBlocks and
Steinbeis all reported that their clients were able to successfully access and visualize the data.

Sample screenshots of some participants clients follow.

Figure 58. InfoDao Client accessing San Diego CDB data as 3D Tiles from Ecere’s GNOSIS Map Server

72

https://maps.ecere.com/ogcapi
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB
https://maps.ecere.com/ogcapi/collections/SanDiegoCDB

Figure 59. Steinbeis Client flying over San Diego CDB data accessed as 3D Tiles from Ecere’s GNOSIS Map
Server

Figure 60. Steinbeis Client accessing San Diego CDB data as 3D Tiles from Ecere’s GNOSIS Map Server

Participants also re-tested the older GeoVolumes API end-point from 3D Container & Tiles pilot
(https://maps.ecere.com/3DAPI) which was a simple instance of Apache serving the New York 3D
Buildings 3D Tiles dataset as static content.

73

https://maps.ecere.com/3DAPI

Figure 61. InfoDao Client accessing New York CDB as 3D Tiles from Ecere’s static 3D Tiles server

Additionally, Ecere performed a number of TIEs with a simple CesiumJS client using the Cesium
Sand Castle [https://sandcastle.cesium.com/] setup. Sample client JavaScript code, which can simply be
copied there and used to run the test, follows. It sets up the buildings, trees as well as the Coronado
Bridge, together with the Cesium world terrain.

var worldTerrain = Cesium.createWorldTerrain({ requestWaterMask: true,
requestVertexNormals: true });
var viewer = new Cesium.Viewer("cesiumContainer", { terrainProvider: worldTerrain });
var scene = viewer.scene;
var trees = scene.primitives.add(new Cesium.Cesium3DTileset(
 { url:
"https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/3DTiles/tileset.json"
}));
var bridge = scene.primitives.add(new Cesium.Cesium3DTileset(
 { url:
"https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:CoronadoBridge/3DTiles/tileset.
json" }));
var buildings = scene.primitives.add(new Cesium.Cesium3DTileset(
 { url:
"https://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/3DTiles/tileset.json"
}));

74

https://sandcastle.cesium.com/
https://sandcastle.cesium.com/

Figure 62. CesiumJS Client accessing San Diego CDB data as 3D Tiles from Ecere’s GNOSIS Map Server
(Petco Park)

Figure 63. CesiumJS Client accessing San Diego CDB data as 3D Tiles from Ecere’s GNOSIS Map Server
(houses and cape)

75

Figure 64. CesiumJS Client accessing San Diego CDB data as 3D Tiles from Ecere’s GNOSIS Map Server
(houses up close)

12.3. Updating the 3D content

12.3.1. Simple Transactions

Ecere proposed that a straightforward way to support updates of 3D models would be to support
the Simple Transactions extension originally defined for OGC API - Features. This is especially
appropriate if the server exposes the collection of data as both a GeoVolumes / Bounding Volume
Hierarchy, and vector Features, as is the case for the GNOSIS Map Server implementation. This
would work well with data stores originating from different types of data sources, such as CDB,
CityGML or OpenStreetMap 3D buildings, which all involve vector features definitions for the data.
In CDB, for both geotypical and geospecific models, tiles of vector point features reference a 3D
model by a unique identifier. This is very similar to the Tiles API approach implemented in the
Ecere service.

12.3.2. Updating 3D models

With Simple Transactions, those vector points would be represented at a /items end-point to which
a GeoJSON document including a 3D position, an identifier referencing a model, and an optional
transformation including scaling and/or orientation could be submitted via POST to add a new item.
Similarly, a PUT at a /items/{featureID} resource could be used to update an existing feature (e.g., to
move it, change its associated 3D model, or change attributes), and a DELETE on that resource would
remove it.

To add a whole new 3D model, a model encoded in a supported format could be submitted via POST
to the /models end-point (also used with GET for retrieving referenced individual models in the OGC
API - Tiles extension for 3D data discussed above). Once added, the model could be retrieved in a
different format than it was submitted as, e.g., an OpenFlight [5] 3D model could be uploaded,

76

which the GNOSIS Map Server converts to its native E3D format internally, and a client could
request and retrieve the model in binary glTF. The PUT and DELETE methods could also be supported
at the /models/{modelID} end-point.

Once an update is made, the server should either automatically trigger re-generation, or if
generating on-the-fly any cached 3D Tile should be invalidated so that the next time a client
requests the data it will reflect the latest changes. When generating these tiles, if the 3D models
position is relative to the terrain, they can also be clamped to the latest terrain elevation model.

12.3.3. Updating terrain elevation

Transactions could also be supported to update the terrain elevation model, in a number of possible
ways which a server could decide to support, based on what best fits its data model.

• Updates could be done on a tile-by-tile basis, i.e. doing a PUT on
/tiles/{tileMatrixSetID}/{{tileMatrix}/{row}/{column}.

• The concept of coverage scenes (gridded elevation coverage parts covering arbitrary extents)
could be used to add, remove or update specific regions of the data. This concept was explored
in the Testbed 15 - Open Portrayal Framework Images API [http://docs.opengeospatial.org/per/19-

070.html#ogc-api-images-transactional], where those scenes were called images.

• A Coverages Transactions extension could also potentially be specified which maps an array of
new elevation values to a spatial extent.

Regardless of the approach used to update, the server can provide the latest version of the terrain
elevation in the same way, whether as 2D coverage tiles, or 3D Tiles quantized terrain mesh. As of
the time of the Sprint, the GNOSIS Map Server only generates 3D Tiles for the models, but support
for generating quantized terrain mesh from the gridded elevation is planned, based on the internal
terrain tessellation capabilities used in Ecere’s GNOSIS library.

12.3.4. Change Sets

Because the history of the changes introduced by these transactions could also be recorded, it
would be possible for a client to request the list of all tiles affected by the changes since a certain
checkpoints, or between two checkpoints. It could also be possible to retrieve the data at a certain
checkpoint if the full changes history are preserved. Part of this approach was explored in the
context of the Testbed 15 - Open Portrayal Framework Change Sets [http://docs.opengeospatial.org/per/19-

070.html#_requirement_class_changeset_core] alongside the Images API.

12.3.5. Implementation progress

During the ISG Sprint there was not enough time to implement these Transactions on the server,
however development towards that goal started the following week during the OGC Sprint for OGC
API - Features Simple Transactions. Some progress on the implementation of the addition,
replacement and removal of point features placing 3D models at the data store level was achieved,
testing with the San Diego CDB datasets, as seen in the following screen captures.

77

http://docs.opengeospatial.org/per/19-070.html#ogc-api-images-transactional
http://docs.opengeospatial.org/per/19-070.html#_requirement_class_changeset_core

Figure 65. Model instance added via a POST of a GeoJSON feature to …/SanDiegoCDB:Buildings/items

The following GeoJSON was used to describe the feature to be added:

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -117.14098258,
 32.73238869,
 76.24
]
 },
 "properties": {
 "model::id": 1745156899,
 "model::orientation": [0, 0, 0]
 }
}

78

Figure 66. Model instance updated (re-oriented) via a PUT to …/SanDiegoCDB:Buildings/items/651450 (the
feature ID)

The following GeoJSON was used to update the feature:

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -117.14098258,
 32.73238869,
 76.24
]
 },
 "properties": {
 "model::id": 1745156899,
 "model::orientation": [180, 0, 0]
 }
}

79

Figure 67. Model instance removed via a DELETE on …/SanDiegoCDB:Buildings/items/651450

Figure 68. Added model retrieved within a 3D Tile, shown in CesiumJS

80

12.4. Client Implementation
In the 3D Container and Tiles Pilot, Ecere improved client-side support for visualizing 3D Tiles and
performed a number of TIEs with GeoVolumes API implementations from all other participants of
the pilot, as well as with the GNOSIS Map Server using the Tiles API and associated extensions for
3D data. The result of those TIEs are demonstrated in a video [https://www.youtube.com/watch?

v=mzGy2nRLgzY] and discussed in the 3DC&T engineering report.

For the ISG Sprint, Ecere spent efforts mainly on improving the server component and investigating
a mechanism to update the 3D data.

However some performance improvements were done on the client to better accommodate the
large amount of detailed models and full resolution textures of the San Diego CDB dataset. An issue
with the rendering of referenced 3D models, where an applied orientation was not taken into
account to light it properly, was also resolved.

Sample screenshots of GNOSIS Cartographer visualizing the imported San Diego CDB follow. In
addition to this dataset, worldwide elevation data from Viewfinder Panoramas
[http://viewfinderpanoramas.org/] by Jonathan de Ferranti and imagery from NASA Visible Earth’s Blue
Marble [https://earthobservatory.nasa.gov/features/BlueMarble] are used outside of the extent covered by
the San Diego dataset.

Figure 69. San Diego CDB data visualized in Ecere’s GNOSIS Cartographer (cape)

81

https://www.youtube.com/watch?v=mzGy2nRLgzY
http://viewfinderpanoramas.org/
https://earthobservatory.nasa.gov/features/BlueMarble
https://earthobservatory.nasa.gov/features/BlueMarble

Figure 70. San Diego CDB data visualized in Ecere’s GNOSIS Cartographer (hotels and palm trees)

Figure 71. San Diego CDB data visualized in Ecere’s GNOSIS Cartographer (skyscrapers)

82

Figure 72. San Diego CDB data visualized in Ecere’s GNOSIS Cartographer (Coronado bridge)

Figure 73. San Diego CDB data visualized in Ecere’s GNOSIS Cartographer (airstrip)

83

Figure 74. San Diego CDB data visualized in Ecere’s GNOSIS Cartographer (high above, showing 3D globe)

This last image features ESA Gaia’s Sky in colour [https://sci.esa.int/web/gaia/-/60196-gaia-s-sky-in-colour-

equirectangular-projection] (Gaia Data Processing and Analysis Consortium (DPAC); A. Moitinho / A. F.
Silva / M. Barros / C. Barata, University of Lisbon, Portugal; H. Savietto, Fork Research, Portugal.) CC
BY SA 3.0.

12.5. GeoVolumes API Considerations
Ecere feels that there are still important adjustments to be made, and questions to answer with
regards to the GeoVolumes API draft specifications for it to progress towards becoming an OGC
standard, and in particular to integrate well within the new OGC API family of standards.

12.5.1. Building upon OGC API - Common foundations

First, the draft specifications very heavily borrowed from what is now the OGC API - Common - Part
2: Geospatial data specifications, which define among other things the response schema for the
information on a given collection. Therefore, ideally the specifications should reference as a
dependency these Common - Part 2 specifications, and ensure to remain fully compatible. This has
the tremendous benefits of making any geospatial data easily accessed in the same manner,
regardless of whether it is vector data, raster data, or 3D datasets, and greatly simplifies the
development of both servers and client.

The main new capabilities introduced by GeoVolumes are:

1. a relation type to identify 3D data,

2. media types for 3D content, and

3. and a way to subset the 3D content itself.

84

https://sci.esa.int/web/gaia/-/60196-gaia-s-sky-in-colour-equirectangular-projection

12.5.2. Proper relation types, registered media types and links

Following the GeoVolumes API draft specifications, the relation type is currently specified as items.
However, per the resolution of OGC API - Common issue #140 [https://github.com/opengeospatial/

oapi_common/issues/140], the relation type should be distinctive for the specific API, items being
reserved for the use of the /items end-point as used in Features and Records. The OGC Naming
Authority has also clarified that new relation types should consist of a fully resolvable URL. Instead,
relation types such as http://www.opengis.net/def/rel/ogc/1.0/3ddata or http://www.opengis.net/
def/rel/ogc/1.0/bvhtileset (if intended specifically for bounding volume hierarchy tileset
distributions) could be used instead.

The media type for 3D Tiles is specified as application/json+3dtiles, and the one for i3s as
application/json+i3s. However media types probably need to be properly officially registered with
IANA before being specified in the standard.

The concept of alternate and original are also something which should be brought to the attention
of the Common SWG. In particular, it has been mentioned multiple times (e.g., see this comment
[https://github.com/opengeospatial/oapi_common/issues/160#issuecomment-679198581]) that APIs should avoid
adding new properties to the OGC APIs links to maximize compatibility with standard web tooling.

12.5.3. Common bounding boxes

In the 3D Container & Tiles pilot, bbox was used as the mechanism to subset the 3D content, but
there is a proposal [https://github.com/opengeospatial/oapi_common/issues/167] in Common to make subset
the standard mechanism by which to subset geospatial data, which has the advantage of an
unambiguous syntax with regards to axis order.

In the GeoVolumes specifications, the list of collections can also be filtered by bbox, but this is
functionality already covered by Common - Part 2, so the GeoVolumes would not need to specify
anything additional for this purpose, although the specifications in Common should probably be
reviewed in light of the GeoVolumes use case.

12.5.4. Hierarchies of collections

The current specifications also define collections hierarchies, but the way it does so breaks
compatibility with Common - Part 2, which explicitly avoids making hierarchies of collections part
of the core. This allows both a client which understands hierarchies, and one which is oblivious to
them to properly access all collections on a server, regardless of whether the server implements the
hierarchy extension or not. An approach to implement hierarchies in this extensible manner is
proposed in Common issue #11 [https://github.com/opengeospatial/oapi_common/issues/11#issuecomment-

677947387], and was also the original demonstration of hierarchies in the 3D Container & Tiles pilot
in TIEs between Ecere and Helyx (though at the time / was used rather than : as hierarchy
separators). In the Sprint this was also discussed with Steinbeis in issue #5 [https://github.com/

opengeospatial/OGC-ISG-Sprint-Sep-2020/issues/5].

12.5.5. GeoVolumes API’s raison d’être and name

What the GeoVolumes / 3D data API does not define (at least currently), is how one actually explores
the Bounding Volume Hierarchy, asks for specific nodes, or how to encode 3D content.

85

https://github.com/opengeospatial/oapi_common/issues/140
http://www.opengis.net/def/rel/ogc/1.0/3ddata
http://www.opengis.net/def/rel/ogc/1.0/bvhtileset
http://www.opengis.net/def/rel/ogc/1.0/bvhtileset
https://github.com/opengeospatial/oapi_common/issues/160#issuecomment-679198581
https://github.com/opengeospatial/oapi_common/issues/167
https://github.com/opengeospatial/oapi_common/issues/11#issuecomment-677947387
https://github.com/opengeospatial/oapi_common/issues/11#issuecomment-677947387
https://github.com/opengeospatial/OGC-ISG-Sprint-Sep-2020/issues/5

The GeoVolumes API has sometimes been presented as being a space-centric API, meaning that the
collections and the space they define can exist without any content. However, Ecere does not find
this description accurate in terms of how the current specification, based on OGC API - Common -
Part 2, are defined and used. In Common - Part 2 (like in Features) the extent is always the space
occupied by the data, not something that exists conceptually without data. Even if data layers or
data sets can be organized in hierarchies using geographic names of cities or states or countries,
those are always a human-friendly convenient way to organize the data, rather than a strict
definition of space.

It is not clear whether a space-centric API, or a new way to access 3D content which is neither i3s
nor 3D Tiles, are part of what the GeoVolumes API aims to be, but in Ecere’s opinion it is not what
those specifications define, so if it is indeed the intent, perhaps additional conformance classes
could be defined to fulfill those objectives.

Although extremely simple, the current specifications have proven to be very successful in
establishing a bridge between 3D data (e.g., defined in OGC 3D Tiles or i3s standards) and the OGC
API family of standards, and so could form a very good basis for a first Core part for the standard. It
would be essential however to address the aforementioned issues relating to integration with
Common - Part 2.

Partly because of disagreeing with the fact that the API is space-centric, Ecere also feels that the
name GeoVolumes does not properly describe the API at all. Just like 2D content is retrieved via OGC
API - Features or OGC API - Coverages, and those APIs are not called GeoExtents. In fact, those APIs
can also deliver 3D features or 3D coverages content in vector or raster form. A better name for the
new API might be something like 3D Data.

It would also be worthwhile to note that all that the specifications define so far are a relation type
and media types, which would also be defined by the OGC Naming Authority and/or IANA.
Therefore, until more advanced capabilities specific to 3D are defined as part of the specifications,
perhaps the 3D Data API could consist simply of a Best Practice document on how to use OGC API -
Common (Part 1: Core and Part 2: Geospatial data), as well as the 3D Tiles and i3s OGC community
standards to efficiently deliver 3D content in an interoperable manner?

12.5.6. Tiles API & 3D Models Extension

During the Sprint and the 3D Container & Tile pilot, other participants did not directly experiment
with the OGC API - Tiles approach and extensions as implemented by the Ecere service (such as the
/models end-point) to deliver and access 3D content, although they were used by others in Testbed
14. Ecere feels that these end-points would be excellent candidates for defining additional
conformance classes which could be tested in future interoperability experiments. Specifically,
these end-points are much closer to the CDB data model, yet provide much more efficient access
mechanism to visualize the 3D data than merely serving CDB from the file system, and can be
implemented in parallel to distributing the data using the Bounding Volume Hierarchy approach as
i3s and/or 3D Tiles.

Additional detailed feedback on the GeoVolumes API was also provided by Ecere in response to the
questionnaire set up by Helyx.

86

Chapter 13. Component Implementation:
Helyx
For the OGC Interoperable Simulation and Gaming (ISG) Sprint with glTF, Helyx took 3D Tiles data,
that had been converted from CDB data by CAE, and incorporated this 3D Tiles dataset (around San
Diego) into a Helyx Server [http://helyxisg.eastus.azurecontainer.io/]. The San Diego dataset was
incorporated in two formats, in the 3D Tiles format and the CDB format. This was alongside the
previously added data for New York and Montreal, in the i3s and 3D Tiles formats. The API used to
expose the data in the server was the draft specification of the GeoVolumes API [1].

Helyx then tested their server using the Steinbeis STT client. Results from the test proved fruitful
with all of their datasets served in their server displaying correctly in the client, meaning the server
was able to provide data in the format expected from the client. Helyx has therefore shown that the
draft specification of the GeoVolumes API could work end to end from the backend server to the
frontend client whilst also displaying relevant data to the user of the client. The conversion of CDB
data to 3D Tiles proves the interoperability and efficiency by which data could be transformed and
served, even by simple static servers.

Figure 75. CAE CDB data displayed as 3D Tiles from the Helyx server, with textures

87

http://helyxisg.eastus.azurecontainer.io/

Figure 76. The stadium in San Diego

Figure 77. CDB tree data converted to 3D Tiles

As well as the 3D Tiles version of the data being published to the server, the original data was also
served. When considering how the CDB data could be shared, Helyx decided to treat the CDB format
as another 3D media type that could be served using the OGC API - Common [https://github.com/

opengeospatial/oapi_common] core structure, on the same footing as i3s and 3D Tiles. In this way, a
client could just pull in or download the raw data as opposed to the 3D Tiles version. However, 3D
Tiles and other specifications such as the 2D Tiles standards are used due to their lightweight and

88

https://github.com/opengeospatial/oapi_common

efficient serving versus the raw data. For this reason it is recommended that a 2D Tiles API front
end may be the better route to serve this data in future than the raw data.

No testing was possible for the data in the server. However it did raise questions such as whether
CDB could be treated as a media type (or CDB X), and whether a JSON response to an endpoint
calling the CDB data, could be used to describe the CDB data structure.

TIP
Helyx feels that these questions have not been addressed previously and should be
considered before a ratified version of the GeoVolumes API is released.

13.1. Types of alternate distribution in scope of
GeoVolumes API
The formats that were handled by the draft GeoVolumes API in the previous pilot were i3s and 3D
Tiles. These are community standards that serve out 3D data through a particular bounding volume
hierarchy. But there are a wider range of formats that can be served directly (such as CDB or
CityGML), or can be transformed to an intermediate state for easier transmission over the web - for
instance a 2D tile matrix set or implicit tiling tileset. The structure of these datasets should lend
itself to the OGC Tiles API. So an important question is where is the boundary between APIs in the
OGC ecosystem – is it a fuzzy boundary? Is there no problem with having both types of API under
the same collection, as long as everyone uses OGC API Common as the core consistently? So far the
structure of the GeoVolumes API follows OpenAPI Common Part 2: Geospatial data, which includes
a landing page, a list of collections (including filtering by bbox), a collection description (including a
link to the data) and filtering on the data itself (e.g., through a bounding box). Any future extensions
to this part of the specification should be made with caution so as to not break interoperability with
the other nascent OGC APIs.

The term used here for serving different representations of the same data as different services,
formats or links is an alternate distribution. In the sprint the team considered some issues around
alternate distributions.

This was done with the assistance of a survey tool, to poll sprint participants on their views of how
the draft specification was structured, and what defines an alternate distribution. Unfortunately
there was not a lot of uptake of the survey, however some useful information was gained. It is
recommended that if this type of survey were used more widely, it could provide useful insight into
the general consensus around specification issues.

TIP
It is suggested that the OGC community could use these type of polls more to
understand the nuances of opinions and consensus when building new specifications.

13.2. What is an alternate distribution?
At the OpenAPI Common level, alternate distributions are only really discussed in terms of JSON or
HTML representations of server responses. However, it can be posited that the different OGC API
standards are all alternate distributions of a collection of geospatial data. So the same source data
could be converted and served in different ways – either with a manual conversion or on the fly
(e.g., to 3D Tiles, i3s, a 2D representation of the data, or as features).

89

The following sections discuss how alternate representations can be found at different levels, and
potential issues and recommendations around this that can be put forward to the DWG.

The below diagram summarizes what is believed to be the different levels of decision point when
creating a GeoVolumes resource, of which all of them have the potential to represent the same data
in different ways, thus creating alternate distributions.

Figure 78. Exploration of alternate distributions throughout the workflow

13.3. Representing Alternate Distributions at the Data
Level
The most instinctive way to thing about alternate distributions is to think about alternate data
types. For instance in terms of 3D data this may be gLTF data, it may be CityGML, it may be as CDB,
or as a tileset. It could be that the same city model can be presented using different formats. In this
way, an alternate distribution can occur purely considering the data level.

13.4. Representing Alternate Distributions at the
Service Level
One step on from representing alternate distributions at the data level is at the service level. When
considering 3D, this relates to community standards such as 3D Tiles or i3S – where data is
transformed into an efficient format for serving over the web. Serving these alternate
representations has been explored for a few years and has culminated in two community
standards.

Turning the data level into the service level could be a pre-processed event, such as with our static
server, or could use an on-the-fly conversion service such as some of the other participants in the
sprint.

90

13.5. Representing Alternate Distributions at the API
Level
Another step further from the service level, is the means by which these services are structured for
clients to interact with it. This considers the mechanism by which clients request and get responses
from a server as a particular type of distribution. The goal is to have a common starting point and
landing page, and to display the collections within, but then to differentiate based on the particular
structure of the distribution format. In order to bring both 3D Tiles and i3s under the same banner,
the draft GeoVolumes API was designed, folding both of these community standards into an
OpenAPI common structure. Other draft specifications include OGC API - Tiles [https://ogcapi.ogc.org/

tiles/] and OGC API - Features [https://ogcapi.ogc.org/features/].

13.6. What Datasets, Services or Tiling Schemes are ‘In
Scope’ of the GeoVolumes API?
The draft specification built in the pilot mainly dealt with the structure of the landing page, what is
considered a resource, and provided demonstration services broken out by geography. It concerned
itself primarily with 3D Tiles and i3s, with the departure from OGC API Common being the
bounding volume hierarchy and specific community standard formats from this point on.

In terms of what is in scope of the GeoVolumes API from an alternate distribution perspective, it
was considered that many of the 3D data formats could ultimately be served using the GeoVolumes
API, however whether serving them directly as raw data (such as the CDB example) counts that
need to be clarified in the draft specification. In addition, there was talk that the GeoVolumes API
could be extended with for instance the draft 3D Tiles implicit tiling scheme [18] discussed by
Cesium. This would be the equivalent of the tiling schemes that fall under the Tiles API, but tailored
for working with 3D data. A further discussion should be had to decide whether a 2D Tile map
scheme served through the 3D Tiles implicit tiling scheme falls under the GeoVolumes API or not.
Key questions are:

• Whether only the source data needs to be 3D (this doesn’t preclude 2D tiling scheme or raw data
being in scope),

• Whether what is being served has to have a bounding volume hierarchy (which excludes raw
data, the 2D tiling schemes and also the implicit tiling scheme), and

• Whether the end client simply needs to be able to extract 3D data from the API call.

The team’s thoughts are that what differentiates the GeoVolumes API is the ‘bounding volume
hierarchy’ structure of the two community standards. If this were the distinction, in this case
neither does serving 3D data as 2D tiles, and so the OGC Tiles API, despite serving 3D data, would
also not be in scope of the GeoVolumes API. Indeed the Features API could also serve features that
have 3D content, but does not have a bounding volume hierarchy.

TIP
The team’s recommendation is that the precise definition and its separation or
aggregation with the other related OGC APIs is taken forward to the appropriate DWG.

91

https://ogcapi.ogc.org/tiles/
https://ogcapi.ogc.org/features/

13.7. Representing Alternate Distributions at the
Collection(s) Level.
At the collections and collection level, the response from the API is typically either a JSON or HTML
response. This is the most common case where alternative distributions are found within many
APIs. At this point in the GeoVolumes API, the collections are listed, along with link relations and
media types that tell the client what format to expect.

13.8. Representing Alternate Distributions within one
API – endpoints
Once the data, the service and the API are chosen, there are still more decisions to be made on how
to represent alternative distributions within the GeoAPI structure. In the pilot, each sub-resource
on the server had its own endpoint such as the below:

http://server.com/collections/SanDiego/SanDiego-buildings/3dTiles

http://server.com/collections/SanDiego/SanDiego-buildings/i3s

This could then be expanded as other community standards are embraced – for instance if the
implicit tiling scheme was decided to be in scope by the working group, this too could have its own
endpoint:

http://server.com/collections/SanDiego/SanDiego-buildings/iTiles

(or whatever the implicit tiling scheme is named).

13.9. Representing Alternate Distributions within one
API – parameters
However there is a separate school of thought that there could also (or instead) be a common
endpoint with a parameter instead deciding which representation of the resource to return, so that
the client can use content-negotiation (Accept: header) to select the desired representation. For
instance:

http://server.com/collections/SanDiego/SanDiego-buildings/bvh?f=3dTiles

http://server.com/collections/SanDiego/SanDiego-buildings/bvh?f=i3s

http://server.com/collections/SanDiego/SanDiego-buildings/bvh?f=iTiles

(or whatever name the implicit tiling scheme is named).

The use of parameters for content negotiation of the resource is currently not discussed in the draft
GeoVolumes API but could be elaborated upon. Whether this is used in addition to the current API
structure, or is even taken back a level so that:

http://server.com/collections/SanDiego/SanDiego-buildings?f=3dTiles

92

http://server.com/collections/SanDiego/SanDiego-buildings/3dTiles
http://server.com/collections/SanDiego/SanDiego-buildings/i3s
http://server.com/collections/SanDiego/SanDiego-buildings/iTiles
http://server.com/collections/SanDiego/SanDiego-buildings/bvh?f=3dTiles
http://server.com/collections/SanDiego/SanDiego-buildings/bvh?f=i3s
http://server.com/collections/SanDiego/SanDiego-buildings/bvh?f=iTiles
http://server.com/collections/SanDiego/SanDiego-buildings?f=3dTiles

referenced the 3D Tiles endpoint is not agreed upon. Also please note that this does not preclude
also changing the parameter value further down the path (for instance f=b3dm to bring back the
final bounding volume).

TIP
It is recommended that the DWG discuss and provide more guidance on endpoints and
parameter use with 3D data and services.

13.10. A note on path format
It has also been discussed that the collectionId cannot contain slashes and the GeoVolumes API is
currently not compatible with the OGC API family of standards if they currently allow slashes. A ‘:’
structure has been proposed for hierarchy structures [19], however for the most simple web
servers hosted on Windows, folder names that will be served cannot contain ‘:’ in their name and
therefore may cause issues with interoperability. It is suggested this is discussed further in the
Domain Working Group. As servers become more complicated with different data levels, this will
need to be standardized.

TIP
It is suggested this is discussed further in the Domain Working Group as servers
become more complicated with different data levels, this will need to be standardized.

13.11. Representing Alternate Distributions within one
API - Link Relations
As discussed, from within a single API, defining a resource or sub-resource as an alternate
distribution can typically be done using a link relation. OGC API Common refers to IANA’s
definition that an ‘alternate’ link relation is ‘a substitute for this context’. Link relations are also
discussed within the 3D Container ER, with a slight extension to include parent and root link
relation types [20]. If the W3C guidance around link relations are considered, a couple of points are
made:

93

The alternate keyword creates a hyperlink referencing an alternate
representation of the current document. The nature of the referenced
document is given by the href, and type attributes. If the
alternate keyword is used with the type attribute, it indicates that the
referenced document is a reformulation of the current document in the
specified format.

The href and type attributes can be combined when specified with
the alternate keyword.

This relationship is transitive — that is, if a document links to two other
documents with the link type "alternate", then, in addition to implying that
those documents are alternative representations of the first document, it is
also implying that those two documents are alternative representations of
each other [21]._"

The last paragraph is interesting, as it suggests that more than one alternate distribution can be
present for a particular resource, but that they are all alternative representations of the original. So
the original could be served as 3D Tiles, but a second alternative distribution could be served as i3s,
and a third as an implicit tiling scheme, for instance. So putting endpoints, parameters and link
relations together the endpoint of each alternate distribution should also reference the endpoint of
other representations of the same data using link relations. These can be chosen using the href of
the link or by a url parameter.

13.12. Representing Alternate Distributions as Media
Types
As discussed above, alongside the ref: alternate link relation, should be a related type attribute,
which relates to the media type (previously MIME type). The media types explored in the pilot were
predominantly application/json+i3s and application/json+3dTiles. These are not currently
registered with IANA, and as such need to be officially / successfully registered to be official.

Note that this doesn’t preclude other media types being used further down the path (e.g.,
application/json).

Ecere suggested that if this were not possible, an alternative would be to use the application/JSON
type, with a particular approach agreed upon in OGC API – Common that was common to all, to lay
out the schemas in a standardized way.

What is suggested based on this understanding is that there is a hierarchy of alternate distributions
for 3D content:

• Data Level Alternative Distribution (gLTF or City GML),

• Service Level Alternative Distribution (e.g. 3D Tiles or i3s),

94

• API Level Alternative Distribution (e.g. GeoVolumes or Tiles API), and

• Sub-API Level Alternative Distribution (e.g. alternate link relations).

13.13. What is the difference between an alternate
distribution and an alternate resource?
There are some cases which could be construed as an alternate distribution such as:

1. A resource that is the same as another resource on the server, but is in a different co-ordinate
system,

2. A resource that is the same as another resource on the server, but is served through from
another location,

3. A resource that is a different version of an original resource on the server, or

4. A resource which is a link to translate an original resource on the server to another format.

It is suggested that 1-3 are different resources instead of different distributions. Number 2 is tricky,
as if the same resource were served as 3D Tiles from different servers, but once is federated or
daisy-chained through to the second server, it is suggested that this is a different resource. However
if it was presented to the client as a different distribution type (3D Tiles whereas data on the server
is I3S), such as number 4, it could instead be interpreted as an alternate distribution of the same
resource, and the endpoint and link relations would need to reflect this.

This could be defined more by the working group to understand better the scope and
differentiation of the ‘original’ and ‘alternate’ link relation tag.

13.14. Practical use of alternate distributions at the
client side
During the survey, the team also asked whether the link relation was used by the clients to identify
which was an ‘original’ resource or which was an ‘alternate’ distribution. It wasn’t directly used
from the small response received, and instead, it would need to be reflected in the resource title or
associated metadata. This may need further consideration as servers become larger with many
links to alternate distributions, as it might start to become confusing in the client which is the
‘original’ resource if it is not published with it in the title.

13.15. OpenAPI Shapechange Workflow Perspective
The draft specification was also considered to see if it was compatible with the OpenAPI conversion
tool Shapechange. The draft specification was compared to recent work done in OGC Testbed-16
[https://www.ogc.org/projects/initiatives/t-16], which considered OpenAPI Common and OpenAPI Features:
part 1 Core. As the GeoVolumes specification essentially takes its core from OpenAPI Common, the
draft specification is considered to be compatible with this workflow. This means that a UML model
of the draft specification can be created, and then this can be imported into Shapechange to convert
it to JSON. This JSON can then be used as an API template for Swaggerhub or another API tool. This
process is currently in draft for Testbed 16, but more will be released soon.

95

https://www.ogc.org/projects/initiatives/t-16

13.16. Benefits
Having a clear understanding of the alternate distribution options available at each stage of the
standardization process, knowing where to standardize, and where to provide tailored structure
for particular distribution types helps to demonstrate how flexible and adaptable the OGC OpenAPI
model is. We hope these discussions have highlighted a few areas where questions may occur in
future, that could be clarified as part of development of the draft API. It was encouraging that the
pieces of OGC API Common fitted well with the 3D data handover in the pilot, and that the
conversion from CDB to 3D Tiles has been equally smooth in this sprint, suggesting a promising way
forward for the GeoVolumes API.

96

Chapter 14. Component Implementation:
Hexagon GSP

Figure 79. San Diego CDB meshes converted and served by the Luciad Fusion platform.

14.1. Abstract
This chapter investigates how model and terrain updates, originating from a CDB data store and
delivered as glTF or elevation, were integrated with background elevation and OGC 3D Tiles into
the client environment.

For a large data set, all the meshes from the CDB data store were converted to an OGC 3DTiles
tileset. Displaying the resulting pre-processed OGC 3DTiles offers performance and visual quality
advantages over reading the CDB data store directly. The increased efficiency was due to a better
tiling scheme and mesh simplification.

Generating tiles on the fly was attempted with mixed results.

OGC 3DTiles can be automatically adapted to elevation updates, whether they come from a CDB
data store or another source. This was achieved through a proxy service that reads B3DM files and
adjusts the height of the vertices before forwarding them to the client. The possibility to do this at
render time, on the client, using GPU evaluated expressions was also explored.

Using GPU evaluated expressions, deletions/updates/additions in the CDB data store were handled
by pushing down background OGC 3DTiles. The old and new models integrated seamlessly, and
there was no need to reprocess the entire dataset to create a single coherent OGC 3DTiles tileset.

97

Figure 80. Architecture of the OGC server with proxy for on the fly 3DTiles height adjustment.

14.2. Test Data
The research was based on the San Diego CDB sample dataset provided for this Sprint. It provided
imagery, elevation, 3D models and a variety of vector data.

Figure 81. CDB organization in file system.

98

14.3. Organization of CDB for 3D Models
This section recaps the organization of CDB data for 3D models.

14.3.1. GSFeatures and GSModelGeometry

GSFeatures and GSModelGeometry were two folders containing matching Level Of Detail (LOD)
folders. In the GSModelGeometry folder, OpenFlight [5] files were zipped in groups corresponding
to a tiling schema.

GSModelGeometry items were unique in the sense that OpenFlight files were used only once (one
file per building) while textures could be reused many times.

LOD folders were additive, meaning that each LOD adds more data relative to it’s parent rather
than replacing it.

The GSFeature folder contains point features that have a parameter "MODL" giving the name of a
model geometry in the OpenFlight format. This was not the full path or even relative path to the
geometry but rather a name that must be matched with one of the files (zipped) at the
corresponding LOD level if present at all.

SHP and DBF files

GSFeature folder was made up of Esri SHP files linking to DBF files where the DBF files had many-
to-one relationships amongst themselves.

14.3.2. GTFeature and GTModelGeometry

GTFeatures were similar to GSFeatures except that the GTmodels were instanced and a single
GTModel could be referenced by many GTFeatures.

14.3.3. CDB Technical Specification Recommendations

Based on the San Diego CDB data set, the compression of OpenFlight data through zip led to a
minimal gain in hard-drive memory usage (on the order of 5%).

A much greater compression could be achieved on textures that in this case were mostly encoded in
SGI .rgb format. The SGI .rgb format isn’t a default format like JPEG or PNG which means
developers will usually need to include 3rd party libraries or write extra code.

The relative path to the 3D model could be inserted in the parameters of the GSFeatures rather than
a short name. This would waste a few bytes of memory but would reduce the complexity of the
decoder code.

A flat single DBF file accompanying every feature SHP file could be envisaged rather than multiple
ones with many-to-one relations. This would help with the limited capabilities offered by some APIs
relative to this format and this might be a case where it was better to waste a few bytes of data for
the sake of simplifying decoder code.

99

14.4. Pre-processing CDB 3D Models to OGC 3DTiles

Figure 82. San Diego as 3DTiles with background imagery.

CDB uses a tiling system where higher Levels Of Detail (LOD) add more mesh models. Single
buildings also had several LODs embedded in a single file. While CBD has the flexibility to achieve
anything visually, it was complex to decode on the client or to process on the fly. This section
describes an approach to convert the entire CDB 3D models to a more efficient OGC 3DTiles tileset
through a pre-processing stage.

When converting to 3DTiles, only the highest LOD for every 3D model was taken into account to re-
generate a complete tileset.

100

Figure 83. Octree data structure

The new LOD structure was an octree where child nodes entirely replaced parent nodes.

Creating this structure was a recursive process that repeated the following steps: tiling → grouping
tiles → simplifying → re-texture.

Figure 84. San Diego as 3DTiles with background imagery.

The pre-processed tileset could display more buildings at low LODs than would be possible by
loading the raw files from the CDB data store even if the distant buildings were simplified meshes
with just a basic texture.

101

14.4.1. Mesh Simplification

Figure 85. Mesh simplification

For lower LODs, the models were simplified using quadric edge collapse decimation.

Cluster simplification or dropping out smaller independent groups of faces were faster alternatives
but less visually appealing.

14.4.2. Parameterization and texture baking

Figure 86. Mesh parameterization

Meshes were re-parametrized (compute new texture coordinates). This was a process of unfolding
3D meshes to 2D space while splitting them in the least amount of pieces and wasting the least
amount of space. This step was necessary because after simplification, the UV texture coordinates
[https://en.wikipedia.org/wiki/UV_mapping] did not match with the mesh anymore.

102

https://en.wikipedia.org/wiki/UV_mapping

Figure 87. Texture baking

Texture baking is the process of creating a texture for a mesh once it has been parameterized. Using
bits and pieces from the original textures a texture atlas was generated. Having a single texture per
tile rather than one or more texture for every building decreases the overhead of having to pass
several textures to the GPU and therefore increased performance.

103

Figure 88. Examples of repeating textures.

This task was made more complex by the use of repeating textures where UV texture coordinates
went beyond the normal 0 to 1 range as in the example above. Repeating textures were common in
the dataset. They are appealing because they can cover a large area with apparent detail. However,
they cannot not be used directly to create texture atlases. To handle this use-case, the mesh parts
with repeating textures, at the highest level of detail, were tiled in separate tiles, not respecting the
overall octree data-structure.

Another approach to solving repeating textures was to convert textures to a single color by taking
the average pixel color of a texture and using it instead. This gave the tileset a rather cartoony feel
which could be amplified with certain postFX.

104

14.4.3. Tile size

Every tile at every LOD used approximately the same size in memory. At any given point of view,
the client application loaded roughly 20 megabytes of data.

14.4.4. Metadata and selection

The tiling may have cut buildings in pieces but this did not impact selection or access to metadata
because an index was encoded inside the mesh faces linking them to the original model they
belonged to. We therefore maintained the ability to select objects and retrieve metadata.

14.4.5. Conversion speed

The drawback of this approach was the time it took. It was impossible to achieve this conversion on
the fly and converting the entire San Diego dataset took several hours.

14.4.6. Referencing

CDB provided referencing and orientation of 3D models through point features. The height of the
3D models was either given as a parameter of the point-features or could be inferred from
elevation data provided in the CDB data store.

The referencing information was used but the heights were dismissed during creation of OGC
3DTiles. The height was inferred at render time through a proxy service that would adjust the
height of meshes based on an elevation model. See Handling terrain updates for more detail.

14.4.7. 3D data organization recommendations

The pre-processed dataset didn’t use the raw 3D files directly but rather simplified, split and
merged them into tiles of varying levels of detail. The LODs embedded inside the OpenFlight files
were not used.

This approach effectively removed the need for a complex structure within the CDB data store.
There are still certain recommendations that could help improve the pre-processing speed.

As a general recommendation, it does help to deal with files that have a moderate size. When
dealing with millions of files that are just a few kilobytes, the overhead of reading from the hard
drive can become a bottleneck. At the same time, dealing with very large files can use too much
memory and they need to be split in advance.

14.5. Serving OGC 3DTiles from CDB with on the fly
tiling
Serving 3D Models on the fly meant that whenever a client application looked at the data from a
certain angle, it would send a request to the server that must gather the data to be visualized and
convert it to glTF on the fly.

On the fly 3DTiles also meant that updates to the CDB data-store would be directly taken into

105

account without needing to reprocess the entire CDB data-store every time.

At startup or when an update was detected, the (on-the-fly) server created a tileset.json file by
decoding and indexing the bounds of all the 3D models into an octree structure. This process took
around 5 minutes on the San Diego Dataset which contained about 6Gb of mesh data. Each node
was given a name and a tileset.json file was generated. The client therefore requested tiles that
didn’t exist yet because the server generated them on the fly.

The LOD structure of the CDB data store wasn’t used because in this particular case, it was
inadequate. If the CDB data store LOD structure could be used, the process would become almost
instantaneous. A good LOD structure is one that is deep and has small tiles of approximately the
same size.

When a tile was requested, the relevant meshes would be loaded, converted to glTF, wrapped in a
B3DM file and sent back to the client. The approach of simplifying meshes for lower LODs could not
be done in real-time because it was too slow. Simply dropping out smaller buildings for lower LODs
would have to be used.

14.5.1. CDB 3D data organization recommendations

In this approach, a tileset.json tree was generated on the fly at startup of the server or when an
update happened. The tiles themselves were generated upon request. Having OpenFlight meshes
that were already organized in coherent LODs would have improved the time it takes to build the
tileset.json.

A general recommendation for CDB data-stores is to split LODs into a regular grid of cells and to
make sure that cells are small (about 500Kb).

14.6. Handling terrain updates
A common issue was mismatch between terrain and 3D models that were typically served through
different services.

In order to circumvent this issue, CDB datastores provided the elevation model that the 3D meshes
should fit onto.

However, In order to serve very large 3D mesh datasets, they are typically pre-processed with
embedded elevation. This meant that updating the elevation model would cause a mismatch with
the 3D meshes.

Figure 89. Mismatch between the elevation and the meshes on the left vs perfect match on the right.

106

The image on the left shows a mismatch between the elevation model and the 3DTiles. The image
on the right shows a perfect match between the two.

14.6.1. Proxy Server Approach

The solution was to start by processing the 3D Meshes to OGC 3DTiles without taking the elevation
into account. Buildings were therefore on the ellipsoid with the assumption that the ellipsoid would
stay constant. When the client requested tiles, they were automatically shifted up or down
according to a loaded elevation model, therefore providing a perfect match without any re-
processing of the 3D data.

Practically, this was achieved through a proxy server that forwarded requests to the OGC 3DTiles
dataset but before returning the B3DM files, shifting all the vertices according to an elevation
model.

The server also had to decode the tileset.json files and shift the bounding boxes of the tiles.

Figure 90. Adapting pre-processed 3DTiles to an elevation model on the fly.

The top image shows the raw OGC 3DTiles that had no elevation. The bottom image shows the same
dataset that automatically adapted to the loaded elevation model on the fly.

The result was a minimal performance impact.

107

The disadvantage of this approach was that the proxy server needed to be made aware of the
elevation model loaded in the client.

14.6.2. GPU Expression Approach

It was possible to match 3DTiles with elevation without a proxy server by using GPU evaluated
expressions to shift vertices up or down at render time. This was a similar approach to the one used
to handle CDB model updates.

A Proxy server wasn’t needed anymore and the client could consume the original 3DTiles. The
solution was also more efficient since the vertex shifting operation would be done on the highly
efficient GPU.

Good results couldn’t be achieved. The GPU needed to have access to the elevation when rendering
a 3D tile, but in the system used, elevation and meshes were rendered in different passes and the
GPU never had access to both at the same time. It would take deeper modifications to the rendering
engine in order to achieve this properly.

14.7. Handling CDB Model Updates
3D Meshes could be displaced at render time using GPU evaluated expressions. This technique
allowed handling 3D model updates and ensuring that there was no overlap or mismatch between
data sets.

When 3D data was served on the fly from a CDB data store, updates were taken into account
automatically. However, pre-processing a large data set has several advantages in terms of visual
appearance and performance. In addition, model updates might originate from other sources than
the CDB store itself.

On the fly vertex displacement offered a solution for small model updates where the new data was
processed into a separate 3DTiles tileset. The original vertices that were part of the base 3DTiles
tileset were squashed below the new data and the result was a perfect integration. This tactic was
only usable for smaller updates like a single building or a small area. For a more general solution,
Serving OGC 3DTiles from CDB with on the fly tiling offered the most flexibility.

108

Figure 91. Small updates to the CDB datastore could be handled in separate 3DTiles tilesets.

14.7.1. Deleted Model

When a model was deleted, it needed to be removed from the pre-processed background dataset.
This was achieved by pushing the vertices that correspond to the deleted model down.

14.7.2. Updated Model

In the case where a model was updated with a newer version, the new version was processed in a
separate 3DTiles tileset. The new tileset could not simply be loaded alongside the background
3DTiles because it would have overlapped with the previous version of itself. To resolve this, the
vertices of the background data set that were inside the bounding box of the new model were
squashed below the new one.

14.7.3. Added Model

In the case that a completely new model was added, it was converted into a separate OGC 3DTiles
tileset and loaded alongside the background data. This conversion to 3D Tiles was very fast for
small models.

109

Chapter 15. Component Implementation:
InfoDao

15.1. GeoVolumes API and its role in the ISG Sprint
The GeoVolumes API draft spec allowed for querying geospatial data based on properties like
bounding box, data format, and other extents of the data. The main goal of the ISG Sprint was to
test interoperability among various server-client interactions facilitated by the GeoVolumes API. In
short, participants tested how the GeoVolumes API could be served to reliably request and display
data among different clients.

All participants were given access to the San Diego CDB, and the standards for the GeoVolumes API
and CDB were given. Participants were also expected to visualize the data contained within the
CDB. Over the course of the event, participants were able to discuss a range of potential uses as well
as concerns over the specific role of GeoVolumes. This section of the report will cover InfoDao’s
experience during the Sprint and will reference side conversations with other participants.

As a quick summary, InfoDao was able to use the GeoVolumes API to quickly and reliably retrieve
information. The ease of query generation coupled with the accessibility of 3D Tiles (e.g., glTF/GLB
as 3D data and Transform matrix as location data) allowed InfoDao’s clients to visualize the CDB
data with minimal development overhead. When compared to a standard like the CDB, the
simplicity and accessibility of the data were greatly highlighted; taking implementation from 1
week for CDB to less than a day for 3D Tiles.

Resulting from the conversion of CDB to 3D tiles, a theme arose in discussion about how to
ameliorate the differences among these standards. For instance, while InfoDao’s client was able to
access and display content from a CDB (utilizing the STAC specification from an OGC API
implementation), it was not immediately accessible from a GeoVolumes perspective. On the other
hand, CAE produced a separate 3D Tiles distribution that allowed participants to more easily serve
the GeoVolumes API. This worked well for the purposes of the Sprint, however, there is a question
of the methods of supplying multiple data distributions from one source of data.

Helyx’s Sprint report contains great starting discussion on the various formats and delivery
methods the OGC has standardized, and conversations with Ecere also highlight the similarities and
potential future work actions that could resolve these issues.

But before getting into the weeds, here are the results.

15.2. Source Data: Display and Tie Tables
Here are the images from the TIE testing.

110

Figure 92. Ecere’s San Diego 3D Tiles

Figure 93. Ecere’s New York 3D Tiles

111

Figure 94. Steinbeis' New York 3D Tiles

Figure 95. Steinbeis' San Diego 3D Tiles

112

Figure 96. Helyx’s San Diego 3D Tiles

Figure 97. Helyx’s New York 3D Tiles

113

Figure 98. Cesium’s New York 3D Tiles

15.3. Future Discussion
GeoVolumes performs well and is easy to implement, however it is not free from issues. While it is
easy to see it as a wrapper for accessing geospatial data, the OGC has similar containers for other
data formats. This Sprint highlighted the roles and limits of GeoVolumes and its supported data
formats (glTF and JSON) by taking its contrast with CDB. InfoDao’s experience with the Sprint also
discovered similar enquiries to Ecere’s issues in using the OGC API as a potential bridge between
the two standards (whether by extension specification or in the core specification).

15.3.1. GeoVolumes API Discussion: CDB comparisons and OGC API
discussion

InfoDao stood up a test server to quickly simulate server client transactions for consuming the data.
The OGC API compliant PyGeoServer instance was configured to serve San Diego CDB data through
a STAC interface. Since the InfoDao client could read CDBs and the dataset was easily traversable
through the server’s json responses, various operations of accessing and retrieving CDB data could
be performed. The operations were as follows.

1. Access the Metadata to get the extents of the data set. This was usually the boundaries as a
polygon of LatLng points. It was necessary to convert from XML to JSON and also reference the
CDB spec.

2. Fetch raster tiles that were available at specific LODs. Because of the data formats of the tiles
(JPEG2000 for raster imagery, and TIFF for elevation data), InfoDao also stood up a small
conversion service that would convert imagery into a consumable format.

3. Fetch Geometry from the server. The 3D models were in OpenFlight [5] format and not
immediately accessible for 3D rendering in the InfoDao clients. However, the related .flt and
.rgb models were downloaded as described in the spec and converted on disk.

4. Display converted geometry from the server and check for localization errors. Using the .dbf,

114

.dbx, and .shp files, Geometry was able to be loaded and placed to the correct locations.

In comparison, the InfoDao team used the GNOSIS server hosted by Ecere to access the GeoVolumes
version of the data during the Sprint. The operations were as follows.

1. Query the root api to get metadata about the layers. This included bounding box information
and a general short description.

2. Fetch Raster tiles at a specific LOD. No conversion was needed since two supported distributions
were available (.jpg and .png).

3. Fetch Geometry tiles at a specific LOD. No conversion was needed since GeoJSON and glTF were
available.

While the CDB and GeoVolumes API are two separate OGC standards, participants showed that
these standards have a pathway to become interoperable together rather than interoperability
among members in each standard. Implementation of the CDB layer highlighted two problems.

1. The server does not know what the CDB standard is. This leaves clients to understand how to
access geospatial information in the CDB without any guidance or helper functions from the
server.

2. The client does not know what the data formats inside the CDB are. It was helpful to have an on-
the-fly converter endpoint for images (e.g. JPEG2000 to JPEG/PNG), and it could be extended to
other helper functions for 3D geometry, etc.

15.3.2. Wrapping it up

In this Sprint, GeoVolumes API’s straight forward approach to 3D data along with flexible helper
functions at the core (bbox querys and data distribution methods) enabled the participants to
consume data in convenient ways. There are great concurrent discussions about the more technical
aspects of this proposition. Helyx’s Sprint report features investigations on how to handle multiple
data distributions and which should be supported. Also, Ecere’s works also highlight parallels
between GeoVolumes and other OGC APIs like the Tiles and Features APIs. As a newcomer to the
OGC, GeoVolumes API was straightforward to consume and did not lend itself to errors due to easily
accessible data formats.

115

Chapter 16. Component Implementation:
SimBlocks.io

16.1. Subject
This Sprint Report reviews the participation of SimBlocks.io in the OGC Interoperable Simulation
and Gaming Sprint, which was held from September 21 through September 25, 2020.

16.2. Summary
The purpose of the OGC Interoperable Simulation and Gaming Sprint was to advance the use of
relevant OGC and Khronos standards in the modeling and simulation community through practical
exercise and testing of the OGC GeoVolumes API draft specification, including data formats
included in the processing of 3D models pass through the OGC GeoVolumes API such as 3D Tiles and
CDB. The SimBlocks team submitted a proposal in August in response to an open call for
participation in the sprint and was accepted within a week. SimBlocks agreed to participate in the
sprint and also join the Open Geospatial Consortium as an Associate Small Company Member. This
report will provide a fresh perspective on the OGC GeoVolumes API from a company that did not
participate in the previous 3D Data Container and Tiles API Pilot.

16.3. Previous Work
SimBlocks specializes in connecting commercial gaming technologies with real-time 3D
visualization applications by supporting industry standards for geospatial terrains, 3D models, and
communication interoperability. SimBlocks has created a whole-earth visualization tool using the
COTS Unity game engine capable of rendering the entire globe at any location at multiple levels of
detail for imagery and elevation data. The One World SDK for Unity can consume geospatial data
from cloud providers using web services APIs to process imagery, elevation data, and vector data.
SimBlocks has tested ingesting data over web services including from Microsoft Bing Maps,
OpenStreetMap, and a CDB web service provider.

The One World SDK for Unity also supports direct loading of high-detailed content insets using a
variety of modeling formats, including OpenFlight [https://www.presagis.com/en/glossary/detail/openflight]
[5], OGC CDB [https://www.ogc.org/standards/cdb] [4], and OGC GeoPackage [https://www.ogc.org/standards/

geopackage] [22]. SimBlocks has also recently prototyped solutions to integrate 3D Tiles and glTF
models in Unity by connecting to Cesium Ion. The SimBlocks team has found that Unity is a very
capable development tool that is well suited for prototyping visual applications with deployment
capabilities for virtual reality and augment reality devices.

116

https://www.presagis.com/en/glossary/detail/openflight
https://www.ogc.org/standards/cdb
https://www.ogc.org/standards/geopackage

Figure 99. One World SDK for Unity

SimBlocks has been operating for over 4 years and is located in Orlando, Florida at the University of
Central Florida Business Incubation Program at Research Park.

16.4. Architecture
The OGC GeoVolumes architecture separates visual client applications from servers holding the 3D
model content. The exact format of the models is hidden from the client. From the perspective of
the client, the main benefit of the GeoVolumes API is that fewer 3D model formats need to be
supported and accessing the models for a known area becomes very simple. From reviewing the 3D
models provided by the servers, 3D Tiles content (including glTF) is the primary format that was
necessary to be supported by the Unity-based client.

117

Figure 100. OGC GeoVolumes Architecture

16.5. Proposed Activities
• Test models from multiple servers

◦ Identify model processing issues.

◦ Identify performance bottlenecks.

◦ Identify model loading and rendering optimizations.

• Implement selected features of OGC API – GeoVolumes draft specification

◦ Support loading 3D geospatial data in One World SDK for Unity.

◦ Investigate bounding volume scale and shape tradeoffs.

• Investigate potential issues with Virtual Reality device deployment.

16.6. Server Testing
SimBlocks agreed to review communicating with the various servers developed by other
participants in the Sprint. The SimBlocks team first checked if the URLs for the Landing Page,
Conformance, api, Collections, and 3D Container pages existed. If so, each of the pages would
appear as a webpage in a browser in the form of a human-readable JSON file.

Once the servers were reviewed, the SimBlocks team attempted to retrieve the models from the
servers and save the B3DM files. During this process the SimBlocks team confirmed that it was
necessary to accommodate whether the server contains their models as URLs (Steinbeis) or URIs
(Cesium, Cognitics, Ecere, Helyx, InfoDao). The team identified that some servers with URIs
intended for the B3DM files to be relative to the domain (Ecere) and others intended for the files to
be appended to the URL of the current endpoint (Cesium, Cognitics, Ecere (Pilot), Helyx, InfoDao).

Page addresses and TIE testing notes are presented in the tables below.

118

Table 6. Landing Page Table /

Landing Page

Cesium https://3d.hypotheticalhorse.com/

Cognitics http://cdb.cognitics.net:3000/

Ecere http://maps.ecere.com/ogcapi/

Ecere (Pilot) https://maps.ecere.com/3DAPI/

Helyx http://helyxapache2.eastus.azurecontainer.io/

Steinbeis http://steinbeis-3dps.eu:8080/

InfoDao http://pygeoapi.isg-sprint-hub.infodaollc.com

Table 7. Conformance Table /conformance

Conformance Page Notes

Cesium https://3d.hypotheticalhorse.com/
conformance/

This leads to conformance of
http://www.opengis.net/spec/
OAPI_Common/1.0/req/core

Cognitics http://cdb.cognitics.net:3000/conformance/ Missing content. This leads to conformance
of []

Ecere http://maps.ecere.com/ogcapi/
conformance/

Unsupported

Ecere
(Pilot)

https://maps.ecere.com/3DAPI/
conformance

Unsupported, blank page

Helyx http://helyxapache2.eastus.azurecontainer.
io/conformance/

This leads to conformance of
http://www.opengis.net/spec/
OAPI_Common/1.0/req/core

Steinbeis http://steinbeis-3dps.eu:8080/
3DContainerTile/conformance

Works

InfoDao http://pygeoapi.isg-sprint-
hub.infodaollc.com/conformance

This page links to multiple child
conformance pages

Table 8. api Table /api

Conformance Page Notes

Cesium https://3d.hypotheticalhorse.com/api 404 Error

Cognitics http://cdb.cognitics.net:3000/api GET Error

Ecere http://maps.ecere.com/ogcapi/api Unsupported

Ecere
(Pilot)

https://maps.ecere.com/3DAPI/api Unsupported

Helyx http://helyxapache2.eastus.azurecontainer.io/api Unsupported

Steinbeis http://steinbeis-3dps.eu:8080/api 404 Error

119

https://3d.hypotheticalhorse.com/
http://cdb.cognitics.net:3000/
http://maps.ecere.com/ogcapi/
https://maps.ecere.com/3DAPI/
http://helyxapache2.eastus.azurecontainer.io/
http://steinbeis-3dps.eu:8080/
http://pygeoapi.isg-sprint-hub.infodaollc.com
https://3d.hypotheticalhorse.com/conformance/
https://3d.hypotheticalhorse.com/conformance/
http://www.opengis.net/spec/OAPI_Common/1.0/req/core
http://www.opengis.net/spec/OAPI_Common/1.0/req/core
http://cdb.cognitics.net:3000/conformance/
http://maps.ecere.com/ogcapi/conformance/
http://maps.ecere.com/ogcapi/conformance/
https://maps.ecere.com/3DAPI/conformance
https://maps.ecere.com/3DAPI/conformance
http://helyxapache2.eastus.azurecontainer.io/conformance/
http://helyxapache2.eastus.azurecontainer.io/conformance/
http://www.opengis.net/spec/OAPI_Common/1.0/req/core
http://www.opengis.net/spec/OAPI_Common/1.0/req/core
http://steinbeis-3dps.eu:8080/3DContainerTile/conformance
http://steinbeis-3dps.eu:8080/3DContainerTile/conformance
http://pygeoapi.isg-sprint-hub.infodaollc.com/conformance
http://pygeoapi.isg-sprint-hub.infodaollc.com/conformance
https://3d.hypotheticalhorse.com/api
http://cdb.cognitics.net:3000/api
http://maps.ecere.com/ogcapi/api
https://maps.ecere.com/3DAPI/api
http://helyxapache2.eastus.azurecontainer.io/api
http://steinbeis-3dps.eu:8080/api

Conformance Page Notes

InfoDao http://pygeoapi.isg-sprint-hub.infodaollc.com/openapi Works

Some of the landing pages point to service description links that are different from /api. Working
links were included in this table.

Table 9. Collections Table /collections

Collections Page Notes

Cesium https://3d.hypotheticalhorse.com/collections/ Works

Cognitics http://cdb.cognitics.net:3000/collections/ Works

Ecere http://maps.ecere.com/ogcapi/collections/ Different format from other
servers.

Ecere
(Pilot)

https://maps.ecere.com/3DAPI/collections/ Works

Helyx http://helyxapache2.eastus.azurecontainer.io/
collections/

Works

Steinbeis http://steinbeis-3dps.eu:8080/3DContainerTile/
collections

Works

InfoDao http://pygeoapi.isg-sprint-hub.infodaollc.com/
collections

An additional link is
http://pygeoapi.isg-sprint-
hub.infodaollc.com/stac

Table 10. 3D Container Table /collections/{3DContainerID}

3D Container Page Notes

Cesium https://3d.hypotheticalhorse.com/collections/
Buildings/NewYorkBuildings/

Works

Cognitics http://cdb.cognitics.net:3000/collections/
NewYorkBuildings/

Works

Ecere http://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Trees/ http://maps.ecere.com/ogcapi/
collections/SanDiegoCDB:Buildings/

Different format from other
servers.

Ecere
(Pilot)

https://maps.ecere.com/3DAPI/collections/NewYork/ Works

Helyx http://helyxapache2.eastus.azurecontainer.io/
collections/NewYork/NewYork-buildings/

Works

Steinbeis http://steinbeis-3dps.eu:8080/3DContainerTile/
collections/NewYork/3DTiles/

Works

InfoDao http://pygeoapi.isg-sprint-hub.infodaollc.com/stac/ogc-
cdb-sandiego

Works

Table 11. 3D Tiles - Batched 3D Model Table .b3dm

120

http://pygeoapi.isg-sprint-hub.infodaollc.com/openapi
https://3d.hypotheticalhorse.com/collections/
http://cdb.cognitics.net:3000/collections/
http://maps.ecere.com/ogcapi/collections/
https://maps.ecere.com/3DAPI/collections/
http://helyxapache2.eastus.azurecontainer.io/collections/
http://helyxapache2.eastus.azurecontainer.io/collections/
http://steinbeis-3dps.eu:8080/3DContainerTile/collections
http://steinbeis-3dps.eu:8080/3DContainerTile/collections
http://pygeoapi.isg-sprint-hub.infodaollc.com/collections
http://pygeoapi.isg-sprint-hub.infodaollc.com/collections
http://pygeoapi.isg-sprint-hub.infodaollc.com/stac
http://pygeoapi.isg-sprint-hub.infodaollc.com/stac
https://3d.hypotheticalhorse.com/collections/Buildings/NewYorkBuildings/
https://3d.hypotheticalhorse.com/collections/Buildings/NewYorkBuildings/
http://cdb.cognitics.net:3000/collections/NewYorkBuildings/
http://cdb.cognitics.net:3000/collections/NewYorkBuildings/
http://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/
http://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/
http://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/
http://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Buildings/
https://maps.ecere.com/3DAPI/collections/NewYork/
http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/
http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/
http://steinbeis-3dps.eu:8080/3DContainerTile/collections/NewYork/3DTiles/
http://steinbeis-3dps.eu:8080/3DContainerTile/collections/NewYork/3DTiles/
http://pygeoapi.isg-sprint-hub.infodaollc.com/stac/ogc-cdb-sandiego
http://pygeoapi.isg-sprint-hub.infodaollc.com/stac/ogc-cdb-sandiego

Batched 3D Model Notes

Cesium https://3d.hypotheticalhorse.com/
collections/NewYorkBuildings/3dtiles/

Works. The building models were
referenced from the domain rather than
appended to the end as most of the other
servers expect. Uri used.

Cognitics http://cdb.cognitics.net:3000/collections/
NewYorkBuildings/3DTiles/

Works. Uri used.

Ecere http://maps.ecere.com/ogcapi/collections/
SanDiegoCDB:Trees/3DTiles/tileset.json

Different format from other servers. Works
if uri is relative to domain.

Ecere
(Pilot)

https://maps.ecere.com/3DAPI/collections/
NewYork/3DTiles/tileset.json

Works. Uri used.

Helyx http://helyxapache2.eastus.azurecontainer.
io/collections/NewYork/NewYork-buildings/
3dTiles/

Works. Uri used.

Steinbeis http://steinbeis-3dps.eu:8080/
3DContainerTile/collections/NewYork/
3DTiles/

Works. Full url used.

InfoDao Unable to test.

After successfully retrieving models from most of the servers, the team developed tools for
converting and loading the building content.

Additional TIE testing results can be found in the Technology Integration Experiment (TIE) Table.

16.7. Conversion Methods
This section describes the methods the team used to import glTF content into Unity. Because the
Unity Editor does not currently directly support 3D Tiles or glTF content, the SimBlocks team
reviewed several open source repositories to see how well they worked. Eventually, the team
included an approach of developing its own 3D Tiles importer.

16.7.1. Method 1 - NASA Unity3DTiles Library

The team reviewed the following open source libraries:

• https://github.com/KhronosGroup/UnityGLTF

• https://github.com/Siccity/GLTFUtility

• https://github.com/ousttrue/UniGLTF

• https://github.com/NASA-AMMOS/Unity3DTiles

After reviewing the glTF libraries, SimBlocks engineers determined that UnityGLTF would work.
Additionally, a version of UnityGLTF is included in the Unity3DTiles repository, both of which are
written in the C# language, which is preferred by Unity’s scripting system. A SimBlocks intern was
assigned to test the Unity3DTiles library. Eventually, the team succeeded in connecting to the

121

https://3d.hypotheticalhorse.com/collections/NewYorkBuildings/3dtiles/
https://3d.hypotheticalhorse.com/collections/NewYorkBuildings/3dtiles/
http://cdb.cognitics.net:3000/collections/NewYorkBuildings/3DTiles/
http://cdb.cognitics.net:3000/collections/NewYorkBuildings/3DTiles/
http://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/3DTiles/tileset.json
http://maps.ecere.com/ogcapi/collections/SanDiegoCDB:Trees/3DTiles/tileset.json
https://maps.ecere.com/3DAPI/collections/NewYork/3DTiles/tileset.json
https://maps.ecere.com/3DAPI/collections/NewYork/3DTiles/tileset.json
http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/3dTiles/
http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/3dTiles/
http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/3dTiles/
http://steinbeis-3dps.eu:8080/3DContainerTile/collections/NewYork/3DTiles/
http://steinbeis-3dps.eu:8080/3DContainerTile/collections/NewYork/3DTiles/
http://steinbeis-3dps.eu:8080/3DContainerTile/collections/NewYork/3DTiles/
https://github.com/KhronosGroup/UnityGLTF
https://github.com/Siccity/GLTFUtility
https://github.com/ousttrue/UniGLTF
https://github.com/NASA-AMMOS/Unity3DTiles

Cesium Ion web service and visualizing glTF models on an island. One drawback of the
Unity3DTiles library was that it required a license to use in commercial applications, which
prevented further integration of the library.

Figure 101. Cesium ion OSM Building

16.7.2. Method 2 - B3DM to OBJ

Unity is already able to directly load OBJ models, so the team pursued a second approach of
converting 3DTiles B3DMs (Batched 3D Models) into OBJ files using native C++ code. After parsing
the B3DM glTF mesh buffers and accounting for position offsets, conversion to the OBJ format was
straightforward. The algorithm produced multiple OBJ files per B3DM file as each B3DM may
contain multiple meshes. The team downloaded all of the B3DMs available for a given server and
converted the available B3DMs to OBJ files. Then the team imported the OBJ files into the Unity
Editor, which required significant time for large data sets. The scene could be run at interactive
rates.

122

Figure 102. B3DM to Obj Conversion in Unity Shown in Unity

16.7.3. Method 3 - Directly load B3DM

The purpose of the third approach was to leverage more of the SimBlocks C++ codebase without
requiring a conversion to an intermediate file format. The primary trick with this approach was to
solve how to render meshes appropriately using C++ code with Unity, which exposes a C# scripting
system. One of the developers identified that the Unity Native Rendering API could be utilized to
solve this problem and was able to complete the direct loading and rendering of B3DM content
during the sprint week.

Figure 103. Directly load B3DM Tiles

123

16.8. Future Work
The SimBlocks team found the OGC GeoVolumes Sprint to be very useful. Additional work items
that the team would like to continue experimenting with processing geospatial content using real-
time 3D game engine technologies are:

• GeoVolumes bounding volumes queries,

• Runtime conversion performance improvements, and

• Terrain clamping improvements.

After discussing with Unity’s geospatial team, the SimBlocks team identified a 4th method of
conversion that promises to be even faster than Method 3 (Directly load B3DM) while also allowing
use of native C++ code.

124

Chapter 17. Component Implementation:
Steinbeis

17.1. Overview
In the ISG Sprint, the Steinbeis team developed a 3D web application for simulating modern urban
mobility such as air-taxi or E-bike in the 3D urban environment. In this application, the concept and
implementation used the GeoVolumes API for managing the standard 2D or 3D static geospatial
resources including building models, road network, tree, imageries, and terrain. At the same time,
dynamic moving data such as taxi, air-taxi movement, e-bike movement was managed by the OGC
SensorThings API standard.

17.2. Server Implementation

17.2.1. GeoVolumes API Server

In OGC 3D Container and Tiles API pilot, Steinbeis successfully implemented a GeoVolumes API
server to deliver geospatial resources supporting 3D Tiles, I3S, and CityGML formats in the area of
New York City. This server supports the hierarchy and bounding box query through the collections
and containers and is available at http://steinbeis-3dps.eu:8080/3DContainerTile/.

In this ISG Sprint, the team expanded the API mentioned above in a new server (http://steinbeis-
3dps.eu/3DGeoVolumes) to serve the provided San Diego dataset and an open-source CityGML
dataset of LoD 1 buildings of California. The dataset in the API was available in 3D Tiles format. The
available geospatial datasets which were not in visualization-ready formats (such as CDB) were first
converted before serving through the API. In this sprint, the team was not covering the conversion
part and instead received the already-converted data from CAE and Ecere.

The team tested and evaluated the different organizations of the underlying 3D data at the server.
Two approaches were compared on the Steinbeis client with the San Diego data set.

• Case 1: Organize the data on the server in one single bounding volume hierarchy containing all
features.

◦ San Diego 3D models (3D Buildings, Tree, Imagery, Terrain): https://steinbeis-3dps.eu/
3DGeoVolumes/collections/California/SanDiego3DModelsWithTextures/3dtiles/

• Case 2: Organize the data on the server in multiple bounding volume hierarchies per feature
types such as:

◦ San Diego 3D Building Models - 3D Tiles - LoD1 (from OSM) : https://steinbeis-3dps.eu/
3DGeoVolumes/collections/California/SanDiego3DBuildings_LoD1/3dtiles/

◦ Roads : https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiegoRoads/
3dtiles/

◦ Trees : http://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DTrees/
3dtiles

◦ Terrain as Quantized Mesh : https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/

125

http://steinbeis-3dps.eu:8080/3DContainerTile/
http://steinbeis-3dps.eu/3DGeoVolumes
http://steinbeis-3dps.eu/3DGeoVolumes
https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DModelsWithTextures/3dtiles/
https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DModelsWithTextures/3dtiles/
https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DBuildings_LoD1/3dtiles/
https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DBuildings_LoD1/3dtiles/
https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiegoRoads/3dtiles/
https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiegoRoads/3dtiles/
http://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DTrees/3dtiles
http://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DTrees/3dtiles
https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DTerrain/quantized-mesh/

SanDiego3DTerrain/quantized-mesh/

The hierarchical collections of Steinbeis GeoVolumes API can be illustrated as shown in Figure 104.

Figure 104. Areal Taxi on Steinbeis Client.

17.2.2. SensorThings API Server for Urban Mobility

In this Sprint, the team used the OGC SensorThings standard [https://docs.opengeospatial.org/is/15-078r6/

15-078r6.html] as a specification for managing the synthetic urban mobility data in San Diego city.
The data modeling of the SensorThings API server for this sprint is shown in Figure 105:

126

https://steinbeis-3dps.eu/3DGeoVolumes/collections/California/SanDiego3DTerrain/quantized-mesh/
https://docs.opengeospatial.org/is/15-078r6/15-078r6.html

Figure 105. Steinbies SensorThings Data Modelling.

For the server implementation, the team used the FROST-Server [https://github.com/FraunhoferIOSB/

FROST-Server], an open-source implementation of SensorThings API part 1: Sensing, developed by the
Fraunhofer IOSB, as the SensorThings server for managing the dynamic dataset. This server was
available at this link [https://steinbeis-3dps.eu/sta-isg-sprint], collecting the synthetic 3D routes in the
area of San Diego.

17.3. Client Implementation
The client application [https://steinbeis-3dps.eu/STT3DClient] was based on CesiumJS framework. It was
partially based on the implementation from the Steinbeis OGC 3D Container and Tiles pilot client.
The User Interface menu is shown in the image below which allows users to do following
interactions:

• Load collections from the input 3D GeoVolumes API URL or select from an available list,

• Render the geospatial contents from the loaded collections/containers,

• Load and render the mobility route data as a 3D Map animation from the Steinbeis
SensorThings server, and

• Using the 3D Portrayal Services to request the data in the specific boundary area.

127

https://github.com/FraunhoferIOSB/FROST-Server
https://steinbeis-3dps.eu/sta-isg-sprint
https://steinbeis-3dps.eu/STT3DClient

Figure 106. Steinbeis-Client-UI.

17.3.1. Visualizing Contents from GeoVolumes API Servers

In this client application 3D Tiles from different sources are visualized. The 3D Tiles are requested
from different servers from Steinbeis and other participants.

To request the tileset, the client first accessed the 3D GeoVolumes server [https://steinbeis-3dps.eu/

3DGeoVolumes] to load the collections described in the server part. The collections could be restricted
with a bounding box, so only certain collections were displayed. This was done by checking the
"Content.json" file on the server.

The datasets that were referenced in the content.json are shown in the dashboard on the client for
a user to pick which one to visualize. By selecting a certain dataset, the user triggered another Post
by the client server (Node.js) to the GeoVolumes server requesting the selected dataset. The dataset
was then fetched and visualized in the client. The client was tested by loading and rendering the 3D
city models of San Diego from the Steinbeis GeoVolumes server and other participants' GeoVolume
servers. The following lists show some examples of the geospatial rendering on the Steinbeis client:

128

https://steinbeis-3dps.eu/3DGeoVolumes

• Visualizing San Diego Road from the Steinbeis GeoVolumes Server

Figure 107. San Diego Road Model (Steinbeis server).

• Visualizing San Diego 3D Building models from the Steinbeis GeoVolumes Server

Figure 108. San Diego 3D Building models LoD2 (Steinbeis server).

• Visualizing San Diego 3D Building models (LoD1 based on OSM) from the Cesium GeoVolumes
Server

129

Figure 109. San Diego 3D Building models LoD1 (Cesium server).

• Visualizing San Diego 3D models (only Building layer LOD2) from the Ecere GeoVolumes Server

Figure 110. San Diego 3D Building models LoD2 with textures (Ecere server).

• Visualizing San Diego 3D Building models from the Helyx GeoVolumes Server

130

Figure 111. San Diego 3D Building models LoD2 with textures (Helyx server).

17.3.2. Mobility Routes

To show different kinds of mobility, such as bike routes and air taxi routes, different synthetic
urban routes were visualized on the client. By adjusting the height of the track to replicate a flight
path with starting and landing maneuvers, an air taxi route was simulated. The Air Taxi moved
presumably around 300 meters above the terrain, except for starting and landing.

To visualize these tracks in Cesium the route data was loaded from the SensorThings server
followed by converting into the CZML format on the client side which allowed CesiumJS to visualize
the movement of an object by interpolating its position between the two given points. The locations
of the objects were stored in the position property together with the timestamps. These also
included the time in seconds based on the starting point of the epoch property.

131

 {
 "id": "AR-1",
 "name": "Air Route 1",
 "description": "The Steinbeis Synthetic Air Route in San Diego for OGC ISG Sprint
2020",
 "position": {
 "epoch": "2020-09-20T10:00:00Z",
 "cartographicDegrees": [
 "<time_0>",
 "<lon_0>",
 "<lat_0>",
 "<h_0>",
 "<time_1>",
 "<lon_1>",
 "<lat_1>",
 "<h_1>",
 "...",
 "<time_n>",
 "<lon_n>",
 "<lat_n>",
 "<h_n>",
]
 }
}

The user could request the data from the Sensor things server and visualize it on the Steinbeis
Client. The track of the vehicle, either bike or Air Taxi, was then visualized with a green line
following the route. For example, Figure 112 shows the visualization of the 3D air route of an air
taxi over the San Diego City.

132

Figure 112. Areal Taxi on Steinbeis Client.

17.4. Automatic Updates
With the update pipeline, existing 3D Tiles were updated as the changes were made to the input 3D
dataset. The CDB data store was used as the primary dataset in this sprint. The building models
were stored in OpenFlight [5] (* .flt) format within CDB store. It was required to setup the
OpenFlight to 3D Tiles conversion. FME was used for this purpose. In the following section this
conversion from CDB (* .flt) to 3D tiles is discussed.

17.4.1. CDB to 3D Tiles Using FME

FLT models were stored in the local coordinate system, which had to be moved to the world
coordinate system in order to project models on the actual ground locations. All the models were
relative to the instance point which was stored in “GSFeature” or “GTFeature” within the CDB store.
The instance point for a model could be found using FACC, FSC and MODL attributes stored in
extended attributes file (* .dbf). The following Figure 113 shows the workbench used to convert the
FLT models.

133

Figure 113. FME workbench for OPENFLIGHT to 3D Tile conversion.

All the inputs, transformers and the output ports of the above shown workbench are described in
detail in the following section.

1. Input: There were 3 input ports used in the workbench.

a. FLT Reader: It was used to read the OPENFLIGHT models. Within CDB store objects like
buildings, vegetation, bridges etc. were stored in this format. One of the building models was
selected to be converted in this workbench to be used as input.

b. ESRI Shape Reader: It was used to read the shape file format. Shape files were stored
within “GSFeature” and “GTFeature”. These files contained instance point for the input
object models.

c. DBF Reader: It was used to read the extended feature attributes that were required to join
the instance point to FLT models. As mentioned above, FACC, FSC and MODL attributes were
used to establish a join.

2. Transformers: The transformers used in this workbench are discussed below.

a. Substring Extractor: This transformer was used to extract the part of the filename that was
used to join the extended attributes.

b. ESRI Reprojector: with this transformer shape files were reprojected from WGS84 to
WGS84/ UTM Zone 11N (EPSG:32611).

c. Coordinate Extractor: It extracted the X, Y, and Z coordinates from the shape file and
stored it as attributes of the shape file. The Figure 114 shows the parameters set for this
transformer.

Figure 114. Coordinate Extractor Transformer in FME

d. Feature Merger: This transformer was fed with ‘Requestor’ and ‘Supplier’. The aim was to
join the extended attributes stored in DBF file into the attributes of the FLT model. It merged

134

only the attributes. There was another ‘Feature Merger’ used in this workbench that was
used to merge the instance point X, Y, and Z coordinates stored as attributes in the shape file.
Feature Merger used in this workbench is shown in Figure 115.

Figure 115. Feature Merger Transformer in FME

e. 3D Affiner: After merging the coordinates of instance point for the model into the model
attributes, it was required to translate the model using these coordinates to place it on the
actual location on the globe. 3D Affiner transformer was used for this purpose. X, Y, Z
coordinates of instance point were already stored as the attributes in the model, hence it
was provided as input. The parameters set in this transformer are shown in Figure 116:

Figure 116. 3D Affiner Transformer in FME

This shifted the model to the world coordinate system. After this translation, model was
reprojected again to WGS84 coordinates and was ready to be written as 3D Tiles.

3. Output: The only output port for this workbench was 3D Tiles which is described below:

a. 3D Tiles: The OPENFLIGHT model which was moved to the world coordinates system using
the above-mentioned workflow was written as 3D Tiles using the 3D Tiles writer of FME.

This Workbench successfully translated the FLT models to 3D Tiles, but the issue was, it converted
the models one by one. Batch deployment was tried to replicate the workflow for all the models, but
it wasn’t successful during the duration of the sprint. This could be a future task to use FME to

135

convert the CDB stored FLT models to 3D Tiles.

17.4.2. Automatic Update Workflow

Figure 117 shows the methodology used to update the existing 3D tile dataset. The starting point for
this pipeline was an event-based trigger. On receiving the changes in the input datastore, this
trigger was executed which will initiate the update process. The figure shows that after receiving
the changes, it traversed the existing tile tree to identify which tile(s) were affected because of the
change. The respected b3dm tile was updated for the changes and clients could view the changes.

Figure 117. Live Updates methodology

There were two kind of updates handled in this pipeline i.e. (i) Add, and (ii) Delete.

17.4.3. Delete

Delete required two inputs (i) the existing 3D tile dataset, and (ii) unique ID for the objects stored
inside the tiles. The algorithm traversed the tree to search for object inside the tiles. After finding
the tile to be updated, following algorithm was used to change the contents of a b3dm tile.

Algorithm for Deleting a Building

a. Batch table contained in Binary 3D Model is searched for the ID. If the building ID to be deleted is
present in the batch table, then batch table is updated, and program continues further execution,
otherwise it stops.

136

b. Feature Table is updated.

c. Finally, glTF which contains geometrical information is updated by deleting chunks of binary data
associated to the object deleted.

d. Model is updated.

Results of Live delete Objects:

Figure 118. Delete Object {Before Image}

Figure 119. Delete Object {After Image}

17.4.4. Add

Add required two inputs (i) the existing 3D tile dataset and (ii) new object(s) which were to be
introduced into the existing tiles. The tree tile was searched to identify where does the new object
fall inside the existing tree. This building was added to a tile only if it fell completely inside the
bounding volume of an existing tile. After finding the node to be changed, the following algorithm
was used to update the b3dm.

137

Algorithm for adding a Building

a. New building to be added is converted to 3D Tile using FME and stored temporarily.

b. Since the positions stored in binary glTF are relative to the tile centre, Position vector of newly
built tile is calculated again. A complete description is given in following section.

c. Updating Feature and batch table of existing Tile.

d. Merging of two binaries i.e. existing tile and tile for new building. For achieving this, glTF stored
inside tiles is updated.

e. Deletion of temporary tile created for new object.

f. Existing 3D Tile is updated.

Results of Live Add Objects:

Figure 120. Add Object {Before Image}

Figure 121. Add Object {After Image}

138

17.4.5. Future Recommendations

Progress was made on the live update methodology which could make changes to the existing 3D
Tile dataset with which clients would get updated 3D model data, but a few questions remain which
need to be solved. Recommendations for future work are as follows.

1. OGC API - Feature Transaction: As discussed with Ecere (another participant of ISG Sprint),
OGC API - Feature transactions will be a good solution to deliver (i) models, and (ii) instance
point (geographic reference for the models) to the server and on receiving these features, server
can trigger the above mentioned ‘Update methodology’ to make live changes the existing 3D
Tiles.

2. Batch deployment of CDB conversion using FME: As mentioned above, FME has been
successfully used to convert CDB to 3D Tiles, but due to time constraint the batch deployment
wasn’t done. In future, the batch deployment of CDB to 3D Tile can be established in order to
convert the whole CDB OpenFlight models to 3D Tiles.

17.5. Discussion

17.5.1. 3D GeoVolumes API Query - Polygon with a Hole

During the sprint week, the Steinbeis team loaded and rendered a number of 3D contents from the
GeoVolumes API servers to the client. In some cases the team found that the contents intersected
each other. For example, Figure 122 shows that the 3D Tiles texture layer (covering a smaller area)
intersected with the 3D Tiles LoD1 layer (covering a bigger area).

139

Figure 122. Areal Taxi on Steinbeis Client.

In this case, the team did not need the LoD1 layer to be loaded in a smaller bounding area already
rendered by the texture layer. The query capability for requesting the contents as a polygon with
hole (or donut polygon) would help to filter the content on the server-side and save the bandwidth
to client.

17.5.2. 3D GeoVolumes API Organization Different Semantic Parts

Currently, there is no concrete rule on how to name the different semantic parts. For example, the
building models in the San Diego area can be hosted on:

• 'https://LandingURL/collections/California/SanDiego/buildings/…

• 'https://LandingURL/collections/California/SanDiegoBuildings/…

• 'https://LandingURL/collections/California/SanDiegoCDB:Buildings/…

These gaps should be discussed and evaluated in the future development of the 3D GeoVolumes API
specification.

140

Chapter 18. Future Recommendations

18.1. Introduction
The nature of this project was to investigate the GeoVolumes draft specification and identify
additional areas of investigate for future work. As a result this project generated a large number of
recommendations for future work for a project of this size. Most of the recommendations come
from the participants. They are listed below, with similar items grouped into sections.

This section presupposes familiarity with the Findings Chapter, especially the Discovered
Inconsistencies section and the Conclusions Chapter.

18.2. Topics of Future Work

18.2.1. External to OGC

This section describes enhancements that may be needed to items (including specifications) that are
external to OGC. This includes work or enhancements that belong to the domain of various
partners on the project. It may also include work being done by those external organizations that
can be fed back into OGC projects and specifications.

glTF (Khronos Group)

There are three items relating to glTF (3D model format). Only the first one is work that would be
done by Khronos Group. The other two are to highlight existing capabilities of glTF that OGC might
be interested in using at some point in the future.

1. glTF models currently exist in a local model space generally not connected to any other model
or physical reality. For purposes of OGC, these models need to be referenced to a specific
location (at least at an instant) on Earth. Having the ability to geo-reference models, including
local terrain elevation would be very useful. It may be that the work done in OGC’s GeoPose
Standards Working Group covers this case. It is important to harmonize this work between
several internal OGC groups and Khronos Group.

2. glTF rendering capabilities are significantly more advanced that what was used in the Sprint
and the Pilot. It may be that the rendering capability is sufficient for these purposes; however,
there are buildings where the correct (physical) appearance requires these advanced
capabilities. This needs to be decided on a case-by-case basis and may be only appropriate for
particular high-value models in the scene.

3. At this stage of development, none of the models in the scenes are individually animated.
Steinbeis did introduce animation of personal vehicle models, where the model as a single
entity moved through the scene. In the future it may be necessary to individually animated
models (probably not buildings). glTF already has this capability.

Game Engines

One participant used Unity to manage their display. It was necessary to develop client-side

141

converters for OGC data and APIs in order for this to work. While this work is not strictly external
to OGC by virtue of using OGC Specifications and APIs, the target platforms (primarily Unity and
Unreal) are public and in some cases open source.

4. A seed effort to develop an open source importer for Unity and Unreal would provide a baseline
for all organizations looking to use OGC APIs. The game engine communities could provide
valuable assistance for further development.

18.2.2. OGC Projects

This section discusses potential future work within OGC because it deals with OGC data formats and
APIs.

Data

Many of the participants noted difficulty and poor performance when working with the multiple
data formats. The data was provided for the Sprint as CDB [4] with models in OpenFlight [5] format.
Converting this data to 3D Tiles and glTF took a considerable amount of time, partly because of the
size of the data involved. The time was large enough to prevent runtime conversion per request.
This has implications for scene updates getting incorporated into the response to a request. It was
suggested that perhaps even a tiling of CDB would provide a considerable reduction in processing
time.

Specifically the following items were identified:

5. Batch conversion of CDB to 3D Tiles,

6. Conversion of the CDB models to glTF, and

7. Conversion of multiple 3D models to a single OpenFlight file.

API

The GeoVolumes draft specification was mostly found to be complete and correct in its current
form. The Findings chapter discusses the full details. The items listed here are features that were
discovered that the draft specification did not address.

8. Further investigate GeoVolumes bounding volume queries. This is fundamentally important to
the correct operation of the API that additional time and effort spent testing these queries (both
general and edge cases) is vitally important

9. The bounding volume query set needs the capability to describe a hole in the otherwise convex
volume. This is needed to optimally handle requests for surrounding overlapped data after high
resolution data has been identified. This has implications for client performance and scene
updates.

10. There is no required consistency when using URLs to name different semantic content within a
scene. Steinbeis provides a partial example at 3D GeoVolumes API Organization Different
Semantic Parts. This needs to be addressed so clients can work with multiple servers and in
support of Feature Changes.

142

Feature Changes

These items are not part of GeoVolumes API, but are either in OGC’s Feature API or needed as
enhancements or extensions. GeoVolumes needs to ensure that it is compatible with these
expanded capabilities. Three of the participants (Ecere, Hexagon, and Steinbeis) worked on
changing the features in the scene. This work included adding new items, changing (properties and
wholesale replacing) existing items, and deleting items. In the work that they did items included 3D
models and terrain.

11. Investigate the optimal means for changing 3D models. The changes need to fit in with the
overall data store architecture and account for neighboring models and terrain.

12. Significant terrain changes are not frequent, but have a large impact to the neighborhood of the
change. This neighborhood may be quite large for certain type of changes including
earthquakes and floods. The optimal process for including these changes into the scene and
data stores needs to be investigated.

13. The change history and its provenance have not been previously addressed. Incorporating this
information needs to be investigated and included into the GeoVolumes specification.

14. The means to share scenes so that Feature Changes made in one client cause other clients
sharing the same scene to update to the latest release has not been addressed. This particular
research topic needs to be investigated so that multiple parties may work on the same scene
and all provide updates.

Infrastructure

The last section refers to work necessary for the entire GeoVolumes eco-system to properly function
within the larger eco-system of of OGC specifications/APIs and the Web. Some of these may not
require a project to complete, but can be done as part of a Domain or Standards Working Group.
Some of these items could normally be handled by one of the above tasks - they are called out here
to make clear that they need to be done.

15. Define the media types for various forms of the 3D data that might be sent to a client. This needs
to include CDB and 3D Tiles, but may also include other OGC data. Once defined, the media
types should be registered with IANA. Note that glTF already has its own media type.

16. There are several issues described in the Findings Chapter, URLs that need to be resolved. The
proper solution will require investigation to determine the correct URL pattern, request
method, request attributes, and media type. The answers will resolve open issues related to
alternative distributions, requesting semantic content, and content updates.

17. Investigate the ways in which resources and operations are named, especially with
consideration to IETF’s URI Design and Ownership [17]. A federation (as discussed in
Conclusions) or shared scene updates (discussed in #14) need to have an expected consistency.
This becomes especially important so clients do not need to be aware of the details for alternate
data sources.

143

Appendix A: Technology Integration
Experiment (TIE) Table
Introduction

The Pilot started tracking the ability of a client from one participant to correctly access the server
from another. This data was collected into a Technology Integration Experiment (TIE) Table to
easily illustrate the extent of cross-organization integration. A summary version of this table is
presented in Table 12 below.

Table 12. The full Technology Integration Experiment data. This table shows how each participant has
integrated with other participants. It was not a requirement that all participants be fully integrated
with each other.

Service\Client Hexagon InfoDao SimBlocks Steinbeis

Cesium
[https://3d.hypothet

icalhorse.com/]

pass (+ fdbk) pass with pilot
contents

pass with pilot
contents

pass with pilot
contents

Cognitics
[http://cdb.cognitic

s.net:3000/]

pass with pilot
contents

NA pass with pilot
contents

pass with pilot
contents

Ecere
[http://maps.ecere.

com/ogcapi]

pass with San
Diego contents

pass with San
Diego contents

pass with San
Diego contents

pass with San
Diego contents

(Pilot functions)
Ecere
[https://maps.ecere.

com/3DAPI/]

pass with pilot
contents

pass with pilot
contents

pass with pilot
contents

pass with pilot
contents

PyGeoAPI-
InfoDao
[http://pygeoapi.isg-
sprint-
hub.infodaollc.com

/stac/]

pass using CDB server NA not pass

Helyx
[http://helyxisg.east
us.azurecontainer.i

o]

pass with pilot
and San Diego
contents

pass with pilot
and San Diego
contents

pass with pilot
and San Diego
contents

pass with pilot
and San Diego
contents

Steinbeis New
[https://steinbeis-
3dps.eu/

3DGeoVolumes]

pass (+ fdbk) pass with San
Diego contents

pass with San
Diego contents

pass with San
Diego contents

144

https://3d.hypotheticalhorse.com/
http://cdb.cognitics.net:3000/
http://maps.ecere.com/ogcapi
https://maps.ecere.com/3DAPI/
http://pygeoapi.isg-sprint-hub.infodaollc.com/stac/
http://pygeoapi.isg-sprint-hub.infodaollc.com/stac/
http://helyxisg.eastus.azurecontainer.io
https://steinbeis-3dps.eu/3DGeoVolumes

Service\Client Hexagon InfoDao SimBlocks Steinbeis

(Pilot functions)
Steinbeis
Existing
[http://steinbeis-
3dps.eu:8080/

3DContainerTile/]

pass with pilot
contents

pass with pilot
contents

pass with pilot
contents

pass with pilot
contents

TIE Report: Hexagon

Hexagon-Cesium

20.10.06

• New York : good.

• Sidney: The glTF data is missing a primitive Type which in this case would be “triangles”.
This might be a problem on both sides as “triangles” is generally the default. But in the glTF
2.0 spec, this parameter is not shown as being optional:

◦ “Each mesh primitive has a rendering mode, which is a constant indicating whether it
should be rendered as POINTS, LINES, or TRIANGLES."

• Waratah Station: stuck at decoding the tileset.json.

• Note: the problems are with the 3DTiles tilesets, not with the GeoVolumes API.

Hexagon-Steinbeis New

20.10.06

Problem with absolute references in tileset.json files (expected relative) which might be a
problem in the Hexagon client.

TIE Report: InfoDao

InfoDao-Cesium

20.09.21

• Passing New York.

InfoDao-Ecere

20.09.21

• Passing, able to display and localize the 3D Tiles Properly.

InfoDao-Ecere_Pilot

20.09.21

• Passing, able to display and localize the 3D Tiles Properly.

InfoDao-Helyx

20.09.21

• Passing, able to display and localize the 3D Tiles Properly.

InfoDao-InfoDao

145

http://steinbeis-3dps.eu:8080/3DContainerTile/
http://steinbeis-3dps.eu:8080/3DContainerTile/

20.09.21

• Serving CDB using STAC, no GeoVolumes implementation in PyGeoAPI yet.

InfoDao-Steinbeis New

20.09.21

• Passing, able to display and localize the 3D Tiles Properly.

InfoDao-Steinbeis Existing

20.09.21

• Passing, able to display and localize the 3D Tiles Properly.

TIE Report: SimBlocks

SimBlocks-Cesium

20.09.24

• Able to communicate with the server to extract the b3dm files.

SimBlocks-Cognitics

20.09.24

• Able to communicate with the server to extract the b3dm files.

SimBlocks-Ecere

20.09.24

• Issues:

◦ Conformance and Api are Unsupported.

◦ Uri json values contain strings referencing b3dm files. In this case, the Uri values are
relative to the domain. For all other servers, the Uri value is relative to the current page
Url.

SimBlocks-Ecere_Pilot

20.09.24

• Able to communicate with the server to extract the b3dm files.

SimBlocks-Helyx

20.09.24

• Able to communicate with the server to extract the b3dm files.

• Issues

◦ API is Unsupported.

SimBlocks-Steinbeis New

20.09.24

• Able to communicate with the server to extract the b3dm files.

SimBlocks-Steinbeis Existing

146

20.09.24

• Able to communicate with the server to extract the b3dm files.

TIE Report: Steinbeis

Steinbeis-Cesium

23.09.21

• Able to load NYC content. (Just like in the pilot).

• Able to load 3D Tiles L0D1 OSM globally from hypotheticalhorse.com.

Steinbeis-Cognitics

23.09.21

• Able to load NYC content. (Just like in the pilot).

Steinbeis-Ecere

23.09.21

• Tested the 3D Tiles content San Diego 3D Tiles models with textures (Converted from CDB).

Steinbeis-Ecere_Pilot

23.09.21

• Tested the 3D Tiles content NYC Model.

Steinbeis-Helyx

23.09.21

• Tested the 3D Tiles content San Diego 3D Tiles models with textures (Converted from CDB).

Steinbeis-InfoDao

23.09.21

• Not possible to render the original CDB dataset.

Steinbeis-Steinbeis New

23.09.21

• Tested the 3D Tiles content San Diego 3D Tiles models with textures (Converted from CDB).

• Test the San Diego 3D Building Models - 3D Tiles - LoD1 (from OSM).

Steinbeis-Steinbeis Existing

23.09.21

• Test the NYC 3D Tile models.

147

Appendix B: Revision History
Table 13. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

October 30, 2020 L. Daly .1 all initial version

November 5,
2020

S. Serich .2 many General rework
and repair of
compiler error
messages

November 20,
2020

S. Serich .3 all Final editing
before post to
Pending

148

Appendix C: Bibliography
[1] Open Geospatial Consortium: D002: OGC API - GeoVolumes ER, https://docs.ogc.org/per/20-
030.html, (2020).

[2] Open Geospatial Consortium: D003: Pilot Summary ER, https://docs.ogc.org/per/20-031.html,
(2020).

[3] The Khronos Group: glTF V2.0 Specification, https://github.com/KhronosGroup/glTF/tree/master/
specification/2.0, (2017).

[4] Open Geospatial Consortium: CDB V1.0 Standard, https://www.ogc.org/standards/cdb, 2015, 2016.

[5] Presagis: OpenFlight Specification, https://www.presagis.com/en/glossary/detail/openflight,
(2019).

[6] Open Geospatial Consortium: ISG Sprint: Call for Participation, https://portal.ogc.org/files/?
artifact_id=94059, (2020).

[7] Open Geospatial Consortium: 3D Tiles Specification 1.0, http://docs.opengeospatial.org/cs/18-
053r2/18-053r2.html, (2018).

[8] Cesium: Batched 3D Model, https://github.com/CesiumGS/3d-tiles/blob/master/specification/
TileFormats/Batched3DModel/README.md, (2019).

[9] Esri: Full Motion Video, https://pro.arcgis.com/en/pro-app/help/analysis/image-analyst/
introduction-to-full-motion-video-in-arcgis-pro.htm, (2020).

[10] Open Geospatial Consortium: GeoVolumes ER excerpt, https://docs.ogc.org/per/20-031.html#
DataContainer, (2020).

[11] Wikipedia: OpenFlight Description, https://en.wikipedia.org/wiki/OpenFlight, (2020).

[12] World Wide Web Consortium: URIs, URLs, and URNs: Clarifications and Recommendations 1.0.
(2001).

[13] SanGIS: San Diego CDB Dataset License, https://www.sangis.org/Legal_Notice.htm, (2015).

[14] Open Geospatial Consortium: D001: 3D Data Container ER, https://docs.ogc.org/per/20-029.html,
(2020).

[15] Open Geospatial Consortium): SensorThings API Specification, https://www.ogc.org/standards/
sensorthings, (2015).

[16] Internet Engineering Task Force (IETF): Uniform Resource Identifier (URI): Generic Syntax,
https://tools.ietf.org/html/rfc3986, (2005).

[17] Internet Engineering Task Force (IETF): URI Design and Ownership, https://tools.ietf.org/html/
rfc8820, (2020).

[18] Cesium: 3D Tiles Implicit Tiling Extension, https://github.com/CesiumGS/3d-tiles/tree/implicit-

149

https://docs.ogc.org/per/20-030.html
https://docs.ogc.org/per/20-030.html
https://docs.ogc.org/per/20-031.html
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://www.ogc.org/standards/cdb
https://www.presagis.com/en/glossary/detail/openflight
https://portal.ogc.org/files/?artifact_id=94059
https://portal.ogc.org/files/?artifact_id=94059
http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html
http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html
https://github.com/CesiumGS/3d-tiles/blob/master/specification/TileFormats/Batched3DModel/README.md
https://github.com/CesiumGS/3d-tiles/blob/master/specification/TileFormats/Batched3DModel/README.md
https://pro.arcgis.com/en/pro-app/help/analysis/image-analyst/introduction-to-full-motion-video-in-arcgis-pro.htm
https://pro.arcgis.com/en/pro-app/help/analysis/image-analyst/introduction-to-full-motion-video-in-arcgis-pro.htm
https://docs.ogc.org/per/20-031.html#DataContainer
https://docs.ogc.org/per/20-031.html#DataContainer
https://en.wikipedia.org/wiki/OpenFlight
https://www.sangis.org/Legal_Notice.htm
https://docs.ogc.org/per/20-029.html
https://www.ogc.org/standards/sensorthings
https://www.ogc.org/standards/sensorthings
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc8820
https://tools.ietf.org/html/rfc8820
https://github.com/CesiumGS/3d-tiles/tree/implicit-tiling/extensions/3DTILES_implicit_tiling_scheme#3dtiles_implicit_tiling-extension

tiling/extensions/3DTILES_implicit_tiling_scheme#3dtiles_implicit_tiling-extension, (2019).

[19] Jerome St. Louis: Comment on "Consider an OGC API - Common hierarchy mechanism",
https://github.com/opengeospatial/oapi_common/issues/11#issuecomment-677947387, (2020).

[20] World Wide Web Consortium: A vocabulary and associated APIs for HTML and XHTML,
https://www.w3.org/TR/2018/SPSD-html5-20180327/links.html, (2019).

[21] What Working Group: HTML Living Standard: 4.6.6.1 Link type "alternate",
https://html.spec.whatwg.org/multipage/links.html#link-type-alternate, (2020).

[22] Open Geospatial Consortium: GeoPackage Encoding Standard - with Corrigendum,
https://www.ogc.org/standards/geopackage, (2018).

150

https://github.com/CesiumGS/3d-tiles/tree/implicit-tiling/extensions/3DTILES_implicit_tiling_scheme#3dtiles_implicit_tiling-extension
https://github.com/opengeospatial/oapi_common/issues/11#issuecomment-677947387
https://www.w3.org/TR/2018/SPSD-html5-20180327/links.html
https://html.spec.whatwg.org/multipage/links.html#link-type-alternate
https://www.ogc.org/standards/geopackage

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Operation
	2.2. Accomplishments
	2.3. Issues
	2.4. Recommendations
	2.5. Document contributor contact points
	2.6. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	Chapter 5. Overview
	Chapter 6. Material and Purpose
	6.1. Call for Participation
	6.2. Data Sets
	6.3. 3D GeoVolume Servers
	6.4. GeoVolumes API Pilot Engineering Report
	6.5. Architecture diagrams
	6.6. Discussion of Scenarios

	Chapter 7. Findings
	7.1. Introduction
	7.2. Aspects of Investigation
	7.3. Cooperative Efforts
	7.4. General Results
	7.5. Dynamic Dataset Updates
	7.6. Performance Comments
	7.7. Discovered Inconsistencies
	7.7.1. URLs
	7.7.2. Request Methods
	7.7.3. Media Type
	7.7.4. Request Attributes
	7.7.5. Other Friction Points

	7.8. Game Engine Interface

	Chapter 8. Conclusions
	Chapter 9. Component Implementation: CAE
	9.1. Introduction
	9.2. Data
	9.3. Workflows
	9.3.1. CDB to OGC 3D Tiles
	9.3.2. FMV to CDB to glTF

	9.4. Analysis
	9.5. Recommendations

	Chapter 10. Component Implementation: Cesium
	10.1. Introduction
	10.2. CDB to OGC 3D Tiles
	10.2.1. Organization of Test Data
	10.2.2. The Converter Architecture
	10.2.3. Future Improvements

	10.3. GeoVolumes API
	10.4. Conclusion

	Chapter 11. Component Implementation: Cognitics
	11.1. Abstract
	11.2. Architecture
	11.3. Damascus, Syria Vricon SurfaceMesh
	11.4. Fort Story Rapid 3D Data

	Chapter 12. Component Implementation: Ecere
	12.1. Overview
	12.1.1. Components Wiring Architecture

	12.2. Server Implementation
	12.2.1. Improvements to CDB preprocessing
	12.2.2. Improvements to 3D Tiles generation
	12.2.3. OGC API - Common end-points
	12.2.4. 3D Tiles Bounding Volume Hierarchy end-points
	12.2.5. OGC API - Tiles and 3D Models extension end-points
	12.2.6. Other OGC API end-points
	12.2.7. Technology Integration Experiments

	12.3. Updating the 3D content
	12.3.1. Simple Transactions
	12.3.2. Updating 3D models
	12.3.3. Updating terrain elevation
	12.3.4. Change Sets
	12.3.5. Implementation progress

	12.4. Client Implementation
	12.5. GeoVolumes API Considerations
	12.5.1. Building upon OGC API - Common foundations
	12.5.2. Proper relation types, registered media types and links
	12.5.3. Common bounding boxes
	12.5.4. Hierarchies of collections
	12.5.5. GeoVolumes API’s raison d’être and name
	12.5.6. Tiles API & 3D Models Extension

	Chapter 13. Component Implementation: Helyx
	13.1. Types of alternate distribution in scope of GeoVolumes API
	13.2. What is an alternate distribution?
	13.3. Representing Alternate Distributions at the Data Level
	13.4. Representing Alternate Distributions at the Service Level
	13.5. Representing Alternate Distributions at the API Level
	13.6. What Datasets, Services or Tiling Schemes are ‘In Scope’ of the GeoVolumes API?
	13.7. Representing Alternate Distributions at the Collection(s) Level.
	13.8. Representing Alternate Distributions within one API – endpoints
	13.9. Representing Alternate Distributions within one API – parameters
	13.10. A note on path format
	13.11. Representing Alternate Distributions within one API - Link Relations
	13.12. Representing Alternate Distributions as Media Types
	13.13. What is the difference between an alternate distribution and an alternate resource?
	13.14. Practical use of alternate distributions at the client side
	13.15. OpenAPI Shapechange Workflow Perspective
	13.16. Benefits

	Chapter 14. Component Implementation: Hexagon GSP
	14.1. Abstract
	14.2. Test Data
	14.3. Organization of CDB for 3D Models
	14.3.1. GSFeatures and GSModelGeometry
	14.3.2. GTFeature and GTModelGeometry
	14.3.3. CDB Technical Specification Recommendations

	14.4. Pre-processing CDB 3D Models to OGC 3DTiles
	14.4.1. Mesh Simplification
	14.4.2. Parameterization and texture baking
	14.4.3. Tile size
	14.4.4. Metadata and selection
	14.4.5. Conversion speed
	14.4.6. Referencing
	14.4.7. 3D data organization recommendations

	14.5. Serving OGC 3DTiles from CDB with on the fly tiling
	14.5.1. CDB 3D data organization recommendations

	14.6. Handling terrain updates
	14.6.1. Proxy Server Approach
	14.6.2. GPU Expression Approach

	14.7. Handling CDB Model Updates
	14.7.1. Deleted Model
	14.7.2. Updated Model
	14.7.3. Added Model

	Chapter 15. Component Implementation: InfoDao
	15.1. GeoVolumes API and its role in the ISG Sprint
	15.2. Source Data: Display and Tie Tables
	15.3. Future Discussion
	15.3.1. GeoVolumes API Discussion: CDB comparisons and OGC API discussion
	15.3.2. Wrapping it up

	Chapter 16. Component Implementation: SimBlocks.io
	16.1. Subject
	16.2. Summary
	16.3. Previous Work
	16.4. Architecture
	16.5. Proposed Activities
	16.6. Server Testing
	16.7. Conversion Methods
	16.7.1. Method 1 - NASA Unity3DTiles Library
	16.7.2. Method 2 - B3DM to OBJ
	16.7.3. Method 3 - Directly load B3DM

	16.8. Future Work

	Chapter 17. Component Implementation: Steinbeis
	17.1. Overview
	17.2. Server Implementation
	17.2.1. GeoVolumes API Server
	17.2.2. SensorThings API Server for Urban Mobility

	17.3. Client Implementation
	17.3.1. Visualizing Contents from GeoVolumes API Servers
	17.3.2. Mobility Routes

	17.4. Automatic Updates
	17.4.1. CDB to 3D Tiles Using FME
	17.4.2. Automatic Update Workflow
	17.4.3. Delete
	17.4.4. Add
	17.4.5. Future Recommendations

	17.5. Discussion
	17.5.1. 3D GeoVolumes API Query - Polygon with a Hole
	17.5.2. 3D GeoVolumes API Organization Different Semantic Parts

	Chapter 18. Future Recommendations
	18.1. Introduction
	18.2. Topics of Future Work
	18.2.1. External to OGC
	18.2.2. OGC Projects

	Appendix A: Technology Integration Experiment (TIE) Table
	Appendix B: Revision History
	Appendix C: Bibliography

