
OGC Earth Observations Applications
Pilot

Terradue Engineering Report

Publication Date: 2020-10-22

Approval Date: 2020-09-23

Submission Date: 2020-09-03

Reference number of this document: OGC 20-042

Reference URL for this document: http://www.opengis.net/doc/PER/EOAppsPilot-Terradue

Category: OGC Public Engineering Report

Editor: Pedro Gonçalves

Title: OGC Earth Observations Applications Pilot: Terradue Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/EOAppsPilot-Terradue
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 6

2. Executive Summary. 7

2.1. Document contributor contact points . 8

2.2. Foreword. 8

3. References . 9

4. Terms and definitions . 10

4.1. Abbreviated terms . 11

5. Overview . 13

6. Earth Observation Platform . 14

6.1. Overview . 14

6.2. Architecture . 14

6.3. Application Integration Scenarios . 15

6.4. Application Design Pattern. 16

6.4.1. Data-driven application with a fan-in application pattern. 16

6.4.2. Data-driven application with a fan-out application pattern . 17

6.4.3. Parameter-driven application pattern. 18

6.5. Application Package. 19

6.6. Data Flow Management . 20

7. Earth Observation Applications . 26

7.1. Application Descriptor . 26

7.1.1. Common rules for Parameters Mapping. 27

7.1.2. Single CWL type Parameter . 28

7.1.3. Optional and Mandatory Parameters . 29

7.1.4. Enumeration Parameters . 31

7.1.5. Array Parameters . 33

7.1.6. File and Directory Parameters. 35

7.1.7. Resources for the runtime environment. 37

7.1.8. Application Design Patterns . 37

7.2. Data Flow Management . 39

7.2.1. Data Stage-In . 40

7.2.2. Data Stage-out . 44

8. Pilot Applications . 47

8.1. EU SatCen Sentinel-1 Change Detection . 47

8.2. DLR TimeScan Sentinel-2 Vegetation indexes . 50

8.3. ESA Sentinel-3 SLSTR Land Surface Temperature . 51

8.4. Food Security applications . 53

9. Conclusions . 58

9.1. Application Package. 58

4

9.2. Data flow management . 59

9.3. Application Scalability. 59

9.4. Recommendations for Future Work . 60

Appendix A: Revision History . 61

Appendix B: Bibliography. 62

5

Chapter 1. Subject
This OGC Engineering Report (ER) documents the findings and experiences resulting from Terradue
Activities on the OGC Earth Observation Applications Pilot. More specifically, this ER provides a way
forward for the implementation of the "applications to the data" paradigm in the context of Earth
Observation (EO) satellite data processing and Cloud-based platforms to facilitate and standardize
the access to Earth observation data and information.

6

Chapter 2. Executive Summary
The availability of a growing volume of environmental data from space represents a unique
opportunity for science, general R&D, and applications (apps), but it also poses a major challenge to
achieve its full potential in terms of data exploitation. Firstly, because the emergence of large
volumes of data (Petabytes era) raises new issues in terms of discovery, access, exploitation, and
visualization of “Big Data”, with profound implications on how users do “data-intensive” Earth
Science. Secondly, because the inherent growing diversity and complexity of data and users,
whereby different communities – having different needs, skills, methods, languages and protocols –
need to cooperate to make sense of a wealth of data of different nature (e.g. EO, in-situ, model),
structure and format.

Responding to these technological and community challenges requires the development of new
ways of working, capitalizing on Information and Communication Technology (ICT) developments
to facilitate the exploitation, analysis, sharing, mining and visualization of massive EO data sets and
high-level products within Europe and beyond. Evolution in information technology and the
consequent shifts in user behavior and expectations provide new opportunities to provide more
significant support to EO data exploitation.

Earth Observation Platforms provide customers with an environment allowing them to focus on
their core business and outsource other aspects to a platform that supplies services to a large
number of customers with similar needs. The success of platforms in the business world is based on
their ability to minimize cost and time to market for their customers, thereby also reducing the risk
of exploring unproven business cases. In recent years, Platforms for the Exploitation of Earth
Observation data have been developed by public and private companies in order to foster the usage
of EO data and expand the market of Earth Observation-derived information. The domain is
composed of platform providers, service providers who use the platform to deliver a service to
their users, and data providers. The availability of free and open data (e.g. Copernicus Sentinel),
together with the availability of affordable computing resources, creates an opportunity for the
wide adoption and use of Earth Observation data in a growing number of fields in our society.

OGC activities in Testbed-13, Testbed-14, and Testbed-15 initiated the development of an
architecture to allow the ad-hoc deployment and execution of applications close to the physical
location of the source data with the goal to minimize data transfer between data repositories and
application processes.

The activity described in this Engineering Report responds to the invitation for Earth observation
platform operators to implement the OGC Earth Observation Applications Pilot architecture as it
has been defined in those previous OGC Innovation Program (IP) initiatives. The goal of the pilot is
to evaluate the maturity of those specifications in a real-world environment with several Earth
Observation applications brought by several application developers that work with Earth
observation satellites. These developers brought different views and requirements in terms of data
discovery, data loading, data processing, and result delivery to which the platform readiness is
challenged and evolutions are proposed to the architecture.

This Engineering Report initiates by introducing the Earth Observation (EO) Platform architecture
and documents the encoding and interfaces needed for defining, deployment and execution of EO
Applications brought by the different application developers. The ER concludes with a summary of

7

the main challenges found during the pilot activities and provides further recommendations to
advance the architecture, integration and implementation strategies taking in consideration the
viewpoints of both EO platforms and EO application developers.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Pedro Gonçalves Terradue Editor

Fabrice Brito Terradue Contributor

Emmanuel Mathot Terradue Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

8

Chapter 3. References
The following normative documents are referenced in this document.

• OGC: OGC 06-121r9, OGC Web Services Common Standard, 2010

• OGC: OGC 14-065r2, OGC Web Processing Service 2.02

• OGC: OGC 13-026r8, OGC OpenSearch Extension for Earth Observation 1.0, 2016

• OGC: OGC 13-032r8, OGC OpenSearch Geo and Time Extensions 1.0.0, 2014

• OGC: OGC 12-084r2, OWS Context Atom Encoding Standard, 1.0.0, 2014

• OGC: OGC 14-055r2, OGC OWS Context GeoJSON Encoding Standard, 1.0., 2017

• OGC: OGC 17-069r3, OGC API - Features - Part 1: Core, 1.0, 2019

9

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● Application

A self-contained set of operations to be performed, typically to achieve a desired data
manipulation. The Application must be implemented (codified) for deployment and execution on
the platform.

● Application Deployment and Execution Service (ADES)

WPS-T (REST/JSON) service that incorporates the Docker execution engine, and is responsible for
the execution of the processing service (as a WPS request) within the ‘target’ Exploitation
Platform.

● Application Descriptor

A file that provides the metadata part of the Application Package. Provides all the metadata
required to accommodate the processor within the WPS service and make it available for
execution.

● Application Package

A platform independent and self-contained representation of a software item, providing
executable, metadata and dependencies such that it can be deployed to and executed within an
Exploitation Platform. Comprises the Application Descriptor and the Application Artefact.

● Compute Platform

The Platform on which execution occurs (this may differ from the Host or Home platform where
federated processing is happening).

● Docker

Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver
software in packages called containers. Containers are isolated from one another and bundle
their own software, libraries and configuration files; they can communicate with each other
through well-defined channels.

● Execution Management Service (EMS)

The EMS is responsible for the orchestration of workflows, including the possibility of steps
running on other (remote) platforms, and the on-demand deployment of processors to
local/remote ADES as required.

● Exploitation Platform

An on-line collection of products, services and tools for exploitation of EO data.

● Spatiotemporal Asset

Any file that represents information about the earth captured in a certain space and time.

10

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

● GeoTIFF

A public domain metadata standard which allows georeferencing information to be embedded
within a TIFF file. The potential additional information includes map projection, coordinate
systems, ellipsoids, datums, and everything else necessary to establish the exact spatial
reference for the file.

● JPEG2000

An image compression standard and coding system

● Processing

A set of predefined applications that interact to achieve a result. For the exploitation platform,
comprises on-line processing to derive data products from input data, conducted by a hosted
processing service execution.

● Processing Result

The Products produced as output of a Processing Service execution.

● Processing Service

A non-interactive data processing that has a well-defined set of input data types, input
parameterization, producing Processing Results with a well-defined output data type.

● Products

EO data (commercial and non-commercial) and Value-added products and made available
through the EP. It is assumed that the Hosting Environment for the EP makes available an
existing supply of EO Data.

● Transactional Web Processing Service (WPS-T)

Transactional extension to WPS that allows ad hoc deployment / undeployment of user-provided
application.

● Web Processing Services (WPS)

OGC standard that defines how a client can request the execution of a process, and how the
output from the process is handled

4.1. Abbreviated terms
• ADES Application Deployment and Execution Service

• API Application Programming Interface

• CWL Common Workflow Language

• DIAS Copernicus Data and Information Access Services

• DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)

• EMS Execution Management Service

• EO Earth Observation

• EP Exploitation Platform

11

• ER Engineering Report

• ESA European Space Agency

• GDAL Geospatial Data Abstraction Library

• IW Interferometric Wide

• JSON JavaScript Object Notation

• OGC Open Geospatial Consortium

• OS Operating System

• OWS OGC Web Services

• REST Representational State Transfer

• SAFE Standard Archive Format for Europe

• SatCen European Union Satellite Centre

• SLC Single Look Complex

• SNAP Sentinel Application Platform toolbox

• STAC SpatioTemporal Asset Catalog

• TBD To Be Determined

• TIE Technology Integration/Interoperability Experiments

• TIFF Tagged Image File Format

• URL Uniform Resource Locator

• WPS Web Processing Service

• WPS-T Transactional Web Processing Service

• XML Extensible Markup Language

• YAML YAML Ain’t Markup Language

12

Chapter 5. Overview
Section 6 introduces the Earth Observation (EO) Platform architecture targeting the deployment
and execution of EO Applications in distributed Cloud Platforms. The section provides an overview
of EO applications design patterns, package and data interfaces. The section presents the approach
followed by previous OGC Testbeds (13, 14 and 15) and the evolutions implemented to respond to
specific challenges addressed during the pilot activities.

Section 7 presents the full cycle of definition, deployment and execution of Earth Observation
Applications on an Exploitation Platform. This section presents the application packaging using the
Common Workflow Language (CWL) [1] and data stage-in/out strategies for the deployment and
publication of the application through a Web Service endpoint, OGC Web Processing Service (WPS).

Section 8 presents the EO Applications brought by the different application developers and
documents all the steps for their deployment and execution.

Section 9 provides a summary of the main findings and provides further recommendations to
advance the architecture, integration and implementation strategies taking in consideration the
viewpoints of both EO platforms and EO application developers.

Please note that this ER refers to WPS and OGC API – Processes interchangeably. This is because the
OGC API – Processes draft specification emerged from the draft specification of the REST binding of
the WPS standard.

13

Chapter 6. Earth Observation Platform
This section explains the concepts from the Platform viewpoint.

6.1. Overview
Terradue’s Ellip Platform provides an application integration and processing environment with
access to EO data to support Earth Sciences. The Ellip User Algorithm Hosting Service gives access
to a dedicated application integration environment in the Cloud, with easily exploitable software
tools and libraries and access to distributed EO Data repositories to support the services adaptation
and customization. The service provides developers with well-defined operational processes and
procedures in order to allow for robust packaging of applications, test and validation activities, and
application deployment in production. The adaptation and customization of the services is focused
on supporting the developer in defining the parallelization strategy, the data requirements needs,
tools and libraries necessary to execute the applications and the overall production strategy.

Ultimately, the User Algorithms are exposed through a Web Service endpoint, Web Processing
Service (OGC WPS), that allows end-user portals and B2B client applications to pass processing
parameters, trigger a data processing or systematic requests and establish the data pipeline to
retrieve the information produced.

This section shows how Ellip was adapted and the evolutions implemented to respond to specific
challenges addressed during the pilot activities.

6.2. Architecture
Previous OGC Testbeds (13, 14 and 15) initiated the design of an architecture to allow the packaging,
deployment and execution of Earth Observation Applications in distributed Cloud Platforms.

These testbed activities built on OGC standards (e.g. WPS, OWS-Context) to describe data processing
applications or workflows as Application Packages that can be deployed on and executed within
diverse Cloud Platforms.

The WPS service allows end-user portals and B2B client applications to pass processing parameters,
trigger on-demand or systematic data processing requests and establish the data pipeline to
retrieve the information produced.

The Application Package includes information about the execution unit to be executed or specific
workflow script that can be invoked on the processor directly together with the mappings for
parameterization or tailoring.

The testbeds defined an architecture where the Application Package is used with an Execution
Management Service (EMS) and Application Deployment and Execution Service (ADES) as seen in
the figure below. The EMS provides the workflow orchestration service (WPS-T) to deploy and
invoke processing services workflows on multiple deployment and execution services. The ADES
provides the execution engine service of the application that was previously deployed as a WPS
service by the EMS.

14

Figure 1. Platform High-level Architecture

The Execution Management Service (EMS) provides the orchestration service to deploy and invoke
services of an application package on an ADES of the selected platform. It is responsible for
managing the on-demand deployment and execution of the workflow building blocks on the “local”
or “remote” platform.

The main responsibilities of the ADES are:

• Validate and accept an application deployment request from the EMS

• Validate and accept an execution request from the EMS

• Submit the process execution to the processing cluster

• Monitor the process execution

• Retrieve the processing results

In order to accomplish the execution and monitor steps above, the internal sub-steps also need to
be responsible for the operations of:

• Data Stage-in for the process inputs

• Data Stage-out for the process outputs

6.3. Application Integration Scenarios
An Earth Observation Platform provides processing functions, tools and applications invoked
individually or utilized in workflows. Users are able to integrate their own processing services into
the platform and make them available for exploitation by other users also individually or in their

15

own workflows. To support their integration activities, users are provided with an environment
where they can integrate, build, test & debug and deploy.

The platform gives access to a dedicated application integration environment with exploitable
software tools and libraries and access to distributed EO Data repositories to support the services
adaptation and customization. It allows the design and integration of services as scalable data
processing chains, leveraging selected data programming models.

The environment considers two scenarios of EO application integration:

• Importing: The application is directly packaged as a black-box. It relies upon the stage-in/out of
data to the applications existing data access expectations by the Processing Framework.

• Adapting: The application is adapted to use the data access interfaces offered for data input and
output.

The main objective of the current pilot project is to cover the importing scenario.

6.4. Application Design Pattern

6.4.1. Data-driven application with a fan-in application pattern

The data driven application fan-in patterns refers to the execution of a data processing function
that aggregates several input products. The platform application accesses a list of input products,
retrieves and proceeds with the stage-in of the products making them available to the application
execution block.

16

Figure 2. Data-driven application with fan-in input references where an application aggregates n-input EO
products

6.4.2. Data-driven application with a fan-out application pattern

The data driven application fan-out patterns refers to the execution of a data processing function
that processes concurrently several products generating independent output for each input. The
platform application loops from a list of input products, retrieves and proceeds with the stage-in of
the individual products making them available to the application execution block. The platform can
apply different strategies to parallelize the execution of each individual product.

17

Figure 3. Data-driven application with fan-out input references where an application needs n-input EO
products.

6.4.3. Parameter-driven application pattern

Parameter-driven data flows permit cyclic, systematic retrieval of selected groups of input products
between selected the parameter intervals (e.g. start and end dates). In this scenario, the parameter
interval acts as a step function, determining how the next batch of products is to be selected.

When considering temporal parameters, this pattern creates a "moving window" of processing
mostly suitable for daily or weekly composites, or any task where input products must be grouped
for processing by time interval.

The platform can apply different strategies to parallelize the execution of each individual product.

18

Figure 4. Parameter-driven application pattern where an application is systematically executed with the
same parameters over a temporal range with different input EO products

6.5. Application Package
The Application Package targets algorithms (developed by a third-party developer) that are to be
deployed in a Cloud Platform. The Application Package will contain all the information necessary to
allow applications to be specified and deployed in federated resources providers. The Application
Package takes into consideration past efforts to integrate OGC services with well-established
formats and protocols that are natively ready for interoperability within Cloud solutions.

The main objective of the Application Package description file is to define a data processing
application or workflow providing the information about the parameters, software item,
executable, metadata and dependencies such that it can be deployed to and executed within an
Exploitation Platform. This file must require a simple encoding so that application developers are
able to create it, ensure that the application is fully portable among all supporting platforms and
supports automatic deployment in a Machine-To-Machine (M2M) scenario. The Application Package
information model must also allow the deployment of the application as a WPS service.

The execution block (i.e. Application Artefact) describes the ‘software’ component that represents
the execution unit in a specific container (e.g. Docker) to be executed or specific workflow script
that can be invoked on the processor directly. Based on the context information provided with the

19

processor, the execution block maps how the container can be parameterized or tailored.

Docker is currently the selected container format and enables applications to be quickly assembled
from components and eliminates the friction between development and production environments.
As a result, applications can ship faster and run the same process into large multi-tenant data
centers in the Cloud. Docker images work as an isolated process in the host operating system, which
shares a kernel with other containers. Thereby, still having the benefits of virtualization, it is more
portable and more effective by using less disk space. The application packaging allows the
developers to remove their focus from the infrastructure details.

Previous work in OGC Testbed-13 (OGC 17-023) defined two alternative encodings for the
Application Package. One as an OWS Context Document (OGC 12-084r2) with an XML encoding and
an alternative where the information was included in the WPS Process Description in the
ows:metadata element.

Subsequent OGC Testbed-14 (OGC 18-049r1) updated this model with an OWS Context JSON
encoding (OGC 14-055r2) with the addition of a (embedded) Common Workflow Language (CWL)
file (in JSON or YAML) that could be used in the simplest case to describe a single application and
how to invoke the command-line within the container.

The CWL is a specification for describing analysis workflows and tools in a way that makes them
portable and scalable across a variety of software and hardware environments, from workstations
to cluster, cloud, and high-performance computing (HPC) environments. While CWL is not heavily
used in the EO domain, it is designed to meet the needs of data-intensive science, such as
Bioinformatics, Medical Imaging, Astronomy, Physics, and Chemistry.

The CWL contains two main specifications. The Command Line Tool Description Specification
[https://www.commonwl.org/v1.1/CommandLineTool.html] that specifies the document schema and
execution semantics for wrapping and executing command line tools and the Workflow Description
Specification [https://www.commonwl.org/v1.1/Workflow.html] that specifies the document schema and
execution semantics for composing workflows from components such as command line tools and
other workflows.

To summarize, OGC Testbed-14 proposed the use of CWL initially for the command line invocation,
the activities during this pilot showed a simple way of pointing to a Docker container from inside
the CWL file included in the Application Packaging. We concluded that the CWL file has the
potential to reference the application containers (e.g. Dockers) and also allows the definitions of the
application parameters, input/output interface and the overall process offering parameters.

6.6. Data Flow Management
Previous OGC Testbeds (13, 14 and 15) followed an approach where the ADES is responsible for
providing the data stage-in of product input references specified on the WPS request and stage-out
the results of the application.

Data stage-in is the process to locally retrieve the inputs for the processing. Processing inputs are
provided as EO Catalogue references and the ADES is responsible to translate those references into
inputs available for the local processing.

20

https://www.commonwl.org/v1.1/CommandLineTool.html
https://www.commonwl.org/v1.1/Workflow.html
https://www.commonwl.org/v1.1/Workflow.html

Data stage-out is the process to upload the outputs of the processing onto external system(s), and
make them available for later usage. ADES retrieves the processing outputs and automatically
stores them onto an external persistent storage. Additionally, ADES should publish the metadata of
the outputs onto a Catalogue and provide their references as an output.

In Testbed-13 the ADES makes the files available in a specific location defined by an environment
variable pointing to the working directory. In Testbed-14, the input files location was provided
directly in the CWL file, mentioned in the previous section, by defining one or more input files or
folder directories.

However, EO product files come in different formats (e.g. GeoTIFF, HDF5, SAFE) and might have
sub-items (e.g. metadata, bands, masks) that can be encoded in the same file or follow a given
folder structure.

For example, SENTINEL-2 products are made available to users in SENTINEL-SAFE format,
including image data in JPEG2000 format, quality indicators (e.g. defective pixels mask), auxiliary
data and metadata. The SAFE format wraps a folder containing image data in a binary data format
and product metadata in XML. A SENTINEL-2 product refers to a directory folder that contains a
collection of information that can include several files like seen in Figure 5.

Figure 5. SENTINEL-2 product physical format

Different platforms will catalog and stage the products differently. Some will reproduce the exact
folder structure and return the folder root or the main XML manifest file. Other platforms will
compress the folder structure and return the compressed file. Other platforms will even convert
the file and return a GeoTIFF aggregating all the information.

21

In general, the approach followed in the previous testbeds assumed that the applications were
responsible for navigating the input folder directory and programmatically reacting to how the file
was staged-in by the platform. This implies that the application developer needs to consider all
possible cases when developing their read routines.

Conversely, the outputs of the application are fully managed by the developer that must place the
resulting files in the output directory. The only information the ADES has about the output files is
the file media type (formerly known as “MIME-type”).

To summarize, in previous testbeds the ADES had limited knowledge about the input and output
files respectively their data contents. Thus, ADES was often missing critical information like spatial
footprint, sub-items (e.g. masks, bands) and additional metadata (e.g. ground sample distance, orbit
direction). To respond to this issue, the activities during this Pilot activity showed the potential to
follow an approach that uses a local catalogue encoded using the SpatioTemporal Asset Catalog
(STAC) specification as a data manifest for application input and output [2].

The STAC specification standardizes the way geospatial assets are exposed online and queried. A
'spatiotemporal asset' is any file that represents information about the earth captured in a certain
space and time (e.g. satellites, planes, drones, balloons). Most importantly the STAC specification
can be implemented in a completely 'static' manner as flat files, enabling data publishers to expose
their data by simply publishing one or several JSON files drilling down from collection (e.g.
Sentinel-2), item (e.g. Sentinel-2 product) and assets (e.g. JPG2000 band file, auxiliary data, browse)
with a relative path (something that was not possible using OpenSearch as defined by OGC 13-
026r8, OGC 13-032r8).

The STAC specification defines several objects:

• STAC Catalog: STAC Catalog is a collection of STAC Items or other STAC Catalogs (sub-catalogs).
The division of sub-catalogs is transparently managed by links to ease online browsing.

• STAC Collection: extends the STAC Catalog with additional fields to describe a whole set of STAC
Items that share properties and metadata. STAC Collections are meant to be compatible with
OGC API - Features Collections (OGC 17-069r3).

• STAC Item: a GeoJSON Feature with additional fields (e.g. time, geo), links to related entities and
STAC Assets.

• STAC Asset: is an object that contains a link to data associated with the STAC Item that can be
downloaded or streamed (e.g. data, metadata, thumbnails) and can contain additional metadata.
Similar to atom:link it has properties like href, title, description, type and roles; but allows
relative paths.

The STAC specification supports the ADES stage-in operation for all the identified application
patterns using EO data catalog references as inputs. A local STAC catalog for the fan-in (Figure 6)
and pairs (Figure 8) patterns or several local STAC catalogs with a single item for the fan-out pattern
(Figure 7).

22

Figure 6. STAC catalog structure for the fan-in pattern where each item can have one or more file as assets

Figure 7. STAC catalog structure for the input pairs pattern where each item can have one or more file as
assets

23

Figure 8. STAC catalog structure for the fan-out pattern where each item can have one or more file as assets

In each item, there can be multiple assets expressed in relative paths enabling the application to
navigate on the mounted volume. The use of STAC in the ADES data stage-in and stage-out follows
the following steps:

24

• ADES stages the enclosures associated to the input catalog references

• ADES creates a local catalog using STAC up to the files (assets) in the staged-product(s) (items)

• Application uses the STAC catalog as an input parameter to access, as needed, to the different
assets and their metadata

• Application creates a STAC catalog describing the application output products including assets
(files) and metadata.

25

Chapter 7. Earth Observation Applications
This section explains the concepts from the developer viewpoint. It describes how the Application
Package is specified.

7.1. Application Descriptor
The Application Package in the Exploitation Platforms context is required to:

• Reference the executable unit that implements the application functionality

• Describe its input/output interface

• List additional required or optional resources that impact the application execution, such as
catalogue endpoints, base map layers, etc.

The Common Workflow Language (CWL) targets data-intensive processing scenarios and makes
these portable and scalable across platforms capable of interpreting and execute the processes by
describing:

• A runtime environment

• A Workflow (Directed Acyclic Graph (DAG))

• Command line tool(s)

• Parameter of the process

• Inputs/outputs

CWL is used as the application package descriptor. It covers the following elements necessary to
describe the application:

• Workflow DAG orchestrating the steps in order to map workflow input/output with steps
input/output

• Steps describing a command line with their input/output

• CWL specification extensions that may be used to provide the additional information elements

The application package is thus composed of a CWL file with the role of the application descriptor.
The container reference is included in the CWL using the CWL DockerRequirement.

The CWL has two main classes: Workflow and CommandLineTool.

The Workflow class defines an analysis task represented by a directed graph describing a sequence
of operations that transform an input data set to output.

The CommandLineTool class defines a non-interactive executable program that reads some input,
performs a computation, and terminates after producing some output.

For the application package, the Workflow class level is the interface used to map the parameters of
the exposed WPS service and respective mapping with the exposed service. The CommandLineTool
class defines the actual interface of the application.

26

The CWL Workflow class defines the overall processing service. As seen in Figure 9 there are two
main sections: one for Service definition and the other for Service parameters.

Figure 9. CWL Workflow class defining the processing service

The ADES offers an entry point to deploy the application package. Different protocols exist to
perform the application deployment such as WPS-T that defines transactions.

Regardless of the deployment mechanism, CWL is used to convey the information to describe the
web service inputs/outputs using WPS concepts. The mapping between CWL and WPS follows the
rules described in this section.

The Workflow level is the entry point to the overall CWL workflow and thus the interface used to
map the inputs/outputs. The inputs/outputs description defined in the command line or workflow
steps are not taken into account directly since they are linked between steps or bound at workflow
level as foreseen by the CWL specification. Indeed, at the web processing service level, only the
Workflow input and output parameters are exposed. This section describes the mapping rules to
describe inputs and outputs in the WPS data model from the possible inputs/outputs definition
from the CWL document.

7.1.1. Common rules for Parameters Mapping

The following table lists the CWL elements of an input/output definition and their corresponding
elements in the WPS data model.

Table 1 - Mapping common CWL elements to the WPS data model

27

7.1.2. Single CWL type Parameter

The CWL types are mapped to a LiteralData Type in WPS with the specific rules for each type
defined in the following table.

Table 2 - Mapping CWL types to WPS elements

28

7.1.3. Optional and Mandatory Parameters

In CWL, each type can be suffixed with a ‘?’ indicating that the parameter is optional. This
parameter specification is mapped to the corresponding specification in WPS/OGC API Processes
with minOccurs="0".

Table 3 - Example of optional parameter in CWL, WPS 1.0/2.0.2, OGC API Processes

29

In CWL, each type can be wrapped with brackets (‘[]’) indicating that the parameter is an input
array. This parameter specification must be mapped to the corresponding specification in WPS/OGC

30

API Processes with maxOccurs > 1.

7.1.4. Enumeration Parameters

The CWL enumeration type specifies value definitions into a LiteralData Type in WPS.

Table 4 - Example of enumeration with options parameter in CWL, WPS 1.0/2.0.2, OGC API Processes

31

32

7.1.5. Array Parameters

When the type is an array of types, the WPS literal data can describe multiple domains (at least for
WPS 2.0 and OGC API). If null type is in the array of type, the parameter is optional. This parameter
specification must be mapped to the corresponding specification in WPS/OGC API Processes with
minOccurs="0".

Table 5 - Example of array of strings optional Parameter in CWL, WPS 1.0/2.0.2, OGC API Processes

33

34

7.1.6. File and Directory Parameters

In CWL, the File or Directory types correspond to files on a file system and thus require a specific
mapping according to the ADES implementation exposing the WPS.

Indeed, the ADES manages physical files in the processing runtime environment. At job submission,
the inputs may be passed as references (HTTP link, S3 link, OpenSearch URL, STAC catalog, etc.) to a
resource manager and these are resolved and fetched by the ADES making them available for
processing as specified in the CWL using the File or Directory type.

For Directory parameters, the interface between the ADES and the application process is a STAC
local catalog (catalog.json and all its downstream items and assets including their associated staged
files) referencing all the data staged-in corresponding collections as specified initially in the CWL.

The File or Directory types are thus mapped to these staged resources.

The example in Table 6, the ADES is able to handle the following resource description document or
references:

• OpenSearch description document with possible search endpoints for input products

• Atom feed with entries containing the input files (enclosures)

• STAC catalogue with features describing assets as input files

Table 6 - Example of File Parameter in CWL, WPS 1.0/2.0.2, OGC API Processes

35

36

7.1.7. Resources for the runtime environment

CWL provides a mechanism for expressing runtime environment resource requirements with the
simple rule:

• min is the minimum amount of a resource that must be reserved to schedule a job. If "min"
cannot be satisfied, the job should not be run.

• max is the maximum amount of a resource that the job shall be permitted to use. If a node has
sufficient resources, multiple jobs may be scheduled on a single node provided each job’s "max"
resource requirements are met. If a job attempts to exceed its "max" resource allocation, an
implementation may deny additional resources, which may result in job failure.

Hardware resources are expressed with the CWL ResourceRequirement allowing the definition of:

• coresMin for the minimum reserved number of CPU cores

• coresMax for the maximum reserved number of CPU cores

• ramMin for the minimum reserved RAM in mebibytes

• ramMax for the maximum reserved RAM in mebibytes

This definition covers most of the application resource requirements needs.

7.1.8. Application Design Patterns

The fan-in application design pattern is the simplest case realized with CWL as it is the default
behavior of a CWL workflow execution step.

The fan-out application design pattern is expressed in the CWL using the
ScatterFeatureRequirement. This feature tells the runner that the application will run multiple times
over a list of inputs. The workflow then takes the input(s) as an array and will run the specified
step(s) on each element of the array as if it were a single input.

The ScatterFeatureRequirement is defined at the CWL Workflow class with:

The complete definition of the ScatterFeatureRequirement is provided below:

37

In the definition above the fan-out pattern is applied to the input_reference workflow parameter,
which needs to be mapped to an input parameter at step level (in the definition above as inp1). The
keyword scatter is used to define which step input parameter is scattered in the workflow step
requirements and the fan-out method is defined with the scatterMethod keyword. Its value is one of:
dotproduct, nested_crossproduct, or flat_crossproduct:

• dotproduct specifies that each of the input arrays are aligned and one element taken from each
array to construct each job. It is an error if all input arrays are not the same length.

• nested_crossproduct specifies the Cartesian product of the inputs, producing a job for every
combination of the scattered inputs. The output must be nested arrays for each level of
scattering, in the order that the input arrays are listed in the scatter field.

• flat_crossproduct specifies the Cartesian product of the inputs, producing a job for every
combination of the scattered inputs. The output arrays must be flattened to a single level, but
otherwise listed in the order that the input arrays are listed in the scatter field.

A complete example is provided below.

38

The parameter driven application design pattern may choose to scatter on an input parameter list
of values and the method is exactly the same as the fan-out concept explained above.

7.2. Data Flow Management
The ADES is responsible for the data flow management by using a local catalogue encoded
according to the Spatio Temporal Asset Catalog (STAC) specification as a data manifest for
application inputs and outputs. The local catalogue provides knowledge about the input and output
files data contents like spatial footprint, sub-items (e.g. masks, bands) and additional metadata.

This section describes the strategy to data stage-in, locally retrieving the inputs products for the
processing, and data stage-out, making the outputs of the processing available for the subsequent
steps (locally or on external systems).

39

7.2.1. Data Stage-In

The processing inputs are provided as EO Catalogue references and the ADES is responsible to
translate those references into inputs available for local processing.

ADES resolves the resources for each File or Directory parameter, stages the data for processing
and creates a STAC file to describe the available inputs. The full steps of the ADES for data stage-in
are described in the Figure 10.

Figure 10. ADES workflow steps for data stage-in from the CWL service definition and WPS execution
request

40

As an example, let’s consider an execution request with 3 URLs for a catalogue. Each input
parameter is a link to a catalogue that will provide a feed containing one or more products. The
ADES must be able to consume these URLs and handle the overall staging operation.

The ADES performs the data stage-in and creates a STAC catalog that describes for the application
the contents of the input products and their metadata as shown in the figure below.

Figure 11. STAC catalog hierarchy describing the input products

The input data folder is organized following common rules and conventions. A catalog file named
catalog.json must be present in the root folder. This catalog is the starting point to route to all
collections, items and assets. In our example, Figure 12 shows the catalog.json file.

Figure 12. STAC catalog root folder to describe the input products

41

Besides the usual self and root link, the catalog file must reference a child for each input
representing an input data. This link must point to a collection file.

For each input parameter, a collection file is referenced by the root catalog file. This file is a
summary for the items found in the input parameter references. The collection.json file for the
input_reference parameter of the previous example is shown below and includes all the bands
information present in each product.

42

Figure 13. STAC catalog root folder to describe the input products

The STAC collection file links the items of the input parameter in a separate dataset item file along
with the data itself. The STAC collection file may contain summaries of items sharing common
properties.

43

The STAC item File is a GeoJSON file that describes each dataset with its properties and assets. The
ADES should resolve special cases like compressed files by describing those assets and extracting
more information from the dataset and referencing them in the item file.

Data is now ready to be processed and the ADES ensures that the input data folder is properly
mounted on each cluster node and accessible from the container that executes the processing.

A preliminary step before launching effectively the CWL execution is to prepare the input file for
the cwl-runner tool as an input YAML document as shown in the Figure below.

Figure 14. YAML file with the input products to be executed by the cwl-runner tool

7.2.2. Data Stage-out

The data stage-out is the ADES operation of retrieving the application execution results and pushing
them to a persistent storage.

The application descriptor uses CWL statements to define what results are pushed from the
execution container to the ADES local filesystem. A typical CWL execution engine also provides a
simple manifest with the list of generated results.

Application results may be used as inputs to other node(s) of a wider directed acyclic graph defined
by the EMS or as final results to be consumed by the end-user.

The application results must be complemented by metadata elements as the start time & end time
or the geographical footprint. These two elements are the minimum set of metadata elements to
enable later discovery in a catalog. In the majority of the cases, this minimal set is not sufficient for
subsequent workflow nodes to understand what they are being provided with.

With such a context, the application may provide a local STAC catalog including collections, items
and assets describing the generated results. The STAC data model is rich and extendable and covers

44

the large majority of requirements. This local STAC catalog is thus seen as an application results
manifest.

The ADES takes the STAC catalog.json file as the generated results entry point and uses the href
links to collections (these are optional), items and assets and uses the found metadata and physical
files to push them to a persistent storage and push the metadata to the resource manager and
finally provide the WPS execution response.

The diagram below shows how the ADES does the steps explained above.

45

Figure 15. ADES workflow steps for data stage-in from the CWL service definition and WPS execution
request

46

Chapter 8. Pilot Applications
This Section presents the EO Applications brought by the different application developers to the
OGC Earth Observation Applications Pilot and documents all the steps for their deployment and
execution. The experiences gained by working closely together with developers challenged the
platform approach and guided the evolutions proposed in the previous sections.

8.1. EU SatCen Sentinel-1 Change Detection
The European Union Satellite Centre (SatCen) brought an application taking as input an
interferometric pair of Sentinel-1 Single Look Complex acquisition. The app produces the
interferometric coherence between the two acquisitions and the backscatter for each of the
acquisitions as results.

Sentinel-1 Level-1 Single Look Complex (SLC) products are images in the slant range by azimuth
imaging plane, in the image plane of satellite data acquisition. Each image pixel is represented by a
complex (I and Q) magnitude value and therefore contains both amplitude and phase information.
The Interferometric Wide swath (IW) SLC product contains one image per sub-swath per
polarization channel, for a total of three or six images. Each sub-swath image consists of a series of
bursts, where each burst was processed as a separate SLC image.

The coherence is the fixed relationship between waves in a beam of electromagnetic (EM)
radiation. Two wave trains of EM radiation are coherent when they are in phase. That is, they
vibrate in unison. In terms of the application to things like radar, the term coherence is also used to
describe systems that preserve the phase of the received signal. In an interferogram, coherence is a
measure of correlation. It ranges from 0, where there is no useful information in the interferogram;
to 1, where there is no noise in the interferogram (a perfect interferogram).

The backscatter is the portion of the outgoing radar signal that the target redirects directly back
towards the radar antenna. Backscattering is the process by which backscatter is formed. The
scattering cross section in the direction toward the radar is called the backscattering cross section;
the usual notation is the symbol sigma. It is a measure of the reflective strength of a radar target.
The normalized measure of the radar return from a distributed target is called the backscatter
coefficient, or sigma nought, and is defined as per unit area on the ground.

SatCen’s application uses ESA’s Sentinel Application Platform toolbox (SNAP) to derive the coherence
and the backscatter and the Geospatial Data Abstraction Library (GDAL) to generate the RGB
composite combining the outputs produced by SNAP.

This application implements the fan-in pattern where the two Sentinel-1 SLC inputs are processed
in a single process and the input data is staged-in. The processing requires a computing
environment with at least 14GB of RAM as declared by SatCen.

SatCen provided a simple CWL file with the CommandLineTool class including the
DockerRequirement hint providing the Docker image to use.

Terradue updated the provided CWL to include:

• A CWL Workflow class to allow providing a title and a description to the application

47

• The definition of the Workflow inputs to allow the definition of a title and description for each
of the Workflow inputs

• The specification of the minimum RAM for the container with the ResourceRequirement CWL
requirement.

The final CWL is listed in the figure below.

Figure 16. Application Package File for the SatCen Application in CWL

48

The application was then deployed on Ellip Platform and exposed on a Web based graphical
interface as shown in the figure below.

Figure 17. SatCen Application deployed in Ellip Platform

The interaction with SatCen allowed us to consolidate the concept of using the CWL language:

• As an application descriptor and thus conveying the information required by a Platform to
generate and deploy a Web Processing Service

• As the language to express directed acyclic graph (DAG) and thus build and describe complex
EO applications such as SatCen’s

• As the language to declare computing environment requirements such as the minimum RAM

• As the language to describe the application inputs and outputs

Nevertheless, the application defined by SatCen for the EO Apps Pilot is a simplified subset of a real-
life scenario.

During the Pilot, we’ve used a single pair of Sentinel-1 SLC. The inputs could be up to four when
using Sentinel-1 A and B over some areas of the world to obtain the change detection with 6 days
apart instead of 12 days. In this case, the acquisitions of the same day may have to be assembled
before they’re processed by the interferometric chain.

During the Pilot, we’ve processed a single swath. The swaths to process may be IW1, IW2 and IW3
(or a combination of these). We’ve also processed a single polarization VV. SatCen uses this
polarization so we could skip that as a parameter.

So in terms of an efficient workflow that reduces moving around large sets of data, we would

49

define a workflow running on the ADES with several steps or directed acyclic graph nodes. We
would have a first node that generates processing sets split by swath and master and slave
combinations to do the pre-processing in a second node. This second node would then pre-process
these sets (fan-out) optionally applying the SliceAssembly operator. A third node and finale would
then do the TOPSAR-Merge and generate the Coherence/backscatter products.

This approach can be achieved using a CWL that defines these steps in a workflow.

8.2. DLR TimeScan Sentinel-2 Vegetation indexes
The German space agency (DLR) brought an application taking as input one or more Sentinel-2
Level 1C products to produce a list of vegetation indexes.

SENTINEL-2 is a wide-swath, high-resolution, multi-spectral imaging mission with its Multispectral
Instrument (MSI) sampling 13 spectral bands: four bands at 10 meters, six bands at 20 meters and
three bands at 60 meters spatial resolution.

The DLR TimeScan Processing Framework utilizes a novel approach to exploit large multi temporal
satellite time series for a variety of applications like urban monitoring and land cover classification.
DLR’s goal in the OGC EO Apps Pilot is thus to adapt the TimeScan processors to an Application
Package that is deployable and executable in an EMS/ADES infrastructure.

The provided application implemented the Sentinel-2 pre-processing module as a processing graph
in the ESA SNAP Toolbox including a reader interpreting the multi-resolution input, a resampling
operator rescaling all bands to 20m spatial resolution, and the SNAP Sentinel2.Idepix operator
generating a flag band with cloud identification, whereas BandMaths operators compute the
vegetation indices.

As done by SatCen, the DLR provided a CWL file as the application package. Terradue applied the
same enhancements to allow deploying the DLR application on the Ellip Platform as a WPS
processing service:

• A CWL Workflow class to allow providing a title and a description to the application

• The definition of the Workflow inputs to allow the definition of a title and description for each
of the Workflow inputs

• The ScatterFeatureRequirement CWL requirement to instruct the ADES that the Sentinel-2 inputs
can be processed in parallel and independently (fan-out pattern)

Extending the CWL lessons learned with the SatCen case, the interaction with DLR allowed us to
consolidate the concept of using the CWL language to express the fan-out pattern
ScatterFeatureRequirement CWL requirement to process inputs in parallel and independently and
thus reducing the processing time of large stacks of Sentinel-2 data required by the TimeScan
processing scenarios.

The DLR team was provided access to a Web based graphical interface to submit processing jobs as
shown in the figure below.

50

Figure 18. DLR Application deployed in Ellip Platform

8.3. ESA Sentinel-3 SLSTR Land Surface Temperature
The European Space Agency (ESA), supported by Rhea, created an application taking as input a
number of Sentinel-3 SLSTR Level-2 Land products to produce a temporal and spatial aggregation
of the Land Surface Temperature (LST).

The principal aim of the SLSTR instrument mission on-board SENTINEL-3 is to maintain continuity
with the (A)ATSR series of instruments (on-board the ERS-2 and Envisat satellites). The (A)ATSR
provided a reference Sea Surface Temperature dataset for other satellite missions and the SLSTR
design is based on the reuse of AATSR concepts with existing and qualified technologies.

The application takes as inputs gridded Land Surface Temperature generated on the wide 1 km
measurement grid to aggregate the observations in time and space producing an LST mosaic.

ESA also provided a simple CWL with the CommandLineTool CWL class only. As such, Terradue
applied the same changes to the provided CWL to yield the script below.

51

Figure 19. Application Package File for the ESA Application in CWL

As for the SatCen and DLR, ESA was provided with the access to a web-based interface to interact
with the deployed WPS processing service.

The interaction with ESA’s application allowed us to define how an application provider is asked to
test his application before providing it for deployment on an exploitation platform. The method is
quite simple: using the cwltool, a CWL execution tool and the set of processing parameters defined
in a YAML file, the application provider can run his/her application locally and thus have a
reference execution that can be used for validation purposes on the platform in an acceptance
phase for example. This testing step is also a valid strategy to identify potential not recommended
practices in creating the Docker container (root execution for instance).

This facet of the CWL as a mechanism to describe the application, define how to execute it, describe
the inputs/outputs and finally validate the docker execution as if on an exploitation platform

52

provided an additional confirmation that CWL may be the sole required element of an application
package to deploy it on an ADES as a WPS service.

8.4. Food Security applications
Terradue brought the EO Apps Pilot a set of applications derived from the World Food Programme
(WFP) Vulnerability Analysis and Mapping (VAM) network that addresses critical aspects of the
food security:

• Food availability: The amount of food physically available to a household or at national level

• Access to food: The physical and economical ability of a household to acquire adequate amounts
of food

• Food utilization: The intra-household use of the food accessible and the individual’s ability to
absorb and use those nutrients.

The use-cases are focused on seasonal monitoring for tracking growing season and climate &
vegetation time series analysis with:

• Vegetation performance

• Normalized Difference Vegetation Index (NDVI) smoothed yearly time series

• NDVI differences

• Drought monitoring

• Synthetic-Aperture Radar (SAR) backscatter average for growing season

Figure 20. Example of seasonal monitoring for Food security application

The derived applications are depicted in the figure below.

53

Figure 21. Processing steps for the Food security application

We describe thoroughly the Sentinel-3 SLSTR pre-processing as the remaining applications
implement the same concepts.

As an example of the applications provided, the next paragraphs describe the Sentinel-3 SLSTR
reprojection and tiling that takes as input one or more Sentinel-3 SLSTR Level-2 products to:

• Reproject the data to EPSG:4326 [http://www.opengis.net/def/crs/EPSG/0/4326]

• Create tiles according to the OGC tiling scheme used in the WMTS specification

These tiles are then post-processed in another application that applies the Whitaker smoothing
filter to, on the one hand, fill the temporal and spatial gaps and on the other smooth the time-series.

Figure 22. Processing Steps for the Sentinel-3 SLSTR Reprojection

54

http://www.opengis.net/def/crs/EPSG/0/4326

The Sentinel-3 SLSTR reprojection and tiling CWL file is shown in the figure below.

Figure 23. Application Package File for Sentinel-3 SLSTR reprojection in CWL

55

Figure 24. Application Package File for Sentinel-3 SLSTR Tiling in CWL

This CWL was extended to declare that the application expects a STAC local catalog with the
Sentinel-3 staged data included in a STAC collection named input_reference.

This type of extension in a CWL is foreseen and provides additional degrees of freedom to express
concepts such as the expected input format for the application.

During the EO Apps Pilot, we presented STAC as a potential solution to be the input and output
manifests between the ADES and the application. STAC provides several advantages to application
developers as data is staged and described as a local STAC catalog that describes a catalog, one or
more collections, the items in the collections and the assets in the item. The assets describe the
content at band level or the metadata and thus avoiding developers to implement find, grep, glob

56

strategies to identify the GeoTIFFs or XML manifests.

The drawback in terms of application interoperability experiment is that the Terradue applications
have only been deployed on Ellip as the other platforms did not implement the support for STAC
during the Pilot.

57

Chapter 9. Conclusions
Previous OGC Testbeds initiated the design of an application package for Earth Observation
Applications in distributed Cloud Platforms. The application package must provide information
about the software item, executable, metadata and dependencies such that it can be deployed and
executed within an Exploitation Platform in a service compliant with the OGC API Process
specification. The activity performed during this OGC Earth Observation Applications Pilot
evaluated and tested the maturity of this architecture in real world scenarios.

Terradue responded to the invitation with its own Ellip Platform that explores the benefit of Cloud
technologies for large scale processing of EO data. During this pilot we were able to evaluate the
maturity of the architecture with applications brought by several developers that work with data
from Earth observation satellites.

These developers brought different views and requirements in terms of data discovery and
processing to challenge the application package architecture and platform readiness

Application developers were able to create containers with their runtime environment and
dependencies. The overall package was described using the Common Workflow Language where
the developer was able to create single or multiple nodes applications without the need to specify
new properties. Data Flow Management between the nodes was achieved by using a local catalogue
encoded using STAC, the SpatioTemporal Asset Catalog specification, as a data manifest for
application inputs and outputs metadata.

By taking into consideration the viewpoints of both EO platforms and EO application developers,
the challenges faced during this pilot consolidated important aspects of the architecture, with the
use of CWL to describe the application packaging and STAC to facilitate the data stage-in and stage-
out, all within the OGC API Process context.

With the support of several application developers, we confronted the defined architecture with
their applications and proposed solutions to several issues, mainly :

• Application package

• Data flow management

• Application scalability

The following subsections contain the conclusions of our work that mitigated these issues and
present some recommendations for future activities.

9.1. Application Package
The Application Package targets algorithms (developed by a third-party developer) that are to be
deployed in a Cloud Platform. During this pilot, we extended the use of CWL to reference the
application containers (e.g. Dockers) and also to allow the definitions of the application parameters,
input/output interface and the overall process offering parameters.

Providing a single CWL file showed to reduce the complexity and facilitate the communication
between the application providers and the platforms. The CWL file provides the information model

58

for the full application definition from input cardinality and constraint to memory, CPU or storage
requirements.

From application developers just wrapping their code on a Workflow class, to Expert users that
want to fully control the application workflow, CWL showed a great potential for portability and
reproducibility. CWL also demonstrated the importance of independent testing and validation
when deploying the applications in a heterogeneous environment of platforms.

As CWL is widely used and there are several backends to support the testing of application
packages at local or cluster level there is no major obstacle to its adoption. Documentation about
the language is freely available, support forums are quite active and the main patterns for EO
application design were explored during this pilot activity. The implemented examples provide a
basic template for future applications substantially reducing the implementation effort.

In terms of security, the CWL execution engine can detect situations where the containers are
executed as a root user and abort the processes. This situation should be avoided and must be part
of the application developers guidelines for building docker images to be deployed on platforms.

As hardware requirements fall outside the scope of the OGC WPS specification, the application
package needs also to be able to allow developers to describe their application and thus to convey
the information about the runtime environment to the ADES. The approach followed during this
Pilot demonstrated how CWL allows the definition of the hardware requirements independently of
the container-orchestration system (e.g. Kubernetes) and additional software requirements can be
specified as the developer raises the complexity of the application.

9.2. Data flow management
A major issue discussed, but not fully addressed, on previous OGC Testbeds (13, 14 and 15) relates to
the approach by the ADES to provide the data stage-in of product input references specified on the
WPS request and stage-out the results of the application.

In previous testbeds, the ADES had limited knowledge about the input and output files data
contents missing critical information like spatial footprint, sub-items (e.g. masks, bands) and
additional metadata (e.g. ground sample distance, orbit direction).

In this pilot we decided to support the data flow management by using a local catalogue encoded
using the SpatioTemporal Asset Catalog (STAC) specification as a data manifest for application
inputs and outputs. The local catalogue provides knowledge about the input and output files data
contents like spatial footprint, sub-items (e.g. masks, bands) and additional metadata.

The usage of CWL together with STAC to support the data stage-in allows the transparent definition
of the parameters that convey resources to be made available to the application.

9.3. Application Scalability
In previous OGC testbeds, the majority of implementation examples focused on a single node
machine and didn’t fully explore the application scalability.

In this pilot, the possibility to directly specify the parallel processing potential of the application at

59

the CWL Workflow class level with the use of CWL requirement ScatterFeatureRequirement allowed
the support of the data driven application fan-out patterns.

These applications demonstrated the execution of a data processing function that processes
concurrently several products generating independent output for each input. As such,
parallelization and scalability of the application can be transparently managed by the ADES cluster
(e.g. Kubernetes) taking into consideration the available computing resources not only for multiple
requests but also the specific application internal workflows.

9.4. Recommendations for Future Work
To continue the activities explored in this pilot, it is important to support the new Transactions
extension of the OGC API - Processes. This extension, currently being addressed by the working
group, will define the behavior of an implementation that supports the ability to dynamically add,
update or remove processes from a deployed OGC API-Processes instance.

In this ER we demonstrated that the usage of the Common Workflow Language can define the
application package and allows the developer to define single or multiple nodes applications
without the need to specify new properties. CWL provides a simple way of pointing to an
application container (e.g. Docker) together with the definitions of the application parameters,
input/output interface and the overall process offering parameters. It is our recommendation that
the Transactions extension use CWL to define the application package.

We recommend that a Best Practice should be created to further document the use of Common
Workflow Language for application packages. The proposed best practice should extend the
application design patterns discussed in this ER and provide guidelines on how to improve the
automatic generation of CWL (e.g. from Jupyter Notebooks). The design or creation of specific
wizard templates that would facilitate the creation of application packages is also recommended.

We also recommend producing a Best Practice for the data flow management using STAC local
catalogues as the input and output manifests between the ADES and the hosted application and
between the ADES and the EMS.

60

Appendix A: Revision History
Table 1. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

June 13, 2020 P. Gonçalves .1 all initial TOC

July 2, 2020 P. Gonçalves .2 all TOC review

July 9, 2020 P. Gonçalves .3 6, 7 inputs for EO
platforms

July 10, 2020 P. Gonçalves .4 8 inputs for EO
applications

July 14, 2020 P. Gonçalves 1 9 update on
conclusion

August 6, 2020 I. Simonis 1.1 all full review,
editorial
changes only

October 22, 2020 G. Hobona 1.2 all final staff
review

61

Appendix B: Bibliography
[1] Commonwl.org: Common Workflow Language Specifications, v1.1, https://www.commonwl.org/
v1.1/, (2019).

[2] Radiant Earth Foundation: SpatioTemporal Asset Catalog specification, https://stacspec.org,
(2020).

62

https://www.commonwl.org/v1.1/
https://www.commonwl.org/v1.1/
https://stacspec.org

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Earth Observation Platform
	6.1. Overview
	6.2. Architecture
	6.3. Application Integration Scenarios
	6.4. Application Design Pattern
	6.4.1. Data-driven application with a fan-in application pattern
	6.4.2. Data-driven application with a fan-out application pattern
	6.4.3. Parameter-driven application pattern

	6.5. Application Package
	6.6. Data Flow Management

	Chapter 7. Earth Observation Applications
	7.1. Application Descriptor
	7.1.1. Common rules for Parameters Mapping
	7.1.2. Single CWL type Parameter
	7.1.3. Optional and Mandatory Parameters
	7.1.4. Enumeration Parameters
	7.1.5. Array Parameters
	7.1.6. File and Directory Parameters
	7.1.7. Resources for the runtime environment
	7.1.8. Application Design Patterns

	7.2. Data Flow Management
	7.2.1. Data Stage-In
	7.2.2. Data Stage-out

	Chapter 8. Pilot Applications
	8.1. EU SatCen Sentinel-1 Change Detection
	8.2. DLR TimeScan Sentinel-2 Vegetation indexes
	8.3. ESA Sentinel-3 SLSTR Land Surface Temperature
	8.4. Food Security applications

	Chapter 9. Conclusions
	9.1. Application Package
	9.2. Data flow management
	9.3. Application Scalability
	9.4. Recommendations for Future Work

	Appendix A: Revision History
	Appendix B: Bibliography

