
OGC Testbed-16
DGGS and DGGS API Engineering Report

Publication Date: 2021-01-13

Approval Date: 2020-12-14

Submission Date: 2020-11-19

Reference number of this document: OGC 20-039r2

Reference URL for this document: http://www.opengis.net/doc/PER/t16-D017

Category: OGC Public Engineering Report

Editor: Robert Gibb, Byron Cochrane, Matthew Purss

Title: OGC Testbed-16: DGGS and DGGS API Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2021 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t16-D017
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 7

2. Executive Summary. 8

2.1. Background and Expectations of the Testbed-16 DGGS thread . 8

2.2. Summary of work undertaken . 8

2.3. Highlights from the Testbed-16 participants . 9

2.4. Overview of recommendations. 10

2.5. Document contributor contact points . 11

2.6. Foreword . 11

3. References . 12

4. Terms and definitions . 13

4.1. Abbreviated terms . 17

5. Overview . 18

6. DGGS and DGGS Reference System Selection . 19

6.1. Semantics for DGGS libraries and their association with the current DGGS draft standards . 19

6.1.1. DGGS RS provider . 19

6.1.2. DGGS RS navigator . 19

6.2. The question of DGGS data. 20

6.3. DGGS libraries . 20

6.4. DGGS Libraries selected by the Testbed-16 DGGS thread . 23

6.5. DGGS Reference systems selected by the Testbed-16 DGGS thread . 23

7. DGGS API . 26

7.1. Options for DGGS and OGC API . 26

7.2. Aligning DGGS to OGC API - Features. 26

7.3. Aligning DGGS to OGC API - Process. 26

7.4. Implementation in the deliverables. 27

7.5. Treatment of geometry . 27

7.6. Operations specified for ZoneQuery . 28

7.7. OGC API - Features for DGGS description . 30

7.7.1. API Features implementation . 31

7.7.2. API Features instances. 39

7.7.3. API functionality . 39

7.7.4. Supporting Assets . 41

7.8. OGC API - Processes for DGGS description . 41

7.8.1. Basic ideas: . 41

7.8.2. Formats:. 42

7.8.3. Questions, discussion topics: . 42

7.8.4. Endpoints . 42

7.8.5. Models . 56

4

7.9. Is there a need for an OGC API DGGS implementation standard? . 64

7.9.1. Proposal for OGC WKT for DGGS geometries. 65

8. Use Cases . 70

8.1. Scope of Works under the Testbed-16 CFP . 70

8.1.1. Use Case #1 - GPS Location to DGGS Cell . 70

8.1.2. Use Case #2 - COVID-19 Active Cases Near Me . 70

8.1.3. Use Case #3 - Bushfire Impacts from the "Black Summer" Bushfires in Australia 71

8.1.4. Use Case #4 - A DGGS version of a DAPA Use Case making use of one or more Jupyter

notebooks . 71

9. DGGS Server and API. 73

9.1. DGGS library comparisons and choices . 73

9.2. DGGS Java API . 78

9.3. The DGGS geometry store. 78

9.4. The ClickHouse storage choice . 83

9.5. Importing data in ClickHouse . 87

9.6. The ClickHouse DGGS data store. 89

9.7. Displaying false color maps of DGGS data . 93

9.8. GeoServer DGGS API . 96

9.9. GeoServer DGGS based DAPA API . 107

9.9.1. The API, HTML representations, and process resources. 108

9.9.2. Notes on implementation and performance . 114

10. DGGS Demo Client . 118

10.1. Background - Choice to create a native DGGS viewer . 118

10.2. Theory and logic behind the native DGGS viewers . 118

10.2.1. Examples . 119

10.3. Client implementation . 120

10.4. Viewers . 120

10.4.1. How do the viewers work? Paint by numbers . 121

10.4.2. PyDGGin.py . 121

10.5. Jupyter Notebook DGGS . 124

10.6. Data . 124

10.7. DGGS API Queries. 128

10.8. Client Enhancements and Future Work . 129

11. DGGS Enabled Data Services. 131

11.1. OGC API - Features instances. 131

11.1.1. TB16Pix Ref . 131

11.1.2. Geofabric . 132

11.1.3. ASGS. 133

11.2. OGC API - Features architecture . 134

11.3. Supporting Assets. 135

11.3.1. Supporting software tools . 135

5

11.3.2. Semantic Assets. 136

12. Future Tasks . 141

12.1. Maturing DGGS Reference libraries to meet community & future testbed needs 141

12.1.1. Development tasks identified for H3 . 141

12.1.2. Development tasks identified for rHEALPix . 142

12.1.3. Development tasks identified for both H3 and rHEALPix . 142

12.1.4. Development tasks relevant to other DGGS libraries . 142

12.2. OGC API(s) for DGGS . 143

12.3. DGGS processing opportunities . 143

12.3.1. Pre-built multi-resolution statistics . 143

12.3.2. Just in time precision. 144

12.4. DGGS Analytics - What Does that Really Mean? . 145

12.5. The evolution of the OGC DGGS Registry . 145

12.6. Opportunities for DGGS API in Interoperability Experiments . 146

Appendix A: Revision History . 148

Appendix B: Bibliography . 149

6

Chapter 1. Subject
This OGC Testbed-16 Engineering Report (ER) documents the needs and key requirements for
drafting an OGC Discrete Global Grid Systems (DGGS) Application Programming Interface (API)
standard. The draft DGGS API is defined using the OpenAPI 3.0 specification. The work documented
in this ER represents the beginning of a multi-initiative process to fully realize the benefits of
standards compliant DGGS implementations and to help drive adoption of DGGS as a key element
in advanced Spatial Data Architectures. The Testbed participants investigated a Client-Server DGGS
architecture involving one (or more) DGGS Server implementations, DGGS-enabled Data Sources
and a simple front-end DGGS Client. DGGS API functionality will be tested using one (or more)
simple use case scenarios focusing on the two-way translation between geographic locations and
DGGS Zonal Identifiers.

[1] https://modwsgi.readthedocs.io

[2] https://pypi.org/project/Werkzeug/

[3] https://pypi.org/project/Flask/

[4] https://pypi.org/project/pyldapi/

[5] https://w3id.org/dggs/ogcldapi

[6] https://pypi.org/project/rdflib/

[7] https://pypi.org/project/rHEALPixDGGS/

[8] https://graphdb.ontotext.com

[9] https://github.com/surroundaustralia/dggsgv

7

https://modwsgi.readthedocs.io
https://pypi.org/project/Werkzeug/
https://pypi.org/project/Flask/
https://pypi.org/project/pyldapi/
https://w3id.org/dggs/ogcldapi
https://pypi.org/project/rdflib/
https://pypi.org/project/rHEALPixDGGS/
https://graphdb.ontotext.com
https://github.com/surroundaustralia/dggsgv

Chapter 2. Executive Summary

2.1. Background and Expectations of the Testbed-16
DGGS thread
A Discrete Global Grid System (DGGS) represents a spherical partitioning of the Earth’s surface into
a grid of cells (or zones) (Wikipedia). The OGC Members approved and maintain an Abstract
Specification (AS) that captures the foundational concepts for DGGS (OGC 15-104r5)
[http://docs.opengeospatial.org/as/15-104r5/15-104r5.html]. This Testbed task aims to begin the process to
move towards an OGC Implementation Standard for DGGS through the creation of open-source
DGGS reference implementations. Testbed-16 represents the initial effort of what is considered a
multi-initiatives process.

DGGS offer a new way for geospatial information to be stored, visualized, and analyzed. Based on a
partitioning of the Earth’s surface into a spherical grid, DGGS allows geospatial information to be
represented in a way that more intuitively reflects relationships between data and the Earth’s
surface. With DGGS, providers and consumers of geospatial information can eliminate many of the
uncertainties and distortions inherently present with traditional coordinate systems. To fully
realize the benefits of DGGS, standard-compliant implementations are required to allow zone-ID
management across DGGS with varying structure and alignment.

DGGS presents an opportunity for the geospatial community to implement a representation of
Earth that is vastly different from traditional coordinate system based approaches. DGGS has the
potential to enable storage, analysis and visualization of geospatial information in a way that more
accurately reflects the relationship between data and the Earth. While the OGC DGGS Abstract
Specification captures fundamental DGGS concepts, the Testbed-16 DGGS thread initiated work to
more concretely demonstrate DGGS in order to drive adoption. This includes advancement towards
development of a DGGS reference implementation.

Key questions addressed by the work include:

• What DGGS structure would be best for developing a reference implementation? For example,
Uber’s Hexagonal Hierarchical Spatial Index or the Open Equal Area Global Grid (OpenEAGGR)

• What is a simple application that could be used to demonstrate the value of the reference
implementation?

• What should be considered for future work oriented towards operational implementation of
DGGS?

2.2. Summary of work undertaken
The participants in the Testbed-16 DGGS thread approached these questions by:

1. Undertaking a review of what is needed from a DGGS library (DGGS and DGGS Reference
System Selection) and introducing new terminology (Terms and definitions) to distinguish the
different roles DGGS libraries can perform.

2. Undertaking a review of existing open-source DGGS libraries against these roles and selecting

8

http://docs.opengeospatial.org/as/15-104r5/15-104r5.html

two for use in the Testbed (DGGS and DGGS Reference System Selection).

a. Uber’s H3 library

b. Manaaki Whenua’s rHEALPix library

3. Identifying candidate Use Cases, ideally that were both aligned with other Testbed-16 threads,
and achievable with the current DGGS libraries and resources available to participants. (Use
Cases)

4. Identifying which OGC API would best demonstrate DGGS (DGGS API)

5. Defining DGGS variants of OGC API - Features (OGC API - Features for DGGS description) and
OGC API - Processes (OGC API - Processes for DGGS description).

6. Developing server implementations and standing up server instances of each API:

a. OGC API - Features (DGGS Enabled Data Services) as a native DGGS server,

b. OGC API - Records (DGGS Enabled Data Services) as a discovery mechanism for the feature
services, and

c. OGC API - Processes (DGGS Server and API) on a native DGGS datastore wrapped by
GeoServer.

7. Populating each server with data covering the Australian Capital Territory (ACT) appropriate
for the final Use Case.

a. DGGS native data for Australian Statistical Area polygons and River Catchment polygons
served through OGC API - Features (DGGS Enabled Data Services), and

b. DGGS native Sentinel 2 data and processes to generate NDVI, NDBI & NDWI and band
statistics served through OGC API - Processes (DGGS Server and API).

8. Developing native DGGS desktop and Jupyter Notebook demonstration clients to interact with
the two API (DGGS Demo Client).

9. Exercising Jupyter Notebook client against the servers to show the Use Case in action.

10. Mapping the Testbed-16 Data Access and Processing API (DAPA) onto the DGGS OGC API -
Processes, to demonstrate a DGGS variant of the Testbed-16 DAPA (GeoServer DGGS based DAPA
API).

11. Reviewing participants experiences to assemble and prioritise recommendations for future
work (Future Tasks).

2.3. Highlights from the Testbed-16 participants
Although DGGS implementations have been deployed in previous testbeds, this was the first time
that a DGGS thread has appeared in an OGC Testbed. As a consequence, there were widely differing
expectations both across the participants and between the participants and the sponsors. However,
once all the participants had gained a common understanding of DGGS, progress was remarkably
fast and a lot simpler than was anticipated.

Key highlights from this effort include:

• Implementation of DGGS as a collection of virtual vector layers, allowing users to easily access
various DGGS resolutions through formats best suited to their needs.

9

• Demonstration of the ability of DGGS to incorporate widely used OGC standard services,
allowing organizations to leverage past data and infrastructure investments in a new way.

• Fast development of a robust Earth observation-oriented application, demonstrating the ability
of DGGS to quickly and simply enable forms of analysis that are highly complex undertakings
with traditional geospatial analysis techniques.

Both server implementations adopted a common strategy of wrapping the chosen DGGS libraries
into their systems to present the DGGS Reference System (RS) as a collection of virtual vector layers.
Each layer (or item in the collection) corresponds to a level of the DGGS RS grid hierarchy. In both
API implementations this allowed the client to select whether it wanted a GeoJSON or a JSON
payload. With the GeoJSON payload, the DGGS library created the necessary coordinates for each
zone on-the-fly. With the JSON payload, a native DGGS geometry was supplied comprised only of
DGGS zone-IDs (the unique identifier associated with each zone).

For the GeoServer OGC API - Processes implementation this means that all the native GeoServer
vector processing functionality, and all the existing GeoServer services - such as OGC WMS and OGC
WFS - are exposed to traditional GeoServer clients to use DGGS data. A single GeoServer DGGS
wrapper library was created to deliver both H3 and rHEALPix solutions. The no-SQL database
ClickHouse was chosen as the GeoServer backend datastore for the DGGS data. This proved very
fast for delivering Sentinel 2 data and generating both statistical summaries and index calculations
(e.g. NDVI, NDBI & NDWI) on Sentinel 2 data. In the backend ClickHouse datastore, the DGGS zone
ID was the primary index for the pixels of Sentinel 2 data.

In the OGC API - Features implementation, a linked data approach was taken using an Resource
Description Framework (RDF) datastore. This proved very successful and this Testbed experience is
already feeding into the OGC GeoSPARQL Standard roadmap. Vector data for Australia’s Level 1
Statistical Meshblocks and Hydrological Catchments were converted to DGGS RDF data with the
DGGS Cell-ID as the predicate (i.e primary index) for the data. The OGC API - Features end-point
presented this data as either JSON Linked Data (JSON LD) - using the DGGS zone -ID as the only
representation of geometry, or as GeoJSON with the DGGS library generating vector geometries on-
the-fly as required.

Participants started with an expectation that the Testbed-16 thread would deliver 'a simple
application'. That participants were able to stand up an application delivering native DGGS vector
and earth observation capability to users of both traditional Geographic Information Systems (GIS)
clients and to native DGGS clients reinforced the versatility of DGGS and underscored its promise to
deliver rapid multi-disciplinary analyses. Systems based on DGGS have been shown to have the
characteristics of a chameleon that can acquire the character of both vector GIS systems and of
earth observation systems. This means that both raster and vector data can be served through
either raster or vector or DGGS native services. In its native form, DGGS also offer additional
analytical versatility that is not present in either of these.

2.4. Overview of recommendations
Testbed participants documented future tasks in the following areas:

1. Maturing DGGS Reference Library Implementations to bring them into conformance with OGC
Topic 21 v2.0 (Maturing DGGS Reference libraries to meet community & future testbed needs);

10

2. Drafting and elaboration of OGC APIs for DGGS (OGC API(s) for DGGS);

3. Exploring the opportunities and limitations of DGGS driven analytics (DGGS processing
opportunities);

4. Implementation of OGC Registries for DGGS Implementations and DGGS enabled data services
(The evolution of the OGC DGGS Registry);

5. Targeted DGGS Interoperability Experiments (Opportunities for DGGS API in Interoperability
Experiments).

2.5. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Byron Cochrane OpenWork Ltd Editor

Robert Gibb Manaaki Whenua
Landcare research

Editor

Matthew Purss Pangaea Innovations Pty.
Ltd.

Editor

Adrian Cochrane OpenWork Ltd Contributor

Nicholas J. Car SURROUND Australia Pty
Ltd

Contributor

Andrea Aime GeoSolutions S.A.S. Contributor

2.6. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

11

Chapter 3. References
The following normative documents are referenced in this document.

• OGC: OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2]

• OGC: Topic 21: Discrete Global Grid Systems Abstract Specification [http://docs.opengeospatial.org/as/

15-104r5/15-104r5.html]

• OGC: Draft Topic 21 v2 - Discrete Global Grid Systems - Part 1 Core Reference system and
Operations and Equal Area Earth Reference System abstract Specification [https://portal.ogc.org/

files/?artifact_id=93412&version=1]
OGC Topic 21 v2 is identical in normative content to N5348 ISO/DIS 19170-1, whose DIS Ballot
was approved on 2020-Oct-10 with only minor editorial comments.

• OGC: Draft OGC API - Common - Part 1: Core [https://htmlpreview.github.io/?https://github.com/

opengeospatial/oapi_common/blob/master/19-072.html]

• OGC: Draft OGC API - Common - Part 1: Collections | Geospatial Data [https://htmlpreview.github.io/?

https://github.com/opengeospatial/oapi_common/blob/master/20-024.html]

• Open Geospatial Consortium (OGC): OGC 17-069r3: OGC API - Features - Part 1: Core [online].
Edited by C. Portele, P. Vretanos, C. Heazel. Available at http://www.opengis.net/doc/IS/ogcapi-
features-1/1.0

• OGC: Draft OGC API - Features - Part 2: Coordinate Reference Systems by Reference
[http://docs.opengeospatial.org/DRAFTS/18-058.html]

• OGC: Draft OGC API - Features - Part 3: Common Query Language [http://docs.opengeospatial.org/

DRAFTS/19-079.html]

• OGC: Draft OGC API - Features - Part 4: Simple Transactions [http://docs.opengeospatial.org/DRAFTS/20-

002.html]

• OGC: Draft OGC API - Processes [https://htmlpreview.github.io/?https://github.com/opengeospatial/wps-rest-

binding/blob/master/docs/18-062.html]

• Internet Engineering Task Force (IETF): RFC 7946: The GeoJSON Format [online]. Edited by H.
Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub. 2016 [viewed 2020-03-16]. Available at
http://tools.ietf.org/rfc/rfc7946.txt

• Open Geospatial Consortium (OGC): OGC 10-100r3: Geography Markup Language (GML)
Simple Features Profile [online]. Edited by L. van den Brink, C. Portele, P. Vretanos. 2012
[viewed 2020-03-16]. Available at http://portal.opengeospatial.org/files/?artifact_id=42729

• Open Geospatial Consortium (OGC): OGC 06-103r4: OpenGIS Implementation Standard for
Geographic information - Simple feature access - Part 1: Common architecture [online].
Edited by John R. Herring. 2011 [viewed 2020-11-05]. Available at https://portal.ogc.org/files/?
artifact_id=80428

• Open Geospatial Consortium (OGC): OGC 09-025r2: OGC® Web Feature Service 2.0 Interface
Standard – With Corrigendum [online]. Edited by Panagiotis (Peter) A. Vretanos. 2014 [viewed
2020-11-05]. Available at http://docs.opengeospatial.org/is/09-025r2/09-025r2.html

12

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
http://docs.opengeospatial.org/as/15-104r5/15-104r5.html
https://portal.ogc.org/files/?artifact_id=93412&version=1
https://portal.ogc.org/files/?artifact_id=93412&version=1
https://htmlpreview.github.io/?https://github.com/opengeospatial/oapi_common/blob/master/19-072.html
https://htmlpreview.github.io/?https://github.com/opengeospatial/oapi_common/blob/master/20-024.html
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0
http://docs.opengeospatial.org/DRAFTS/18-058.html
http://docs.opengeospatial.org/DRAFTS/19-079.html
http://docs.opengeospatial.org/DRAFTS/20-002.html
https://htmlpreview.github.io/?https://github.com/opengeospatial/wps-rest-binding/blob/master/docs/18-062.html
http://tools.ietf.org/rfc/rfc7946.txt
http://portal.opengeospatial.org/files/?artifact_id=42729
https://portal.ogc.org/files/?artifact_id=80428
https://portal.ogc.org/files/?artifact_id=80428
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● Coordinate operation

A process using a mathematical model, based on a one-to-one relationship, that changes
coordinates in a source CRS to coordinates in a target CRS, or that changes coordinates at a
source coordinate epoch to coordinates at a target coordinate epoch within the same CRS.

SOURCE: ISO 19111:2019 Referencing by coordinates

● Coordinate conversion

A coordinate operation that changes the coordinates in a source CRS to coordinates in a target
CRS based on the same datum.

Note 1 to this entry This does not represent a change to the coordinates of the
described feature, but rather a different representation of the same coordinate.

Source: SOURCE: ISO 19111:2019 Referencing by coordinates

Examples

• Change Geographic coordinates (Latitude and Longitude) to Map Projection (Easting and
Northing)

• Change units from feet to meters

● Coordinate transformation

A coordinate operation that changes coordinates in a source CRS to coordinates in a target CRS
in which the source and target CRS are based on different datums.

SOURCE: ISO 19111:2019 Referencing by coordinates

Examples

• Change from GDA94 to GDA2020

• Change from AMG66 to MGA94

● DGGS RS

'DGGS Reference System' a Reference system using zonal identifiers with structured geometry as
described by the UML diagram in Figure 1

13

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Figure 1. Referencing by zonal identifiers with structured geometry

● DGGS RS provider (DGGS RS provider service)

Software library that processes DGGS RS definitions to create zonal identifiers and define their
geometry.

14

Notes

• a DGGS RS provider may be able to be used iteratively to provision a complete DGGS RS.

• a DGGS RS provider service is a DGGS RS provider set up to operate in a web service
architecture.

• most DGGS software libraries available today are at the very least DGGS providers

• none of the DGGS provider libraries identified in our stock-take (Table 1) support
DGG_ReferenceSystem or MD_ReferenceSystem. 19170-1 is establishing a
template/benchmark for what should happen.

Example

• DGGRID is a DGGS RS provider that needs to be used iteratively to provision a complete
DGGS RS, and

• DGGRID is a command line library that would need further configuration to operate as a
DGGS RS provider service.

● DGGS RS navigator (DGGS RS navigator service)

Software library that processes topological queries based solely on 'ZonalIdentifiers' as specified
by the 'DGGS Core::ZoneQuery' interface.

Notes

• a DGGS RS navigator service is a DGGS RS navigator set up to operate in a web service
architecture.

• Normal geometry operations: since a Cell has the behavior of Geometry as specified in ISO
19107, Cell.representativePoint and 'Cell.boundary` would be supported. For example:

◦ if A and B are both ZonalIdentifiers then the DGGS RS navigator operation A.contains(B)
returns a boolean.

◦ Other operations in zoneQuery include all the DE-9IM operators as well as parent, child,
sibling, parentOf, childOf, siblingOf and two 1D operators relativePositon and
relatePosition.

◦ ZoneQuery also supports operations spanning a specified number of refinement levels.
So effectively queries involving grandchildren, cousins once removed etc can all be
processed by adding a levels parameter to the child, sibling etc.

Examples

• rHEALPix is a DGGS RS navigator as well as a DGGS RS provider.

• H3 is also a DGGS RS navigator as well as a DDGS RS provider.

• DGGRID is not a DGGS RS navigator.

• In both libraries the navigator functions would need a wrapper to comply with the
nomenclature and syntax in ZoneQuery.

● DGGS datastore

persistent storage for observation values assigned to zonal identifiers

15

Notes

• each DGGS RS specifies a single geometry for their zones (cells).

• all geometry types present in non-DGGS systems map onto collections of DGGS zones (cells).

• there are three forms that collections of zones can take: single zone, arrays of zones, and
ordered arrays of zones, where the ordering indicates a zone connectivity.

• each element of a collection is a ZonalIdentifier.

● DGGS RDF datastore

storage uses ZonalIdentifiers as subject or object to represent a region of space-time and RDF
predicates to associate the ZonalIdentfer(s) with observation values

● DGGS array datastore

observation values are stored using arrays in which the array is sorted by ZonalIdentifier, and
may therefore define a function that relates ZonalArray offsets to array index

● DGGS raster datastore

observation values are stored as an image type sorted by lat,long (eg geotiff) and a function is
defined to relate ZonalIdentifier with d/d-lat, d/d-long zone spacing

● DGGS analytics system

service providing spatial analysis of observations stored in a DGGS datastore

● DGGS quantization service

import process for converting observation data from non-DGGS format to DGGS format

Note

See OGC Topic 21 v2.0 Part 1 standard for detail

● DGGS Query/Broadcast Service

export process of converting DGGS format data to non-DGGS format

Note

See OGC Topic 21 v2.0 Part 1 standard for detail

● DGGS API

APIs to implement each of the above.

● trie

ordered tree data structure used to store a dynamic set or associative array where the keys are
usually strings.

Note

Unlike a binary search tree, no node in the tree stores the key associated with that node; instead,
its position in the tree defines the key with which it is associated; i.e., the value of the key is
distributed across the structure. All the descendants of a node have a common prefix of the
string associated with that node, and the root is associated with the empty string. Keys tend to be
associated with leaves, though some inner nodes may correspond to keys of interest. Hence, keys

16

are not necessarily associated with every node. For the space-optimized presentation of prefix
tree, see compact prefix tree.

Note

See https://en.wikipedia.org/wiki/Trie

● zone

region of space-time

Note

In DGGS the zone is the fundamental unit of space-time. Each zone has a unique zonal identifier
(ZoneID), and the zonal identifier has a defined position in a base CRS. The zone has geometry
represented by a cell, and like all geometry, the cell has topology. Best practice is for the zonal
identifier to be an encapsulation of both position and topology. The distinction between cell and
zone was introduced in OGC Topic 21 v2.0 Part 1 both to encompass any spatio-temporal
dimensionality, including 2D, 2D+Time, 3D & 3D+Time and to distinguish between the region and
its geometry. See OGC Topic 21 v2.0 Part 1 standard for more detail.

Note

cell and cell ID, are only used in this document when referring to specific objects, classes or
functions in existing software implementations.

4.1. Abbreviated terms
• API Application Programming Interface

• AusPIX Australian rHEALPix Reference System

• CFP Testbed-16Call For Participation

• DAPA Testbed-16 Data Access and Processing API for Geospatial Data

• DGGS Discrete Global Grid System

• GIS Geographic Information System

• H3 Uber’s Hexagonal Hierarchical Spatial Index

• HDF5 Hierarchical Data Format v5

• JSON JavaScript Object Notation

• OLAP Online analytical Processing

• rHEALPix rearranged Hierarchical Equal Area iso-Latitudinal Pixelisation

• TB-16 Testbed-16

• TB16Pix Testbed-16 rHEALPix Reference System

• URI Universal Resource Identifier

• UTM Universal Transverse Mercator

17

https://en.wikipedia.org/wiki/Trie

Chapter 5. Overview
Preface - provides the required Preface information such as copyright, warnings and license
agreement.

Subject - introduces DGGS in the context of the TB-16 experiment.

Executive Summary - provides the Executive Summary of this report.

References - lists all normative references relevant to the outcomes of this experiment.

Terms and definitions - lists the key terms and definitions relevant to this report.

Overview - (this document) provides an overview and extended Table of Contents of this report.

DGGS and DGGS Reference System Selection - discusses the key criteria and justification for the
selection of the DGGS libraries and associated DGGS Reference Systems used in this experiment.

DGGS API - discusses the context and API options for the DGGS thread and the definitions of the
Features and Processes APIs that have been deployed.

Use Cases - presents and discusses the Use Cases employed to demonstrate the value of DGGS in the
context of this experiment.

DGGS Server and API - presents and discusses the implementation of the DGGS Server, OGC API -
Features endpoint, and the preparation of the data served for this experiment.

DGGS Demo Client - presents and discusses the implementation of the DGGS Client used in this
experiment.

DGGS Enabled Data Services - presents and discusses the implementation of the DGGS-enabled
Data Server, OGC API - Processes endpoint, and the preparation of the data served for this
experiment.

Future Tasks - discusses Future Tasks and Activities that need to be undertaken to support the
standardized implementation of DGGS and services that implement the DGGS API.

18

Chapter 6. DGGS and DGGS Reference
System Selection

6.1. Semantics for DGGS libraries and their association
with the current DGGS draft standards
The new draft DGGS Abstract Specification (OGC Topic 21 v2.0 / ISO/DIS 19170-1) defines 1.) a DGGS
Reference system as 'referencing by zonal identifiers with structured geometry', and 2.) a DGGS as a
holistic system comprising:

• A DGGS Reference system (DGGS RS);

• A suite of DGGS Functions for:

a. Quantizing data against the DGGS RS,

b. Querying the topology of zones in a DGGS RS, and

c. Interoperating with traditional W*S and OGC API systems.

Most existing DGGS libraries pre-date the new draft Abstract Specification (AS) and as a
consequence they only partially fulfil the requirements of the draft AS. Furthermore, they are not
structured neatly into modules that follow the above pattern. This has created confusion as to what
comprises a DGGS. As such participants in this thread held diverse views of what constituted a
DGGS. As the diversity was explored the need for some additional concepts or terms that reflected
the different roles that a library might play in DGGS were identified. The participants also
identified that some existing libraries supported a single DGGS RS, while others supported whole
families of DGGS RSs. An analogy might be the difference between a library that locked in the
Universal Transverse Mercator (UTM) Zones 3 projection as compared to a library that supports
Transverse Mercator projections. With appropriate configuration parameters the library can
support any UTM Zone - including UTM Zone 3. Following the structure outlined above, the
participants distinguished between libraries that were DGGS RS providers - and those that were
DGGS RS navigators.

6.1.1. DGGS RS provider

Providers support either a single DGGS RS, or configuration tools that can be used to support a
family of similar DGGS RSs. For the DGGS RSs that they support, providers can generate ZoneIds and
their associated geometry.

6.1.2. DGGS RS navigator

Navigators support the topological queries on zones based on ZoneIds. These are the usual
Dimensionally Extended 9-Intersection Model [https://en.wikipedia.org/wiki/DE-9IM] (DE-9IM) functions
such as within, overlap, contains etc.

19

https://en.wikipedia.org/wiki/DE-9IM

6.2. The question of DGGS data
Early in the discussion between participants, the question was raised as to whether there was such
a thing as DGGS data, and if there were, what would a DGGS datafile look like? For anybody coming
into DGGS from a traditional GIS background, and thinking in terms of DGGS as a reference system,
the obvious answer was no. For example, concepts such as World Geodetic System 1984 (WGS84)
data or UTM 3 data have very little meaning. On the other hand, those participants heavily involved
in DGGS thinking were convinced that DGGS data was a very real thing. Thinking about spatial data
is typically in terms of its storage, and storage design is intimately bound to the form of the
geometry being stored — Shapefiles, HDF5, GeoJSON, LASer (LAS) formatted files — are all solutions
to the needs of storing geometries. Traditional reference systems are independent of geometry, and
as a consequence the choice of reference systems is independent of the choice of data format.

By contrast, DGGS reference systems define their own geometry. This geometry is implied by the
ZoneID. So, within a DGGS a geometry does not need to be explicitly provided as coordinates, and
therefore does not need to be encoded in a traditional spatial data format. Instead, DGGS data only
needs to record the ZoneId(s) associated with the feature, observation, or raster data zone (cell).
This is very much like any other unique identifier associated with a list of attributes, and so DGGS
data can be stored in many typical datastores. What makes it spatial data is the presence of the
DGGS RS’s navigator functions that perform spatial topology operations using the ZonalID(s) in lieu
of coordinate geometry. As a consequence, explicit read/write support for DGGS data in a DGGS
library is not required. What is expected is handling of the quantization roles that are defined by
the draft OGC DGGS Abstract Specification. These roles tell us the geometric relationship between a
record and a ZoneId. They include a single coordinate (the zone centroid), or an area (enclosed by
the zone’s boundary), or a tile.

6.3. DGGS libraries
A stock-take of DGGS libraries was performed and the following are the libraries found.

Table 1. DGGS Libraries

Name Autho
r

Cell
geom

Docs Repo Lang.
Bind

License DGGS
RS

prov.*

Quant.
*

DGGS
RS nav.*

Intero
p.*

DGGri
d

Kevin
Sahr

[mailto:
sahrk@s

ou.edu],
Southe

rn
Orego

n
Univer

sity
[https://

sou.org]

hex or
tri

STCL
[https://w
ww.discre
teglobalgr

ids.org/]

DGGrid
on
github
[https://git
hub.com/
sahrk/

DGGRID]

C++
cmd-
line

AGPL 3.0
[https://git
hub.com/
sahrk/
DGGRID/
blob/
master/

LICENSE]

Y
(config)

N N N

20

mailto:sahrk@sou.edu
mailto:sahrk@sou.edu
https://sou.org
https://sou.org
https://sou.org
https://sou.org
https://sou.org
https://sou.org
https://www.discreteglobalgrids.org/
https://github.com/sahrk/DGGRID
https://github.com/sahrk/DGGRID
https://github.com/sahrk/DGGRID
https://github.com/sahrk/DGGRID/blob/master/LICENSE

Name Autho
r

Cell
geom

Docs Repo Lang.
Bind

License DGGS
RS

prov.*

Quant.
*

DGGS
RS nav.*

Intero
p.*

DGGri
dR
(wrapp
er to
use
DGGri
d in R)

Richar
d

Barnes
[mailto:
rbarnes
@umn.e

du]

hex or
tri

STCL
[https://w
ww.discre
teglobalgr

ids.org/]

DGGridR
on
github
[https://git
hub.com/
r-barnes/

dggridR]

R, C++ MIT
[https://git
hub.com/
r-barnes/
dggridR/
blob/
master/

LICENSE]

Y
(config)

Y N N

H3
(built
on
DGGri
d)

Uber hex Uber’s
H3
index
[https://en
g.uber.co

m/h3/]

H3 on
github
[https://git
hub.com/

uber/h3]

C, java Apache
2.0
[https://git
hub.com/
uber/h3/
blob/
master/

LICENSE]

Y N Y N

OpenE
AGGR

DSTL(
UK) &
RiskA
ware

tri or
hex

Lit, Prog,
Software
[https://git
hub.com/
riskaware
-ltd/open-
eaggr/
tree/
master/
Document

s]

OpenEA
GGR on
github
[https://git
hub.com/
riskaware
-ltd/open-

eaggr]

C LGPL v3
[https://git
hub.com/
riskaware
-ltd/open-
eaggr/
blob/
master/
COPYING.

LESSER]

Y
(config)

N N N

rHEAL
Pix

Robert
Gibb

[mailto:
gibbr@l
andcare
researc

h.co.nz]
Manaa

ki
When

ua
[https://
www.la
ndcarer
esearch.

co.nz]

quad Orig
ellipoida
l maths
[https://da
tastore.la
ndcareres
earch.co.n
z/dataset/
rhealpix-
discrete-
global-
grid-

system]

rhealpix
ddgs-py
on
github
[https://git
hub.com/
Manaaki
Whenua/
rhealpixd

ggs-py]

python CC-BY
4.0
[https://cr
eativecom
mons.org/
licenses/

by/4.0/] &
LPGL for
original
code

Y
(config)

N Y N

21

mailto:rbarnes@umn.edu
mailto:rbarnes@umn.edu
mailto:rbarnes@umn.edu
https://www.discreteglobalgrids.org/
https://github.com/r-barnes/dggridR
https://github.com/r-barnes/dggridR
https://github.com/r-barnes/dggridR
https://github.com/r-barnes/dggridR/blob/master/LICENSE
https://eng.uber.com/h3/
https://eng.uber.com/h3/
https://eng.uber.com/h3/
https://github.com/uber/h3
https://github.com/uber/h3
https://github.com/uber/h3/blob/master/LICENSE
https://github.com/uber/h3/blob/master/LICENSE
https://github.com/riskaware-ltd/open-eaggr/tree/master/Documents
https://github.com/riskaware-ltd/open-eaggr/tree/master/Documents
https://github.com/riskaware-ltd/open-eaggr
https://github.com/riskaware-ltd/open-eaggr
https://github.com/riskaware-ltd/open-eaggr
https://github.com/riskaware-ltd/open-eaggr/blob/master/COPYING.LESSER
mailto:gibbr@landcareresearch.co.nz
mailto:gibbr@landcareresearch.co.nz
https://www.landcareresearch.co.nz
https://www.landcareresearch.co.nz
https://www.landcareresearch.co.nz
https://www.landcareresearch.co.nz
https://datastore.landcareresearch.co.nz/dataset/rhealpix-discrete-global-grid-system
https://datastore.landcareresearch.co.nz/dataset/rhealpix-discrete-global-grid-system
https://datastore.landcareresearch.co.nz/dataset/rhealpix-discrete-global-grid-system
https://github.com/ManaakiWhenua/rhealpixdggs-py
https://github.com/ManaakiWhenua/rhealpixdggs-py
https://github.com/ManaakiWhenua/rhealpixdggs-py
https://github.com/ManaakiWhenua/rhealpixdggs-py
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Name Autho
r

Cell
geom

Docs Repo Lang.
Bind

License DGGS
RS

prov.*

Quant.
*

DGGS
RS nav.*

Intero
p.*

AUSPix
(imple
mentat
ion of
rHEAL
Pix)

GA &
CSIRO

quad Loc-I
[http://loc
ationinde
x.org/
home.htm

l] &
AusPIX
[https://lo
cationind
ex.s3-ap-
southeast-
2.amazon
aws.com/
Implemen
tation++D
GGS+v0.1.

pdf]

AusPIX
on
github
[https://git
hub.com/
Geoscienc
eAustralia
/
AusPIX_D

GGS]

python CC-BY
4.0
[https://cr
eativecom
mons.org/
licenses/

by/4.0/] &
LPGL for
original
code

Y Y Y N

PYXIS Perry
Peters

on
Global
Grid

System
s

hex n/a commer
cial
product

Y Y Y Y

TerraN
exus

Matthe
w

Purss,
Pangae

a
Innova
tions
Pty.
Ltd.

quad &
tri

n/a python commer
cial
product

Y Y Y Y

… (add
others
here)

NOTE
* None of the libraries implements complete functionality in any of the four
categories. Therefore the use of 'Y' in these columns indicates partial fulfilment.
However, for the proposed purposes of TB-16 DGGS thread any gaps are trivial.

22

http://locationindex.org/home.html
https://locationindex.s3-ap-southeast-2.amazonaws.com/Implementation++DGGS+v0.1.pdf
https://github.com/GeoscienceAustralia/AusPIX_DGGS
https://github.com/GeoscienceAustralia/AusPIX_DGGS
https://github.com/GeoscienceAustralia/AusPIX_DGGS
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

6.4. DGGS Libraries selected by the Testbed-16 DGGS
thread
To demonstrate that the DGGS work undertaken was applicable to multiple DGGS, the decision was
made to implement two DGGS, and the libraries chosen were H3 and rHEALPix.

• H3: Use of H3 is resulting in the development of a significant user community and as a
consequence H3 is the most mature in the sense of formal releases and bindings.

• rHEALPix: Being used as AusPIX by the Australian Government’s Loc-I project. Also TB-16
thread participants were be able to pick up some of the additional code developed for AusPIX.

6.5. DGGS Reference systems selected by the Testbed-
16 DGGS thread
H3 only supports one DGGS RS, so there are no further parameter choices to be made. The H3’s
reference system is referred to as H3RS.

rHEALPix provides a number of hard-coded references systems, such as for covering spherical vs
ellipsoidal earth models. For example, AusPix uses the default hard-coded WGS84 ellipsoidal
reference system based on the zero meridian. Since Testbed-16 is developing solutions that may be
demonstrated in a number of continents, the decision was made to choose a rotated version of the
WGS84 that places all the corners of the initial cube in the sea. This reduces the area of land
covered by the most distorted zones. This reference system as TB16Pix.

The code to provide TB16Pix, print the definition and export zone centers and edges for
visualization in Google Earth is:

23

from rhealpix_dggs.projection_wrapper import *
from rhealpix_dggs.dggs import *
from rhealpix_dggs.ellipsoids import *

define our WGS84 ellipsoid rotated so that all the corners of the cube lie in water
WGS84_TB16 = Ellipsoid(a=6378137.0, b=6356752.314140356, e=0.0578063088401, f
=0.003352810681182, lon_0=-131.25)

create our DGGS RS based on the defined ellipsoid
TB16Pix = RHEALPixDGGS(ellipsoid=WGS84_TB16, north_square=0, south_square=0, N_side=3)

fyi print out the definition in full
print(TB16Pix)

fyi print out the coordinates of the corners and centres of the cube's faces,
note that the rHEALPix code doesn't support direct query of the top level zones,
so appropriate children are used
c = TB16Pix.cell(('O', 0)); print(my_round(c.nw_vertex(plane=False),9)) # Caspian Sea
c = TB16Pix.cell(('P', 0)); print(my_round(c.nw_vertex(plane=False),9)) # Sea of Japan
c = TB16Pix.cell(('Q', 0)); print(my_round(c.nw_vertex(plane=False),9)) # NW Pacific
Coast
c = TB16Pix.cell(('R', 0)); print(my_round(c.nw_vertex(plane=False),9)) # Nth Atlantic
c = TB16Pix.cell(('O', 6)); print(my_round(c.vertices(plane=False)[3],9)) # Indian
Ocean
c = TB16Pix.cell(('P', 6)); print(my_round(c.vertices(plane=False)[3],9)) # Australian
Bight
c = TB16Pix.cell(('Q', 6)); print(my_round(c.vertices(plane=False)[3],9)) # Sth
Pacific
c = TB16Pix.cell(('R', 6)); print(my_round(c.vertices(plane=False)[3],9)) # Sth
Atlantic
c = TB16Pix.cell(('N', 4)); print(my_round(c.nucleus(plane=False),3)) # N - Nth Polar
face
c = TB16Pix.cell(('O', 4)); print(my_round(c.nucleus(plane=False),3)) # O - Oriental
face
c = TB16Pix.cell(('P', 4)); print(my_round(c.nucleus(plane=False),3)) # P - Pacific
face
c = TB16Pix.cell(('Q', 4)); print(my_round(c.nucleus(plane=False),3)) # Q - Americas
face
c = TB16Pix.cell(('R', 4)); print(my_round(c.nucleus(plane=False),3)) # R - Africa
face
c = TB16Pix.cell(('S', 4)); print(my_round(c.nucleus(plane=False),3)) # S - Sth Polar
face

As illustration the corners of the northern and southern zones are shown in the next two figures:

Table 2. TB16Pix Polar zones showing corners in water

24

TB16Pix Zone N corners TB16Pix Zone S corners

25

Chapter 7. DGGS API

7.1. Options for DGGS and OGC API
The participants had considerable discussions about the context in which an API that talked DGGS
would be used. A couple of issues were central to the discussion:

• DGGS RS provides geometry, and the geometry is encoded in the ZoneID. So, a true DGGS API
does not need to exchange geometry in the form of coordinates, whereas OGC API - Features is
built on the presumption that geometry will always be exchanged.

• DGGS RS provide a series of successively finer Zone resolutions. Each resolution represents a
defined level of known spatial precision. However, OGC API - Features has no concept of spatial
precision, so some form of automatic assignment of spatial precision may be required.

The alternative contexts discussed were:

• A DGGS client calling a DGGS server — both understand what a ZoneID represents:

◦ Client and server using the same DGGS RS — no ZoneID conversion required.

◦ Client and server using different DGGS RS — ZoneID conversion or negotiation required.

• A DGGS client calling an OGC API - Feature server or an OGC API - Processes server:

◦ DGGS client understands how to generate a ZoneID’s coordinate geometry for the
API — Server does not need to understand DGGS ZoneID.

◦ Server understands how to interpret ZoneID — Client does not need to generate a ZoneID’s
geometry.

There was also discussion about whether to implement an API that conforms to OGC API - Features
or OGC API - Process. While OGC API - Features would be useful for allowing people to browse a
DGGS and has clarity of meaning, it would also potentially be very chatty in use for analytics (i.e. a
potentially very large amount of data, in the form of JSON documents, being transferred either as
very large OGC API - Features collection documents, or many transactions of individual OGC API -
Features documents for each feature of a collection). By comparison OGC API - Processes is
relatively opaque, but fits very well with the DGGS premise that DGGS are particularly suited to Big
Data applications where processing should be passed to the data. This is as opposed to the case in
which features are passed to the client for processing.

7.2. Aligning DGGS to OGC API - Features

NOTE

Intended content

This section will discuss the way that DGGS map onto collections and features in
OGC API - Features.

7.3. Aligning DGGS to OGC API - Process
For an API that is a profile of the draft OGC API - Process, the basic resources "are" Processes. Any

26

particular API and API implementation offers particular processes or process types, organizes them
in characteristic structures, and supports returning particular representations. The most common
representations will be 1) descriptions of the processes, or 2) the result of a process "job" invoked
by a request.

What really makes an API, though, is how those resources are organized. The trend with OGC API -
Processes (via GET operations) is to group processes according to the primary dataset that they act
on, what might be termed the process "affordance". This matches up well with the draft OGC API -
Common pattern of dividing resources into collections. Depending on whether a hierarchical
organization is supported, each collection is either a collection of collections, or a dataset composed
of data elements. The sleight of hand, though, is that a dataset in a Processes API is not a target
resource, but a means of organizing processes that are able to act on it.

What makes sense is that a DGGS be thought of as a dataset, with or without data properties, that
organizes retrieval, linking, and processing types. The dual nature of a DGGS as both a processing
engine and a dataset/collection of geometry objects creates flexibility in the way an OGC API for
DGGS could be structured as:

• system first (e.g. /ogcapi/dggs/{DGGS_RS_ID}/processes/…,
/ogcapi/dggs/{DGGS_RS_ID}/collections/…, etc…), or

• data first (e.g. /ogcapi/collections/{collectionID}/dggs/{DGGS_RS_ID}/…,
/ogcapi/processes/{processID}/dggs/{DGGS_RS_ID}/…, etc…).

These concepts require more elaboration during subsequent OGC standards development and/or
OGC Innovation Program activities to standardize the concept of an OGC API for DGGS.

7.4. Implementation in the deliverables
As a result of these discussions the decision was made to implement DGGS in the context of two
distinct APIs.

• D139 an OGC API - Features oriented API hosted by a DGGS Server that could support both a
native DGGS client, in this case the D138 Demo Client, and an OGC API - Features client that
needs the geometry to be provided. The server would provide DGGS Zones as Features without
data. The server would deliver some DGGS data layers, delivered either as DGGS Zones using
their ZonalIds or as traditional Features using each zone’s coordinate geometry.

• D137 an OGC API - Processes server would be built inside GeoServer. The API instance would
perform a selection of ZoneQuery operations on DGGS Zones.

7.5. Treatment of geometry
Acknowledging the conundrum of how to deliver geometry, the following strategy is being used by
both API implementations:

• DGGS RS were treated as if they were a collection of feature datasets, with each level of the
DGGS zone hierarchy corresponding to an item in the collection This approach provided an
elegant solution to the association of geometry with a ZoneId.

27

• While each DGGS RS is presented as a (collection of) datasets, in the first instance the datasets
were generated on the fly as required. This was achieved by embedding the library in the
server.

• The client chooses how to receive geometry be specifying its desired protocol. For example,
specifying GeoJSON results in geometry presented as traditional coordinates according to the
GeoJSON specification, while specifying JSON results in geometry being passed encoded in the
ZoneID on the presumption that the client does not need the coordinates.

• Both the OGC Features and Processes APIs were designed to support all the functions specified
by ZoneQuery (c.f. Table 3). However only a subset was implemented in this Testbed. In the OGC
API - Features implementation, the default representation of each Zone included reference to
parents, siblings and children - all generated on-the-fly. The OGC API - Processes
implementation offered those same functions as processes.

7.6. Operations specified for ZoneQuery
These are the operations defined in OGC Topic 21 Part 1 v2.0 and ISO 19170-1 Core for ZoneQuery.

Table 3. Elements of Core Query Functions::ZoneQuery class

Name: ZoneQuery

Definiti
on:

ZoneQuery redefines the DE-9IM operations in Query2D, Query3D and provides
relativePosition and relatePosition operations for the topology of zones.

Stereoty
pe:

Interface

Abstrac
t:

true

Associat
ions:

(none)

Public
attribut
es:

Name Definition Derived Obliga
tion

Maximu
m
occurenc
e

Data
type

boundary boundary of the
combined spatial
geometries of the zones
in the query

true M 1 Geometr
y

boundaryT
ype

boundary type of the
combined spatial
geometries of the zones
in the query

M 1 Boundar
yType

convexHull convex hull of the
combined spatial
geometries of the zones
in the query

true M 1 Geometr
y

28

Name: ZoneQuery

Operati
ons:

Name Parameters:ParameterType Retur
n type

Definition

distance (another:ZonalIdentifier,
projectTo:DirectPosition[4]))

Distan
ce

A.distance(B)

<<query
>> (1D)

relativePos
ition

(another:ZonalIdentifier,
projectTo:DirectPosition[4])

Relati
vePosi
tion

A.relativePosition(
B,(0,0,0,1))

<<query
>>

contains (another:ZonalIdentifier,
projectTo:DirectPosition[4])

Boole
an

A.contains(B) ⇔
A⊇B

crosses (another:ZonalIdentifier,
projectTo:DirectPosition[4])

Boole
an

A.crosses(B)

disjoint (another:ZonalIdentifier,
projectTo:DirectPosition[4])

Boole
an

A.disjoint(B) ⇔
A∩B=0

equals (another:ZonalIdentifier,
projectTo:DirectPosition[4])

Boole
an

A.equals(B) ⇔ A=B

intersects (another:ZonalIdentifier,
projectTo:DirectPosition[4])

Boole
an

A.intersects(B) ⇔
A∩B≠0

overlaps (another:ZonalIdentifier,
projectTo:DirectPosition[4])

Boole
an

A.overlaps(B)

touches (another:ZonalIdentifier,
projectTo:DirectPosition[4])

Boole
an

A.touches(B)

within (another:ZonalIdentifier,
projectTo:DirectPosition[4])

Boole
an

A.within(B) ⇔
B.contains(A)

withinDist
ance

(another:ZonalIdentifier, dist:Distance,
projectTo:DirectPosition[4])

Boole
an

A.withinDistance(
B) ⇔
A.distance(B)<dist

parentOf (another:ZonalIdentifier, inheritID:Boolean,
projectTo:DirectPosition[4])

Boole
an

A.parentOf(B)

childOf (another:ZonalIdentifier, inheritID:Boolean,
projectTo:DirectPosition[4])

Boole
an

A.childOf(B)

siblingOf (another:ZonalIdentifier, inheritID:Boolean,
projectTo:DirectPosition[4])

Boole
an

A.siblingOf(B)

29

Name: ZoneQuery

<<set>> buffer (dist:Distance, projectTo:DirectPosition[4]) ZonalI
dentif
ier

A.buffer(dist)

difference (another:ZonalIdentifier,
rangeRefine:refinementLevelRange,
projectTo:DirectPosition[4])

ZonalI
dentif
ier

A.difference(B) ⇔
A-B

intersectio
n

(another:ZonalIdentifier,
rangeRefine:refinementLevelRange,
projectTo:DirectPosition[4])

ZonalI
dentif
ier

A.intersection(B) ⇔
A∩B

symDiffere
nce

(another:ZonalIdentifier,
rangeRefine:refinementLevelRange,
projectTo:DirectPosition[4])

ZonalI
dentif
ier

A.symDifference(B
) ⇔ (A-B)∪(B-A)

union (another:ZonalIdentifier,
rangeRefine:refinementLevelRange,
projectTo:DirectPosition[4])

ZonalI
dentif
ier

A.union(B) ⇔ A∪B

parent (inheritID:Boolean, levels:Integer,
projectTo:DirectPosition[4])

ZonalI
dentif
ier

A.parent(B)

child (inheritID:Boolean, levels:Integer,
projectTo:DirectPosition[4])

ZonalI
dentif
ier

A.child(B)

sibling (inheritID:Boolean, levels:Integer,
projectTo:DirectPosition[4])

ZonalI
dentif
ier

A.sibling(B)

<<refer
ence>>
(1D)

relatePositi
on

(another:ZonalIdentifier, relate:RelativePosition,
projectTo:DirectPosition[4])

Boole
an

A.relatePosition(B,
enum,(0,0,1,0))

<<refer
ence>>

relate (another:ZonalIdentifier,
matrix:CharacterString,
projectTo:DirectPosition[4])

Boole
an

A.relate(B,matrix)

Constra
ints:

(none)

7.7. OGC API - Features for DGGS description
Addressing the Call for Participation (CFP) clause D139 DGGS Enabled Data Services, the OGC API -
Features implementations for DGGS datasets should support:

1. "Cell IDs as spatial filters"

30

2. "Converting Cell IDs to geographic filters"

3. "Cell ID(s) to geographic location conversion"

The specifics of these implementations are documented in the next section.

7.7.1. API Features implementation

A new OGC API framework was created for this project called OGC LD API. This is based on the fact
that the framework uses Linked Data mechanics to provide both OGC API and other API
functionality. The implementations based on this framework pass many of the OGC API - Features
tests (Abstract Tests and Requirements) with the intention being that all tests will pass in future
versions of the framework.

To test the implementations against the OGC API - Features Abstract Tests and Requirements, a
testing client was also developed. For this Testbed, the client was called the OGC API LD Test Client
("the TC"). This client implemented not only the Abstract Tests and Requirements of OGC API -
Features but also tested lists in the Content Negotiation by Profile specification for Linked Data APIs
[1].

So far, the API framework only demonstrates delivering TB16Pix DGGS data. This is due to rather
than multiple DGGSs the focus was on the creation of 2+ APIs of content for the same DGGS for a
DGGS client to consume.

7.7.1.1. Endpoints

Table 4. Endpoint summary

Code Description

Capabilities

/

rootGet

landing page

/conformance information about specifications that this API conforms to

/collections the list of supported collections

DGGS Access

/collections/{collecti
onId}

Describes a particular Feature Collection

/collections/{collecti
onId}/items

Access the list of Features within a Collection. Can list either all the
Features, or a particular subset based on a, WGS84 bbox, a coarse DGGS
CellID (equivalent to a bbox), or a DGGS quadrilateral specified by two
DGGS CellIDs (equivalent to a bbox)

/collections/{collecti
onId}/items/{itemId}

Access the definition of a particular Feature

Content Negotiation

31

{API|Collection|Items
List|Feature
URI}?_profile=alt

Access the list of Profiles (model views) and Formats (media types)
available for the API system, a Collection, an Item List or a Feature. This is
the standard Content Negotiation by Profile [1] mechanics

7.7.1.2. Feature/Geometry association and representation

OGC APIs make a Feature/Geometry association whereby a Feature may have more than one
Geometry. The APIs implemented here list features with multiple DGGS and non-DGGS geometries.

The OGC API specification [OAFC] "does not mandate a specific encoding or format for representing
features or feature collections", however mandates the data model and responses to requests for
each Feature and requires that the [GeoJSON] specification be used to format it. GeoJSON itself is
locked into using the WGS84 Coordinate Reference System (CRS) making it unsuitable for DGGS
geometries. The OGC API specification gives an example of a GeoJSON response for a feature which
is reproduced here:

{
 "type" : "Feature",
 "links" : [{
 "href" : "http://data.example.com/collections/buildings/items/123?f=json",
 "rel" : "self",
 "type" : "application/geo+json",
 "title" : "this document"
 },
 ...
 , {
 "href" : "http://data.example.com/collections/buildings",
 "rel" : "collection",
 "type" : "application/json",
 "title" : "the collection document"
 }],
 "id" : "123",
 "geometry" : {
 "type" : "Polygon",
 "coordinates" : [...]
 },
 "properties" : {
 "function" : "residential",
 "floors" : "2",
 "lastUpdate" : "2015-08-01T12:34:56Z"
 }
}

The code example above is a partial reproduction of Example 13, from [OAFC].

The feature encoding in the example above contains links to related API endpoints, a geometry
encoding, and several property key/value pairs. While this form of encoding is relatively flexible, it
cannot natively communicate DGGS geometries. This is because all GeoJSON geometries are
ordered lists of coordinate pairs (longitude & latitude or x & y etc.) that must be expressed using the

32

WGS84 Coordinate Reference System (CRS). DGGS geometries require coordinates to be represented
as lists of Cell ID and are a different CRS to WGS84.

To enable DGGS geometry encoding in a JSON format similar to GeoJSON, both the particular DGGS
must be indicated and lists of Cell IDs must be used in place of coordinate pairs. Instead of the
following GeoJSON:

{
 ...
 "id" : "123",
 "geometry" : {
 "type" : "Polygon",
 "coordinates" : [[Long_1, Lat_1], [Long_2, Lat_2], [Long_3, Lat_3] ... [Long_N,
Lat_N]]
 },
 ...
}

We would have:

{
 ...
 "id" : "123",
 "geometry" : {
 "type" : "Polygon",
 "dggs": "https://w3id.org/dggs/tb16pix",
 "coordinates" : [[CellID_1, CellID_2, CellID_3... CellID_N]]
 },
 ...
}

Above the URI https://w3id.org/dggs/tb16pix for the property "dggs" indicates that the TB16Pix
DGGS RS is used.

This GeoJSON-like format for DGGS is trivial to specify but, currently, will not validate as GeoJSON.
Thus a specification update or a separate specification is necessary for this modified format to be
supported. If a specification update was selected, the property "dggs" could easily be generalised to
"crs" to allow the GeoJSON update to use many CRSs/DGGSs.

7.7.1.3. DGGS geometry types

In GeoJSON - and many other common spatial data systems - a geometry’s type is something like
POINT, POLYGON, LINESTRING etc. These types give an indication of the role played by the
Geometry such as the Feature the geometry is a property of as well as the structure of the geometry
literal. In other words, is it a single coordinate point, a list of points or a closed ring etc.

GeoJSON supports the following geometry types:

33

https://w3id.org/dggs/tb16pix

• Point

• MultiPoint

• LineString

• MultiLineString

• Polygon

• MultiPolygon

These geometry types do not convey the full extent of known non-DGGS spatial geometries. For
instance grids, triangular irregular networks, and so on. They also do not necessarily correspond to
useful or more powerful geometry types within DGGSs.

DGGS native geometries might consist of geometry types such as:

• OrdinateList - Cell Ids representing a set of points

◦ Similar to a Point or MultiPoint

• DirectedOrdinateList - Cell Ids ordered by connectivity representing a sequence of points

◦ Similar to a LineString

• CellList - Similar to a Polygon or MultiPolygon, noting that a CellID

While these DGGS native geometries are similar to regular geometry types, there is a requirement
for each to communicate quantization decisions (e.g. resolution and whether compression is used).
Further many of the rules for DGGS shape creation are different to regular geometries. For
example, within a DirectedTileList, connectivity is assumed to be by ‘straight’ vectors. This is unlike
anything in non-DGGS concepts.

The geometry types used throughout the remainder of this chapter for DGGS literal values are
implemented for maximum interoperability with regular, non-DGGS, geometry literals and spatial
data models such as GeoSPARQL. Future OGC APIs might implement native geometry types or
perhaps native and non-native types.

7.7.1.4. Further GeoJSON limitations

In addition to the CRS and the form of the geometry location values (coordinates in WGS84 but only
ordinates in a DGGS since DGGS Cell IDs are single items, not pairs of values), GeoJSON is not able to
directly express semantic properties for features. Properties for GeoJSON Features other than
geometries are just listed as key/value pairs, such as "floors" : "2", etc. in the first of the two
examples above. A semantic representation of this property would define what floor means, what
datatype 2 is and so on. This does not present an issue for the geometry literal itself (the Cell IDs)
but does prevent the use of GeoJSON to communicate with no ambiguity values for Features .

Data specifications such RDF [2] are designed to convey semantics by defining relationships,
datatype and so on. RDF can be serialized in JSON-LD [10] and thus data similar to GeoJSON can be
produced. The following example communicates that Feature 1 has a floors property with a value
of 2 but, unlike the example three above, it uses JSON-LD not GeoJSON and thus it:

• Identifies the Feature with a universally unique and resolvable ID, an HTTP URI.

34

• Defines the property floors by quoting an identity for it that leads to an ontology definition.

• Here the dummy URI http://example.com/some-ontology/floors allows it to be contrasted with
the GeoJSON example’s literal of "floors".

• Fixes a datatype for the value "2".

• Here it is an XML integer, as defined by http://www.w3.org/2001/XMLSchema#integer.

[
 {
 "@id": "http://example.com/feature/1",
 "@type": [
 "http://www.opengis.net/ont/geosparql#Feature"
],
 "http://example.com/some-ontology/floors": [
 {
 "@type": "http://www.w3.org/2001/XMLSchema#integer",
 "@value": "2"
 }
]
 }
]

A "downscaling" of JSON-LD to GeoJSON is possible if the client is "happy" with the ambiguities of
GeoJSON.

7.7.1.5. Geometry Formats other than GeoJSON

In addition to GeoJSON representations of feature information, a Well Known Text (WKT) like
format is presented by the APIs. This appears in the geometry literal values for features as
communicated by the "geosp" (GeoSPARQL) view (profile) supported by the API. The following RDF
data communicates the geometry of a Feature, Statistical Area 80101100105 in both normal WKT
and WKT-DGGS terms:

35

http://example.com/some-ontology/floors
http://www.w3.org/2001/XMLSchema#integer

@prefix geo: <http://www.opengis.net/ont/geosparql#> .
@prefix geox: <https://linked.data.gov.au/def/geox#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://linked.data.gov.au/dataset/asgs2016/statisticalarealevel1/80101100105> a
geo:Feature ;
 geo:hasGeometry [
 geo:asWKT "POLYGON ((
 149.075478002 -35.260227984,
 149.075592138 -35.260032958,
 ...
 149.075478002 -35.260227984))"^^geo:WktLiteral ;
],
 [
 geo:asWKT "<https://w3id.org/dggs/tb16pix>
 POLYGON (P67303515562
 P67303515565
 ...
 P67303523664)"^^geox:wktDGGSLiteral ;
]
.

In the code above, linebreaks and tabspaces have been added to make the content more readable.
Ellipses indicate where coordinate values have been removed for brevity.

The WKT DGGS literal value above is indicated in the same way as a regular WKT value, with the
asWKT property of the Feature but then the WKT DGGS literal is typed geox:wktDGGSLiteral which is a
sub property of the standard geo:wktLiteral in the GeoSPARQL standard [3]. This new literal type,
geox:wktDGGSLiteral is currently defined in the GeoSPARQL Extensions Ontology (see section DGGS
Enabled Data Services) but it is hoped that it will be absorbed into the GeoSPARQL standard with an
update to it which is currently underway [11].

7.7.1.6. Geometry validation tooling

Since the formats for DGGS geometry literals are not standardized yet, the testbed participants
developed a stand-alone DGGS geometry validator tool which would be able to be used to validate
DGGS literals of the sorts mentioned in the above two sections. This tool is a Python library and is
based on an existing WKT validator and is called DGGS GV (Geometry Validator). The tool is listed in
the section DGGS Enabled Data Services.

For the WKT DGGS format described above, the tool uses Extended Backus Naur Form (EBNF) [12]

descriptions to define the format’s requirements. An incomplete example is the following set of
example EBNF statements which define how a WKT DGGS polygon-type geometry must be
formulated (as shown in the example in the previous section):

36

wkt_dggs = crs geometry ;

crs = left_angle http_uri right_angle ;

left_paren = "(" ;
right_paren = ")" ;
left_angle = "<" ;
right_angle = ">" ;

http_uri = httpaddress | httpsaddress ;
httpaddress = "http://" hostport [/ path] ;
httpsaddress = "https://" hostport [/ path] ;

...

geometry =
 point_text_representation |
 curve_text_representation |
 surface_text_representation |
 collection_text_representation;

surface_text_representation =
 curvepolygon_text_representation ;

curvepolygon_text_representation =
 "CURVEPOLYGON" [z_m] curvepolygon_text_body |
 polygon_text_representation |
 triangle_text_representation ;

polygon_text_representation =
 "POLYGON" [z_m] polygon_text_body;

...

The completed form of the above code is being developed in the following Git repository as part of
the DGGS GV library:

https://github.com/surroundaustralia/dggsgv/blob/master/dggsgv/wkt-dggs.ebnf.

The above format says that a WKT DGGS polygon geometry: - must have a CRS (DGGS) identifier
that is an HTTP/HTTP URI enclosed in "<" & ">", - followed by a space, - then the word "POLYGON", -
then a space, - then optionally "Z" or "M" and - then the polygon’s coordinates which, for a WKT
DGGS geometry are a list of DGGS Cell IDs ordered largest to smallest (in Cell area), separated by
spaces and enclosed in "(" & ")".

7.7.1.7. Geometry roles

When establishing the DGGS literal values for features delivered by the OGC API - Features
instances, it was clear that the role that a geometry played, as separately from its type, e.g. point,

37

https://github.com/surroundaustralia/dggsgv/blob/master/dggsgv/wkt-dggs.ebnf

polygon etc., is something not described in the current GeoSPARQL ontology or the data formats for
the literals (GeoJSON, WKT etc.). The notion of a role for a geometry is included in [4] and is
proposed for inclusion in GeoSPARQL 1.1.

The suggested geometry types to be supported for DGGS literals and thus able to be validated by
DGGS GV are the same as existing WKT types which are:

• (Multi)Point

• (Multi)LineString

• (Multi)Polygon

• GeometryCollection

The roles which geometries might play are not yet full formalized. Suggested roles are found in
organization’s vocabularies, such as the Geological Survey of Queensland’s Geometry Role.[13] and
include roles such as:

• Boundary

◦ Bounding box

◦ Bounding circle

◦ Concave hull

◦ Convex hull

• Centroid

• Detailed geometry

From the options above, that the geometry for Statistical Area 80101100105, as per the above
GeoSPARQL example, might be represented as follows:

@prefix geo: <http://www.opengis.net/ont/geosparql#> .
@prefix geox: <https://linked.data.gov.au/def/geox#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://linked.data.gov.au/dataset/asgs2016/statisticalarealevel1/80101100105> a
geo:Feature ;
 geo:hasGeometry [
 geo:asWKT "<https://w3id.org/dggs/tb16pix>
 POLYGON (P67303515562
 P67303515565
 ...
 P67303523664)"^^geox:wktDGGSLiteral ;
 geox:hasRole <https://linked.data.gov.au/def/geometry-roles/boundary> ;
]
.

In the above example, the type of the DGGS geometry is Polygon and the role is Boundary, using a
role from the Geometry Role vocabulary.

38

7.7.2. API Features instances

Three instances of the OGC LD API were implemented:

1. TB16Pix Ref - TB16Pix Reference Dataset

◦ Delivers the Zones and Cells of the TB16Pix dataset, i.e. each of its Grids from Grid 0 to Grid
15.

◦ This dataset contains no data other than the TB16Pix reference grids.

2. Geofabric - Australian Hydrological Geospatial Fabric

◦ A dataset containing a single Collection of hydrological catchments for Australia covering
the area of the Australian Capital Territory (ACT) only.

◦ ~70 features

3. ASGS - Australian Statistical Geographies Standard

◦ A dataset containing a single Collection of Australian census Statistical Area Level 1 (SA1)
blocks covering the area of the Australian Capital Territory (ACT) only.

◦ ~1,000 features

These are described in DGGS Enabled Data Services.

7.7.3. API functionality

7.7.3.1. Spatial Filtering

In addition to providing information about Datasets, Collections, Feature Lists and Features, the
APIs implemented in this Testbed allow for some forms of Feature filtering. This is as required by
the OGC API specification and as implemented by many features APIs, such as the OGC’s Web
Feature Service [WFS].

To filter the Features within a Collections' list of features, query string argument parameters may
be used. In regular, non-DGGS, OGC APIs, a WGS84 bounding box filter might look like this:

{OGC_API_ENDPOINT}/collections/{COLLECTION_ID}/items?bbox={COORDINATES_OF_A_RECTANGLE}

Such filtering is possible within the API instances listed here given that they either store WGS84
data as well as DGGS data or are able to calculate feature geometries expressed in WGS84
coordinates on the fly. A working bounding box filter for Features within the ASGS API instance is:

http://asgs.surroundaustralia.com/collections/SA1s/items?bbox=149.12037037037038,-
35.49268851161001,148.74999999999997,-35.10748095969024

The above URI returns Features (Statistical Area Level 1s) in approximately the northern western
third of the Australian Capital Territory.

DGGS filtering is conceptually similar to the above but simpler to communicate and implement. In

39

the conceptually simplest BBOX implementation, which is operating for the API instances given
here, a Cell ID may be given and any Features that have Geometries that overlap with it are
returned. The equivalent DGGS Cell ID-based filter to the above bounding box filter is:

http://asgs.surroundaustralia.com/collections/SA1s/items?bbox=P673035

Here the Cell ID P673035 covers the same area as the WGS84 quadrilateral 149.12037037037038,-
35.49268851161001,148.74999999999997,-35.10748095969024 and, indeed, the APIs return the same
values for either filter.

Bounding Box filters need not be square: The OGC API - Features indicates that any quadrilateral
may be used. Since the rHEALPix DGGS' Cells are square, a more complex filter based on a pair of
Cell IDs would need to be implemented to cater for quadrilateral but non-square overlapping areas.
Additionally, since DGGS Cells are fixed in space, even if a square bounding box was required that
did not align with Cells, such a filter would be required. Quite obviously, such a filter could be of the
form:

{OGC_API_ENDPOINT}/collections/{COLLECTION_ID}/items?bbox={CELL_ID_1},{CELL_ID_2}

Where CELL_ID_1,CELL_ID_2 describe the upper left and bottom right corners of a quadrilateral.
Refinement in the bounding box polygon’s position can be achieved with higher resolution Cell IDs.

This is not yet implemented in these API instances and is left to future work.

Implementing non-quadrilateral DGGS filters in a manner very similar to non-DGGS polygonal
filters is possible. Such filters could be implemented just as traditional polygonal filters are, say a
WFS GetFeature request using an ogc:Intersects payload to communicate the polygonal filter. If
characterized in the native DGGS of a queried API a simpler form of communicating the polygon (as
opposed to one that needs conversion to the API’s native DGGS) could be implemented in a manner
similar to the query string approach of bbox?=…. However polygonal description length will be a
limitation, as currently with non-DGGS, systems.

7.7.3.2. Non-Spatial Filtering

Many feature APIs allow for filtering by non-spatial attributes of features. For example, the OGC API
specification [OAFC] gives the following filter payload example:

{
 "my_first_parameter": "some value",
 "my_other_parameter": 42
}

This would be implemented as the following URI query string parguments:
&my_first_parameter=some%20value&my_other_parameter=42.

40

This form of filtering is using context-unaware properties, as per common use of properties in
GeoJSON (see the section Further GeoJSON limitations above). While this form of filtering could be
implemented as readily for DGGS Features as non-DGGS features, the current OGC LD API
implementations are predicated on semantic data and thus provide for filtering using context-
aware properties.

For context-aware filtering of properties, the above example would need to have the property
indicators defined. Such parameter definitions are a necessary part of SPARQL [14] queries used to
query RDF data. An equivalent SPARQL query for the filter in the example above would be:

PREFIX ex1: <http://example.com/some-ontology_1/>
PREFIX ex2: <http://example.com/some-ontology_2/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>

SELECT ?f WHERE { ?f a geo:Feature ; ex1:my_first_parameter ?param_1 ; ex2:my_other_parameter
?param_2 .

 FILTER (?param_1 = "some value" && ?param_2 = 42)
}

SPARQL or other filtering of features in the APIs within this chapter have not yet been
implemented.

This form of parameter defining is bypassed for spatial data due to the presence of the CRS or DGGS
dataset identifiers which provide context for the spatial data supplied within the filter.

7.7.4. Supporting Assets

To support these deployments of the OGC API - Features instances accessing DGGS content, a
number of semantic assets where generated that describe the data models used within the APIs'
data sources. This was required for the APIs also and defined, as supersets of the core OGC API -
Features data model. These assets, as well as the API Framework, test client and API instances, are
described in DGGS Enabled Data Services.

7.8. OGC API - Processes for DGGS description
As per the Testbed Call for Participation (CFP), the OGC API - Processes implementation in this task
supported "the geographic location to zone-ID(s) and reverse conversion", as well as other eventual
additions to allow better comparison and discussion.

7.8.1. Basic ideas:

1. The same API elements are used for a DGGS RS service and a DGGS Data service.

2. In the case of a DGGS RS service, the collections are the DGGS instances themselves, and the

41

returned features have no properties other than the geometry and resolution (e.g., in GeoJSON
the properties object will be null).

3. In the case of a DGGS Data service, the collections are the sample DGGS data (hence, made
available in a particular DGGS instance, too), and the returned features have actual values
associated in the properties object.

7.8.2. Formats:

To cater to different use cases, three different output formats were implemented for each endpoint
returning zones:

1. A classic GeoJSON output, with geometry being either the boundary or the center point of the
zone (to be controlled with a request parameter), for usage in GIS tools. The longitudes will
eventually be extended outside of the -180,180 range to allow visualization by tools that cannot
deal properly with dateline crossing.

2. A DGGS JSON output, a small variation of GeoJSON where the geometry is replaced by an array
of ZoneIds, was used in both zone-oriented and feature-oriented APIs

3. A plain array of DGGS ZoneIds. This was for cases where the attributes are not needed, and data
transfer compactness is paramount.

7.8.3. Questions, discussion topics:

1. Support for multiple DGGSs: rHEALPix and H3 were used in order to offer the clients and DGGS
data servers at least a DGGS they are not already supporting natively.

2. Is the API going to be sufficiently self-describing such that the clients can figure out everything
they need by just walking the API, or will it need specific knowledge contained in an API profile
(e.g. a profile for rHEALPix, one for H3, consider for example ZoneId and how to determine
them)?

3. For parametric DGGSs (e.g, rHEALPix). are specific instances exposed as its own DGGS or
somehow are the full parameters of the DGGS in each resource exposed?

4. This API follows a processes API, where most resources are a process and one needs to know
valid values to hit them.

7.8.4. Endpoints

Table 5. Endpoint summary

Code Description

Capabilities

/

rootGet

landing page

/conformance information about specifications that this API conforms to

/collections the list of supported collections

42

DGGSAccess

/collections/{collecti
onId}

Describes a particular DGGS

/collections/{collecti
onId}/zones

Access the list of zones in a given DGGS. Can list either all the zones, or a
particular subset based on resolution, WGS84 bbox, or list of containing
zones (e.g., polygon defined in DGGS terms)

/collections/{collecti
onId}/zone

Access the definition of a particular zone

/collections/{collecti
onId}/neighbors

Get the list of neighbouring zones, to a given zone (should it return just a
list of identifiers instead of a GeoJSON collection? Could even be a list of
links in the zone itself)

/collections/{collecti
onId}/parents

Get the list of parent zones, to a given zone (should it return just a list of
identifiers instead of a GeoJSON collection?)

/collections/{collecti
onId}/children

Get the list of zones children of a given zone (should it return just a list of
identifiers instead of a GeoJSON collection?)

/collections/{collecti
onId}/point

Returns the id of the zone containing the given point, at the given
resolution

/collections/{collecti
onId}/polygon

Lists zones contained in the polygon

7.8.4.1. Capabilities

7.8.4.1.1. collectionsGet

GET /collections

The list of supported collections

Description

Parameters

Return Type

[collection-list]

Content Type

• application/json

• text/html

Responses

Table 6. http response codes

43

Code Message Datatype

200 The list of DGGS available and link to the
processes. The response contains the list of
DGGS objects. This information includes:

• A local identifier for the DGGS that is unique
for this API

• An optional human readable title and
description for the DGGS

• The predominant zone shape (rectangular,
triangular, hexagonal)

• The list of resolutions for the particular
DGGS

[collection-list]

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.1.2. conformanceGet

GET /conformance

Information about what standards/specifications this API conforms to.

Description

A list of all conformance classes specified in a standard that the server conforms to.

Parameters

Return Type

ConfClasses

Content Type

• application/json

• text/html

Responses

Table 7. http response codes

Code Message Datatype

200 The URIs of all conformance classes supported
by the server. To support 'generic'; clients that
want to access multiple OGC API - Features
implementations - and not 'just'; a specific API /
server, the server declares the conformance
classes it implements and conforms to.

ConfClasses

44

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.1.3. rootGet

GET /

landing page

Description

The landing page provides links to the API definition, the conformance statements and to other
resources provided by the API.

Parameters

Return Type

LandingPage

Content Type

• application/json

• text/html

Responses

Table 8. http response codes

Code Message Datatype

200 The landing page provides links to the API
definition (link relations service-desc and
service-doc), the Conformance declaration (path
/conformance, link relation conformance), and the
Feature Collections (path /collections, link
relation data).

LandingPage

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.2. DGGSAccess

7.8.4.2.1. collectionsCollectionIdChildrenGet

GET /collections/{collectionId}/children

Get the list of child zones, to a given zone. Question for the DGGS SWG to consider: should it return
just a list of identifiers instead of a GeoJSON collection?

45

Description

Parameters

Table 9. Path Parameters

Name Description Required Default Pattern

collectionId local identifier of a collection X null

Table 10. Query Parameters

Name Description Required Default Pattern

zoneId X null

levels Number of levels for zone
parent/children extration

- null

Return Type

ZoneCollectionGeoJSON

Content Type

• application/geo+json

• application/dggs+json

• text/html

• application/json

Responses

Table 11. http response codes

Code Message Datatype

200 A list of DGGS zones. The response contains a list
of DGGS zones. The response can be a GeoJSON
payload with full boundaries, for traditional
clients, or a simple list of zone ids, for DGGS
aware clients

ZoneCollection
GeoJSON

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.2.2. collectionsCollectionIdGet

GET /collections/{collectionId}

Describes a particular DGGS

Description

Parameters

Table 12. Path Parameters

46

Name Description Required Default Pattern

collectionId local identifier of a collection X null

Return Type

Collection

Content Type

• application/json

• text/html

Responses

Table 13. http response codes

Code Message Datatype

200 Describes a particular DGGS. This information
includes:

• A local identifier for the DGGS that is unique
for this API

• An optional human readable title and
description for the DGGS

• The predominant zone shape (rectangular,
triangular, hexagonal)

• The list of resolutions for the particular
DGGS

Collection

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.2.3. collectionsCollectionIdNeighborsGet

GET /collections/{collectionId}/neighbors

Get the list of neighboring zones, to a given zone. Questions for the DGGS SWG to consider: Should it
return just a list of identifiers instead of a GeoJSON collection? Could this even be a list of links in
the zone itself?

Description

Parameters

Table 14. Path Parameters

Name Description Required Default Pattern

collectionId local identifier of a collection X null

47

Table 15. Query Parameters

Name Description Required Default Pattern

zoneId X null

radius Distance, in zones, from the center
zone, to be walked when extracting
neighbors. Also known as "k" in a k-
ring extraction in some DGGSs.

- null

Return Type

ZoneCollectionGeoJSON

Content Type

• application/geo+json

• application/dggs+json

• text/html

• application/json

Responses

Table 16. http response codes

Code Message Datatype

200 A list of DGGS zones. The response contains a list
of DGGS zones. The response can be a GeoJSON
payload with full boundaries, for traditional
clients, or a simple list of zone ids, for DGGS
aware clients.

ZoneCollection
GeoJSON

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.2.4. collectionsCollectionIdParentsGet

GET /collections/{collectionId}/parents

Get the list of parent zones, to a given zone. Question for the DGGS SWG to consider: Should it
return just a list of identifiers instead of a GeoJSON collection?

Description

Parameters

Table 17. Path Parameters

Name Description Required Default Pattern

collectionId local identifier of a collection X null

48

Table 18. Query Parameters

Name Description Required Default Pattern

zoneId X null

levels Number of levels for zone
parent/children extraction

- null

Return Type

ZoneCollectionGeoJSON

Content Type

• application/geo+json

• application/dggs+json

• text/html

• application/json

Responses

Table 19. http response codes

Code Message Datatype

200 A list of DGGS zones. The response contains a list
of DGGS zones. The response can be a GeoJSON
payload with full boundaries, for traditional
clients, or a simple list of zone ids, for DGGS
aware clients.

ZoneCollection
GeoJSON

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.2.5. collectionsCollectionIdPointGet

GET /collections/{collectionId}/point

Returns the id of the zone containing the given point, at the given resolution

Description

Parameters

Table 20. Path Parameters

Name Description Required Default Pattern

collectionId local identifier of a collection X null

Table 21. Query Parameters

49

Name Description Required Default Pattern

point Only zones that contain/touch the
point are returned. The point is
provided in axis order:

• Longitude

• Latitude

The CRS of the values is WGS 84
with axis order longitude/latitude
(http://www.opengis.net/def/crs/
OGC/1.3/CRS84). [BigDecimal]

- null

resolution X null

Return Type

ZoneCollectionGeoJSON

Content Type

• application/geo+json

• application/dggs+json

• text/html

• application/json

Responses

Table 22. http response codes

Code Message Datatype

200 A list of DGGS zones. The response contains a list
of DGGS zones. The response can be a GeoJSON
payload with full boundaries, for traditional
clients, or a simple list of zone ids, for DGGS
aware clients

ZoneCollection
GeoJSON

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.2.6. collectionsCollectionIdPolygonGet

GET /collections/{collectionId}/polygon

Lists zones contained in the polygon

50

http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/1.3/CRS84

Description

Parameters

Table 23. Path Parameters

Name Description Required Default Pattern

collectionId local identifier of a collection X null

Table 24. Query Parameters

51

52

Name Description Required Default Pattern

bbox Only features that have a geometry
that intersects the bounding box are
selected. The bounding box is
provided as four or six numbers,
depending on whether the
coordinate reference system
includes a vertical axis (height or
depth):

• Lower left corner, coordinate
axis 1

• Lower left corner, coordinate
axis 2

• Minimum value, coordinate axis
3 (optional)

• Upper right corner, coordinate
axis 1

• Upper right corner, coordinate
axis 2

• Maximum value, coordinate
axis 3 (optional)

The CRS of the values is WGS 84
with axis order longitude/latitude
(CRS84) (http://www.opengis.net/
def/crs/OGC/1.3/CRS84) unless a
different coordinate reference
system is specified in the parameter
bbox-crs.

For WGS 84 longitude/latitude, the
values are in most cases the
sequence of minimum longitude,
minimum latitude, maximum
longitude and maximum latitude.
However, in cases where the box
spans the anti-meridian the first
value (west-most box edge) is larger
than the third value (east-most box
edge).

If the vertical axis is included, the
third and the sixth number are the
bottom and the top of the 3-
dimensional bounding box.

If a feature has multiple spatial
geometry properties, it is the

- null

53

http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/1.3/CRS84

decision of the server whether only
a single spatial geometry property
is used to determine the extent or
all relevant geometries.
[BigDecimal]

Name Description Required Default Pattern

polygon Only zones contained in the polygon
are returned. The polygon is
specified as WKT. The coordinate
reference system of the values is
WGS 84 longitude/latitude (CRS84)
(http://www.opengis.net/def/crs/
OGC/1.3/CRS84).

- null

resolution X null

Return Type

ZoneCollectionGeoJSON

Content Type

• application/geo+json

• application/dggs+json

• text/html

• application/json

Responses

Table 25. http response codes

Code Message Datatype

200 A list of DGGS zones. The response contains a list
of DGGS zones. For traditional clients the
response can be a GeoJSON payload with full
boundaries, or a simple list of ZoneIds, for DGGS
aware clients.

ZoneCollection
GeoJSON

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.2.7. collectionsCollectionIdZoneGet

GET /collections/{collectionId}/zone

Access the definition of a particular zone

Description

Parameters

Table 26. Path Parameters

Name Description Required Default Pattern

collectionId local identifier of a collection X null

54

http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/1.3/CRS84

Table 27. Query Parameters

Name Description Required Default Pattern

zoneId X null

Return Type

ZoneGeoJSON

Content Type

• application/geo+json

• application/dggs+json

• text/html

• application/json

Responses

Table 28. http response codes

Code Message Datatype

200 A single DGGS zone The response contains the
description of a single DGGS zone.

ZoneGeoJSON

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.4.2.8. collectionsCollectionIdZonesGet

GET /collections/{collectionId}/zones

Access the list of zones in a given DGGS. Can list either all the zones, or a particular subset based on
resolution, WGS84 bbox, or list of containing zones (e.g., polygon defined in DGGS terms)

Description

Parameters

Table 29. Path Parameters

Name Description Required Default Pattern

collectionId local identifier of a collection X null

Table 30. Query Parameters

Name Description Required Default Pattern

resolution X null

55

Name Description Required Default Pattern

limit The optional limit parameter limits
the number of items that are
presented in the response
document. Only items on the first
level of the collection in the
response document are counted.
Nested objects contained within the
explicitly requested items shall not
be counted. Minimum = 1.
Maximum = 10000. Default = 10.

- 10

Return Type

ZoneCollectionGeoJSON

Content Type

• application/geo+json

• application/dggs+json

• text/html

• application/json

Responses

Table 31. http response codes

Code Message Datatype

200 A list of DGGS zones. The response contains a list
of DGGS zones. For traditional clients the
response can be a GeoJSON payload with full
boundaries, or a simple list of ZoneIds, for DGGS
aware clients

ZoneCollection
GeoJSON

406 None of the requested media types is supported
at the path.

Exception

500 A server error occurred. Exception

Samples

7.8.5. Models

Figure 2 shows the OGC API - Processes class diagram for DGGS.

56

Figure 2. OGC API - Processes class diagram for DGGS.

7.8.5.1. Collection

Field Name Require
d

Type Description Format

id X String Identifier of the collection. In case the
identifier is a DGGS RS service, this
will be the DGGS instance identifier,
otherwise, the value is going to be the
data collection id.

dggs-id String Identifiers of the DGGS instance. For
DGGS RS services, this will be the same
as the id, for DGGS Data services, dggs-
id identifies the particular DGGS
instance used.

title String Human readable title of the collection

57

Field Name Require
d

Type Description Format

description String A description of the collection

resolutions List of [number]

links X List of Link The list of links, e.g., to the operations
provided by this DGGS collection.

7.8.5.2. CollectionList

Field Name Require
d

Type Description Format

links X List of Link

dggs-list X List of [string]

7.8.5.3. ConfClasses

Field Name Require
d

Type Description Format

conformsTo X List of [string]

7.8.5.4. DGGSJSON

Field Name Require
d

Type Description Format

id X oneOf<string,integ
er>

type X String Enum:
Feature,

geometry X List of [string] The geometry of the feature, as a list of
DGGS zone ids

properties X Object

links List of Link

7.8.5.5. Exception

Information about the exception: An error code plus an optional description.

Field Name Require
d

Type Description Format

code X String

description String

58

7.8.5.6. FeatureCollectionGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
Feature
Collectio
n,

features X List of
FeatureGeoJSON

links List of Link

timeStamp Date This property indicates the time and
date when the response was
generated.

date-
time

numberMatched Integer The number of features of the feature
type that match the selection
parameters such as bbox.

numberReturned Integer The number of features in the feature
collection. If the information about the
number of features is not known or
difficult to compute a server may omit
this information in a response. If the
value is provided, the value shall be
identical to the number of items in the
'features' array.

7.8.5.7. FeatureGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
Feature,

geometry X geometryGeoJSON

properties X Object

id oneOf<string,integ
er>

links List of Link

7.8.5.8. GeometryGeoJSON

59

Field Name Require
d

Type Description Format

type X String Enum:
Geometr
yCollecti
on,

coordinates X List of [array]

geometries X List of
GeometryGeoJSON

7.8.5.9. GeometrycollectionGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
Geometr
yCollecti
on,

geometries X List of
GeometryGeoJSON

7.8.5.10. LandingPage

Field Name Require
d

Type Description Format

title String

description String

links X List of Link

7.8.5.11. LinestringGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
LineStri
ng,

coordinates X List of [array]

7.8.5.12. Link

Field Name Require
d

Type Description Format

href X String

60

Field Name Require
d

Type Description Format

rel String

type String

hreflang String

title String

length Integer

7.8.5.13. MultilinestringGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
MultiLin
eString,

coordinates X List of [array]

7.8.5.14. MultipointGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
MultiPoi
nt,

coordinates X List of [array]

7.8.5.15. MultipolygonGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
MultiPol
ygon,

coordinates X List of [array]

7.8.5.16. PointGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
Point,

coordinates X List of [number]

61

7.8.5.17. PolygonGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
Polygon,

coordinates X List of [array]

7.8.5.18. ZoneCollectionDGGSJSON

Field Name Require
d

Type Description Format

type X String Enum:
Feature
Collectio
n,

features X List of DGGSJSON

links List of Link

timeStamp Date This property indicates the time and
date when the response was
generated.

date-
time

numberMatched Integer The number of features of the feature
type that match the selection
parameters such as bbox.

numberReturned Integer The number of features in the feature
collection. If the information about the
number of features is not known or
difficult to compute a server may omit
this information in a response. If the
value is provided, the value shall be
identical to the number of items in the
'features' array.

7.8.5.19. ZoneCollectionGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
Feature
Collectio
n,

features X List of
ZoneGeoJSON

62

Field Name Require
d

Type Description Format

links List of Link

timeStamp Date This property indicates the time and
date when the response was
generated.

date-
time

numberMatched Integer The number of features of the feature
type that match the selection
parameters such bbox.

numberReturned Integer The number of features in the feature
collection. If the information about the
number of features is not known or
difficult to compute a server may omit
this information in a response. If the
value is provided, the value shall be
identical to the number of items in the
'features' array.

7.8.5.20. ZoneGeoJSON

Field Name Require
d

Type Description Format

type X String Enum:
Feature
Collectio
n,

features X List of
FeatureGeoJSON

links List of Link

timeStamp Date This property indicates the time and
date when the response was
generated.

date-
time

numberMatched Integer The number of features of the feature
type that match the selection
parameters such as bbox.

numberReturned Integer The number of features in the feature
collection. If the information about the
number of features is not known or
difficult to compute a server may omit
this information in a response. If the
value is provided, the value shall be
identical to the number of items in the
'features' array.

63

Field Name Require
d

Type Description Format

resolution X BigDecimal

7.8.5.21. ZoneGeoJSONAllOf

Field Name Require
d

Type Description Format

resolution X BigDecimal

7.8.5.22. ZoneList

Field Name Require
d

Type Description Format

zones X List of [string]

links X List of Link

timeStamp Date This property indicates the time and
date when the response was
generated.

date-
time

numberMatched Integer The number of features of the feature
type that match the selection
parameters such as bbox.

numberReturned Integer The number of features in the feature
collection. If the information about the
number of features is not known or
difficult to compute a server may omit
this information in a response. If the
value is provided, the value shall be
identical to the number of items in the
'features' array.

7.9. Is there a need for an OGC API DGGS
implementation standard?
The participant discussions and technology implementations conducted during this Testbed activity
evaluated the question of "is there a justification, or need, to draft a separate implementation
standard to codify OGC APIs for DGGS?". The work done in both D137 and D139 allowed this
question to be asked from a number of perspectives.

While the "system" and "data" aspects of a DGGS can be implemented using conventional OGC API -
Processes and OGC API - Features schemas, there are some subtle, but very important, differences
that separates the operation/access of a DGGS resource from those of a conventional Process or
Feature service.

64

DGGS both simplify the traditional view and add new capability.

The simplification can be summarized as:

1. Very significant reduction in geometric complexity, with a single geometry and topology data
model encompassing vector, raster, point cloud, location tags, bounding-box & tiling,

2. Complete separation of geometry from file-type,

3. Extension from 2-D to 3-D & 4D geometries without any additional geometry types or topological
queries, and

4. Opportunity to develop a unified spatio-temporal filtering and processing language and
associated API for use across all spatial types.

New capabilities include:

1. New unified geometry language to supersede point, line, polygon, raster etc,

2. Explicit alignment of spatio-temporal geometric precision with hierarchical level in the API,

3. Explicit recording and tracking of process history through the API,

4. Leveraging ZoneClass and parent, child hierarchy to implement streaming transmission and
recursive API filters and processes, over specified range of levels, and

5. Opportunity to include a desired precision or risk or uncertainty explicitly in spatio-temporal
filters and processes.

7.9.1. Proposal for OGC WKT for DGGS geometries

Initial proposal for a new unified geometry language follows. This is intended as a complete list of
potential internal DGGS geometry types:

OrdinateList

a list of (1..*) ZoneIds representing a set of points,

• optionally sorted in descending size order,

• optionally compressed to recursively replace complete sets of children by their parents, if
compressed a notation to indicate level depth for decompression.

• by default the coordinate will be the representative point nominated by the DGGS, typically
the centroid, but some DGGS may also define schema for assigning additional points, such as
a cell corner or mid-point on one of the cells' edges. Such schema could for support Arakawa
grids and other vertically and temporally staggered grids. Notations for such usage have not
been discussed.

DirectedOrdinateList

a list of (2..*) ZoneIds ordered by connectivity representing a sequence of points, ZoneIds in the
sequence need not touch, connectivity is assumed to be by ‘straight’ vectors,

• optionally sorted in groups in descending size order to facilitate streaming transmission and
recursive filtering and processing. How to denote a first approximation of a directed
sequence of points, and then recursively fill in the detail is not yet resolved. This is analogous

65

to wavelet approaches.

• optional compression may be possible, but further thinking is needed to elaborate what that
means.

• by default the coordinate will be the representative point nominated by the DGGS, typically
the centroid. c.f. OrdinateList for possible alternative representative points.

CellList

a list of (1..*) ZoneIds representing a set of nD spaces,

• optionally sorted in descending size order to facilitate streaming transmission and recursive
filtering and processing,

• optionally compressed to recursively replace complete sets of children by their parents, if
compressed a notation to indicate level depth for decompression.

• optionally sorted in row, column order for an array or image store.

DirectedCellList

a list of (2..*) ZoneIds ordered by connectivity representing a sequence of nD spaces, all ZoneIds
in the sequence need to touch at least one other connected ZoneId in the directed sequence, to
ensure there are no gaps in the directed sequence,

• optionally sorted in groups in descending size order to facilitate streaming transmission and
recursive filtering and processing. c.f. discussion under sorting for DirectedOrdinateLists

• optionally compressed to recursively replace complete sets of children by their parents, if
compressed a notation to indicate level depth for decompression.

TileList

a list of (1..*) ZoneIds representing a set of nD bboxes,

• optionally sorted in descending size order,

• optionally compressed to recursively replace complete sets of children by their parents, if
compressed a notation to indicate level depth for decompression.

• optionally sorted in row, column order for a tile store.

DirectedTileList

a list of (2..*) ZoneIds ordered by connectivity representing a sequence of nD spaces, ZoneIds in
the sequence need not touch, connectivity is assumed to be by ‘straight’ vectors,

• optionally sorted in groups in descending size order to facilitate streaming transmission and
recursive filtering and processing, c.f. discussion under sorting for DirectedOrdinateLists

• optionally compressed to recursively replace complete sets of children by their parents, if
compressed a notation to indicate level depth for decompression.

ZoneCollection

a list of (2..*) of one or more of the above types.

• optionally sorted in groups in descending size order to facilitate streaming transmission and

66

recursive filtering and processing,

• optionally compressed to recursively replace complete sets of children by their parents, if
compressed a notation to indicate level depth for decompression. Further work is needed to
identify if compression can apply across elements of the collection, or only within elements.

DirectedZoneCollection

a list of one or more of the above types that are connected.

• optionally sorted in groups in descending size order to facilitate streaming transmission and
recursive filtering and processing, c.f. discussion under sorting for DirectedOrdinateLists

• optionally compressed to recursively replace complete sets of children by their parents, if
compressed a notation to indicate level depth for decompression.

A WKT representation for these geometry type literals needs to be defined for use in GeoSPARQL
amongst others.

The draft Topic 21 v2.0 Abstract Specification talks about quantization roles and the following table
relates the roles with the resulting data types from the above list. In all instances the quantization
role would be expected to be preserved, probably in column definition, so the DGGS knows how to
interpret the zone values.

Table 32. WKT geometry object, quantization roles and DGGS geometry

WKT geometry object DGGS quatization role DGGS geometry literal notes and examples

POINT asCoordinates OrdinateList

MULTIPOINT asCoordinates OrdinateList

LINESTRING asCoordinates DirectedOrdinateList

MULTILINESTRING asCoordinates ZoneCollection of
DirectedOrdinateList

POLYGON asCoordinates DirectedOrdinateList

MULTIPOLYGON asCoordinates DirectedZoneCollection
of
DirectedCoordinateList
s

TRIANGLE asCoordinates DirectedOrdinateList

TIN asCoordinates DirectedZoneCollection
of DirectedOrdinateList

POINT asDataCells CellList

MULTIPOINT asDataCells CellList

LINESTRING asDataCells DirectedCellList

MULTILINESTRING asDataCells ZoneCollection of
DirectedCellList

POLYGON asDataCells CellList

67

WKT geometry object DGGS quatization role DGGS geometry literal notes and examples

MULTIPOLYGON asDataCells CellList

TRIANGLE asDataCells CellList

TIN asDataCells ZoneCollection of
CellList

GEOMETRYCOLLECTIO
N

any ZoneCollection

Table 33. Non-WKT geometry objects, quantization roles and DGGS geometry

Geometry object DGGS quatization role DGGS geometry literal notes and examples

point array asCoordinates OrdinateList

point array asDataCells CellList

point cloud asDataCells CellList or 3D+T
ZoneIds

raster image asCoordinates OrdinateList

raster image asDataCells CellList

raster image asDataTiles TileList

trajectory asCoordinates DirectedOrdinateList of
3D+T ZoneIds

trajectory asDataCells DirectedCellList of
3D+T ZoneIds

time series asCoordinates DirectedOrdinateList of
2D+T or3D+T ZoneIds

the spatial component
may be static

time series asDataCells DirectedCellList of
2D+T or3D+T ZoneIds

the spatial component
may be static

WMS image asGraphicCells CellList

WMS image collection asGraphicCells ZoneCollection of
CellList

WMS image collection asGraphicCells CellList

WMS image collection asGraphicTiles TileList

Bounding-box asCoordinates OrdinateList

Bounding-box asDataTile TileList

Social media stream asTags DataCellList

Document text asTags DataCellList

Therefore, the Testbed participants recommend that there is significant merit in support of future
efforts to develop an OGC API DGGS Standard.

[10] https://json-ld.org/

68

https://json-ld.org/

[11] Work in progres on GeoSPARQL 1.1/2.0 is available publicly at https://github.com/opengeospatial/ogc-geosparql

[12] https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

[13] http://vocabs.gsq.digital/vocabulary/geometry-roles

[14] https://www.w3.org/TR/sparql11-query/

69

https://github.com/opengeospatial/ogc-geosparql
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
http://vocabs.gsq.digital/vocabulary/geometry-roles
https://www.w3.org/TR/sparql11-query/

Chapter 8. Use Cases

8.1. Scope of Works under the Testbed-16 CFP
The Testbed 16 Call for Participation (CFP) alluded to non-specific Use Cases that were to
demonstrate two possible 'implementation scenarios' involving the following actors:

1. Server API - Essentially a reprojection engine that can convert between traditional CRS and
DGGS RS and back (Optionally DGGS RS to DGGS RS).

2. Enabled Service - Can filter data based on a DGGS zone value (and for the sake of highest
testbed value, return these filtered data with zone-IDs).

3. Client - Can display DGGS data based on zone-IDs and values.

Based on the CFP, three initial use cases were posed: Use Case #1 - GPS Location to DGGS Cell…Use
Case #3 - Bushfire Impacts from the "Black Summer" Bushfires in Australia. Participant discussions
matured the use cases and at the same time participants gained confidence in what was possible
both from an API perspective. This led, from an implementation perspective for the server and
client endpoints, a fourth much more ambitious use case Use Case #4 - A DGGS version of a DAPA
Use Case making use of one or more Jupyter notebooks. This last use case is the one the participants
fnally pursuedin the Testbed.

The fourth use case was developed by analyzing the Testbed-16 DAPA thread Use Cases [5] from a
DGGS implementation perspective, identifying a set of common elements, and bringing them
together as a single Use Case. This Use Case was intended to demonstrate an alternative DGGS
roadmap for the Testbed-16 DAPA thread activities.

8.1.1. Use Case #1 - GPS Location to DGGS Cell

1. Client Receives a GPS Location - Can be via a direct feed from a GPS Receiver and/or some
other data feed containing structured GPS location data.

2. Client Uses GPS Error Ellipse Information to Query the DGGS Server - GPS Error Ellipse can
be used to determine the appropriate DGGS resolution to query.

3. DGGS Server Returns the DGGS Cell ID(s) at the Requested Resolution - DGGS Server
returns the DGGS Cell ID (or set of Cell IDs) that best represents the point location plus its
horizontal uncertainty.

8.1.2. Use Case #2 - COVID-19 Active Cases Near Me

1. Official COVID-19 Case Dataset(s) are DGGS Enabled - Point datasets of COVID-19 cases and
their reported location are DGGS Enabled.

2. Client Includes a Simple Search Facility to Search for Nearby Reported Cases - Client uses
either its' own location (if as a mobile app) or a selected location plus a range distance to search
for nearby reported cases of COVID-19.

3. DGGS Server Returns the DGGS ZoneID(s) for the requested range query - DGGS Server is
queried via a range-type search for DGGS Cell ID’s and returns ZoneID’s within the search area.

70

4. DGGS Enabled Dataset(s) are queried for matching DGGS ZoneID’s - The DGGS Enabled data
sources are queried (via conventional Database type of select query) for records "tagged" with
the Search Area DGGS ZoneID’s.

5. Client Displays the returned data

8.1.3. Use Case #3 - Bushfire Impacts from the "Black Summer" Bushfires in
Australia

1. Key Datasets are DGGS Enabled - Key datasets (e.g. Bushfire affected coverage, road networks,
population demographics) are DGGS Enabled.

2. Client Includes a Simple Search Facility to Search for Nearby Reported Cases - Client uses a
search mechanism (e.g. bbox, range search, etc.) to define a search area for DGGS ZoneID’s.

3. DGGS Server Returns the DGGS ZoneID(s) for the requested range query - DGGS Server is
queried via a range-type search for DGGS ZoneID’s and returns ZoneID’s within the search area.

4. DGGS Enabled Dataset(s) are queried for matching DGGS ZoneID’s - The DGGS Enabled data
sources are queried (via conventional Database type of select query) for records "tagged" with
the Search Area DGGS ZoneID’s.

5. Client Displays the returned data

8.1.4. Use Case #4 - A DGGS version of a DAPA Use Case making use of one or
more Jupyter notebooks

1. Key Datasets are DGGS Enabled - Selected EO DAPA data sources are converted to DGGS form,
potentially using Jupyter notebook to 'read' the DAPA data.

a. Question arises as to which derived DAPA EO data is available globally rather than only in
the specific region of the DAPA use case.

b. Fundamental difference between the DAPA pre-processing and pre-processing for DGGS is
that the DGGS quantization process will populate a DGGS resolution that is similar to the EO
resolution, and then recursively aggregate it to n coarser resolutions with a suite of
summary statistics, to be stored in the DGGS Process Server,

i. Australian statistical mesh-block polygons are converted to DGGS form, to be stored in
the DGGS Feature Server,

ii. Australian catchments are converted to DGGS form, to be stored in the DGGS Feature
Server,

2. Client Performs a Feature Query using a polygon selection from the Australian mesh-
blocks or catchments as AOI - Client uses a DGGS Feature search mechanism (e.g. bbox, range
search, etc…) to define a AOI which is returned as DGGS ZoneID’s. Stretch goal, AOI filter
includes time.

3. Client displays the AOI and underlying DGGS polygon data on a map display - Part of the
Jupyter notebook.

4. Client Sends a Process Query using the returned DGGS ZoneID list to construct a low
resolution AOI query - Using the Jupyter notebook the user selects the process to be performed
and the desired resolution, and the Client issues the Process Request to the DGGS Process

71

Server.

5. DGGS Process Server returns EO summary statistics for the chosen AOI at the chosen
resolution - DGGS Process Server computes the chosen process over the query AOI and returns
the requested processing.

6. Client Displays the returned data

7. Repeat steps (4) to (6) as required until they are satisfied with the chosen process, and
have achieved the desired precision (resolution)

NOTE

There is a potential for precision hints, and incorporating DAPA style EO analysis, because
GeoServer already has the processing engine.

Major caveat

Knowing when to stop work in this Testbed thread and what to hand over to the next DGGS
Testbed activity. This is because there is a very clear understanding that there are many
aspects to compare and contrast and explore. Also remembering that at the start of the TB-16
DGGS thread, the idea of 'DGGS data' had not been fully anticipated, and so there was no
sponsor expectation of having 'DGGS data'. At this point, the use and creation of DGGS Data is
fundamental to the TB-16 DGGS thread and both the APIs.

72

Chapter 9. DGGS Server and API
GeoSolutions delivered the D137 DGGS Server Implementation: Open-source server
implementation with support for DGGS API.

In particular, the delivery was comprised of four GeoServer community modules and made
available:

• As source code, licensed under the GPL license, in the GeoServer GIT repository, under the
umbrella of OGC API modules [https://github.com/geoserver/geoserver/tree/master/src/community/ogcapi/

dggs].

• As binary extensions, ready to be dropped into a GeoServer installation, as part of the larger
OGC API family test packages [https://build.geoserver.org/geoserver/master/community-latest/geoserver-

2.19-SNAPSHOT-ogcapi-plugin.zip]. The zip files enable, among others, support for OGC API -
Features, Tiles, Styles and DGGS.

• As a live server for tests, covering all for live tests on the GeoSolutions Testbed-16 activities
[https://tb16.geo-solutions.it/geoserver/web/].

In particular, the Java modules are:

• dggs-core: Provides the basic Java API for DGGSs, implementations of said interfaces for H3 and
rHEALPix. Also, a basic GeoTools DataStore implementation exposing the DGGS zones as
collections of OGC features, for publication on all classic OGC protocols, as well as the DGGS API
was provided.

• dggs-clickhouse: Exposes the contents of suitably set-up ClickHouse database
[https://clickhouse.tech/] as OGC features, for publication on all classic OGC protocols, as well as the
DGGS API.

• ogcapi-dggs: Implementation of the DGGS API exposing all available DGGS enabled layers.

• web-dggs: Provides the user interface for configuring the above DataStore implementations in
the GeoServer administration console.

The following sections provide details on every component.

9.1. DGGS library comparisons and choices
The GeoTools library and GeoServer web application had no support for DGGS at the beginning of
the testbed. Three DGGS libraries have been evaluated in order to establish a baseline for a generic
DGGS Java API.

In particular the following libraries were evaluated:

• H3 [https://h3geo.org/docs]: Provides support for the same named DGGS, is a library implemented
entirely in C, but providing bindings for a variety of other languages, including, among others,
Java [https://github.com/uber/h3-java], Python [https://github.com/uber/h3-py], JavaScript
[https://github.com/uber/h3-js] and Go [https://github.com/uber/h3-go].

• rhealpixdggs-py [https://github.com/manaakiwhenua/rhealpixdggs-py]: The reference implementation

73

https://github.com/geoserver/geoserver/tree/master/src/community/ogcapi/dggs
https://github.com/geoserver/geoserver/tree/master/src/community/ogcapi/dggs
https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.19-SNAPSHOT-ogcapi-plugin.zip
https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.19-SNAPSHOT-ogcapi-plugin.zip
https://tb16.geo-solutions.it/geoserver/web/
https://clickhouse.tech/
https://h3geo.org/docs
https://github.com/uber/h3-java
https://github.com/uber/h3-py
https://github.com/uber/h3-js
https://github.com/uber/h3-go
https://github.com/manaakiwhenua/rhealpixdggs-py

of rHEALPix in Python.

• open-eaggr [https://github.com/riskaware-ltd/open-eaggr]: Provides support for the OpenEAGGR DGGS,
is a library implemented in C, but also providing bindings for Java and Python.

Table 34 compares how the three libraries represent the basic DGGS concepts and the integration
with geographic coordinates and basic geometries is interesting.

Table 34. Basic DGGS concepts in different libraries

Class/C
oncept

H3 OpenEAGGR rHEALPix

Main
Class

H3Core
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java]

Eaggr [https://github.com/
riskaware-ltd/open-eaggr/
blob/v2.0/EAGGRJava/src/uk/
co/riskaware/eaggr/

Eaggr.java]

RHEALPixDGGS
[https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/

rhealpixdggs/dggs.py#L197]

DGGS
Zone

A long or hex string (no
dedicated object, all
functionality is
provided via H3Core)

DggsCell
[https://github.com/
riskaware-ltd/open-eaggr/
blob/v2.0/EAGGRJava/src/uk/
co/riskaware/eaggr/

DggsCell.java] class
(wraps the zone
identifier, a string)

Cell [https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/
rhealpixdggs/dggs.py#

L1525] class. Fields
include zone identifier
id, source DGGS,
ellipsoid, resolution.

Geogra
phic
point

GeoCoord
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/util/

GeoCoord.java] class, as
lat and lon (no
resolution)

LatLongPoint
[https://github.com/
riskaware-ltd/open-eaggr/
blob/v2.0/EAGGRJava/src/uk/
co/riskaware/eaggr/

LatLongPoint.java] as lat,
lon and resolution

Python tuple with lat
and lon (no resolution)

Geogra
phic
line

Array of GeoCoord LatLongLineString
[https://github.com/
riskaware-ltd/open-eaggr/
blob/v2.0/EAGGRJava/src/uk/
co/riskaware/eaggr/

LatLongLinestring.java],
containing a list of
LatLongPoint

Array of Python tuples,
each representing a
single point.

Geogra
phic
polygo
n

Array of arrays of
GeoCoord (to represent
shell and holes)

LatLongPolygon
[https://github.com/
riskaware-ltd/open-eaggr/
blob/v2.0/EAGGRJava/src/uk/
co/riskaware/eaggr/

LatLongLinestring.java],
able to represent a
polygon with holes.

Array of point tuples
(no support for
polygons with holes)

74

https://github.com/riskaware-ltd/open-eaggr
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java
https://github.com/riskaware-ltd/open-eaggr/blob/v2.0/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L197
https://github.com/riskaware-ltd/open-eaggr/blob/v2.0/EAGGRJava/src/uk/co/riskaware/eaggr/DggsCell.java
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L1525
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/util/GeoCoord.java
https://github.com/riskaware-ltd/open-eaggr/blob/v2.0/EAGGRJava/src/uk/co/riskaware/eaggr/LatLongPoint.java
https://github.com/riskaware-ltd/open-eaggr/blob/v2.0/EAGGRJava/src/uk/co/riskaware/eaggr/LatLongLinestring.java
https://github.com/riskaware-ltd/open-eaggr/blob/v2.0/EAGGRJava/src/uk/co/riskaware/eaggr/LatLongLinestring.java

Table 35 compares the libraries in terms of functionality provided. The following table provides a
set of links to tagged versions of the respective software, with eventual comments when the method
in question has unusual behavior.

Table 35. Basic DGGS functions in different libraries

Functi
on

H3 OpenEAGGR rHEALPix

Lat/Lo
n/Resol
ution
to zone
identif
eir

geoToH3(lat,lon,res):
long [https://github.com/
uber/h3-java/blob/v3.6.4/src/
main/java/com/uber/h3core/

H3Core.java#L158]

convertPointToDggsCell
(LatLongPoint):
DggsCell
[https://github.com/
riskaware-ltd/open-eaggr/
blob/master/EAGGRJava/src/
uk/co/riskaware/eaggr/

Eaggr.java#L108]

cell_from_point(resoluti
on, point): Cell
[https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/

rhealpixdggs/dggs.py#L773]

Zone to
its
center
(geogr
aphic
point)

h3ToGeo(long):
GeoCoord
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java#L191]

convertDggsCellToPoint
(DggsCell cell):
LatLonPoint
[https://github.com/
riskaware-ltd/open-eaggr/
blob/master/EAGGRJava/src/
uk/co/riskaware/eaggr/

Eaggr.java#L248]

Cell.centroid
[https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/
rhealpixdggs/dggs.py#

L2567]

Zone to
polygo
n
bound
ary

h3ToGeoBoundary(long
): GeoCoord[
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java#L211]]

convertDggsCellOutline
ToShapeString(DggsCell
cell, ShapeStringFormat
format): String
[https://github.com/
riskaware-ltd/open-eaggr/
blob/master/EAGGRJava/src/
uk/co/riskaware/eaggr/

Eaggr.java#L388]. Returns
either KML, GeoJSON,
or WKT.

Cell.boundary(n, plane,
interior)
[https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/
rhealpixdggs/dggs.py#

L2275], or
RHEALPixDGGS.vertices
() [https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/
rhealpixdggs/dggs.py#

L2166]. Returns an array
of tuples representing
points.

Zone
resolut
ion

h3GetResolutions(id)
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java#L760]

No direct API,
convertDggsCellToPoint
returns a LatLonPoint,
which in turn contains
a resolution.

Cell.resolution
[https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/
rhealpixdggs/dggs.py#

L1541]

75

https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L158
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L158
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L108
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L108
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L108
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L773
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L773
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L191
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L191
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L248
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L248
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L248
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L2567
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L211
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L211
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L388
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L388
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L388
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L388
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L2275
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L2275
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L2166
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L2166
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L760
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L1541

Functi
on

H3 OpenEAGGR rHEALPix

Zone to
parent

h3ToParent(long,
parentRes): long
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java#L781],
returns the parent at
the given resolution.

getCellParents:
DggsCell[
[https://github.com/
riskaware-ltd/open-eaggr/
blob/master/EAGGRJava/src/
uk/co/riskaware/eaggr/

Eaggr.java#L444]] returns
the direct parents of the
zone (in this DGGS, they
may be more than one)

No direct API, just
eliminate the last char
in the zone identifier.

Zone to
childre
n

h3ToChildren(long,
childResolution): long[
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java#L821]]
returns all the children
at the given target
resolution.

getCellChildren:
DggsCell[
[https://github.com/
riskaware-ltd/open-eaggr/
blob/master/EAGGRJava/src/
uk/co/riskaware/eaggr/

Eaggr.java#L486]] returns
the direct children of a
cell

Cell.subcells(resolution)
[https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/
rhealpixdggs/dggs.py#

L1958] returns all the
children at the given
target resolution

Neighb
oring
zone

kRing(long, numRings)
→ long[
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java#L261][]]
Returns all the zones
within K zones from the
given center, organized
by rings.

getCellSiblings(DggsCell
) → DggsCell[
[https://github.com/
riskaware-ltd/open-eaggr/
blob/master/EAGGRJava/src/
uk/co/riskaware/eaggr/

Eaggr.java#L517]]

Cell.neighbors
[https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/
rhealpixdggs/dggs.py#

L2722] full direct
neighbors of the zone
(zones sharing a side
with the center one)

Polygo
n to set
of
zones

polyfill(GeoCoord[
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java#L656] shell,
GeoCoord[][] holes,
res)], all the cells
contained in the given
polygon shell, at the
given resolution.

convertShapesToDggsSh
apes(LatLonShape[
[https://github.com/
riskaware-ltd/open-eaggr/
blob/master/EAGGRJava/src/
uk/co/riskaware/eaggr/

Eaggr.java#L142]):
DggsShape[]]

minimal_cover(resoluti
on, points)
[https://github.com/
manaakiwhenua/
rhealpixdggs-py/blob/0.5.3/
rhealpixdggs/dggs.py#

L1313]

76

https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L781
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L781
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L444
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L444
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L821
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L821
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L486
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L486
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L1958
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L261
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L261
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L517
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L517
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L2722
https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L656
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L142
https://github.com/riskaware-ltd/open-eaggr/blob/master/EAGGRJava/src/uk/co/riskaware/eaggr/Eaggr.java#L142
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L1313
https://github.com/manaakiwhenua/rhealpixdggs-py/blob/0.5.3/rhealpixdggs/dggs.py#L1313

Functi
on

H3 OpenEAGGR rHEALPix

Compa
ction
(given
a set of
zone
identifi
ers,
return
the
minim
al set
of
zones
repres
enting
the
same
area,
using
zones
at
lower
resolut
ion)

compact(long[
[https://github.com/uber/h3-
java/blob/v3.6.4/src/main/
java/com/uber/h3core/

H3Core.java#L902]):
long[]]

Not supported Not supported

Finally, given the target of integration with GeoServer, evaluating the suitability of integration with
a Java Web Server was important.

• H3 provides the most natural integration with Java among the libraries explored. The Java
bindings contain, in the 700kb library JAR, native binary implementations for Windows, Linux,
OSX and Android on a variety of CPU architectures. On most platforms using the library is
simply a matter of setting the library as a dependency, and using the library as if it was a pure
Java one. No external setups or native builds were required. A session of load testing proved the
library to be very stable. No crashes were detected.

• OpenEAGGR provides a Java binding for the C library. However, the latter has to be custom built
for the target platform, from the sources. Load tests on a Linux Ubuntu 64bit derivative showed
a tendency to throw segmentation faults, which as a consequence crashed the entire virtual
machine.

• rHEALPix is a Python 3 library, with scipy [https://www.scipy.org/] dependencies and integration
with a small C library implementing the rHEALPix projection calculations. As a result, this
library can be used solely in a native Python environment. This is also due to the fact that as
alternatives for the Java Virtual Machine (JVM) such as Jython [https://www.jython.org/] cannot be
used. The JEP library [https://github.com/ninia/jep] was chosen for the integration, as it provides the
ability to call onto a native Python interpreter from Java code.

77

https://github.com/uber/h3-java/blob/v3.6.4/src/main/java/com/uber/h3core/H3Core.java#L902
https://www.scipy.org/
https://www.jython.org/
https://github.com/ninia/jep

As a result of the above tests, and considering the time limits of a Testbed, the OpenEaggr library
was dropped from the actual DGGS integration experiments.

The rHEALPix integration development produced functional code, with a couple of significant
limitations:

• The integration proved to be slow. In particular, computing the boundary and center of
rHEALPix zones is too slow for significant production usage.

• The integration did not scale up with concurrent requests due to an incompatibility between the
Java web server runtime operations (based on threads) and the Python Global Interpreter Lock
(GIL) [https://github.com/ninia/jep/wiki/Jep-and-the-GIL], disallowing concurrent operations among
Python interpreters running in the same process.

The H3 integration has showed no issues so far, being stable, fast and linearly scalable.

9.2. DGGS Java API
The DGGS subsytem in GeoServer is based on a pluggable extension point called DGGSInstance
[https://github.com/geoserver/geoserver/blob/06b043933b9f89933af40fa4e8573252b00a4b98/src/community/ogcapi/

dggs/dggs-core/src/main/java/org/geotools/dggs/DGGSInstance.java]. The interface exposes the basic
operations of a DGGS, allowing upstream code to operate against a DGGS without relying on its
implementation details:

• List of resolution levels, as integer numbers.

• Getting a zone from a string identifier.

• Getting all the zones intersecting a given envelope, at a given target resolution, with eventual
compaction.

• Getting the neighbors of a zone, with a given radius, expressed as number of zones

• Getting the children of a zone, at a given target resolution.

• Getting all the parents of a given zone, recursively (the number of resolution is usually small,
implying a small number of potential parents as well).

• Mapping a point to the zone containing it, at a given resolution.

• Mapping a polygon to a list of zones at a given resolution, with eventual compaction.

The DGGSInstance implementations can be discovered at runtime using the Java Service Provider
Interfaces (SPI) [https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html] mechanism. This allows
creating new DGGS integrations, packaging them as JAR files, and having GeoServer discover their
presence.

9.3. The DGGS geometry store
In GeoTools and GeoServer a DataStore [https://docs.geotools.org/latest/userguide/library/data/datastore.html]
is a Java interface " used to access and store geospatial data in a range of vector formats".

A DataStore provides access to a set of feature collections, enabling exploration of their structure

78

https://github.com/ninia/jep/wiki/Jep-and-the-GIL
https://github.com/ninia/jep/wiki/Jep-and-the-GIL
https://github.com/geoserver/geoserver/blob/06b043933b9f89933af40fa4e8573252b00a4b98/src/community/ogcapi/dggs/dggs-core/src/main/java/org/geotools/dggs/DGGSInstance.java
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://docs.geotools.org/latest/userguide/library/data/datastore.html

(list of attributes and type), as well as to query them, and optionally, to modify their contents. The
operation model of the DataStore is heavily influenced by the original WFS 1.0 design, and is still a
good match for the existing OGC API - Features.

In GeoServer DataStore instances can be plugged in, discovered and configured at runtime using
the SPI mechanism. This allows publishing data over various OGC protocols, such as WFS, WMS,
WMTS and the OGC API equivalents.

The first DGGS integration with GeoServer was thus the DGGSGeometryStore [https://github.com/
geoserver/geoserver/tree/06b043933b9f89933af40fa4e8573252b00a4b98/src/community/ogcapi/dggs/dggs-core/src/

main/java/org/geotools/dggs/gstore], exposing the DGGS zones as features, with an identifier (the ZoneId),
a resolution, and a geometry (the boundary).

The store currently takes as a parameter the DGGS to be used. In the future configuration
parameters for DGGSs like rHEALPix will be exposed as well. The current rHEALPix
implementation exposes the configuration for the TB16Pix RS.

Figure 3. Setting up the DGGS geometry store, with a choice of DGGS to use

The store then exposes a single feature collection, with the same name as the DGGS, that can be
configured as a layer in GeoServer, and then consumed from services such as WMS and WFS.

An example WMS request could be:

https://tb16.geo-solutions.it/geoserver/dggs/wms?STYLES=&LAYERS=dggs%3ATB16-
Pix%2Cdggs%3Aworld&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&
FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&
BBOX=-106.875,-45.3515625,163.125,89.6484375&WIDTH=768&HEIGHT=384

The following images show maps of both H3 and TB16-Pix from the WMS server:

79

https://github.com/geoserver/geoserver/tree/06b043933b9f89933af40fa4e8573252b00a4b98/src/community/ogcapi/dggs/dggs-core/src/main/java/org/geotools/dggs/gstore
https://tb16.geo-solutions.it/geoserver/dggs/wms?STYLES=&LAYERS=dggs%3ATB16-Pix%2Cdggs%3Aworld&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=-106.875,-45.3515625,163.125,89.6484375&WIDTH=768&HEIGHT=384
https://tb16.geo-solutions.it/geoserver/dggs/wms?STYLES=&LAYERS=dggs%3ATB16-Pix%2Cdggs%3Aworld&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=-106.875,-45.3515625,163.125,89.6484375&WIDTH=768&HEIGHT=384
https://tb16.geo-solutions.it/geoserver/dggs/wms?STYLES=&LAYERS=dggs%3ATB16-Pix%2Cdggs%3Aworld&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=-106.875,-45.3515625,163.125,89.6484375&WIDTH=768&HEIGHT=384
https://tb16.geo-solutions.it/geoserver/dggs/wms?STYLES=&LAYERS=dggs%3ATB16-Pix%2Cdggs%3Aworld&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=-106.875,-45.3515625,163.125,89.6484375&WIDTH=768&HEIGHT=384

Figure 4. Displaying H3 root level zones in WMS, along with continents. Pentagonal zones are highlighted.

Figure 5. Displaying TB16-Pix resolution 1 zones in WMS, along with continents. Classic rHEALPix colors
used for representation

A WFS request can be used instead:

https://tb16.geo-solutions.it/geoserver/dggs/ows?service=WFS&version=1.0.0&request=GetFeature&
typeName=dggs%3ATB16-Pix&maxFeatures=1&outputFormat=application%2Fjson

Which results in:

80

https://tb16.geo-solutions.it/geoserver/dggs/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=dggs%3ATB16-Pix&maxFeatures=1&outputFormat=application%2Fjson
https://tb16.geo-solutions.it/geoserver/dggs/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=dggs%3ATB16-Pix&maxFeatures=1&outputFormat=application%2Fjson

{
 "type": "FeatureCollection",
 "features": [{
 "type": "Feature",
 "id": "TB16-Pix.S",
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [-180, -90],
 [-180, -41.9379],
 [180, -41.9379],
 [180, -90],
 [-180, -90]
]
]
 },
 "geometry_name": "geometry",
 "properties": {
 "zoneId": "S",
 "resolution": 0,
 "shape": "cap",
 "color": "#FF80FF"
 },
 "bbox": [-180, -90, 180, -41.9379]
 }],
 "totalFeatures": 6,
 "numberMatched": 6,
 "numberReturned": 1,
 "timeStamp": "2020-10-14T13:53:11.554Z",
 "crs": {
 "type": "name",
 "properties": {
 "name": "urn:ogc:def:crs:EPSG::4326"
 }
 },
 "bbox": [-180, -90, 180, 90]
}

When using a WMS endpoint, the geometry store dynamically chooses which resolution level to
return based on the current scale denominator.

The resolution level can be controlled via the viewparams vendor parameter. This allows passing key
values to the data sources. Originally conceived to expand variables in layers sourced from SQL
statements [https://docs.geoserver.org/stable/en/user/data/database/sqlview.html], the viewparams mechanism
is now available to every store.

In particular, the resOffset view parameter can be used to offset the target resolution. This can be
used, for example, to display the DGGS layer multiple times, and viewing the parent/child

81

https://docs.geoserver.org/stable/en/user/data/database/sqlview.html
https://docs.geoserver.org/stable/en/user/data/database/sqlview.html

relationship in a WMS display:

• H3 live link [https://tb16.geo-solutions.it/geoserver/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&
FORMAT=application/openlayers&TRANSPARENT=true&VIEWPARAMS=resOffset%3A0%2CresOffset%3A-
1%2CresOffset%3A-2%2C%2C&STYLES=%2Cdggs_m1%2Cdggs_m2%2C%2C&
LAYERS=dggs%3AH3%2Cdggs%3AH3%2Cdggs%3AH3%2Cworld,dggs%3Aact&
exceptions=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A4326&WIDTH=1200&HEIGHT=700&BBOX=-180,-

90,180,90] displaying zones, their parent and grand-parent (zoom in a few times in order for the
three levels to display)

• TB16-Pix live link [https://tb16.geo-solutions.it/geoserver/wms?SERVICE=WMS&VERSION=1.1.1&
REQUEST=GetMap&FORMAT=application/openlayers&TRANSPARENT=true&
VIEWPARAMS=resOffset%3A0%2CresOffset%3A-1%2CresOffset%3A-2%2C%2C&
STYLES=%2Cdggs_m1%2Cdggs_m2%2C%2C&LAYERS=dggs%3ATB16-Pix%2Cdggs%3ATB16-Pix%2Cdggs%3ATB16-
Pix%2Cworld,dggs%3Aact&exceptions=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A4326&WIDTH=1299&

HEIGHT=700&BBOX=-180,-90,180,90] displaying zones, their parent and grand-parent.

A sample URL is URL-decoded and dissected below:

URL component Description

https://tb16.geo-solutions.it/geoserver/wms? Host and path

SERVICE=WMS

VERSION=1.1.1

REQUEST=GetMap

TRANSPARENT=true

BBOX=-180,-90,180,90 Whole world map

SRS=EPSG:4326 In plate carree.

WIDTH=1299

HEIGHT=700

exceptions=application/vnd.ogc.se_inimage

FORMAT=application/openlayers Returns a working OpenLayers client displaying
the same map

LAYERS=dggs:TB16-Pix,dggs:TB16-Pix,dggs:TB16-
Pix,world

Superimposes three times the TB16-Pix layer,
overlays a transparent world continents layer

STYLES=,dggs_m1,dggs_m2,, Changes the style of the second and third TB16-
Pix layers, displaying the direct parent border as
thick orange, and the grandparent as thick red.

VIEWPARAMS=resOffset:0,resOffset:-
1,resOffset:-2,

The first TB16-Pix layer uses the "natural"
resolution, as decided by the DGGSGeometryStore,
the second shows one resolution level less, and
then third, two resolution levels less

Static displays of the parent/child geometric relationships in H3 and TB16-Pix follow.

82

https://tb16.geo-solutions.it/geoserver/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&FORMAT=application/openlayers&TRANSPARENT=true&VIEWPARAMS=resOffset%3A0%2CresOffset%3A-1%2CresOffset%3A-2%2C%2C&STYLES=%2Cdggs_m1%2Cdggs_m2%2C%2C&LAYERS=dggs%3AH3%2Cdggs%3AH3%2Cdggs%3AH3%2Cworld,dggs%3Aact&exceptions=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A4326&WIDTH=1200&HEIGHT=700&BBOX=-180,-90,180,90
https://tb16.geo-solutions.it/geoserver/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&FORMAT=application/openlayers&TRANSPARENT=true&VIEWPARAMS=resOffset%3A0%2CresOffset%3A-1%2CresOffset%3A-2%2C%2C&STYLES=%2Cdggs_m1%2Cdggs_m2%2C%2C&LAYERS=dggs%3ATB16-Pix%2Cdggs%3ATB16-Pix%2Cdggs%3ATB16-Pix%2Cworld,dggs%3Aact&exceptions=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A4326&WIDTH=1299&HEIGHT=700&BBOX=-180,-90,180,90

Figure 6. Displaying H3 grandparent, parent along with regular zones

Figure 7. Displaying TB16-Pix grandparent, parent along with regular zones

9.4. The ClickHouse storage choice
To align with the DAPA tasks, testbed participants decided to expose Sentinel 2 data over the
Australian Capital Territory [https://en.wikipedia.org/wiki/Australian_Capital_Territory] (ACT), resampled
over the H3 and TB16-Pix zones, at resolution 11 and higher. For each zone, the following
information is available:

• All 13 bands, from B01 up to B13, along with B8A.

• The Normalized Difference Vegetation Index [https://en.wikipedia.org/wiki/

Normalized_difference_vegetation_index] (NDVI), computed as (B08 - B04) / (B04 + B04)

• The Normalized Difference Built-Up Index [https://www.harrisgeospatial.com/docs/

83

https://en.wikipedia.org/wiki/Australian_Capital_Territory
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
https://www.harrisgeospatial.com/docs/BackgroundOtherIndices.html#Normaliz3

BackgroundOtherIndices.html#Normaliz3], computed as (B11 - B08) / (B11 + B08)

• The Normalized Difference Water Index [https://en.wikipedia.org/wiki/

Normalized_difference_water_index], computed as (B03 - B08) / (B03 + B08)

To ensure enough data coverage, a bounding box slightly larger than the ACT has been used, in
order to ensure enough coverage for the higher level parent zones. Figure 8 shows a reference
display of the area.

Figure 8. Displaying the H3 grid over ACT

Even with such a small area, and reduced set of resolutions, the number of records to be stored is
significant. In addition to that, to exercise the DGGS and DAPA API at multiple times, snapshots of
the area have been taken in 2019 and 2020.

Table 36 & Table 37 report the number of actual zones imported per level (data import is discussed
later):

Table 36. H3 zone count over
sampling area (two time slices)

Resoluti
on

Zone count

5 44

6 450

7 3.494

8 25.462

9 180.772

10 1.272.272

84

https://en.wikipedia.org/wiki/Normalized_difference_water_index

Resoluti
on

Zone count

11 8.923.852

Table 37. TB16Pix zone count over
sampling area (two time slices)

Resoluti
on

Zone count

5 8

6 112

7 1.188

8 11.152

9 104.000

10 940.252

11 8.470.532

This clarifies the requirements on the data storage, in particular:

• Ability to efficiently store in excess of 20 million records, each having 16 numerical attributes.

• Compact storage.

• Ability to efficiently locate records by zone identifiers, or by n-th parent zone id.

• Ability to quickly perform aggregations over columns values, such as extracting the maximum,
minimum, average and sum of values in a given polygon (expressed as sets of zoneIds to
retrieve).

A classic relational database can still handle 20 million records at ease. However, with larger areas
or deeper resolution sampling, the number would grow very large. The whole world sampled at the
highest resolution level of H3 would require storing 597 trillion records.

For the use case, a dedicated On-Line Analytical Processing (OLAP) database is probably a better
choice. ClickHouse [https://clickhouse.tech/] was the choice to demonstrate this option. The following
characteristics [https://clickhouse.tech/docs/en/introduction/distinctive-features/] make ClickHouse a good
match for the use case:

• Tables are natively partitioned in sub-sets by a given partitioning key, supporting splitting a
large dataset in smaller, more manageable parts.

• Compressed column oriented storage, saving data by column instead of by row, indexing it by
the given table key, and compressing the data for efficient storage.

• Partitioning can be extended to multiple nodes.

• Designed as an OLAP database, can perform aggregation quickly, distributing the calculation
over the different nodes, and for each node, using all available CPUs

Unlike other recent OLAP database, such as QuestDB [https://questdb.io/], the partitioning key is free

85

https://clickhouse.tech/
https://clickhouse.tech/docs/en/introduction/distinctive-features/
https://clickhouse.tech/docs/en/introduction/distinctive-features/
https://questdb.io/

to use any column designed, thus supporting splitting the data over both space and time. The
following is an example of table creation, using the simplest partitioning engine available in
ClickHouse:

CREATE TABLE IF NOT EXISTS s2
(
 `zoneId` String,
 `resolution` UInt8,
 `date` DateTime,
 `B01` UInt16,
 `B02` UInt16,
 `B03` UInt16,
 `B04` UInt16,
 `B05` UInt16,
 `B06` UInt16,
 `B07` UInt16,
 `B08` UInt16,
 `B09` UInt16,
 `B10` UInt16,
 `B11` UInt16,
 `B12` UInt16,
 `B8A` UInt16,
 `NDVI` Float64,
 `NDBI` Float64,
 `NDWI` Float64
)
ENGINE = MergeTree()
PARTITION BY (substring(zoneId, 1, 6), date)
ORDER BY (resolution, date, zoneId)

Highlights:

• The partitioning engine is mandatory in ClickHouse, all tables have to be partitioned.

• The partitions are constructed using the first six characters of the zoneId, and the date.

• Each partition’s contents are sorted by resolution, date and zoneId.

This setup allows to quickly resolve queries like the following, extracting all the children of zone
P57624 at resolution 10.

SELECT *
FROM s2
WHERE zoneId like 'P57624%'
AND resolution = 10

For reference, the above structure supported storing all zones in the test area — around 10 million
per DGGS type — in roughly 500MB per table. This is a couple of times larger than an equivalent
compressed raster storage covering the same area [15], at the same resolution. However, there is

86

advantage of a fast SQL aggregation engine built-in, and the freedom to mix columns of different
data types.

The following query, computing the maximum value of the B01 over the 8 million zones covering
the test area at zoom level 11, ran in 0.015 seconds [16]:

SELECT avg(B01)
FROM act_h3.s2
WHERE resolution = 11

9.5. Importing data in ClickHouse
As part of the Testbed activities, GeoSolutions imported Sentinel 2 data covering the test area over
two time slices, once for H3, and once for TB16-Pix.

The data import was performed using the following steps:

• Using GDAL to translate the Sentinel 2 JPEG 2000, split band rasters into 13 bands TIFFs

• Using Java and GeoTools for mosaicking and reading the Sentinel 2 data, sampling it at the
center of each resolution 11 zone intersecting the test area, computing the NDVI/NDBI/NDWI
indexes, and inserting the result in ClickHouse

• Performing simple aggregation queries to compute the average value of each band and index in
parent cells, based on the values of the children cells.

In particular, the Java program for H3 used 16 parallel threads to perform the sampling, loading the
9 million zones in the database in 25 seconds. The generation of all upper levels, by aggregation
query in ClickHouse, completed in 1.5 seconds.

The following sample query created all resolution 10 H3 zones, aggregating the values of their
direct children at resolution 11, but only when all the children of a given parent zone were
available. The query leverages ClickHouse native H3 support functions:

87

INSERT INTO s2
 SELECT h3ToString(h3ToParent(stringToH3(zoneId), toUInt8(resolution - 1))),
 resolution - 1,
 max(date),
 round(avg(B01)),
 round(avg(B02)),
 round(avg(B03)),
 round(avg(B04)),
 round(avg(B05)),
 round(avg(B06)),
 round(avg(B07)),
 round(avg(B08)),
 round(avg(B09)),
 round(avg(B10)),
 round(avg(B11)),
 round(avg(B12)),
 round(avg(B8A)),
 (avg(B08) - avg(B04)) / (avg(B08) + avg(B04)),
 (avg(B11) - avg(B08)) / (avg(B11) + avg(B08)),
 (avg(B03) - avg(B08)) / (avg(B03) + avg(B08))
 FROM s2
 where resolution = 11
 and date = '2020-09-06 00:00:00'
 group by h3ToParent(stringToH3(zoneId), toUInt8(resolution - 1)), resolution
 having count(*) = length(h3ToChildren(h3ToParent(stringToH3(zoneId), toUInt8
(resolution - 1)), resolution))

The equivalent rHEALPix query can be built using simple string manipulations (the parent of a
zone can be obtained by removing the last character from the zone id) and has a simpler "having"
condition, considering a rHEALPix zone always has 9 children:

88

INSERT INTO s2
 SELECT substring(zoneId, 1, length(zoneId) - 1),
 resolution - 1,
 max(date),
 round(avg(B01)),
 round(avg(B02)),
 round(avg(B03)),
 round(avg(B04)),
 round(avg(B05)),
 round(avg(B06)),
 round(avg(B07)),
 round(avg(B08)),
 round(avg(B09)),
 round(avg(B10)),
 round(avg(B11)),
 round(avg(B12)),
 round(avg(B8A)),
 (avg(B08) - avg(B04)) / (avg(B08) + avg(B04)),
 (avg(B11) - avg(B08)) / (avg(B11) + avg(B08)),
 (avg(B03) - avg(B08)) / (avg(B03) + avg(B08))
 FROM s2
 where resolution = 11
 and date = '2020-09-06 00:00:00'
 group by substring(zoneId, 1, length(zoneId) - 1), resolution
 having count(*) = 9

9.6. The ClickHouse DGGS data store
A second data store was written in GeoServer, reading data from ClickHouse tables satisfying the
following structure:

• An string column named zoneId

• An integer column named resolution

• Any other attribute column

Similar to the geometry DGGS store, this store has no ties to a particular DGGS implementation, and
requires the administration to declare which one to use when connecting to a database, in addition
to common parameters such as database server host, port, database name, username and
password.

89

Figure 9. Connecting to a ClickHouse server

The store then makes available to GeoServer all tables matching the above conditions as feature
collections, which can be configured as layers and consumed via the classic OGC services.

The figures in Table 38 visually compares H3 and TB16-Pix maps of the NDVI index over the test
area, gently zooming in first, and then displaying a lake at the highest resolution. One of the two
systems looks more fine-grained than the other. This is actually just an illusion, the issue being that
the size of the zones in the two systems are not aligned.

Table 38. NDVI in H3 vs TB16Pix at progressively finer levels

90

H3 TB16-Pix

91

H3 TB16-Pix

An interesting observation is to see how the store translates the bounding box request from a WMS
endpoint into an efficient ClickHouse query. Here is a reference WMS request:

https://tb16.geo-solutions.it/geoserver/wms?STYLES=ndvi&LAYERS=dggs:s2-rpix&
EXCEPTIONS=application%2Fvnd.ogc.se_inimage&TRANSPARENT=true&FORMAT=image%2Fpng&
SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=148.69720458985,-
35.911560058594,149.52117919923,-35.087585449219&WIDTH=600&HEIGHT=600

Table 39 shows the resulting rendering, and on the side, a map with the zone identifiers:

Table 39. WMS Rendering & Zone Ids

NDVI map Zone identifiers

The resulting database query looks as follows:

92

https://tb16.geo-solutions.it/geoserver/wms?STYLES=ndvi&LAYERS=dggs:s2-rpix&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&TRANSPARENT=true&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=148.69720458985,-35.911560058594,149.52117919923,-35.087585449219&WIDTH=600&HEIGHT=600
https://tb16.geo-solutions.it/geoserver/wms?STYLES=ndvi&LAYERS=dggs:s2-rpix&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&TRANSPARENT=true&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=148.69720458985,-35.911560058594,149.52117919923,-35.087585449219&WIDTH=600&HEIGHT=600
https://tb16.geo-solutions.it/geoserver/wms?STYLES=ndvi&LAYERS=dggs:s2-rpix&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&TRANSPARENT=true&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=148.69720458985,-35.911560058594,149.52117919923,-35.087585449219&WIDTH=600&HEIGHT=600
https://tb16.geo-solutions.it/geoserver/wms?STYLES=ndvi&LAYERS=dggs:s2-rpix&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&TRANSPARENT=true&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=148.69720458985,-35.911560058594,149.52117919923,-35.087585449219&WIDTH=600&HEIGHT=600

SELECT "zoneId","date","NDVI"
FROM "act_rpix"."s2" WHERE
("date" = '2020-09-06 02:00:00.0' AND
 "zoneId" LIKE 'P67307%' AND "resolution" = 6) OR
 "zoneId" LIKE 'P67306%' AND "resolution" = 6) OR
 "zoneId" LIKE 'P67304%' AND "resolution" = 6) OR
 "zoneId" LIKE 'P67303%' AND "resolution" = 6) OR
 "zoneId" IN ('P673320', 'P673312', 'P673311', 'P673310', 'P673302',
 'P673301', 'P673300', 'P673086', 'P673083', 'P673080', 'P673056',
 'P673053', 'P673050', 'P673026', 'P673018', 'P673017', 'P673016',
 'P673008', 'P673007', 'P673006', 'P665522', 'P665288', 'P665285',
 'P665282', 'P665258', 'P665255', 'P665252', 'P665228')
)

In other words, the system recognizes some of the zones are fully covered by their parent, and as a
result, a query against the parent prefix identifier is done, selecting only the zones at the desired
resolution.

Using the viewparams=resoffset:1 vendor parameter to retrieve zones at resolution level 7 in the
same area does not change the structure of the generated query, the system still recognizes P67307,
P67307, P67304 and P67303 are covering most of the map. Therefore the "like" portion of the query
is unchanged. However, the "in" portion of it has a different (and longer) list of zones partially
intersecting the bounding box.

This approach helps keeping the queries small, which is particularly important when trying to
render a large number of zones using the resolution offset vendor parameter.

9.7. Displaying false color maps of DGGS data
Once the Sentinel 2 datasets have been loaded in GeoServer, it’s possible to display false color maps
of a given area. The following maps show a constrast stretched composition of B04,B03,B02 bands
over the whole ACT area:

93

rHealPix H3

Focusing on Canberra, the following three maps show different views of the same area:

• A false color RGB image using NDBI,NDVI,NDWI, emphasizing built-up areas with the tones of
red, vegetation areas with green, and water areas in blue. It’s easy to identify water areas, built-
up areas and roads, as well as a thick tree canopy covering the area, even in built-up areas. The
datasets was not cloud masked during import, nor cloud-shadow masked, it’s thus possible to
locate both in the map as well.

• A false color RGB image using B04,B03,B02.

• A GeoServer generated OpenStreetMap view [https://github.com/geosolutions-it/osm-styles] of the area,
acting as a visual reference to help interpretation of the other two maps

94

https://github.com/geosolutions-it/osm-styles

Figure 10. False color representation using NDBI,NDVI,NDWI bands, Canberra

Figure 11. False color representation using B04,B03,B02 bands, Canberra

95

Figure 12. OSM reference map, Canberra

9.8. GeoServer DGGS API
The ogcapi-dggs module implements the process-oriented DGGS API described in the DGGS process
API chapter.

The API is implemented using the GeoServer framework for OGC APIs, shared with OGC API -
Features, and Styles and Tiles.

The implementation provides a HTML and JSON representation of most resources, with a few
additional formats when required, or there is an opportunity for reuse of existing encoding
support.

The following pictures provide a walk-through of the API resources available at the GeoSolutions
Testbed-16 server: https://tb16.geo-solutions.it/geoserver/dggs/ogc/dggs

In particular, the pictures show the basics of the API as well as an exploration of the TB16-Pix
collection, thereby providing a purely geometrical description of the TB16-Pix DGGS (backed by the
ÐGGSGeometryStore implementation).

96

https://tb16.geo-solutions.it/geoserver/dggs/ogc/dggs

Figure 13. GeoServer DGGS API landing page

97

Figure 14. GeoServer DGGS API description, as a Swagger interactive HTML representation

98

Figure 15. GeoServer DGGS API collections

99

Figure 16. TB16-Pix zone listing, at resolution 0. This is a purely geometrical collection, no actual data.

Figure 17. GeoServer DGGS API TB16-Pix zone listing, at resolution 6. Notice the paging support.

100

Figure 18. Inspecting a specific zone, S123456

Figure 19. Following the "zone parents" link, listing all parents of zone S123456

Figure 20. Following the "zone children" link, listing all direct children of zone S123456

101

Figure 21. Following the "zone neighbors" link, listing all direct neighbors of zone S123456

What follows is a screenshot of the s2-rpix zone listing, containing Sentinel 2 data over the ACT, in
September 2020:

Figure 22. Following the "zone children" link, listing all direct children of zone S123456

The s2-rpix and s2-h3 collections are interesting, as they are time enabled. Time management is
configured in the UI as follows:

102

Figure 23. Configuring the time dimension in GeoServer

This affects both WMS instances and the DGGS API. In WMS the capabilities document reports the
available times, and defaults to the September 2020 time slice.

GeoServer WMS 1.3 Capababilities excerpt

<Layer queryable="1" opaque="0">
 <Name>dggs:s2-rpix</Name>
 <Title>s2</Title>
 <Abstract/>
 <KeywordList>
 <Keyword>features</Keyword>
 <Keyword>s2</Keyword>
 </KeywordList>
 <CRS>EPSG:4326</CRS>
 <CRS>CRS:84</CRS>
 <EX_GeographicBoundingBox>
 <westBoundLongitude>-180.0</westBoundLongitude>
 <eastBoundLongitude>180.0</eastBoundLongitude>
 <southBoundLatitude>-90.0</southBoundLatitude>
 <northBoundLatitude>90.0</northBoundLatitude>
 </EX_GeographicBoundingBox>
 <BoundingBox CRS="CRS:84" minx="-180.0" miny="-90.0" maxx="180.0" maxy="90.0"/>
 <BoundingBox CRS="EPSG:4326" minx="-90.0" miny="-180.0" maxx="90.0" maxy="180.0"/>
 <Dimension name="time" default="2020-09-06T00:00:00Z" units="ISO8601">2019-09-
02T00:00:00.000Z,2020-09-06T00:00:00.000Z</Dimension>
 <!-- Exta information omitted for brevity -->
</Layer>

At the DGGS API level, the time is exposed in the collection description:

103

All the API requests in addition can receive a datetime parameter specifying the desired time slice.
If not specified, the API assumes the configured default.

The following request extracts a single zone, without a datetime specified, resulting in the
September 2020 instance to be extracted:

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/s2-h3/zone/?zone_id=86be0d207ffffff&
f=application/dggs%2Bjson

Getting the 86be0d207ffffff H3 zone for the default time slice

{
 "type":"Feature",
 "geometry":{
 "type":"polygon",
 "identifiers":[
 "86be0d207ffffff"
]
 },
 "properties":{
 "resolution":6,
 "date":"2020-09-06T00:00:00Z",
 "B01":82,
 "B02":1326,
 "B03":1521,
 "B04":1744,
 "B05":2006,
 "B06":576,
 "B07":1926,
 "B08":1892,
 "B09":1988,
 "B10":194,
 "B11":126,
 "B12":1850,
 "B8A":868,
 "NDVI":0.04062229904926536,
 "NDBI":-0.8752566371681416,
 "NDWI":-0.10884125920964499
 }
}

Providing a specific datetime allows to retrieve a different time slice:

104

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/s2-h3/zone/?zone_id=86be0d207ffffff&f=application/dggs%2Bjson
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/s2-h3/zone/?zone_id=86be0d207ffffff&f=application/dggs%2Bjson

Getting the 86be0d207ffffff H3 zone for September 2019

{
 "type":"Feature",
 "geometry":{
 "type":"any",
 "identifiers":[
 "86be0d207ffffff"
]
 },
 "properties":{
 "resolution":6,
 "date":"2019-09-02T00:00:00Z",
 "B01":82,
 "B02":965,
 "B03":1142,
 "B04":1365,
 "B05":2020,
 "B06":712,
 "B07":1580,
 "B08":1735,
 "B09":1869,
 "B10":3104,
 "B11":2605,
 "B12":2081,
 "B8A":2102,
 "NDVI":0.11926267281105993,
 "NDBI":0.2005792903692976,
 "NDWI":-0.20607806137650211
 }
}

All API endpoints returning zones accept a datetime query parameter, allowing full usage of
temporal datasets.

The following example retrieves resolution 6 zones matching the CRS84 point 149,-35 during
September 2019:

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/s2-h3/point?point=149,-35&resolution=6&
datetime=2019-09&f=application/dggs%2Bjson

105

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/s2-h3/point?point=149,-35&resolution=6&datetime=2019-09&f=application/dggs%2Bjson
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/s2-h3/point?point=149,-35&resolution=6&datetime=2019-09&f=application/dggs%2Bjson

The zone matching CRS84 point 149,-35 during September 2019

{
 "type":"Feature",
 "geometry":{
 "type":"any",
 "identifiers":[
 "86be7258fffffff"
]
 },
 "properties":{
 "resolution":6,
 "date":"2019-09-02T00:00:00Z",
 "B01":88,
 "B02":434,
 "B03":719,
 "B04":808,
 "B05":3020,
 "B06":680,
 "B07":1323,
 "B08":2403,
 "B09":2750,
 "B10":2861,
 "B11":1871,
 "B12":3090,
 "B8A":3145,
 "NDVI":0.4967305724834305,
 "NDBI":-0.12463651860022062,
 "NDWI":-0.5394610422290342
 }
}

Similarly, a polygon mapping operation can be performed, mapping the CRS84 ellipsoidal triangle
to a set of resolution 5 zones, for September 2019:

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/s2-h3/polygon?polygon=POLYGON
149%20%20-36,%20149%20-35,%20150%20-35,%20149%20-36,%20&resolution=5&datetime=2019-
09&f=application/dggs%2Bjson

Polygon mapping, with attributes other than NDVI omitted, as well as several features, to reduce the
example size

{
 "type":"FeatureCollection",
 "features":[
 {
 "type":"Feature",
 "geometry":{
 "type":"polygon",
 "identifiers":[

106

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/s2-h3/polygon?polygon=POLYGON

 "85be0d27fffffff"
]
 },
 "properties":{
 "resolution":5,
 "date":"2019-09-02T00:00:00Z",
 "NDVI":0.34315113754366094
 }
 },
 {
 "type":"Feature",
 "geometry":{
 "type":"polygon",
 "identifiers":[
 "85be0d27fffffff"
]
 },
 "properties":{
 "resolution":5,
 "date":"2020-09-06T00:00:00Z",
 "NDVI":0.5679273827534039
 }
 },
 {
 "type":"Feature",
 "geometry":{
 "type":"polygon",
 "identifiers":[
 "85be0d37fffffff"
]
 },
 "properties":{
 "resolution":5,
 "date":"2019-09-02T00:00:00Z",
 "NDVI":0.32704305233307546
 }
 },
 "Other features omitted for brevity"
],
 "numberMatched":20,
 "numberReturned":20,
 "timeStamp":"2020-10-15T10:31:39.382Z",
 "Links omitted for brevity": null
}

9.9. GeoServer DGGS based DAPA API
During Testbed-16 GeoSolutions implemented a DAPA API based on the DGGS data stored in
ClickHouse, taking advantage of the Lightweight Directory Access Protocol (LDAP) database fast
aggregation abilities.

107

9.9.1. The API, HTML representations, and process resources

In particular, the implementation included the "area" and "position" resources, while the "grid"
ones have been skipped due to development time limitations:

Figure 24. DAPA API extensions

In addition to the DAPA space selection mechanisms, that is, bounding box and polygon, this DGGS
inspired API also allows to specify a list of comma-separated zone identifiers in the "zones"
parameter. When zones are specified, the data retrieval or aggregations are performed inside the
area covered by the zones:

zones=P6730,P6733

In addition to that, a resolution parameter is present, which allows to specify the target resolution
for the retrieval or aggregation operations. When the zones listed in the zones parameter have a
resolution lower than the aggregation one, their children at the target resolution level are used to
run the aggregation instead.

Table 40. Zones used for selection versus aggregation, when using
zones=P6730,P6733&resolution=5 in the request

108

Selection Aggregation

The description of DAPA enabled collections has been extended with links to the DAPA subsystem,
thus linking the DGGS and DAPA resources:

Figure 25. Collections listing with DAPA links

The processes endpoint provides a full listing of aggregation functions, variables for the collection:

109

Figure 26. DAPA processes resource, variables and functions

The processes resource also provides a list of all available methods of data retrieval and
aggregation:

110

Figure 27. DAPA processes resource, available processes with default parameter links

The area:retrieve method returns a time series of values in a given area (or the whole area, if not
specified). No aggregation is performed in this case, making it a close match to the DGGS API zones
resource.

Here is an example URL, and the associated result:

111

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-
rpix/processes/area:retrieve?resolution=5&f=text/csv&datetime=2020

The result, showing the four zones available at resolution level 5 over ACT, with data for year 2020 (only
one time slice available)

FID,zoneId,resolution,date,B01,B02,B03,B04,B05,B06,B07,B08,B09,B10,B11,B12,B8A,NDVI,ND
BI,NDWI,geometry
s2-rpix.P67303.2020-09-06 00:00:00,P67303,5,2020-09-
06T02:00:00,96,456,660,667,2704,519,1108,2186,2499,1854,1155,2740,2784,0.53248676,-
0.3083907,-0.53613682,"POLYGON ((-35.10748095969024 148.74999999999997,
-35.10748095969024 149.12037037037038, -35.49268851161001 149.12037037037038,
-35.49268851161001 148.74999999999997, -35.10748095969024 148.74999999999997))"
s2-rpix.P67304.2020-09-06 00:00:00,P67304,5,2020-09-
06T02:00:00,85,1592,1691,1701,3370,587,2110,2906,3157,2792,2147,3341,3636,0.26166241,-
0.15013853,-0.26437671,"POLYGON ((-35.10748095969024 149.12037037037038,
-35.10748095969024 149.49074074074076, -35.49268851161001 149.49074074074076,
-35.49268851161001 149.12037037037038, -35.10748095969024 149.12037037037038))"
s2-rpix.P67306.2020-09-06 00:00:00,P67306,5,2020-09-
06T02:00:00,81,859,977,1067,2089,319,1326,1789,1947,2217,1742,2120,2230,0.25279172,-
0.01334424,-0.29330013,"POLYGON ((-35.49268851161001 148.74999999999997,
-35.49268851161001 149.12037037037038, -35.879718636556554 149.12037037037038,
-35.879718636556554 148.74999999999997, -35.49268851161001 148.74999999999997))"
s2-rpix.P67307.2020-09-06 00:00:00,P67307,5,2020-09-
06T02:00:00,80,1200,1274,1330,2687,466,1662,2290,2490,2538,1948,2682,2947,0.26502548,-
0.0806587,-0.28482354,"POLYGON ((-35.49268851161001 149.12037037037038,
-35.49268851161001 149.49074074074076, -35.879718636556554 149.49074074074076,
-35.879718636556554 149.12037037037038, -35.49268851161001 149.12037037037038))"

The area:aggregate-time takes every zone in the area of interest, and performs the selected
aggregation functions on each of the variables over all values found in the time slices available.

Here is an example URL, and the associated result:

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-
time?resolution=5&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count

Aggregating the 4 TB16Pix zones covering ACT, at resolution 5, over the two time slices available.

FID,geometry,zoneId,B01_min,B01_average,B01_max,B01_count,B02_min,B02_average,B02_max,
B02_count,B03_min,B03_average,B03_max,B03_count
area_time_P67307,"POLYGON ((148.76 -35.92, 149.4 -35.92, 149.4 -35.12, 148.76 -35.12,
148.76 -35.92))",P67307,80,80,80,2,559,879.5,1200,2,713,993.5,1274,2
area_time_P67303,"POLYGON ((148.76 -35.92, 149.4 -35.92, 149.4 -35.12, 148.76 -35.12,
148.76 -35.92))",P67303,85,90.5,96,2,329,392.5,456,2,530,595,660,2
area_time_P67304,"POLYGON ((148.76 -35.92, 149.4 -35.92, 149.4 -35.12, 148.76 -35.12,
148.76 -35.92))",P67304,83,84,85,2,558,1075,1592,2,783,1237,1691,2
area_time_P67306,"POLYGON ((148.76 -35.92, 149.4 -35.92, 149.4 -35.12, 148.76 -35.12,
148.76 -35.92))",P67306,80,80.5,81,2,332,595.5,859,2,471,724,977,2

112

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:retrieve?resolution=5&f=text/csv&datetime=2020
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:retrieve?resolution=5&f=text/csv&datetime=2020
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:retrieve?resolution=5&f=text/csv&datetime=2020
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-time?resolution=5&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-time?resolution=5&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count

The area:aggreate-space takes every time slice, and aggregates the variables of each zone in the
area of interest instead. The following example operates at resolution 9, aggregating for each
variable over 260 thousand zones (executes in around five seconds):

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-
space?bbox=148.7,-35.9,149.4,-35.0&resolution=10&f=text/csv&variables=B01,B02,B03&
functions=min,mean,max,count

Aggregating over 260k zones per time slice, in the requested bounding box,

producing one result for each of the time slices available.

FID,geometry,date,B01_min,B01_average,B01_max,B01_count,B02_min,B02_average,B02_max,B0
2_count,B03_min,B03_average,B03_max,B03_count
area_space_time_2020-09-06_02:00:00.0,"POLYGON ((148.7 -35.9, 149.39999999999998
-35.9, 149.39999999999998 -35, 148.7 -35, 148.7 -35.9))",2020-09
-06T02:00:00,63,89.12817284,151,261280,1,810.27268065,17610,261280,1,960.22063686,1677
6,261280
area_space_time_2019-09-02_02:00:00.0,"POLYGON ((148.7 -35.9, 149.39999999999998
-35.9, 149.39999999999998 -35, 148.7 -35, 148.7 -35.9))",2019-09
-02T02:00:00,60,83.28399801,115,261280,1,429.43291105,13476,261280,1,613.64177893,1422
5,261280

The area-aggregate-space-time process takes every zone in the area of interest, for every time in the
selected range, and produces global statistics, resulting in a single record instead. Here is an
example, with a compact datetime filter selecting both available years:

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-
space?bbox=148.7,-35.9,149.4,-35.0&resolution=10&f=text/csv&variables=B01,B02,B03&
functions=min,mean,max,count

Aggregating all 500 thousand zones available in the selected bounding box, at resolution 9,

into a single space-time summary result.

FID,geometry,phenomenonTime,B01_min,B01_average,B01_max,B01_count,B02_min,B02_average,
B02_max,B02_count,B03_min,B03_average,B03_max,B03_count
space-time-aggregate,"POLYGON ((148.7 -35.9, 149.39999999999998 -35.9,
149.39999999999998 -35, 148.7 -35, 148.7
-35.9))",2019/2020,60,86.20608543,151,522560,1,619.85279585,17610,522560,1,786.9312079
,16776,522560

In addition to area, the DAPA implementation offers position data retrieval and aggregation as well.
The position data retrieval and aggregation, concentrates on a given point, making it a close
relative to the DGGS API zone endpoint. Similar to the DGGS API, the position implementation in
GeoServer also accepts a zone_id to identify a particular zone. As an alternative, it is possible to
specify a single point and a resolution, which will be mapped to the unique zone containing the
point at the given resolution.

http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/position:retrieve?

113

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space?bbox=148.7,-35.9,149.4,-35.0&resolution=10&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space?bbox=148.7,-35.9,149.4,-35.0&resolution=10&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space?bbox=148.7,-35.9,149.4,-35.0&resolution=10&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space?bbox=148.7,-35.9,149.4,-35.0&resolution=10&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space?bbox=148.7,-35.9,149.4,-35.0&resolution=10&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space?bbox=148.7,-35.9,149.4,-35.0&resolution=10&f=text/csv&variables=B01,B02,B03&functions=min,mean,max,count
http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/position:retrieve?resolution=9&f=text%2Fcsv&geom=149.08%2C-35.52&datetime=2020

resolution=9&f=text%2Fcsv&geom=149.08%2C-35.52&datetime=2020

Retrieving data for a specific point at resolution 9, matching a TB16Pix zone

FID,zoneId,resolution,date,B01,B02,B03,B04,B05,B06,B07,B08,B09,B10,B11,B12,B8A,NDVI,ND
BI,NDWI,geometry
s2-rpix.P673062236.2020-09-06 00:00:00,P673062236,9,2020-09-
06T02:00:00,88,492,762,748,3318,667,1380,2835,3223,2639,1532,3505,3573,0.58257364,-
0.29844557,-0.57641463,"POLYGON ((-35.51652603409146 149.07921810699588,
-35.51652603409146 149.08379058070415, -35.52129437280328 149.08379058070415,
-35.52129437280328 149.07921810699588, -35.51652603409146 149.07921810699588))"

The position:aggregate-time aggregates the values of the target variables, in the selected zones,
over all the times available in the time series:

http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/position:aggregate-time?
zone_id=P673062236&resolution=9&f=text%2Fcsv&datetime=2019/2020&
variables=NDVI,NDBI,NDWI&functions=min,max,std-dev

Retrieving data for a specific zone, and aggregating it over the available time series

FID,geometry,zoneId,NDVI_min,NDVI_max,NDVI_std-dev,NDBI_min,NDBI_max,NDBI_std-
dev,NDWI_min,NDWI_max,NDWI_std-dev
position_time_P673062236,POINT (149.08150434385
-35.518910203447376),P673062236,0.34747217,0.58257364,0.11755074,
-0.29844557,0.03754498,0.16799527,-0.57641463,-0.4686294,0.05389261

9.9.2. Notes on implementation and performance

An efficient implementation of DAPA should try to perform all of the aggregations, on all of the
variables, in a single ClickHouse SQL request. This is indeed how GeoServer implements it, there
are however significant performance differences in computation based on how the type of area
filtering is chosen by the client.

The simplest and most efficient query derives from a client that uses DGGS zone references to
identify the area of interest. Given the following request:

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-
space-time?zones=P6730,P6733&resolution=11&f=text/csv&variables=B01&
functions=min,mean,max,count

the server has to locate all zones at resolution 11 whose parent is either P6730 or P6733, and
aggregate the results. Given the hierarchical nature of TB16Pix identifiers, the query is as simple as:

SELECT min("B01"), avg("B01"), max("B01"), count(*)
FROM "act_rpix"."s2"
WHERE (("zoneId" LIKE 'P6730%' OR "zoneId" LIKE 'P6733%')
 AND "resolution" = 11)

114

http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/position:retrieve?resolution=9&f=text%2Fcsv&geom=149.08%2C-35.52&datetime=2020
http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/position:aggregate-time?zone_id=P673062236&resolution=9&f=text%2Fcsv&datetime=2019/2020&variables=NDVI,NDBI,NDWI&functions=min,max,std-dev
http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/position:aggregate-time?zone_id=P673062236&resolution=9&f=text%2Fcsv&datetime=2019/2020&variables=NDVI,NDBI,NDWI&functions=min,max,std-dev
http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/position:aggregate-time?zone_id=P673062236&resolution=9&f=text%2Fcsv&datetime=2019/2020&variables=NDVI,NDBI,NDWI&functions=min,max,std-dev
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space-time?zones=P6730,P6733&resolution=11&f=text/csv&variables=B01&functions=min,mean,max,count
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space-time?zones=P6730,P6733&resolution=11&f=text/csv&variables=B01&functions=min,mean,max,count
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space-time?zones=P6730,P6733&resolution=11&f=text/csv&variables=B01&functions=min,mean,max,count

Clickhouse runs this query against 8 million records in 200ms.

If the client instead uses a generic bounding box, not aligned to the DGGS grid, then the shape
needs to be approximated, using a mix of lower-level zones and higher resolution zones, up to the
target resolution level.

The following request, limited to resolution 7 in order to reduce the size of the query, results in the
following:

http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space-
time?bbox=148.7,-35.9,149.4,-35.0&resolution=7&f=text/csv&variables=B01&
functions=min,mean,max,count

Results in the following SQL query, with like operators used to match zones by their parent, and a
in operator matching the zones at the target resolution:

SELECT min("B01"), avg("B01"), max("B01"), count(*)
FROM "act_rpix"."s2"
WHERE (("zoneId" LIKE 'P673006%' OR "zoneId" LIKE 'P673007%' OR "zoneId" LIKE
'P673008%' OR "zoneId" LIKE 'P673016%' OR "zoneId" LIKE 'P673017%' OR "zoneId" LIKE
'P67303%' OR "zoneId" LIKE 'P673040%' OR "zoneId" LIKE 'P673041%' OR "zoneId" LIKE
'P673043%' OR "zoneId" LIKE 'P673044%' OR "zoneId" LIKE 'P673046%' OR "zoneId" LIKE
'P673047%' OR "zoneId" LIKE 'P67306%' OR "zoneId" LIKE 'P673070%' OR "zoneId" LIKE
'P673071%' OR "zoneId" LIKE 'P673073%' OR "zoneId" LIKE 'P673074%' OR "zoneId" LIKE
'P673076%' OR "zoneId" LIKE 'P673077%'
OR "zoneId" IN ('P6652281', 'P6652282', 'P6652284', 'P6652285', 'P6652287', 'P6652288
', 'P6652521', 'P6652522', 'P6652524', 'P6652525', 'P6652527', 'P6652528', 'P6652551',
'P6652552', 'P6652554', 'P6652555', 'P6652557', 'P6652558', 'P6652581', 'P6652582',
'P6652584', 'P6652585', 'P6652587', 'P6652588', 'P6652821', 'P6652822', 'P6652824',
'P6652825', 'P6652827', 'P6652828', 'P6652851', 'P6652852', 'P6652854', 'P6652855',
'P6652857', 'P6652858', 'P6652881', 'P6652882', 'P6652884', 'P6652885', 'P6652887',
'P6652888', 'P6655221', 'P6655222', 'P6730180', 'P6730183', 'P6730186', 'P6730420',
'P6730423', 'P6730426', 'P6730450', 'P6730453', 'P6730456', 'P6730480', 'P6730483',
'P6730486', 'P6730720', 'P6730723', 'P6730726', 'P6730750', 'P6730753', 'P6730756',
'P6730780', 'P6730783', 'P6730786', 'P6733000', 'P6733001', 'P6733002', 'P6733010',
'P6733011', 'P6733012', 'P6733020', 'P6733021', 'P6733022', 'P6733100', 'P6733101',
'P6733102', 'P6733110', 'P6733111', 'P6733112', 'P6733120'))
AND "resolution" = 7)

The maps in Table 41 show visually the construction of the above query for TB16Pix, and offers a
parallel for the H3 DGGS as well. In red the requested bounding box, in blue the ACT area, in dark
gray the zones used to build the database query for resolution 7.

Table 41. Query construction with parent and child features in both TB16Pix and H3, at resolution
levels 7 and 8, for the bounding box 148.7,-35.9,149.4,-35.0 (ACT boundary shown for reference
only).

115

http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space-time?bbox=148.7,-35.9,149.4,-35.0&resolution=7&f=text/csv&variables=B01&functions=min,mean,max,count
http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space-time?bbox=148.7,-35.9,149.4,-35.0&resolution=7&f=text/csv&variables=B01&functions=min,mean,max,count
http://localhost:8080/geoserver/ogc/dggs/collections/dggs:s2-rpix/processes/area:aggregate-space-time?bbox=148.7,-35.9,149.4,-35.0&resolution=7&f=text/csv&variables=B01&functions=min,mean,max,count

Resolution TB16Pix H3

7

8

Trying to perform the same aggregation at resolution 11 generates thousands of SQL conditions,
resulting in a significant amount of time spent generating the query, in the database parsing it and
deciding on an execution plan, and eventually in its execution. In particular, the same request at
resolution 11 requires over a minute of computation time, despite aggregating only 4.7 million
zones, while the previous request based on zones aggregated over 8 million zones in just 0.2
seconds.

For reference, the same happens when the area of aggregation is a polygon. The example in Table
42 shows the zones used for querying the area covered by ACT itself:

Table 42. Query construction with parent and child features in both TB16Pix and H3, at resolution

116

levels 7 and 8, for a simplified version of the ACT polygon.

Resolution TB16Pix H3

7

8

In future implementations it might be interesting to allow specifying two different resolutions, a
target resolution for aggregation, and a resolution used to approximate the area of interest as a list
of DGGS zones. This is important as the lower resolution levels of a DGGS data set might have been
computed using average, while the statistic of interest might be the minimum and the maximum,
which would be lost by querying the lower resolution levels.

[15] DGGS zones can be converted into a multi-band raster using the appropriate space filling curve, and then stored, for example,
as tiled, compressed TIFFs.

[16] Reference system used a AMD Ryzen 1700x, 8 core, 32GB of RAM, 512GB of NvME SSD storage. It is believed that, to reach this
performance, the actual data was cached in memory by either the database or the operating system.

117

Chapter 10. DGGS Demo Client
OpenWork Ltd, on behalf of Manaaki Whenua Landcare Research delivered the D138 DGGS Demo
Client - Client application with DGGS API support and capable of demonstrating DGGS capabilities.
These open-source clients provide visualization of DGGS encoded data based on the TB16Pix DGGS
RS, at various zoom levels. They also interact with D139 DGGS-enabled data services with an OGC
API endpoint that understands ZoneIDs as spatial filters. Preliminary capability to consume data
from D137 DGGS Server Implementation was also demonstrated. Viewer code is available at
https://git.nzoss.org.nz/openwork/pydggin.

10.1. Background - Choice to create a native DGGS
viewer
The decision was made early to develop a DGGS native viewer. While extending an existing map-
viewer was considered, the participants felt that to do so would limit demonstrating advantages
that DGGS provides potential new data viewing platforms. While using tools such as Leaflet to view
DGGS data is possible, doing so would undermine DGGS’s simplicity. This is because there is no
need in DGGS for viewers to address the complexity of projecting coordinate pairs onto a flat
screen. Support for conversion of coordinate pair geometries is central to existing map-viewers, but
not required for DGGS. The hope is that creation of a native viewer in this testbed would illustrate
how simple and lightweight such a viewer could be.

The problem the participants wished to avoid was making DGGS seem harder to use than it is.
Retrofitting existing coordinate-pair based viewers to also support DGGS data requires a heavier
platform with more code. This approach would not illustrate the simplicity of DGGS nor the
lightweight viewing platforms believed possible when using ZoneIDs as geometry. The participants
wished to illustrate how using ZoneIDs as geometry could allow the creation of tools that are more
lightweight and easier to develop than those based on a coordinate pair paradigm.

The viewers developed demonstrate the ability to view DGGS data only for rHEALPix data whose
base geometry is square. This simplified viewer development for the purposes of the Testbed. This
same approach could be applied to the two DGGS geometries (hexagons and triangles). The
mathematics involved in mapping the zones to a screen would be somewhat more complex but not
unreasonably so. The participants recommend this be addressed in future testbeds.

10.2. Theory and logic behind the native DGGS viewers
What does DGGS native mean?

1. Use of ZoneIDs to describe both location and geometry.

2. ZoneIDs also provide geographic index.

3. No requirement for use coordinate pairs to describe geometry.

Theoretic advantages of DGGS native?

1. Speed and simplicity:

118

https://git.nzoss.org.nz/openwork/pydggin

a. Because there is no need to support scan line (vector) algorithms [https://en.wikipedia.org/wiki/

Scanline_rendering].

b. Lightweight – can run on very small platforms and large variety of devices.

c. Proven scalability.

2. Translating data to the screen is easier:

a. At least within a single face.

b. Less distance between the thing and its geographic description – no calculation required in
order to know where to place on screen.

3. Easier to link location data:

a. ZoneIDs can be used as true identifiers in RDF.

b. Geometries are described by sets of ZoneIDs that naturally translate into RDF.

c. Preservation of scale – no zero-dimension points.

4. Easier to perform spatial analysis:

a. Set theory rather than scan line (vector) algorithms simplifies mathematics.

b. The lack of zero-dimension points simplifies DE-9IM algorithms.

10.2.1. Examples

Table 43. EXAMPLE - description of Vector Analysis types and related DGGS equivalents

Type Precision Operation Performance Special requirements

BBox overlay Low - limited
to minimum
bounding box
in projected
space

Geometric Fast Common projection

High as
desired -
based on
footprint of
ZoneIDs

Set theory Veryfast Common DGGS RS

Ringfence High - but
unknown (0
dimension
points)

Scan line
(vector)
algorithms

Data,
Software and
hardware
dependent -
at least
loglinear

GIS software

Variable - but
known (DGGS
zone area)

Set theory Fast and
Constant

Common DGGS RS

119

https://en.wikipedia.org/wiki/Scanline_rendering

Type Precision Operation Performance Special requirements

Overlay
analysis

Variable -
unknown (0
dimension
points)

Scan line
(vector)
algorithms

Data,
Software and
hardware
dependent -
at least
loglinear

GIS software

Variable - but
known (DGGS
zone area)

Set theory Fast and at
most Linear

Common DGGS RS

10.3. Client implementation
Building the client went through four iterations:

1. The first client was a C program that rendered multi-resolution DGGS geometries cropped to a
given ancestor zone ID. The zones in this viewer may be assigned a color individually or
collectively. The viewer parses input to an attributed trie, selects a subtrie, and uses a trivial
recursive function to convert that to an image via Cairo Vector Graphics
[https://www.cairographics.org/].

2. An interactive viewer wrapped this C program to enable navigating between DGGS zones using
the keyboard. This showed only one ZoneID onscreen, with the arrow keys triggering it to
recompute which ZoneID that should be by zooming in/out or navigating up/down/left/right.

3. For a nicer interactive viewer a tiled map viewer enabling pan and zoom using the mouse was
created. This calls the C renderer for more complicated geometry. This updated a central ZoneID
and its screen size to respond to mouse gestures.

4. To demonstrate geospatial analysis capabilities in DGGS clients, a fourth viewer was created
that integrates into Jupyter notebooks. This essentially works the same as the first viewer, but
with added DE-9IM operators that can be called from Python. The DE-9IM operators are
reimplemented directly upon the trie [https://en.wikipedia.org/wiki/Trie] in Python, saving a format
conversion and effort of exposing our existing DGGS DE-9IM analysis library to Python.

10.4. Viewers
1. PyDGGin.py [https://git.nzoss.org.nz/openwork/pydggin/-/blob/master/pydggin.py] - A python desktop tool

for viewing DGGS data. Meets the requirements of the testbed to pan, zoom and identify.

a. dggs-render (render.c) [https://git.nzoss.org.nz/openwork/pydggin/-/blob/master/render.c] - C library to
render and process rHEALPix DGGS data. Utilised by Pydggin.

2. Jupyter notebook DGGS viewer [https://git.nzoss.org.nz/openwork/pydggin/-/blob/master/render.py] - To
demonstrate the ability of a DGGS client to do spatial calculations on TB16Pix DGGS data.

a. reimplements the dggs-render and libDGGS [https://git.nzoss.org.nz/openwork/libdggs] libraries in
python.

120

https://www.cairographics.org/
https://en.wikipedia.org/wiki/Trie
https://git.nzoss.org.nz/openwork/pydggin/-/blob/master/pydggin.py
https://git.nzoss.org.nz/openwork/pydggin/-/blob/master/render.c
https://git.nzoss.org.nz/openwork/pydggin/-/blob/master/render.py
https://git.nzoss.org.nz/openwork/libdggs

10.4.1. How do the viewers work? Paint by numbers

1. Zone-ids (and their corresponding geometries) are placed on the display based on a parent
zone-id of a given pixel size.

2. This process is repeated recursively for all the zone’s children and in turn grandchildren, etc.

3. Multi-resolution DGGS geometries are rendered and cropped to a given ancestor zone ID.

4. Location of parents, children, grandchildren, etc. are also known and predetermined.

5. Data other than image tiles are reformatted into a common "Indental" format.

6. Data is parsed from these Indental files into a trie for the rendering process to traverse.

Figure 28. DGGS Level 5 Grid

Figure 29. DGGS Level 7 Grid

10.4.2. PyDGGin.py

PyDGGin.py is a desktop native DGGS navigator written in Python. It currently only supports

121

rHealPIX DGGS RS. Future work is recommended to support additional DGGS RS. PyDGGin relies on
custom the C libraries in render.c for composing tiled imagery.

Figure 30. PyDGGin View Window

Figure 31. PyDGGin Command Line

Command line arguments in PyDGGin determine which layers are loaded and in what order. A
central ZoneID prefixed with a "-" determines the starting position and zoom level. Styling is
predetermined in the code. Clicking on a location returns details about the data and ZoneIDs to the
command line. There is no ability to interact with the data or interface beyond identify, pan and
zoom using a mouse.

The original version of PyDGGin was built using the pyGame [https://www.pygame.org/] libraries. Later
the participants migrated to Pyglet [http://pyglet.org/] to take advantage of greater hardware
optimizations (batch render). It was also assumed that it might help with some transparency issues
but those turned out to be caching issues instead.

122

https://www.pygame.org/
http://pyglet.org/

To provide and update the display in PyDGGin, the central ZoneID, coordinate offset, and tile size
are tracked and updated by mouse events. After these events all the other onscreen ZoneIDs are
computed and composited to render the view. An early attempt tried to convert from a single layer-
grid to a multi-layer grid rather than track the central ZoneID, but that turned out to be especially
"buggy" when dealing with the poles or when zooming.

10.4.2.1. Challenges

The main difficulties were in figuring out how to use the graphics libraries effectively to composite
layers together. Issues specific to DGGS were less problematic.

The original challenge was how to display an indexed DGGS fabric on the screen. To simplify things,
the testbed participants only tested support for TB16Pix. The first issue, which proved relatively
easy to resolve was nested tessellation. Recursion based on the properties of the space filling curve
indexing of TB16Pix was easy to translate into code.

The next issue, provision of a slippy map interface, proved to be somewhat more difficult.
Traversing the primary faces of the base polyhedron was a challenge - especially when tiling across
equatorial to polar faces. While not demonstrated here a solution was devised. This requires
further testing and development. There were a few major issues when navigating across a
relatively flat plane of a single face.

Lack of native DGGS data was a major barrier to development of the viewer. Reliance on converted
traditional GIS data created significant overhead. Some conversion issues by relatively young and
untested existing tools created further complications which required some manual interventions.
Development and use of DGGS native data formats in future testbeds is recommended. DGGS data
issues are more deeply discussed in the next section.

1. Other Miscellaneous Issues – PyDGGin

a. Projection translation issues – greatest at poles with "dart" and "trapezoidal" zones (when
viewed in WGS 84 or similar).

b. Performance – speed and display issues.

i. Most issues likely relate to unfamiliarity with graphics tools.

ii. Slow load times from web services.

c. Styling improvements needed.

d. No tool bars and info boxes – currently.

2. Render.c

a. Simple recursive rendering routine parses data formats into a trie. Requires optimization.

i. Currently specific to rHealPIX. Requires refactoring testing to support other DGGS RS.

ii. Other DGGS RS can have their own recursive routines with details to suit.

iii. Formats – current formats done for convenience - need further work in future Testbeds.

123

10.5. Jupyter Notebook DGGS
In addition to PyDGGin a second viewer integrated into Jupyter Notebook was developed. This
second viewer went beyond the requirements of this Testbed and demonstrates DGGS analysis
capability by supporting native DGGS DE-9IM operators. Testing to date has been very limited. This
viewer provides a good platform for more development in future Testbeds.

Jupyter notebook incorporates the same principles as most of the other renderers, outputting a PNG
image for Jupyter Notebooks to display. The DGGS DE-9IM operations are performed directly on the
same trie data-structure used for rendering.

Figure 32. Jupyter Notebook DGGS

10.6. Data
PyDGGin and Jupyter Notebook DGGS both support multiple formats for DGGS data.

For initial data an indentation-based ".indental" format listing features and their (indented)
ZoneIDs was used. Indented beneath either of those can be specified rendering parameters and
other properties.

For a backdrop, an argument of a template filepath (ending in "?.png") to a directory of image files
named for each ZoneID was accepted. PyDGGin will replace the "?" with the ZoneID for which it
needs an image. PyDDGin retrieves matches from this directory and populates the viewer with
these. For the purposes of the TB16Pix DGGS clients, existing rHEALPix libraries to convert
coordinate pair data to DGGS were used. ScenzGrid-py [https://github.com/manaakiwhenua/scenzgrid-py]
was also utilized to create a mosaic of image tiles as a backdrop using rHEALPix libraries. Initially
some discrepancies were found in the processes for conversion of coordinate pairs to zone-ids.
These were resolved by tiling the original WGS 84 data rather than the re-projected version that the

124

https://github.com/manaakiwhenua/scenzgrid-py

ScenzGrid-py created. This worked in this instance because the projection for this face of the
TB16Pix was also WGS84. The error would need correcting if we are to use the ScenzGrid-py
software for other situations.

Figure 33. Structured Image Directory contents

The second format implemented was a CSV format with at least 2 columns. The first column was a
name for the feature, while the second had space-separated ZoneIDs. For rendering this was pre-
processed into an ".indental" file with consistent rendering parameters.

125

Figure 34. ".indental" File for CSV or Http from D139

Then support for more complex JSON & RDF-based formats added. This was translated into
".indental". Both the RDF-based and JSON-based formats were supported as downloads from a
webservice. Sample Sentinel 2 data was provided by the GeoSolutions delivered D137 DGGS Server
Implementation as JSON.

126

Figure 35. ".indental" File for Sentinel 2 JSON data

This Testbed work proved the ability to consume live feeds of RDF data from SURROUND’s D139
OGC API - Feature oriented API service. JSON feeds from GeoSolutions, while yet to be made
available, were successfully tested on sample output data.

An immediate issue for building DGGS native viewers is the dearth of DGGS data available. Until
such a time that spatial data is captured with zone-ids as geometry, there will be a need to re-
project traditional GIS data to a DGGS RS suitable for the viewer. The participants recommend that
future DGGS testbeds include DGGS data capture clients which use DGGS zone-ids for location and
geometry.

Any tool is only as good as the data that goes into it. As conversion between coordinate systems is a
fundamental principle of GIS, it is important that these conversion tools be as robust and fool-proof

127

as possible. Further development and testing of such tools to support a full range of DGGS RS
should be a focus of future work.

DGGS Data Format

For the purposes of development, the ".indental" format was created using TB16Pix data to test
the viewer. This format was used to hold a variety of different data, both real and mock. While it
seems suitable as a temporary file format, its ability to hold wide variety of data is yet to be
tested. As shown above, these ".indental" files hold names, attributes, styles and geometries (as
ZoneIDs). Therefore, this is considered to be very much an alpha format that could be used for
data exchange. Future work is needed to test and refine DGGS data exchange formats.

Data Types

The DGGS viewers were designed to demonstrate the ability to share multiple types of data using
a DGGS to describe location. The types of data demonstrated in the viewers include tiled imagery
as backdrop, points as single ZoneIds, and polygons as multiple ZoneIds. One possibility is that
for many cases, pre-conversion of existing GIS data to DGGS formats, or the capture and storage
of data in DGGS formats is the most efficient solution.

10.7. DGGS API Queries
As per the Testbed-16 CFP, one of the purposes of D138 DGGS Demo Client is to test the utility of
APIs developed in D139 and to a lesser extent, D137. However, to support DGGS viewers only a
small subset of the API functionality provided by these servers proved to be needed. The DGGS
specific API parameters required by these viewers were limited to zones (or bounding box) to allow
a filter by one or more Zone IDs, and resolution to limit the returned data to a particular DGGS
level. Other more generic API parameters used supported the MIME type and profile selection and
paging functionality.

In testing the D138 clients, data was retrieved from two different APIs. The first D139 delivered
feature type data, catchments and statistical area boundaries for the Australian Capital Territory.
An example URI for this service was:

http://asgs.surroundaustralia.com/collections/SA1s/items?per_page=40&page=3&bbox=P6730

The following header information was included in this request:

_HEADERS = {
 "Accept": "text/turtle",
 "Accept-Profile": "<http://www.opengis.net/ont/geosparql>",
 "User-Agent": "PyDGGin"
 }

The second API provided Sentinel 2 image data for the same region. This was developed by
GeoSolutions as part of their D137 DGGS Server API development requirements. This request was
based on the request GET /collections/{collectionId}/zones as described previously. An example
URI for this service was:

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/zones?f=application/

128

http://asgs.surroundaustralia.com/collections/SA1s/items?per_page=40&page=3&bbox=P6730
https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/zones?f=application/dggs+json&limit=5000&resolution=8&zones=P6730,P6652,P6651,P6731&startIndex=5000

dggs+json&limit=5000&resolution=8&zones=P6730,P6652,P6651,P6731&startIndex=5000

No header information was included in this request.

The differences between these APIs from the client perspective is summarized in the table below:

Table 44. Comparison of two DGGS APIs

Query Type Surround
Ltd

example GeoSolution
s

example Notes

Zone Filter bbox [0..1] P6730 zones [0..*] P6730,P6652,
P6651

Resolution na resolution 7 Not required for data from
Surround server

MIME type Accept
(header info)

"text/turtle" f application/
dggs+json

GeoSolutions combined
MIME type and Profile in a
custom MIME type

Profile Accept-
Profile
(header info)

geosparql na Surround supports Conneg
by profile

Start page page 3 startIndex 5000 Paging support

Number of
records

per_page 40 limit 5000 Paging support

From the perspective of the client developers, it would be helpful to have better agreement
between the API semantics.

10.8. Client Enhancements and Future Work
An immediate improvement that the D138 team continues to work on is the creation of a
configuration script by which to launch a Pyddgin.py viewer. Such a script would include:

1. URIs of data to load into the viewer

2. Parameters to apply to each layer

3. Basic styling instructions (RGB color and transparency)

a. Styling instructions based on attributes.

b. (Current styling instructions are hard coded in the application.)

Future requirements to support enhance client viewer functionality include:

1. A method to convey DGGS RS information with the Zone IDs

2. Support for DGGS Data Type as API attribute

3. An API method to specify feature attribute to return

4. CSS based styling support

129

https://tb16.geo-solutions.it/geoserver/ogc/dggs/collections/dggs:s2-rpix/zones?f=application/dggs+json&limit=5000&resolution=8&zones=P6730,P6652,P6651,P6731&startIndex=5000

5. Advanced styling options – (see Cairo reference)

a. Outlines - Dashing, Thickness, Smoothing

b. Crop fill to outline

c. Hashing, Gradients, Image fill support

d. Compound styles

130

Chapter 11. DGGS Enabled Data Services
D139 DGGS Enabled Data Services - DGGS-enabled data services, i.e. either OGC API endpoints or
OGC W*S services that understand ZoneIDs as spatial filters. The services can use the DGGS
reference implementation library from D137 to convert ZoneIDs to geographic filters, or implement
the same DGGS to ensure consistent ZoneIDs across D137, D138, and D139. Alternatively, the
instances can make use of the D137 service instance for ZoneID(s) to geographic location
conversion.

11.1. OGC API - Features instances
Three instances of the OGC LD API were implemented:

1. TB16Pix Ref - TB16Pix Reference Dataset

◦ Delivers the Zones and Cells of the TB16Pix dataset, i.e. each of its Grids from Grid 0 to Grid
15.

◦ This dataset contains no data other than the TB16Pix reference grids.

2. Geofabric - Australian Hydrological Geospatial Fabric

◦ A dataset containing a single Collection of hydrological catchments for Australia covering
the area of the Australian Capital Territory (ACT) only.

◦ ~70 features

3. ASGS - Australian Statistical Geographies Standard

◦ A dataset containing a single Collection of Australian census Statistical Area Level 1 (SA1)
blocks covering the area of the Australian Capital Territory (ACT) only.

◦ ~1,000 features

11.1.1. TB16Pix Ref

Content served by this API instance is mostly generated 'on the fly' by the rHEALPix Python package
[6]. The API has a static list of DGGS Grid instances from refinement level 0 to 15 (of a potentially
infinite set of grids, getting ever more fine). Each Grid is presented as an OGC API Collection
instance.

The persistent identifier of https://w3id.org/dggs/tb16pix-api was allocated to the API. Therefore
the API landing page is at https://w3id.org/dggs/tb16pix-api. The URI redirects to a current system
implementation of https://tb16pix.dggs.org, but this is not guaranteed to persist.

URIs for this dataset for the Dataset (landing page), API description, Collections, a Collection, a
Collections Items and a Item (a Feature) are given in the table below. Also given are the Zone’s
TB16Pix Geometry (trivially a textual representation of the Zone ID) in a pseudo Well-Known Text
(WKT) [7] geometry representation format.

Table 45. TB16Pix API Endpoint summary

URI Description

131

https://w3id.org/dggs/tb16pix-api
https://tb16pix.dggs.org

https://w3id.org/dggs/tb16pix-api OGC API Landing Page. Also delivers dataset
descriptions by ConnegP

https://w3id.org/dggs/tb16pix-api/spec OGC API specification

https://w3id.org/dggs/tb16pix-api/doc Open API Documentation for this OGC LD API

https://w3id.org/dggs/tb16pix-api/conformance Conformance Classes conformed to by this API

https://w3id.org/dggs/tb16pix-api/collections Collections - the TB16Pix Grid instances, 0 - 15

https://w3id.org/dggs/tb16pix-api/collections/g2 The Grid 2 Collection

https://w3id.org/dggs/tb16pix-api/collections/g2/
items

Features (Zones) within the Grid 2 Collection

https://w3id.org/dggs/tb16pix-api/collections/g2/
items/N03

Zone N03

For each Collection, such as TB16Pix Grid, the list of contained Feature instances, such as Zones was
calculated by rHEALPixDGGS [6] and listed on its Features page.

For each Feature, (TB16Pix Zone, Parent, Neighbour and Children Zones) were calculated by
rHEALPixDGGS [6] and links to them delivered on a Zone’s description page.

11.1.2. Geofabric

Content for this API instance is taken from the LocI Project’s (http://loci.cat/) implementation of the
Geofabric Surface Network V2.1.1 dataset (https://data.gov.au/dataset/ds-dga-7bd1ca77-86d3-4e22-
bc56-baccadf7bf42). WGS84 polygonal geometries for Contracted Catchment features that cover the
area of the ACT were converted to TB16Pix geometries and both geometries are presented by the
API, side-by-side, for each feature.

Geometry conversion was done using a modified version of the rHEALPixDGGS software [6]. The
modifications resulted in a new version of the software.

For content views that support multiple geometries (all views in the API, other than GeoJSON), the
geometries are linked to the feature via GeoSPARQL [3] ontology constructs.

The persistent identifier https://w3id.org/dggs/geofabric-api was allocated to the API, thus its
landing page is at https://w3id.org/dggs/geofabric-api. The URI redirects to a current system
implementation of https://geofabric.surroundaustralia.com, but this is not guaranteed to persist.

URIs for this dataset for the Dataset (landing page), API description, Collections, a Collection, a
Collections Items and an Item (a Feature) are given in the table below.

Table 46. Geofabric API Endpoint summary

URI Description

https://w3id.org/dggs/geofabric-api OGC API Landing Page. Also delivers dataset
descriptions by ConnegP

https://w3id.org/dggs/geofabric-api/spec OGC API specification

https://w3id.org/dggs/geofabric-api/doc Open API Documentation for this OGC LD API

132

https://w3id.org/dggs/tb16pix-api
https://w3id.org/dggs/tb16pix-api/spec
https://w3id.org/dggs/tb16pix-api/doc
https://w3id.org/dggs/tb16pix-api/conformance
https://w3id.org/dggs/tb16pix-api/collections
https://w3id.org/dggs/tb16pix-api/collections/g2
https://w3id.org/dggs/tb16pix-api/collections/g2/items
https://w3id.org/dggs/tb16pix-api/collections/g2/items
https://w3id.org/dggs/tb16pix-api/collections/g2/items/N03
https://w3id.org/dggs/tb16pix-api/collections/g2/items/N03
http://loci.cat/
https://data.gov.au/dataset/ds-dga-7bd1ca77-86d3-4e22-bc56-baccadf7bf42
https://data.gov.au/dataset/ds-dga-7bd1ca77-86d3-4e22-bc56-baccadf7bf42
https://w3id.org/dggs/geofabric-api
https://geofabric.surroundaustralia.com
https://w3id.org/dggs/geofabric-api
https://w3id.org/dggs/geofabric-api/spec
https://w3id.org/dggs/geofabric-api/doc

https://w3id.org/dggs/geofabric-api/conformance Conformance Classes conformed to by this API

https://w3id.org/dggs/geofabric-api/collections Collections - the single Collection Contracted
Catchments (ACT Only) is presently available

https://w3id.org/dggs/geofabric-api/collections/
CC

The Contracted Catchments (ACT Only) Collection

https://w3id.org/dggs/geofabric-api/collections/
CC/items

Features within the Contracted Catchments (ACT
Only) Collection

https://w3id.org/dggs/geofabric-api/collections/
CC/items/12104851

Catchment 12104851

11.1.3. ASGS

Content for this API instance is taken from the LocI Project’s (http://loci.cat/) implementation of the
ASGS (2016 Edition) - Boundaries dataset (https://data.gov.au/dataset/ds-dga-32adc1ef-5bac-4eaa-
9521-a116792f32a1). WGS84 polygonal geometries for Statistical Area Level 1 (SA1) features that
cover the area of the ACT were converted to TB16Pix geometries and both geometries are presented
by the API, side-by-side, for each feature.

Geometry conversion was done, as per the Geofabric data, using rHEALPixDGGS software [6].
Feature/Geometry links were made, as per the Geofabric data, via GeoSPARQL [3] ontology
constructs.

The persistent identifier https://w3id.org/dggs/geofabric-api was allocated to the API, thus its
landing page is at https://w3id.org/dggs/geofabric-api. The URI redirects to a current system
implementation of https://geofabric.surroundaustralia.com, but this is not guaranteed to persist.

URIs for this dataset for the Dataset (landing page), API description, Collections, a Collection, a
Collections Items and an Item (a Feature) are given in the table below.

Table 47. ASGS API Endpoint summary

URI Description

https://w3id.org/dggs/asgs-api OGC API Landing Page. Also delivers dataset
descriptions by ConnegP

https://w3id.org/dggs/asgs-api/spec OGC API specification

https://w3id.org/dggs/asgs-api/doc Open API Documentation for this OGC LD API

https://w3id.org/dggs/asgs-api/conformance Conformance Classes conformed to by this API

https://w3id.org/dggs/asgs-api/collections Collections - the single Collection SA1s is
presently available

https://w3id.org/dggs/asgs-api/collections/SA1s The SA1s Collection

https://w3id.org/dggs/asgs-api/collections/SA1s/
items

Features (SA1s) within the SA1s Collection

https://w3id.org/dggs/asgs-api/collections/SA1s/
items/80101100101

SA 80101100101

133

https://w3id.org/dggs/geofabric-api/conformance
https://w3id.org/dggs/geofabric-api/collections
https://w3id.org/dggs/geofabric-api/collections/CC
https://w3id.org/dggs/geofabric-api/collections/CC
https://w3id.org/dggs/geofabric-api/collections/CC/items
https://w3id.org/dggs/geofabric-api/collections/CC/items
https://w3id.org/dggs/geofabric-api/collections/CC/items/12104851
https://w3id.org/dggs/geofabric-api/collections/CC/items/12104851
http://loci.cat/
https://data.gov.au/dataset/ds-dga-32adc1ef-5bac-4eaa-9521-a116792f32a1
https://data.gov.au/dataset/ds-dga-32adc1ef-5bac-4eaa-9521-a116792f32a1
https://w3id.org/dggs/geofabric-api
https://geofabric.surroundaustralia.com
https://w3id.org/dggs/asgs-api
https://w3id.org/dggs/asgs-api/spec
https://w3id.org/dggs/asgs-api/doc
https://w3id.org/dggs/asgs-api/conformance
https://w3id.org/dggs/asgs-api/collections
https://w3id.org/dggs/asgs-api/collections/SA1s
https://w3id.org/dggs/asgs-api/collections/SA1s/items
https://w3id.org/dggs/asgs-api/collections/SA1s/items
https://w3id.org/dggs/asgs-api/collections/SA1s/items/80101100101
https://w3id.org/dggs/asgs-api/collections/SA1s/items/80101100101

11.2. OGC API - Features architecture
The following software / service architecture was used to implement the three API instances
described above.

Figure 36. OGC API - Features architecture overview

Progressing through the software stack in the figure above from bottom to top:

• Operating System: The servers used to implement these APIs use Linux (Ubuntu 20.04) as their
Operating System however this stack will work with negligible change on Windows, Mac and
other Linux version Operating Systems. MacOS has also been used in testing.

• Web Server: All requests to the APIs are initially received by a standard HTTP Server
application, such as Apache or nginx. Apache2 is the particular HTTP Server used in all 3
instances.

• mod_wsgi[17]: forwards most HTTP requests to a Python environment via Apache’s mod_wsgi
module which is Apache’s implementation of the WSGI protocol.

• Werkzeug[18]: handles HTTP messages passed to it via mod_wsgi and, in turn, passes messages
on to Python’s Flask "web framework". This package is available freely via the Python Package
Index (PyPI) but is usually installed automatically when Flask is installed.

• Flask[19]: provides the definitions of API endpoints and links requests to particular resources, for
instance it links most requests for HTML responses to Jinja2 templates. Jinja2 is another Python
package. This package is available freely via PyPI.

134

• Flask additions: Flask, as implemented here, also uses a number of small plugins for HTTP
security and other standard Flask operations. All these Flask "plugin" packages are available
freely via PyPI.

• pyLDAPI[20]: rests on top of Flask and is a python package supplying a framework within Flask’s
framework for the handling of Linked Data-style HTTP requests. Specifically here this means
the handling of HTTP requests in accordance with Content Negotiation by Profile where
different HTTP Media Types may be specified and data requested according to different profiles
(specifications). This package is available freely via PyPI.

• OGCLDAPI Framework[21]: is the the final framework in use. It was developed partly for this
Testbed. It is an instance of pyLDAPI that provides specific endpoints and return formats and
content in accordance with the OGC API Features specification. This package is not yet available
via PyPI but may become so, after further refactoring. Currently it is available via GitHub as a
Git Repository.

• RDFlib[22]: Both pyLDAPI and OGCLDAPI Framework are heavily dependent on the Resource
Description Framework (RDF) manipulation Python package RDFlib which is also available
freely on PyPI.

• Instance Data: The OGCLDAPI Framework, via pyLDAPI & RDFlib accesses RDF data made
available to it via RDFlib’s Graph class. In two of the three instances here, ASGS & Geofabric, the
RDF content is stored in an RDF database - a triplestore - and accessed via an API. Both ASGS &
Geofabric use the GraphDB triplestore and access data via SPARQL queries posed to its API
through RDFlib’s Graph class’s Store interface. The third instance, TB16Pix Ref, doesn’t use a
triplestore for data storage as it generates responses to queries on the fly, using the
rHEALPixDGGS Python package. The responses from rHEALPixDGGS are often encoded in RDF.

• rHEALPixDGGS[23]: is a Python Package freely available on PyPI and calculates relations
between rHEALPix (and this TB16Pix) elements. rHEALPixDGGS is dependent on a number of
standard scientific Python packages such as_numpy_, all of which are available for free on PyPI.

• GraphDB[24]: the RDF triplestore and its API are available from its vendor’s website. The free
edition is used for these instances.

The Python dependencies of the API are summarized and machine-installable within the OGCLDAPI
Framework's requirements.txt file which can be used in conjunction with PyPI. This file is found,
with installation instructions, within the OGCLDAPI Framework's version control repository (see
link above).

11.3. Supporting Assets
To support these deployments of the OGC API - Features instances accessing DGGS content, a
number of semantic assets where generated that describe the data models used within the APIs'
data sources. This was required for the APIs also and defined, as supersets of the core OGC API -
Features data model. These assets, as well as the API Framework, test client and API instances, were
listed in a temporary DGGS catalogue, online at https://w3id.org/dggs/cat.

11.3.1. Supporting software tools

Within the DGGS catalogue, the following non-API instances of software assets relevant to these API

135

https://w3id.org/dggs/cat

instances' deployment are listed:

Table 48. DGGS Software Assets

URI Title Description Role

https://w3id.org/dggs/
cat

DGGS Catalogue A DCAT2-compatable
Dataset containing a
catalogue of things,
such as services,
dataset, models,
vocabularies, relating
to Discrete Global Grid
systems

This lists all the DGGS
software, API instances
and semantic assets
described in this
chapter of this report

https://w3id.org/dggs/
rhealpixdggs

rHEALPix Discrete
Global Grid System
software

rearranged HEALPix
DGGS - the rHEALPix
DGGS software library

This software is used to
calculate the TB16Pix
Zone IDs within the
TB16Pix dataset for
delivery by the TB16Pix
Ref API

https://w3id.org/dggs/
dggsgv

DGGS Geometry
Validator

A Python library for
validating multiple
DGGS geometry literal
values

To validate DGGS
literals independent
from any other API or
implementation system
that needs to produce
or consume them

11.3.2. Semantic Assets

Within the DGGS catalogue, the following semantic assets relevant to these API instances'
deployment are listed

Table 49. DGGS Semantic Assets

URI Title Description Role Ref

https://w3id.org/
dggs/as

DGGS Abstract
Specification
Ontology

An ontology
describing the
parts of a Discreet
Global Grid
System in
Semantic Web
terms, derived
from the OGC’s
DGGS Abstract
Specification

This ontology is
needed to allow
the OGC LD APIs
to deliver
Semantic Web
(RDF) data and
also to map
between DGGS
Abstract
Specification
elements and API
elements

[8]

136

https://w3id.org/dggs/cat
https://w3id.org/dggs/cat
https://w3id.org/dggs/rhealpixdggs
https://w3id.org/dggs/rhealpixdggs
https://w3id.org/dggs/dggsgv
https://w3id.org/dggs/dggsgv
https://w3id.org/dggs/as
https://w3id.org/dggs/as

https://w3id.org/
dggs/as-terms

DGGS Abstract
Specification 2.0
Terms and
definitions
vocabulary

Terms,
represented as
Simple Knowledge
Organization
System (SKOS)
Concepts, from
Section 4 of the
Discrete Global
Grid Abstract
Specification,
version 2.0

Presents the DGGS
Abstract
Specification
terms in machine-
readable format so
they can be
accessed within
Semantic Web
applications. The
OGC API’s
definitions for
objects such as
Feature are linked
to these
definitions

[9]

The following semantic assets were not created for these API deployments but are relied on by
them:

Table 50. Semantic Assets Depended Upon

URI Title Description Role Ref

http://www.opengi
s.net/doc/IS/
geosparql/1.0

OGC GeoSPARQL -
A Geographic
Query Language
for RDF Data

An RDF/OWL
vocabulary for
representing
spatial
information

The ontology used
for the most basic
(fundamental)
Semantic Web
representations of
Feature and
Geometry objects.
The DGGS
element-to-
GeoSPARQL
mapping is
contained in the
DGGS Abstract
Specification
Ontology (see
above)

[3]

137

https://w3id.org/dggs/as-terms
https://w3id.org/dggs/as-terms
http://www.opengis.net/doc/IS/geosparql/1.0
http://www.opengis.net/doc/IS/geosparql/1.0
http://www.opengis.net/doc/IS/geosparql/1.0

https://linked.data.
gov.au/def/geox

GeoSPARQL
Extensions
Ontology

An extension to
GeoSPARQL with
new features for
the representation
of additional
elements of
feature geometry,
such as spatial-
resolution, length,
area and volume.

Needed for
properties such as
asDGG which link a
(Semantic Web)
representation of
a Geometry to its
literal
representation.
GeoSPARQL on its
own doesn’t
contain all the
properties needed
for this. This
ontology has been
extended with
TB16 DGGS work
in mind and
informs
GeoSPARQL
1.1revision

[4]

http://www.w3.org
/ns/dx/conneg/altr

Alternative
Profiles Ontology

This ontology
allows for the
description of
representations of
Internet resources

Use by the OGC LD
API
implementations
to communicate
their various
profile views of
objects. See, for
any OGC API
instance above:
{Feature
URI}?_profile=alt

[10]

11.3.2.1. DGGS Abstract Specification Ontology

The DGGS Abstract Specification Ontology was created to provide a bridge between DGGS and
systems such as GeoSPARQL [3] for which it is necessary to have Semantic Web definitions of
elements.

Figure 35, taken from the ontology’s HTML documentation, gives an overview of the ontology’s
classes and properties.

138

https://linked.data.gov.au/def/geox
https://linked.data.gov.au/def/geox
http://www.w3.org/ns/dx/conneg/altr
http://www.w3.org/ns/dx/conneg/altr

Figure 37. DGGS Abstract Specification overview

The Ontology is a profile of GeoSPARQL and interprets DGGS Grid, Zone & Cell concepts within the
GeoSPARQL Feature/Geometry framework: a Zone is a specialized Feature etc. Nothing in GeosPARQL
corresponds to the notion of a feature collection so there is no GeoSPARQL generic version of a
DGGS Grid.

The modelling experience in this Testbed was straightforward: major DGGS elements can be housed
fairly uncontroversially within GeoSPARQL, however refinement of this ontology will be needed as
GeoSPARQL itself undergoes updates (the GeoSPARQL Standards Working Group is working on a
next version coincidentally with this Testbed but GeoSPARQL 1.1 is expected only approximately 6
months after the Testbed concludes) and as the DGGS AS 2.0 is published. Additionally, there is
known work to better reuse elements of fundamental spatial ontologies within this ontology for
generic concepts that have, currently been defined within the ontology, such as Datum - a reference
frame that realizes the positions of the origin, the scale, and the orientation of a coordinate system.

11.3.2.2. DGGS Abstract Specification 2.0 Terms and definitions vocabulary

The DGGS Abstract Specification v2.0 (DGGS AS) vocabulary was derived directly from the terms
and definitions provided in the draft Topic 21 DGGS Abstract Specification v2.0 however it is
presented in Semantic Web terms, according to the widely used SKOS model for vocabularies [25].

Publication in this way allows machine-readable forms of AS element definitions and will assist
with OGC APIs for terms delivered in this way can be individually referenced in API data. This
means when an API communicates a term, the API needs just link to the vocabulary element rather
than storing, and duplicating, the vocabulary’s content or linking to the entire vocabulary or
specification.

The OGC presents many specifications' terms as SKOS vocabularies via its Naming Authority

139

however there is currently no automated or even specified workflow to generate such semantic
assets from the specification documents.

[17] https://modwsgi.readthedocs.io

[18] https://pypi.org/project/Werkzeug/

[19] https://pypi.org/project/Flask/

[20] https://pypi.org/project/pyldapi/

[21] https://w3id.org/dggs/ogcldapi

[22] https://pypi.org/project/rdflib/

[23] https://pypi.org/project/rHEALPixDGGS/

[24] https://graphdb.ontotext.com

[25] https://www.w3.org/TR/skos-reference/

140

https://modwsgi.readthedocs.io
https://pypi.org/project/Werkzeug/
https://pypi.org/project/Flask/
https://pypi.org/project/pyldapi/
https://w3id.org/dggs/ogcldapi
https://pypi.org/project/rdflib/
https://pypi.org/project/rHEALPixDGGS/
https://graphdb.ontotext.com
https://www.w3.org/TR/skos-reference/

Chapter 12. Future Tasks
Testbed-16 provided an opportunity to help highlight and bring into focus specific activities and
actions that need to be undertaken to support the increased and widespread implementation and
adoption of standardized DGGS technologies across the geospatial sector. These include (but are not
limited to) the following:

1. Maturing DGGS Reference Library Implementations to bring them into conformance with OGC
Topic 21 v2.0;

2. Drafting and elaboration of OGC APIs for DGGS;

3. Exploring the opportunities and limitations of DGGS driven analytics;

4. Implementation of OGC Registries for DGGS Implementations and DGGS enabled data services;

5. Targeted DGGS Interoperability Experiments.

12.1. Maturing DGGS Reference libraries to meet
community & future testbed needs
Table 1 provides a list of open-source and proprietary reference DGGS libraries. Because these
DGGS libraries were developed prior to the publication of OGC Abstract Specification Topic 21 v2.0
(ISO/DIS 19170-1) there are likely to be inconsistencies between these DGGS libraries and the
conformance classes of the soon to be published version of the Core DGGS Standard. This provides a
driver for DGGS developers to improve these reference libraries to bring them into alignment with
the new conformance classes described by the new DGGS Standard.

There is an opportunity through the OGC Innovation Program (through Testbeds, Pilots and
Interoperability Experiments) to support this work and to enable further improvements to be made
to the OGC/ISO DGGS Standards suite based on the experience of implementing these standards.

Based on the outcomes from this Testbed activity the following DGGS implementation development
tasks have been identified as potential tasks for inclusion in future OGC Innovation Program
activities:

12.1.1. Development tasks identified for H3

1. H3 does not enforce precise equal area constraints on zones across the globe, nor does it
currently support higher dimensional DGGS Reference System specifications. This could be
improved by the following development tasks:

a. Inclusion of a method/function to enforce equal area zones to a prescribed level of
precision;

b. Extension of H3 to support 3D (volumetric) and 2D/3D+T (spatio-temporal) DGGS Reference
System specifications.

2. An additional, task worthy of consideration (although not critical for H3 to demonstrate
conformance with OGC Topic 21) is the extension of the DGGS hierarchy to include additional
refinement ratios other than 1:7.

141

12.1.2. Development tasks identified for rHEALPix

1. While rHEALPix is perhaps one of the 'most' conformant reference DGGS libraries in relation to
OGC Topic 21 v2.0, there are some specific development tasks that could be undertaken to
extend and improve this library to enable it to be better suited to the requirements of current
and emerging needs.

a. Support for multi-threaded operation to support concurrency scaling, probably through a C
implementation.

b. A native javascript implementation to support front ends that integrate traditional and
DGGS data and cannot just rely on zone identifiers.

c. Extension to 3D and 2D/3D +T DGGS Reference Systems.

d. Examples and tutorials to assist developers in uptake.

12.1.3. Development tasks identified for both H3 and rHEALPix

Separately to the identified areas for individual enhancement of the H3 and rHEALPix DGGS
libraries there are a number of actions identified that will improve the implementation of both
DGGS libraries. These include:

1. The addition of a set of functions that fully align with OGC Topic 21 v2.0 ZoneQuery;

2. Addressing the performance issues identified during Testbed-16;

a. There was an enormous amount of triplicate, quadruplicate, and worse, processing done in
the way that boundary calculations were requested within GeoServer;

3. Identifying functions (other than ZoneQuery) that are candidates for standardization. Such as:

a. A standardized way of defining DGGS RS, e.g. WKT;

b. A standardized way of extracting zone edges as sequences of vertices or centroids of higher
resolution zones; and,

c. Data quantization functions from point, line, polygon, point cloud, raster that explicitly
support quantization roles.

12.1.4. Development tasks relevant to other DGGS libraries

Additional development tasks that are of a more general nature include (inter alia):

1. Identifying and cataloging other existing or emerging DGGS libraries that are candidates for
being DGGS reference libraries.

2. Comparison and contrast of DGGS library characteristics;

3. Determining the effort required to implement DGGS libraries and make them available for
wider use. This recognizes that, many open-source software tools require a significant effort to
integrate them seamlessly into production Spatial Data Infrastructures, and this is even more
visible with DGGS libraries because of the "Big Data" use case scenarios they are suited to.
Organizations seeking to implement DGGS technologies need to be able to clearly understand
the true costs involved with the implementation of these infrastructures.

142

12.2. OGC API(s) for DGGS
The two OGC APIs that were implemented under the DGGS thread in Testbed-16 have some
common characteristics in terms of mapping DGGS on to existing OGC API patterns. There are a
number of questions this work has raised that require further exploration through both the OGC
Standards and OGC Innovation Programs. These include:

1. How widely applicable are the DGGS-centric API patterns to other OGC APIs?

2. Does the simplicity, and generality of the DGGS spatio-temporal data model lead to an
overarching simplicity of OGC API patterns?

a. Can a few spatio-temporal OGC API patterns for DGGS replace the needs of multiple existing
OGC APIs?

b. Is the proposal for a WKT representation for DGGS geometries introduced in Proposal for
OGC WKT for DGGS geometries sufficient?

c. If all the geometries for vector, raster, point-cloud, tiles, maps and social media can be
reduced to small set of geometries, such as those in Proposal for OGC WKT for DGGS
geometries, can a single DGGS variant of OGC API features be used for all feature types?

d. How far can we extend a single set of standardized DGGS processes that can process any
mixture of these geometry types? This could result in a DGGS variant of OGC API - Processes
that included a standardized set of DGGS Processes. These processes could augment the
DGGS Core operations in ZoneQuery to provide both a wider suite of domain agnostic spatial
analytics, and a standardized way of partitioning jobs based on DGGS tiling.

3. DGGS have an explicit discretized spatio-temporal resolution and precision that aligns with the
zone hierarchy, and is exposed in the OGC API - Features and Processes as a structure in the
collections. Giving the user specific and consistent access to precision is therefore an
opportunity that needs further discussion. This is elaborated further in
[DGGS_processing_opportunities] below.

While the differences between a DGGS-centric (or DGGS enabled) OGC API implementation and
conventional OGC API - Features or Processes implementations are subtle, they are quite distinct.
This distinction, and the opportunity to derive additional spatial data integration capabilities
through DGGS implementations via OGC API mechanisms support the concept of drafting an OGC
API DGGS specification.

This activity should be conducted with close coordination between the DGGS SWG and the OGC
Innovation Program activities in a similar fashion to the other OGC API initiatives that are currently
under way.

12.3. DGGS processing opportunities

12.3.1. Pre-built multi-resolution statistics

One of the data processing and analytics considerations discussed by participants of Testbed-16
DGGS thread was the concept of statistical pyramiding of data observations. This involves
storing/mapping the raw data values to DGGS zones at the finest resolution (ZoneLevel) relevant to

143

the data (and its level of precision) and then computing statistical aggregations of those values for
each successive parent Zone until the base DGGS resolution (i.e. ZoneLevel = 0) is reached. DGGS
enabling data in this way provides mechanisms for rapid threshold query filtering of data at lower
resolutions to identify and zoom in on areas of interest in a particular dataset without having to
perform multiple high resolution queries of the entire dataset.

Storing full statistics at every resolution is probably overkill, but storing full statistics at every third
or fourth level could be highly advantageous without costing a great deal of storage. What
constitutes 'full statistics' is probably dependent on the attribute type. For classified data a
histogram of frequency of each value might be sufficient. For continuous surface data the
population distribution (eg Poisson vs normal), mean, standard deviation, min and max might be
appropriate and so forth.

As with all Big Data scenarios, there are some trade-offs for DGGS enabled data
custodians/providers to make in balancing the cost of additional storage that multi-resolution
pyramiding will require against the application and analysis efficiencies gained by the generation
of DGGS enabled lookup tables.

For time critical applications, such as disaster response data integration, the operational benefits
justify the additional storage costs. For other, less time dependant applications, additional
processing time will be an acceptable trade-off in order to minimise data management overheads.
The key thing to note here is that DGGS infrastructures provide the flexibility to traverse between
these two end member data management strategies as operational requirements demand.

This concept could be explored further as part of the OGC DGGS API work; particularly considering
the implementation and standardisation of a DGGS analogue of OGC Tiles API. This analogue DGGS
tiles approach could consider the OGC API implementation of ZoneTags, DataTiles and GraphicTiles
DGGS quantization strategies defined in OGC Topic 21 - Part 1 v2.0.

12.3.2. Just in time precision

A key benefit of DGGS infrastructures is that, unlike conventional GIS infrastructures, there is a
direct and finite precision associated with the DGGS structure (as apposed to a reference to data
precision in metadata). This enables the zones of a DGGS to be used directly to represent the
precision of each observation - even in datasets that contain variable precision data.

The concept of "Just in Time Precision" is related to the ability to drill down through the DGGS zone
hierarchy until the appropriate DGGS resolution (ZoneLevel) is achieved. The principles of
statistical pyramiding of data described in the previous subsection can be applied to the
intermediate DGGS levels; enabling targeted spatial filtering to be achieved based on Zone IDs and
statistical summaries.

This is quite different from traditional approaches to risk, uncertainty, and precision. Traditionally
the data is processed at a predetermined spatial resolution and a result is determined. Then an
additional analysis is done to determine the precision or error bars or statistics associated the
result, and a choice is then made as to caveats that should be given to the result given the purpose
of the analysis.

With the appropriate data architecting this can be achieved on the fly as data is streamed into the

144

DGGS infrastructure. Allowing a flexible association of data at multiple resolutions in a "Just-in-
time" fashion.

DGGS provides the opportunity to include the desired precision of the result in the API.

The processing would start at a coarse spatio-temporal resolution near the top of the hierarchy, and
then traverse down those parts of the hierarchy that need to be processed to determine a result and
stop either when the resolution of the data is reached or when the result is sufficiently precise for
the purpose.

This concept could be explored further as part of the OGC DGGS API work; particularly considering
the implementation and standardisation of a DGGS analogue of OGC Tiles API. This analogue DGGS
tiles approach could consider the OGC API implementation of ZoneTags, DataTiles and GraphicTiles
DGGS quantization strategies defined in OGC Topic 21 - Part 1 v2.0.

Examples of potential use cases include:

• Decision making in disaster response.

• Triaging objects for processing in autonomous navigation.

• Managing a pandemic using a risk based approach, as distinct from a rule based approach.

12.4. DGGS Analytics - What Does that Really Mean?
A well recognised issue with the DGGS standards baseline is that, to date, there have been limited
examples of DGGS infrastructures in action demonstrating data analytics applications. Some
notable exceptions to this have been the PYXIS/Global Grid Systems Inc. and the Uber/Unfolded Inc.
DGGS infrastructures.

With the growing maturity of both the DGGS standards baseline and DGGS implementations
currently being developed by multiple organizations around the world, along with the emergence
of OGC APIs, there is a great opportunity to explore, experiment and standardise a set of common
DGGS analytic functions that can support data integration into and across multiple DGGS (and non-
DGGS) Infrastructures.

A key success criteria for this; however, will be agreement on what the term DGGS Analytics really
means. This activity should be undertaken as a joint activity between the DGGS DWG/SWG and OGC
Innovations Program - facilitating the strategic standards related discussions and codification of
this topic based on the guidance from active implementation and testing made possible through the
OGC Innovations Program.

As DGGS infrastructures become more widely adopted it will be increasingly important for the
standardisation of common analytical functions. Targeted use case scenario development with
DGGS technologies in mind through upcoming OGC Testbeds, Pilots and Interoperability
Experiments will be important.

12.5. The evolution of the OGC DGGS Registry
The concept of an OGC DGGS Registry has evolved somewhat during the course of this Testbed

145

activity. From merely describing the various profiles of DGGS implementation specifications to also
include DGGS enabled data sources.

With the increasing demand for DGGS implementations by organizations across the entire spatial
sector, the importance of an official registry of DGGS profiles and DGGS enabled datasets has been
recognized. The participants recommend that the OGC strongly consider the funding of this work
through the OGC Innovation Program activities. Research & development questions that should be
elaborated include:

1. The enhancement of the existing prototype OGC DGGS profile Registry to include conformances
testing against OGC Topic 21 v2.0;

2. The discovery and cataloguing of DGGS enabled data sources;

3. The development of an OGC Registry of DGGS enabled data sources;

4. The integration of the OGC Registry of DGGS profiles and the OGC Registry of DGGS enabled
datasources.

12.6. Opportunities for DGGS API in Interoperability
Experiments
Much of the effort moving forward will be exploring and developing standardized mechanisms to
support DGGS to DGGS interoperability will be conducted in the context of OGC DGGS APIs.
Coordination between the OGC API Features, Processes and Common future activities, along with
OGC API DGGS development activities, will be important.

The following DGGS Features API extensions/demonstrations were discussed but not implemented
during Testbed 16:

1. Deliver of gridded data

a. It would be possible to create APIs for a dataset that contains an OGC API Collection per
DGGS Grid, each containing an OGC API Feature for each DGGS Zone instances, as per the
TB16Pix Ref but with additional data values per Zone.

b. This would allow the delivery of gridded data via the Features API which means OGC API
filtering and so on could be performed with response payloads containing gridded data in a
datum-per-Cell format, yet to be determined.

2. Implement multiple DGGS geometry values, side-by-side

a. To compare directly the use of multiple DGGSs, a Features API could deliver multiple
Geometries, encoded according to different DGGs, for Features.

b. This is akin to the current WGS84/TB16Pix side-by-side geometries but, if this was enabled,
BBOX and similar API features would need to include DGGS markers within them or else the
filter value would be ambiguous since multiple DGGSs may share the same Zone ID, for
instance both TB16Pix and AusPix contain a Zone ID of P1234.

3. Improve back-end native DB DGGS functions

a. The current DGGS OGC API - Features instances use RDF triplestores for their data storage
and take advantage of GeoSPARQL functions for non-DGGS spatial functions, such as WGS84

146

Bounding Box filters. No triplestores yet implement GeoSPARQL functions for DGGS data
and thus the DGGS Bounding Box filters have required implementation in application code
(Python) and this is inefficient and slow.

b. Future DGGS OGC API - Features would benefit from triplestores - or any other back-end
data store - that can natively process GeoSPARQL features using DGGS geometries, such as
geof:sfContains, which could then be used to answer a DGGS Bounding Box filter query.

c. Due to the simplicity spatial query when using DGGS geometries, custom but simple SPARQL
functions could be written to emulate geof:sfContains and need not implement the lower-
level functionality required by GeoSPARQL implementations which use tools such as GDAL
under-the-hood.

4. Choose better geometry types

a. Geometry types for DGGS data echoing regular, non-DGGS, geometry types where
implemented. It is not known whether the use of regular-style geometries will allow for all
DGGS possibilities as opposed to DGGS native geometry types.

b. Native geometry types are not fully codified and tested so this needs to occur before
assessments of what geometry types can be used effectively for DGGS data into the future.

c. The DGGS Geometry Validator software.[26] has been established to validate DGGS geometry
literal values and this will help with their testing.

5. Implement non-square BBOX filters

a. Currently only Cell ID-based bounding box filters for features have been demonstrated in
the API instances. Filters using a pair of Cell IDs to allow for non-square and square but non-
Cell border-aligned square bounding box filtering should be implemented as the very next
OGC API: Features DGGS feature.

b. Non-quadrilateral filtering would be yet a further API capability to add.

[26] https://github.com/surroundaustralia/dggsgv

147

https://github.com/surroundaustralia/dggsgv

Appendix A: Revision History
Table 51. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

May 25, 2020 B Cochrane, R
Gibb

.1 all initial version

May 31, 2020 B Cochrane, R
Gibb, M Purss

.2 all Finalising IER

Oct 19, 2020 A Aime, R Gibb .3 7.8 Draft OGC API -
Processes
definition

Oct 19, 2020 A Aime .3 9 Draft D137
implementation

Oct 19, 2020 B Cochrane .3 10 Draft D138
implementation

Oct 19, 2020 B Cochrane, R
Gibb, M Purss

.3 all Finalising DER

Oct 20, 2020 M Purss, R Gibb .3 12 Draft Future
Tasks

Oct 21, 2020 B Cochrane .3 10 Draft D137
implementation

Oct 22, 2020 N Car, R. Gibb .3 7.7 Draft OGC API -
Features
definition

148

Appendix B: Bibliography
[1] Svensson, L.G., Atkinson, R., Car, N.J.: Content Negotiation by Profile. W3C Dataset Exchange
Working Group (2018).

[2] Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. W3C (2014).

[3] OGC GeoSPARQL - A Geographic Query Language for RDF Data. Open Geospatial Consortium
(2012).

[4] Car, N.J., Cox, S.J.D.: GeoSPARQL Extensions Ontology, https://linked.data.gov.au/def/geox, (2019).

[5] Vretanos, P.(P.A.: OGC Testbed-16: Data Access and Processing Engineering Report. Open
Geospatial Consortium, http://docs.opengeospatial.org/per/20-16.html (2021).

[6] Raichev, A., Gibb, R.: rHEALPixDGGS, https://pypi.org/project/rHEALPixDGGS/, (2020).

[7] ISO/IEC 13249-3:2016: Information technology – Database languages – SQL multimedia and
application packages – Part 3: Spatial. International Organization for Stnadardization (2016).

[8] Car, N.J.: DGGS Abstract Specification Ontology, https://w3id.org/dggs/as, (2020).

[9] Car, N.J.: DGGS Abstract Specification 2.0 Terms and definitions vocabulary, https://w3id.org/
dggs/as-terms, (2020).

[10] W3C Dataset Exchange Working Group: Alternative Profiles Ontology, http://www.w3.org/ns/dx/
conneg/altr, (2019).

149

https://linked.data.gov.au/def/geox
http://docs.opengeospatial.org/per/20-16.html
https://pypi.org/project/rHEALPixDGGS/
https://w3id.org/dggs/as
https://w3id.org/dggs/as-terms
https://w3id.org/dggs/as-terms
http://www.w3.org/ns/dx/conneg/altr
http://www.w3.org/ns/dx/conneg/altr

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Background and Expectations of the Testbed-16 DGGS thread
	2.2. Summary of work undertaken
	2.3. Highlights from the Testbed-16 participants
	2.4. Overview of recommendations
	2.5. Document contributor contact points
	2.6. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. DGGS and DGGS Reference System Selection
	6.1. Semantics for DGGS libraries and their association with the current DGGS draft standards
	6.1.1. DGGS RS provider
	6.1.2. DGGS RS navigator

	6.2. The question of DGGS data
	6.3. DGGS libraries
	6.4. DGGS Libraries selected by the Testbed-16 DGGS thread
	6.5. DGGS Reference systems selected by the Testbed-16 DGGS thread

	Chapter 7. DGGS API
	7.1. Options for DGGS and OGC API
	7.2. Aligning DGGS to OGC API - Features
	7.3. Aligning DGGS to OGC API - Process
	7.4. Implementation in the deliverables
	7.5. Treatment of geometry
	7.6. Operations specified for ZoneQuery
	7.7. OGC API - Features for DGGS description
	7.7.1. API Features implementation
	7.7.2. API Features instances
	7.7.3. API functionality
	7.7.4. Supporting Assets

	7.8. OGC API - Processes for DGGS description
	7.8.1. Basic ideas:
	7.8.2. Formats:
	7.8.3. Questions, discussion topics:
	7.8.4. Endpoints
	7.8.5. Models

	7.9. Is there a need for an OGC API DGGS implementation standard?
	7.9.1. Proposal for OGC WKT for DGGS geometries

	Chapter 8. Use Cases
	8.1. Scope of Works under the Testbed-16 CFP
	8.1.1. Use Case #1 - GPS Location to DGGS Cell
	8.1.2. Use Case #2 - COVID-19 Active Cases Near Me
	8.1.3. Use Case #3 - Bushfire Impacts from the "Black Summer" Bushfires in Australia
	8.1.4. Use Case #4 - A DGGS version of a DAPA Use Case making use of one or more Jupyter notebooks

	Chapter 9. DGGS Server and API
	9.1. DGGS library comparisons and choices
	9.2. DGGS Java API
	9.3. The DGGS geometry store
	9.4. The ClickHouse storage choice
	9.5. Importing data in ClickHouse
	9.6. The ClickHouse DGGS data store
	9.7. Displaying false color maps of DGGS data
	9.8. GeoServer DGGS API
	9.9. GeoServer DGGS based DAPA API
	9.9.1. The API, HTML representations, and process resources
	9.9.2. Notes on implementation and performance

	Chapter 10. DGGS Demo Client
	10.1. Background - Choice to create a native DGGS viewer
	10.2. Theory and logic behind the native DGGS viewers
	10.2.1. Examples

	10.3. Client implementation
	10.4. Viewers
	10.4.1. How do the viewers work? Paint by numbers
	10.4.2. PyDGGin.py

	10.5. Jupyter Notebook DGGS
	10.6. Data
	10.7. DGGS API Queries
	10.8. Client Enhancements and Future Work

	Chapter 11. DGGS Enabled Data Services
	11.1. OGC API - Features instances
	11.1.1. TB16Pix Ref
	11.1.2. Geofabric
	11.1.3. ASGS

	11.2. OGC API - Features architecture
	11.3. Supporting Assets
	11.3.1. Supporting software tools
	11.3.2. Semantic Assets

	Chapter 12. Future Tasks
	12.1. Maturing DGGS Reference libraries to meet community & future testbed needs
	12.1.1. Development tasks identified for H3
	12.1.2. Development tasks identified for rHEALPix
	12.1.3. Development tasks identified for both H3 and rHEALPix
	12.1.4. Development tasks relevant to other DGGS libraries

	12.2. OGC API(s) for DGGS
	12.3. DGGS processing opportunities
	12.3.1. Pre-built multi-resolution statistics
	12.3.2. Just in time precision

	12.4. DGGS Analytics - What Does that Really Mean?
	12.5. The evolution of the OGC DGGS Registry
	12.6. Opportunities for DGGS API in Interoperability Experiments

	Appendix A: Revision History
	Appendix B: Bibliography

