
OGC Earth Observation Applications
Pilot

European Union Satellite Centre Engineering Report

Publication Date: 2020-10-22

Approval Date: 2020-09-23

Submission Date: 2020-08-14

Reference number of this document: OGC 20-038

Reference URL for this document: http://www.opengis.net/doc/PER/EOAppsPilot-SatCen

Category: OGC Public Engineering Report

Editor: Omar Barrilero, Adrian Luna

Title: OGC Earth Observation Applications Pilot: European Union Satellite Centre Engineering
Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/EOAppsPilot-SatCen
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 5

2. Executive Summary. 6

2.1. Document contributor contact points . 6

2.2. Foreword. 6

3. Terms and definitions . 7

3.1. Abbreviated terms . 7

4. Overview . 9

5. EO Application Description . 10

5.1. Overview . 10

5.2. Inputs. 10

5.3. Processing. 10

5.4. Outputs . 11

5.5. Status . 12

6. Findings and discussion during the application integration in the platforms 13

6.1. Inputs. 13

6.1.1. Input constraints. 15

6.2. Outputs . 15

6.3. Packaging . 15

6.4. Interface with platforms. 16

6.4.1. Application Description. 16

6.4.2. Metadata . 19

6.4.3. Deployment . 21

6.4.4. Hardware requirements . 21

6.4.5. Execution . 22

6.4.6. Communication . 22

6.5. Technology Integration Experiments (TIEs). 22

6.5.1. Spacebel . 22

6.5.2. Terradue . 23

6.5.3. CRIM. 23

7. Conclusions/Recommendations . 24

7.1. Building platform-agnostic applications is feasible . 24

7.2. EO App Pilot outcomes . 24

7.3. Recommendations and Future work . 26

Appendix A: Revision History . 27

4

Chapter 1. Subject
This Engineering Report (ER) describes the achievements of the European Union Satellite Centre
(SatCen) as an application provider in the OGC Earth Observation Applications Pilot and the lessons
learned from the project.

5

Chapter 2. Executive Summary
The objective of the project was for application developers to adapt an application, deploy the
application and execute it on different Earth Observation (EO) data and processing platforms.

The main objective was not the integration itself, but to explore what changes are needed in the
application to be integrated in a platform, the points that are working well and which ones need to
be improved, what solutions/technologies are useful, and what are the limitations to be able to
integrate the same application on different platforms.

SatCen has integrated in three platforms an application that computes the coherence of two
Sentinel-1 SLC images. During the process, some modifications were needed in the application in
order to facilitate the integration. This process and the findings and discussion are explained in
detail in this ER.

The main conclusion is that building a platform-agnostic application is feasible: the SatCen
application has been integrated in different platforms using the same docker image and following
the approach decided during the project. The approach involved the use of Docker for
containerization, the Common Workflow Language (CWL) for describing the application, and
common metadata.

Although the Pilot can be considered successful, it has also brought to light some points that need to
be improved, which are described in detail throughout this document.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Omar Barrilero SatCen Editor

Adrian Luna SatCen Editor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

6

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● Coherence

The coherence refers to the amplitude of the complex correlation coefficient between two SAR
images. It is a measure of the similarity of two Synthetic Aperture Radar (SAR) images.

● Container

A standardized unit of software (Docker [https://www.docker.com/resources/what-container]).

● SNAP Graph

A set of operators that define a processing chain in SNAP. SNAP [https://step.esa.int/main/toolboxes/

snap/], the Sentinel Application Platform, is common architecture for all Sentinel Toolboxes.

3.1. Abbreviated terms
• ADES Application Deployment and Execution Service

• AI Artificial Intelligence

• AOI Area Of Interest

• AP Application Package

• AWS Amazon Web Service

• BPEL Business Process Execution Language

• CFP Call For Participation

• CWL Common Workflow Language

• DEM Digital Elevation Model

• DWG Domain Working Group

• EMS Execution Management Service

• EO Earth Observation

• EP Exploitation Platform

• ER Engineering Report

• ESA European Space Agency

• FUSE Filesystem in Userspace

• GCP Google Cloud Platform

• GDAL Geospatial Data Abstraction Library

• GUI Graphical User Interface

• JSON JavaScript Object Notation

7

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://www.docker.com/resources/what-container
https://step.esa.int/main/toolboxes/snap/

• MEP Mission Exploitation Platform

• OGC Open Geospatial Consortium

• OWC OWS Context

• REST REpresentational State Transfer

• S1 Sentinel-1

• S2 Sentinel-2

• SAR Synthetic Aperture Radar

• SLC Single Look Complex

• SNAP SeNtinel Application Platform

• TEP Thematic Exploitation Platform

• TIE Technology Integration Experiments

• TOI Time Of Interest

• UI User Interface

• URI Uniform Resource Identifier

• URL Uniform Resource Locator

• VM Virtual Machine

• WKT Well-Known Text

• WCS Web Coverage Service

• WFS Web Feature Service

• WPS Web Processing Service

• WPST Web Processing Service Transactional

• XML eXtensible Markup Language

8

Chapter 4. Overview
Section 5 introduces the application developed by SatCen to be integrated into the Earth
Observation data and processing platforms.

Section 6 presents the lessons learned during the project as an application developer. All the
findings and discussions are explained in detail.

Section 7 provides the conclusions and recommendations for future work.

9

Chapter 5. EO Application Description

5.1. Overview
The application developed by SatCen and integrated into the different platforms aims to identify
changes between two Sentinel-1 (SAR) images acquired at different times but acquired with very
similar acquisition conditions (sometimes also called interferometric conditions), by computing the
"Amplitude" or calibrated backscatter and the "Coherence" between the two images. The coherence
refers to the amplitude of the complex correlation coefficient between two SAR images.

The analysis of the coherence is very useful for change detection. Weather and illumination
independence make SAR acquisitions particularly interesting for change detection and monitoring
scenarios, especially in certain areas of the world or periods of time where weather conditions
prevent the use of optical imagery. Additionally, the coherence maps have been found to be of great
utility in detecting changes that occur on the ground and that are not detectable by using only the
amplitude or backscatter signal.

5.2. Inputs
The inputs of the application are two Sentinel-1 SLC images that should be acquired in the same
conditions (same relative orbit). Also, it is possible to define the area of interest in order to compute
the coherence only over the desired area. Some other ancillary data is needed, but it is not directly
selected by the user: the application automatically will look for some orbit and DEM (Digital
Elevation Model) files to download them.

5.3. Processing
The application is written in Python and it uses SNAP [https://step.esa.int/main/toolboxes/snap/] and
GDAL [https://gdal.org] internally. The main process for the coherence calculation is carried out in
SNAP, but some functions of GDAL are also used.

The main steps in the processing are:

1. Read parameters and check them

2. Split inputs and run SNAP graphs

3. Mosaic the intermediate outputs

4. Generate metadata

10

https://step.esa.int/main/toolboxes/snap/
https://gdal.org

Figure 1. Processing chain

5.4. Outputs
The output is a GeoTIFF image with three bands:

• Image 1 backscatter

• Image 2 backscatter

• Coherence

The output can be the input for other algorithms (e.g. thresholding and algorithms based on
Artificial Intelligence, …) for automatic change detection but is also useful for a visual analysis. A
usual Red-Green-Blue (RGB) color composite (R:Image1 backscatter, G:Image2 backscatter,
B:Coherence) facilitates the interpretation of the results, since it allows the interpreter to assign the
different colors of the pixels to different conceptual categories, for example:

• White: High backscatter in both images and high coherence (e.g. buildings, vehicles). It can be
interpreted as "No Change".

• Yellow: High backscatter in both images but low coherence (e.g. changes on buildings, parking
lots, containers). It can be interpreted as "Change" or "Activity".

• Red: High backscatter in first image, low backscatter in second image, low coherence (e.g.
building destruction, ship in the first image but not in the second). It can be interpreted as
"Change", usually a built-up element present on date1 but not on date2.

• Green: High backscatter in the second image, low backscatter in first image, low coherence (e.g.
building destruction, ship in the second image but not in the first). It can be interpreted as
"Change", usually a built-up element present on date2 but not on date1.

• Blue: Low backscatter in both images but high coherence (e.g. roads, airport).

11

Figure 2. Example of RGB output

5.5. Status
SatCen runs locally the application using Docker but wanted to explore the advantages of moving
the application to the data, and the feasibility of creating a single package deployable to many
different external platforms.

The main advantages of using a platform are:

• Reduced cost for managing and maintaining IT systems, infrastructure and services.

• More flexible since there is no need for long procurement processes.

• More scalable.

• Pay only for the resources used at every moment.

• Ready-to-use services like security, networking, automatic updates, replication, disaster
recovery

• Move the application to the data instead of copying and transferring the products.

• Developers can focus on the application and forget about other issues.

12

Chapter 6. Findings and discussion during
the application integration in the platforms
The steps that the applications providers should follow in order to integrate the application in the
platforms are the following:

1. Write/Adapt the EO Application taking into account the parts of it that are specific to the local
platform and not relevant when moving to a Platform: data discovery, data access, output data
post processing and output data cataloguing.

2. Containerize the EO Application, so that it packs all the dependencies and ensures the
application will run on a predictable and isolated environment regardless of in which Platform
it is finally running.

3. Register the Docker Image in a registry that is accessible to the Platform. This can include the
needs for respecting security rules and access constraints.

4. Describe the EO Application: The process description provides all the information needed by the
platform to interact with the application.

5. Deploy the EO Application to the platform.

6. Test the EO Application in the platform.

6.1. Inputs
From the data processing perspective, the inputs required for the EO Application are two Sentinel-1
SLC images acquired with the same geometry. Sometimes, from the user perspective, it is more
convenient to use as inputs the date and the area of interest. With this information it is possible to
discover the Sentinel-1 SLC scenes in the catalogue, to identify automatically which are the pairs of
images that satisfy the user needs and to download them or access them from the platform data
archive. In fact, this was the approach followed by the application when working locally: The input
from the user are the AOI and the date and the application itself performed the search for the most
suitable S1 images; and download them.

One of the first discussions during the project was about the possible approaches for the final EO
Application. Different alternatives were considered:

• Manage the data discovery and retrieval directly from within the EO application (keep same
approach as locally): With this approach, the application would not take advantage of one of the
main reasons for moving to a Platform: "bring the application to the data". In fact, this approach
would not use at all the platform catalogue, since it will use a data discovery and retrieval
mechanism independent from the Platform (e.g. use the ESA Scihub [https://scihub.copernicus.eu]
catalogue with hardcoded or parameterized credentials in the EO Application).

• Adapt the application to each of the platforms specificities with regards to data discovery and
access, in order to adapt it to the available datasets and capabilities: This approach would
require specific analysis and development for each platform, since data offer and other detail
differ between Platforms with regards to data formats, protocols, etc. With this approach, the
behavior of the application would be similar to the local deployment, but replacing the ESA

13

https://scihub.copernicus.eu

Scihub catalogue by a specific catalogue per platform for supporting discovery and
implementing different retrieval methods to support all possibilities.

• Keep the implementation of the data discovery within the application but rely on the platform
for the data retrieval. Some complications were reported by different application providers
when working with multiple catalogues. A clear example is the difficulty to univocally identify
the same product in different catalogues. A typical decomposition of an application consists of
the separation into two steps: a first step for data discovery and a second step for data
processing (once the platform has made the necessary data available for the application).
However, for example, when working with a Sentinel-1 collection, the identifier of each product
is different in the different catalogues. Therefore, the application cannot rely on the identifiers
to request data at the various platforms.

• Perform an interactive selection of the products in the platform catalogue to launch the
application: The application would use as inputs directly the Sentinel-1 products discovered by
the user in the platform’s catalogue. This approach would guarantee the interactive scenario
whereby a user can select the individual inputs he wants to use, while also building the
necessary building blocks for future processing steps towards an automated execution
following the decomposition explained in the previous point.

The last option was chosen but it is important to highlight this item as one of the most important
topics to be further analyzed in the future.

On the other hand, during the integration phase, it was needed to adapt the source code of the
application for each specific platform: some preprocessing steps were needed because the inputs
were provided in different ways. With the evolution carried on within the project in terms of
standardization on the platforms, these adaptations are no longer needed, since the files are now
mounted directly in the working directory of the docker automatically. This is indeed a very
relevant evolution obtained during the project, since the different platforms and application
providers converging into a solution that satisfies everyone is essential in the way to define a
standard in the future.

However, it is important to note that the convergence imposes several constraints that might have
an impact on the applications, for example in terms of protocol (direct file access, which was the
initial expectation of SatCen’s application), and file format (since SatCen’s application is able to read
from a variety of file formats, this had no impact in the developed application). Generally speaking,
inputs from the same collection can have different formats. As an example, Sentinel-1 data is
usually offered in zip format or SAFE format. Currently, it is not clear if the application should
support any possible format or if it should be possible to define the expected format. Then, it would
be up to the Platform to provide the correct format, a process that could introduce transformation
issues. Alternatively, the Platform could inform the EO Application about its data offerings,
protocols, and file formats.

Finally, another point to mention is the evolution of the capabilities of certain Platforms, that were
able to rapidly move from versions imposing some constraints to the supported inputs to versions
providing a more flexible approach. As an example, the Spacebel platform, during the first test
imposed the limitation to only pass the application inputs and parameters as environment
variables, while at the end it was more flexible and easier for the application providers, supporting
the standard inputs from the CWL definition.

14

6.1.1. Input constraints

A major topic under discussion within the project regarding the inputs is how to express the
necessary constraints that the application imposes to run properly.

Different constraints need to be considered for the application inputs (e.g. acquisition type, cloud
coverage, sensor, processing level…), since certain applications are very specific with regards to
which inputs they require to run. Additionally, also dependencies between inputs need to be
considered. An example of the latter is found in the coherence application, which expects that the
two Sentinel-1 products have the same relative orbit and are close in time. Otherwise, the resulting
coherence would probably be of little value.

Dependencies between input parameters have not been explored in the pilot in much detail, but
initial discussions indicate that the OpenSearch specification seems the perfect standard for
expressing these constraints/dependencies. However, it seems complicated to define a "language"
allowing applications or application developers to describe those constraints declaratively, i.e.
without building an application on its own for that. An alternative solution to be explored in the
future would be to define a two-step workflow decomposed with 1) data discovery and 2) data
processing, as discussed above.

6.2. Outputs
At the early phases of the project, some constraints were also imposed on the generated outputs. As
an example, in one platform, the output name was fixed with an environment variable parameter
but with the evolution of the platform the situation improved.

There are open questions, however, about the cataloguing of the outputs. The application needs to
generate some metadata in order to provide information about the output to the platform
(metadata is discussed later).

This item has a major impact, since the expectation of developers and final users of the applications
is to be able to easily discover and access the results of the executions of the applications triggered
by them. Also, following the concept of chaining applications, other applications might re-use the
outputs. The different platforms provide different tastes on how output results are provided (e.g.
via APIs, via Web-UIs).

As a more advanced experiment, a second application whose inputs are the outputs of the
coherence application was developed and deployed on Spacebel’s platform. This test was carried
out to verify that the data cataloguing is properly done, thus, demonstrating the feasibility of
chaining applications. A full end-to-end integration experiment with a set of chained applications
was not carried out, though, due to orchestration issues (which application needs to run first?), and
lack of an endpoint fully compatible with the CWL specification.

6.3. Packaging
Docker was introduced in Testbed-13 into this EO series of OGC Innovation Program initiatives. By
using Docker, the application can be packaged with all its dependencies at the specific versions
expected by its developer.

15

The coherence application was already available in a docker container that was used to run it
locally, so this step was not a problem, except for some errors in the work directory in the first
version of the docker container generated. It is important to highlight that docker uses the concept
of "volumes" to persist data. This aspect requires special considerations when working with large
files (as EO imagery). Volumes, though, are provisioned and managed by the Platform and
therefore, there is a need to match the docker expectations in terms of size and availability of disk
space, and the capabilities of the platform.

Regarding the access to the docker, the coherence application can be uploaded to a public docker
repository. If developers need to control access, then a private repository is needed which could be
specific for each platform. Further accounting and access control mechanisms are still to be
addressed: e.g. how the developer of the application assigns permissions to users to have access to
the application.

With respect to security, it is considered a bad practice to execute containers as root user. When
moving to a platform, this can cause additional challenges when the local version of the Docker was
executed as root.

6.4. Interface with platforms
An interesting topic is how applications interface with Platforms in order to for example report the
status of the execution or communicate errors to the Platform. This topic has not been fully
investigated during the Pilot and needs further investigation.

6.4.1. Application Description

Pure containerization of the application in a Docker container is not sufficient to integrate it into
any platform successfully. Instead, the application provider must also provide some information to
the platform:

• What is the application and what does it do?

• How to run the application?

• What are the inputs?

• What are the outputs?

• Is there any special requirement (e.g. memory, storage, central processing unit)?

The first approach was to use an XML descriptor for the application in Spacebel’s platform:

Example XML Descriptor

<?xml version="1.0"?>
<wps:ProcessOffering xsi:schemaLocation="http://www.opengis.net/wps/2.0
https://raw.githubusercontent.com/spacebel/common-xml/master/52n-ogc-
schema/src/main/resources/META-INF/xml/wps/t/wps.xsd http://www.opengis.net/ows/2.0
http://schemas.opengis.net/ows/2.0/owsAll.xsd" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:eoc="http://www.opengis.net/wps/2.0/profile/tb13/eoc" xmlns:owc=
"http://www.opengis.net/owc/1.0" xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:wps

16

="http://www.opengis.net/wps/2.0" outputTransmission="value reference"
jobControlOptions="async-execute dismiss">
 <wps:Process>
 <ows:Title>S1-SLC-Processing Chain</ows:Title>
 <ows:Abstract>S1-SLC-Processing Chain.</ows:Abstract>
 <ows:Identifier>S1-SLC-CCD</ows:Identifier>

 <ows:AdditionalParameters>
 <ows:AdditionalParameter>
 <ows:Name>ImageReference</ows:Name>
 <ows:Value>aluncob/ogc_pilot:0.1</ows:Value>
 </ows:AdditionalParameter>
 </ows:AdditionalParameters>

 <wps:Input minOccurs="0">
 <ows:Title>Master Scene</ows:Title>
 <ows:Abstract>Master Sentinel1 SLC IW scene.</ows:Abstract>
 <ows:Identifier>MASTER_PATH</ows:Identifier>
 <ows:AdditionalParameters>
 <ows:AdditionalParameter>
 <ows:Name>EnvironmentVariable</ows:Name>
 <ows:Value>MASTER_PATH</ows:Value>
 </ows:AdditionalParameter>
 </ows:AdditionalParameters>
 <wps:ComplexData>
 <wps:Format default="true" mimeType="application/gep"/>
 </wps:ComplexData>
 </wps:Input>

 <wps:Input minOccurs="0">
 <ows:Title>Slave Scene</ows:Title>
 <ows:Abstract>Slave Sentinel1 SLC IW scene.</ows:Abstract>
 <ows:Identifier>SLAVE_PATH</ows:Identifier>
 <ows:AdditionalParameters>
 <ows:AdditionalParameter>
 <ows:Name>EnvironmentVariable</ows:Name>
 <ows:Value>SLAVE_PATH</ows:Value>
 </ows:AdditionalParameter>
 </ows:AdditionalParameters>
 <wps:ComplexData>
 <wps:Format default="true" mimeType="application/gep"/>
 </wps:ComplexData>
 </wps:Input>

 <wps:Output>
 <ows:Title>Output path to the results</ows:Title>
 <ows:Abstract>Output Path</ows:Abstract>
 <ows:Identifier>OUTPUT_PATH</ows:Identifier>
 <ows:AdditionalParameters>
 <ows:AdditionalParameter>
 <ows:Name>EnvironmentVariable</ows:Name>

17

 <ows:Value>OUTPUT_PATH</ows:Value>
 </ows:AdditionalParameter>
 </ows:AdditionalParameters>
 <wps:ComplexData>
 <wps:Format default="true" mimeType="application/gep"/>
 </wps:ComplexData>
 </wps:Output>

 </wps:Process>
</wps:ProcessOffering>

But finally, it was decided to change to CWL as it was going to be supported by all platforms of the
Pilot.

The use of CWL is very powerful but also has some limitations for application providers. For
example, there are some points that cannot be described in the CWL as input constraints.

Issues arise if platforms support only parts of the CWL specification. Given that not all Pilot
platforms use a CWL backend engine, application providers need to know what features are or are
not supported (e.g. hardware requirements are supported in some platforms but not all). It is
possible to test applications using tools such as for example cwl-runner, but this does not guarantee
successful execution on the platform.

The base of the CWL file specifies the following: the reference to the Docker Image containing the
application (in hints/DockerRequirement), the command to be executed (baseCommand) and the
application identifier, label and description (id, label, doc). Also, the inputs and outputs of the
application are described in the inputs and outputs sections.

18

Example CWL file

cwlVersion: v1.0
class: CommandLineTool
baseCommand: s1_coherence_cd
hints:
 DockerRequirement:
 dockerPull: obarrilero/s1coherence:1.0 # Reference to the Docker Image containing
the application
id: satcen-coherence-spb
label: Satcen S1 Coherence Process (SPB version)
doc: The application computes the coherence of two Sentinel-1 IW products. The output
is a RGB (master backscatter, slave backscatter, coherence) in GeoTiff format.
inputs: # Definition of the inputs and parameters required by the application
 input_files:
 inputBinding:
 position: 1
 prefix: --input_files
 type:
 items:
 - File
 - Directory
 type: array
 aoi_wkt:
 inputBinding:
 position: 2
 prefix: --aoi_wkt
 type: string?
outputs: # Definition of the outputs generated by the application
 output:
 outputBinding:
 glob: '*.tif'
 type: File
 metadata:
 outputBinding:
 glob: 'metadata.xml'
 type: File

Some small variations had to be made for every platform since one does not support Directory type
as input or requires the class workflow to be included. These modifications are quite easy to do and
are not big changes, but it would be very useful to homogenize the approaches to have a single
CWL file that works on every platform.

6.4.2. Metadata

The metadata is needed to give information to the platform about the outputs in order to be
catalogued, given that the platform does not know what the application is doing.

The creation of this metadata could be possible in an automated way if some properties are
included in the process description and some tool such as GDAL could be used to discover geo

19

attributes (considering the output can be opened by GDAL). This approach seems problematic and
could not be applicable always, so it was decided to generate the metadata in the application.

A template was provided by the platform providers:

Metadata template

<?xml version="1.0" encoding="utf-8"?>
<eop:EarthObservation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:eop="http://www.opengis.net/eop/2.1"
 xmlns:ssp="http://www.opengis.net/ssp/2.1"
 xmlns:ows="http://www.opengis.net/ows/2.0"
 xmlns:swe="http://www.opengis.net/swe/1.0"
 xmlns:om="http://www.opengis.net/om/2.0"
 xsi:schemaLocation="http://www.opengis.net/ssp/2.1
../xsd/ssp.xsd">
 <om:phenomenonTime>
 <gml:TimePeriod>
 <gml:beginPosition>$startTime</gml:beginPosition>
 <gml:endPosition>$endTime</gml:endPosition>
 </gml:TimePeriod>
 </om:phenomenonTime>
 <om:resultTime>
 <gml:TimeInstant>
 <gml:timePosition>$generationTime</gml:timePosition>
 </gml:TimeInstant>
 </om:resultTime>
 <om:procedure>
 <eop:processorName>s1_coherence_cd</eop:processorName>
 </om:procedure>
 <om:observedProperty xsi:nil="true" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"/>
 <om:featureOfInterest>
 <eop:Footprint>
 <eop:multiExtentOf>
 <gml:MultiSurface srsName="EPSG:$epsg">
 <gml:surfaceMembers>
 <gml:Polygon srsName="EPSG:$epsg">
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList>$footprint</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </gml:surfaceMembers>
 </gml:MultiSurface>
 </eop:multiExtentOf>
 <gml:locationName></gml:locationName>
 </eop:Footprint>

20

 </om:featureOfInterest>
 <eop:metaDataProperty>
 <eop:EarthObservationMetaData>
 <eop:identifier>$identifier</eop:identifier>
 <eop:creationDate>$generationTime</eop:creationDate>
 <eop:parentIdentifier>None</eop:parentIdentifier>
 <eop:acquisitionType>NOMINAL</eop:acquisitionType>
 <eop:productType>s1_coherence_cd</eop:productType>
 <eop:status>ARCHIVED</eop:status>
 <eop:processing>
 <eop:ProcessingInformation>
 <eop:processingCenter></eop:processingCenter>
 <eop:processingDate>$generationTime</eop:processingDate>
 <eop:method>s1_coherence_cd</eop:method>
 <eop:processorName>s1_coherence_cd</eop:processorName>
 <eop:processorVersion>$version</eop:processorVersion>
 <eop:nativeProductFormat>S1</eop:nativeProductFormat>
 <eop:processingMode>NOMINAL</eop:processingMode>
 </eop:ProcessingInformation>
 </eop:processing>
 </eop:EarthObservationMetaData>
 </eop:metaDataProperty>
</eop:EarthObservation>

The application shall generate the corresponding metadata by using this template.

It is also supported by some of the platforms to provide a key-value text file.

6.4.3. Deployment

The deployment of the coherence application has been different for every platform:

• Spacebel: By using the web graphical interface by uploading the CWL file.

• CRIM: By using the REST API in three steps:

◦ sign in

◦ deploy

◦ set visibility

• Terradue: By providing the file to the platform providers manually.

All three approaches are valid and can be done easily. When the deployment is carried out by the
platform provider, it is easier for the application developers, but deployments or updates of the
application depend on the availability of the platform support team.

6.4.4. Hardware requirements

During first executions it was noticed, in the log files, that some memory errors were caused by
applications with high memory demands that were not matched by the platforms by default.

21

The application needs a minimum amount of memory but also can be customized in order to be
able to work with less or more memory depending on availability.

During the integration phase, some limitations for providing this information to the platforms have
been found. Although the CWL language allows to provide information about the required
hardware, not all the platforms support these features.

requirements:
 ResourceRequirement:
 ramMin: 24000

Ideally, the platform could also provide more memory so that the application can take advantage of
all available memory. This is currently not available in the platforms.

6.4.5. Execution

Once the application is deployed, the execution is very easy in all platforms via web interfaces or
REST calls.

One limitation that has been experienced is the selection of input data because not all data was
available on all platforms. This is a limitation during the pilot, but when the platforms are fully
operational this shouldn’t be a problem since the application developers will deploy their
applications only where the needed datasets are available.

6.4.6. Communication

During the course of the pilot, some limitations have been noticed related to the communication
between user-application-platform:

• logs: the level of logs is sometimes not sufficiently detailed

• progress: there is no standard way to communicate the progress of the application to the
platform

• available resources: the application does know the maximal available resources and thus
cannot optimize its performance

6.5. Technology Integration Experiments (TIEs)
The integration experiments consisted of the manual execution of the application using two
Sentinel-1 products as input.

6.5.1. Spacebel

The experiment was carried out using the graphical web interface that is available for the platform.
For the selection of the input, it is possible to upload files or to use the tools for selecting products in
the platform. There are some limitations:

• Data availability on the platform: there are not a lot of products available, but since this was a

22

demo, it is not a problem.

• The queries for looking for products does not support useful search criteria for coherence
application, like the relative orbit.

Once the products and the AOI are selected, the execution works properly and the results are as
expected. It is very easy to download both outputs and log files, which makes it easy to analyze any
issues.

6.5.2. Terradue

The deployment was carried out by Terradue, since in this case, it is a process managed by the
platform operator. Terradue provided access to the GUI in order to be able to run the application.
The execution completed successfully, but an issue in the platform does not allow it to publish the
results, so the output cannot be checked.

6.5.3. CRIM

The deployment of the application, through the API, was successful. The process for the execution
seems to work properly but no output result was produced because of a limitation with the inputs.
The platform does not contain the Sentinel-1 products so a URL can be used to provide them to it.
The SciHub URL was provided but the platform does not support the "$" character which is present.
No more tests with other inputs could be carried out.

23

Chapter 7. Conclusions/Recommendations

7.1. Building platform-agnostic applications is feasible
It has been demonstrated during the project that it is possible to create a single docker image
containing a simple application in order to be integrated into different platforms with no change in
the docker whatsoever.

SatCen’s application has been integrated in Spacebel, Terradue and CRIM platforms. At the
beginning, in order to start interacting with the platforms, different Docker-based containerization
approaches were used, but during the project the different approaches started to converge and
finally the main objective of using the same containerization approach in all the platforms was
achieved.

The collaboration with partners, multilateral and bilateral meetings and the will to reach
agreement allowed the participants to make significant progress during the pilot.

7.2. EO App Pilot outcomes
The Pilot is perceived as very useful for advancing and validating certain aspects in real-life
scenarios.

The use of docker for packaging the applications with all its dependencies has been demonstrated
to be very useful. The status of this technology, its widespread use and the numerous resources and
examples makes Docker the recommended solution.

The Docker containing the application is not enough to integrate the application into the platform.
What is also needed is a description of the application that tells the platform how to execute it,
what are the inputs, the outputs, and additional parameters (e.g. hardware requirements or other
specifics of the application).

With respect to provisioning application descriptions to the platform, the use of CWL has been
recommended and implemented by all the partners. Though, some differences in the level of CWL
support caused some integration issues. CWL is very powerful and although not all features are
currently implemented in the platforms, it is perceived as a suitable, powerful, and extensible
solution. It has substituted the WPS Process Description, which is a lot more verbose. Though the
WPS Process Description has some other advantages, CWL is considered a simpler solution for
application developers. Further investigations shall evaluate the differences in more detail
regarding definition of hardware requirements and input constraints in particular.

Still, it is necessary to review CWL in contrast to other workflow orchestration engines that exist
either platform independent or for specific platforms. Examples include Airflow, Argo, or
Pachyderm. The analysis should include compatibility issues and limitations of the various
orchestration engines in particular with respect to support cloud environments such as e.g.
Kubernetes.

The platform (ADES) shall manage both discovery and retrieval of input data as discussed
previously in this report. A deeper analysis is needed in order to address current interoperability

24

challenges:

• OpenSearch capabilities and metadata differ: the product ID could be different depending on
the catalogue.

• Access protocols (http://, ftp://, file://, s3://, etc.)

• Product formats (it could be different depending on platform)

• Expressing input constraints

SatCen opted for an interactive selection of the inputs when running on the various Pilot platforms.
Ideally, this approach should be replaced by a two-step process (first discover the data and finally
run the algorithm).

Taking a look at the expected advantages of deploying applications on a remote platform compared
to in-house deployment and execution, the following aspects shall be named:

• More flexible: This point seems to be achieved. Currently, the application can be deployed in
different platforms without major changes. Only some minor changes in the application
descriptors are needed.

• More scalable: When deployed on a platform, it is possible to scale up easily and multiple
processes can be executed simultaneously.

• Platform integration issues: If it is necessary to process some applications on different platforms
and then compile all outputs to be used as input for another application, cross-platform
compatibility issues may arise, including data cataloguing and discovery of results

• Ready-to-use-services: Moving to a cloud-platform allows developers to focus on the actual EO
application while benefiting from the additional offering of additional services from the
Platform. However, the analysis of those services was out of the scope for the pilot and could be
analyzed in a future activity. In this context, the following aspects shall be explored:

◦ Authentication

◦ Accounting

◦ User management

◦ Processing models

• Process close to the data: The application has been executed successfully with the data available
directly on the platforms with data selection in an interactive mode. It is not easy to implement
the discovery of the data in a platform-agnostic manner.

• The EO Application developer focuses only on the application: Moving the application to the
Platform allows the EO Application developers to focus on the implementation and integration
of the processing algorithm, rather than devoting time and effort in putting in place an
infrastructure and all its building blocks. During the Pilot, there has been good communication
and availability from the platform providers to solve any issues that might arise during the
integration. Therefore, the expectation is considered successfully achieved, since we could
mainly focus on the algorithm and its integration.

25

7.3. Recommendations and Future work
A critical review of the achievement agreements has to be done in order to be sure that the
proposed solutions, besides meeting the needs of application developers and platforms providers,
are the best taking into account current technologies.

There are some points that have not been discussed in detail during the pilot but are interesting for
the application developers. More tests and discussions are needed for:

• Communication user-application-platform: for progress reporting and provisioning of platform
resources to the application and vice versa

• Chaining applications: both, inside a platform and from different platforms

• Cross-Platform applications and compatibility (including scaling-out workflows)

• Data discovery: implementation in a platform-agnostic manner

26

Appendix A: Revision History
Table 1. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

July 31, 2020 Omar Barrilero
and Adrian
Luna

1.0 all initial version

August 5, 2020 I. Simonis 1.1 all full review

October 15, 2020 G. Hobona 1.2 all final staff
review

27

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. EO Application Description
	5.1. Overview
	5.2. Inputs
	5.3. Processing
	5.4. Outputs
	5.5. Status

	Chapter 6. Findings and discussion during the application integration in the platforms
	6.1. Inputs
	6.1.1. Input constraints

	6.2. Outputs
	6.3. Packaging
	6.4. Interface with platforms
	6.4.1. Application Description
	6.4.2. Metadata
	6.4.3. Deployment
	6.4.4. Hardware requirements
	6.4.5. Execution
	6.4.6. Communication

	6.5. Technology Integration Experiments (TIEs)
	6.5.1. Spacebel
	6.5.2. Terradue
	6.5.3. CRIM

	Chapter 7. Conclusions/Recommendations
	7.1. Building platform-agnostic applications is feasible
	7.2. EO App Pilot outcomes
	7.3. Recommendations and Future work

	Appendix A: Revision History

