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LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the
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Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.
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Chapter 1. Subject
This OGC Testbed-16 Engineering Report (ER) evaluates the suitability of existing OGC standards for
the generation of Moving Features from Full Motion Video (FMV) that has an embedded stream of
detected moving objects.

This ER presents several proof of concept applications that accept FMVs, with multiple encoded
Video Moving Target Indicators (VMTI), and combines the VMTIs into separate tracks that are then
encoded to OGC Moving Features.

In addition, the ER explores the generation of records encoded according to OGC Sensor Model
Language (SensorML) 2.0 standard describing the collection platform and relevant telemetry
information from the key-value stream content encoded according to the MISB 0601 and 0903
specifications of the Motion Imagery Standards Board (MISB).
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Chapter 2. Executive Summary
This OGC ER documents work completed in the OGC Testbed-16 Full Motion Video (FMV) thread.

Unmanned Aerial Vehicles (UAVs) are increasingly used in military and civil applications. A video
camera is often the primary sensor on a UAV, providing a torrent of imagery of the overflown
ground. From this imagery, detecting the presence of moving objects on the ground, such as
vehicles and people, can be of strategic importance.

Modern Motion Imagery platforms are capable of extracting a considerable body of information
from the raw collection and then streaming that information in-band with the video stream.
However, this information comes in a form which is not readily exploitable except by specialized
systems.

STANAG 4609, MISB Std. 0601 (UAS metadata) and MISB Std. 0903 (VMTI) define encoding a video
with frame by frame metadata that may contain any number of VMTIs. However, the individual
moving object detections can be made more useful when combined into moving features or
"tracks". This process is summarized in the tracking algorithm chapter. This process is a non-trivial
problem. The experimental methods and results are further described in this document.

Figure 1. This figure outlines the processing steps that lead to the production of Moving Features from
VMTIs.

(a) Each frame of the video can contain several detections. (b) The detections are decoded and
referenced according to the camera telemetry. (c) The detections throughout the video are
accumulated. (d) The different tracks are inferred.

In addition, the OGC has developed several standards to serve as the interoperability medium for
the outcome and description of the above process which are assessed in their suitability to the FMV
to moving feature scenario.
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This report explores the following topics:

1. Assessment of the suitability of OGC Moving Features and OGC O&M as interoperability formats
for moving features inferred from VMTI detections.

2. Implementation of a process to generate tracks from VMTI detections.

3. Encoding to OGC Moving Features, OGC O&M, and WebVMT [https://w3c.github.io/sdw/proposals/

geotagging/webvmt/].

4. Generation of OGC SensorML 2.0 records describing the collection platform and relevant
telemetry information from the key-value stream (0601 and 0903 content).

5. Implementation of demonstrators for the generation of OGC Moving Features, Observations,
and SensorML documents from sample Full Motion Video streams.

6. Subsequent conversion of OGC Moving Features data into the SensorThings API, permitting
access to JSON-encoded Moving Features observations through SensorThings-based sites and
architectures.

2.1. Key findings and results
OGC Moving Features is an easy to read and write format with csv, json and xml implementations.
The standrd specifies how to encode the result of a tracking algorithm in a simple and readable
fashion and enables a one to one mapping of all the metadata from the original MISB 0903 VMTIs.
However, the mapping of certain properties like embedded Geography Markup Language (GML)
and Web Ontology Language (OWL) classes can be complex and will be difficult to define an
encoding for those properties that can be interpreted by a generic decoder.

OGC O&M offers similar capabilities relative to OGC Moving Features with the difference that
specific attention is given to map ontologies. This is an advantage of OGC O&M over OGC Moving
Features but comes at a cost of complexity and is only useful for MISB 0903 data that carries
relevant metadata.

SensorThings is a useful API in which to encode results from Full-Motion Video and Moving
Features sources due to its versatile support for displaying readings from varied sensors. The
toolset that converts FMV sources to Moving Features and SensorThings (ST) follows a consistent
high-level workflow for conversion the outputs to be accessible via the ST API and convey them to
dashboards for user observation.

Web Video Map Tracks (WebVMT) [https://w3c.github.io/sdw/proposals/geotagging/webvmt/] is an open web
format based on JavaScript Object Notation (JSON) and W3C Web Video Text Tracks (WebVTT).
WebVMT offers some similarities to its OGC counterparts for moving objects and sensors with
mapping to MISB 0903 VMTI metadata and the additional benefit of encapsulation to support any
format that can be encoded as a json object. Generic decoders can identify data by type and
seamless integration with HTML DataCue enables metadata access in web browsers. The DataCue
API enables web pages to associate arbitrary timed data with audio or video media resources, and
for exposing timed data from media resources to web pages.
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2.2. Business value
This testbed work contributed business value by providing a semantic model which integrates
MISB, National Imagery Transmission Format (NITF), Sensor Web Enablement (SWE), Semantic
Sensor Network (SSN) ontology, Moving Features, STANAG 4676, SensorThings, WebVMT, and other
sensor models.

2.3. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Emeric Beaufays Hexagon Editor

Frederic Houbie Hexagon Editor

C. J. Stanbridge Compusult Contributor

Rob Smith Away Team Software Contributor

2.4. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.
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Chapter 4. Terms and definitions
● FMV|Full-Motion Video

high-fidelity digitally encoded video, defined as that whose data is stored at a rate of 25 or more
frames per second

● MF|MovingFeatures

OGC API for defining the paths of moving points, lines, and solid geometrical entities as well as
the static and dynamic properties of sensors that are located on those moving objects.
MovingFeatures data can be expressed as either XML or JSON.

● MISB|Motion Imagery Standards Board

agency established by directive of the United States Department of Defense “to formulate,
review, and recommend standards for Motion Imagery”

4.1. Abbreviated terms
API Application Programming Interface

BER Basic Encoding Rules

BER-OID Basic Encoding Rules, Object IDentifiers

ER Engineering Report

FMV Full-Motion Video

FOI Feature of Interest

GML Geography Markup Language

HTML HyperText Markup Language

IMAPB [floating-point to] Integer MAPping using starting point B (defined by MISB
1201)

I/O Input/Output

IoT Internet of Things

ISO International Organization for Standardization

JSIL Joint System Integration Laboratory (United States Department of Defense)
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JSON JavaScript Object Notation

JSP, .jsp Jakarta Server Pages (formerly JavaServer Pages)

KLV Key-Length-Value

LDS Local Data Set

LS Local Set

MF MovingFeatures

MIME Multipurpose Internet Mail Extension

MISB Motion Imagery Standards Board

MISP Motion Imagery Standards Profile

MPEG-2 Moving Picture Experts Group standard 2

MQTT Message Queuing Telemetry Transport

NITF National Imagery Transmission Format

OGC Open Geospatial Consortium

O&M Observations and Measurements

PAT Program Association Table

PES Program Elementary Stream

PMT Program Map Table

POC Proof of Concept

REST REpresentational State Transfer

SDO Standards Development Organization

SensorML Sensor Model Language

SMPTE Society of Motion Picture and Television Engineers
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SSN Semantic Sensor Network

STA SensorThings API

STANAG STANdardization AGreement

SWE Sensor Web Enablement

TCP Transmission Control Protocol

TS Transport Stream

UAS Unmanned Air System

UDP User Datagram Protocol

UDS Universal Data Set

UI User Interface

UML Unified Modeling Language

UOM, uom Unit of Measure

URI Uniform Resource Identifier

VMTI Video Moving Target Indicator

WebVMT Web Video Map Tracks

XML eXtensible Markup Language
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Chapter 5. Description of standards

5.1. Overview
This section provides a brief description of the standards that are used and evaluated both as input
and output to the proof of concept.

5.2. STANAG 4609
STANAG 4609 [https://gwg.nga.mil/misb/docs/nato_docs/STANAG_4609_Ed3.pdf] describes an exchange
format for motion imagery. It is the official format for motion imagery (video data, image
sequences, FMV - full motion videos) exchange within the NATO nations. Motion imagery is defined
by MISB to be video of at least 1 Hz image frequency together with metadata. STANAG 4609
describes the encoding of the video and the metadata (geographical data) for different usages. This
includes the supported video codecs, bit rates, frame rates, container formats, metadata content,
metadata encoding and hardware to distribute the motion imagery.

The standards which make television and cable networks possible are established and maintained
by the Society of Motion Picture and Television Engineers (SMPTE).

5.3. SMPTE ST 336
SMPTE ST 336 [https://ieeexplore.ieee.org/document/8019807] defines a byte-level data encoding protocol
for which can be multiplexed with a video stream. Synchronization between the key-value pairs
and the associated video frames is maintained using the same mechanism as is used to synchronize
the audio and video streams. SMPTE also defines a small set of Keys in SMPTE ST 335.

The Motion Imagery Standards Board (MISB) has built on those standards to address additional
requirements identified by the Defense and Intelligence communities. Those standards are codified
in the Motion Imagery Standards Profile (MISP) and STANAG 4609. The MISB standards most
relevant to this effort are MISB 0601 and MISB 0903. MISB 0601 defines the basic set of keys for use
by UAS systems. MISB 0903 defines additional keys for Video Moving Target Indicators (VMTI).
Moving Target Indicators are reports on detections of objects in a FMV frame which appear to be
moving, along with any additional descriptive information that the detector can provide.

5.4. OGC Moving Features
This OGC Standard [https://www.opengeospatial.org/standards/movingfeatures] specifies standard encoding
representations of movement of geographic features. The primary use case is information
exchange. The encodings specified in the OGC® Moving Features suite of standards conform to the
ISO 19141:2008, Geographic information – Schema for moving features standard.

A feature is an abstraction of a real-world phenomenon. A geographic feature if it is associated with
a location relative to the Earth is a geographic feature. ISO 19141:2008 represents moving features
by defining a geometry for a feature that moves as a rigid body. This allows moving and stationary
features to be analyzed and exploited using the same algorithms and software.
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5.5. OGC SensorML
Sensor Model Language (SensorML) [https://portal.opengeospatial.org/files/?artifact_id=55939] provides a
robust and semantically tied means of defining processes and processing components associated
with the measurement and post-measurement transformation of observations. This includes
sensors and actuators as well as computational processes applied pre- and post-measurement. The
main objective is to enable interoperability, first at the syntactic level and later at the semantic level
(by using ontologies and semantic mediation). This is so sensors and processes can be better
understood by machines, utilized automatically in complex workflows, and easily shared between
intelligent sensor web nodes.

5.6. OGC Observations and Measurements
The Observations and Measurements (O&M) [https://www.opengeospatial.org/standards/om] Standard
defines a conceptual schema for sensor observations, and sampling features produces when
making observations. These provide models for the exchange of information describing
observation acts and their results, both within and between different scientific and technical
communities. Observations commonly involve sampling of an ultimate feature of interest. O&M
defines a common set of sampling feature types classified primarily by topological dimension, as
well as samples for ex-situ observations. The schema includes relationships between sampling
features (sub-sampling, derived samples).

5.7. OGC SensorThings API
The SensorThings API (STA) [https://www.ogc.org/standards/sensorthings] OGC standard defines the
interconnection and communication of Internet of Things (IoT) devices. It is comprised of a sensing
part, which allows data observed by multiple IoT sources to be conveyed using a standard JSON-
based format, and a tasking part, which allows events to be activated based on the values of these
observations. All observations, metadata, and messages generated in this API can be forwarded to
MQTT or to RESTful endpoints for later use by clients.
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Chapter 6. Tracking Algorithm

6.1. Overview
This section provides a general description of a Multiple Object Tracking algorithm that computes
tracks from the individual MISB 0903 Video Moving Target Indicators (VMTI). The algorithm uses a
global nearest neighbor approach that takes into account a speed and bearing estimate of the
moving object. This algorithm has the advantage of being able to run on a video stream, rather than
needing to collect all the detections first, as well as being fast enough to run in real-time.

MISB 0903 concentrates on video tracking as a VMTI is essentially a location and bounding box.
Tracking through Lidar sensors is not prohibited. The standard is not meant for radar tracking. The
standard for Radar moving target detections is STANAG 4607. The algorithm makes the assumption
that a single object is described by a single target and that a single target describes a single object
(Point Object Tracking). Missing detections and false positives are dealt with as corner cases.

6.1.1. Initialization

The first phase of the algorithm is the initialization or "seeding" of tracks where new detections are
used to instantiate tracks.

Figure 2. Initialization of new tracks.

VMTIs from the first frame or VMTIs that cannot be matched to an existing track each begin a new
track. The VMTIs from the following frames are loaded. Each track looks for VMTIs within a given
radius of the last known position. The new VMTIs that are matched to existing tracks are used to
extend them. VMTIs that don’t match to any existing track start a new track
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6.1.2. Expansion

Existing tracks are expanded by matching detections to the track’s predicted location based on
speed and bearing.

Figure 3. Expansion of existing tracks.

Based on the direction and speed of the moving object, their predicted location is computed. The
algorithm looks for the next track location within a given radius of the predicted location and
expands the track. If no VMTI is found within the radius, the track is finalized after some time.

6.1.3. Resolving ambiguous situations

During track expansion, detections may come close to the predicted location of several tracks.

Figure 4. Resolving ambiguities.

In the situation above, both VMTIs fall into the radius of the predicted location of two tracks. This is
resolved by matching the VMTIs to the predicted locations in order to minimize the overall
predicted to true location distance.

6.1.4. Missing detections

Detections may be missing because the target was obscured, because the camera looks away or
because the detection algorithm fails. Missing detections may be accounted for by keeping tracks
alive for a certain amount of time in the hope of matching it with a detection at a later time.

This solution works well as long as the tracked object keeps the same speed and direction.
Increasing the radius within which to search for matching detections helps to account for
acceleration and heading changes but runs the risk of mixing up the tracks. This solution works
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well once the search radius and keep-alive time are optimized for a certain type of moving object.

6.1.5. False positives

False positives are detections that do not actually correspond to a moving object. They may be due
to many things such as video glitches that the detection algorithm interprets as an actual object.
Removing outliers is tempting but an outlier is not necessarily a false detection and it may help
expand tracks with few detections. Another approach is to filter out unusable tracks after the
tracking algorithm is done. These are tracks made up of just a few detections which could not be
matched with any existing tracks and therefore generated tracks of their own.

Figure 5. False positive tracks.

The image above shows the long tracks on the right that follow the roads and the short jittery tracks
made up of false positives on the left.

6.1.6. Smoothing and interpolation

The raw tracks can be jittery and lack resolution. A simple method to smooth and interpolate the
tracks can be used. In this implementation, the location of a track at a given time is calculated
based on a weighted average of the forces pulling the track to the next known true locations.

6.1.7. Improvements

The algorithm can be made probabilistic by considering information such as class, color, intensity
and target confidence level that are sometimes present in MISB 0903 VMTIs. This information
would weigh-in to resolve some ambiguous situations.
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Chapter 7. Encoding to OGC Moving Features

7.1. Overview
This section covers how the elements of the MISB 0903 and the result of the Tracking Algorithm can
be mapped to OGC Moving Features.

Moving Features with JSON encoding (OGC 19-045r3) was used to demonstrate the mapping of MISB
0903. Below is a quick recap of the 2 allowed structures. MF_JSON Trajectory can be used for very
simple use-cases while the MF-JSON Prism gives more flexibility.

Figure 6. MF_JSON Trajectory vs MF_JSON Prism

7.2. Tracks
The tracking algorithm or alternatively, the tracker information directly encoded in MISB 0903,
creates groups of points with time-stamps (tracks). The simplest way to encode this information is
to use a Feature Collection with a separate Feature for each track.
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Figure 7. Example OGC Moving Feature (JSON encoding)
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Example of a simple OGC Moving Feature (JSON encoding)

{
  ...
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "temporalGeometry": {
        "type": "MovingPoint",
        "coordinates": [
          [
            0.3666873337477613,
            0.33452775033244386
          ],
          [
            0.5194375435035997,
            0.14164689242465356
          ]
        ],
        "datetimes": [
          "1970-01-01T00:00:00Z",
          "1970-01-01T00:00:00.001Z"
        ],
        "interpolation": "Linear"
      }
    },
    {
      "type": "Feature",
      "temporalGeometry": {
        "type": "MovingPoint",
        "coordinates": [
          [
            0.7076755252993154,
            0.37470246099128324
          ],
          [
            0.6273214391327322,
            0.3127051674314162
          ]
        ],
        "datetimes": [
          "1970-01-01T00:00:00Z",
          "1970-01-01T00:00:00.001Z"
        ],
        "interpolation": "Linear"
      }
    }
  ]
}
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7.3. Bounds
OGC Moving Features specifies a predefined field to encode individual track bounds and overall
bounds of a dataset in terms of space and time. The VTracker Local Data Set(LDS) may define the
bounds of a track but they may also be calculated based on the result of the Tracking Algorithm.

Figure 8. example OGC Moving Feature with bounds
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Example OGC Moving Feature with bounds

{
  ...
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "temporalGeometry": {
        "type": "MovingPoint",
        ...
      },

      "bbox": [
        0.3666873337477613,
        0.14164689242465356,
        0.5194375435035997,
        0.33452775033244386
      ],
      "time": ["1970-01-01T00:00:00Z","1970-01-01T00:00:00.001Z"]
    },
    {
      "type": "Feature",
      "temporalGeometry": {
        "type": "MovingPoint",
        ...
      },
      "bbox": [
        0.6273214391327322,
        0.3127051674314162,
        0.7076755252993154,
        0.37470246099128324
      ],
      "time": ["1970-01-01T00:00:00Z","1970-01-01T00:00:00.001Z"]
    }
  ],
  "bbox": [
      0.3666873337477613,
      0.14164689242465356,
      0.7076755252993154,
      0.37470246099128324
    ],
    "time": ["1970-01-01T00:00:00Z","1970-01-01T00:00:00.001Z"]
}

7.4. Target Bounds, outline and rigid geometry
In addition to the VMTI target location, MISB 0903 may specify a target’s bounds. The
temporalGeometry can be used to encode this information through a MovingPolygon which is a
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shape defined by OGC Moving Features. Both the MISB0903 target location and location bounds can
be encoded simultaneously in a OGC Moving Features MovingGeometryCollection. See the json
example below for more detail.

Figure 9. Target Bounds

The encoding of target bounds in MISB 0903 is only 2 dimensional while the target location can
have a height component. The vTargetPack from MISB 0903 may contain an additional target
Boundary object which is a collection of Location elements (lat/lon/height) therefore allowing, in
theory, more complex 3D boundaries. This does not give MISB 0903 the capability to encode a
boundary volume.

The XML encoding of OGC Moving Features allows a 1 to 1 mapping of the MISB 0903 bounds and a
target Boundary. The latest OGC Moving Features JSON encoding Standard (1.0) only allows for 2D
polygons. This means that the height components of the MISB 0903 target Boundary will be lost.

The MISB0903 VMask Local Data Set (LDS) is used to represent the outline of the target which may
also be used to encode a 2D outline of the target in OGC Moving Features. Note that for a one to one
mapping between MISB 0903 and Moving Features, the rigid geometry of Moving Features is not
used but rather encoding the full polygon for each time-stamp.
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Figure 10. Target outline

A tracked object might be matched with a rigid geometry such as a drone model or a ship’s outline
polygon. In such a case, the participants recommend using the base member of OGC Moving
Features which describes a type and reference to a 3D model such as STL, OBJ, PLY, and glTF. When
the base member is present, the Temporal Geometry type is always "MovingPoint" and the
orientations member must be present. The orientations member is an array of json objects with
the same size as the datetimes member.it describes the scale and orientation of the model in the
base.
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Figure 11. Drone model and path

Example Temporal Geometry with simple target location, target bounds, target outline and rigid shape.

{
    ...
    "temporalGeometry": {
      "type": "MovingGeometryCollection",
      "members":[
        {
          "type": "MovingPoint",
          "coordinates": [
            [0.707, 0.375],
            [0.627, 0.313]
          ],
          "datetimes": [ "1970-01-01T00:00:00Z", "1970-01-01T00:00:00.001Z" ],
         "interpolation": "Linear"
        },
        {
          "type": "MovingPolygon",
          "coordinates": [
            [[[0.698,0.365],
              [0.718,0.365],
              [0.718,0.385],
              [0.698,0.385]]],
            [[[0.617,0.303],
              [0.637,0.303],
              [0.637,0.323],
              [0.617,0.323]]]
          ],
          "datetimes": [ "1970-01-01T00:00:00Z", "1970-01-01T00:00:00.001Z" ],
          "interpolation": "Linear"
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        },
        {
          "type": "MovingPolygon",
          "coordinates": [
            [[[0.698,0.365],
              [0.718,0.365],
              [0.725,0.375],
              [0.718,0.385],
              [0.698,0.385]]],
            [[[0.617,0.303],
              [0.637,0.303],
              [0.644,0.313],
              [0.637,0.323],
              [0.617,0.323]]]
          ],
          "datetimes": [ "1970-01-01T00:00:00Z", "1970-01-01T00:00:00.001Z" ],
          "interpolation": "Linear"
        },
        {
          "base": {"type": "OBJ", "href":  "./truck.obj"},
          "type": "MovingPoint",
          "coordinates": [
            [0.707, 0.375],
            [0.627, 0.313]
          ],
          "orientations": [
            {
              "scales":[1,1,1],
              "angles":[0,0,0.25]
            },
            {
              "scales":[1,1,1],
              "angles":[0,0,0.21]
            }
          ],
          "datetimes": [ "1970-01-01T00:00:00Z", "1970-01-01T00:00:00.001Z" ],
          "interpolation": "Linear"
        }
      ]
    },
    ...
}

7.5. Temporal properties
Several properties present in MISB 0903 can be encoded as Temporal Properties in OGC Moving
Features. These are properties specific to a single VMTI target that change over time.

1. Target color
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2. Target intensity

3. Target confidence Level

4. Target Priority

Example Temporal properties

{
    ...,
    "temporalProperties": [
      {
        "datetimes": ["1970-01-01T00:00:00Z", "1970-01-01T00:00:00.001Z"],
        "color": {
          "uom": "RGB",
          "values": ["16711808", "16711808"],
          "interpolation": "Discrete"
        },
        "confidence_Level": {
          "uom": "%",
          "values": [100, 75],
          "interpolation": "Stepwise"
        }
      }
    ],
    ...
}

7.5.1. Speed and Acceleration

The speed and acceleration of the vehicle may be provided inside the VTracker LDS packages or
they may be calculated during tracking. The result may be encoded as temporal properties with
stepwise, linear or spline interpolation
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7.5.2. Class

The VObject LDS uses an ontology to describe the set of allowed classes or type values encoded as
Web Ontology Language (OWL). The MISB 0903 element is made up of a URI link to the ontology
and a class. Once a parser is available, encoding the temporal property may be trivial. However, the
class may also describe enumerations, unions, intersections, complements and property
restrictions. Rather than forcing this information into an ill-suited format, the class may be encoded
as full text in the temporal property’s values while the URI to the ontology can be encoded as the
property’s Unit of Measure (uom).

Example ontology encoding

"temporalProperties": [
      {
        "datetimes": ["2017-03-13T01:00:00Z", "2017-03-13T02:00:00Z"],
        "class": {
          "uom": "https://example.com/ontology",
          "values": ["<owl:Class rdf:ID=\"Car\"/>", "<owl:Class rdf:ID=\"Car\"/>"],
          "interpolation": "Stepwise",
        }
      }
    ],

While the use of a json Property rather than a Temporal Property for this field would be better
suited in many cases, this approach could not account for a one to one mapping between MISB 0903
and OGC Moving Features.
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7.5.3. VFeature Local Data Set

MISB 0903 adopted the OGC Geography Markup Language (GML) and the VFeature LDS is based on
the OGC Observations and Measurements (O&M) Encoding Standard and related schemas.

The VFeature LDS is made up of a URI to a schema and a Feature. A Feature is represented as an
OGC GML document structured according to the schema. The GML feature contains one or more
values observed for a VMTI.

While the GML data may be parsed, nested data will be difficult to encode in the OGC Moving
Features format because the values of a temporal property cannot be nested. According to the
Moving Features standard, a temporal property must be a flat array of Strings or numbers.

While the properties field (rather than temporal properties) allows nested values, the temporal
aspect of the data would have to be implemented as a parallel mechanism not described by the
schema.

The data can instead be encoded in full text as values and the URI to the schema can be encoded as
the property’s uom.

example GML Features

"temporalProperties": [
      {
        "datetimes": ["2017-03-13T01:00:00Z", "2017-03-13T02:00:00Z"],
        "class": {
          "uom": "http://schemas.opengis.net/gml/3.2.1/gml.xsd",
          "values": [GML as text, GML as text],
          "interpolation": "Stepwise",
        }
      }
    ],

7.5.4. VTracker Local Data Set

The VTracker LDS, if present and populated, groups detections into tracks. This achieves the same
task as the Tracking Algorithm although the technique used and results may be different. The
VTracker LDS packages may provide Speed and Acceleration information as well as a tracker
specific confidence value.

Other values from this LDS concern information that was already covered.

7.5.5. VChip Local Data Set

The VChip LDS defines an image or a link to an image with the corresponding Multipurpose
Internet Mail Extension (MIME) type. If present, the information can be encoded as a temporal
property. For the case where actual images are provided, they may be encoded as byte strings.
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Example "chip" image encoding

"temporalProperties": [
      {
        "datetimes": ["2017-03-13T01:00:00Z", "2017-03-13T02:00:00Z"],
        "chip_images": {
          "uom": "jpeg",
          "values": ["https://example.com/ontolog\image1.jpg",
"https://example.com/ontolog\image2.jpg"],
          "interpolation": "Stepwise",
        }
      }
    ],

7.6. Global Temporal properties
Global Temporal properties describe an entire frame rather than individual tracks. These are
properties such as reported targets per frame, frame number or frame size in pixels. The JSON
encoding of Moving Features objects cannot accommodate these properties without repeating the
information in every single Moving Feature object because the json Feature Collection lacks a
temporal properties field and even a properties field at all.

7.7. Static Properties
Until now all the properties have been encoded as temporal properties to ensure a one to one
mapping between MISB 0903 and OGC Moving Features. For example, it is unlikely that the class of
a tracked object suddenly changes from "car" to "boat" but since the classification is likely
automatic, this may well happen in MISB 0903.

However, an extra processing step can generate global properties for a particular track. In this case,
the properties field of a moving feature can encode the information.

Example moving feature with global properties

{
    "type": "Feature",
    "temporalGeometry": {...},
    "temporalProperties": [...],
    "bbox": [...],
    "properties": {
        "class": "pirate ship"
    }
}
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Chapter 8. WebVMT: Exporting MISB
Metadata for the Web

8.1. Introduction To WebVMT
Web Video Map Tracks (WebVMT) is an open format designed to synchronize location and sensor
data with video for web based applications. This common format makes it easier to share, search
and present metadata with video footage online. The use of WebVMT also helps to break down the
barriers between different devices, such as dashcams, drones, body-worn video and smartphones
thereby enhancing accessibility and utilization. Further details on WebVMT can be found at the
WebVMT website [https://webvmt.org/] which includes a non-technical overview, blog, and technical
demos.

Mapping to WebVMT enables MISB metadata to be accessed on the web by developers using
JavaScript in a web browser, by web crawlers for indexing, and by search engine users to find
relevant data quickly. Data can be retrieved independently of the web client platform, machine
hardware, video format, and sensor device.

8.2. Exporting MISB From MPEG-2
The initial Testbed-16 FMV to Moving Features development focused on parsing MISB metadata
from MPEG-2 files. This highlighted the value of out-of-band metadata (in a separate file) in
comparison to in-band metadata embedded within the media file. Before any attempt was made to
read the actual metadata content significant effort was required to navigate the media format in
order to parse the relevant sections and extract the raw data. Exporting metadata to an out-of-band
format, such as WebVMT, eliminates this time-consuming task and allows developers to concentrate
on parsing the metadata rather than on the non-trivial chore of accessing it.

8.2.1. Exported Metadata On The Web

Parsing the MPEG-2 Transport Stream (TS) sample files used in this project demonstrated the
complexity of the process. The steps to access metadata content were:

1. Identify and parse the packet containing the Program Association Table (PAT).

2. From that information, identify and parse the packet containing the Program Map Table (PMT).

3. From that information, identify, demultiplex, and parse program elementary stream (PES)
packets containing metadata.

4. From that information, extract and assemble metadata segments into packets ready for parsing.

5. For each metadata packet, identify and parse metadata Access Unit (AU) cells containing
metadata content.

Established World Wide Web Consortium (W3C) formats such as Timed Text Markup Language
(TTML) and Web Video Text Tracks (WebVTT) synchronize data with video using out-of-band
metadata which is stored in a discrete linked file. This approach makes access faster and simpler by
eliminating the complex video stream structure and offering a common format that is not
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dependent on the video codec or container format.

If video metadata were exported to a common out-of-band format, such as WebVMT, metadata
content could be accessed more quickly and efficiently. This reduces development time and file
bandwidth and also allows metadata parsing to be agnostic of the media encoding format. WebVMT
has the added advantage of being designed for the web so metadata can be easily exposed through
HTML DataCue [https://www.w3.org/TR/html51/semantics-embedded-content.html#datacue-datacue]. This
enables access through web browser APIs, such as JavaScript, and by web crawlers so users can
rapidly identify key sections of metadata and video footage using online search engines.

8.3. Mapping MISB To WebVMT
MISB metadata can be mapped to WebVMT in different ways depending on observation context
and which optional MISB tags are present.

8.3.1. UAS Datalink LS Mapping

The following gives a general guide for mapping UAS Datalink LS packets.

Table 1. MISB UAS Datalink LS (0601) Mapping

Tag Description WebVMT Mapping

11 Source sensor Path identifier

13 Sensor latitude Path segment

14 Sensor longitude Path segment

16 Sensor horizontal field of view Map zoom [2]

17 Sensor vertical field of view Map zoom [2]

21 Slant range Map zoom [2]

22 Target width Map zoom [1]

23 Frame center latitude Map center

24 Frame center longitude Map center

26 Upper left corner offset latitude Map zoom [3]

27 Upper left corner offset
longitude

Map zoom [3]

28 Upper right corner offset
latitude

Map zoom [3]

29 Upper right corner offset
longitude

Map zoom [3]

30 Lower right corner offset
latitude

Map zoom [3]

31 Lower right corner offset
longitude

Map zoom [3]
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Tag Description WebVMT Mapping

32 Lower left corner offset latitude Map zoom [3]

33 Lower left corner offset
longitude

Map zoom [3]

In general, mapping the Frame Center (MISB 0601, tags 23 & 24) to the WebVMT map center is a
sensible choice. There are three possible mappings to WebVMT map zoom using MISB target width
[1], field of view and range [2], and corner offsets [3]. Object trajectories, such as the Sensor
Location (MISB 0601, tags 13 & 14), can be mapped to a WebVMT path and in certain use cases
mapping the Frame Center to a WebVMT path can be insightful.

8.3.2. Video Moving Target Indicator LS Mapping

Any set of Target Locations (MISB 0903, VTarget Pack tags 10, 11 & 17) which form an object
trajectory can be mapped to a WebVMT path, and multiple paths can be discriminated by using the
WebVMT path identifier. Care should be taken not to overload the user when using WebVMT data
with multiple paths, either by limiting the number of paths shown or by limiting the length of the
path history displayed.

8.4. Web Browser Demos
MISB metadata was exported from the sample MPEG-2 Transport Stream files to WebVMT using the
C++ export utility code which was modified to create WebVMT paths from different MISB tags
depending on the use case, as outlined above.

Exported data can be displayed at the WebVMT website [https://webvmt.org] by dragging and
dropping a pair of video and VMT files into the Mobile Demo which can be displayed by most
modern web browsers.

8.4.1. Drone Demos

These videos show footage captured from a commercial Unmanned Aerial Vehicle (UAV),
colloquially referred to as a drone, with a camera that can face directly downward or look forward
in the direction of travel.

In both cases, Frame Center (MISB 0601, tags 23 & 24) and Target Width (MISB 0601, tag 22) control
the map center and zoom respectively, and Sensor Location (MISB 0601, tags 13 & 14) is mapped to
a WebVMT path shown as a blue line in the figures below.

When the camera is facing downward, the front of the path remains aligned with the map center
and accurately follows the path of the river, as expected, which demonstrates that the location
details are correctly exported to WebVMT.
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Figure 12. Drone With Downward Facing Camera

When the camera is facing forward, the front of the path lags behind the map center and is
correctly positioned between the two parallel roads seen in the footage. Once again, this is
consistent with the video content and demonstrates that location is accurately exported.
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Figure 13. Drone With Forward Facing Camera

Files for these demos are available from the OGC Portal at Innovation Program/OGC Testbed-16/Full
Motion Video/Demos/20200827_WebVMT [https://portal.ogc.org/modules/files/details.php?m=files&

artifact_id=94463] which can be displayed at the WebVMT website [https://webvmt.org] as described in
the Readme file. OGC Portal access is available to OGC Members only.

8.4.2. Truck Demo

This footage shows a haulage truck travelling along a highway filmed from a circling
reconnaissance aircraft. Though the source video file contains no MISB 0903 data to track this
target, the Frame Center (MISB 0601, tags 23 & 24) has been exported to a WebVMT path to best
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represent this from the information available.

The accuracy of the exported location data is demonstrated as the truck passes under a bridge,
showing that the truck and path are well synchronized.

Figure 14. Truck Approaching Bridge

A crosshair overlay baked into the video footage indicates the position of the frame center. Once
again, the accuracy is demonstrated as the location of the frame center drifts on to the opposite
carriageway and across to the truck stop exit road before recentering on the target truck, and this is
correctly reflected in the exported WebVMT path.
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Figure 15. Truck Passing Truck Stop

Files for this demo are available from the OGC Portal at Innovation Program/OGC Testbed-16/Full
Motion Video/Demos/20200903_WebVMT [https://portal.ogc.org/modules/files/details.php?m=files&

artifact_id=94515] which can be displayed at the WebVMT website [https://webvmt.org] as described in
the Readme file. Note that the MapboxGL [https://docs.mapbox.com/mapbox-gl-js] display option may not
be available as this was a pre-release prototype feature at the time of publication of this ER.

8.5. Data Analysis and Visualization
As a preliminary step towards linking metadata targets (MISB 0903 VTarget Pack) into moving
object trajectories, target locations were displayed with WebVMT shape commands
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[https://w3c.github.io/sdw/proposals/geotagging/webvmt/#webvmt-shape-commands] in order to better
understand the nature of the sample data.

Figure 16. Metadata Tracking Visualization With WebVMT

Mapping targets to short-lived WebVMT shape cues allowed MISB content to be displayed quickly
and easily and provided simple confirmation that:

1. Target locations can sensibly be linked into trajectories.

2. Target data is sporadic, with significant drop-out periods.

3. Only a subset of moving objects in the video are tracked in metadata.

4. Target location accuracy varies and does not always coincide with roads.
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Figure 17. Metadata Accuracy Visualization With WebVMT

Such details can provide useful insight for data analysts to quickly assess metadata content and
ensure that suitable techniques are employed to avoid wasting valuable time and resources.

8.6. Accessibility and Quality
An unexpected side-effect of building a media file metadata parser from scratch was that the
software started to highlight errors in the sample video files being used to test it. Analysis
pinpointed mistakes in the format usage and data content, including:

• The mandatory Version Number (MISB 0601, tag 65) was omitted from a couple of files so it was
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unclear which version of the MISB standard was used and how data content should be
interpreted.

• A fixed Target Width of 0 (MISB 0601, tag 22) was contained in every packet of a file
representing 'the linear ground distance between the center of both sides of the captured image'
which did not tally with the video image and could be omitted as it is not mandatory.

• A spurious offset in the MPEG-2 Presentation Timestamp (PTS) values was present throughout
another file so metadata were not correctly synchronized with video and shifted forwards in
time by a fixed amount.

Quality control issues aside, the presence of these errors indicates that metadata are currently not
easily accessible in video files as these systematic mistakes have not been picked up and corrected.
Providing better metadata accessibility would help improve data quality.

8.7. Use Cases and Benefits
A number of video metadata use cases were identified during this project and are summarized
below including the specific benefits of exporting data to WebVMT format.

8.7.1. Crowdsourced Evidence

Video footage evidence can be submitted by the public with accurate location, for instance to report
dangerous drivers using dashcam footage or to report forensic evidence of boats smuggling
goods/people spotted from pleasure craft or the shore using smartphone footage. See also the
WebVMT Police Evidence [https://w3c.github.io/sdw/proposals/geotagging/webvmt/#policeevidence] use case;

Benefits: Video evidence with accurate location in machine-readable format can be sourced from
the public.

8.7.2. Aggregated Streams

Provide a common format for sharing body-worn video footage for police and rescue services,
which is compatible with disparate streams from vehicle dashcams and aerial video from drones
and helicopters that can be easily aggregated for situational awareness or during pursuit. See also
the WebVMT Area Monitoring [https://w3c.github.io/sdw/proposals/geotagging/webvmt/#areamonitoring] use
case;

Benefits: Geotagged video can be aggregated and shared in a common format for live
pursuit/situational awareness.

8.7.3. Underground Inspection

Underground features can be inspected using a remote camera, either integrated into a drilling rig
or mounted on a remotely operated vehicle in a borehole or pipe. Location is calculated using
inertial navigation so video frames can be tagged with geospatial information to enable features
visible to the camera (and other sensor data) to be accurately mapped. This technique is used in the
oil and gas industries, and can also offer valuable insight for inspection of underground assets such
as pipes and cables.
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Benefits: Valuable assets in inaccessible locations can be inspected cheaply and accurately with
searchable access.

8.8. Testbed-16 Results
WebVMT work in Testbed-16 FMV demonstrated the lack of accessibility to geospatial video
metadata in web browsers and highlighted the effort necessary to extract in-band metadata from
an MPEG-2 stream in terms of complexity, bandwidth, and manpower.

8.8.1. Web Alignment

WebVMT’s out-of-band design is well-suited for moving objects and sensor data to decouple
metadata access from the current video playback time. This approach avoids the inherent
overheads of in-band design and enabling seamless integration with web browsers and search
engines to make video metadata easily accessible to the online community. Exporting MISB
metadata to WebVMT has demonstrated the value of exposing geospatial metadata in a common
format, including:

• Integration with web map APIs such as the Leaflet [https://leafletjs.com/] and MapboxGL
[https://docs.mapbox.com/mapbox-gl-js] JavaScript libraries for rapid visualization.

• Enabling JavaScript access for developers to build web applications for mobile and desktop
devices worldwide.

• Making online video metadata machine readable to enable search engine integration to rapidly
identify relevant geotagged video content on the web.

8.9. Conclusion
The WebVMT contribution to the Testbed-16 FMV activity demonstrated valuable ways in which
MISB metadata could be quickly and easily exploited online by mapping to WebVMT and how
closer integration with web technologies could improve accessibility.
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Chapter 9. Software Design and
Demonstrator overview

9.1. Overview
This section contains a formal description of the different modules implemented in the Proof of
Concept (POC) in terms of UML diagrams, libraries and technologies as well as an overview of the
functionality and challenges faced.

9.2. Demonstrator 1
The goal of the Testbed 16 FMV demonstration is to use the SensorHub web application to
seamlessly unite and broadcast observations from varying Full-Motion Video (FMV) and
MovingFeatures (MF) sources in a manner intuitive to observers. As described in the Overview, this
application primarily uses the OGC SensorThings API Standard to display sensor observations on
dashboards. The SensorHub application’s main use in this project was to convert diversely
structured FMV and MF sources, accessible via the OGC SensorThings API, to be displayed on the
end user’s dashboard.

Figure 18. SensorHub Client.

9.2.1. SensorHub Overview

SensorHub is a Compusult product that harnesses the OGC SensorThings API to shuttle data from
various Internet of Things (IoT) sources to a common destination dashboard. The SensorHub
application consists mainly of drivers, which take either fixed files or periodically polled source
URLs as inputs and generate SensorThings sensors as output.

Sensors can be viewed and manipulated via the Dashboard Editor. Users can see the current

44



observation values of multiple widgets or navigate through the historically recorded values of a
single one. Front-end widgets that depict similar units of measure will be displayed in a consistent
manner, even if the originating data sources are in different formats.

Figure 19. SensorHub Dashboard Editor.

SensorHub also supports logic to create rule-based alerts, which, via broadcast protocols such as
Message Queuing Telemetry Transport (MQTT), can be transmitted using the Tasking component of
the SensorThings API.

9.2.2. OGC SensorThings Sensing API

The Sensing side of the OGC SensorThings API deals with creating, housing, and broadcasting
hierarchically structured observations and is the primary format into which the end products of all
SensorHub inputs must be converted. SensorHub components are depicted in the below diagram:
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Figure 20. SensorThings class diagram.

9.2.3. MovingFeatures Package Structure

Structurally, the MovingFeatures package is typical of a SensorHub driver package. Each of these
accepts files of a certain type (or set of types) as an input, converts the files to output OGC
SensorThings entities, and performs the associated input/output (I/O). User interaction with the
main class, MovingFeaturesDriver, is done via a MovingFeaturesConfig class and associated
Jakarta Server Pages (.jsp) document, wherein the user can manage a list of file paths.

This driver supports inputs in either Full-Motion Video formats (e.g., .mp4, .h264, .mpeg4) or
existing MovingFeatures .json formats, since video files will be converted to MovingFeatures JSON
as part of the process of converting them to OGC SensorThings. The workflow for both file types is
depicted in the below Unified Modeling Language (UML) diagram:
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Figure 21. FMV-MovingFeatures-SensorThings sequence diagram.

9.2.3.1. MovingFeaturesConfig

In a SensorHub driver, the configuration code generally produces a landing page like the one
shown below. Users have the option to enter and add a new Uniform Resource Identifier (URI), as
well as to view the existing ones and delete any no longer desired ones.
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Figure 22. Weather feed configuration.

Internally, the config classes store a source JSON array containing the URIs and any MovingFeatures
properties made from each file. Each time the list of source files changes, the driver class is re-
initialized and a new fetch of any sensors originating from any new sensor files will be performed.
The JSON array will be updated accordingly with the latest versions of all of the objects.

9.2.3.2. MovingFeaturesDriver main file

The MovingFeaturesDriver is the broker class that forms the core of the parsing process,
assembling JSON objects from the data source locations held in the MovingFeaturesConfig and
transforming them to Sensors that will be visually displayable.

FMV files in the configuration list are passed, one by one, to the parse() function. This takes in a
JSON object, which is either blank or contains the observations that were made so far. parse also
looks at the dataset type (e.g., Unmanned Air Systems [UAS], VMTI, or VTrack), permitting recursive
parsing when one dataset is nested inside another. The parse function operates on a consistent
basis for all MISB sets and at all levels of recursion, due to those sets’ consistent KLV (Key-Length-
Value) structuring.

In parsing, the Driver first checks the extension on each file. For each file that is already .json, the
Driver moves to generating MovingFeaturesSensors. This is shown in the bottom section of the
UML diagram workflow. However, if the extension is not .json the file is considered an FMV and
needs the JSON extracted first, as in the top section.

To extract, the Driver scans 16-byte sequences from the file to try to detect one of the 16-byte
Universal Keys, defined in MISB 0903 and 0601, that signal the start of a new dataset. In a video file,
this corresponds to the start of the metadata for a new frame.

Once this Key, or any of the Keys inside the dataset, is found, the immediately following bytes are
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scanned to determine the Length of the data contained therein. Lengths are given as Basic Encoding
Rules (BER) numbers, either short-form or long-form, and thus the parser can inherently determine
how many bytes it has to jump forward to get to the Value. The mechanics of looking up keys and
parsing BER numbers are done mainly via the Helper Classes.

After the length is read, a number of bytes equal to the length are consumed as well, and these form
the Value. The code runs a switch() statement on the original KLV Key to determine the meaning of
the value (e.g., does it represent a geographical coordinate, a timestamp, or a name?).

Depending on the key meaning, a JSON creator function is selected and called. JSON creator
functions take in the JSON object that was passed to the parser and populate its properties,
temporalProperties, and temporalGeometry, creating new entities wherever necessary as
stipulated by the OGC MovingFeatures specifications. If measurements or numerical readings are
present in the bytes, additional helper functions may be called to convert them from bytes to
doubles or integers via MISB encoding schemas such as Integer MAPping with starting point B
(IMAPB) or Universal Data Set (UDS).

The ultimate JSON file revised by the parser will comply with the MovingFeatures specifications.
This file is then placed back in the Config, so that all data previously read is available in case the
FMV video feed has more data written to it later. The offset, or number of bytes the reader has gone
through already, is also stored to prevent rereading of data. On the driver’s next activation, the
stored JSON will be read by a different part of the parser, the same part that handles data sources
that come in natively as MF-JSON. This process generates SensorThings entities.

9.2.3.3. MovingFeaturesSensor

The MovingFeaturesSensor (a subclass of Sensor, which implements the SensorThings API item of
the same name) is the top-level entity that houses the SensorThings Datastreams and Observations
that are passed to the dashboard.

When the Driver goes through the Config’s list of observations, it automatically creates a Sensor
for each new JSON file it sees, including those made earlier by its own FMV-JSON conversion. From
there, executes the workflow seen in the second stage of the UML diagram. This Sensor receives, as
an argument, a path to the JSON object that represents its own data. Within this object, the
temporalProperties are each converted to SensorThings Datastreams, and individual values
within them to SensorThings Observations. The Sensor’s constructor creates Datastreams and
Observations based on the latest set of readings observed in the object; once the creation is done,
the Hub’s core automatically makes widgets showing the Observations, which can be arranged on
a dashboard at will using SensorHub’s Dashboard Editor.
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Figure 23. Observations in the Dashboard editor.

Periodically, every few seconds, the Sensor checks its own filepath to see whether its JSON contents
have changed. If the Driver has detected new data in the frame, this will have been written to the
JSON and the Sensor will send any new Datastreams and Observations to the dashboard
accordingly.

9.2.3.4. Helper Classes

A BERParser class is present in the package and linked to from the Driver’s parse function. Its role
is to take in KLV Length and Basic Encoding Rules, Object IDentifiers (BER-OID) identifier portions
of the incoming byte stream, translate them into a Java long, and output a two-integer pair
containing (1) the decoded number and (2) the number of bytes that were consumed (the number
of bytes in the number itself).

A MovingFeaturesKeys class is also present, serving as a lookup table that the Driver can use to
access the key byte sequences. Maps that associate each key with the details specific to them are
located here as well, and some of these have their own wrapper classes. For example, keys for
properties that feed into the driver’s UDS parse function are mapped to IMAPDetails, which states
the minimum and maximum of the range being mapped onto, the number of input bytes (if fixed),
and whether or not the input bytes should be treated as signed. This range is passed into the
sensors, which use this information in constructing their widgets to set the minimum and
maximum values that the gauge can display.

9.2.3.5. Handling of multi-packet MISB sets

The KLV data from a MISB metadata set is not always contiguous within a file due to the
arrangement of Transport Stream (.ts) files in packets of data, which may be used to store content
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from multiple programs (i.e., video, audio, and metadata). However, the specifications for .ts itself
impose several constraints on the sizes and formats of these packets, allowing the parser to
unambiguously recover only the requisite KLV bytes.

The specifications for MPEG-2 Transport Stream files dictate that they will always be structured
into packets of exactly 188 bytes. Each packet must begin with a four-byte header, optionally
followed by an adaptation field and data payload, only the latter of which must be read to get the
MISB metadata. As such, the locations of the headers and adaptation fields must be identified so
that they can be skipped. However, the fixed size of the packets makes this a manageable task since
packets are always aligned to begin on offsets that are multiples of 188. The software design of the
parser makes use of this fact and a function called muxOffset inside the Driver will offset the
parser, byte by byte, until it reaches a multiple of 188, at which point it will pause reading the data
to search for the point where the MISB bytes resume.

Information from the four bytes of a packet’s header, along with the following unsigned byte,
which equals the length of the adaptation field, can be looked at to pinpoint the next byte of MISB
data. Stored in each packet’s header is a byte indicating the ID of the program that the packet’s data
belongs to. Typically, a .ts file will use one program ID for all its video and audio, and a second one
for metadata. While muxOffset has the parser in pause mode, it will ingest the program ID and
then offset itself 188 bytes at a time until it lands on the next one that belongs to the metadata. Once
the resuming packet has been located, the parser will read the adaptation field length and jump
forward by a number of bytes equal to it, thereby landing on the first byte of the payload and of the
MISB data’s continuation.

The diagram below depicts raw hex bytes in the example S06.ts file, indicating some features of
MISB packetization. When the UAS Master Key is detected, its packet, containing 188 bytes
beginning on an offset divisible by 188, is scanned to check its Program ID (here, 0x64). At the end
of the packet, the Packet Headers will be scanned one by one until another containing a Program ID
of 0x64 is found. Then this next packet’s Header and Adaptation Field (length given by its first byte,
0x07) are read, and data resumes at the next byte after that.

Figure 24. Main features of MISB packetization in S06.ts, highlighted in a hex editor.

9.3. Demonstrator 2
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Figure 25. Overview of the client application for Demonstrator 2.

This demonstrator is based on the Luciad platform and previous work done to decode MISB 0601
metadata in order to drape video coming from a file or live stream.

9.3.1. Architecture

Figure 26. Communication diagram for a video file.

The simplified diagram above gives an idea of how the application handles a Video File. The MISB
metadata is accumulated and decoded to a common data model. The data model contains the
telemetry information and VMTIs. Then, the data model is augmented with tracks obtained from
the tracker.

A UI widget allows the user to change the playback time. The Video Orchestrator sends a message to
the data model that the current time has changed updating the different visual layers.

52



The layers show the individual VMTI detections, the tracks, the platform and field of view, the
draped video and a separate window for an un-draped video.

Figure 27. Communication diagram for a video stream.

The application also allows connecting to a video stream. The difference is the absence of a
playback widget and the tracking that occurs in real time.

9.3.1.1. Common Data Model

Figure 28. Data Model.
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The graph above shows the most common parts of MISB 0903 and the track data model. These data-
models are implemented as temporary in-memory representation of the data for on screen
representation.

The intermediate data model also serves as the basis to encode tracks to interoperability formats
(OGC Moving Features and OGC O&M).

Figure 29. A common Data Model helps in the design of multiple format encoders.

This common data model is much easier to manage than the KLV encoded binary messages of MISB
0903 and the encoding process is decoupled from the decoding of MISB 0903.

9.3.2. Data quality

Drones have limited hardware but are asked, in real-time, to encode video, detect moving objects
and calculate their location relative to the telemetry of the drone and the elevation model they
have in memory. As a result, the data is not always high quality.

Several factors can affect the accuracy of detections. The algorithm that detects moving objects
from the video is subject to errors, the elevation model of the earth directly impacts the conversion
from pixel to longitude/latitude and finally, the telemetry of the drone and camera may be
inaccurate.

More generally, this results in inaccurate locations, false positives and missing detections.

To some extent, the quality of the data can be improved with post-processing.

9.3.2.1. Effect of elevation on location accuracy

Elevation will have an effect on the location and deformation of a video that is being draped on
terrain.
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Figure 30. Effect of elevation on draping.

Different elevation models (left and right) can result in large differences the location and
deformation of a draped video.

The detection of moving objects will be done relative to the video in terms of affected pixels but in
order to communicate a longitude, latitude and height, a projection on terrain elevation must be
done.

Figure 31. Effect of elevation on location accuracy.

The images above compare the location of a truck from a projected video with high accuracy
elevation (left) and low accuracy elevation (right). The green and red dots show the error caused by
the low quality elevation.

As a result, the video and detections may not match depending on what elevation model is used and
there is no way of knowing how accurate an elevation model was used in the calculations.

Because MISB 0903 has fields to indicate the pixels that correspond to a detection, the location may
be re-calculated in post-processing with a high accuracy elevation model.

9.3.2.2. false positives and false negatives

The on-board software responsible for detections will be imperfect and false positive and negative
detections will occur.
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Figure 32. False positive detections.

The detections above are false positives detected because of a jittery and out of focus camera. False
positives may be identified because they are outliers, too distant from any other detection. During
tracking, entire tracks are dismissed based on length.

56



Figure 33. False negative detections.

The image above shows missing detections. In our tracker implementation, false negatives or
missing values are handled by extending the track after it has been lost with constant bearing and
speed in the hope to match it with a future detection. When color or intensity values are present,
they can also help to match detections to previous tracks.

In both cases, it is up to the tracking algorithm to handle such cases.

9.3.2.3. detection jitter
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Figure 34. Detection Jitter.

The vehicles tracked in the image above travel in a straight line but the detections suffer from some
jitter.

Detection jitter may be due to errors in the telemetry (the orientation, position and field of view of
the camera) and jitter may be caused by the software. Either way, it makes the dataset more
confusing to interpret. The data can be improved via smoothing methods.

One straight forward approach to reducing jitter is to apply some sort of non-linear regression
through the points. The track is then interpolated over the regression to smooth it.

There is an argument against interpolating the tracks. The information gathered, though imperfect,
is directly obtained from sensors while any interpolation method is a speculation on the actual
location of objects.

A more drastic approach to solving the problem, specific to the use-case of objects travelling on
predefined roads, is to match the detections with a vector model of roads. A routing algorithm may
give more hints of the actual path that an object is traveling on by avoiding long detours for
successive positions.
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Chapter 10. Test Scenarios

10.1. Demonstrator 1 Test Scenarios

10.1.1. Overview

Testing of the MovingFeatures package was limited, largely due to a shortage of available sample
data that is compliant with MISB and other North Atlantic Treaty Organization (NATO) standards.

10.1.2. Data

The difficulty of obtaining NATO standards–compliant FMV data files has, for both demonstrators,
been the greatest shortcoming of the FMV-to-Moving Features initiative and its associated ability to
be tested. Nonetheless, a varied collection of data files from two main sources were obtained.

One of the demonstrator’s data sources is an archive of datasets provided by a public Google Drive
folder. The data source comprised eight files containing Unmanned Air System (UAS) full-motion
data recorded in various locations. Specific files and their locations were:

• Cheyenne.ts – Cheyenne, Wyoming

• Cheyenne_Handoff.H264 – Cheyenne, Wyoming

• CheyenneVAhospital.mpeg4 – Cheyenne, Wyoming

• Esri_multiplexer_0.mp4 – Arcadia, Florida

• Esri_multiplexer_1.mp4 – Arcadia, Florida

• falls.ts – Fall City, Washington

• klv_metadata_test_sync.ts – Silver City, North Carolina

• Truck.H264 – Cheyenne, Wyoming

Although the videos’ streaming formats differ, the metadata bytes’ structure is identical, being
comprised of UAS data with a top-level UAS universal key. As such, the MovingFeatures package can
accept and parse these data sources in the same way.

Eight sample files were contributed by the United States Department of Defense’s Joint System
Integration Laboratory (JSIL). These files depict moving objects on various military bases. The eight
specific files and the locations covered are:

• S01.ts – Dugway Proving Grounds, Utah

• S02.ts – Redstone Arsenal, Alabama

• S03.ts – Afghanistan

• S04.ts – Fort Huachuca, Arizona

• S05.ts – Kandahar, Afghanistan

• S06.ts – Huntsville, Alabama

• S05_VTracks.ts – Kandahar, Afghanistan
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• S06_VTrack.ts – Huntsville, Alabama

As in the other sources, the top-level data sets in these files are all UAS and most use exclusively
those keys defined in MISB 0601. Of these source files, only S05.ts and S06.ts contain VMTI data,
and thus only they can be used as inputs to test certain use-cases of the WebVMT application.
Moreover, even their VMTI sets are compliant with only the deprecated MISB 0903.3 standard and
not the current 0903.5 revision.

S05_VTracks.ts and S06_VTrack.ts contain VTrack local sets as descendants of the top-level UAS
ones. As such, they permit writing and testing of the MovingFeatures workflow that parses data out
of this dataset type. They are also otherwise equivalent to S05.ts and S06.ts, meaning VTrack
observations can be compared against the observations from these. The MISB 0903 in these files
contains missing data, inaccurate detections and inaccurate telemetry to re-create a realistic
situation.

10.1.3. Test Scenarios

Testing of the MovingFeatures package has thus far consisted mainly of ad-hoc unit-tests that arose
as new modules were written. Feedback from the tests is simply available via Compusult’s
SensorHub through its built-in Apache Log4j logging system as well as the results conveyed to the
dashboards.

Unit tests conducted on the MovingFeatures package, in chronological order, included the
following.

1. The BERParser helper class needed to be checked to ensure that it correctly interpreted Basic
Encoding Rules (BER) and Basic Encoding Rules for Object IDentifiers (BER-OID)-encoded
numbers, and that the Driver’s read identified and skipped over any initial bytes (e.g., the “82”
in 0x8201A1, which really encodes the length 0x01A1) that give the length of the length value
itself.

2. The MovingFeaturesKeys helper class was set up and checked to make sure that each one-byte
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key that could produce relevant observations was recognized by the switch statements in
parse(), which used them as cases.

3. Each JSON creator function was tested to make sure it placed the right temporalProperty or
property, as appropriate, in the new MF-JSON object; in particular:

a. Creators for keys such as the “Platform Designation” and “Version Number” were checked to
ensure that they appropriately translated their ASCII hex bytes into strings;

b. The creator for the timestamp, which is the same for MISB 0601 and 0903, was checked to
ensure that it translated its bytes into a number of milliseconds since the Unix epoch and
that this got housed in the timestamps arrays; and

c. decodeUds(), the creator for any numerical observations encoded in Universal Data Set
(UDS), was checked against the UDS specs in the MISBs to make sure the numbers it was
generating were correct. UDS-encoded observations include the Latitude and Longitude.

4. Config was checked to ensure that the reader’s byte offset was saved correctly between one poll
and the next, preventing the same frame from being reread.

5. An internal lookup table, housed inside properties for convenience, was needed in order for
sensors to find themselves, since a JSON file can comprise multiple sensors but each sensor has
a reference to the entire file. Made sure lookup table worked via logging and dashboards.

6. Dashboard widgets were checked to make sure the endpoints of their ranges matched those that
were defined in MovingFeaturesKeys and in the MISBs. For example, Height GaugeWidgets
generated from UAS must support displaying heights between -900 and +19000 feet.

7. Widgets were checked to make sure the coordinates they were reporting for themselves were
up-to-date with their <u>latest</u> observed locations.

61



Chapter 11. Discussion

11.1. OGC Moving Features
OGC Moving Features is adequate as an interoperability format to communicate tracks that were
extracted from MISB 0903. All of the metadata contained in MISB 0903 and inferred metadata such
as track classification or rigid shape can be transported by the format.

The only limitation is for the MISB 0903 VObject Local Data Set (LDS), VFeature LDS and VChip LDS.
They describe a class as Web Ontology Language, Features as OGC O&M and frame images
respectively. OGC Moving Features is sufficiently flexible to transport this information but by doing
so looses its interoperability quality because the encoding would require a specific schema that is
not yet defined.

11.2. OGC Observations and Measurements
The general impression is that OGC O&M can be used as an interoperability format as it has the
necessary components for the use-cases that have been considered. The representation of geometry
through GeoJSON and the temporal metadata structure are adequate relative to what has been
tested for OGC Moving Features. However, an encoder could not be implemented and the
assessment is still largely speculative.

11.3. Future work recommendations

11.3.1. OGC Observations and Measurements

OGC O&M was extensively reviewed but not implemented through a working encoder and decoder
of moving tracks. A more thorough investigation of OGC O&M is needed to conclude on that
standard’s usability as an interoperability format for tracks exported from MISB 0903 and post-
processed for various use-cases.

11.3.2. SensorHub Future Work Components

11.3.2.1. Visual Location Reporting via SensorHub

An envisioned use case for SensorHub is to plot the locations of moving items on a map. Were this
utility completed and coupled to the MovingFeaturesDriver, this capability would allow a visual
and more intuitive representation of SensorThings Historical Locations (coordinate pairs) over
time, similar to the WebVMT contributor’s map.

11.3.2.2. UDP Support

In real-world applications, FMV livestreams are commonly broadcast to control systems in the form
of User Datagram Protocol (UDP) packets to ensure real-time transfer. The UDP protocol is not
natively supported by SensorHub due to its lack of a UDP socket in its data model. If a receiver for
this protocol were added, the MovingFeaturesDriver would be extensible to a wider range of
applications.
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11.3.2.3. Tasking API

As discussed in the Section 4 overview, the OGC SensorThings API permits not only fetching of
observations by clients, but also automatic, immediate alerting and broadcasting to clients if
abnormal observations are detected. This side of the API – its “tasking” component – is supported in
the SensorHub web application mainly through the MQTT broker that is contained in the
SensorHub core. While SensorHub is running, by default, a broker is gathering data on topics for
each Datastream, Observation, and other entity that is contained in the app. Rules can be
configured in the central portion of the app to broadcast a specific message when a datastream
gives an observation in a certain range (for example, if Height exceeds 10,000 ft, “Extra oxygen
needed” could be sent to mountain climbers’ safety sensors). Observers who have MQTT client
programs can then subscribe to these topics at will and be automatically notified if the conditions
of any of the rules are met. While rules can be added to MovingFeatures streams, the SensorHub
tasking interface is still in its early stages of development.

Figure 35. SensorHub tasking interface.

11.3.2.4. UI and Widget Specifications

SensorHub dashboards support a wide range of widget appearances, not only the GaugeWidgets
shown in current MovingFeatures observations. For example, wind speeds on meteorological
sensors have been displayed using SpeedometerWidgets like the one below:
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Figure 36. Speedometer widget.

The main current barrier to diversifying the widgets in this Driver is that, as per the
MovingFeatures Sensor standards, every datastream must be able to determine all of its details
solely by reading its own JSON. A temporalProperties entry, as defined in the MovingFeatures
Standard, is only permitted to store its value and its unit of measurement (UOM), not additional
details such as what alternative widget to use. A lookup table associating either key names or units
with widget types would likely be the simplest possible way to implement alternative widgets. This
would have to be separate from the MovingFeaturesKeys class, which does not interact with the
Sensor.

11.3.3. WebVMT Future Work Components

WebVMT work in Testbed-16 FMV produced successful results which could be developed further
and identified new topics worth investigating in the future.

11.3.3.1. Web Browser DataCue Integration

Work is progressing in parallel at the W3C in the Web Incubator Community Group (WICG) DataCue
activity [https://github.com/WICG/datacue/] to integrate the DataCue element into HTML and expose
video metadata, including geospatial information, natively in web browsers. Building an OGC demo
with DataCue support would:

1. Guide requirements for geotagged video on the web and ensure that proposed W3C solutions
are aligned with OGC standards such as Moving Features and SensorThings to maximise
interoperability.

2. Encourage browser implementers to provide support for geotagged video online which enables
timed metadata integration with search engines, digital maps and web applications.

3. Help accelerate geospatial DataCue feature development in the web community.

A breakout session [https://www.w3.org/wiki/TPAC/2020/SessionIdeas#

Video_Metadata_For_Moving_Objects_.26_Sensors_On_The_Web_.28WebVMT.29] to discuss a web API suitable
for moving objects and sensor data with video on the web was proposed for the W3C Technical
Plenary and Advisory Committee (TPAC) in October 2020 to raise awareness in the W3C community
and help gather support.
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11.3.3.2. Metadata Export Utility Enhancement

The WebVMT export utility has successfully mapped MISB metadata to various WebVMT features,
but is currently limited to MPEG-2 Transport Stream input files containing MISB 0601 and 0903
metadata. This could be expanded to include other formats:

1. For video:

◦ MPEG-4 is a primary focus for media on the web.

◦ Other web video formats such as MPEG-H [https://en.wikipedia.org/wiki/MPEG-H], AV1
[https://en.wikipedia.org/wiki/AV1], WebM [https://www.webmproject.org/] and OGG [https://xiph.org/

ogg/].

2. For geospatial metadata:

◦ More MISB tag mappings for specific use cases;

◦ Open metadata formats such as GoPro Metadata Format (GPMF) [https://github.com/gopro/gpmf-

parser] for body-worn video devices;

◦ SubRip Text (SRT) format files used by drone manufacturers.

11.3.3.3. Metadata Export Benefit Analysis

Metrics from the WebVMT export utility could be analyzed to identify the benefits of using in-band
and out-of-band video metadata both qualitatively and quantitatively to determine where best
advantage can be gained. Key topics include:

1. Privacy to control data access with file permissions.

2. Security to monitor online access patterns and correctly identify unauthorized data use.

3. Efficiency to assess overheads involved in accessing metadata.

4. Bandwidth to compare data throughput during common use cases such as web crawling and
search engine queries.

11.3.3.4. Search Engine Demo

Build a modified search engine based on open source code to demonstrate search by location
and/or sensor data capability that returns either still video frames or video clips centered around
the matching media time. Applications include the Vehicle Collision [https://w3c.github.io/sdw/proposals/

geotagging/webvmt/#vehiclecollision] and Area Monitoring [https://w3c.github.io/sdw/proposals/geotagging/

webvmt/#areamonitoring] use cases detailed in the WebVMT Editor’s Draft would benefit from
automated collision detection, preserved evidence, reduced bandwidth and structured security. The
demo provides:

1. Proof of concept for end-to-end geospatial integration from source video file to web browser
display.

2. Reference code to test and verify issues of privacy, security and bandwidth associated with
online search, and gather metrics.
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11.3.4. Deep learning for tracking and track classification

A Deep Learning approach for point clouds can be applied to the VMTI tracking problem. In theory,
a network like PointNet++ or similar can segment the detections into tracks and handle the problem
of missing detections and false positives. Such a tracking algorithm can also be trained with varied
datasets so that the tracking algorithm does not need to be tuned to the type of object it is tracking.
Moreover, a point-cloud deep-learning network can be used as a classifier to identify abnormal
behaviors such as drunk-driving or sea piracy.

Such an algorithm can also play a role in organizing a library of videos by identifying videos with
similar content.

Training these algorithms requires considerable data and building a database of tracks with a
classification schema would be invaluable.

11.3.5. Real-time traffic monitoring

Using a fleet of autonomous sensors to monitor the volume and velocity of traffic as it flows
through city streets. The collected data is the moving feature representation of all moving vehicles.
Collection will go through motion imagery sensors capable of generating VMTI. Note that only the
VMTI needs to be collected. The motion imagery can be discarded once the motion data has been
extracted.

The result is a collection of moving features which represent the actual traffic during a period of
time. This would allow detailed modeling of traffic behavior within an urban setting. The model
would include not just the aggregate properties, but also the behavior of individual vehicles within
a flow. Similar capabilities have been discussed in the context of urban planning. See
https://portal.ogc.org/files/?artifact_id=82917 for one example.

11.3.6. Counter UAV use-case

This use case focuses on detecting a small UAV in video streams, estimating the position of that UAV
and then generating MovingFeatures data with the position and trajectories. Multiple Video streams
would be needed to triangulate the position of the object.

11.3.7. Drone Swarms

A variety of algorithms are being developed to control the movement of drone swarms. Drones
within the flock adapt their location based on the observations that are being made by the
collective of sensors on the UAVs and this may call for a new standard.
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