OGC API - Environmental Data
Retrieval Sprint Engineering Report

Publication Date: 2020-10-22

Approval Date: 2020-06-22

Submission Date: 2020-05-28

Reference number of this document: OGC 20-032

Reference URL for this document: http://www.opengis.net/doc/PER/EDR_API_Sprint
Category: OGC Public Engineering Report

Editor(s): Chris Little, Peng Yue, Steve Olson

Title: OGC API - Environmental Data Retrieval Sprint Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/EDR_API_Sprint
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

Table of Contents

1. Summary
1.1. Subject
1.2. Executive Summary
1.3. Document contributor contact points
1.4. Foreword
2. References
3. Terms
3.1. Terms and definitions
3.2. Abbreviated terms
4. Overview
5. Introduction
5.1. Background
5.2. EDR API approach
5.3. Purpose
5.4. Sprint Goals
5.4.1. Objectives
5.4.2. Proposed deliverables
5.5. Use Cases

5.6. Existing Data, Implementations and Demos

5.6.1. Implementations of EDR API
5.6.2. Data sources
5.6.3. Demonstrations
5.7. Participants
6. Working Methods
6.1. Specific Objectives

6.1.1. Develop new EDR API server and client, Mark Burgoyne (Issue #20)

6.1.2. Demonstrate automatic harvesting of metadata from aggregations of data stores to
improve search capabilities for use with the EDR API, US NWS (Issue #19 and Issue #14))
6.1.3. Implement Trajectory queries against typhoon/hurricane data. Wuhan University

(Issue #03)

6.1.4. Explore putting EDR API on ESRI REST API image server, UK Met Office, ESRI (Issue

#02 and Issue #17)

6.1.5. Use EDR API to retrieve feature orientated observations from hydrological network

data stores, USGS (Issue #01)

© © 00 N 9 o o o

N e N E Yy
O I N S - T N N N N N S S N =)

17

19

19

19
19

6.1.6. Conformance testing, ECMWF (Issue #16)

6.1.7. Implement and demonstrate a STAC (Spatio-Temporal Asset Catalogue) for accessing
meteorological real-time data stores in pygeoapi, Meteorological Service of Canada (Issue
#21)

6.1.8. The remaining Issues #04 - #10 were generic objectives covering the full scope of data
query patterns of the EDR API, but divided up according to expected difficulty
7.1Issues
7.1. Issues arising and resolved
7.1.1. Issue #03 and #09 Trajectories: which time specification?
7.1.2. Issue #04 Point, time series at a point, and vertical profile at a point: which
combinations?
7.1.3. Issues #08 and #06 and #05 Cube/Tile, Polygon in 3D or 4D, Polygon/Tile in 2D: which
bounding box styles?
7.1.4. Issue #0? What are the EDR API resource types?
7.1.5. Issue #18 Streaming of EDR API response media types
7.1.6. Issue #12 Items view of EDR resources and Issue #15 JSON-Schema for
/collections/{collectionID}/items
7.2. Issues outstanding
7.2.1. Issue #11 Groups versus Collections
7.2.2. Issue #10 Corridors, 3D or 4D
7.2.3. Other Issues
8. Recommendations and Next Steps
8.1. Recommended Topics for further discussion
8.2. Next Steps for EDR API Specification
Appendix A: Bibliography

20
22
22
22

22

22
22
23

23
26
26
26
26
27
27
27
28

Chapter 1. Summary

1.1. Subject

The subject of this Engineering Report (ER) is a development Sprint that was held from March 18-
20, 2020 to advance the Open Geospatial Consortium (OGC) Environmental Data Retrieval (EDR)
Application Programming Interface (API) candidate standard. Due to the widespread of the virus,
the Sprint was held virtually by using GoToMeeting teleconferencing facilities of OGC, email and
GitHub.

1.2. Executive Summary

The idea of the EDR API is to enable end users and Web developers to conveniently and easily
retrieve required data from big data stores, using current Web technologies and a significantly
reduced learning curve, with unnecessary details initially hidden from the service endpoint. The
API queries can be considered discrete sampling geometries into the non-sparse relatively
persistent data store.

The EDR API Sprint was to provide feedback based on the current EDR API candidate specification.
The specific objectives were discussed prior to and in the opening session of the Sprint, which
includes:

* Verify and validate requirements and methods for the Query and Filter operations of the EDR
APIT;

* Prototype rapidly other geometry types for the EDR API (partitioned grids or tiles, vertical
profiles, and/or trajectories/corridors);

* Develop client-side value-added applications that consume data from UK Met Office and US
NWS prototype EDR API implementations; and

» Make progress on conformance testing of EDR API parts based on queries.

There were about two dozen individuals that participated in the event. Significant progress was
made advancing the specification in several key functional areas. A number of GitHub issues were
created and discussed throughout the Sprint. The Sprint was considered very successful with
clarifications and enhancements of the specification agreed. Commonality and differences with the
other OGC APIs under development were identified.

Based on the results and findings of the Sprint, this engineering report makes the following
recommendations:

* Expand metadata offerings, consider what Metadata frameworks should be used,
recommended, or mandated,;

Test other sampling geometry types;
 Investigate how to integrate with other APIs (features/coordinates, maps);

* Incorporate the needed security aspects. This needs to be coordinated with the Security DWG
and OWS Common - Security SWG;

* Incorporate a pub/sub mechanism with the EDR API specification; and

* Investigate how to align with decision impact groups like SmartCity, others.

1.3. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Chris Little UK Met Office Editor

Steve Olson US National Weather Editor
Service

Peng Yue Wuhan University Editor

1.4. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. References

The following normative documents are referenced in this document.

NOTE: Only normative standards are referenced here, e.g. OGC, ISO or other SDO standards. All other
references are listed in the bibliography.

* Open API Initiative: OpenAPI Specification 3.0.3

« IETF RFC2616, HTTP/1.1

o IETF RFC 2818, HTTP Over TLS

» IETF RFC 3339, Date and Time on the Internet: Timestamps

» IETF RFC 3896, Uniform Resource Identifier (URI): Generic Syntax
» IETF RFC 7946, The GeoJSON Format

» IETF RFC 8288, Web Linking

» IETF RFC 2413, Dublin Core Metadata for Resource Discovery

e W3C: HTML5, W3C Recommendation

» Simple Feature Access - Part 1: Common Architecture

* Well-Known Text representation of Coordinate Reference Systems

Chapter 3. Terms

3.1. Terms and definitions

For the purposes of this report, the definitions specified in Sub-clause 5 of OGC API-Common Part 1
OGC 19-072 [http://docs.opengeospatial.org/DRAFTS/19-072.html] shall apply. In addition, the following
terms and definitions apply.

e coordinate reference system

coordinate system that is related to the real world by a datum term name (source: ISO 19111)

e dataset

collection of data, published or curated by a single agent, and available for access or download
in one or more formats

e feature

abstraction of real-world phenomena (source: ISO 19101-1:2014)

e coverage

feature that acts as a function to return values from its range for any direct position within its
spatiotemporal domain, as defined in OGC Abstract Topic 6 (OGC 07-011)

e OpenAPI definition | OpenAPI document

a document (or set of documents) that defines or describes an API and conforms to the OpenAPI
Specification [derived from the OpenAPI Specification]

e Web API

API using an architectural style that is founded on the technologies of the Web [derived from the
W3C Data on the Web Best Practices]

e service

distinct part of the functionality that is provided by an entity through interfaces (source: ISO/IEC
TR 14252)

e operation

specification of a transformation or query that an object may be called to execute (source: ISO
19119:2016)

e request

invocation of an operation by a client

e response

result of an operation, returned from a server to a client

http://docs.opengeospatial.org/DRAFTS/19-072.html

3.2. Abbreviated terms

NOTE: The abbreviated terms clause gives a list of the abbreviated terms and the symbols necessary for
understanding this document. All symbols should be listed in alphabetical order. Some more frequently
used abbreviated terms are provided below as examples.

» API Application Programming Interface
* CRS Coordinate Reference System
 HTML Hypertext Markup Language

» HTTP Hypertext Transfer Protocol

* JSON JavaScript Object Notation

* CSW Catalogue Service for the Web

* WCS Web Coverage Service

* WFS Web Feature Service

* OWS OGC Web Services

» REST Representational State Transfer

e ETS Executable Test Suite

10

Chapter 4. Overview

Section 5 introduces the Environmental Data Retrieval Sprint by describing the background, the
EDR API approach, use cases, data resources, implementations, and the demonstrations. The section
also presents a list of the organizations represented by the participants.

Section 6 describes the working methods of the Sprint, and each of the specific objectives that were
involved in the Sprint.

Section 7 presents the issues arising and resolved, as well as the issues outstanding.

Section 8 provides the recommended topics for further discussion and the next steps for the EDR
API specification.

11

Chapter 5. Introduction

A Hackathon/Sprint was organized under the auspices of OGC to progress the development of the
Environmental Data Retrieval API (EDR-API). It was to be hosted by the US National Weather
Service near Washington DC, from 18-20 March 2020. Unfortunately, because of the global health
crisis, the physical face-to-face meeting was canceled. It was decided to hold a virtual
Hackathon/Sprint, more or less keeping to US Washington time (Eastern Daylight savings Time) and
to communicate using GoToMeeting teleconferencing facilities of OGC, email, and GitHub.

The EDR-API is intended to allow a small amount of data, as required, to be retrieved, or “sampled”,
by coordinates from data stores that are too large or impractical to copy and transmit. The data
queries are based on common but distinct geometry types (i.e., points/time series, polygons,
trajectories, etc.).

The API is being developed by the OGC EDR API Standard Working Group against the following
documents.

» Charter [https://github.com/opengeospatial/Environmental-Data-Retrieval-API/blob/master/
EnvironmentalDataRetrieval API-SWG-Charter.adoc]

e Candidate standard [https:/github.com/opengeospatial/Environmental-Data-Retrieval-API/blob/master/

candidate—standard/EDR-candidate-specification.adoc]

* Background reading material [https:/github.com/opengeospatial/Environmental-Data-Retrieval-API]

The first draft of the candidate standard was based on the OGC API - Features, Part 1: Core and what
is now OGC API - Common, Part 1: Core following a hackathon in London during June 2019. Both of
these standards follow OGC current policy on API development and are consistent with OpenAPI
Version 3.

5.1. Background

Environmental data typically involves huge data stores which are difficult to duplicate and
transfer, with the difficulty compounded by rapid information replacement, such as in weather
forecasts. Such data stores are often generated by a multitude of data resources, with a large
number of interested users from multiple domains.

Much of the data exist in operational environments, where service reliability, availability, and
scalability, both in terms of volume and numbers of users, are essential requirements.

Many of the existing services have powerful query capabilities, however some are difficult to scale
in volume and numbers of users, making it hard to guarantee service levels. They may be difficult
to secure.

Because some of the existing services have relatively complex APIs, there is a steep learning curve
and they may be difficult to integrate into production environments.

12

https://github.com/opengeospatial/Environmental-Data-Retrieval-API/blob/master/EnvironmentalDataRetrievalAPI-SWG-Charter.adoc
https://github.com/opengeospatial/Environmental-Data-Retrieval-API/blob/master/candidate-standard/EDR-candidate-specification.adoc
https://github.com/opengeospatial/Environmental-Data-Retrieval-API

5.2. EDR API approach

By using simple query patterns “sampling” into a large data store where the data publisher is
responsible for transforming and supplying the data, the user only defines area of interest in time
and space, using Well Known Text (WKT) making the data simple to consume, handle and combine
both “feature” and “coverage” data sources.

All the logic is in the “collection” itself (self-describing) and the self-describing queries.

Previous experiments, prototypes, experiences, and production implementations give confidence
that this approach avoids large scale duplication of data, is easier to implement, with easier access
control supplied by modern API management tools, and gives interoperability through simplicity.

The EDR API is intended to be part of a proposed family of OGC APIs that are complementary to
existing OGC Web-based geospatial services. These new APIs are intended for a different audience,
Web developers rather than geospatial specialists, and serve as basic introduction to OGC services
thus lowering the bar for entry to using OGC Web services.

5.3. Purpose

The EDR API Sprint was to provide feedback based on the current EDR API candidate specification,
and assess the compatibility with the OGC API - Features - Part 1: Core standard and the in-progress
OGC API - Common - Part 1: Core standard.

5.4. Sprint Goals

These were developed in meetings of the EDR API Standard WG and the Met Ocean Domain WG,
with other input from OGC staff and Members:

* Build implementations of the EDR API service based on existing data stores, both client and
server-sides;

* Develop client-side value-added applications that consume data from prototype
implementations of EDR API; and

* Develop prototype functionality for EDR API through developing and running code.

The goals were refined by the working groups into more specific objectives and deliverables.

5.4.1. Objectives

 Verify and validate requirements and methods for the Query and Filter operations of the EDR
API

* Prototype rapidly other geometry types for the EDR API (partitioned grids or tiles, vertical
profiles and/or trajectories/corridors)

* Develop client-side value-added applications that consume data from UK Met Office and US
NWS prototype EDR API implementations

* Make progress on conformance testing of EDR API parts based on queries

13

5.4.2. Proposed deliverables

» Software Code

* Recommended changes to the EDR API specification

* Report on level of compatibility with OGC API Features and Common
 Recommendations for other OGC APIs (Features, Common, etc.)

* Report on conformance class testing

* These goals, objectives, and deliverables were all discussed by the attendees prior to the
meeting and in the opening session of the Sprint

5.5. Use Cases

The Sprint was introduced by a quick review of the EDR API use cases at https://github.com/
opengeospatial/Environmental-Data-Retrieval-API/tree/master/use-cases. These included:

e Get Parameters for a Point across a Time series;

* Obtain or view a forecast time series of a parameter at a point;

* Get Unstructured Observations from within a Polygon;

* Show Weather Radar data time series; and

¢ Obtain or view Air Traffic Hazards and Restrictions for an Area.

5.6. Existing Data, Implementations and Demos

5.6.1. Implementations of EDR API

* US NWS: https://data-api.mdl.nws.noaa.gov/EDR-API Available data offered (METARs, TAFs,
Global Forecast System(GFS), North American Mesoscale model (NAM), National Digital Forecast
Database (NDFD))

* UK Met Office: http://labs.metoffice.gov.uk/edr/ Available data offered (METARs, UK Global
Model, US GFS, US NDFD, Open StreetMap, Digital Elevation Models)

5.6.2. Data sources

* Amazon data sources: https://registry.opendata.aws/?
search=tags:gis,earth%20o0bservation,mapping,meteorological,environmental,transportation

5.6.3. Demonstrations
(1) Automated aggregation of metadata from collections (3D, 4D, 5D)

This creates collections of parameters (that have common dimensions) from operational data
stores, and outputs in JSON which is used to convert the original dataset to zarr. Each zarr data
store represents a specific collection. With the parameters grouped by common dimensions, more
complex queries than EDR API can be made. Demo at https://github.com/ShaneMilll/edr-

14

https://github.com/opengeospatial/Environmental-Data-Retrieval-API/tree/master/use-cases
https://github.com/opengeospatial/Environmental-Data-Retrieval-API/tree/master/use-cases
https://data-api.mdl.nws.noaa.gov/EDR-API
http://labs.metoffice.gov.uk/edr/
https://registry.opendata.aws/?search=tags:gis,earth%20observation,mapping,meteorological,environmental,transportation
https://registry.opendata.aws/?search=tags:gis,earth%20observation,mapping,meteorological,environmental,transportation
https://github.com/ShaneMill1/edr-automation

automation.

(2) Demonstration of client side APIs (single and multi-domain feature extractions)

Uses the EDR API to access time series at a point for:

* Observations from a point cloud - latest airfield observations (METARS);

* Gridded forecast current data from US NWS GFS using https://data-api.mdl.nws.noaa.gov/EDR-

CLIENT-API; and

» Gridded forecast data from 2 days old UK Met Office Global Unified Model using
http://1abs.metoffice.gov.uk/edr/ . Demo at http://1labs.metoffice.gov.uk/map/wotwdemo/.

5.7. Participants

There were about two dozen attendees, from North America, the far East, and Europe. They
represented OGC, government departments, universities, and private companies. Table 1 lists

members that participated in the Sprint.

Table 1. Participating members

Name

Steve Olson
Shane Mill

Paul Hershberg
Dave Blodgett
Jim Kreft

Chris Little
Mark Burgoyne
Pete Trevelyan
Peng Yue

Boyi ShangGuan
Lei Hu

Zhang Mingda
Jeff Donze
Sudhir Shrestha
Keith Ryden
George Percivall
Josh Liebermann
Chuck Heazel

Clemens Portele

Organization

US NWS

US NWS

US NWS

USGS

USGS

UK Met Office

UK Met Office

UK Met Office
Wuhan University
Wuhan University
Wuhan University
Wuhan University
ESRI

ESRI

ESRI

0GC

0GC

HeazelTech LLC

Interactive Instruments

15

https://github.com/ShaneMill1/edr-automation
https://data-api.mdl.nws.noaa.gov/EDR-CLIENT-API
https://data-api.mdl.nws.noaa.gov/EDR-CLIENT-API
http://labs.metoffice.gov.uk/edr/
http://labs.metoffice.gov.uk/map/wotwdemo/

16

Name
Tom Kralidis

Stephan Siemen

Organization
Meteorological Service of Canada

ECMWF

Chapter 6. Working Methods

A GitHub repository was established at https:/github.com/opengeospatial EDR-API-Sprint . A
branch of the EDR API Candidate standard was also created at https://opengeospatial.github.io/EDR-
API-Sprint/edr-api.html so that changes could readily be made if required. Attendees also raised
Issues in the Sprint repository to indicate their objectives, and any issues encountered. Discussions
were then followed on the Issues tabs and tagged according to their content. Background
information was supplied in a Slide presentation https:/docs.google.com/presentation/d/
1vU807dnkima9Vch_T0ebECV5RRjSw-8Kuox15gN2Z4k/edit?usp=sharing and wiki pages at
https://github.com/opengeospatial/EDR-API-Sprint/wiki.

Also, at the beginning and end of each working day, briefing sessions were held on GoToMeeting to
present work done, and to discuss in more depth any issues and their resolutions. Sessions were
chosen to enable the different time zones to take part.

6.1. Specific Objectives

Most attendees, either individuals or teams, identified specific objectives that they would like to
achieve.

6.1.1. Develop new EDR API server and client, Mark Burgoyne (Issue #20)

Develop a simple EDR server to demonstrate Point, Polygon, and Items queries against the same
Collection of data. This is still work in progress, to track and implement the changes to the latest
EDI API specification, and also to try out novel ideas. It will also demonstrate an alternative
approach to the proposed application item_id as a unique identifier for a location (i.e., a METAR id,
GeoHash key, WhatThreeWords, etc.) which has a set of data assigned to it. This addressed Issues
#04 and #05: Point, timeseries at a point, vertical profile at a point, and 2D polygon.

6.1.2. Demonstrate automatic harvesting of metadata from aggregations of
data stores to improve search capabilities for use with the EDR API, US
NWS (Issue #19 and Issue #14))

Extend the automated aggregation of metadata from Collections (3D, 4D, 5D) by storing the output
from a forecast model run as a concatenation of binary GRIB files, then process as xarray dataset
with pynio and extract metadata (parameter ID determined by pynio, long name, level type,
dimensions) and put in a pandas data frame. The data frame creates a map between dimension
names and dimension values. Parameters that have the same dimensions are grouped. The
metadata is output in JSON. The original dataset is converted to zarr using the collection JSON. This
approach will enable more complex queries than just EDR API. The implementation is: https://data-
api.mdl.nws.noaa.gov/EDR-API/groups/US_Models?outputFormat=application%2Fjson based on
NAM and GFS GRIB data. The aggregation will be extended to other national weather service data
sources, or other file types such as HDF5, NetCDF:

* France on AWS at https://registry.opendata.aws/meteo-france-models/

* Canada at https://weather.gc.ca/grib/index_e.html

17

https://github.com/opengeospatial/EDR-API-Sprint
https://opengeospatial.github.io/EDR-API-Sprint/edr-api.html
https://opengeospatial.github.io/EDR-API-Sprint/edr-api.html
https://docs.google.com/presentation/d/1vU8O7dnkima9Vch_T0ebECV5RRjSw-8Kuox15gN2Z4k/edit?usp=sharing
https://docs.google.com/presentation/d/1vU8O7dnkima9Vch_T0ebECV5RRjSw-8Kuox15gN2Z4k/edit?usp=sharing
https://github.com/opengeospatial/EDR-API-Sprint/wiki
https://data-api.mdl.nws.noaa.gov/EDR-API/groups/US_Models?outputFormat=application%2Fjson
https://data-api.mdl.nws.noaa.gov/EDR-API/groups/US_Models?outputFormat=application%2Fjson
https://registry.opendata.aws/meteo-france-models/
https://weather.gc.ca/grib/index_e.html

* The Netherlands at https://data.knmi.nl/datasets?q=grib

Currently, one can search for a keyword, and Collections, which have parameters with a long name
containing that keyword, will be shown as a URI, which will link to the EDR API query endpoint.
The links returned need to be ordered in a dictionary. Additional work would be to:

* Match the keywords with other metadata attributes such as the dimension names (i.e., ISBL for
isobaric);

* Add the ability to search by parameter name as well as dimension name so that a user can
search more narrowly; and

 Utilize OpenSearch geo and time extensions. A pycsw module offers a python implementation of
OGC CSW as well as the OpenSearch geo and time extensions. http://docs.pycsw.org/en/stable/
introduction.html.

Looking at the documentation, pycsw was incorporated into the EDR-API implementation following
this approach: https://docs.pycsw.org/en/latest/api.html

Then, following the steps provided at the link below, a compliant blank SQLite database was
created to start from: http://docs.pycsw.org/en/stable/administration.html#metadata-repository-
setup

Finally, the beginning of the implementation can be seen at the following endpoint: https://data-
api.mdl.nws.noaa.gov/EDR-API/csw?service=CSW&version=2.0.2&request=GetCapabilities

The next steps will be to connect the dots from how metadata is created in the aggregation of
collections software and incorporate that metadata into these services. The discussion needs to
continue on what/how the formal metadata would be to serve as part of a CSW instance (Dublin
Core, ISO, etc.). This will also give us an opportunity to investigate the OGC API - Records work
(disclosure: Tom Kralidis is on this SWG and working on an implementation). This is now an issue
in the EDR SWG GitHub at https://github.com/opengeospatial/Environmental-Data-Retrieval-API#40.

Outcomes

» Successfully used aggregation software to ingest GFS 1 Degree, 1/2 Degree, 1/4 Degree, NAM
32km, 12km, and Météo-France’s Arpége 1/2 Degree data

* Identified memory problem when creating zarr data stores for higher resolution data
Observations

* Data should be WGS84 for this implementation, therefore NAM data would need to be
converted to this CRS

Future work

¢ Test other national weather services' GRIB data

* Optimize the code to solve memory issue

18

https://data.knmi.nl/datasets?q=grib
http://docs.pycsw.org/en/stable/introduction.html
http://docs.pycsw.org/en/stable/introduction.html
https://docs.pycsw.org/en/latest/api.html
http://docs.pycsw.org/en/stable/administration.html#metadata-repository-setup
http://docs.pycsw.org/en/stable/administration.html#metadata-repository-setup
https://data-api.mdl.nws.noaa.gov/EDR-API/csw?service=CSW&version=2.0.2&request=GetCapabilities
https://data-api.mdl.nws.noaa.gov/EDR-API/csw?service=CSW&version=2.0.2&request=GetCapabilities
https://github.com/opengeospatial/Environmental-Data-Retrieval-API#40

6.1.3. Implement Trajectory queries against typhoon/hurricane data.
Wuhan University (Issue #03)

This is the same as Issue #09, Objective: Trajectory, 2D, 3D, or 4D. The trajectory query was
successfully implemented in all the 2D, 3D, and 4D cases, using the EDR API specification proposal
to use Well Known Text (WKT) LineString formats.

6.1.4. Explore putting EDR API on ESRI REST API image server, UK Met
Office, ESRI (Issue #02 and Issue #17)

This is ongoing work. There do not seem to be any fundamental architectural problems with
possible approaches for the proposed use cases. It is expected that the queries supported would be
for points/time series/vertical profiles, and cube/tiles.

The main aim of this work is to show how the EDR "Pattern" maybe "mapped" onto a proprietary
RESTful API, such as ESRI’'s Arc Image Server. The output from this work will be a document
outlining the issues that are brought to light and a very simple prototype consisting of a simple
proxy server that uses the EDR API and translates into the Image Server REST API.

6.1.5. Use EDR API to retrieve feature orientated observations from
hydrological network data stores, USGS (Issue #01)

6.1.6. Conformance testing, ECMWF (Issue #16)

There was general support for this topic, in particular, for the returned content of the payload from
a specific query, but no work was done.

OGC API Features has a conformance test suite, written to be modular, and presumably, some of
this will be shared with an OGC API Common test suite.

Conformance tests for the returned payload is a bit harder.

* XML has validating XML schemas and Schematron rules.

* GeoJSON has a clear standard to test against. For the payload, JSON schema is nowhere near as
rigorous as XML schema.

* Coverage]SON is well defined in the original work done by Jon Blower and Maik Reichardt at
Reading University, and the process to agree an OGC standard for the structure of CoverageJ]SON
has started. See the repo at https://github.com/opengeospatial/Coverage]SON.

6.1.7. Implement and demonstrate a STAC (Spatio-Temporal Asset
Catalogue) for accessing meteorological real-time data stores in pygeoapi,
Meteorological Service of Canada (Issue #21)

This is ongoing work that started after the formal Sprint days. STAC provides a common language to
describe a range of geospatial information, so it can more easily be indexed and discovered. A
“spatiotemporal asset” is any file that represents information about the earth captured in a certain
space and time. While STAC work has been primarily focused on space-based earth observation
imagery, there is value in investigating STAC capability for real-time Numerical Weather Prediction

19

https://github.com/opengeospatial/CoverageJSON

(NWP) data offerings. This would allow for an arbitrary hierarchy based on NWP workflow (model
runs, forecast hours, forecast variables, etc.) as well as simple, file-based discovery/traversal of the

same.

Questions

* How would NWP look as a static catalogue of (in this case) GRIB2 files?

* How would a given STAC implementation for MetOcean compare to OGC API - Records?

* Would a MetOcean STAC profile be valuable? Results?

* Implemented a STAC catalog for a (very very small subset) of our Global Deterministic
Prediction System (GDPS)

Code: https://github.com/geopython/pygeoapi/pull/389

* Deployment:

o

o

o

STAC root: http://52.170.144.218:8000/stac

root catalog: http://52.170.144.218:8000/stac/nwp

model run: http://52.170.144.218:8000/stac/nwp/00

model run/forecast hour: http://52.170.144.218:8000/stac/nwp/00/000

data description: http://52.170.144.218:8000/stac/nwp/00/000/
CMC_glb_DEPR_ISBL_750_latlon.15x.15_2020040100_P000

raw asset download: - data description: http://52.170.144.218:8000/stac/nwp/00/000/
CMC_glb_DEPR _ISBL_750_latlon.15x.15_2020040100_P000.grib2

Observations

» Successfully tested with STAC-validator

* Data properties are basically GRIB2 metadata

* Links are initially minimal: we could have links back to related EDR workflows (or OGC API -
Coverages, OGC API - Processes)

» Search is not in scope for STAC Catalog (more OGC API - Records and STAC Catalog) Future Work

o

o

6.1.8.

Investigate integration with OGC API - Records and STAC Catalog

GDPS is a collection level discovery metadata in the scope of OGC API - Records

searching within GDPS would be a link from the OGC API - Records document/search result
to the STAC API (essentially searching model runs/forecast hours of data)

The remaining Issues #04 - #10 were generic objectives covering the

full scope of data query patterns of the EDR API, but divided up according
to expected difficulty

* Point, timeseries at a point, and vertical profile at a point

* Polygon and tile (2D)

* Polygon in 3D or 4D

20

https://github.com/geopython/pygeoapi/pull/389
http://52.170.144.218:8000/stac
http://52.170.144.218:8000/stac/nwp
http://52.170.144.218:8000/stac/nwp/00
http://52.170.144.218:8000/stac/nwp/00/000
http://52.170.144.218:8000/stac/nwp/00/000/CMC_glb_DEPR_ISBL_750_latlon.15x.15_2020040100_P000
http://52.170.144.218:8000/stac/nwp/00/000/CMC_glb_DEPR_ISBL_750_latlon.15x.15_2020040100_P000
http://52.170.144.218:8000/stac/nwp/00/000/CMC_glb_DEPR_ISBL_750_latlon.15x.15_2020040100_P000.grib2
http://52.170.144.218:8000/stac/nwp/00/000/CMC_glb_DEPR_ISBL_750_latlon.15x.15_2020040100_P000.grib2

Polygons in 3D and 4D
Tile/Cube in 3D or 4D
Trajectory, 2D, 3D or 4D
Corridor, 3D or 4D

21

Chapter 7. Issues

7.1. Issues arising and resolved

7.1.1. Issue #03 and #09 Trajectories: which time specification?

The EDR API specification uses ISO8601 style of notation to specify dates and times for query
parameters. This is very convenient and understandable for users. However, the Trajectory query
specifies time as a number of seconds since the UNIX epoch. This is specified in the Well Known
Text (WKT) standard for defining lines/trajectories by using LineString. This makes time into a
proper coordinate, enabling easier software calculations, though the units are not easily
comprehended by users. It was agreed to keep the two different approaches, as both had merits and
disadvantages, and elicit wider feed back from the OGC Members, OAB, and the public. A mitigation
may be to incorporate an easy to use service to convert between the two different time
representations.

7.1.2. Issue #04 Point, time series at a point, and vertical profile at a point:
which combinations?

Would the current EDR API specification allow simultaneously both a time series and a vertical
profile at a point? Le., A 2D array of values would be returned. At present, the Point query only
allows a time series at a point or a vertical profile at a point, but not both. It was agreed to stay with
these minimal cases. The general 2D vertical time series is not widely used outside of meteorology,
where it is known as a Hovmoller diagram.

Another consequence of these discussions was that Point was re-named Position, and Polygon re-
named as Area.

7.1.3. Issues #08 and #06 and #05 Cube/Tile, Polygon in 3D or 4D, Polygon/Tile
in 2D: which bounding box styles?

Should bounding boxes for a query, in 4D, be specified by ranges of values or coordinates of the
corners? The consensus was that ranges are more natural for time and vertical coordinates. This is
then the same as specified 2D Polygons in WKT.

There was no disagreement that there will be no polyhedra or polytopes (complex multi-
dimensional polygons, rather than just “extruded” 2D polygons. An extruded 2D polygon can be
called a “prism.”

7.1.4. Issue #0? What are the EDR API resource types?

This was the usual semantic question. It was agreed that the initial resource was a persistent, dense
data store. The queries against it were Discrete Sampling Geometries sampling the data store, and
were transient, but could be made a persistent resource if required by another service. [The
Research Data Alliance, RDA, recommends a query store in its Best Practice Recommendations for
citing dynamic data.] the returned data payload is also a transient resource, which also could be
made persistent. It was agreed to add words to this effect in the EDR API candidate standard.

22

7.1.5. Issue #18 Streaming of EDR API response media types

If the data returned in response to a query is small, there is no need for streaming of the results. It
may be necessary for large responses, but that is starting to be outside the scope of the EDR APIL. It
was agreed that the EDR API specification would not mention streaming, and it would be an
implementation decision as to whether streaming is supported. This decision would obviously be
influenced by the choice of supported media type, which may or may not support streaming.

7.1.6. Issue #12 Items view of EDR resources and Issue #15 JSON-Schema for
/collections/{collectionID}/items

The EDR API provides no mechanism for the user to discover available location identifiers (such as
ICAO ids) in the metadata. The identifiers are available in the query results, but not in any of the
available metadata outputs. What would the JSON-Schema be for these items? E.g:
collections/metar/raw/items?id=KIAD¶metername=icao_id&time=2020-01-31T00:00:00Z/2020-
02-01T04:00:00Z. If consistent with Features, then collections/metar/raw/items returns the list of
items (paged, if there are many) and that the query would look like:
collections/metar/raw/items/KIAD?parametername=icao_id&datetime=2020-01-31T00:00:00Z/2020-
02-01T04:00:00Z.

Currently, the EDR API “Items” specifies Coverage]SON rather than a GeoJSON Feature Collection
with valid query parameters for each item in the collection. Can lists of available parameters in
GeoJSON be exposed?

23

"type": "FeatureCollection",

"ers": {
"type": "EPSG",
"properties": {
"code": 4326,
"coordinate_order": [1, 0]
}
I
"features": [
{
"type": "Feature",;
"id": "123",
"geometry": {

"type": "Point",
e. "coordinates": [-105.683442, 36.740017]
}

roperties": {

"datetime": "2018-02-12T00:00:002/2018-03-18712:31:127",
"parametername": ["param object 1", "param object 2"],
"label": "Something like a site name to use on a link",
"uri": "https://feature_identifier"

This validates against the Geo]JSON schema: id is what goes in
/collection/{collectionID}/items/{itemID}; datetime follows features; parametername follows the
draft spec naming convention; label needed because there has to be a list/link label in the client; uri
which could be @id, like JSON-LD and it should really be a linked data feature ID which 303
redirects if a real-world sampling feature. If these extensions are put in the GeoJSON
FeatureCollection schema, the software SF/GDAL outputs:

24

> sf::read_sf("~/Documents/active_code/EDR-API-Sprint/items/test.geojson")
Simple feature collection with 1 feature and 5 fields

geometry type: POINT

dimension: XY

bbox: xmin: -105.6834 ymin: 36.74002 xmax: -105.6834 ymax: 36.74002
epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

A tibble: 1T x 6

id datetime label uri parametername
geometry

<chr> <dttm> <chr> <chr> <list>
<POINT [°]>
1123 2018-02-11 18:00:00 Something like a si:+ https://feat::+ <chr [2]> (-

105.6834 36.74002)

The properties schema is here:

properties:

type: object

title: The Properties Schema

description: An explanation about the purpose of this instance.

default: {}

example:

- datetime: 2018-02-12700:00:007/2018-03-18T12:31:12Z
label: Something like a site name to use on a link
parametername:

- param object 1
- param object 2
uri: https://feature_identifier
required:
- datetime
- parametername
- label
- uri
properties:
datetime:
type: string
title: The Datetime Schema
description: An explanation about the purpose of this instance.
default: "'
example:
- 2018-02-12700:00:007/2018-03-18T12:31:12Z
parametername:
type: array
title: The Parametername Schema
description: An explanation about the purpose of this instance.
default: []
items:

25

type: string
title: The Items Schema
description: An explanation about the purpose of this instance.
default: "'
example:
- param object 1
- param object 2
label:
type: string
title: The Label Schema
description: An explanation about the purpose of this instance.
default: "'
example:
- Something like a site name to use on a link
uri:
type: string
title: The Uri Schema
description: An explanation about the purpose of this instance.
default: "'
example:
- https://feature_identifier

7.2. Issues outstanding

7.2.1. Issue #11 Groups versus Collections

The EDR API specification found a need to have Groups of Collections in the API path. In the wider
OGC, there is now a discussion of whether APIs could have Collection of Collections. The Sprint
agreed to stay with Groups until the wider issue is resolved.

7.2.2. Issue #10 Corridors, 3D or 4D

Corridors were originally envisaged as a volume defined by a surface of constant distance from a
line trajectory. The idea of the bottom of a corridor volume being delineated by the earth’s surface
(or some other surface) was raised. It was agreed to tackle this interesting, practical, and difficult
problem later.

7.2.3. Other Issues

Observers, from outside the Sprint, have raised some substantive questions, including about
interpretation and implementation of vertical coordinates in the EDR API. These will be raised and
addressed in the EDR API Standard WG.

26

Chapter 8. Recommendations and Next Steps

WHKT LineString format to be used for multi-dimensional geometries
* Some query names were changed (Polygon — Area, Point - Position)
» The specification will not mention streaming, because it is an implementation detail

» Agreed that we would allow named "locations" (now Positions)

Agreed that named “times” seem to be a good analogy to named “locations,” such as “Latest”

* Groups vs Collections were explored and the current working definition of Collections remains

8.1. Recommended Topics for further discussion

e Contribute EDR API definition of a Collection to the wider OGC debate

* Decide what Metadata frameworks should be used, recommended or mandated and expand
metadata offerings

* Determine workflows and search metadata to integrate with OGC API - Records

* Security considerations. This needs to be coordinated with other OGC API groups and the
Security Domain Working Group

» Test other sampling geometry types.
» Continue to investigate how to integrate with other APIs (features/coordinates, maps)
* Incorporate a pub/sub mechanism with a later version of the EDR API specification

* Investigate how to align with decision impact groups like SmartCity, others

8.2. Next Steps for EDR API Specification

* Generate Engineering Report on Sprint
 Finalize updates to current specification
* Update documentation

 Start wider consultation processes inside and outside OGC

27

Appendix A: Bibliography
1. W3C/OGC: Spatial Data on the Web Best Practices, W3C Working Group Note 28 September 2017,
https://www.w3.org/TR/sdw-bp/

2. W3C: Data on the Web Best Practices, W3C Recommendation 31 January 2017,
https://www.w3.org/TR/dwbp/

3. W3C: Data Catalog Vocabulary, W3C Recommendation 16 January 2014, https://www.w3.org/TR/
vocab-dcat/

4. TANA: Link Relation Types, https://www.iana.org/assignments/link-relations/link-relations.xml

28

https://www.w3.org/TR/sdw-bp/
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/vocab-dcat/
https://www.iana.org/assignments/link-relations/link-relations.xml

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Subject
	1.2. Executive Summary
	1.3. Document contributor contact points
	1.4. Foreword

	Chapter 2. References
	Chapter 3. Terms
	3.1. Terms and definitions
	3.2. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. Introduction
	5.1. Background
	5.2. EDR API approach
	5.3. Purpose
	5.4. Sprint Goals
	5.4.1. Objectives
	5.4.2. Proposed deliverables

	5.5. Use Cases
	5.6. Existing Data, Implementations and Demos
	5.6.1. Implementations of EDR API
	5.6.2. Data sources
	5.6.3. Demonstrations

	5.7. Participants

	Chapter 6. Working Methods
	6.1. Specific Objectives
	6.1.1. Develop new EDR API server and client, Mark Burgoyne (Issue #20)
	6.1.2. Demonstrate automatic harvesting of metadata from aggregations of data stores to improve search capabilities for use with the EDR API, US NWS (Issue #19 and Issue #14))
	6.1.3. Implement Trajectory queries against typhoon/hurricane data. Wuhan University (Issue #03)
	6.1.4. Explore putting EDR API on ESRI REST API image server, UK Met Office, ESRI (Issue #02 and Issue #17)
	6.1.5. Use EDR API to retrieve feature orientated observations from hydrological network data stores, USGS (Issue #01)
	6.1.6. Conformance testing, ECMWF (Issue #16)
	6.1.7. Implement and demonstrate a STAC (Spatio-Temporal Asset Catalogue) for accessing meteorological real-time data stores in pygeoapi, Meteorological Service of Canada (Issue #21)
	6.1.8. The remaining Issues #04 - #10 were generic objectives covering the full scope of data query patterns of the EDR API, but divided up according to expected difficulty

	Chapter 7. Issues
	7.1. Issues arising and resolved
	7.1.1. Issue #03 and #09 Trajectories: which time specification?
	7.1.2. Issue #04 Point, time series at a point, and vertical profile at a point: which combinations?
	7.1.3. Issues #08 and #06 and #05 Cube/Tile, Polygon in 3D or 4D, Polygon/Tile in 2D: which bounding box styles?
	7.1.4. Issue #0? What are the EDR API resource types?
	7.1.5. Issue #18 Streaming of EDR API response media types
	7.1.6. Issue #12 Items view of EDR resources and Issue #15 JSON-Schema for /collections/{collectionID}/items

	7.2. Issues outstanding
	7.2.1. Issue #11 Groups versus Collections
	7.2.2. Issue #10 Corridors, 3D or 4D
	7.2.3. Other Issues

	Chapter 8. Recommendations and Next Steps
	8.1. Recommended Topics for further discussion
	8.2. Next Steps for EDR API Specification

	Appendix A: Bibliography

