
3D Data Container Engineering Report

Publication Date: 2020-10-22

Approval Date: 2020-09-23

Submission Date: 2020-07-15

Reference number of this document: OGC 20-029

Reference URL for this document: http://www.opengis.net/doc/PER/3DT-data-container

Category: OGC Public Engineering Report

Editors: Timothy Miller, Gil Trenum, Josh Lieberman

Title: 3D Data Container Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/3DT-data-container
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 6

2. Executive Summary. 7

2.1. Document contributor contact points . 8

2.2. Foreword. 8

3. References . 10

4. Terms and definitions . 11

4.1. Abbreviated terms . 11

5. Overview . 13

6. Existing and Relevant Standards . 14

6.1. Background . 14

6.2. Existing Standards/Previous Work. 14

7. Architecture. 16

7.1. Enterprise architecture. 16

7.2. Service architecture . 17

7.3. Resource architecture . 18

7.4. API Design . 19

7.4.1. Landing Page "/" . 20

7.4.2. API Definition "/api" . 20

7.4.3. Conformance "/conformance" . 21

7.4.4. Collections "/collections" . 21

7.4.5. 3D-Container "/collections/{3d-containerID}" . 21

7.5. Data Architecture . 21

7.5.1. 3D-Container . 23

7.5.2. Bounding Volume . 25

7.5.3. Coordinate Reference System (CRS) . 27

7.5.4. Extent. 27

7.5.5. Link . 27

7.5.6. Link Relation Type (Rel) . 28

7.5.7. Spatial Extent . 29

7.5.8. Temporal Extent . 29

7.5.9. TRS . 29

7.5.10. Content Type . 30

8. API Use Cases. 31

8.1. API user/client/server Use Case . 31

8.2. I3S To 3D-Tiles Converter Use Case . 36

9. Implementations . 37

9.1. Components . 37

9.2. Cesium. 38

4

9.2.1. Web-based 3D Client . 39

9.2.2. 3D Container and Tiles API Server . 43

9.3. Cognitics . 48

9.3.1. Introduction . 48

9.3.2. Data . 48

9.3.3. Server Architecture . 48

9.3.4. Server Functionality: . 49

9.3.5. Client Functionality: . 51

9.4. Ecere . 53

9.4.1. Server. 54

9.4.2. Client . 64

9.5. Helyx . 74

9.5.1. Introduction . 74

9.5.2. Server Functionality. 75

9.6. Skymantics . 78

9.6.1. General architecture: . 78

9.6.2. Server Functionality: . 80

9.6.3. Client Functionality: . 86

9.6.4. Lessons learned: . 91

9.7. Steinbeis . 94

10. Technology Integration Experiments (TIEs) . 107

10.1. 3D Tiles Static API - Core API Functionality . 107

10.2. 3D Tiles API - Extension Functionality . 108

11. Pilot Recommendations . 111

11.1. 3D rendering interoperability sprints. 111

11.2. 3D Tiles vs I3S benchmarks . 111

11.3. Understanding the potential of 3D container hierarchy . 111

11.4. Additional opportunities for future work . 111

12. Conclusions . 113

Appendix A: UML Model. 114

Appendix B: Comparison of 3D Tiles and I3S Community Standards . 115

Appendix C: Revision History . 120

Appendix D: Bibliography . 121

5

Chapter 1. Subject
This OGC Engineering Report documents the goals, activities, experiences, and outcomes of the 3D
Data Container and Tiles API Pilot. Participants in the Pilot cooperatively defined a GeoVolume (3D
Geospatial Volume) resource and developed a GeoVolumes API based on the concept to provide
access to different 2D and 3D geospatial dataset distributions organized by region of interest.
Multiple client and server implementations of the GeoVolumes API successfully carried out
technology interchange experiments that demonstrated the value of the API for improving
interoperability between 3D geospatial data formats.

[1] Source: 3D Tiles Community Standard [https://www.ogc.org/standards/3DTiles] 3D Tiles Community Standard 1.0 (18-053r2)

6

https://www.ogc.org/standards/3DTiles

Chapter 2. Executive Summary
The goal of the OGC 3D Data Container and Tiles API Pilot was to:

• Explore an integrated suite of draft specifications for 3D geospatial resources compatible with
existing OGC 3D delivery standards in order to support smooth transitions between 2D and 3D
environments;

• Allow applications working with 2D tile resources to get 3D tiled resources; and,

• Enable 3D bounding volumes to support multiple data models, datasets, and distributions.

To achieve these goals, the Pilot participants developed a draft GeoVolume resource (originally the
3D Container resource) and GeoVolumes API providing browse and query access to 3D geospatial
data for streamed data delivery by means of nested geospatial volume container resources. The 3D
data resources supported by this API include feature geometries, feature attribute values, elevation
models, texture data, and so forth. The API provides both link-follow and bbox query methods of
access to 2D and 3D resources in a manner independent of the structure of the underlying data
store, supporting multiple standard geospatial distribution formats such as 3D Tiles
[https://www.ogc.org/standards/3DTiles], I3S [https://www.ogc.org/standards/i3s], CityGML [https://www.ogc.org/

standards/citygml], and CDB [https://www.ogc.org/standards/cdb].

A number of data server and client implementations were developed in the course of the Pilot in
order to test interoperable data delivery via the draft API. The GeoVolumes API developed by the
Pilot is described using the OpenAPI 3.0 [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/

3.0.2.md] definition language and conforms to the building blocks of the draft OGC API – Common –
Part 1: Core [http://docs.opengeospatial.org/DRAFTS/19-072.html] specification such as landing page, API
definition, conformance declaration, and collections information. The Pilot developed and tested
the GeoVolumes API in order to advance open standard-based and unified approaches for
delivering 3D content using state of the art API practices that work across different data formats,
streaming protocols, and model types.

The following requirements were identified in the Call for Participation (CFP) of the 3D Data
Container and Tiles API Pilot:

1. Provide API access to tiled and un-tiled 3D resources.

2. Allow exchange of content organized according to 3D Container resources.

3. Align with existing and emerging OGC APIs, standards, and candidate standards (e.g. OGC API -
Features, OGC API - Common, 3D Tiles Community Standard, I3S Community Standard).

The present draft GeoVolumes API specification includes the six basic and extended forms of
functionality implemented and tested during the Pilot. The experiences developed in the course of
the Pilot suggest that further work is needed to extend the API for additional data types and nested
volume schemes. Future work should also address the integration of the GeoVolumes API with
other OGC API building blocks to provide seamless interaction from navigating volumes of interest
to accessing specific dataset distributions.

7

https://www.ogc.org/standards/3DTiles
https://www.ogc.org/standards/i3s
https://www.ogc.org/standards/citygml
https://www.ogc.org/standards/cdb
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
http://docs.opengeospatial.org/DRAFTS/19-072.html
http://docs.opengeospatial.org/DRAFTS/19-072.html

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Ryan Gauthier US Army Geospatial
Center

Sponsor/Contributor

Jeff Harrison US Army Geospatial
Center

Sponsor/Contributor

Tom Myers US Army Geospatial
Center

Sponsor/Contributor

Tim Miller Leidos Editor

Gil Trenum Leidos Editor

Josh Lieberman OGC Editor

Terry Idol OGC Contributor

Rob Jones Helyx Contributor

Matthew Knight Helyx Contributor

Anneley Hadland Helyx Contributor

Tamrat Belayneh Esri Contributor

Jérôme Jacovella-St-Louis Ecere Contributor

Aaron Brinton Cognitics Contributor

Michala Hill Cognitics Contributor

Ignacio Correas Skymantics Contributor

Preston Rodrigues Steinbeis Contributor

Kevin Ring Cesium Contributor

Volker Coors Steinbeis Contributor

Thunyathep
Santhanavanich

Steinbeis Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide

8

supporting documentation.

9

Chapter 3. References
The following normative documents are referenced in this document.

• OGC: OGC 18-053r2, 3D Tiles Community Standard 1.0 [https://www.ogc.org/standards/3DTiles]

• OGC: OGC 17-014r5, OGC Indexed 3d Scene Layer (I3S) and Scene Layer Package Format
Specification [http://www.ogc.org/standards/i3s]

• OGC: OGC 17-069r3, OGC API - Features - Part 1: Core Standard [http://docs.opengeospatial.org/is/17-

069r3/17-069r3.html]

10

https://www.ogc.org/standards/3DTiles
http://www.ogc.org/standards/i3s
http://www.ogc.org/standards/i3s
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● 3D-Container

The most general definition of a 3D-Container (GeoVolume) is a spatial information resource
with a distinct bounding volume, a (required) enclosing bounding box (2D / 3D), containing at
most one 3D model dataset which is relevant to that volume (items, content) and represented by
references to one or more distributions, and includes or references other 3D-Containers
(children) whose bounding volumes are fully contained by the parent container’s bounding
volume.

● coordinate reference system

Coordinate system that is related to the real world by a datum term name (source: ISO 19111)

● portrayal

Presentation of information to humans (source: ISO 19117)

● LiDAR

Light Detection and Ranging — a common method for acquiring point clouds through aerial,
terrestrial, and mobile acquisition methods.

● Bounding Volume

Typically a simple shape like a sphere, rectangular box, or convex hull that can simply be tested
for intersection or overlap.[2]

● YAML

YAML is a human friendly data serialization standard for all programming languages.

4.1. Abbreviated terms
• 3DC 3D-Container

• 3DGV 3D GeoVolume

• 3DPS 3D Portrayal Service

• API Application Programming Interface

11

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• B3DM Batched 3D Model

• BIM Building Information Model

• BVH Bounding Volume Hierarchy

• CDB Common Database

• CRS Coordinate Reference System

• EPSG European Petroleum Survey Group

• glTF GL Transmission Format

• I3DM Instanced 3D Model

• I3S Indexed 3D Scene Layer

• IDL Interface Definition Language

• JSON JavaScript Object Notation

• LOD Level of Detail

• MBS Minimum Bounding Sphere

• MBV Minimum Bounding Volume

• OBB Oriented Bounding Box

• RS Regular Subdivision

• TIEs Technology Integration Experiments

• TMS Tile Map Services

• WFS Web Feature Service

• WMS Web Map Service

• WMTS Web Map Tile Service

• YAML A recursive acronym for "YAML Ain’t Markup Language"

[2] Source: 3D Tiles Community Standard [https://www.ogc.org/standards/3DTiles] 3D Tiles Community Standard 1.0 (18-053r2)

12

https://www.ogc.org/standards/3DTiles

Chapter 5. Overview
Section 6 discusses the existing standards and previous work relevant to the Pilot.

Section 7 presents the server and data architecture developed in this Pilot.

Section 8 presents multiple use cases: (1) API user, client, and (2) server use case and I3S To 3D-Tiles
converter use case.

Section 9 presents the Pilot participants client and server 3D Container implementations.

Section 10 presents the Technology Integration Experiments (TIEs) results for the Pilot.

Section 11 discusses Pilot recommendations going forward.

Section 12 provides a summary of the main findings and discusses server and data architecture
developed in this Pilot.

13

Chapter 6. Existing and Relevant Standards

6.1. Background
This OGC Pilot builds on previous work from other OGC Innovation Program initiatives as well as
OGC Standards Program efforts. The following documents serve as foundational references for this
Pilot activity. Some items listed below are not yet released to the public. Draft versions of these
documents have been made available. The final versions of these documents may change from the
currently provided versions. Participants are advised to check the OGC website for updates on
these documents.

6.2. Existing Standards/Previous Work
• 3D Tiles Community Standard 1.0 (18-053r2) - The OGC 3D Tiles Community Standard specifies a

model and encoding for streaming and rendering massive 3D geospatial content such as
Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. The community
standard defines a hierarchical data structure and a set of tile formats which deliver content
that can be rendered. Of specific interest to this initiative is glTF [https://www.khronos.org/gltf/]. The
standard document also describes 3D Tile Styles, a declarative styling specification which may
be applied to tilesets.

• OGC Indexed 3D Scene Layer (I3S) and Scene Layer Package Format Specification (OGC 17-
014r7) - An OGC Community standard that specifies a model and encoding format for the
transmission of 3D content as well as a persistence model for Scene Layers. A Scene Layer is a
container for arbitrarily large amounts of heterogeneously distributed 3D geographic content,
supporting coordinate reference systems and height models in conjunction with a rich set of
layer types.

• OGC Testbed 13: 3D Tiles and I3S Interoperability and Performance Engineering Report (OGC 17-
046) - The report captures the lessons learned from prototyping interoperability of 3D Tiles and
I3S using: a 3D Portrayal Service, performance studies of 3D tiling algorithms, and a proof-of-
concept of the use of 3D Tiles and I3S as data delivery formats for the OGC 3D Portrayal Service
interface standard.

• OGC 3D Portrayal Service 1.0 Standard (OGC 15-001r4) - The OGC standard specifies how
geospatial 3D content is described, selected, and delivered. The standard provides a framework
to determine whether 3D content is interoperable at the content representation level.

• OpenAPI (v3.0) - OpenAPI is a freely-available API description framework that provides a
developer with programmatic access to a software application or service. These APIs use sets of
technologies that enable websites and/or client applications to interact with each other by using
REST, SOAP, JavaScript, and other web technologies. These APIs have allowed web communities
to create an open architecture for sharing content and data between communities and
applications. A very typical application for an OpenAPI implementation is to access data such
as: Tweets, geolocation(s), maps, stock quotes, weather sensors, and so forth. Since 2016 OGC
members and staff have actively been investigating OpenAPI (and its commercial equivalent,
Swagger). OGC Members and staff recognized that the existing OGC Web Service Standards
(OWS) were in effect web APIs, but that modernizing how they provide content via the web
required a fundamental change in underlying design. Two documents further advanced the

14

https://www.khronos.org/gltf/

idea: 1) the OGC Open Geospatial APIs White Paper and 2) the Spatial Data on the Web Best
Practices, jointly developed by the OGC and the W3C memberships. These documents
highlighted how geospatial data should be more native to the architecture of the web. Further,
OGC staff worked on “implementer friendly” views of OGC standards and experimented with an
OpenAPI definition for the Web Map Tile Service (WMTS) and became aware of work by the
United Kingdom Hydrographic Office (UKHO) to publish OpenAPI definitions for the OGC Web
Map Service (WMS) of Electronic Navigational Charts.

• OGC API - Features - Part 1: Core standard (OGC 17-069r3) - This OGC standard provides API
building blocks to create, modify and query features on the Web. This standard specifies the
fundamental API building blocks for interacting with features. The spatial data community uses
the term 'feature' for things in the real world that are of interest. The standard is part of the
OGC API family of standards. OGC API standards define modular API building blocks to spatially
enable Web APIs in a consistent way. Most recently, the OGC Web Feature Service (WFS) and
Filter Encoding Service (FES) Standards Working Group rebuilt the WFS standard to the new
OGC API - Features standard with an integrated OpenAPI definition as core to describe how to
build against the standard. The patterns used to define the OGC API - Features standard are
being used to advance other OGC standards as OpenAPI definitions. This work can be reviewed
on the OGC API - Features standard webpage.

• OGC Testbed-15: Maps and Tiles API Engineering Report (OGC 19-069) - This Engineering Report
was developed as part of the Testbed-15 initiative [1]. It is not a standard, but reflects the latest
work on Web APIs to access and manage maps and 2D tiled data.

• OGC Testbed-15: Styles API Engineering Report (OGC 19-010r2) - This Engineering Report was
developed as part of the Testbed-15 initiative. It is not a standard, but reflects the latest work
done in OGC on styles for 2D data. The Styles API is a Web API that enables map servers and
clients as well as visual style editors to manage and fetch styles [2]. The API is consistent with
the emerging OGC API family of standards. The API complements the Features, Maps and Tiles
APIs and builds on the conceptual model for styles developed in OGC Testbed-15. This report
specifies the API using OpenAPI, specifies how the same styles should be represented in a
GeoPackage and documents the lessons learned during the implementation.

• OGC® Routing Pilot ER (OGC 19-041r3) - This Engineering Report was produced by the OGC
Routing Pilot. The Pilot assessed an abstract baseline suite of functions, capabilities, and
encodings to address a common standard interface for network routing functionality [3]. This
included guidance for extending the Routing API to account for various routing data models and
support for network routing engine configuration via the Routing API. The engineering report is
not an OGC standard, but it was delivered to the OGC Standards Program for further
consideration.

15

Chapter 7. Architecture
This section describes the architectural context of the Pilot as well as relevant architectural
perspectives on the software designed and implemented to demonstrate solutions to Pilot
requirements.

7.1. Enterprise architecture
The high-level architecture of the Pilot scenario is based on the needs of various types of entities
and/or systems ('A'), ('B'), and ('C') in a distributed enterprise as illustrated in Figure 1. The three
systems differ in the volume of data that can be stored and processed, the available bandwidth for
data transport between entities, the multiplicity of supported analytics, and the offered data
products. Despite these differences, the goal of this Pilot was to develop a model that allows
offering, discovering, requesting, and processing data at each entity using a common API on top of
a single organizational model of 3D geospatial data in space. At the same time, this common API
should leverage available 3D geospatial data formats and distribution standards such as 3D Tiles
[https://www.ogc.org/standards/3DTiles], I3S [https://www.ogc.org/standards/i3s], CityGML [https://www.ogc.org/

standards/citygml], and CDB [https://www.ogc.org/standards/cdb] to ensure that users can work with 3D
geospatial datasets by means of the optimal distribution format and interaction method for their
specific application task.

Figure 1. Enterprise architecture for exchange of 3D datasets

High capacity data centers ('A') have 3D geodata available for broad regions or on a global scale.
Data can be made available in multiple formats and distributions based on conversion and
transcoding workflows. Access to the data can be offered to other entities in the enterprise by
means of the GeoVolumes API as developed in this Pilot. Depending on users’ needs, data can be
made available through alternative API methods in 2D or in raw format, such as the draft OGC API -
Tiles specification or the OGC API - Features Standard.

Medium capacity data centers ('B') do not require all data that is available at the data center ('A'),

16

https://www.ogc.org/standards/3DTiles
https://www.ogc.org/standards/i3s
https://www.ogc.org/standards/citygml
https://www.ogc.org/standards/cdb

but are more selective according to their role. The amount of data transferred to ('B') depends on
the available bandwidth and specific needs for data analysis and re-distribution. To obtain required
data in the best suited format and minimum size, medium capacity data centers make use of the
specific space-centric indexing scheme that is the fundamental idea of a GeoVolume/3D Container
resource and the corresponding GeoVolume API offered by ('A'). The indexing scheme is illustrated
further below. The scheme allows organizing geodata according to the human conceptual model of
space. That is, the scheme makes data available that corresponds to cognitive entities such as a
country with its cities and cities with its buildings, streets, or underground infrastructure.
Following the same conceptual model and distribution options as the high capacity data centers,
medium capacity data centers in turn can make their products available via the GeoVolume API.

The high-level architecture defines a third enterprise entity, low capacity field operations ('C').
These are connected at various bandwidths including sporadically or completely offline situations.
In these cases, offline data packaging mechanisms and data volume optimized data selection and
transmission processes are essential. Customers at this level want to go back and forth between 3D
geodata distributions optimized for visualization via low bandwidth connections and attribute-
loaded data that provides detailed information about selected elements in a given view. That is,
server-side rendering pipelines need to be integrated with variable-resolution scene graphs
delivered to client applications and accompanying fine-grained element access.

7.2. Service architecture
The architecture of server and client components implemented in the Pilot is shown in Figure 2.
Each 3D / Globe client component is able to access multiple 3D model dataset distributions in
multiple formats by means of their characteristic API components through multiple 3D servers
each implementing the GeoVolumes API as an overall access interface.

17

Figure 2. Service architecture implemented during the pilot

For the purposes of the Pilot, clients then visualized the returned geodata in the context of a 3D
globe rendering either built into the client or assembled using 2D tiles fetched separately from the
GeoVolumes API, using for example a 2D Map Tile Server. 2D tiles could also be accessed through
the GeoVolumes API. However, this capability was not implemented in the Pilot.

7.3. Resource architecture
The organization of geospatial volumes in the GeoVolumes API is extremely flexible and can be
arranged according to the needs of each service provider, as shown in Figure 3. GeoVolumes can be
organized into a flat list of volumes having no particular relation with each other, but arguably are
more representative of geographic perception when arranged into a GeoVolume hierarchy that
organizes datasets according to theme and resolution.

18

Figure 3. Resource architecture for a 3dgeovolumes hierarchy (example)

In this sort of scheme, each GeoVolume may have one or more children volumes whose extents
may themselves overlap but that in aggregate are completely contained in the parent volume
extent, a property known as "spatial coherence". Each GeoVolume also "contains" (references and
describes the extent of) at most one dataset as its "contents", but may provide links to multiple
distributions of that dataset in different formats, e.g. 3D Tiles or I3S.

Figure 3 also illustrates that a GeoVolume can contain not just an explicitly 3D dataset but also a 2D
tiles or features dataset as long as the elevation at which such data should be situated (e.g. ground
level) falls within the elevation bounds of the GeoVolume extent

7.4. API Design
The development and design of the architecture for the Pilot utilized the integrated API
development platform of SwaggerHub [https://swagger.io/], providing the tools to develop and
document the OpenAPI definitions for the resources and API implemented in this pilot. The
summary documentation in this section was generated largely from the YAML definition file
created in SwaggerHub. A complete draft specification for the GeoVolume API may be found in the
accompanying OGC API 3D Tiles Engineering Report. Within this section, the API resources and
applicable HTTP methods are described in the Server Architecture section and the associated
schema representation is described in Data Architecture section.

NOTE

While the API design and implementations developed during the Pilot used the term 3D Container,
future work will use the equivalent term GeoVolume.

19

https://swagger.io/

7.4.1. Landing Page "/"

The API entry point is the Landing Page (path /).

Description

The Landing Page provides links to the API/Definition (path /api), the Conformance declaration
(path /conformance), and the Collections (path /collections). The collection information resource is
extended from the draft OGC API - Common and OGC API - Features definition to form 3D
Containers (/collections/{3DContainerID}).

Table 1. 3D Container - overview of resources and applicable HTTP methods

Resource Path HTTP
method

Document reference

Landing Page / GET Landing Page

Conformance
Declaration

/conformance GET Conformance

API Definition /api GET API/Definition

Collections /collections GET Collections

3D Container /collections/{3DContainerID} GET 3D Container

Figure 4. 3D Container - of resources and applicable HTTP methods

7.4.2. API Definition "/api"

GET /api

Description

Provides the API definition that describes the capabilities of the server. This definition can be used
by developers to understand the API, by software clients to connect to the server, or by

20

development tools to support the implementation of servers and clients. The "api" resource
requires no parameters. The HTTP /api GET response returns the list of URIs of API definitions in
JSON.

7.4.3. Conformance "/conformance"

GET /conformance

Description

The Conformance declaration states the conformance classes from standards or community
specifications, identified by a URI, to which the API conforms. The conformance resource requires
no parameters. The HTTP /conformance GET response returns the list of URIs of conformance classes
implemented by the server in JSON.

7.4.4. Collections "/collections"

GET /collections

Description

Collections provides the information and access to the collection of 3D containers. The collection
resource accepts the 2D or 3D bounding box (bbox) and format parameter. The resource accepts
query or header parameters for the format parameter. The bounding box query parameter lower
left: x, y, {z}, and upper right x, y, {z} (z-coordinate is optional) returns 3DC that are within the area.
The HTTP /collections GET response returns JSON containing two properties, links (link: URI, type,
relationship) and 3D-Container.

7.4.5. 3D-Container "/collections/{3d-containerID}"

GET /collections/{3d-containerID}

Description

The collection resource supports access to 3DC with a unique identifier
(/collections/{3DContainterID}). The format and bounding box parameters in the collections
request can be applied to a specific 3DC request. The bbox query on a 3DC will apply filtering on the
contents within the 3DC. The HTTP /collections/{3DContainerID} GET response returns JSON
representing the 3D-Container.

7.5. Data Architecture
The data architecture can be separated into three parts:

1. Common: Landing Page, Conformance Declaration, API Definition

2. Geo-volume content: Collections, 3D Container

3. Supporting metadata components

Table 2. 3D Container schema overview.

21

Schemas Overview

Landing Page OGC API-Common Landing Page

Conformance OGC API-Common Conformance Declaration

API Definition OGC API-Common API Definition

Collections In this specification, 'collection' is used as a synonym for '3d-container
collection'.

3D Container Spatial information resource that has a distinct bounding volume containing
3D model content.

Bounding Volume A closed volume completely containing the union of a set of geometric objects.

CRS Coordinate reference system describing coordinates of the extents.

Exception An exception describes an event, which occurs during execution that disrupts
the normal flow of the program’s instructions.

Extent The extent of the collection.

Link Link to content.

Spatial Extent The spatial extent of the element in the collection.

Temporal Extent The temporal extent of the element in the collection.

TRS Coordinate reference system of the coordinates in the temporal extent.

Content Type JSON media type used for content.

Figure 5. 3D-Container Model

22

7.5.1. 3D-Container

The most general definition of a 3D-Container (GeoVolume) is a spatial information resource with a
distinct bounding volume, a (required) enclosing bounding box (2D / 3D), containing at most one 3D
model dataset which is relevant to that volume (items, content) and represented by references to
one or more distributions, and includes or references other 3D-Containers (children) whose
bounding volumes are fully contained by the parent container’s bounding volume. The default
representations of a 3D-Container are JSON / HTML information documents which define the
bounding box, link to an implicit tileset scheme if applicable, and provide the described sections
and links.

This resource is not the same as the collection resource defined in the present draft OGC API -
Common, but could be considered a specialized type of that collection resource. The consensus of
the Pilot participants was to extend the collection resource and corresponding collection
information document schema in ways that in turn echo the 3D Tiles root node resource
(tileset.json). As the definitions of collections and collection evolve with development of OGC API -
Common modules, this recommendation may be superseded.

Choices can be made whether to provide a flat list of all 3D-Containers supported by the API
instance or only 1-2 top-level or "root" 3D-Container collections which then include child 3D-
Containers. The collection information in the collections array may also consist only of the required
elements, leaving other elements to be included in the document at the individual collection path.

What a content reference links to is dependent on content type and TBD for some types:

• 3DTiles: tileset.json

• I3S: NodeIndexDocument

• CityGML: feature collection (/items) information document and/or logical space feature
(CityModel)

• CDB: Root folder

• 2D features: link to collection information document

Table 3. 3D-Container

Field Name Required Type Description

id X String Identifier (name) of a specific 3D Container

title String Human readable title of a specific 3D Container

description String Detailed description of a specific 3D Container

collectionType String Property with value "3d-container" is required.

itemType String Indicator about the type of the items in the
collection (the default value is 'unknown').

23

Field Name Required Type Description

extent X extent The 3D spatial extent of the container is
required.

contentExtent boundingV
olume

Optional 3D spatial extent as box, region, or
sphere.

crs crs Coordinate Reference System

links X List of [
link]

Array members in the "link" property must
include "self", and may include "items" (for
compatibility with a common collection type),
"parent" (link to enclosing 3D-Container), "root"
(link to top-level 3D-Container), "scheme" link to
the definition of any implicit tile scheme which
sets the 3D-Container organization, extent
and/or addressing, "affinemap" (link from a 3D-
Container with 2D content to a 3D-Container
with 2.5D content (surface, point cloud) to which
the 2D content should S be texture-mapped)

children List of
[3dcontain
er]

A "children" property with an array of zero or
more "child" 3D-Containers is required (could be
just the required properties: id, self-link, extent).

24

Field Name Required Type Description

content List of [
link]

A property with an array of zero or more
content references is required. The content of a
3D-Container is at most a single dataset (e.g. it
may have no content and only children). Each
link in the "content" array shall be to a specific
distribution of that dataset. The "rel" property of
each reference indicates its relation to the
dataset, such as "original" (the distribution
representing the most original version of the
dataset, e.g. a CityGML model), or "alternate"
(other dataset distributions in different
encodings or for different platforms).

What a content reference links to is dependent
on content type and TBD for some types:

• 3DTiles: tileset.json

• I3S: NodeIndexDocument

• CityGML: Collection document and/or logical
space feature (CityModel)

• CDB: Root folder

• 2D features: link to collection information
document

7.5.2. Bounding Volume

A bounding volume for a set of objects is a closed volume that completely contains the union of the
objects in the set.

Exactly one box, region, or sphere property is required. See 3D-Tiles Bounding volumes
[http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html#31]

Table 4. Bounding Volume

Field Name Required Type Description

box List of
[double]

An array of 12 numbers that define an oriented
bounding box. The first three elements define the x, y,
and z values for the center of the box. The next three
elements (with indices 3, 4, and 5) define the x-axis
direction and half-length. The next three elements
(indices 6, 7, and 8) define the y-axis direction and half-
length. The last three elements (indices 9, 10, and 11)
define the z-axis direction and half-length.

25

http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html#31

Field Name Required Type Description

region List of
[double]

An array of six numbers that define a bounding
geographic region in EPSG:4979 coordinates with the
order [west, south, east, north, minimum height,
maximum height]. Longitudes and latitudes are in
radians, and heights are in meters above (or below) the
WGS84 ellipsoid.

sphere List of
[double]

An array of four numbers that define a bounding
sphere. The first three elements define the x, y, and z
values for the center of the sphere. The last element
(with index 3) defines the radius in meters.

Figure 6. Bounding box

Bounding Box YAML:

box:
 type: array
 items:
 type: number
 format: double
 minItems: 12
 maxItems: 12

Figure 7. Region

Bounding Region YAML:

region:
 type: array
 items:
 type: number
 format: double
 minItems: 6
 maxItems: 6

26

Figure 8. Sphere

Bounding Sphere YAML:

sphere:
 type: array
 items:
 type: number
 format: double
 minItems: 4
 maxItems: 4

Source: 3D-Tiles Bounding volumes [http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html#31]

7.5.3. Coordinate Reference System (CRS)

This is the CRS of the coordinates in the spatial extent (property 'bbox'). The default reference
system is WGS 84 longitude/latitude [http://www.opengis.net/def/crs/OGC/0/CRS84h]. In the Core this is the
only supported CRS. Extensions may support additional coordinate reference systems and add
additional enum values.

7.5.4. Extent

This is the extent of the 3D GeoVolume. In the Core only spatial and temporal extents are specified.
Extensions may add additional members to represent other extents, for example, thermal or
pressure ranges. It is recommended that the spatial extent be expressed in CRS84 except if this is
not possible.

Table 5. Extent

Field Name Required Type Description

spatial spatialExtent

temporal temporalExt
ent

7.5.5. Link

Link to content.

Table 6. Link

Field Name Required Type Description

href X String The URI of the link

title String

27

http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html#31
http://www.opengis.net/def/crs/OGC/0/CRS84h

Field Name Required Type Description

rel X rel Link Relationship

type type

hreflang String

7.5.6. Link Relation Type (Rel)

This defines the relationship between the current JSON resource representation and a related JSON
resource. For more information see:

• Link Relations [http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_link_relations]

• IANA: Link Relation Types [https://www.iana.org/assignments/link-relations/link-relations.xml]

The following enumeration is provided as an example. Other relationship types are possible.

• affinemap: Link from a 3D-Container with 2D content to a 3D-Container with 2.5D content
(surface, point cloud) to which the 2D content should be texture-mapped.

• alternate: Refers to a substitute for this context.

• collections: The target points to a 3D-container resource which represents the collection
resource for the context.

• conformance: Refers to a resource that identifies the specifications that the link’s context
conforms to.

• data: Indicates that the link’s context is a distribution of a dataset that is an API and refers to the
root resource of the dataset in the API.

• dataset: Indicates that the link’s context is a distribution of a dataset that is an API and refers to
the root resource of the dataset in the API.

• describedby: Refers to a resource providing information about the link’s context.

• distribution: Indicates that the link’s context is a distribution.

• item: The target IRI points to a resource that is a member of the collection represented by the
context IRI.

• items: Refers to a resource that is comprised of members of the collection represented by the
link’s context.

• original: The distribution representing the most original version of the dataset, e.g. a CityGML
model.

• parent: link to enclosing 3D-Container.

• root: link to top-level 3D-Container.

• scheme: link to the definition of any implicit tile scheme which sets the 3D-Container
organization, extent and/or addressing.

• self: Conveys an identifier for the link’s context.

• service: Indicates a URI that can be used to retrieve a service document.

28

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_link_relations
https://www.iana.org/assignments/link-relations/link-relations.xml

• service-desc: Identifies service description for the context that is primarily intended for
consumption by machines.

7.5.7. Spatial Extent

This defines the spatial extent of the element in the collection.

Table 7. Spatial Extent

Field Name Required Type Description

bbox X List of
[array]

One or more bounding boxes that describe the spatial
extent of the dataset. In the Core only a single bounding
box is supported. Extensions may support additional
areas. If multiple areas are provided, the union of the
bounding boxes describes the spatial extent.

crs crs Coordinate reference system of the coordinates in the
spatial extent (property bbox). The default reference
system is WGS 84 longitude/latitude. In the Core this is
the only supported coordinate reference system.
Extensions may support additional coordinate
reference systems and add additional enum values.

7.5.8. Temporal Extent

This defines the temporal extent of the element in the collection.

Table 8. Temporal Extent

Field Name Required Type Description

interval List of
[array]
[Date-Time]

One or more time intervals that describe the temporal
extent of the dataset. The value 'null' is supported and
indicates an open time interval. In the Core only a
single time interval is supported. Extensions may
support multiple intervals. If multiple intervals are
provided, the union of the intervals describes the
temporal extent.

trs TRS Coordinate reference system of the coordinates in the
temporal extent (property interval). The default
reference system is the Gregorian calendar. In the Core
this is the only supported temporal reference system.
Extensions may support additional temporal reference
systems and add additional enum values.

7.5.9. TRS

This defines the coordinate reference system of the coordinates in the temporal extent (property
'interval'). The default reference system is the Gregorian calendar. In the Core this is the only
supported temporal reference system. Extensions may support additional temporal reference

29

systems and add additional values.

• "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"

7.5.10. Content Type

Content type enumeration examples:

• application/json

• application/json-3dtiles

• application/json-i3s

• text/html

30

Chapter 8. API Use Cases
The following section describes the actions for two use cases:

1. Typical user/client/server sequence for accessing a 3D Container.

2. I3S To 3D-Tiles Converter for accessing 3D content.

8.1. API user/client/server Use Case

Figure 9. API Sequence Diagram

The following is the user/client/server sequence for accessing a 3D Container:

1. User starts client, selects provider, and loads collections.

31

Figure 10. User loads collections

2. Client Landing Page Request. Client requests the landing page from server. Client landing page
request: http://helyxapache2.eastus.azurecontainer.io/

3. Server Landing Page Response. The server provides the following landing page response:

{
 "title": "Pilot 3D Container API",
 "description": "A pilot of an API for 3D containers and tiles.",
 "links": [
 {service-desc...},
 {conformance...},
 {
 "type": "application/json",
 "title": "Collections",
 "href": "http://helyxapache2.eastus.azurecontainer.io/collections/",
 "rel": "data"
 }
]
}

4. Client Content Request. Client parses the landing page for data link relationship and requests
the collections from the server. The client can optionally provide a bounding box query string to
filter the contents from the server and format type. Client collections requests:
http://helyxapache2.eastus.azurecontainer.io/collections
http://helyxapache2.eastus.azurecontainer.io/collections?bbox=-75,40.,-12,-73,41,600&f=json

5. Server Collections Response. The server processes the request returning a collections object,
containing an array of links and array of 3D containers. The response may contain multiple
containers/container IDs in a flat or hierarchical organization.

6. Client Content Request. The client parses the collections response within the 3d container. Links
to the 3D Tiles content maybe located in (1) links, (2) content, or (3) children properties. From
the 3D container information, the client can process either a flat list or hierarchical list of 3D
containers. The organization depends on the use of the children object within the 3D container.
Client container request: http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/

32

http://helyxapache2.eastus.azurecontainer.io/
http://helyxapache2.eastus.azurecontainer.io/collections
http://helyxapache2.eastus.azurecontainer.io/collections?bbox=-75,40.,-12,-73,41,600&f=json
http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/

NewYork-buildings/

7. Server 3D Container Response. The server responds with only one 3D Container from the
container ID ("NewYork/NewYork-buildings"). The container can contain multiple 3D containers,
with multiple formats, and with a flat or hierarchical organization.

{
 "id": "NewYork/NewYork-buildings",
 "title": "NYC - 3D Buildings Manhattan",
 "description": "3D Buildings in Manhattan, New York.",
 "collectionType": "3d-container",
 "extent": {
 "spatial": [
 -74.01900887327089,
 40.700475291581974,
 -11.892070104139751,
 -73.9068954348699,
 40.880256294183646,
 547.7591871983744
],
 "crs": "http://www.opengis.net/def/crs/OGC/0/CRS84h"
 },
 "links": [
 {
 "rel": "self",
 "href":
"http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/",
 "type": "application/json",
 "title": "NYC - 3D Buildings Manhattan"
 },
 {
 "rel": "items",
 "href":
"http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-
buildings/i3s/",
 "type": "application/json+i3s",
 "title": "NYC - 3D Buildings Manhattan: i3s"
 },
 {
 "rel": "items",
 "href":
"http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-
buildings/3dTiles/",
 "type": "application/json+3dtiles",
 "title": "NYC - 3D Buildings Manhattan: 3D Tiles"
 }
],
 "content": [
 {
 "title": "NYC - 3D Buildings Manhattan: i3s",

33

http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/

 "rel": "original",
 "href":
"http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-
buildings/i3s/",
 "type": "application/json+i3s",
 "collectionType": "3d-container"
 },
 {
 "title": "NYC - 3D Buildings Manhattan: 3D Tiles",
 "rel": "original",
 "href":
"http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-
buildings/3dTiles/",
 "type": "application/json+3dtiles",
 "collectionType": "3d-container"
 }
]
}

8. Client Bounding Volume Hierarchy (BVH) Request. The client parses the 3D container for 3D
Tiles link. Client 3D Tiles/tileset.json request : http://helyxapache2.eastus.azurecontainer.io/
collections/NewYork/NewYork-buildings/3dTiles/

9. Server 3D tileset.json Response. The server response with tileset.json BVH.

34

http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/3dTiles/
http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/3dTiles/

{
 "asset": {
 "version": "1.0",
 "extras": {
 "ion": {
 "georeferenced": true,
 "movable": false
 }
 }
 },
 "properties": {
 "Height": {
 "maximum": 547.7591871983744,
 "minimum": -11.892070104139751
 },
 "Latitude": {
 "maximum": 40.880256294183646,
 "minimum": 40.700475291581974
 },
 "Longitude": {
 "maximum": -73.9068954348699,
 "minimum": -74.01900887327089
 }
 },
 "geometricError": 740.0197559011849,
 "root": {
 "boundingVolume": {
 "region": [
 -1.29187544264487,
 0.7103573144863446,
 -1.289919109210917,
 0.7134950819190251,
 0,
 547.6909683533274
]
 },
 "geometricError": 740.0197559011849,
 "refine": "ADD",
 "children": [...]
 }
}

10. User navigates through the 3D scene

11. Client BVH Content Request. The client requests 3D Tiles batched 3D model from the server.
Client B3DM request: http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/
NewYork-buildings/3dTiles/5/0/0.b3dm

12. Server Batched 3D Model Response. Server provides batched 3D model content to the client.

13. Client renders 3D model content to the user.

35

http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/3dTiles/5/0/0.b3dm
http://helyxapache2.eastus.azurecontainer.io/collections/NewYork/NewYork-buildings/3dTiles/5/0/0.b3dm

8.2. I3S To 3D-Tiles Converter Use Case
Please note that the i3s-to-3dtiles service is owned and provided by the Terria [https://terria.io] team
at CSIRO’s Data61 [https://data61.csiro.au/]. This service is fine to use (lightly) for testing, but
production or higher-traffic usage must be discussed with the Terria team first.

Figure 11. I3S to 3D Tiles

The following is the user/client/server sequence for accessing/converting I3S to 3D Tiles:

1. User starts client and selects a 3D container to view.

2. The selected container is only available in I3S format and not as 3D Tiles. The client chooses to
use the i3s-to-3dtiles service to access the I3S content.

3. The client requests the original I3S SceneServer URL [https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/].
For example: https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/https://portal.spatial.nsw.gov.au/i3s/
rest/services/Hosted/ESP/WaratahStation/SceneServer

4. The i3s-to-3dtiles service requests the original I3S SceneServer URL
(https://portal.spatial.nsw.gov.au/i3s/rest/services/Hosted/ESP/WaratahStation/SceneServer).

5. Transforms it to a 3D Tiles tileset.json.

6. Returns it to the client.

7. Relative URLs inside the converted tileset.json, such as
SceneServer/layers/0/nodes/2/geometries/0 go through the i3s-to-3dtiles converter as well when
they are resolved to absolute paths, such as https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/https://
portal.spatial.nsw.gov.au/i3s/rest/services/Hosted/ESP/WaratahStation/SceneServer/layers/0/
nodes/2/geometries/0.

8. The i3s-to-3dtiles service transforms each I3S resource to 3D Tiles as it is requested. In the case
above, the I3S geometry is converted on-the-fly to a 3D Tiles B3DM.

9. The client thinks it is interacting with a normal 3D Tiles tileset and need not have any
awareness of the converter at all.

10. Client renders the 3D model content to the user.

36

https://terria.io
https://data61.csiro.au/
https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/
https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/https://portal.spatial.nsw.gov.au/i3s/rest/services/Hosted/ESP/WaratahStation/SceneServer
https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/https://portal.spatial.nsw.gov.au/i3s/rest/services/Hosted/ESP/WaratahStation/SceneServer
https://portal.spatial.nsw.gov.au/i3s/rest/services/Hosted/ESP/WaratahStation/SceneServer
https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/https://portal.spatial.nsw.gov.au/i3s/rest/services/Hosted/ESP/WaratahStation/SceneServer/layers/0/nodes/2/geometries/0
https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/https://portal.spatial.nsw.gov.au/i3s/rest/services/Hosted/ESP/WaratahStation/SceneServer/layers/0/nodes/2/geometries/0
https://nsw.digitaltwin.terria.io/i3s-to-3dtiles/https://portal.spatial.nsw.gov.au/i3s/rest/services/Hosted/ESP/WaratahStation/SceneServer/layers/0/nodes/2/geometries/0

Chapter 9. Implementations
The Pilot consisted of four components: Two client applications and two server applications. The
following is from the Pilot Call for Participation.

9.1. Components
• D110 - Client for 3D Data Container and Tiles API - A client that interacts with Servers via the

proposed OGC API - Tiles-3D and is able to consume and process the data that follows the draft
3D Tiled Data Container specification. Participants developing clients will capture videos and
screenshots of the client interfaces interacting with Tiles-3D for demonstration purposes.

• D112 - Client for 3D Data Container and Tiles API and 2D Tiles - A client with support for 2D and
3D data. The client shall interact with 3D Servers via the proposed OGC API - Tiles-3D and is able
to consume and process the data that follows the 3D Tiled Data Container specification for 3D
data. In order to support 2D data, the client shall interact with the OGC draft API – Maps and
Tiles as developed by Testbed-15. Participants developing clients will capture videos and
screenshots of the client interfaces interacting Servers for demonstration purposes.

• D100 - Tiles-3D Server - Server-side implementation of the OGC API - Tiles-3D with support for
the 3D Tiled Data Container specification.

• D102 – Tiles-2D & Tiles-3D Server - Server-side implementation of the draft OGC API – Maps and
Tiles. The focus of this component implementation is on extensions to emerging 2D OGC APIs
needed to deliver 2D tiles and support smooth transition to 3D environments. Ideally, this server
implements the OGC API - Tiles-3D with support for the 3D Tiled Data Container specification
additionally.

Figure 12. Components

All pilot participants successfully implemented the 3D Data Container specification. The
specification supports flat and hierarchal organizations. The flat organization was the most

37

common approach used. The Skymantics implementation used the hierarchal organization of the
children property to create a Western Hemisphere container with child containers.

Table 9. Pilot Container Implementations

Service GeoVolume API Landing
Page URL

Content

Cesium D102 https://3d.hypotheticalhorse.
com

• Cesium OSM Buildings: 3D Tiles

• New York Buildings: 3D Tiles, I3S

• Western Sydney City Deal - 3D Buildings: 3D
Tiles

• Waratah Station BIM: : 3D Tiles, I3S

Cognitics D102 http://cdb.cognitics.net:3000/ • New York Buildings : 3D Tiles

Ecere D102 https://maps.ecere.com/
3DAPI/

• New York Buildings: 3D Tiles

Helyx D100 http://helyxapache2.eastus.a
zurecontainer.io/

• New York Buildings: 3D Tiles, I3S

• Montreal Buildings: 3D Tiles + I3S

• Montreal LiDAR

Skymantics D102 http://13.82.99.186:5050/ • Westworld

◦ NYC: 3D Tiles, I3S

◦ Marseille: 3D Tiles

• Malalison Island

Steinbeis D100 http://steinbeis-
3dps.eu:8080/
3DContainerTile/

• United States - New York Buildings: 3D Tiles,
I3S

Table 10. Pilot Client Implementations

Pilot Participant Client URL/Application

Cesium D112 https://map.hypotheticalhorse.com/

Cognitics D112 Unity 3D

Ecere D112 GNOSIS Cartographer [http://ecere.ca/gnosis/]

Skymantics D112 http://13.82.99.186:8072/web/3dcat/index.html

Steinbeis D110 http://steinbeis-3dps.eu/STT3DClient/

9.2. Cesium
In the course of the Pilot, Cesium developed and deployed an implementation of the 3D Container

38

https://3d.hypotheticalhorse.com
https://3d.hypotheticalhorse.com
http://cdb.cognitics.net:3000/
https://maps.ecere.com/3DAPI/
https://maps.ecere.com/3DAPI/
http://helyxapache2.eastus.azurecontainer.io/
http://helyxapache2.eastus.azurecontainer.io/
http://13.82.99.186:5050/
http://steinbeis-3dps.eu:8080/3DContainerTile/
http://steinbeis-3dps.eu:8080/3DContainerTile/
http://steinbeis-3dps.eu:8080/3DContainerTile/
https://map.hypotheticalhorse.com/
http://ecere.ca/gnosis/
http://13.82.99.186:8072/web/3dcat/index.html
http://steinbeis-3dps.eu/STT3DClient/

and Tiles API, as well as a web-based client application to query and render 3D datasets from
servers implementing the API. The Cesium client application was able to successfully integrate with
the API implementations provided by all the other Pilot participants, and the Cesium server was
successfully accessed by all other participants' client applications.

9.2.1. Web-based 3D Client

The Cesium 3D Container and Tiles API client is available at https://map.hypotheticalhorse.com.

Figure 13. Cesium Web-based 3D Client

The client is built on an open-source framework called TerriaJS [https://terria.io], which in turn is
built on top of the open-source CesiumJS [https://cesium.com/cesiumjs/] library. TerriaJS was originally
built for Australia’s NationalMap. As such, TerriaJS is a good fit for applications that enable users to
interactively explore a large catalog of diverse geospatial data. Extending the application to
interface with the 3D Container and Tiles API was straightforward.

The 3D Container and Tiles API is found in the TerriaJS catalog, which is accessible by clicking
"Explore map data" in the top left. The API is portrayed as a series of folders with the following
structure:

39

https://map.hypotheticalhorse.com
https://terria.io
https://cesium.com/cesiumjs/

[Participant Name] (1)
├── All (2)
│ ├── data (3)
| │ ├── [3D Container title] (4)
| | | ├── children (5)
| | | | ├── [Child 3D Container title] (6)
| | | | | ├── content (7)
| | | | | | ├── [Distribution title] (8)
| | ├── [Another 3D Container title] (4)
| | | ├── content (7)
| | | | ├── [Distribution title] (8)
├── Inside New York bounding box (9)
│ ├── data (3)
| │ ├── [3D Container title] (4)
| | | ├── children (5)
| | | | ├── [Child 3D Container title] (6)
| | | | | ├── content (7)
| | | | | | ├── [Distribution title] (8)
| | ├── [Another 3D Container title] (4)
| | | ├── content (7)
| | | | ├── [Distribution title] (8)

These parts mirror the structure of the API itself:

1. [Participant Name] - Each participant (Cesium, Helyx, Steinbeis, Skymantics, Cognitics, and
Ecere) has a top-level folder in the TerriaJS catalog.

2. All - A reference to the API’s landing page. When this folder is opened, the client does an HTTP
GET request to the landing page URL.

3. data - Represents the link with "rel": "data" discovered from the landing page resource. When
the user opens this folder, the client queries the /collections resource (which need not have
that particular URL).

4. [3D Container title] - Each 3D Container discovered from the /collections service is listed.
When the user opens this folder, the client does an HTTP GET of the container’s self link.

5. children - If the 3D Container has children, they are listed in this group.

6. [Child 3D Container title] - Each 3D Container discovered as a child of another container is
listed. When the user opens this folder, the client does an HTTP GET of the child container’s self
link.

7. content - If the 3D container has any content items, they are listed in this group.

8. [Distribution title] - Each distribution item discovered in the container’s content, such as a 3D
Tiles, i3s, or CityGML representation of the dataset, is listed here.

9. Inside New York bounding box - This group is identical to All (2) except that it specifies a bbox
parameter when querying /collections and parent containers, limiting results to only those
containers that are within a bounding box around Manhattan.

In the user interface, it looks like this:

40

Figure 14. API Structure in the User Interface

Please note that the approach used in the Pilot is not the most user-friendly way to portray the API.
A typical TerriaJS application would skip the intermediate data, children, and content folders and
simply show the entire server as a folder with sub-folders for 3D containers. A more verbose
approach is used here in order to reveal and test the structure of the 3D Container and Tiles API.

When the user selects a particular distribution item in the catalog, the client shows the bounding
box of the dataset on the preview map.

Figure 15. Bounding Box Preview

Clicking the map zooms in closer to the bounding box:

41

Figure 16. Data preview - New York

While Cesium-based, the client supports visualization of I3S datasets using the I3S to 3D Tiles
conversion service developed, owned, and provided by the Terria team at CSIRO’s Data61. The
service automatically and transparently converts I3S datasets to 3D Tiles on-the-fly. While the
participants of the Pilot had permission to use the service (lightly) for testing in this Pilot,
production or higher-traffic usage must be discussed with the Terria team first.

42

Figure 17. Data preview - Waratah Station

The complete source code for the Cesium client application is available on GitHub:
https://github.com/kring/TerriaMap/tree/ogc3d

The TerriaJS catalog reference class that interfaces with the 3D Container and Tiles API is found
here: https://github.com/kring/TerriaMap/blob/ogc3d/lib/Models/Ogc3dContainerReference.ts

9.2.2. 3D Container and Tiles API Server

The 3D Container and Tiles API server implemented by Cesium supports a number of features:

• Hierarchical collections of 3D data;

• Querying for 3D containers by 2D and 3D bounding boxes;

• Datasets may be hosted on the API server or on a different server; and,

• Open source code.

43

https://github.com/kring/TerriaMap/tree/ogc3d
https://github.com/kring/TerriaMap/blob/ogc3d/lib/Models/Ogc3dContainerReference.ts

The landing page for the server is found at https://3d.hypotheticalhorse.com/. The landing page
follows the recommended structure in OGC API - Common, providing links to a service description,
a conformance page, and the collections identified by the server.

https://3d.hypotheticalhorse.com/

{
 "title": "Pilot 3D Container API",
 "description": "A pilot of an API for 3D containers and tiles.",
 "links": [
 {
 "title": "Service Description",
 "href": "https://app.swaggerhub.com/apis/timothy-miller/3D-Data-
Container/0.0.1",
 "rel": "service-desc"
 },
 {
 "title": "Conformance",
 "href": "https://3d.hypotheticalhorse.com/conformance/",
 "rel": "conformance"
 },
 {
 "title": "Collections",
 "href": "https://3d.hypotheticalhorse.com/collections/",
 "rel": "data"
 }
]
}

The collections page, linked from the landing page and found at https://3d.hypotheticalhorse.com/
collections/, is the most critical part of the 3D Container and Tiles API. The collections page lists the
3D Container collections known to the server, and provides all the information the client needs to
pick a compatible distribution and access it.

https://3d.hypotheticalhorse.com/collections/

{
 "links": [
 {
 "href": "https://3d.hypotheticalhorse.com/collections/",
 "rel": "self",
 "type": "application/json",
 "title": "this document"
 }
],
 "collections": [
 {
 "id": "Buildings",
 "title": "Buildings",
 "description": "3D Buildings",

44

https://3d.hypotheticalhorse.com/
https://3d.hypotheticalhorse.com/
https://3d.hypotheticalhorse.com/collections/
https://3d.hypotheticalhorse.com/collections/
https://3d.hypotheticalhorse.com/collections/

 "collectionType": "3d-container",
 "extent": {
 "spatial": {
 "bbox": [
 [-180, -90, 0, 180, 90, 1000]
],
 "crs": "http://www.opengis.net/def/crs/OGC/0/CRS84h"
 }
 },
 "links": [
 {
 "title": "3D Buildings",
 "href": "https://3d.hypotheticalhorse.com/collections/Buildings/",
 "rel": "self",
 "type": "application/json"
 }
],
 "content": [],
 "children": [
 {
 "id": "CesiumOSMBuildings",
 ...
 },
 {
 "id": "NewYorkBuildings",
 "title": "New York - Manhattan - 3D Buildings",
 "description": "3D Buildings in Manhattan, New York.",
 "collectionType": "3d-container",
 "extent": {
 "spatial": {
 "bbox": [
 [
 -74.01900887327089,
 40.700475291581974,
 0,
 -73.9068954348699,
 40.880256294183646,
 547.6909683533274
]
],
 "crs": "http://www.opengis.net/def/crs/OGC/0/CRS84h"
 }
 },
 "links": [
 {
 "title": "New York - Manhattan - 3D Buildings",
 "href":
"https://3d.hypotheticalhorse.com/collections/Buildings/NewYorkBuildings/",
 "rel": "self",
 "type": "application/json"
 }

45

],
 "content": [
 {
 "title": "3D Tiles",
 "href":
"https://3d.hypotheticalhorse.com/collections/NewYorkBuildings/3dtiles/",
 "rel": "original",
 "type": "application/json+3dtiles"
 }
],
 "children": []
 },
 {
 "id": "WesternSydneyBuildings",
 ...
 }
]
 },
 {
 "id": "WaratahStation",
 ...
 }
]
}

The Cesium API offers 3D container data arranged in the following hierarchy:

collections/
├── Buildings/
│ ├── Cesium OSM Buildings
| │ ├── 3D Tiles
│ ├── New York - Manhattan - 3D Buildings
| │ ├── 3D Tiles
| ├── Western Sydney City Deal - 3D Buildings
| │ ├── 3D Tiles
├── Waratah Station/
│ ├── 3D Tiles
│ ├── i3s

• Buildings - https://3d.hypotheticalhorse.com/collections/Buildings/ - A parent collection
container that includes several buildings collections:

◦ Cesium OSM Buildings - https://3d.hypotheticalhorse.com/collections/Buildings/
CesiumOSMBuildings/ - Worldwide 3D buildings served from Cesium ion in 3D Tiles format.

◦ New York - Manhattan - 3D Buildings - https://3d.hypotheticalhorse.com/collections/Buildings/
NewYorkBuildings/ - CityGML-derived buildings in Manhattan served directly from the
Cesium 3D Container and Tiles API server in 3D Tiles format.

◦ Western Sydney City Deal - 3D Buildings - https://3d.hypotheticalhorse.com/collections/
Buildings/WesternSydneyBuildings/ - 3D Buildings for New South Wales, Australia’s Western

46

https://3d.hypotheticalhorse.com/collections/Buildings/
https://3d.hypotheticalhorse.com/collections/Buildings/CesiumOSMBuildings/
https://3d.hypotheticalhorse.com/collections/Buildings/CesiumOSMBuildings/
https://3d.hypotheticalhorse.com/collections/Buildings/NewYorkBuildings/
https://3d.hypotheticalhorse.com/collections/Buildings/NewYorkBuildings/
https://3d.hypotheticalhorse.com/collections/Buildings/WesternSydneyBuildings/
https://3d.hypotheticalhorse.com/collections/Buildings/WesternSydneyBuildings/

Sydney City Deal. The buildings are served from the New South Wales state government’s
Spatial Digital Twin in 3D Tiles format.

• Waratah Station - https://3d.hypotheticalhorse.com/collections/WaratahStation/ - A detailed
model of Waratah train station in New South Wales, Australia, served from the New South
Wales state government’s ArcGIS Server in I3S format and also offered in 3D Tiles format via
on-the-fly conversion.

The Buildings 3D container may be queried directly via its URL, https://3d.hypotheticalhorse.com/
collections/Buildings/, in which case only child containers of that container will be returned.

Collections may be queried by bounding box. For example, to query for all collections in a bounding
box around Manhattan we can GET https://3d.hypotheticalhorse.com/collections/?bbox=-
74.021,40.701,-73.990,40.775. This will return the Buildings 3D container, but it will not return the
Waratah Station 3D container because it is in Australia.

The user can also query a single 3D container to find all of the container’s children that lie within a
bounding box. For example, to query the Buildings container for child containers in a bounding box
around Manhattan, the user or application can GET https://3d.hypotheticalhorse.com/collections/
Buildings/?bbox=-74.021,40.701,-73.990,40.775.

The two queries above use a 2D bounding box, but a 3D bounding box with heights is also
supported. The following query does not include the Manhattan dataset because the tallest building
in Manhattan reaches a height of less than 550 meters: https://3d.hypotheticalhorse.com/collections/
Buildings/?bbox=-180,-90,550,180,90,1000.

9.2.2.1. Architecture

The Cesium API server consists of a "dynamic" portion backed by a Node.js-based server running on
an Amazon EC2 virtual machine, combined with a static portion backed by the Amazon Simple
Storage Service (S3). Amazon CloudFront is used to make these two parts appear to clients as a
single cohesive server.

47

https://3d.hypotheticalhorse.com/collections/WaratahStation/
https://3d.hypotheticalhorse.com/collections/Buildings/
https://3d.hypotheticalhorse.com/collections/Buildings/
https://3d.hypotheticalhorse.com/collections/?bbox=-74.021,40.701,-73.990,40.775
https://3d.hypotheticalhorse.com/collections/?bbox=-74.021,40.701,-73.990,40.775
https://3d.hypotheticalhorse.com/collections/Buildings/?bbox=-74.021,40.701,-73.990,40.775
https://3d.hypotheticalhorse.com/collections/Buildings/?bbox=-74.021,40.701,-73.990,40.775
https://3d.hypotheticalhorse.com/collections/Buildings/?bbox=-180,-90,550,180,90,1000
https://3d.hypotheticalhorse.com/collections/Buildings/?bbox=-180,-90,550,180,90,1000

Figure 18. Cesium API Server Architecture

The open-source code for the dynamic portion may be found on GitHub: https://github.com/
TerriaJS/terriajs-server/tree/ogc3d

Specifically, the OGC 3D Container and Tiles API services are implemented here: https://github.com/
TerriaJS/terriajs-server/blob/ogc3d/lib/controllers/ogc3d.js

9.3. Cognitics

9.3.1. Introduction

Cognitics implemented a static 3D server providing 3DTiles data and developed a client using Unity
3D to query and display 3D data from other participant servers.

9.3.2. Data

The Pilot participants provided the data available on the Cognitics server. The data consisted of the
3D Tiles WGS84 Quadtree Level 14, the same data as the 3D Tiles, but using a uniform quadtree. All
the data tiles are placed on level 14 of a double-headed quadtree where the Level 0 tiles are
-180°→0° (Western Hemisphere) and 0°→180° (Eastern Hemisphere).

9.3.3. Server Architecture

The Cognitics server architecture is shown below.

48

https://github.com/TerriaJS/terriajs-server/tree/ogc3d
https://github.com/TerriaJS/terriajs-server/tree/ogc3d
https://github.com/TerriaJS/terriajs-server/blob/ogc3d/lib/controllers/ogc3d.js
https://github.com/TerriaJS/terriajs-server/blob/ogc3d/lib/controllers/ogc3d.js

Figure 19. Cognitics Server Architecture

9.3.4. Server Functionality:

Cognitics developed a simple Node.js server that provides static content. The implementation
provides glTF content as a single container based on a request via the 3D Data Container and Tiles
API. The glTF models represent the valid JSON responses through the API. The implementation fully
supports embedded binary data and external binary data glTF models. Correct placement is
ensured using B3DM.

9.3.4.1. Landing Page

The Cognitics API landing page shown below is available at http://cdb.cognitics.net:3000/. The
landing page displays in JSON and shows the API description, and links to the conformance classes
and collections page.

9.3.4.2. 3D Container

The collections page is available at http://cdb.cognitics.net:3000/collections/. Here the API returns
information about the available 3D containers. The Cognitics implementation of the API offers a
data hierarchy as shown below.

49

http://cdb.cognitics.net:3000/
http://cdb.cognitics.net:3000/collections/

collections/
├── NewYorkBuildings/
│ ├── 3D Tiles

The image below shows the Cognitics collections page, which consists of NewYorkBuildings.

9.3.4.3. Bounding Box query

The Cognitics implementation if the API supports querying of 3D containers and collections using
either a 2D or 3D bounding box, and supports both fully contains and intersection matching
functions. The image below shows a bounding box query that returns the NewYorkBuildings
collection.

50

To complete the TIE tests for the bounding box function, Cognitics queried the collection using -74,
41.5, 0 and -73, 42, 0 coordinates. If the participant server’s implementation of the bounding box
function was correct, nothing would be returned in our collections list.

9.3.5. Client Functionality:

9.3.5.1. Request and parse Landing Page

Cognitics used Unity 3D for the client. From the File menu, select the 3DT Link menu and a dialog
box appears prompting the user to enter the participant server URL. In Unity, the user sends the
bounding box parameter in the URL query string.

51

Figure 20. Request and Parse Landing Page

Unity fetches the server’s landing page and parses the content for collections using the rel: data key
to ensure the correct elements are returned. If a query string was used, the participant server
provides a response containing only the entries that intersect with the bounding box passed in the
query string.

9.3.5.2. Request and parse 3D container

Once all available collections have been parsed, 3D Tiles datasets are returned as a list in a dialog
box and the user chooses which collection to be displayed.

52

Figure 21. Request and Parse 3D Container

In Unity the bounding box is set based on the CDB bounds, rather than drawing or typing in a set of
bounding box coordinates. The image below shows the results of the client request for the
NewYorkBuildings collection.

Figure 22. Client Request Results

9.4. Ecere
For the Pilot, Ecere provided both server and client components based on the Ecere GNOSIS cross-
platform geospatial software products. The Pilot allowed prototyping and experimenting with the

53

various OGC API components with the integration of multiple ways to deliver and access 3D data,
including the Features API, Tiles API as well as the 3D Tiles and I3S Community standards.

9.4.1. Server

9.4.1.1. Static server

The main server component provided by Ecere used in the TIEs with other participants was a very
simple implementation as static files hosted using Apache. The implementation provided a landing
page and a list of available 3D data layers consisting of the same New York City buildings served by
all participants and distributed as 3D tiles. Both JSON and HTML representations of the landing
page and data layers resources were made available. This experiment demonstrated that it is
possible to implement this API by simply setting up a file structure and serving it using a readily
available web server.

Figure 23. Landing page of static 3D API server

Figure 24. Listing of data layers for static 3D API server

54

Figure 25. 3D Buildings in New York City description page from static 3D API server

9.4.1.2. Dynamic server - Tiles API

A dynamic web server based on Ecere’s GNOSIS Map Server using the Tiles API to distribute the 3D
data was also used in the Pilot. Multi-resolution tiles of imagery, elevation and vector data were
made available, following a grid described by the OGC Two-Dimensional Tile Matrix Set standard.
Models were referenced as points. The server supports multiple tiling schemes, but the GNOSIS
Global Grid [https://maps.ecere.com/geoapi/tileMatrixSets/GNOSISGlobalGrid] was used for the experiments
conducted in the Pilot. This approach was also previously demonstrated in OGC Testbed 14 CityGML
& Augmented Reality (see Engineering Report [http://docs.opengeospatial.org/per/18-025.html]).

The Buildings and Tree 3D models tiles can be accessed as either:

• Tiled vector points references (as GNOSIS Map Tiles, Mapbox Vector Tile, or GeoJSON);

• E3D model;

• glTF model;

• Batched 3D model embedding glTF (linked by 3D Tiles tileset in approach described below).

Individual tiles are accessible at:

…/collections/{collectionId}/tiles/{tileMatrixSetId}/{tileMatrix}/{tileRow}/{tileCol}

Selection of an output format is done via any of HTTP Accept-content headers, f= query parameter
or .{format}.

The individual features can also be accessed (e.g. as GeoJSON or HTML representation) at:

…/collections/{collectionId}/items/{itemID}

When points tiles are used, they reference models accessible at:

…/collections/{collectionId}/models/{modelID}

and models can reference textures at:

…/collections/{collectionId}/textures/{textureID}

55

https://maps.ecere.com/geoapi/tileMatrixSets/GNOSISGlobalGrid
https://maps.ecere.com/geoapi/tileMatrixSets/GNOSISGlobalGrid
http://docs.opengeospatial.org/per/18-025.html

Figure 26. Landing page of dynamic 3D API server

Figure 27. Listing of data layers for Camp Pendleton from dynamic server

56

Figure 28. Features API for Camp Pendleton trees from dynamic server

57

Figure 29. Accessing single feature for Camp Pendleton trees from dynamic server

58

Figure 30. Tiles API for Camp Pendleton buildings from dynamic server

59

Figure 31. Data layer page for Camp Pendleton elevation data

60

Figure 32. Data layer page for Camp Pendleton imagery data

9.4.1.3. Dynamic server - 3D Tiles

Additionally, work was initiated to provide access to this same data as 3D tiles, by generating
batched 3D models and tilesets from the server. In this implementation, a fixed tiling scheme, the
GNOSIS Global Grid tile matrix set, was used to partition the data, with the links to individual tiles
being compatible with the Tiles API. Initial experiments accessing such tilesets were done with the
CesiumJS client. Future work will focus on also providing access to pre-tessellated versions of the
terrain as quantized terrain mesh, as well as the ability to load 3D datasets from CityGML sources
into the GNOSIS Map Server, such as the Montreal dataset used in this initiative.

61

Figure 33. Data layer page for Camp Pendleton 3D buildings data

62

Figure 34. 3D Tiles tileset resource Camp Pendleton 3D buildings data

63

Figure 35. CesiumJS client accessing Camp Pendleton data from GNOSIS Map Server served as 3D Tiles

Figure 36. CesiumJS client accessing Camp Pendleton data from GNOSIS Map Server served as 3D Tiles
(seaside)

9.4.2. Client

Ecere’s client component was based on its GNOSIS Cartographer cross-platform desktop GIS
application.

Because the 3D data API used for the initiative leveraged the foundation of the upcoming OGC API -
Common standards, existing support for resources such as the landing page, listing available data

64

layers and directly accessing a specific geospatial data resource could be re-used. This functionality
works the same as if accessing other types of data resources, such as vector features or raster
coverages.

Those resources allow discovering available data from an OGC API end-point, and provide links to
access the data organized. In the case of 3D Tiles and I3S, the 3D data is distributed organized as a
Bounding Volume Hierarchy. Experiments were also done using the Tiles API.

9.4.2.1. Tiles API

The client also supports accessing 3D data through the Tiles API, accessing multi-resolution tiles of
imagery, terrain elevation, as well as vector data tiles containing points referencing 3D models with
position and orientation information. These tiles follow a regular tiling scheme based on the OGC
Two Dimensional Tile Matrix Set standard. The Tiles API could also easily be extended with vertical
sub-division to support highly detailed multi-stories buildings, organizing the data in a geographic
space octree.

The data used in this experiment originated from a sample CDB dataset of Camp Pendleton from
the CDB Starter Kit. The GNOSIS engine tessellates a 3D mesh of the terrain on the fly from the
elevation gridded coverage tiles.

Ecere’s compact E3D [http://docs.opengeospatial.org/per/18-025.html#E3DSpecs] format was used to transfer
the models to the client, but support for serving the models as glTF was also implemented.

As trees for this dataset are defined as "geotypical", with only few models re-used at thousands of
location, they are rendered with a single drawing call using model instantiation techniques.

Figure 37. Camp Pendleton CDB dataset accessed from GNOSIS Map Server using the Tiles API

65

http://docs.opengeospatial.org/per/18-025.html#E3DSpecs

Figure 38. Camp Pendleton CDB dataset accessed from GNOSIS Map Server using the Tiles API

Figure 39. Camp Pendleton CDB dataset accessed from GNOSIS Map Server using the Tiles API

66

Figure 40. Camp Pendleton CDB dataset accessed from GNOSIS Map Server using the Tiles API

9.4.2.2. 3D Tiles

Support for the OGC 3D Tiles Community Standard was implemented in the latest version of Ecere’s
GNOSIS cross-platform Software Development Kit during the pilot. This capability to visualize 3D
Tiles was tested along with the other OGC API resources by performing Technology Integration
Experiments with services from other participants of the pilot. The Ecere client could access all data
from other services being provided as batched 3D models (.b3dm) 3D Tiles.

A number of datasets was offered by different participants. One dataset of New York City buildings
was being served by all. Other content such as imagery and terrain elevation was also integrated
within the view using a 2D Tiles API.

67

Figure 41. New York City dataset being accessed as 3D Tiles from all participants services

68

Figure 42. Textured dataset of Berlin originating from CityGML being served as 3D Tiles by virtualcityMAP
from virtualcitySYSTEMS (additional non-participating service tests)

Figure 43. BIM dataset of the Waratah railway station in New South Wales, Australia accessed from Cesium
service, streamed as i3s and converted to 3D Tiles

69

Figure 44. 3D buildings of West Sydney accessed as 3D Tiles from Cesium service

Figure 45. 3D buildings of West Sydney accessed as 3D Tiles from Cesium service (larger buildings)

70

Figure 46. Worldwide buildings from OpenStreetMap accessed as 3D Tiles from Cesium service (Dubai)

Figure 47. Worldwide buildings from OpenStreetMap accessed as 3D Tiles from Cesium service (Paris)

71

Figure 48. Worldwide buildings from OpenStreetMap accessed as 3D Tiles from Cesium service (London)

Figure 49. Worldwide buildings from OpenStreetMap accessed as 3D Tiles from Cesium service (New York)

72

Figure 50. Montreal buildings originating from CityGML, served as I3S from Helyx Service, and converted
as 3D Tiles

Figure 51. Dataset of Marseille provided by Bentley & Cesium being served as 3D Tiles from the Skymantics
service (La Major)

73

Figure 52. Dataset of Marseille provided by Bentley & Cesium being served as 3D Tiles from the Skymantics
service (Notre-Dame de la Garde)

9.5. Helyx

9.5.1. Introduction

For this Pilot Helyx provided a static 3D server with an array of different data sources for clients to
test. Helyx chose a static server implementation to demonstrate and test the type of data that could
be served even with a simple web server. An overview of the architecture is shown below:

74

Figure 53. Helyx Server Architecture

9.5.2. Server Functionality

9.5.2.1. Data

The server demonstrated a couple of concepts, detailed below:

• Serving a 3D Container from the local Server:

3D Tiles: 3D Tiles data of New York were sourced from the Pilot partners. The Quadtree version of
the data was chosen, so all the data tiles are placed on level 14 of a double-headed quadtree where
the Level 0 tiles are -180°→0° (Western Hemisphere) and 0°→180° (Eastern Hemisphere).

I3S: Building data for Montreal was sourced from the city’s data portal
(donnees.ville.montreal.qc.ca). An I3S scene layer package was created using Esri’s CityGML Import
tools, and associated 3D City Information Model. This was then exported as a Scene Layer Package,
which was unzipped and served on the server. Both the buildings and the textures were served.

• Incorporating 3rd party 3D services into the Pilot’s 3D container:

As well as serving data directly from the server, the Helyx server also showed 3D data being served
from 3rd party servers. In the case of I3S, this used Esri’s ArcGIS Online. In the case of 3D Tiles,
Cesium’s Ion server was used. These were passed through as URLs in the API content and links
section, described below.

9.5.2.2. API Landing Page

The API Landing Page is shown below. The landing page provides details of the API service
description, a link to any conformance classes, and a link to the Collections page.

75

http://helyxapache2.eastus.azurecontainer.io/

{
 "title": "Pilot 3D Container API",
 "description": "A pilot of an API for 3D containers and tiles.",
 "links": [
 {
 "type": "application/openapi+json;version=3.0",
 "title": "Service Description",
 "href": "https://app.swaggerhub.com/apis/timothy-miller/3d-
container/1.0.0",
 "rel": "service-desc"
 },
 {
 "type": "application/json",
 "title": "Conformance",
 "href": "http://helyxapache2.eastus.azurecontainer.io/conformance/",
 "rel": "conformance"
 },
 {
 "type": "application/json",
 "title": "Collections",
 "href": "http://helyxapache2.eastus.azurecontainer.io/collections/",
 "rel": "data"
 }
]
}

9.5.2.3. Collections

The overarching structure of the Collections landing page is shown below:

collections/
├── NewYork/
│ ├── NewYork-buildings
| │ ├── 3DTiles
| │ ├── I3S
├── Montreal/
│ ├── Montreal-buildings
| │ ├── 3DTiles
| │ ├── I3S
│ ├── Montreal-lidar
| │ ├── 3DTiles
| │ ├── I3S

A subset of the JSON landing page is shown below:

76

http://helyxapache2.eastus.azurecontainer.io/

9.5.2.4. Bounding Box query

A simple Bounding Box query was implemented on the server - as it was not a feature of the server
before, only a simple 'Completely Contains' bounding box query was applied in the TIE time.
However, this issue is not a reflection on the difficulty to implement the API, but is only a server
configuration issue.

9.5.2.5. Features and Benefits

HTML and JSON representation: For ease of navigation, the implementation created an HTML
version of the API as well as a JSON version. Which was returned as a function of a query
parameter, actioned by f=html, or f=json.

3D Container Conversion service: The server utilized the I3S to 3D Tiles converter service to provide
a further option for clients using the API. This allows chaining and conversion of services which is a
powerful feature.

9.5.2.6. Challenges

A specific challenge was encountered between server and client when a CORS redirect occurred.
The 301 redirect HTTP response code meant that CORS headers were not passed on to the client. An

77

example was the case of trailing slashes. If a client visited a page without a trailing slash, typically
this would redirect to the page on the server with the trailing slash. This was by default achieved
using a redirect, but then the 301 CORS issue occurred. This was remedied by using a rewrite
instead of redirect.

9.6. Skymantics

9.6.1. General architecture:

Skymantics participation in this Pilot consisted of two different implementations: A server that
offers 3D data through the 3D Tiles API and a client that queries the 3D Tiles API and visually
renders the 3D data.

9.6.1.1. 3D data

The 3D data offered by Skymantics 3D Tiles API is structured as hierarchical 3D Containers. A 3D
container can contain either the 3D data (either 3DTiles or I3S representations) or other 3D
containers. As depicted below, for the Pilot there are two 3D containers at the top level: Westworld
and Malalison. Westworld contains two 3D containers: NYC (3D buildings in New York, USA, both in
3D Tiles and I3S representations) and Marseille (the city of Marseille, France, in 3D Tiles
representation). Malalison contains a point cloud of the Malalison Island in the Philippines (in 3D
Tiles representation).

collections/
├── Westworld/
│ ├── NYC
| │ ├── 3DTiles
| │ ├── I3S
│ ├── Marseille
| │ ├── 3DTiles
├── Malalison/
│ ├── 3DTiles

78

Figure 54. 3D Container Structure

9.6.1.2. Service architecture

Skymantics chose Hexagon’s Luciad Fusion as the main 3D data server, but decided to implement
the 3D Tiles API independently. This allowed for greater flexibility in the deployment as the 3D data
server was transparent for the clients. Additional servers and repositories could be added to the
API as if they were in the same server. Even other 3D Tiles APIs could be connected following the
same hierarchical concept that was included in the 3D Containers, much like in a federated catalog.
In the Skymantics implementation, the Marseille 3D Container was hosted at Hexagon’s services,
and the I3S representation of the NYC buildings was borrowed from Steinbeis servers through their
3D Tiles API. The Luciad server was deployed on a virtual Linux server on Azure, and so was the 3D
Tiles API.

79

Figure 55. Service Architecture

For the client implementation, Skymantics chose Hexagon’s Luciad RIA. At the start of the Pilot, the
available version of RIA was 2019.1.03, which was deployed on Azure and accessed through a web
client. An additional RIA instance was deployed locally to test new versions and extra features. At
the end of the pilot, the RIA version on the test environment was 2020.0.09, which included several
fixes and the access to Hexagon’s satellite imagery.

9.6.2. Server Functionality:

9.6.2.1. Landing Page

The landing page of the Skymantics API is available at http://13.82.99.186:5050. The landing page
follows the structure specified in OGC API - Common, with general information on the API as well
as links to the API definition, conformance classes and the 3D containers.

80

http://13.82.99.186:5050

9.6.2.2. 3D Container

Clicking on the data link from the API landing page (http://13.82.99.186:5050/collections/), the API
returns detailed information on all the 3D containers offered. This information is sufficient to
understand the 3D data offered by the API and to select the appropriate collections. The screenshot
below depicts the hierarchy structure of the Skymantics implementation, with Westworld
containing both NYC and Marseille.

81

http://13.82.99.186:5050/collections/

It is possible to follow each 3D Container link to get access just to its data. The screenshot below
depicts the detailed information of the Marseille 3D container (http://13.82.99.186:5050/collections/
Westworld/Marseille/).

82

http://13.82.99.186:5050/collections/Westworld/Marseille/
http://13.82.99.186:5050/collections/Westworld/Marseille/

The values of parameter 'rel' in content links indicate which of the representations is
recommended as the primary source of data (where 'rel' is 'original'). The screenshot below shows
an example in the NYC 3D container (http://13.82.99.186:5050/collections/Westworld/NYC/), that
offers 3D Tiles and I3S representations but tags the first one as the original and the second as the
alternate.

83

http://13.82.99.186:5050/collections/Westworld/NYC/

9.6.2.3. Bounding Box query

The API offers the possibility to query 3D Containers within the limits of a bounding box. The
bounding box can be either 2D or 3D. The screenshot below shows the result of a query with a
bounding box for the East coast in the US (http://13.82.99.186:5050/collections/?bbox=-
81.070818,32.073258,0.00,-66.568865,47.361147,100.00), that results only in the NYC 3D container
returned, together with its parent Westworld 3D container. Marseille and Malalison are filtered out.

84

http://13.82.99.186:5050/collections/?bbox=-81.070818,32.073258,0.00,-66.568865,47.361147,100.00
http://13.82.99.186:5050/collections/?bbox=-81.070818,32.073258,0.00,-66.568865,47.361147,100.00

Additionally, collections can be filtered by representation, which is useful when clients do not
support all representations. The query parameter "representation" accepts values "3dtiles" or "i3s".
The screenshot below shows the result of the previous query but specifying the 3DTiles
representation (http://13.82.99.186:5050/collections/?representation=3dtiles&bbox=-
81.070818,32.073258,0.00,-66.568865,47.361147,100.00). This request results in the NYC 3D container
with just the link to 3D Tiles returned.

85

http://13.82.99.186:5050/collections/?representation=3dtiles&bbox=-81.070818,32.073258,0.00,-66.568865,47.361147,100.00
http://13.82.99.186:5050/collections/?representation=3dtiles&bbox=-81.070818,32.073258,0.00,-66.568865,47.361147,100.00

9.6.3. Client Functionality:

9.6.3.1. Request and parse Landing Page

Skymantics developed a visual, mouse-governed client to test the pilot’s 3D Tiles API
implementations. Skymantics client is available at http://13.82.99.186:8072/web/3dcat/index.html

The screenshot below shows the client screen right after loading the client with Firefox browser.
The bottom-left corner provides direct access to all the pilot participants' APIs. Clicking each button
triggers the process to query the API landing page and explore through the 3D containers finding
the available data. The top-right corner shows the map layers of the app, which apart from the
World map, consists of all the visible 3D containers found in the API. The bottom-right controller
allows to filter by bounding box.

The default API that the client queries is Skymantics 3D Tiles API. As such, the top-right corner lists
all the 3D containers offered by the API, as described before: Malalison, Westworld/Marseille and
Westworld/NYC.

86

http://13.82.99.186:8072/web/3dcat/index.html

Figure 56. Request and Parse Landing Page

9.6.3.2. Request and parse 3D container

By opening the web console of the Firefox browser (other browsers offer similar tools) it is possible
to review the details of how the call is processed. The screenshot below shows the logs in the
console after clicking on the "Skymantics" button. These are the steps described:

1. The client accesses the Skymantics 3DTiles API landing page at http://13.82.99.186:5050/.

2. The client finds the collections resource at http://13.82.99.186:5050/collections/.

3. The client accesses the collections resource.

4. The client finds a 3D container (Westworld) with two children and browses the content.

5. The client logs the information of all the three visible 3D containers found, including label, link
to the data, type of representation and bounding box.

6. The client shows at the top-right the list of the three visible 3D containers.

87

http://13.82.99.186:5050/
http://13.82.99.186:5050/collections/

Figure 57. Request and Parse 3D Container

9.6.3.3. Filter by bounding box

3D containers offered by the 3D Tiles API can be filtered by bounding box. The screenshot below
shows the results after drawing a bounding box in Europe and clicking the "Skymantics" button.
These are the steps taken:

1. The user clicks on "bbox Selection" button. Now a bounding box can be drawn on the globe.

2. The user clicks on two points in the globe. The client calculates the bounding box and draws its
limits. At this moment the bbox selected is 2D.

3. The user moves the slider to select a maximum height (minimum height will always be 0). At
this moment the bbox selected is 3D.

4. The user clicks on "Skymantics" button. The client accesses Skymantics 3DTiles API landing
page.

5. The client finds the collections resource and accesses it adding the bbox filter.

6. The API responds with only one 3D container (Marseille) inside a parent container (Westworld).
All other 3D containers have been filtered out.

7. The client shows at the top-right the only visible 3D container.

88

Figure 58. Filter by Bounding Box

9.6.3.4. Request and parse 3D tiles

Once the 3D Tiles API has been properly queried and parsed, the client knows all the visible 3D
containers available for visualization, as well as the link to fetch their data. In order to visualize the
returned content, click on the "Fit to data" button of the 3D container at the top-right list and the
client will zoom into the bounding box of the 3D data and start rendering it. The screenshot below
shows the visualization of the Marseille 3D container.

Figure 59. Marseille 3D Container

The screenshot below shows the visualization of the NYC 3D container. Note that this client version

89

is using the latest RIA updates and Hexagon’s maps.

Figure 60. NYC 3D Container

The process to test other participants' APIs is just the same: The user clicks on the participant’s
button, waits until the client has browsed via the API and populated the list of visible 3D containers,
and then selects the one to visualize. The screenshot below shows the visualization of Cesium’s
NewYorkBuildings 3D containers. Note that Cesium’s data structure also follows a hierarchy, with
WaratahStation and Buildings 3D containers at the top, and WesternSydneyBuildings,
NewYorkBuildings and CesiumOSMBuildings inside Buildings.

Figure 61. Cesium’s NewYorkBuildings 3D Containers

90

9.6.4. Lessons learned:

9.6.4.1. 3D rendering issues

The rendering of 3D content was not always smooth across different clients. During this Pilot there
were numerous examples of 3D models suffering rendering issues, sometimes showing severe
problems. For example, the dataset for Malalison Island showed issues in Luciad RIA 2019, where
the point cloud was displayed with mixed heights, as documented in the following image.

Figure 62. 3D Rendering Issues

The issue was fixed thanks to the feedback provided during the Pilot and Luciad RIA 2020 now
renders a "neat" point cloud, as documented in the following image.

Figure 63. Rendering Issues Resolved

There are still some pending issues, with several of Cesium’s datasets displaying triangles instead of
straight lines. This issue is currently under investigation by Luciad’s development team. The
following image shows an example of this issue, with Cesium’s Waratah station dataset rendered by
Luciad RIA.

91

Figure 64. Cesium’s Waratah Station Dataset Rendered by Luciad RIA

The Cesium client also had issues rendering Luciad’s datasets. The images below show the church
of Nôtre Dame in Marseille rendered by Luciad RIA and Steinbeis client (based on Cesium
software). The Cesium client had similar issues.

Figure 65. Church of Nôtre Dame (Marseille) Rendered by Luciad RIA

92

Figure 66. Church of Nôtre Dame (Marseille) Rendered by Steinbeis Client

Although the goal of this pilot was not to evaluate rendering operability among different clients,
taking into account that 3D rendering is a core part of the 3D Information Management domain and
that there were quite a few issues, this should be a high priority topic to address.

9.6.4.2. APIs can now combine 3D Tiles and I3S

This Pilot has drafted a new API specification that allows for the delivery of 3D models through the
combination of two different representation formats: 3D Tiles and I3S. Other storage formats, such
as CityGML and CDB, have been also tested in this pilot by some participants. This is an important
step forward, as it provides two distinct advantages:

1. APIs can be more interoperable, as they can offer two different representations for the same
data. If a client only supports one representation, a client can still render the model.

2. For ecosystems where clients support both representations, by combining 3D Tiles and I3S
representations to deliver a model, 3D Models can be richer and more performant. This allows
using each standard for the use cases for which it is the best fit.

However, there does not seem to be a clear recommendation as to which standard is the best for
each use case. This becomes a particularly steep learning curve for newcomers, as they need to
learn several standards before they can make educated decisions on which formats to use for their
own case.

9.6.4.3. I3S-to-3DTiles tool can bridge the gap

Taking into account that most clients support 3D Tiles but few support I3S, the I3S-to-3DTiles tool
tested during this pilot (or a similar tool) can help to quickly extend the support for I3S in clients.
This can potentially accelerate the scenario where APIs offer both representations for the same
data and where clients support both representations.

93

Unfortunately, the datasets generated through the I3S-to-3DTiles tool suffered rendering issues, as
documented before, which is an issue hindering the adoption of this tool.

9.6.4.4. 3D Container federated catalogs

The hierarchical structure for 3D Containers defined in this pilot opens the door to offer 3D Models
in a natural way. But from the service architecture point of view, it also allows deploying 3D
Container federated catalogs, that is, APIs that offer 3D Containers from different sources,
combining 3D Tiles and I3S, without hosting the data. This could be a natural way to separate the
responsibilities for creating and hosting local 3D data (for local and regional entities) and for
finding, aggregating and serving national or global 3D data (for national or global entities).

The organization of Skymantic’s datasets in this pilot is a good example of the potential of 3D
Container federated catalogs:

1. The world is divided in several 3D Containers that can contain other 3D Containers and so on.

2. Datasets can be hosted in a myriad of servers. However, the API serves them as if they were
hosted in a single server.

3. Some of these servers in the backend can be 3D Tiles APIs, potentially aggregating datasets from
other servers and extending the network ad-infinitum.

4. The 3D Tiles and I3S representations of the same data do not need to reside in the same server,
but can be fetched from different sources.

9.7. Steinbeis
Introduction

For this Pilot Steinbeis provided an API server to deliver 3D content supporting New York buildings,
in both the 3D Tiles and I3S data delivery format. The API was implemented as specified in OGC API
- Common, with general information on the API as well as links to the API definition, conformance
classes and the 3D containers.

Server Functionality

All the functionalities supported by the server can be tested by interacting with the API available at
http://steinbeis-3dps.eu:8080/3DContainerTile/api/index.html. To test a specific API call, first click on
the Try it out button and then the Execute button.

94

http://steinbeis-3dps.eu:8080/3DContainerTile/api/index.html

Figure 67. Steinbeis API

• Landing Page

The Landing page is available at http://steinbeis-3dps.eu:8080/3DContainerTile. The result of a
successfully request is shown below.

95

http://steinbeis-3dps.eu:8080/3DContainerTile

{
 "title":"3D Container and Tiles Pilot Steinbeis API",
 "description":"Steinbeis API for OGC 3D Container and Tiles Pilot",
 "links":[
 {
 "title":"Collections",
 "rel":"data",
 "href":"http://steinbeis-3dps.eu:8080/3DContainerTile/collections/",
 "type":"application/json"
 },
 {
 "title":"Conformance",
 "rel":"conformance",
 "href":"http://steinbeis-3dps.eu:8080/3DContainerTile/conformance/",
 "type":"application/json"
 },
 {
 "title":"Service Description",
 "rel":"service-desc",
 "href":"https://app.swaggerhub.com/apis/timothy-
miller/OGC_3DContainer_Tile_API_Pilot/0.0.1/",
 "type":"application/openapi+json;version=3.0"
 },
 {
 "title":"Service API",
 "rel":"service",
 "href":"http://steinbeis-3dps.eu:8080/3DContainerTile/api/index.html",
 "type":"text/html"
 }
]
}

• 3D Container

The supported 3D collections is available at http://steinbeis-3dps.eu:8080/3DContainerTile/
collections/ The result of a successfully request is shown below.

96

http://steinbeis-3dps.eu:8080/3DContainerTile/collections/
http://steinbeis-3dps.eu:8080/3DContainerTile/collections/

• Bounding Box query

The server also supports a filtering functionality in the form of a bounding box. The bounding box
support is at both collection level and 3D container level. The result of a successfully request at
collection level is shown below.

http://steinbeis-3dps.eu:8080/3DContainerTile/collections?bbox=-
74.01900887327089,40.700475291581974,-73.9068954348699,40.880256294183646

The result of a successful request at 3D container level is shown below.

97

http://steinbeis-3dps.eu:8080/3DContainerTile/collections?bbox=-74.01900887327089,40.700475291581974,-73.9068954348699,40.880256294183646
http://steinbeis-3dps.eu:8080/3DContainerTile/collections?bbox=-74.01900887327089,40.700475291581974,-73.9068954348699,40.880256294183646

http://steinbeis-3dps.eu:8080/3DContainerTile/collections?bbox=-
74.01900887327089,40.700475291581974,-73.9068954348699,40.880256294183646

Steinbeis Geoportal Client Functionality

• Request and parse Landing Page

• Request and parse 3D container

The STT 3D web client (http://steinbeis-3dps.eu/STT3DClient/) is implemented to interact and
visualize the 3D geospatial contents from the OGC API -Tiles-3D servers. The client is developed
with the CesiumJS library and ArcGIS for JavaScript library. The CesiumJS library is used to access
and visualize the 3D Tiles contents and the ArcGIS for JavaScript library is used to interact with the
I3S contents. The main user interface of the client is shown in the figure below and consisted of two
main sections: the menu section and the map section.

Figure 68. Client User Interface

In the menu section, users may input the target OGC API-Tiles-3D landing page URL or select a

98

http://steinbeis-3dps.eu:8080/3DContainerTile/collections?bbox=-74.01900887327089,40.700475291581974,-73.9068954348699,40.880256294183646
http://steinbeis-3dps.eu:8080/3DContainerTile/collections?bbox=-74.01900887327089,40.700475291581974,-73.9068954348699,40.880256294183646
http://steinbeis-3dps.eu/STT3DClient/

server from given server providers (Cesium, STT, Helyx, Skymantics, Cognitics, or Ecere). Then,
users may input the bounding box to filter out the layer. After that, by clicking on the “Load
Collections” button, the client will fetch the list of available data collections from the input server.
For example, the figure below shows the STT client fetching the 3D data from the Helyx OGC API-
Tiles-3D server. The 3D building models data are from the area of New York City, USA and Montreal,
Canada.

Figure 69. Client Fetching 3D Data

Integration with the OGC 3D Portrayal Services

In the Pilot, the OGC 3D Portrayal Service (3DPS) was used in the geoportal clients extended to the
3D Data Container and Tiles API. Using the 3DPS, the clients could request getting only 3D contents
that fall within the requested bounding box, while the 3D Data Container and Tiles API would
respond with all the intersected 3D contents.

99

Figure 70. Integration with OGC 3D Portrayal Services

For example, in the Steinbeis geoportal client, users can request 3D contents via the 3DPS interface
by drawing a bounding area on the 3D map in the example area of New York City, USA, and the
server will respond with the 3D contents in the requested area.

Figure 71. Request 3D Contents via 3DPS Interface by Bounding Area

Steinbeis client implementation using deck.gl

A second client was implemented by Steinbeis using the JavaScript library Deck.gl. This client is
able to visualize both 3D Tiles and I3S content in a single client. For example, the figure below
shows the visualization of the 3D building models in the New York City area in I3S (left) and 3D
Tiles (right) format.

100

Figure 72. Client Implementation Using deck.gl

The Client uses native JavaScript to call and parse the API landing pages. An HTML site allows the
user to input the URL of an API landing page and trigger the loading and processing by the client
functionalities. The upper part of the website is used to specify and load the landing page. The
loading buttons for each I3S or 3DTiles dataset are rendered below the input field. The response
JSON objects are parsed to get the name, data type and URL of the 3D containers on the server. The
extracted information about the datasets is then used to dynamically generate the loading buttons
for the 3D content. The client configures the viewer section according to the same attributes, after
clicking on the desired dataset.

Figure 73. Landing Page URL Input

The framework can also load different 2D background maps to augment the 3D container content
in the viewer. These maps use a classical regular tiling approach. A Mapbox background map is
used in the screenshots above. Loading another dataset from the same server requires the reload of
the whole website, and a new request to the API landing page.

101

Figure 74. 2D Background Maps Augment 3D Container Content in Viewer

Integration with the OGC API features

In the Pilot, the geoportal client can be extended with the OGC API features, which provide a
function to query and export geospatial contents through the HTTP GET request. As shown in the
figure below, the clients can both visualize and export the 3D contents over the internet by using
the OGC 3D Data Container and Tiles API and OGC API Features service.

Figure 75. Integration with OGC API Features

A server was set that provided the original CityGML files of the New York dataset. The server is
based on the open-source product GeoRocket (https://georocket.io) developed by the Fraunhofer
Institute for Computer Graphics Research IGD. Besides the native GeoRocket HTTP API, an interface
was developed that adheres to the OGC API – Features specification.

The server is available under http://ogc3dc.igd.fraunhofer.de/georocket. The OGC API – Features

102

https://georocket.io
http://ogc3dc.igd.fraunhofer.de/georocket

“collections” interface can be accessed via http://ogc3dc.igd.fraunhofer.de/georocket/collections/, for
example.

Here’s an example request to download the first 100 buildings from Manhattan Soho via a
bounding box:

http://ogc3dc.igd.fraunhofer.de/georocket/collections/NewYork/items?bbox=-
74.00488275167392,40.72182445888009,-73.9954120347942,40.72649940579886&limit=100

The result will be provided as a CityGML file.

In the Fraunhofer client (http://ogc3dc.igd.fraunhofer.de/), a client application was implemented
that serves two purposes: 1. It is a generic viewer for 3D tiles provided by other server
implementations in the pilot and 2. a user interface to query CityGML data from GeoRocket with a
study area in New York City, USA.

103

http://ogc3dc.igd.fraunhofer.de/georocket/collections/
http://ogc3dc.igd.fraunhofer.de/georocket/collections/NewYork/items?bbox=-74.00488275167392,40.72182445888009,-73.9954120347942,40.72649940579886&limit=100
http://ogc3dc.igd.fraunhofer.de/georocket/collections/NewYork/items?bbox=-74.00488275167392,40.72182445888009,-73.9954120347942,40.72649940579886&limit=100
http://ogc3dc.igd.fraunhofer.de/

Figure 76. Fraunhofer Client

In the upper left corner, there is a drop-down menu to select different pilot server
implementations:

104

Figure 77. Pilot Server Implementations Menu

In the upper right corner, there are tools to interact with the 3D scene and the server. Click on a 3D
building (to select it) and then press the info button (labeled with a capital “I”) to get metadata from
the CityGML file:

Figure 78. CityGML File Metadata

105

Furthermore, the “GeoRocket” button can query CityGML data from the server:

Figure 79. GeoRocket Query

106

Chapter 10. Technology Integration
Experiments (TIEs)
The Technology Integration Experiments were organized along three uses cases: (1) core
functionality, (2) spatial extension, and (3) 3D model extension. Core functionality is focused on
requesting, receiving, and parsing container content. Core functionality discussed in Table 11. Core
functionality TIE results in Table 12. Spatial extension functionality requesting, receiving, and
parsing container content with a bounding box query. Spatial extension functionality discussed in
Table 13. Spatial extension TIE results in Table 14.

All Pilot participants successfully completed the core functionality and spatial extensions from their
respective client and server implementations.

10.1. 3D Tiles Static API - Core API Functionality
Table 11. Core Functionality

Function Description Client Action Server
Response

Success
Criterion

1 Landing Page Request,
receive, parse
landing page

Form landing
page request,
parse
response,
display
and/or act on
it

Receive
landing page
request,
response
with accepted
/ requested
format
(f=json, html)

Client
displays API
"data" link
and/or
navigates to
it

2 Collections
Info

Request,
receive, parse
array of
3dContainer
json objects
in Collections
document

Follow "data"
link in
landing page
and receive /
parse /
display
Collections
document

Receive URL
dereference
from client,
return
Collections
document

Client
displays in
menu and/or
map form the
Collections
document
and
constituent
3dContainers

107

Function Description Client Action Server
Response

Success
Criterion

3 3D Container
Info

Request,
receive, parse
a
3dContainer
json
document

Form
3dContainer
request,
parse
response,
display in
client for
user selection
as menu
and/or map

Receive
request, form
and return
requested /
acceptable
format

Client
displays
and/or
navigates to
3dContainer
spatial
extent,
displays links
to "contents"
and
"children"

4 3D Content
Distribution

Parse and
resolve links
in
3dContainer
"content"
array

Parse
3dContainer
"content"
array for user
selection,
then
dereference
selection and
parse media
returned by
dereference

Return media
referenced by
the client
with the
media type
specified in
the link item.

Client
displays
content
described
and/or
contained by
the returned
2D / 3D media

Table 12. Technology Integration Experiments (TIE)

Service\Client Cesium D112 Cognitics D112 Ecere D112 Skymantics
D112

Steinbeis D110

Cesium D102 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

Cognitics D102 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

Ecere D102 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

Helyx D100 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

Skymantics
D102

1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

Steinbeis D100 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

10.2. 3D Tiles API - Extension Functionality
Table 13. Advanced Spatial Query Functionality

108

Function Description Client Action Server
Response

Success
Criterion

5 Collections
Bbox Query

Query
published
Collections by
bbox extent

Client adds
bbox
parameter to
Collections
URL, sends
GET request
to server.

Server
receives GET
request from
client,
returns
Collections
document
with
collections
array of only
the highest
level
3dContainers
whose
extent(s) are
wholly within
the requested
bbox

Client forms
and issues
bbox query,
receives and
displays
filtered
Collections
document.

6 3dContainer
Bbox Query

Query
published
3dContainers
by bbox
extent

Client adds
bbox
parameter to
3dContainer
URL, sends
GET request
to server.

Server
receives GET
request from
client,
returns
3dContainer
document
with
"children"
array of only
highest level
3dContainer
children
whose
extent(s) are
wholly within
the requested
bbox

Client forms
and issues
bbox query,
receives and
displays
filtered
3dContainer
document

Table 14. Technology Integration Experiments (TIE)

Service\Client Cesium D112 Cognitics D112 Ecere D112 Skymantics
D112

Steinbeis D110

Cesium D102 5, 6 5, 6 5, 6 5, 6

Cognitics D102 5, 6 5,6 5, 6 5,6

Ecere D102

109

Service\Client Cesium D112 Cognitics D112 Ecere D112 Skymantics
D112

Steinbeis D110

Helyx D100 5 5

Skymantics
D102

5, 6 5, 6 5, 6

Steinbeis D100 5, 6 5, 6 5, 6 5, 6

Technology Integration Experiments using OGC API - Tiles were also performed between the Ecere
server (D102) & client (D112).

110

Chapter 11. Pilot Recommendations

11.1. 3D rendering interoperability sprints
3D rendering is a core part of the 3D Information Management domain, and as such, dedicating
effort to ensure high levels of interoperability among different vendors is worth the resources. The
organization of regular 3D rendering interoperability sprints could be an effective way to spot
these issues and reach this goal. Vendors' development teams should be motivated to participate as
it is in their own interest to find issues in their products as early as possible and ensure high levels
of interoperability.

11.2. 3D Tiles vs I3S benchmarks
If 3D Tiles and I3S are going to be treated as complementary formats (and not implicitly as
competitors) there needs to exist documentation about which format is better for which use case.
One way to generate this documentation is to organize benchmarks and measure different
variables (such as performance, network use, encoding, styling, and so on, for different types of
models such as buildings, vegetation, objects, and so on). These metrics would be an objective
reference that could help better understand when to use which format.

These benchmarks could be extended with sprints or pilots to promote the development and
popularization of transformation tools, such as I3S-to/from-3DTiles, that could help bridge the
existing gap in interoperability, with currently few servers and clients supporting a wide range of
standards.

11.3. Understanding the potential of 3D container
hierarchy
3D container hierarchies offer considerable freedom to structure data content and to host that
content. However, at this moment there are no guidelines or best practices as to how to implement
such structures. A logical next step would be to start working on the creation of guidelines and best
practices by requesting feedback from relevant players, or by organizing a pilot to compare
different data structures, or by other similar means. One possible outcome could well be that the
same content can be organized in different viable structures, depending on its usage and the
property of the content.

Additionally, it could be very useful to explore the legal point of view of creating 3D container
hierarchies by combining content served from different sources, such as guidelines on how to
choose a suitable license for a content that could be used by a 3D Container federated catalog, or
what uses could be allowed/forbidden to a 3D Container federated catalog.

11.4. Additional opportunities for future work
These opportunities for future work are drawn from the Summary ER:

1. Explore performance in denied, degraded, intermittent, or low bandwidth (DDIL)

111

environments.

a. What mechanisms are available to deliver updated 3D content (delta updates) - and not an
entire dataset - to users in the field?

b. There are use cases in which users need to download a subset of a larger dataset to the
client for offline use. Pilot participants explored the idea of a package format to contain 3D
content of various types, but ultimately decided that the proposal wasn’t feasible within the
Pilot period. Consideration was given to GeoPackage, Scene Layer Package (SLPK), and
Cesium’s internal SQLite transport format (.3dtiles) as potential foundations for this notional
package format.

2. Investigate best practices for organizing data within a 3DC. The OGC Interoperable Simulation
and Gaming Sprint Call for Participation [https://portal.ogc.org/files/?artifact_id=94059] challenges
participants to explore this area while acknowledging that solutions will vary by specific use
case:

a. Is there one bounding volume hierarchy per county, region, city, or some other geo-political
boundaries?

b. How are features (buildings, vegetation, transportation networks, etc.) structured in the data
store? Are they layers in geo-political sets, or are geo-political data layers in feature sets?

3. Demonstrate integration with the OGC Sensor Things API.

4. Continue to advance integration with the modeling and simulation community. In particular,
explore integration with game engines and other applications that require attribution at the
individual polygon level (as opposed to feature-level attribution that is typical within 2D
geospatial applications).

In terms of standardization, the Pilot developed a draft API and resource model that have proven
mature enough to be introduced into OGC’s Standards Program. The next steps now include the
generation of a new OGC Standards Working Group (SWG), which requires the definition of the
SWG charter. Once the charter is formally approved by the OGC Technical and Planning
Committees (TC & PC), the SWG starts with the consensus based standard development process and
eventually recommends to the Technical Committee the release of the final Standard to the public.

112

https://portal.ogc.org/files/?artifact_id=94059
https://portal.ogc.org/files/?artifact_id=94059

Chapter 12. Conclusions
The goal of the 3D Data Container and Tiles API Pilot was to develop and test an integrated suite of
draft specifications for 3D geospatial resources compatible with existing OGC 3D data delivery
standards in order to:

• Support smooth transitions between 2D and 3D environments;

• Allow applications working with 2D tile resources to get 3D resources (and vice-versa); and,

• Enable access by 3D bounding volume to multiple data models, datasets, and distributions.

To achieve these goals, the Pilot participants developed a draft GeoVolume resource (originally 3D
Container resource) and GeoVolumes API providing browse and query access to 3D geospatial data
for streamed data delivery by means of nested geospatial volume container resources. The 3D data
resources supported by this API include feature geometries, feature attribute values, elevation
models, texture data, and so on. The API provides both link-follow and bbox query methods for
access to 2D and 3D resources in a manner independent of the underlying data store, supporting
multiple standard geospatial distribution formats such as 3D Tiles, I3S, CDB, and CityGML.

A number of data server and client implementations were developed in the course of the Pilot in
order to test interoperable data delivery via the draft API. The GeoVolumes API developed by the
Pilot participants was defined using the OpenAPI 3.0 definition language and conforms to the draft
OGC API - Common - Part 1: Core [http://docs.opengeospatial.org/DRAFTS/19-072.html] building blocks such
as landing page, API definition, conformance, and collections information. The Pilot participants
developed and tested the GeoVolumes API in order to advance open-standard and unified
approaches for delivering 3D content using state of the art API practices that work across different
data formats, streaming protocols, and model types.

The present GeoVolumes draft API specification includes the 6 basic and extended forms of
functionality implemented and tested during the Pilot. The Pilot participants successfully
implemented and demonstrated interoperability between components with this API. The
experiences documented in this Engineering Report also suggest that further work is needed to
extend the API for additional data types and nested volume schemes. Future work should also
address the integration of the GeoVolumes API with other OGC API building blocks to provide
seamless interaction from navigating volumes of interest to interacting with specific dataset
distributions and elements.

The participants noted during the Pilot that by providing a high level division of space into regions
of interest and connecting those to information about 3D datasets, the GeoVolumes API does
embody some functions in common with catalog API’s. While not a general purpose catalog, the API
can provide some capabilities for spatial indexing of metacontent which should be further explored
and defined, specifically with regard to complementing the developing OGC API - Records
specification.

113

http://docs.opengeospatial.org/DRAFTS/19-072.html

Appendix A: UML Model

Figure 80. Geo-volume UML Model

Instructions and guidelines on the usage of UML models are provided in OGC document OGC-121r9
[https://portal.opengeospatial.org/files/?artifact_id=38867].

114

https://portal.opengeospatial.org/files/?artifact_id=38867

Appendix B: Comparison of 3D Tiles and I3S
Community Standards
3D-Tiles I3S

Layer type: 3D Objects (e.g. building exteriors),
Integrated Mesh (3D Surface mesh with texture),
Points (eg. Point features symbolized by 3d
symbols) and Point Cloud (part of OGC I3S 1.1
Community Standard - currently under final
OGC TC approval process)

Tile format: Batched 3d model (.b3dm) -
heterogenous e.g. textured terrain, 3d buildings,
interiors etc.

Tile format: All I3S layer types support a batched
geometry model persistency format (a binary
typed array geometry buffer as defined in I3S
standard) in support of 3D buildings, textured
surfaces, point cloud, symbolized point features
etc..

Tile format: Point cloud Attribute support: I3S supports a compact per
feature level attribution model

Tile format: Composite (cmpt) concatenate tiles
of different formats

Symbolization: 3D model instancing is supported
thru 3D symbolization in I3S 3D Point Layer type

Tile format: Instanced 3d models (i3dm) - 3d
model instances e.g. trees. Embeds glTF

Comparison of spatial reference considerations

I3S 3D Tiles

I3S allows usage of all spatial reference
including custom Coordinate Reference Systems
(CRS). Either OGC/ISO WKT1 or WKT2 encodings
can be used in specifying the spatial reference
object.

A tileset’s global coordinate system will often be
in a WGS84 earth centered, earth fixed (ECEF)
reference frame (EPSG 4979) but it doesn’t have
to be.

I3S has a concept of Global and Local scenes. All
I3S profiles support writing 3D content in two
modes: global and local. In global mode, only the
geographic CRS (WGS84, WKID 4326) is
supported for both index and vertex positions.
The coordinates are represented using
longitude, latitude and elevation. In local mode,
all other geodetic CRS, including projected
coordinate systems, are allowed.

Coordinates are in WGS84 datum, and are
specified in radians (Angles are in radians)

115

I3S 3D Tiles

Vertex positions are specified using a geodetic
CRS, where x,y,z axes are all in the same unit
and with a per-node offset. In Global Scenes X
and Y Coordinate bounds of the layer and XY
components of the vertex position are specified
in decimal degrees. Elevation (the z component
of the vertex position) is specified in meters. The
Minimum Bounding Volume (MBV) radius unit
(for MBS) or halfSize unit (for OBB) is specified
in meters.

The region bounding volume specifies bounds
using a geographic coordinate system (latitude,
longitude, height) specifically using EPSG 4979

Axis order explicitly defined by the CRS shall be
used when present. When the axis order is not
defined by the CRS, Easting, Northing, Height
axis order shall be used.

boundingVolume.region is an array of 6
numbers defining the geographic region, with
the order [west,south,east,north,minimum
height, maximum height]

All I3S layers indicate coordinate reference
system via the spatialReference property in the
3dSceneLayerInfo resource

Right handed Cartesian coordinate system (cross
product of x and y gives z)

A tile transform may be applied to transform a
tile’s local coordinate system to the parent tile’s
coordinate system

Comparison of height handling

I3S 3D Tiles

The WKT string representation of the CRS now
includes the vertical coordinate reference
system utilized by the layer.

Height and node minimum bounding spheres
shall be specified in meters for Global scenes.
For a local scenes, both height and bounding
volumes are defined using the same xy units .

The unit for all linear distances is meters.

Vertical coordinate reference system may be
either ellipsoidal (height defined to a reference
ellipsoid) or gravity-related (reference geoid /
gravity surface)

Heights are in metres above the WGS 84
ellipsoid

Height shall always point upwards towards the
sky

Z axis as up for local Cartesian coordinate
systems

116

I3S 3D Tiles

3dSceneLayerInfo resource also includes a
coarse metadata property called
heightModelInfo, which can be used by a client
application to quickly identify if the layers'
height model is either gravity-related or
ellipsoidal

Bounding volumes

I3S 3d Tiles

The I3S standard supports both an Oriented
bounding box (OBB) or a Minimum Bounding
Sphere (MBS) as a node’s bounding volume.

Options include an oriented bounding box, a
bounding sphere and a geographic region
defined by minimum and maximum latitudes,
longitudes and heights.

For Global Scenes: The location of all index-
related data structures such as node bounding
spheres SHALL be specified using a single,
global geographic WGS 84 CRS. Coordinate
bounds for such structures SHALL be in the
range (-180.0000, -90.0000, 180.0000, 90.0000).
Height and node minimum bounding sphere
(MBS) radius SHALL be specified in meters

Minimum bounding sphere is an array of four
doubles, corresponding to x, y, z and radius of
the minimum bounding sphere of a node.

Sphere is 4 numbers that define a sphere
(x,y,z,radius)

When the nodes' Bounding volume is MBS it is
defined by the center point of the minimum
bounding sphere as well as the radius of the
sphere. It is notated as an array of four doubles,
corresponding to x, y, z and radius of the
minimum bounding sphere of the node. For a
global scene, i.e. ellipsoidal coordinate systems,
the values of the array correspond to longitude
in decimal degrees, latitude of in decimal
degrees, elevation in meters and radius in
meters. For all other CRS, the values of x,y,z and
r are in the same unit as the xy units defined in
the CRS of the layer.

The boundingVolume.box property is an array of
12 numbers that define an oriented bounding
box in a right-handed 3-axis (x, y, z) Cartesian
coordinate system where the z-axis is up. The
first three elements define the x, y, and z values
for the center of the box. The next three
elements (with indices 3, 4, and 5) define the x-
axis direction and half-length. The next three
elements (indices 6, 7, and 8) define the y-axis
direction and half-length. The last three
elements (indices 9, 10, and 11) define the z-axis
direction and half-length.

117

I3S 3d Tiles

When the bounding volume is Oriented
Bounding Box (OBB) it is represented by a center
position, an extent (halfSize) and a quaternion
for orientation. The center represents the center
point of the oriented bounding box. For a global
scene it is specified as longitude, latitude in
decimal degrees, and elevation (Z) in meters.
Obb.center consists of 3 double arrays. In local
scenes, it is specified using the units of the CRS.
The half size "extent" values are measured from
the center to the sides of the box. For a global
scene, such as the XY coordinate system in
WGS1984, the center is specified in
latitude/longitude in decimal degrees, elevation
(Z) in meters. The quaternion is used to encode
orientation/rotation of the bounding box and is
specified as 4 components. The quaternion
components are in the order x, y, z, w.

The boundingVolume.region property is an
array of six numbers that define the bounding
geographic region with latitude, longitude, and
height coordinates with the order [west, south,
east, north, minimum height, maximum height]

Tree structure

I3S 3D Tiles

Spatial extent of the data is split into regions
called nodes, with roughly equal amounts of
data, and is organized into a hierarchical and
navigable data structure. Each node has an
address and can be thought of as equivalent to
tiles.

Data is split into regions called nodes, with
roughly equal amounts of data, and is organized
into a hierarchical and navigable data structure.

Agnostic with respect to model used to index
objects / features (supports Quadtrees, Octrees,
as well as density dependent partitioning (e.g. R-
Trees)

Agnostic with respect to model used to index
objects (supports quadtrees, Octrees, K-d trees,
grids etc.)

Nodes are organized in a bounding volume tree
hierarchy (BVH)

Nodes are organized in a bounding volume tree
hierarchy (BVH)

Each node has an ID — there are two types of
Node ID formats supported — as string based
treekeys, or as integers based on a fixed
linearization of the nodes.

Treekeys are strings in which levels are
separated by dashes: “3-1-0” has 3 numeric
elements, hence the node is on level 4 (“root”
node is at level 1) and the node “3-1” is its
parent. The root node always gets ID “root”

118

I3S 3D Tiles

Tree starts with a root Tree starts with a root

Example Esri implementation of I3S REST request:

https://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/
SceneServer/layers/0/nodes/5-1-0-0-0/features/0

Possible similarities for API development - general resources:

• Some overarching service / collection information request;

• Tiling scheme;

• A link to their root node (tileset.json or layers/0/node);

• A section to describe a single node within a particular root node;

• A data resource;

• geometry?

• texture?

• attributes?

/collection/tiling-scheme/root/node/resource/

119

https://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/features/0
https://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/features/0

Appendix C: Revision History
Table 15. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

May 1, 2020 T. Miller, G.
Trenum

.1 all initial version

120

Appendix D: Bibliography
[1] Maso Pau, J.: OGC Testbed-15: Maps and Tiles API Engineering Report. OGC 19-069,Open
Geospatial Consortium, http://docs.opengeospatial.org/per/19-069.html (2019).

[2] Portele, C.: OGC Testbed-15: Styles API Engineering Report. OGC 19-010r2,Open Geospatial
Consortium, http://docs.opengeospatial.org/per/19-010r2.html (2019).

[3] Meek, S., Brown, T., Portele, C.: OGC® Routing Pilot ER. OGC 19-041r3,Open Geospatial
Consortium, http://docs.opengeospatial.org/per/19-041r3.html (2019).

121

http://docs.opengeospatial.org/per/19-069.html
http://docs.opengeospatial.org/per/19-010r2.html
http://docs.opengeospatial.org/per/19-041r3.html

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Existing and Relevant Standards
	6.1. Background
	6.2. Existing Standards/Previous Work

	Chapter 7. Architecture
	7.1. Enterprise architecture
	7.2. Service architecture
	7.3. Resource architecture
	7.4. API Design
	7.4.1. Landing Page "/"
	7.4.2. API Definition "/api"
	7.4.3. Conformance "/conformance"
	7.4.4. Collections "/collections"
	7.4.5. 3D-Container "/collections/{3d-containerID}"

	7.5. Data Architecture
	7.5.1. 3D-Container
	7.5.2. Bounding Volume
	7.5.3. Coordinate Reference System (CRS)
	7.5.4. Extent
	7.5.5. Link
	7.5.6. Link Relation Type (Rel)
	7.5.7. Spatial Extent
	7.5.8. Temporal Extent
	7.5.9. TRS
	7.5.10. Content Type

	Chapter 8. API Use Cases
	8.1. API user/client/server Use Case
	8.2. I3S To 3D-Tiles Converter Use Case

	Chapter 9. Implementations
	9.1. Components
	9.2. Cesium
	9.2.1. Web-based 3D Client
	9.2.2. 3D Container and Tiles API Server

	9.3. Cognitics
	9.3.1. Introduction
	9.3.2. Data
	9.3.3. Server Architecture
	9.3.4. Server Functionality:
	9.3.5. Client Functionality:

	9.4. Ecere
	9.4.1. Server
	9.4.2. Client

	9.5. Helyx
	9.5.1. Introduction
	9.5.2. Server Functionality

	9.6. Skymantics
	9.6.1. General architecture:
	9.6.2. Server Functionality:
	9.6.3. Client Functionality:
	9.6.4. Lessons learned:

	9.7. Steinbeis

	Chapter 10. Technology Integration Experiments (TIEs)
	10.1. 3D Tiles Static API - Core API Functionality
	10.2. 3D Tiles API - Extension Functionality

	Chapter 11. Pilot Recommendations
	11.1. 3D rendering interoperability sprints
	11.2. 3D Tiles vs I3S benchmarks
	11.3. Understanding the potential of 3D container hierarchy
	11.4. Additional opportunities for future work

	Chapter 12. Conclusions
	Appendix A: UML Model
	Appendix B: Comparison of 3D Tiles and I3S Community Standards
	Appendix C: Revision History
	Appendix D: Bibliography

