
OGC Testbed-16
Data Centric Security Engineering Report

Publication Date: 2021-02-26

Approval Date: 2021-02-25

Submission Date: 2021-11-18

Reference number of this document: OGC 20-021r2

Reference URL for this document: http://www.opengis.net/doc/PER/t16-D011

Category: OGC Public Engineering Report

Editor: Aleksandar Balaban

Title: OGC Testbed-16: Data Centric Security Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2021 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.ogc.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t16-D011
http://www.ogc.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 7

2. Executive Summary. 8

2.1. Document contributor contact points . 10

2.2. Foreword . 10

3. References . 11

4. Terms and definitions . 12

4.1. Abbreviated terms . 13

5. Overview . 14

6. Data Centric Security (DCS) . 15

6.1. Introduction. 15

6.2. Key Concepts . 15

7. Requirements, Scenarios and Architecture . 18

7.1. Requirements . 18

7.2. Scenarios (Use Cases). 18

7.2.1. Use Case 1 (Online Streaming) . 20

7.2.2. Use Case 2 (Offline Authorization) . 20

7.3. DCS Architecture Components . 21

7.3.1. Scenario 1, DCS Desktop/Client/Server. 23

7.3.2. Scenario 2, DCS Mobile App/Client & Policy Enforcement Point . 24

7.4. DCS Architecture Interactions . 26

7.4.1. Desktop/Client/Server Interactions. 26

7.4.2. Mobile App/Server Interactions . 28

8. Data Encodings, DCS Containers and Media Types . 30

8.1. Introduction. 30

8.2. DCS Container . 30

8.3. STANAG 4774/8 DCS Container . 31

8.4. STANAG 4774/8 DCS Container in JSON. 32

8.5. JOSE (JWS & JWE) based containers for JSON . 32

8.5.1. DCS Container based on JWS . 35

8.5.2. Structure of Information as Metadata . 36

8.5.3. DCS Container based on JWE . 37

8.6. Media Types and profiles for DCS content negotiation . 39

9. Results . 43

9.1. Issue Explanations . 43

9.1.1. Third Party Open Source Library implementations impede the implementation of

decryption . 43

9.1.2. Mobile Application and long-running synchronous operations . 44

9.1.3. Timeout Issues with Large Data Requests . 44

4

9.1.4. Mobile Process / Power Management . 45

10. Future Work . 46

10.1. New features in DCS . 46

10.2. KMS for DCS. 46

10.3. Federated security and DCS . 47

10.4. Packaging of data in the scope of DCS . 47

10.5. Binary related Media Types. 47

10.6. DCS Roles and User Clearances vs Data Classification(s) . 48

11. Technology Integration Experiments (TIEs) . 49

11.1. TIEs for Scenario One . 49

11.1.1. D120 / D121 TIE . 50

11.2. TIEs for Scenario Two . 51

11.2.1. Android Result Summary . 52

11.2.2. iOS Result Summary. 52

Appendix A: Engineering Aspects for D120 and D145. 53

A.1. Overview . 53

A.2. Deployment . 56

A.3. Protecting the Cipher Keys. 56

A.4. DCS Key Management Server . 58

A.4.1. Protecting Keys at Rest . 58

A.4.2. Managing Public Keys . 59

A.4.3. Managing Cipher Keys . 59

A.4.4. Create a Cipher Key . 59

A.4.5. OpenAPI . 60

A.4.6. Use Example . 61

A.5. DCS Server . 71

A.5.1. Requesting encrypted data . 75

A.5.2. OpenAPI . 89

A.6. Conclusions . 91

Appendix B: Engineering Aspects for D146 . 92

B.1. Overview . 92

B.2. Key Management Server (KMS) . 93

B.2.1. Managing Symmetric Keys . 93

B.2.2. Managing RSA Key Pairs . 96

B.2.3. Other Functionality . 102

B.2.4. Docker-Compose Deployment . 108

B.3. Conclusions . 109

Appendix C: Access Control Policies for DCS Server and Mobile Clients . 111

C.1. Overview . 111

C.2. GeoXACML Policies for DCS Server in Desktop Scenario . 111

C.3. GeoXACML Policies for Mobile Scenarios . 116

5

C.3.1. Use Case: . 116

C.3.2. GeoXACML Policy in ALFA . 117

C.3.3. Policy and Verification . 118

C.3.4. Verification. 119

C.3.5. ADR Example . 120

Appendix D: Data Centric Security Roles . 121

D.1. Mobile Scenario . 121

D.2. DCS Roles . 121

D.2.1. DCS Roles vs Users . 121

D.2.2. DCS Roles vs DCS Data. 121

D.2.3. DCS Roles vs NATO STANAG 4774. 122

D.3. DCS Mobile Client Role Switching . 124

D.3.1. DCS Mobile Client Role Selection . 124

D.3.2. DCS Mobile Client - National Geospatial Intelligence Agency . 126

D.3.3. DCS Mobile Client - United States Capitol Outbreak . 129

D.3.4. DCS Mobile Client Bethesda Walter Reed. 131

Appendix E: Revision History . 135

Appendix F: Bibliography. 136

6

Chapter 1. Subject
The OGC Testbed-16 Data Centric Security Engineering Report (ER) continues the evaluation of a
data-centric security (DCS) approach in a geospatial environment. In order to fully explore the
potential of the DCS concept, this ER first specifies two advanced use case scenarios: Data Streaming
and Offline Authorization for querying and consuming protected geospatial content. The ER then
specifies the communication with a new architectural component called the Key Management
Server (KMS) via an Application Programming Interface (API) created for this Testbed. The API was
invoked to register keys used to encrypt data-centric protected content. Then clients called the same
API to obtain those keys to perform the data verification/decryption.

The document evaluates options for structuring and encoding of containers and payloads capable
of carrying the secured geospatial data sets. Previously utilized DCS container based on the tandem
of formats NATO STANAG 4778 "Information on standard Metadata Binding" and NATO STANAG
4774 "Confidentiality Metadata Label Syntax" are alternatively encoded using JSON and JavaScript
Object Signing and Encryption (JOSE) security standard. Thus, DCS architecture supports several
content representations for enhanced interoperability. The determination of the best suited data
representation occurs via Access HTTP header set by the client, which is one of the standard ways
of negotiating a specific kind of resource. This header describes the preferred choice of the client.
To support this mechanism, this engineering report proposes several new MIME types for
geospatial, DCS specific content negotiation.

7

Chapter 2. Executive Summary
OGC members can derive business value from this ER in the following areas:

• Similarities between the DCS approach in the geospatial domain and the well-known
commercial/enterprise Digital Rights Management (DRM) architecture for provision of
protected multimedia contents. Also, the commercial geospatial content could be provided using
this approach.

• Interoperability through the support for different encoding standards such as Extensible
Markup Language (XML) and JSON, as well as the utilization of different container structures,
such as STANAG 4774/8 and JOSE to support a variety of encoding standards and container
formats.

• How to use the OGC API - Features Standard to enable client requests the DCS protected content
encoded in a preferred way and how the OGC API - Features can be extended with content
negotiation via additional media types.

• Common security context shared by all components. Bearer access tokens are issued by a
common Authorization Server as defined in RFC 6750. The use of OAuth2 and OpenID Connect
interfaces ensures interoperability.

• Data-centric Security (DCS) architecture which contains a dedicated Key management server or
KMS.

• KMS API based on the OASIS Key Management Interoperability Protocol Specification 2.x
provides interoperable solution and gives the strong protection for keys afforded by KMIP-
compliant Servers.

The motivation for DCS is the possibility of preventing unauthorized access to systems storing
sensitive data. Such systems could be increasingly popular cloud-based data storage solutions.
When looking at drafting OGC standards such as OGC API - Features in a DCS scenario, standards
need to include ways to classify the security requirements around data access. This classification
(security label) can be performed through metadata fields as already evaluated in the OGC Testbed-
15. A fundamental requirement for DCS is that the data is always protected, until an authorized
actor makes use of the data. Additional requirements include the need for representation of the
source of the information, as well as an assurance that the information has not been tampered
with.

DCS protected data could be stored locally at the client location in order to be used within the
validity period of time. As the data could pass through systems that do not belong to the data
consumer nor the producer, the data must remain protected throughout all infrastructure that
handles the geospatial data.

Another important aspect of the DCS is interoperability. In order to create, distribute, and consume
the protected data set in an interoperable fashion, specifying the structures to encode the metadata,
the protected contents, as well as the other related artefacts such as data access policies is very
important.

The Testbed-16 findings show that it is possible to support DCS within an OGC API - Features
implementation and have the API instance request the DCS protected content to be delivered in

8

required encoding and DCS container format type. Storing the protected content on a mobile device
locally and then decrypting and using the content offline and on demand during a possibly longer
period of time is possible. Requesting the protected content online and having it delivered in a
streamed fashion for a single consumption is also possible.

In support of the Testbed DCS experimentation, two scenarios were defined:

The first scenario anticipates immediate decryption and consumption of protected content. The key
used for encryption is allowed to have lower strength of the encryption: Shorter key = less
computational power required to encrypt/decrypt the content. The cypher (an algorithm for
performing encryption or decryption) could also be simpler and therefore more efficient. The
content owner wants to keep the full control over the protected content. The purpose of the
encryption is to mitigate the risk of a possibly unsecured underlying network infrastructure. The
content provider (DCS service) creates keys to encrypt requested content on a synchronous
request/response basis. The key created by the DCS service gets registered to the KMS and could be
retrieved only within its expiration time. The client is not supposed to permanently store encrypted
data locally (on a desktop client). Even if the client would try to do that, due to the very short
expiration time the referenced key cannot be obtained for such purpose.

The second scenario assumes the clients operate in an offline mode disconnected from the network
where the DCS service is located. Protected data required for a "mission" are supposed to be
downloaded and stored locally for later (field) use, possibly over a longer period of time. This
scenario requires stronger security. As such, the keys are issued with an expiration time. The
policies associated with issued keys contain additional geospatial assertions, which limit access
rights based on user roles.

For both scenarios an OGC API - Features and DCS compatible service endpoint needs to be aware
of the required encoding and the container format. Because one of the requirements for this
Testbed activity was to provide support for several encoding and DCS container types, it is
important to put the code for the required format in the request. A container format is a data
structure which contains encrypted portions of sensitive data and associated metadata. To specify
the required response formats several new media types are defined to be used as part of service
requests. That includes encodings and standards such as XML, JSON, STANAG 4774/8 and JOSE.

A challenge, especially for the anticipated high grade of interoperability, was related to the absence
of the support for either STANAG 4774/8 output format based on JSON encoding or any other
structure/format besides the traditional XML encoding in the previous DCS architecture. The
STANAG 4774/8 output format is a container format that contains signed and encrypted portions of
sensitive data and associated security labels or the metadata. The Testbed participants specified
and demonstrated implementations for multiple encoding options and documented
recommendations regarding encodings and container formats (STANAG, JOSE).

Another design and implementation challenge was related to the Key Management Service. In the
Testbed-16 architecture the KMS is responsible for creating, registering, invalidating and issuing
cryptographic keys with selected strength and expiration time. The keys are used to perform
cryptographic functions, including authentication, authorization and encryption. The KMS allows
separation of DCS protected content from cryptographic material (keys) required for the
consumption, which was not the case in Testbed-15. For Testbed-16 the new KMS components
implement an OASIS API called KIMP designed to support the key management functions. In case of

9

large data sets, where each entity is protected by a dedicated key, large key sets are required. In
such situations, with many thousand keys required, key generation and retrieval takes too long. The
slow responses from the KMS is caused by computational intensive key generation and might be
mitigated by extending the API and optimize the data securing process.

Future testbeds should investigate following topics:

• Federated DCS architecture, which enable the collaboration (establishing of a required level of
trust) among distinctive security domains.

• Additional media types for encoding and structuring of DCS protected binary data such as
binary maps, tiles and coverages.

• Creation of new and update of already existing entities for DCS protected data sets.

• Standardized packaging distribution format(s) for all required artefacts such as policies, keys
and protected data payload.

• Data-centric security for JP2 and GMLJP2 payloads.

• Standardize KMS

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Aleksandar Balaban m-click.aero Editor

Andreas Matheus Secure Dimensions Contributor

Michael Leedahl Maxar Contributor

George Elphick Helyx Secure
Information Systems

Contributor

Marcus Alzona keys Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

10

Chapter 3. References
The following normative documents are referenced in this document.

• OGC API - Features [https://www.ogc.org/standards/ogcapi-features]

• GeoDRM RM [https://www.ogc.org/standards/as/geodrmrm] Geospatial DRM Reference Model
(GeoDRM RM)

• OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2]

• NATO: "ADatP-4774" Confidentiality Metadata Label Syntax, edition A version 1, NSO, 2017.
[https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf]

• NATO: "ADatP-4778" Metadata Binding Mechanism, edition A version 1, NSO, 2018.
[https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf]

• RFC 7946 - The Geo JSON Format [https://tools.ietf.org/html/rfc7946]

• RFC 7519 - JSON Web Token (JWT) [https://tools.ietf.org/html/rfc7519]

• IETF: The OAuth 2.0 Authorization Framework [https://tools.ietf.org/html/rfc6749]

• IETF: The OAuth 2.0 Authorization Framework: Bearer Token Usage [https://tools.ietf.org/html/

rfc6750]

• OGC: GeoXACML 1.0, OGC Implementation Specification [http://portal.opengeospatial.org/files/?

artifact_id=42734]

• OGC: GeoXACML3 - Core, OGC Discussion Paper [http://www.opengis.net/doc/DP/GEOXACML-CORE]

• OGC: GeoXACML3 - GML 3.2.1 Encoding Extension, OGC Discussion Paper [http://www.opengis.net/

doc/DP/GEOXACML/GML3-Extension]

• OASIS: XACML 3, OASIS Standard [http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html]

• OGC 19-016r1, Testbed-15: Data Centric Security [http://docs.opengeospatial.org/per/19-016r1.html]

• OGC 18-026r1, Testbed-14: Security Engineering Report [https://docs.opengeospatial.org/per/18-

026r1.html]

• OGC 17-021, Testbed-13: Security Engineering Report [http://docs.opengeospatial.org/per/17-021.html]

• OGC 16-040r1, Testbed-12: Aviation Security Engineering Report [http://docs.opengeospatial.org/per/

16-040r1.html]

• OGC 12-139, OWS-9: SSI Security Rules Service Engineering Report [https://portal.opengeospatial.org/

files/?artifact_id=51833]

• OASIS Key Management Interoperability Protocol Specification Version 2.1 [https://docs.oasis-

open.org/kmip/kmip-spec/v2.1/cs01/kmip-spec-v2.1-cs01.html]

• PyKMIP: A Python implementation of the Key Management Interoperability Protocol (KMIP)
[https://pykmip.readthedocs.io/en/latest/]

11

https://www.ogc.org/standards/ogcapi-features
https://www.ogc.org/standards/as/geodrmrm
https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
http://portal.opengeospatial.org/files/?artifact_id=42734
http://www.opengis.net/doc/DP/GEOXACML-CORE
http://www.opengis.net/doc/DP/GEOXACML/GML3-Extension
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.opengeospatial.org/per/19-016r1.html
https://docs.opengeospatial.org/per/18-026r1.html
http://docs.opengeospatial.org/per/17-021.html
http://docs.opengeospatial.org/per/16-040r1.html
https://portal.opengeospatial.org/files/?artifact_id=51833
https://docs.oasis-open.org/kmip/kmip-spec/v2.1/cs01/kmip-spec-v2.1-cs01.html
https://pykmip.readthedocs.io/en/latest/

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

AS OAuth2 Authorization Server — a component that dispatches, validates manages
bearer access tokens.

CRUD In computer programming, create, read (aka retrieve), update, and delete are the
four basic functions of persistent storage.

DCAP Data centric audit and protection, term used by Gartner to describe an approach
to information security that combines data security and audit with discovery,
classification, policy controls, user and role based access, and real-time data and
user activity monitoring to help automate data security and regulatory
compliance.

GeoPDP Geospatial Policy Decision Point — a component of a policy based system that uses
a request, attributes about a request (including geospatial attributes) and a policy
document to make an access decision to allow access to a resource. The GeoPDP
implements the OGC GeoXACML implementation specification.

GeoPEP Geospatial Policy Enforcement Point — a component of a geospatial aware policy
based system that works with a GeoPDP to enforce access decision and perform
obligations requested by the GeoPDP.

OGC API A new OGC API Features Part 1 Core standard for a feature service application
programming interface that provides access to feature collections and the items in
them. This standard was formally known as WFS3 for Web Feature Service
version 3.

LDProxy LDProxy — An Open Source product by Interactive Instruments which provides
most of the REST implementation specified in the OGC API - Features Standard.

PDP Policy Decision Point — a component of a policy based system that uses a request,
attributes about a request (including geospatial attributes) and a policy document
to make an access decision to allow access to a resource. The PDP implements the
OASIS XACML3 standard.

STANAG In NATO, Standardization Agreement, defines processes, procedures, terms, and
conditions for common military or technical procedures or equipment between
the member countries of the alliance.

12

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

4.1. Abbreviated terms
ADR Authorization Decision Request

DCS Data Centric Security

DRM Digital Rights Management

GeoPDP Geospatial Policy Decision Point

GeoPEP Geospatial Policy Enforcement Point

GeoXACML Geospatial eXtensible Access Control Markup Language

JOSE Javascript Object Signing and Encryption

JWT JSON Web Token

KMS Key Management Server

OAPIF OGC API - Features

OGC Open Geospatial Consortium

PDP Policy Decision Point

PEP Policy Enforcement Point

SAML Security Assertion Markup Language

STANAG Standardization Agreement

WFS3 Web Feature Service version 3 (Also known as OGC API Features)

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language Template

13

Chapter 5. Overview
Chapter 6 introduces the problem of geospatial data centric security with respect to advanced use
case scenarios derived from the digital rights management architecture.

Chapter 7 lists informal requirements and presents two advanced use case scenarios. These
scenarios include content negotiation, retrieval, decryption, and the portrayal of data centric
secured geospatial data sets on desktop and mobile devices. This chapter also depicts some aspects
of Testbed-16’s solution/demonstration architecture.

Chapter 8 discusses payload encoding standards, data-centric container structures, and MIME
media types. The chapter presents options for containers and encodings that utilize of XML, JSON,
STANAG and/or JOSE standards. The chapter recommends new media type definitions required for
content negotiation in "DCS aware" APIs.

Chapter 9 provides a summary of the main findings and explains the results in the implementation
for the architecture used in Testbed-16. This section also lists the challenges which were tackled
during the design and implementation process.

Chapter 10 considers interesting topics to be researched in future work.

Appendix A provides code snippets that illustrate the XML and JSON encodings as well as container
structures based on STANAG and JOSE.

Appendix B explains the engineering aspects of the DCS components D120 (DCS Server) and D145
(Key Management Server).

Appendix C introduces the engineering aspects of the DCS component D146 (Key Management
Server).

Appendix D presents Access Control Policies for DCS Server and Mobile Clients.

Appendix E presents DCS Roles Concept and Approach for Mobile Clients.

14

Chapter 6. Data Centric Security (DCS)

6.1. Introduction
Data-centric security (DCS) is an approach that underlines the security of the data itself rather than
the security of communication infrastructure such as networks, servers, or applications. DCS further
embeds security and usage policy within the content. The DCS related work previously conducted
in the Testbed-15 [https://docs.ogc.org/per/19-016r1.html] explains the motivation for DCS in geospatial
environment as "the response to the possibility that an unauthorized user, who intercepts network
traffic or hacks systems storing sensitive information gains unauthorized data access".

Testbed-15 explored the DCS essentials and evaluated basis data centric protection (encryption),
security labels (metadata), and access control based on security access policies. The policy
enforcement considered temporal and spatial attributes assigned to requested data sets and service
consumers. Testbed-16 adds the JSON encoding for responses and introduces a dedicated key
management server component. Testbed-16 work further allows content negotiation via new,
proposed media types. Other aspects of the DCS concept, such as management and tracking, might
be subjects of the future work.

6.2. Key Concepts
A data-centric security model includes:

• Discover: The ability to inspect data storage areas to detect sensitive information.

• Manage: The ability to define access policies that will determine if certain data is accessible,
editable, or blocked from specific users, or locations.

• Protect: The ability to defend against data loss or unauthorized use of data and prevent
sensitive data from being sent to unauthorized users or locations.

• Track: The constant monitoring of data usage to identify meaningful deviations from normal
behavior that would point to possible malicious intent.

According to established theoretical models DCS relies on the implementation of the following:

• Information (data) that is self-describing and defending, which means metadata that describes
the information and the security of data does not depend on applications and infrastructure.

• Information that remains protected as it moves in and out of applications and storage
systems, and changing business context.

• Policies and controls that account for business context (relevant use case scenarios)

These concepts should be considered as a key aspect of the whole information life cycle phases such
as creation, processing, collaboration, storage, archive, search, and finally deletion.

In a DCS architecture the data sets are "labeled" with metadata. This is usually in form of a
structured header having attributes which specify their security relevance and allow the
application of security access policies on such data (RFC-7444 [https://tools.ietf.org/html/rfc7444]).

15

https://docs.ogc.org/per/19-016r1.html
https://tools.ietf.org/html/rfc7444

Security Labels provide a mechanism for controlling access to information in security
environments. Data objects are labeled with a classification, such as "Confidential", "Secret", or "Top
Secret". Data consumers are given a clearance, using the same scheme. The core model of security
clearance (access control) is that someone accessing information has a security clearance, that
controls what information can be accessed.

A common metadata format (DCS container structure) is the starting point from which more
attributes could be integrated into the metadata. This includes for example, a creation and validity
period, the data taxonomy, or the identity of the person assigning the classification. The data
structure to hold this information should be designed in such a way that new attributes can easily
be added. For example, the inclusion for post-release protection ensures the data can be released
for a number of days, after which the data cannot be accessed. Cryptographic binding of the
classification metadata to the data ensures integrity of the label and the data.

Document ITU-T X.841 (Security information objects for access control - Fig.5) provides general
recommendation for DCS Access Control. Protected information is represented as a message with a
cryptographically bounded (confidentiality) label. On the client-side policy enforcement makes data
access decisions based on the label, user credentials (security level), and specific policy assertions
about access granting. Comments in blue color added to the original figure represents the Testbed-
16 DCS specific implementation details.

Figure 1. DCS Access Control

The most relevant part of a security (confidentiality) label is the classification. Many security label
schemes (like those used in the previous Testbed-15 and in this one) use the following
classifications:

• Unclassified

• Restricted

• Confidential

• Secret

16

• Top Secret

STANAG 4774/8 standards define the application of a confidentiality label. This is a structured
representation of the sensitivity of a piece of information. Previous DCS work was primarily
focused on exploring that aspect of DCS. A data originator security label example based on NATO
STANAG 4774 is given in the listing below. Encoding is XML. Bound through cryptographic
signature with an arbitrary data payload, for example a Geography Markup Language (GML)
document, would label the document as "secret".

STANAG 4774 Confidentiality Label

<originatorConfidentialityLabel xmlns=
"urn:nato:stanag:4774:confidentialitymetadatalabel:1:0">
 <ConfidentialityInformation>
 <PolicyIdentifier>DCS_TB-16</PolicyIdentifier>
 <Classification>SECRET</Classification>
 <GenericValue>OGC</GenericValue>
 </ConfidentialityInformation>
</originatorConfidentialityLabel>

17

Chapter 7. Requirements, Scenarios and
Architecture
This chapter describes the DCS architecture following the general concept of multiple views. This
approach identifies architectural elements while illustrating and validating the architecture design.
The contents of the chapter have views of logical, component, process and deployment. However,
the focus of the chapter is on the logical components and their interactions. Appendices dedicated
to the components provide an overview related to the practical deployment of logical system
components (physical or deployment view).

7.1. Requirements
Although the task dedicated to the DCS did not mandate formal requirements in Testbed-16, this
section lists informal requirements based on the OGC Testbed-16 Call for Participation (CFP) as well
as the section Future Work [https://docs.ogc.org/per/19-016r1.html#FutureWork] from previous Testbed
Engineering Reports.

Testbed-16 DCS Requirements

R01 DCS architecture will contain a key management service or KMS component,
which shall be able to create, register, issue and invalidate keys used to protect
the content in the context of DCS.

R02 KMS shall utilize standard or dedicated API to allow the communication with
other components.

R03 DCS architecture shall provide the mechanism for content negotiation. Said
differently, a client informs the content provider (DCS server) about the
preferable encoding of the content and container format.

R04 The OGC API - Features shall provide data protection independent of the
transport. Identities, tokens, keys, access rights, policies have to be supported
by the API.

R05 DCS architecture shall keep support for XML/STANAG 4774/8 encoding for DCS
payload containers.

R06 DCS architecture shall support JSON encoding for DCS payload containers.

R07 DCS architecture shall use well-established standards (JOSE) when
implementing the JSON encoding for DCS containers.

R08 DCS architecture shall support encryption for meta-data in DCS containers.

7.2. Scenarios (Use Cases)
For this Testbed, the experiments advanced the DCS concept (with respect to the geospatial domain)
to a high-level architecture similar to "Digital Rights Management" or DRM. DRM concepts allow for
the creation, protection, and delivery/consumption of content in accordance with contracts put in
place between the parties. Such contracts specify which content is available against predefined

18

https://docs.ogc.org/per/19-016r1.html#FutureWork

conditions, usually specified in a policy. DRM architectures make clear the distinctions between
content author, owner, providers and consumers. Using a DRM platform, a client could order
content. This content could be multimedia more relevant to this topic than geospatial data sets in
GML or satellite imagery data. After receiving a payment or obtaining credentials elsewhere the
service/client streams and encodes/consumes the content on the fly or downloads and
encodes/consumes the content later (possibly several times during the key validity period). With
inspiration from a DRM architecture, the Testbed experiments derived use case scenarios and
specified component interactions.

Figure 2. Digital Rights Management Architecture

An example of more detailed evaluation of DRM in the geospatial area could be seen in GeoDRM
RM [https://www.ogc.org/standards/as/geodrmrm].

This motivation and the requirements put on DCS lead us to the following two use case scenarios:

• Online Streaming

• Offline Authorization

Because the DCS protected data sets leave the security perimeter of the data owner and are hosted
in a cloud and/or distributed via third party channels, the important elements to deal with when
applying the concepts of data-centric security are the strength of the encryption key (the length of
the key) and cipher algorithm for performing encryption/decryption. These factors (strength and
algorithm) relate to the differences in how these scenarios use the data. While the Online
Streaming of protected content requires the decryption on the fly, in the case of Offline
Authorization the client caches the encrypted content. The client decrypts the content when
needed in the offline scenario.

19

https://www.ogc.org/standards/as/geodrmrm
https://www.ogc.org/standards/as/geodrmrm

7.2.1. Use Case 1 (Online Streaming)

For the Online Streaming use case, the client ensures the immediate decryption of the data. The
client should not offer the ability to cache the encrypted data for use later as the keys are for a
single use. In this case, the encryption key may be short for use with a simple cypher since the
purpose of encryption is to overcome uncertain network security (e.g. multi-segmented network
with unknown segment security or known low level protection). However, one should assume that
intermediaries (bad actors) would be able to store encrypted content for later brute force
decryption and that (bad) end users could re-distribute decrypted content.

Having said that, in this scenario the DCS server creates keys to encrypt the response content on a
request/response basis. The DCS Server uploads the keys to the KMS. Clients retrieve these keys
when they get the protected response data set and parse out the key identifications from the
unprotected meta-data section of a DCS container. Key retrieval at KMS is only possible by meeting
the criteria specified in the KMS policy (including the expiration time of the key). A criterion of the
policy concerns the verification of the server’s trust of a client. Achieving continuous protection of
the data is only possible with trusted client applications that do support "viewing" of decrypted
data only; no "save to disk" operation available.

7.2.2. Use Case 2 (Offline Authorization)

In this scenario the client operates disconnected from the network. In addition to the DRM
architecture, the scenario derives motivation from the concept of Geo-information for Disaster
Management. Rescue teams equipped with mobile equipment for navigation/communication and
situational-awareness receive classified, encrypted geospatial data prior to deployment in disaster
areas. The use of the data on the mobile device may span larger period of time. When meeting with
first responders, critical information shall be shared with them without compromising sensitive
information. Offline authorization requires stronger security partly because the KMS issue keys
with longer expiration times. Clients or a service on the mobile device need to maintain policies
against keys which may contain geospatial and temporal constraints on the use of the key.

This scenario contains assumptions that the data classification, and the actors that use the device
vary. However, the data for all actors and classifications exist on the same device. This allows an
incident commander to activate a role on the device and pass it out to an incident responder. Since
the curation of data for the device happens prior to deployment in the field, the device needs to
store the data, keys and key policies. The security problem increases because multiple users handle
the device and not all the users have the same data needs or have clearance to see all the data.

To secure the data, keys and policies, the mobile device has a policy enforcement component PEP).
This component maybe separate from or embedded into the GIS application. The PEP needs the
ability for an authorized user to select a role from the policy to enforce. The security needs strong
encryption and cypher algorithms to protect the data, keys and policies. The need for this strong
security stance comes from the fact that the data may be on the device for a long timeframe.
Additionally, multiple users may use the data several times before a user with proper clearance
removes the data from the device.

The KMS that the curation workflow uses to create key, encrypt data, and sign content needs to
support the strong keys and cypher algorithms. The curation tool, which may be on or separate
from the mobile policy enforcement component, needs the ability to support the same STANAG

20

4774/8 derived formats that scenario one uses. In particular, the experiments in this testbed require
that the participants use a JSON based encoding that was derived from the NATO STANAG 4774/8
standard.

7.3. DCS Architecture Components
The next figure depicts a high-level TB-16 DCS architecture with respect to the more general DRM
architecture as depicted on Figure 2 and used as template:

Figure 3. DCS in relation to DRM Architecture

The figure represents a logical view, which roughly mimics the general DRM blueprint. The
implementations are different for desktop and mobile scenarios. In the desktop scenario a DCS
server provides protected content on request via an OGC compatible API. An encoder component is
implemented inside the DCS service and it is basically irrelevant for this testbed. Mobile scenario
on the other side puts the focus on the policy enforcement, decoding and visualizing of protected
content on mobile devices with respect to the user rights and policies associated with data sets.
Therefore, the function of the encoder was performed by an external tool, which was used to
prepare the content for TIE execution. Protected content resides in a cache on a mobile device. The
mobile scenario demonstrates the interaction with KMS and content visualization on a mobile
device after decryption was performed in accordance with user roles (security levels) and
(GeoXACML) policies in the GeoPEP component.

The following components, listed with their essential features, are part of the Testbed-16 DCS
architecture (in both scenarios):

21

DCS Server - Desktop (https://ogc.secure-dimensions.com/dcs)

• OGC API for test features, OAuth2 resource server

• Creates and registers DCS keys with KMS

• The following components build the DCS Server:

◦ Geoserver with example data

◦ ldproxy: This proxy to the Geoserver produces the OGC API Features on top of Geoserver

◦ Policy enforcement point geoPEP, security proxy

◦ Policy decision point geoPDP, GeoXACML 3 compliant

Authorization Component/Server (https://www.authenix.eu)

• OpenID Connect / OAuth2 compliant Authorization Server with federated login (Google,
Facebook, eduGAIN, + OGC Portal IdP and Testbed IdP)

• The OGC Portal IdP containing logins for all OGC members

Testbed IdP (IdP) Component/Server - Desktop (https://ogc.secure-dimensions.com/
simplesaml)

• The OGC Testbed IdP containing (fictitious) users from Testbed-15 with different clearance

Key Management Server (KMS) - Desktop (https://ogc.secure-dimensions.com/kms/api)

• REST API implemented in PHP, documented with OpenAPI 3.0

Key Management Server (KMS) - Mobile

• REST API implemented in Flask, documented with OpenAPI Doc 3.0

• Implements endpoints consistent with the OASIS Standard KMIP Client

DCS Client - Desktop (https://github.com/ogc-leedahl/QGIS/tree/OGC_Testbed_16)

• QGIS to interact with DCS Server and KMS

• Obtain key(s) from KMS

• Validate signature + decode encrypted content

DCS App / Client (Android) - Mobile (https://github.com/ogc-leedahl/QField/tree/Testbed16)

• QField Client

• Have a user feature flow for selecting features and using content

• Obtain features and key(s) from a Policy Enforcement Component

• Validate signature + decode encrypted content

Policy Enforcement Point (Android GeoPEP) - Mobile

• Has an administrative curation flow for creating encrypted contents

• Obtains content from some imagery source for curation

• Obtains encrypted and signed content from a KMS

• Serves curated encrypted features and encryption keys to a client

22

https://ogc.secure-dimensions.com/dcs
https://www.authenix.eu
https://ogc.secure-dimensions.com/simplesaml
https://ogc.secure-dimensions.com/simplesaml
https://ogc.secure-dimensions.com/kms/api
https://github.com/ogc-leedahl/QGIS/tree/OGC_Testbed_16
https://github.com/ogc-leedahl/QField/tree/Testbed16

• Implementation of the policy enforcement component could be embedded in the mobile
client or as a stand-alone component

DCS App (iOS) - Mobile

• Apple Mapkit-based

• Encrypted "DCS Features" Data pre-loaded onto mobile device

• Allows selection of "DCS Roles" as provided by the iOS PEP

• Displays feature content as decoded by the iOS PEP

Policy Enforcement Point (iOS PEP) - Mobile

• Module implemented within iOS DCS App

• User/Device-Specific "DCS Roles" Data pre-loaded onto mobile device

• Retrieves encryption keys for specified roles from KMS (caches for offline use)

• Allows DCS App to validate signature + decode encrypted content based on current DCS Role

7.3.1. Scenario 1, DCS Desktop/Client/Server

Figure 4. Testbed-16 DCS Desktop/Client/Server Components and their Interactions

Interactions between the desktop and server components of the architecture are:

Authorization

i. Client registers for OAuth2 Authorization Code Grant [https://tools.ietf.org/html/rfc6749#page-8]

23

https://tools.ietf.org/html/rfc6749#page-8

ii. DCS Server is Resource Server (registered for OAuth Client Credentials Flow [https://tools.ietf.org/

html/rfc6749#page-7])

Service Request

A. Feature request goes to an OGC API compatible DCS Server endpoint. The request contains
access_token, key_challenge, challenge_method [https://tools.ietf.org/html/rfc7636]

B. The DCS client sends an OGC API - Features encoded request to the DCS Server including the
access token and content type encoded in HTTP Access header for content negotiation. The
access token from the request gets validated via the Authorization Server.

C. Based on the response from the backend feature data repository (OGC API), the DCS Server
creates a cipher key per feature type classification (top_secret, secret, confidential, classified).
The cipher keys differ in length and algorithm for each classification level. For each cipher key
created, the DCS Server registers the key with the KMS.

D. Every key_id from the KMS response is included in the DCS container of choice (content
negotiation). DCS server returns the response in the form of a DCS container of chosen encoding
to the client.

Decryption Key Retrieval

1. The DCS client reads the response DCS container and extracts a list of key identifiers.

2. For each key_id the DCS client sends a request to the Key Management Server for obtaining the
cipher key and decodes the payload.

Appendix Engineering Aspects for D120 and D145 provides very detailed sequence and explanation
for desktop client use case (UC 1).

7.3.2. Scenario 2, DCS Mobile App/Client & Policy Enforcement Point

The DCS Mobile Scenario implementations differ slightly in their architectures and feature sets,
allowing for the exploration of different distribution mechanisms.

7.3.2.1. QField / GeoPEP (Android Mobile App/Client)

The following figure shows the Android-based Testbed-16 DCS Mobile App Client/Server
Components and their Interactions.

24

https://tools.ietf.org/html/rfc6749#page-7
https://tools.ietf.org/html/rfc7636

Figure 5. Testbed-16 DCS Mobile App Client/Server Components and their Interactions (Android)

Interactions between the mobile and server components of the architecture are:

i. Curation Flow: An administrative user or a user with proper clearance curates data and selects
an active role to serve to a GIS user.

a. A user using the GeoPEP defines roles, selects the features involved per role and defines
rules for each role.

i. The client fetches the data from files, a Web Feature Service or some other means
depending on the implementation.

b. The GeoPEP asks the KMS to create keys and encrypt data.

c. The KMS creates the keys and encrypts the data and returns them to the GeoPEP.

d. The GeoPEP asks the KMS to create signing keys and sign content.

e. The KMS returns the keys and signed content to the GeoPEP.

ii. Feature Flow: A GIS user selects features to use in the GIS app and uses the data.

a. A user using a client fetch a list of features to work with from the GeoPEP.

b. The client fetches the features from the GeoPEP.

c. The client fetches keys from the GeoPEP, validates the signature and decrypts the content.

7.3.2.2. MapKit / DCS Roles (iOS Mobile App)

The iOS Mobile Client architecture implements the DCS Roles concept, separating the scenario data
into two categories - Feature Data ("DCS Data") and "DCS Roles". Please see Appendix E: Roles for
full details.

25

Figure 6. Testbed-16 DCS Mobile App Components, Roles, and their Interactions (iOS)

7.3.2.2.1. DCS Roles vs Users

Within this role-based mobile implementation, a user is the assigned user for the mobile device.
That user has their personal security clearance loaded onto the device as a DCS Role. In addition to
that personal DCS Role, per the scenario multiple generic DCS Roles representing generic security
clearances for the categories of people the user may encounter in the field who the user may wish
to share information.

7.3.2.2.2. DCS Roles vs DCS Data

Within this concept, each DCS Data item is to be restricted according to a specific Policy Identifier
and a specific Classification, as specified within a DCS Data container (as described elsewhere in
this document). Whereas each DCS Role could potentially specify access to multiple Classifications
and multiple Contexts.

This allows the "filtering" of data displayed on the mobile device to show only DCS Data items that
meet the restrictions of the current active DCS Role.

Furthermore, this allows for (requires) the DCS Data and (list of) DCS Roles to be distributed and
installed separately on the mobile devices.

7.4. DCS Architecture Interactions

7.4.1. Desktop/Client/Server Interactions

Following diagram explains the workflows related to the communication with Authentication
Server and KMS for both use cases:

• DCS Server creates key(s) for “immediate” use (Online Streaming UC)

◦ keys are simple (symmetric and short)

◦ expires_in as set by the DCS Server

• “expires_in” and “algorithm” as set by the client’s characteristics

◦ grant_type=(implicit, authorization_code)

◦ If scope=offline_access (possible for authorization_code_grant), key algorithm will be
stronger but still symmetric (Offline Authorization UC)

26

• Key Registration (POST /kms/keys)

◦ Requires scope=kms

◦ Client (D120) has no KMS scope

◦ DCS Server has KMS scope

• Client registers and uses OAuth2 Authorization Code Grant

• DCS Server is Resource Server (registered for OAuth Client Credentials Flow)

• OGC API Features + access_token + key_challenge + challenge_method

The workflow visualization provides the notation of UML sequence diagrams, which depict
interactions among DCS architecture components for both use case scenarios. The diagram below
explains the process of creation of DCS protected content on behalf of a client. The diagram also
depicts the creation of cryptographic key material, registration on KMS server (with the return of
key identifier) and encryption of data payload.

Figure 7. TB-16 DCS component interactions 1

The next figure depicts the consumption of data centric protected information. The client first
obtains and subsequently parses the protected content. The client, for every encrypted data
segment, retrieves the key_id from the container’s meta-data section and then uses that key to
obtain the cryptographic key from KMS. Finally, the client decrypts and presents the protected
content.

27

Figure 8. TB-16 DCS component interactions 2

All implementation details could be seen in Engineering Aspects for D120 and D145

7.4.2. Mobile App/Server Interactions

The GeoPEP scenario for the mobile and KMS interactions involves the curation of offline data to
present in the field to various users representing a variety of roles. To satisfy this requirement, an
implementor may choose to implement the solution using GIS Software and a stand-alone GeoPEP
for policy enforcement. The implementor may also choose to embed the GeoPEP inside the GIS
Software. Regardless of the approach the interaction between the GIS component and GeoPEP
component are similar.

The first step is to curate the data in the GeoPEP. This may be an offline process done with some
curation tool, or it can be done in the GeoPEP. Regardless of where it is done the curation flow
needs to define:

• Roles

• Which features or feature classes that the roles can use.

• Rules for what, when and where users may view features.

To facilitate the protection of the features the curation component can reach out to a KMS to:

• Create encryption keys

◦ In this experiment the implementors are using symmetric keys to encrypt the feature inside
the feature collection as was described in the desktop/server interactions above.

• Encrypt sensitive information about individual features.

◦ The KMS creates keys and encrypts feature data that the KMS receives from a curation tool.

◦ The curation tool creates a JSON Web Encryption (JWE) formatted response for each feature.

• Create signing keys.

◦ In this experiment the implementors are using asymmetric keys to sign the feature
collections.

28

• Sign the feature collection.

◦ The curation tool stores signed feature collection in a Java Web Signature (JWS) structure.

The next flow of interactions is between the client and a GeoPEP component. The components may
be separate or embedded in the same application.

• A user of the GIS client selects features to display from what is available to the role the user is
assuming.

• The GIS component retrieves the features and keys from the GeoPEP component.

• The GIS component validates the signature, decrypts the data and displays it to the user.

7.4.2.1. DCS Mobile App and GeoPEP Server Interactions with Role Definitions

For both the iOS DCS App and the Android GeoPEP implementations, the application or GeoPEP
limits the server interaction to the initial configuration of the application/component after loading
or fetching the data. This is import to the scenarios this experiment defines as the scenarios start
with the assumption that communications may be down for responders in the field. Thus, it is
important to load the data before mobilizing in the field. Another import part of these interactions
from the application/component is the use of rules for the specification of roles within software.
Roles define rules for the encryption of the features and thus effect the interactions with the Key
Management Service (KMS).

The mobile applications query the KMS for the encryption keys for the feature according to the
specification of rules for roles in the application, caching these keys for offline (from the
KMS/internal network) use. The iOS application bases the rules by roles and fetches keys according
to the role specification (clearance, which may contain multiple classifications). The iOS application
applies the appropriate key to each feature allowed by the role. The Android GeoPEP allows the
user to specify a classification level, and an encryption strength for each feature class. The GeoPEP
then fetches keys from the KMS for each feature according to the encryption strength specification
of the feature class. The GeoPEP then defines roles and how the features map to them.

There are advantages and disadvantages to both approaches. Basing the encryption off of the role
definition and choosing one key to represent a role/classification pairing requires fewer keys to
encrypt/decrypt the features. Creating a new key for each feature provides more security but at the
cost of needing more keys for encryption/decryption. Network latency and bandwidth
considerations play into these decisions. In a time-critical response, creating separate keys may not
be the best trade off since it can take hours to create the keys and encrypt the data on large
datasets. However, if security is more important, because of the classification of the data, than
using a single key per role/classification, that may not be the best security posture. Another factor
for key implementations is the federation of features. If multiple authors collaborate to compose
features, each author may sign/encrypt features in the collection differently. This may result in the
use of different Key Management Services. This testbed only looked at a single agency scenario but
future work may include federations.

29

Chapter 8. Data Encodings, DCS Containers
and Media Types

8.1. Introduction
Information security can be applied either on the infrastructure (perimeter-security) or in a data-
centric fashion. While infrastructure/transport oriented security standards are integrated in
communication infrastructure like in TLS 1.3 [https://tools.ietf.org/html/rfc8446], DCS is fully
independent from the underlying communication infrastructure. This is important because (in
many security critical applications) the stakeholders cannot rely on the security provided by
communication channels (like TLS). With other words, data owners need to remain in charge of
data securing when they are distributed in cloud-based resource services. Thus, it appears
reasonable to incorporate security concepts in the data sets, which urges expanding the existing
data structures for additional elements to carry encrypted data and artefacts such as metadata,
security labels, signatures, etc.

In protocols with application-layer intermediaries, channel-based security protocols protect
messages from attackers between intermediaries, but not from the intermediaries themselves (not
from, for example, malicious applications running on the platforms of intermediaries). These cases
require object-based security technologies, which embed application data within a secure object
that can be safely handled by untrusted entities as it was described for JSON encoding format (RFC
7165). Data-centric security advocates generation, storing and provision of security related
metadata and content such as security tokens (digital identities), policies, keys, signatures,
encrypted content and schemas.

In the geospatial domain, data centric security is applied on data encoded using geospatial domain
specific grammars (schemas) such as GML or GeoJSON. GML is an XML encoding while the GeoJSON
format is encoded in JSON. The previous work in Testbed-15 regarding the DCS was based on GML
and the container structure required for DCS was encoded using STANAG 4774/8 and XML binding.

JSON (JavaScript Object Notation) is a well-known XML alternative and widely used data-
interchange format. GeoJSON was created as a response to the popularity of JSON encoding format
and as an alternative to previously established GML format based on XML and XML Schema.
GeoJSON defines several types of JSON objects and the manner in which they are combined to
represent data about geographic features, their properties, and their spatial extents. RFC 7946
[https://tools.ietf.org/html/rfc7946] is the current GeoJSON standard.

Additionally to new DCS container formats, new HTTP Accept header content types are proposed
for content negotiation. The Accept request HTTP header advertises which content types (container
formats) the client is able to understand, which is important for interoperability.

8.2. DCS Container
If the security is required to be applied in the data-centric fashion, an additional data structure
needs to carry signature and encryption artefacts. This includes the metadata related to a data
origin identity, access rights/policies, and optionally data structure/taxonomy. Two encoding

30

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc7946

options for data centric securing of (geospatial) content are available. These are XML-GML and
GeoJSON based encoding standards with corresponding containers. Two set of standards, NATO
STANAG 4774 [https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf] and STANAG
4778 [https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf] (short STANAG 4774/8)
and JWT/JOSE were chosen to implement the required container structure. Additional DCS
containers and encodings require new media types to describe all useful combinations of
data/container encoding and applied security functions.

To enable data exchange and interoperability among NATO Member States, NATO STANAG 4774
and 4778 define a syntax (4774) for trusted security labels / markings and how these are
cryptographically bound to data objects (4778) to ensure the integrity of data and the label. Trusted
security labels include, for example, data on the creator, creation and expiration date. There are
different profiles for REST, SMTP, or SOAP, XMPP or Office Open XML. JSON binding is not
supported.

Beside standard security labels like classification, creator or creation and expiration date, in the
geospatial domain additional metadata about the spatial scope of the data set is frequently relevant.
For example, large, encrypted sets of geographic entities having metadata labels containing a
bounding box allow access policies, which constrain data usage based on user location.

For JSON encoded data mostly used in interactions via RESTful APIs there is a family of standards
designed to implement confidentiality and integrity in a data centric fashion. These standards are
based on JSON Web Token (JWT) and also includes the JWE and JWS specifications, which is known
as JOSE [https://tools.ietf.org/html/rfc7165]. JWT is basically seen as the root specification, which the JWE
and JWS were derived from.

8.3. STANAG 4774/8 DCS Container
STANAG 4774/8 was used to implement the Testbed-15 DCS architecture with trusted security labels.
Currently, the standard fully supports XML binding. Other representations, for example in JSON,
would be possible (JSON is currently not supported). The full STANAG 4774/8 data structure is
depicted in the following figure:

Figure 9. STANAG DCS Container Structure

The figure displays the container structure from testbed-15, which holds a key (symmetric)
required for data decryption. The key is protected inside of the encrypted metadata section and can

31

https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf
https://tools.ietf.org/html/rfc7165

be extracted only if it were encrypted with the receiver’s public key, which means the encryption
was performed using public cryptography (PKI). This approach has certain security limitations and
inflexibility. In Testbed-16 that will be mitigated through a new component - the KMS responsible to
issue decryption keys on request (for a given key_id encoded in a DCS container). Instead of
encrypted keys, their identifiers (key_id) originating from the KMS will be placed in DCS containers.

8.4. STANAG 4774/8 DCS Container in JSON
Despite the fact that only XML binding specifications were provided for STANAG 4774/8 so far, there
is another, (from the interoperability point of view) useful option - to introduce an equivalent
binding in JSON for clients, services and APIs based on that technology. In such a scenario, JWS
(encryption) and JWT (signature) standards (also called JOSE) are used instead of JSON-encoded
STANAG 4778 content to ensure the integrity of the payload and security label, while STANAG 4774
will provide a blueprint for security label information and other meta-data of interests.

8.5. JOSE (JWS & JWE) based containers for JSON
In the JavaScript/JSON ecosystem the communication is secured on a data level by applying a set of
standards such as JWT and JOSE (combination of encryption and signature via JWS and JWE). The
standards provide a structure intended to capture the metadata and artefacts required for standard
security functions such as confidentiality and integrity. The following table gives an overview of the
security stack based on JWT and JOSE:

• JavaScript Object Singing and Encryption (JOSE)

◦ JSON Web Signature (JWS)

▪ A way of representing content secured with a digital signature (or MAC) using JSON data
structures and base64url encoding

◦ JSON Web Encryption (JWE)

▪ Like JWS but for encrypted content

◦ JSON Web Key (JWK)

▪ JSON data structures representing cryptographic keys

• JSON Web Token

◦ Defines the use of cryptographic algorithms and identifiers for JWS, JWE and JWK

◦ A compact URL safe means to represent claims/attributes to be transferred between two
parties

◦ A JWT is a JWS and/or a JWE with JSON claims as a payload

A JSON security stack built around the standards listed above visualizes the relations between
standards. While everything is encoded in JSON, JWE and JWS represent standard cryptographic
operations related to encryption and signing while JWT deals with digital identities.

32

Figure 10. JSON security stack

When Object Signing and/or Encryption (JOSE) is used to protect a payload, the resulting structure
(as depicted on the figure below) establishes a type of container holding both the payload and the
metadata. While JWS requires a fairly simple format to ensure the integrity, JWE requires
additional attributes to support the confidentiality through the encryption. The payload could be
any geospatial content, for example GeoJSON. The figure represents the container encoding with
comma separated sections. An alternative would be to use a full, slightly more complex JSON
representation.

Figure 11. JOSE DCS container structure

For JWS the payload is first signed and enclosed in a data structure defined in RFC 7515. The
structure has:

• Header

• Payload

• Signature

The header containing the signature metadata, the payload holds the base64 encoded protected
content and the signature ensures integrity (or that header and payload are cryptographically
bound to each other). The payload segment might also enclose the additional metadata information.

If the confidentiality of data is required, the plaintext data can be encrypted and wrapped up in a
container structure based on JWE (RFC 7516). The container will have the structure according to the
specification containing the following parts:

• Header

33

• Encrypted key

• Initialization vector

• Ciphertext

• Authentication tag

Ciphertext is the section where encrypted data payload (created out of original payload plaintext) is
placed. Other segments such as initialization vector or authentication tag are populated according
to the specification and in order to support data integrity.

The information to protect remains encoded following STANAG 4774/8 but in JSON (binding). The
JOSE would provide additional cryptographic protection (ensuring integrity) for such a DCS
container in JSON encoding. Following are the possible container forms or the combination of "JOSE
for security implementation" and "STANAG to encode the meta-data":

• Metadata = Plain JSON

• Metadata = JWS (RFC 7515)

• Metadata = JWE (RFC 7516)

The options are depicted in the following three figures. The green bar represents the overall
information (data-centric container with all protection measures). Metadata as shown here is
STANAG encoded in JSON:

Figure 12. Plain STANAG 4774 metadata encoded in JSON

34

Figure 13. Signed STANAG 4774 metadata encoded in JSON in JWS container

Figure 14. Encrypted STANAG 4774 metadata encoded in JSON in JWE container

8.5.1. DCS Container based on JWS

The JWS container implements a signature mechanism to protect the integrity of payload and
related meta-information and bind them together cryptographically. The container consists of three
parts. The following figure depicts the structure. The payload section contains STANAG 4774
metadata and the information. The header section holds metadata about the signature algorithm
and media type (context). For example, the attribute "ctx" (context) is defined as
application/stanag+json. This represents a new media type used to identify the server response
containing the mix of payload and STANAG metadata.

35

Figure 15. STANAG metadata in JWS container with signature

The workflow related to the DCS container based on JWS includes the integrity validation
(signature verification), conversion back from Base64 format, and extracting the key identification
values. These are used to retrieve the keys for decryption from the KMS server component:

Figure 16. Container parsing/decryption workflow

8.5.2. Structure of Information as Metadata

Extending the metadata section of a DCS container for payload structure is useful. For example, the
XML encoding is meant to include XML schema elements, which highlights the payload structure.

36

Figure 17. STANAG container encoded in XML

In the figure below the schema information for entity type "poiType" is framed in red in the middle.
This enables the access decisions based on the structure/taxonomy of protected information. Of
course, this approach could be extended to JSON encoding and corresponding JSON schemas.

Figure 18. STANAG XML with content schema type

8.5.3. DCS Container based on JWE

The DCS container structure based on JWE contains sections required to store encrypted content
(ciphertext), metadata (header) and additional elements relevant for applied crypto algorithms.
Encrypted key sections are left empty because the JWE key is not required here. Instead, the

37

header’s attribute "alg" signalizes "Direct Encryption with a Shared Symmetric Key". According to
JWA [https://tools.ietf.org/html/rfc7518] in this case, the shared symmetric key is used directly as the
Content Encryption Key (CEK) value for the "enc" algorithm. An empty octet sequence is used as the
JWE Encrypted Key value. The "alg" (algorithm) Header Parameter value "dir" is used in this case.
Attribute "kid" holds the key identification value for symmetric key retrieval from the KMS.

Figure 19. Encrypted payload enclosed in JSON container based on JWE

The basic structure for DCS container is defined by STANAG 4778 but can also be encoded in JSON:

• XML:

◦ 1..* Metadata elements (encrypted or decrypted, contains key_id if encrypted).

◦ 1 Data element (encrypted or decrypted, contains key_id if encrypted).

◦ Signature (to keep the integrity of everything).

• JSON:

◦ 1..* Metadata elements (encrypted or decrypted, contains key_id if encrypted).

◦ 1 Data element (encrypted or decrypted, contains key_id if encrypted).

▪ Signature (to keep the integrity of everything) OR,

▪ Signature in JWS container OR,

▪ Encryption in JWE container.

For the collection of entities, they can either be encrypted all together and put in the "Data" section
of STANAG 4774/8 or they can each be encrypted separately in a dedicated STANAG object.

In other words, JWS provides signatures to ensure the integrity of DCS containers. JWS ensures
confidentiality for DCS containers. The container does not contain keys required to decrypt the
payload or the metadata. Instead, key identification attributes are populated, either inside of
STANAG 4778 structure or put in the JOSE headers (attribute kid) and used to retrieve the key from
KMS.

38

https://tools.ietf.org/html/rfc7518

8.6. Media Types and profiles for DCS content
negotiation
There are a variety of approaches to implementing the content negotiation as described in (RFC
7231 [https://tools.ietf.org/html/rfc7231#page-18]) for a RESTful API. Two common options are:

• Specify the content type in the URI (/geojson/streets/42).

• Specify the content type using a query parameter (/streets/42?type=geojson).

However, both of these non-HTTP content negotiation examples violate the rule saying that a REST
API should not "include artificial extensions in URIs to indicate the format of a message’s entity
body". Instead, they should rely on the media type, as communicated through the Content-Type
header, to determine how to process the body’s content.

The proper way for content negotiation is to specify the content type of an HTTP response as a
parameter of the media type in the HTTP request. This is the option that is selected here for DCS.
This method avoids changing URIs and makes use of an existing HTTP header rather than creating
a custom one. A Media Type describes the content of an HTTP request or response such that the
service provider knows how to handle the request. In short, service requests use media types in
order to notify the service (content provider with DCS) which combination of encoding and
container structure is required.

When a client issues an HTTP request, it can indicate what media types the client would prefer to
receive by using the Accept HTTP header. For example, GeoJSON has a (generic) media type
"application/geo+json" for all resources. In order to support different encodings and DCS
containers, media types need to be defined, such as application/gml+stanag.

How many different media types are needed to cover all useful type options for responses? The
following list presents the encodings and container structures that appear to be useful in the
context of this testbed:

• Content Encodings:

1. XML

2. GML

3. GEO+JSON

4. JSON

• Container Types:

1. STANAG 4774/8

2. STANAG 4774/8 in JWS

3. STANAG 4774/8 in JWE

Not all possible combinations for encoding and content types as listed here make sense or are
useful. First of all, the assumption is a STANAG 4774/8 container structure is taxonomy for DCS
container structure. New supported encoding will be provided in JSON. When the content is
encoded in JSON, using JWS and JWE "containers" for singing and/or encrypting appears to be the

39

https://tools.ietf.org/html/rfc7231#page-18
https://tools.ietf.org/html/rfc7231#page-18

choice. JWS is used to ensure the integrity. Otherwise, XML encoded GML content is enclosed in the
container based on the STANAG 4774/8 binding for XML. XML Signature (XML Signature defines an
XML syntax for digital signatures) is used to ensure the integrity. The figure below provides an
example depicting several options for content negotiation:

Figure 20. Content negotiation example for DCS aware GC API implementation

Another aspect of HTTP content negotiation, which introduces fine grained control over the
response formats is related to the possible use of a Media Type parameter "profile" in HTTP header.
As described in a W3C Working Draft Content Negotiation by Profile [https://www.w3.org/TR/dx-prof-

conneg/], clients may negotiate for content provided by servers based on so called "data profiles" to
which the content conforms. This is "distinct from negotiating by Media Type or Language: a profile
may specify the content of information returned, which may be a subset of the information the
responding server has about the requested resource, and may be structured in a specific way to
meet interoperability requirements of a community of practice". An Application Profile bundles
several specifications and possibly adds additional requirements on an implementation. Extra
requirements can be interpreted either as additions or as constraints. For the Testbed-16 case, the
media type could be used to specify required serialization such as XML, JSON, GML, GeoJSON, while
profile parameter could be used to further differentiate between different DCS container options
(STANAG 4774/8, JOSE).

Following profiles are useful to refine the content negotiation in DCS:

Table 1. Profiles

Profile Description

http://www.opengis.net/spec/GML/3.X/req/dcs/
stanag4778

Profile extension to application/gml+xml that
supports STANAG 4778 notation for feature
types such as <gmlce:SimplePolygon
dcs=”stanag4778”>

40

https://www.w3.org/TR/dx-prof-conneg/
http://www.opengis.net/spec/GML/3.X/req/dcs/stanag4778
http://www.opengis.net/spec/GML/3.X/req/dcs/stanag4778

Profile Description

http://www.opengis.net/spec/GeoJSON/xx/req/
dsc/jwt_jwe

Profile extension to application/geo+json that
supports a JWT or JWE notation for feature
types such as ”type”: “jwt” or “type”: “jwe” with
a data element.

http://www.opengis.net/def/profile/ogc/2.0/gml-
sf2

Profile extension to specify GML 3.2 SF-2
compliance.

Since the Accept header can contain multiple media types, clients can set alternative profiles and
media types in the HTTP header for specific DCS protected geospatial content. Besides new media
types to set this preference, the q parameter (relative quality factor) is used. The value of a q
parameter can be from 0 to 1. 0 represents the least preferred while 1 is the most preferred choice.

HTTP GET with media types and profile parameters

GET /resource/a HTTP/1.1
Accept: application/dcs+geo;q=0.9;profile=ogc:sf:in:geojson, \

application/geo+dcs;q=0.7;profile=urn:nato:stanag:4778:bindinginformation:1:0:in:JSON
...

HTTP/1.1 200 OK
Content-Type: application/dcs+geo;profile=ogc:sf:in:geojson

Finally, DCS media types and profile parameters for content negotiation as proposed for XML and
JSON encoded content are listed in these tables:

Table 2. XML related media types

Description OGC API
Parame
ter ‘f’

HTTP Accept / Content-Type Header

GML FC as defined by OGC xml or
gml

application/gml+xml;
profile="http://www.opengis.net/def/profile/ogc/2.0/gml-
sf2";version=3.2

GML FC where each feature
is a STANAG 4778 data object

gml+dcs application/gml+dcs;
profile="http://www.opengis.net/def/profile/ogc/1.0/stanag
#4778";

STANAG 4778 data object
(container) containing an
encrypted GML FC

dcs+gml application/dcs+gml;
profile="http://www.opengis.net/def/profile/ogc/2.0/gml-
sf2";version=3.2

Table 3. JSON related media types

41

http://www.opengis.net/spec/GeoJSON/xx/req/dsc/jwt_jwe
http://www.opengis.net/spec/GeoJSON/xx/req/dsc/jwt_jwe
http://www.opengis.net/def/profile/ogc/2.0/gml-sf2
http://www.opengis.net/def/profile/ogc/2.0/gml-sf2

Description OGC API
Parame
ter ‘f’

HTTP Accept / Content-Type Header

Feature Collection in GeoJSON json or
geo+jso
n

application/geo+json

Feature Collection in GeoJSON signed
or encrypted

jws or
geo+jos
e

application/geo+jose

STANAG 4778 in JSON encrypted or
signed where data objects are GeoJSON
encoded features

dcs+geo application/dcs+geo;profile=ogc:sf:in:geojson

Feature Collection in GeoJSON where
features are STANAG 4778 JSON
encoded

geo+dcs application/geo+dcs;profile=urn:nato:stanag:477
8:bindinginformation:1:0:in:JSON

Testbed-16 demonstrated content negotiation and data retrieval with the following
container/encoding variants:

• STANAG+GML returns the STANAG 4778 encoded and encrypted data in XML encoding. Each
data object is a feature instance encoded in GML.

• STANAG+JSON returns the STANAG 4778 structure encoded in JSON. Each data element is an
encrypted feature instance encoded in GeoJSON.

• STANAG+JWS returns the STANAG 4778 structure encoded in JSON with digital signature (JWT
format). Each data element is an encrypted feature instance encoded in Geo+JSON.

• GeoJSON+JWS returns the digitally signed feature collection encoded in GeoJSON.

Examples for content types (HTTP GET) are and DCS containers are given in Appendix Engineering
Aspects for D120 and D145 under Requesting encrypted data.

42

Chapter 9. Results
The Testbed participants were able to demonstrate that with a proper DCS security architecture put
in place and having a KMS component responsible for key management, an implementation can
satisfy the requirements for an extended data centric security model for both desktop and mobile
clients. The following list summarizes the results achieved in this testbed:

• Effective data-centric security solution with standardized OGC API - Features + KMS + new HTTP
Accept header media type and profile values for content negotiation.

• Protected data sets in different formats encoded using XML or JSON and by applying standards
such as STANAG 4774/8 and/or JOSE to model DCS containers for metadata, cryptographic
artefacts and payloads.

• As the ER evaluates above, a DRM architecture can be the motivation when implementing DCS
for a geospatial domain because of similarities with DCS objectives.

• With the presentation sufficient rights, a server/client encrypts/decrypts the data on the fly as
part of a synchronous API request.

• Client curation tools can encrypt data sets and stored them locally on a mobile device for
decryption at a later time. The thought behind this is that data curation may take place much
earlier than when the user intends to use the data. Clients may have a need to store the data
over larger periods of time than an online desktop scenario would offer. This requires a set of
policies to control when and how a user of a client may use the data, and the level of protection
the client provides. The experiments confirm the curation of data can occur with differing
protection levels and that clients can select user profiles to enforce in the field.

• Client implementations can model differing concepts of data classification and user/role-based
clearances.

Performing the experiment did uncover some issues while attempting to implement the scenarios.
The following is a list of the issues the experiments came across:

• The GIS client applications for the desktop and the Android mobile client rely heavily on third
party open source libraries which increase the difficulty of implementing decryption of
features.

• Mobile application threading and UI responsiveness requirements make implementing long-
running synchronous tasks difficult.

• Large data sets create a burden on network bandwidth and take a long time to encrypt features.

• Encryption of large data items can timeout across network connections.

• Mobile Process / Power Management

9.1. Issue Explanations

9.1.1. Third Party Open Source Library implementations impede the
implementation of decryption

Both QGIS and QField rely heavily on GDAL which is an open source tool for retrieving and

43

manipulating geographic data formats. In this experiment the implementor had to make a choice
about modifying GDAL or modifying the GIS application to perform the decryption of the data. Both
QGIS and QField are open source projects as well. The burden on modifying multiple open source
applications and libraries is an educational barrier to implementing customizations.

An implementor must learn about each open source project and weigh the consequences of where
to make modifications. In this experiment the implementor choose to limit the modifications to
QGIS and QField. However, modifying GDAL would have made the modifications to QGIS and
QField easier to accomplish. However, modifying GDAL would take more thought as GDAL is used
in many open source and proprietary software solutions. The need for specifying asynchronous key
pairs, for signing content, and integrating with various Key Management Services could pose a real
challenge for developers trying to use GDAL to do data centric security. This may also be something
to consider in a future testbed.

9.1.2. Mobile Application and long-running synchronous operations

Mobile devices run an Event loop to process UI and environmental events. For example, the simple
act of rotating a device triggers a series of events that destroy views and recreate new views. A
long-running task may need to update UI elements that no longer exist. To increase the challenge a
developer faces, many APIs for fetching file and making network requests are potentially long-
running tasks in themselves and as such must be run asynchronously. This makes synchronous
tasks hard to implement as they may require the fetching of multiple files or make multiple
network requests.

In this experiment, the Android GeoPEP application needs the ability to communicate with a KMS
to fetch encryption keys, HMAC verification keys, and encrypt data. The application must fetch the
keys, then encrypt the data, and finally produce a JSON Web Encryption (JWE) data set. That is a
synchronous activity as the encryption of content requires the creation of keys. However, the
fetching of keys and the performing of the encryption, in this experiment, are done asynchronously
by an API for HTTP requests. This means that the responses come back using a callback method.

To overcome the asynchronous fetching of data across the network, the application needs to
implement some form of thread suspension to wait for results from one task before doing the next
task. As a reader of this engineering report, you may ask why not just handle the next step in the
callback from the network request. The implementor of the Android application had the same
thought, however, the APIs for implementing network requests will not process further network
requests until the previous ones have completed. This prevents you from making another network
request in the thread of the callback, which is needed in the case of creating the encryption key and
then calling the KMS to encrypt the content. Perhaps a different implementation of a Data Centric
Security Key Management Service API vs. a standard Key Management Service API may provide an
optimized solution to overcome some of these asynchronous issues of mobile applications.

9.1.3. Timeout Issues with Large Data Requests

During the development of the Android GeoPEP Application, the implementor ran across a timeout
issue with encrypting the JSON Web Key (JWK) set. A large feature class containing thousands of
features can create a key set that contains two keys for each feature (Encryption Key and HMAC
key). Encrypting the key set for storage on the mobile devices may require large data structure. The
application passes this data structure as the payload in a post request for a KMS to encrypt. This

44

may result in the client connection timing out due to settings on the client/server presenting the
client application with an error condition that is unrecoverable from the standpoint of completing
the encryption task. A fallback position for the client maybe to do the encryption task itself;
however, in this experiment that was not done.

9.1.4. Mobile Process / Power Management

Process and Power Management on mobile devices in general, and on iOS/iPhones/Apple Watches
in particular, can add additional complications to the previously detailed issues. Apple aggressively
controls processes running on devices to save power and memory resources, and will terminate
processes which seem idle (perhaps waiting for a return call) or are utilizing too many resources.
Because of this, an architectural decision was made for the iOS client to implement the PEP as a
module within the iOS DCS App instead of a separate running service, as running a PEP web service
in the background on the iPhone is problematic at best.

45

Chapter 10. Future Work
As identified by the Testbed-16 participants, an area of future work revolves around the use of
federated security with basic DCS. Another area of future work stems from the importance
participants place on the exploration of extending OGC APIs for DCS support. Future activities
should also cover the packaging of protected data and other relevant artifacts such as policies.
Consideration should further be given to the possible creation of a standardized KMS API to
support DCS relevant functions. The next testbed may wish to examine additional media types for
data centric protected binary data. The following list describes potential future activities:

• Full CRUD operations on “data centric” secured data sets, including creation of new entities
and/or update of already existing entities (which implies the application of corresponding
security functions).

• Federated security and DCS (data centric secured content transferred between different security
domains and identities, keys etc. transformation/negotiation).

• Standardized KMS API for DCS.

• Packaging of data in DCS: Providing a standardized approach for packaging of additional data
such as policies, keys etc. in the scope of DCS.

• Binary related Media Types: Geospatial payloads such as maps, tiles and coverages may also be
secured on the data level including GeoTIFF, TIFF, JP2, GMLJP2, etc.

• DCS Roles and User Clearances vs Data Classification(s).

10.1. New features in DCS
The addition of a new feature to a feature collection has ramifications in a Data Centric Approach.
Should the client or server perform the encryption? Which Key Management Service will handle
the creation of keys and encryption of the content? Do the individual contributors sign the content?
If the client encrypts/signs the content, how do servers support queries on the content? All these
questions and perhaps more require some investigation and experimentation to determine how the
creation of features fits the Data Centric Security Concept.

10.2. KMS for DCS
This activity could include the investigation of the specification of existing/new APIs for key
management to enable standardization of CRUD for cryptographic keys within and outside of
federated environments. Focusing on access control, an experiment could investigate how to
control key creation and release depending on location of the user, the resource or both.

The protection of large data sets requiring keys for each item create situations producing/retrieving
thousands of keys and encrypting thousands of items takes too long. The mitigation of the
performance problem might involve tweaking a KMS API to support asynchronous key
management and/or by optimizing the data securing process. For example, the API may support the
bulk creation of keys. Perhaps a hybrid approach to DCS/KMS API could provide an API that is DCS
aware and will make JWE and JWS data structures as part of the response. Such an API could
provide enhancements over the classical approach to KMS APIs which is just concerned with key

46

creation, encryption and signing as standalone activities that require the client to put together the
DCS response.

10.3. Federated security and DCS
Federated security enables collaboration across multiple systems, networks, and organizations in
different trust realms. On the other side, DCS enables securing the data sets independent of the
communication and computation infrastructure. Future work in this area might investigate options
for data centric secured information exchange in a federation environment with federated key
management systems, identity servers, and other security infrastructure. Technologies such as
Blockchain might be useful to establish a federated network of identity providers and services.

10.4. Packaging of data in the scope of DCS
In addition to current DCS approaches wrapping metadata keys and payloads into containers,
future investigation may consider adding data such as policies, manifests, etc. to the package. This
is important in mobile scenarios dealing with offline content.

10.5. Binary related Media Types
Future work should consider adding DCS approaches to binary data. The experiments in the
testbeds to date focus on feature data types. However, in geographic realms, feature data is a small
part of the overall amount of data available. Future work should investigate how to incorporate
DCS container or to modify the existing formats to support DCS concepts. For example, JPEG 2000
(JP2) is an image compression standard and coding system. Perhaps the format can be expanded to
support encryption and metadata for classification into JP2 payloads. JPEG 2000 images using the
OGC GML in JPEG 2000 (GMLJP2) standard and other gridded coverage data holding geospatial
content for imagery could add DCS concept for integrity and confidentiality.

Applications and professionals use many more binary data formats today in addition to the JPEG
standard. Future work should consider the full spectrum of data types available. This would
include GeoTIFF, TIFF, Mr. SID, etc. Future work should look at other binary packaging formats and
how to extend them to support Data Centric Security concepts. GeoPackage is one example of a
binary container format that future work could extend to include encryption, integrity and
confidentiality.

Table 4. Suggestions for binary related Media Types

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type Header

Map jpeg or gif or … application/jpeg

JPEG200 with
STANAG 4774
metadata

jp2+dcs application/jp2+dcs;
profile="http://www.opengis.net/def/profile/ogc/1
.0/stanag#4774";

47

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type Header

STANAG 4778 in XML
(each STANAG data
object represents one
JP2 image)

dcs+jp2 application/dcs+jp2;
profile="http://www.opengis.net/spec/GMLJP2/2.0
/req/core"

10.6. DCS Roles and User Clearances vs Data
Classification(s)
Future work should consider further development of the DCS Roles concept, as detailed in
Appendix E: Roles. The core thrust may proceed in two simultaneous directions.

First, future work should incorporate more specific examples / target sample data files of scenario
classifications, clearances, and feature data.

Second (and in parallel), the Roles concept should be transformed to be more generic / less specific
to the NATO clearance/classification concept (while still supporting it fully and robustly). This
would be done so it could be applied to more generic commercial, industry and consumer domains,
allowing for the expansion of DCS utilization, which in turn helps the original sponsors have
greater long-term capabilities.

48

Chapter 11. Technology Integration
Experiments (TIEs)
The TIEs for the Testbed-16 DCS task were grouped into multiple tests for each scenario. The TIEs
are divided into sub-TIEs as follows:

• Online access of protected content on a desktop client.

• Offline use of protected content on mobile clients.

Testbed-16 primarily focused on the interaction with a newly introduced component KMS via a
draft API. Further, the Testbed participants demonstrated the ability to request the response
encoded using different container types.

The first step (which had already been evaluated in the previous testbed) included the data request
sent to the DCS component. The request is accompanied by an access token. The token contains the
security credentials for a login session and identifies the user.

Desktop and mobile clients communicate with the KMS retrieving cryptographic keys required to
decrypt and consume (previously fetched) protected content (geospatial entities, signed or
encrypted). Key retrieval is done via the draft KMS API by passing key identification strings
extracted from the metadata section of protected content.

The resulting Data set was retrieved, the key_id values were extracted from the metadata section of
the response container.

11.1. TIEs for Scenario One
This set of TIEs summarize the result when executing the implementation for scenario one with
desktop client.

To determine the relevant TIEs, let’s take a look at the interactions between the components D121
(client), D120 (DCS Server) and D145 (Key Management Server). The figure below helps to identify
the interactions.

49

Figure 21. Abstract Protocol Flow between the TIE components

(A) Defines the interactions between D121 (the DCS client) and D120 (the DCS Server). (B) Defines
the interactions between the DCS Server (D120) and the Key Management Server (D145) and finally
between D121 and D145.

NOTE
Detailed direct tests for the interfaces of DCS Server and Key Management Server
via OpenAPI (and Curl) are outlined in annex Engineering Aspects for D120 and
D145.

11.1.1. D120 / D121 TIE

The DCS client (D12) must send an OGC API - Features encoded request to the DCS Server (D120)
including the access token as an HTTP Header Authorization Bearer:
0476c745887f33cc43341375852df01e9b0fe2fe and the key_challenge as well as the key_challenge_method
query parameters. The client must also use one of the supported DCS media types to trigger DCS
processing at the DCS Server.

Table 5. TIE Media Types

DCS specific Media Type

1. application/gml+dcs;profile="http://www.opengis.net/def/profile/ogc/1.0/stanag#477
8"

2. application/dcs+gml; profile="http://www.opengis.net/def/profile/ogc/2.0/gml-
sf2";version=3.2

3. application/geo+jose

4. application/dcs+geo;profile=ogc:sf:in:geojson

5. application/geo+dcs;profile=“http://www.opengis.net/def/profile/ogc/1.0/stanag#4778
”

The access token represents the acting user. Jane, Bob, Alice and Joe are existing users belonging to
the different security levels. A request will only return a TIE relevant response. This is if the user is

50

in accordance with the security policies that fit their security levels.

Table 6. TIE Users

User States Roads Landmarks POIs

Jane Yes Yes Yes Yes

Bob Yes Yes Yes No

Alice Yes Yes No No

Joe Yes No No No

A successful TIE can be determined by the ability of the DCS client to decrypt (and display) the
encrypted DCS response from the DCS server. When that is the case, the interactions (A), (B) and (C)
must work as a whole: (A) Returns the encrypted response with DCS encoding; (B) Implicitly
worked to register the cipher key(s) because the cipher keys referenced in the response for (A),
could be (i) fetched via (C) and (ii) be used to decrypt the response.

The successful TIE was conducted via a QGIS DCS plugin requesting media type
application/dcs+geo. The recording is available at https://www.youtube.com/watch?v=vcpayRQN6QI
[https://www.youtube.com/watch?v=vcpayRQN6QI]

11.2. TIEs for Scenario Two
This set of TIEs summarize the result when executing the scenarios for mobile client
implementation. The TIE results show interactions between two mobile clients with a policy
enforcement module (Android [Maxar] and iOS [Keys]) and a Key Management Service [Helyx]. The
experiment did not have time to perform TIEs for data interoperability between the two mobile
clients.

The following chart shows the results of the mobile client interactions with the various KMS
functions.

Table 7. Mobile Clients to KMS

Client Platform KMS Function Expected Result Result Status

Android POST: /key key id Passed

Android GET: /key/{key_id} JWK with key Passed

Android POST: /mac HMAC of JWE Passed

Android POST: /encrypt Cipher Text & IV Passed

iOS GET: /key/{key_id} JWK with key Passed

Configuration Tools
(iOS)

POST: /key key id Passed

Configuration Tools
(iOS)

GET: /key/{key_id} JWK with key Passed

Configuration Tools
(iOS)

POST: /encrypt Cipher Text & IV Passed

51

https://www.youtube.com/watch?v=vcpayRQN6QI

11.2.1. Android Result Summary

The Android client contains a stand-alone Policy Enforcement app that stages data by fetching
features from a Web Feature Service (WFS). With each feature the app fetches, the app creates an
encryption key, and a HMAC key from the KMS. Then the app calls the KMS to calculate the HMAC
and encrypt the feature data. The app stores the feature results in a file with a JWS DCS format. In
addition, the app stores the keys returned by the KMS in a file containing a JWK set encrypted in a
JWE. From the table above, the TIE shows that the Android Policy Enforcement app can create keys,
fetch keys, calculate the HMAC and encrypt content.

11.2.2. iOS Result Summary

The iOS client architecture implements the DCS Roles concept, separating the scenario data into two
categories - Feature Data ("DCS Data") and "DCS Roles" (see Appendix E: Roles for full details). Using
external management tools and procedures, these two categories are bundled/packaged into a
scenario-wide DCS Data package (common to all clients using this architectural concept), and into
user/device specific DCS Role packages. Both bundles are encrypted leveraging interaction with the
KMS, and are distributed to each scenario iOS device as part of organizational pre-deployment
procedures.

The iOS client contains a built-in Policy Enforcement module. To complete pre-deployment
configuration of each device, the iOS client’s Policy Enforcement module queries the KMS,
retrieving the keys authorized for each user role (for decryption of DCS Data), storing them into the
module’s DCS Role Key Cache for offline use by the client App.

Figure 22. TIE iOS Mobile Policy Enforcement, Key Cache, and KMS

When visualizing data in the field, the iOS App uses the module to apply the appropriate keys to
features allowed by the selected role.

52

Appendix A: Engineering Aspects for D120
and D145
This annex introduces the engineering aspects of the DCS components D120 (DCS Server) and D145
(DCS Key Management Server) implemented for Testbed-16 by Secure Dimensions.

During OGC Testbed-15, the DCS Server was implemented in its first version. In summary, the
implementation supported NATO STANAG 4778 and 4774 response encoding. The XML encoded
response was digitally signed and the data was encrypted. The encryption key was returned inline
with the response. To protect the key, the public key of the user was used to encrypt the cipher key.
This approach did not require any key management; the public key of the user(s) was manually
distributed.

For Testbed-16, the requirements are (i) to support JSON encoded responses that allow to function
like NATO STANAG 4778 and (ii) to return the cipher key with the response by reference, which
requires to implement key management.

This section describes the architecture of the DCS Server, the DCS Key Management Server and
their interactions. The emphasis for the architecture and the design of the Key Management Server
in particular is to ensure protection of the cipher key - when created, registered and fetched for
decryption.

A.1. Overview
The architecture illustrated in Figure 20 reflects the use case requirements for the desktop / server
use case as outlined in the CFP: A desktop application (i.e. QGIS DCS plugin) can request NATO
STANAG 4778 encoded responses where the data and the metadata is encrypted. For Testbed-16, the
response structure is encoded in JSON mimicking NATO STANAG 4778 and 4774. The response
contains an identifier for the cipher used to encrypt the meta- and data. When parsing the response
in the DCS client, the cipher keys are fetched from the Key Management Server.

To ensure that a cipher key that is used by the DCS Server used to encrypt the meta- and data can
only be obtained by a legitimate client / user, access tokens are used. The Authorization Server
provides the capability for creating and verifying access tokens. The use of access tokens that are
obtained by the DCS client and used with the DCS Server and Key Management Server ensure the
sharing of a security context among all components.

Leveraging as many components from Testbed-15 as possible, the Testbed-16 architecture is
comprised of only one new component: The Key Management Server. Albeit, the DCS Server is
extended by processing JSON encoding.

53

Figure 23. Component overview of DCS components to support the desktop / server use case

The following sequence of interactions explain the overall co-play of the components:

1. The DCS client requests an access token from the Authorization Server leveraging the OAuth2 /
OpenId Connect protocol for authorization. During this interaction, the user must login to his
Identity Provider. As a result, the DCS client receives an access token which is associated to the
client and user, both identified with their UUID.

Access Token validation response example

{
 "access_token": "0476c745887f33cc43341375852df01e9b0fe2fe",
 "client_id": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "expires": 1602061225,
 "scope": "openid saml profile ogc",
 "username": "5a307c82-b440-3438-8aa7-b7437a83a4e0",
 "active": true
}

2. The DCS client sends an OGC API - Features encoded request to the DCS Server including the
access token as an HTTP Header Authorization Bearer:
0476c745887f33cc43341375852df01e9b0fe2fe and the key_challenge as well as the
key_challenge_method query parameters. The DCS Server extracts the access token, the
key_challenge and the key_challenge_method from the request.

a. The access token from the request gets validated via the Authorization Server. From the
response, the DCS Server stores the client_id and the username for registering the cipher
key(s) with the Key Management Server. Based on the response from the backend (OGC API
Features), the DCS Server creates a cipher key per feature type classification (top_secret,
secret, confidential, classified). The cipher keys differ in length and algorithm for each

54

classification level.

b. For each cipher key created, the DCS Server registers the key with the Key Management
server. The registration request includes the key_challenge, key_challenge_method and the
client_id (aud) from (2). The request includes the HTTP Header Authorization Bearer:
0476c745887f33cc43341375852df01e9b0fe2fe.

Cipher key registration request example

{
 "alg": "http://www.w3.org/2009/xmlenc11#aes192-gcm",
 "kty": "oct",
 "iv": "",
 "k": "LiIeESRpwWngaJplPQxtsuT3xP5JtzJE",
 "key_challenge": "secret",
 "key_challenge_method": "plain",
 "audience": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "issuer": "af4f2285-979d-389a-892a-90aa9d776476"
}

The key_id from the response is included in the DCS Server response.

Cipher key registration response example

{
 "id": "859f22b4-1ce1-42c0-8668-aac789c79242",
 "issuer": "af4f2285-979d-389a-892a-90aa9d776476",
 "expires": 1602061971,
 "issued_at": 1602061941,
 "aud": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "sub": "5a307c82-b440-3438-8aa7-b7437a83a4e0"
}

3. The DCS client has parsed the response and extracted a list of key identifiers. For each key_id
the DCS client sends request to the Key Management Server for obtaining the cipher key. The
request includes the access token and the key_verifier.

a. The Key Management Server verifies the access token with the Authorization Server and
compares that the following conditions are met and returns the key information:

▪ client_id associated with the access token matches the aud stored with the key_id

▪ username associated with the access token matches the sub stored with the key_id

▪ key_verifier matches the key_challange stored wit the key_id applying the
key_challange_method stored with the key_id (as defined in RFC 7636)

▪ current time in seconds is less than the expires stored with the key_id (the valid time
frame for fetching keys is 30 seconds since creation)

55

Cipher key response from Key Management Server example

{
 "id": "859f22b4-1ce1-42c0-8668-aac789c79242",
 "kty": "RSA",
 "n":
"nhM1yyeJzcopJo79Cy_0jYbdhOL7XNzuYb2zi3HyTeQaNKwAzvt1c1MNMlm3Mt39kcB_mw5ehBZS1UZXGDWGV
2BH5WZhyvTufxONizUlb65M5NHRMIKbmeDEYgyegKke6aaNaOl4QfSI6sd7JH6Zq_RtFBb85evfm74poRuV_Jn
S7u8j-
kKrXUTgHNhwxHa8xuyz19o8506uWdDrYta53NYiuWdZ_So2Mzi3eK26o8rO3IX9Wk6nIWTYKmYetwYps0KOi7Q
8hiH1RknrLvnNFT-z7eK2SZ3jycZCbDmD15KAasm5HQAlP3tOWJvq9_w3HiZakHZlNDwGbgCT1l_1pQ",
 "e": "AQAB",
 "audience": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "sub": "5a307c82-b440-3438-8aa7-b7437a83a4e0"
}

With the cipher key received from the Key Management Server, the DCS client is able to decrypt the
meta- and data received from the DCS Server in (2).

A.2. Deployment
The DCS client is implemented as a QGIS DCS plugin available from https://github.com/ogc-leedahl/
QGIS/tree/OGC_Testbed_16

The following components build the DCS Server https://ogc.secure-dimensions.com/dcs

• Geoserver: This is a default Geoserver deployment 2.16.2 with example data loaded (Docker
deplyoed).

• ldproxy: This proxy to the Geoserver produces the OGC API - Features on top of Geoserver
(Docker deployed).

• geoPEP is the security proxy implemented as a Apache Web Server Module (httpd deployed).

• geoPDP is a GeoXACML 3 compliant service (Docker deployed).

The Key Management Server is a PHP application hosted on https://ogc.secure-dimensions.com/kms/
api

A.3. Protecting the Cipher Keys
Applying encryption to achieve confidentiality does only make sense if it can be ensured that the
cipher key can be protected against unauthorized disclosure. In Testbed-15, the protection of the
cipher key was ensured by establishing a PKI for the users. The cipher key was encrypted with the
public key of the user. The implication to this approach was that a cipher key is tied to a single user.
It is not possible for software to process the encrypted data on behalf of the user. Or, for a user to
pass the encrypted content to another user.

The more flexible key management in Testbed-16 demonstrates the concept where the cipher key is
not included in a service response; rather the key identifier is included. This provides the ability to

56

https://github.com/ogc-leedahl/QGIS/tree/OGC_Testbed_16
https://github.com/ogc-leedahl/QGIS/tree/OGC_Testbed_16
https://ogc.secure-dimensions.com/dcs
https://ogc.secure-dimensions.com/kms/api
https://ogc.secure-dimensions.com/kms/api

use and re-use cipher keys and modify the audience: which clients and users can fetch the key. But,
the down side is that a Key Management Server must be designed that its flexible enough to
support particular use cases but also ensure that a cipher key can only be obtained from an
authorized user / application.

Studying the architecture from figure Figure 20 outlines that the DCS client is making an OGC API
Features request where the response contains encrypted (meta)data and the keys must be obtained
from the Key Management Server. This leads to a triangle of trust relationship: A security context
must be exchanged between the components where the DCS Server is a kind of man in the middle
between the client and key management server. So, the critical question is how to ensure that a key
created by the DCS Server can only be fetched (and modified) by the original actor; the DCS Server
is acting on behalf of the user / client when it comes to cipher key registration.

The base for protecting cipher keys, implemented into the Testbed-16 Key Management Server, is
based on the concepts of RFC 7636 Proof Key for Code Exchange by OAuth Public Clients
[https://tools.ietf.org/html/rfc7636]. The basic concept - as illustrated in the following figure - is that the
client includes a code_challenge (either created by itself or provided by the user as a kind of private
secret) with the request which is a hash of a private secret. When relevant in a later request, the
client sends the private secret using the code_verifier parameter. The server can then compare the
values sent first with the hash (assuming method S256 was used) of the plain sent with the current
request.

Figure 24. Abstract Protocol Flow [RFC 7636, figure 2]

The adopted protocol for the Testbed-16 architecture is illustrated in the following figure.

57

https://tools.ietf.org/html/rfc7636

Figure 25. Abstract Protocol Flow from RFC 7636 adopted for Testbed-16

The use of the key_challenge parameter in request (A) allows the Client to request the cipher key
from the Key Management Server adding the key_verifier parameter to the request (C).

The use of this protocol also enables the modification of the key by the original actor, as only the
user / client is capable of adding the matching key_verifier to the request. The DCS Server or any
other intermediary service is not able to provide or guess the private secret, as in the request (A)
only the hash was submitted. It is therefore possible (but not implemented) that the user extends
the audience for an encryption key that was created on his behalf (request). This would allow the
user to share the received encrypted content with another user / client. The Key Management
server would just need to implement the appropriate methods. Proof of authorization to modify an
existing key can be based on the key_verifier.

However, the deletion of a cipher key is implemented, and that requires the caller to provide the
key_verifier with the request to demonstrate ownership.

A.4. DCS Key Management Server
The implementation of the interfaces (API) and the functionalities for the Key Management Server
is based on the requirements derived from the desktop / server use case. Two different interface
categories exist:

• Managing cipher keys that can be used to encrypt/decrypt data and metadata

• Managing public keys that can be used to encrypt the response when fetching a cipher key.

All requests to the Key Management Server require a valid access token submitted via the HTTP
header Authorization as described in RFC 6750.

A.4.1. Protecting Keys at Rest

The Key Management Server stores the keys in a simple database structure:

58

+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
id	varchar(36)	NO	PRI	NULL	
type	varchar(64)	YES		NULL	
sub	varchar(36)	YES		NULL	
aud	varchar(36)	YES		NULL	
active	int(11)	YES		1	
data	text	YES		NULL	
+--------+-------------+------+-----+---------+-------+

The data column contains the BASE64 encoded value of the encrypted cipher key encoded as JWK.
The encryption for this implementation is configured to use the AES-128-CBC cipher with a secret
key. The following is an example of the value stored in the data column:

Ixw37lqOcZZuXvIhXVMLUZIzV1siqprO3+oxT4kPxECRXZ9+6EaJGGQEYkDViSNXzAyghRcRcERai4bq7F40pB
eQXextZGnGi537NB7kBSYLCNUsm/y+6YgKw/GhtfjENEaFRHw7QoVaqyTuMQquB/hGS5mENyGmK16u0vToqfJ4
It1Ss7tPdFDFIHmjcxfWg0EePqa37z8cql+UFklDGwHYwizFKd5QV7kFrAlYofDz4acdoz2nwnFtzqTPLUh9tz
VzramlZZp2JDuFOL1XiGTEHhAwbHAKWAPeSHr7UDxbzzjrn54w7Ew5wo3eIwbqf9ZMmZ1qVyI+R8XU4L3njqpy
Gcq88UwnMzgHikKu1OTeCKUyxekejccXDEhSnqP/dW45eSOS2M0f7bExGBw1nBHhcgG/wcuzh5lDkNtDyXm6y7
nEGodPhn6uEHda4yukc9FpBxl+2ul7meapIv/dVCzgXywwE3JF4jRqQ7VS0PUGCyPWMlz3zdg7jvzMjIY6695V
oIYixOIs9G01nh5udA==

A.4.2. Managing Public Keys

To ensure the protection of a cipher key while in transit (sent from the Key Management Server to
the client) the response can be encrypted. This requires that the client specifies a public key id
(public_kid parameter) to be used for encrypting the response. In order to register a public key, the
POST interface of the /kms/jwks path must be used. The audience restriction of the key is derived
from the access token sent with the registration request.

Alternatively, the request can contain the public_key parameter including the JWK encoding of a
public key.

A.4.3. Managing Cipher Keys

The current implementation allows to register (create), fetch (read) and delete a cipher key.

A.4.4. Create a Cipher Key

The Key Management Server supports to different ways to register a cipher key with the /kms/keys
endpoint. Depending on the HTTP method, the caller must use HTTP POST or PUT to register a cipher
key:

• A cipher can be registered using HTTP POST in two different ways: A JWK compliant key
description is POSTed to the /kms/keys endpoint, (i) containing the k value, or (ii) not containing
the k value. In the first case, the key is saved to the store and a key_id is created and returned to

59

the caller. In the latter case, a k value and key_id is created and returned to the caller. The
information about the client_id, username is stored with the key.

• A cipher can be created using HTTP PUT to the /kms/keys/{key_id} endpoint. The idempotent call
basically returns a 201 (Created) on success or 409 (Conflict) in case the key_id does already
exist but the content of the JWK description is different.

To GET a stored cipher key requires the following conditions to be true:

• client_id associated with the access token matches the aud stored with the key_id

• username associated with the access token matches the sub stored with the key_id

• current time in seconds is less than the expires stored with the key_id (the valid time frame or
fetching keys is 30 seconds)

To GET the cipher key in a JWE format (encrypted JSON), the caller must specify the parameter
public_kid or public_key with the request send to the /keys/{key_id} endpoint and set the HTTP
Accept header to value application/jwe.

Even though the cipher key is protected with the access conditions above, it is the safest to simply
delete the key once it got fetched by the client. To DELETE a cipher key, the caller must submit a
valid access token and the key_verifier. The key_verifier proves that the caller is the owning entity
that either directly or via the DCS server has registered the key. If the key_verifier matches the
key_challange stored with the key_id applying the key_challange_method stored with the key to the
key_verifier (as defined in RFC 7636), then the cipher key referenced by the key_id is deactivated
from the store. The deactivation deletes the key data and marks the key_id inactive. The Key
Management Server will respond to further requests for a deleted key_id with HTTP status code 410
(Gone).

A.4.5. OpenAPI

The endpoints of the Key Management Server are described in OpenAPI: https://ogc.secure-
dimensions.com/kms/api

Figure 26. Key Management Server overview

60

https://ogc.secure-dimensions.com/kms/api
https://ogc.secure-dimensions.com/kms/api

Figure 27. Key Management Server endpoints for managing cipher keys

Figure 28. Key Management Server endpoints for managing public keys

A.4.6. Use Example

The use case for the Key Management Server is to support the encryption and decryption of data as
outlined in figure Figure 22. In the desktop / server scenario, the DCS Server creates the cipher keys
and encrypts the data. The DCS Server uses the KMS to register the cipher key, as illustrated in
Figure 22, interaction (B). The key identifier received from the Key Management Server is inserted
into the response to the client; the response to (C).

61

Figure 29. Interactions between the client, DCS Server and the Key Management Server

The sequence diagram illustrates the round-trip interactions from the client to the DCS Server and
the Key Management Server.

A.4.6.1. Managing a Cipher Key

Use the OGC Testbed Token App [https://ogc.secure-dimensions.com/dcs/token-app/] and login as user jane
with password secret to visualize an access token (valid for 30 minutes).

Figure 30. OGC Testbed Token App displaying Jane’s access token

62

https://ogc.secure-dimensions.com/dcs/token-app/

Now use the Key Management Server OpenAPI to register a cipher key

Figure 31. Key Management Server API to register a cipher key

or send a CURL request like this:

curl -X POST "https://ogc.secure-dimensions.com/kms/keys" -H "accept:
application/json" -H "Authorization: Bearer 1a44f0f0db04876d86475d42597c6d653dd252b8"
-H "Content-Type: application/x-www-form-urlencoded" -d
"alg=http%3A%2F%2Fwww.w3.org%2F2001%2F04%2Fxmlenc%23aes128-
cbc&kty=oct&k=9QycQmUYBSJrpY8%2BFwWDrA%3D%3D&key_challenge=foobar&key_challenge_method
=plain&expires=2587561028&audience=019b7173-a9ed-7d9a-70d3-
9502ad7c0575&issuer=Andreas"

to get a response like this:

63

{
 "kid": "3236ac0e-7ecf-4376-bcdc-327f55bdf366",
 "alg": "http://www.w3.org/2001/04/xmlenc#aes128-cbc",
 "kty": "oct",
 "k": "DLCZvmi0vcTneZwkbudG_g",
 "issuer": "Andreas",
 "expires": 2587561028,
 "issued_at": 1602228077,
 "aud": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "sub": "af4f2285-979d-389a-892a-90aa9d776476"
}

With the access token and the kid you can use the Key Management Server OpenAPI to fetch the
cipher key

Figure 32. Key Management Server API to fetch a cipher key

or send a CURL request like this:

curl -X GET "https://ogc.secure-dimensions.com/kms/keys/3236ac0e-7ecf-4376-bcdc-
327f55bdf366?public_kid=893ef3c8-c249-47a2-91e2-001a0b201647" -H "accept:
application/json" -H "Authorization: Bearer 1a44f0f0db04876d86475d42597c6d653dd252b8"

to get a response like this:

64

{
 "kid": "3236ac0e-7ecf-4376-bcdc-327f55bdf366",
 "alg": "http://www.w3.org/2001/04/xmlenc#aes128-cbc",
 "kty": "oct",
 "k": "DLCZvmi0vcTneZwkbudG_g",
 "issuer": "Andreas",
 "key_challenge": "foobar",
 "key_challenge_method": "plain",
 "expires": 2587561028,
 "issued_at": 1602228495,
 "aud": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
 "sub": "af4f2285-979d-389a-892a-90aa9d776476"
}

To receive the response encrypted (in application/jose or application/jwe) format, you must set the
Accept header for the request accordingly and provide either a public_kid ` of a previously
registered public key or a JSON encoded JWK as value to the `public_key parameter.

Request to receive encrypted response using public_kid

curl -X GET "https://ogc.secure-dimensions.com/kms/keys/3236ac0e-7ecf-4376-bcdc-
327f55bdf366?public_kid=820e2b52-c793-814a-8526-387ce0571fb4" -H "accept:
application/jwe" -H "Authorization: Bearer 1a44f0f0db04876d86475d42597c6d653dd252b8"

Request to receive encrypted response using public_key

curl -X GET "https://ogc.secure-dimensions.com/kms/keys/3236ac0e-7ecf-4376-bcdc-
327f55bdf366?jwk=%7B%20%20%20%22kid%22%3A%20%22820e2b52-c793-814a-8526-
387ce0571fb4%22%2C%20%20%20%22kty%22%3A%20%22RSA%22%2C%20%20%20%22n%22%3A%20%225MPCfUA
khGG6w76Cw2b7vzmyM-K4-
80bVn_aPMHHEBa4SQPfERmK_Q4L9fD6FD6krj_RU_DCYENmMo0ceZQymePdSmeSHgbrkyU9vXfvLDHNftGPgH0
xtQmc-gBWKMopRs6Svd13CCFaKn8P66iF25yVwmc13-
5WKGSLJV5oiDa3vOfiJKSqWnZAkejo2BaOSOl9R0qPjLt7z8B18LqTkNeOnsYigMIeAjis4CrXWVYfbIpryOLF
cGBC4gCHiF7tvP5YR3HtqDSmTNzK3xqSFNn_3PMRaGByV8yxcWDB3-
2lRr5JwznuZlm37r_RptgsU73AfhL1phFhYLdTQQ5kmQ%22%2C%20%20%20%22e%22%3A%20%22AQAB%22%2C%
20%20%20%22aud%22%3A%20%22019b7173-a9ed-7d9a-70d3-
9502ad7c0575%22%2C%20%20%20%22sub%22%3A%20%22af4f2285-979d-389a-892a-
90aa9d776476%22%20%7D" -H "accept: application/jwe" -H "Authorization: Bearer
1a44f0f0db04876d86475d42597c6d653dd252b8"

This is the encrypted response.

65

eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2Iiwia2lkIjoiODIwZTJiNTItYzc5My04MTRhLT
g1MjYtMzg3Y2UwNTcxZmI0In0.Yg0j2cSVFvc2OQ5FUl0fxLyRVcA01FjObHY_P08VIir8StDSqe7RJMCcii1J
YPBCdht7O5k6Zay03eF63c6TTfWFEPFlkeaMVefQ7OTrd0Ls77bReCGSI93Uawx6Lcepwj9JsoDaT4r7YJb0vP
IyZfmQhcwdcysTQcw-BPURDq8v-Cji-
EmGO2GrH5EiNUdIvH8oaeuPbJZfsMofZrh02q6SN3uGW4AKahcMQ0p2DyRyQeVA15dLl13ohtba-aa6-
qKHqLk_CkURwHQpLDEVbdo_5tz8PQbUGnqH2mBWaWRRPfnLkFyslkDFhO2ZC-
hqfYGXIzv1f0xTW3h2o8nDgw.I7_S8Bb0BZ-SqLjdWt6_Cw.9GzczDxku_pI_-
upVSel4ZgGvwf0em_qTO3FZB05SO83eLewJWQS6QPmWBQgWFqzb6Pf2pbUNgtz-8Z5bVQmGJzIl7IFjM85-
pj5mlKWTH6Eb2OnbF5nbXmPMa789c0DnOO13Xi_SBt0Zs0AjlNtrXEasyjjCmN-
ghM09EhaLmF2YMLFYP5KephuDnyVINRMoyv1LeIMwMrYlHFU1l0a8lEIgKCs-
oKU54HulyGacLhajVUWYCKOCy78iBMeP1g19zrJnRmNKX5y88pS7a9OK8f62dMJLaA2kaSq-iDKiM1qO1lCYc-
CEmxLwvf-
8ixvQsODEFRRS0RN_HyusTFvViptigMOKxXUPdrXR8aJqGSUZ7EPicvqTcW7GhnMYOCQ1yAeejscAUBUeH3e7S
uX4Pi78nVfB309E3va2EprtUYU0tKtoUZ3RF1FFCBPgiVh8GUnEzImW-
gL4eaxv7JSgl1KR2ElG9N9NXBihL4eyKNSAY7Gm_qEiZGAEkJAQt5gP9gOemPDtFrQn0ioJVRkgybCYHvXNc2_
wGj-rsNSaFhO9ur6pR7vzKuhoswbMaLJgrmWrn_Rbm4UzTqja1MEUI_WO9-GCJizcdp7GVFm9qc0Od_2-7fL-
O9w5sZvIeHBd4kEUfEldWc2o9IQuhb1ZnZvk7r6PCi_tnrCDBY_JNqDkM0gSLrAlifoF5AfRBVZWILgf5dbcRG
51wwmbbyoQ6YcgEN6WOF5Sz-o0gls2i2fC-
n3bNOKXXNUp7dUXjPDIo5vuyfro2FhFv7sr19FOpupFmvKs8IlZ7f43Kl74luYw2fZqCV9iWCVFrt7bMPveUFw
XXPR66qQSJCcxBhPFYDpkCAkUzIYo1DF6KAhjd2Axu5n9rgpmeF81cCBbhcw0Z5USZDvNwyz6VEkCkZ8AuSPIs
1cGg8IQSosEU98V1mu38M3SBFbb5Z1h5CuCh_y2SZBv_4BthBgSJENpGTwJyOTU059h_NQ2m1U7GijiSnfTBse
zyxlQ7PhtvvSgFrc.as5ak-6CbI8N0qp74ElziA

Decoding the header of the JWE encoded response unveils the details of the encrypted content:

{
 "alg":"RSA1_5",
 "enc":"A128CBC-HS256",
 "kid":"820e2b52-c793-814a-8526-387ce0571fb4"
}

It is also possible to receive the response as JWT, where the digital signature can be verified with
the JSON Web Key set published by the Key Management Server under https://ogc.secure-
dimensions.com/kms/.well-known/jwks.json:

66

https://ogc.secure-dimensions.com/kms/.well-known/jwks.json
https://ogc.secure-dimensions.com/kms/.well-known/jwks.json

{
 "keys": [
 {
 "kid": "893ef3c8-c249-47a2-91e2-001a0b201647",
 "kty": "RSA",
 "n":
"nhM1yyeJzcopJo79Cy_0jYbdhOL7XNzuYb2zi3HyTeQaNKwAzvt1c1MNMlm3Mt39kcB_mw5ehBZS1UZXGDWGV
2BH5WZhyvTufxONizUlb65M5NHRMIKbmeDEYgyegKke6aaNaOl4QfSI6sd7JH6Zq_RtFBb85evfm74poRuV_Jn
S7u8j-
kKrXUTgHNhwxHa8xuyz19o8506uWdDrYta53NYiuWdZ_So2Mzi3eK26o8rO3IX9Wk6nIWTYKmYetwYps0KOi7Q
8hiH1RknrLvnNFT-z7eK2SZ3jycZCbDmD15KAasm5HQAlP3tOWJvq9_w3HiZakHZlNDwGbgCT1l_1pQ",
 "e": "AQAB"
 }
]
}

Key response a JWT

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ijg5M2VmM2M4LWMyNDktNDdhMi05MWUyLTAwMWEwYj
IwMTY0NyJ9.eyJpc3MiOiJBbmRyZWFzIiwiYXVkIjoiMDE5YjcxNzMtYTllZC03ZDlhLTcwZDMtOTUwMmFkN2M
wNTc1IiwiaWF0IjoxNjAyMjI5ODg0LCJuYmYiOjE2MDIyMjk4ODQsImV4cCI6MjU4NzU2MTAyOCwidWlkIjoiM
zIzNmFjMGUtN2VjZi00Mzc2LWJjZGMtMzI3ZjU1YmRmMzY2IiwiYWxnIjoiaHR0cDpcL1wvd3d3LnczLm9yZ1w
vMjAwMVwvMDRcL3htbGVuYyNhZXMxMjgtY2JjIiwiayI6IkRMQ1p2bWkwdmNUbmVad2tidWRHX2cifQ.d0YkU9
OVcfaO-teRb8Vn9L4LFYqUyOLwnd5ktB7YV8xmaxlbGHADWkIbCMaQyWs7pllhKZa29XVK-2_ADy4tqAXLBNm-
MBKydP1JrN0-a3vJKvzDW17hMiC_-2UB65ngbpB-
c6FwVNBuaJa9ptDgtGdK6nz4X3kXZ4wZKfWAkcd1UDh9tHxLQLkOkmvWaCUdV5jIdeqWxG_eJe5F0cWK8PyhUn
DS9d4TCyBQHjRjtk8_XCLlESIbYzlUxbNKFMj04pIpdlkStUJG0m5ktkDE69u7WZBrsXFihDEJlf7YlD7FI_1D
IAOjvnbqkT1FcGkBkf9T-6t54dOOOzJxLdYobA

Decoding the header unveils details for the digital signature:

{
 "typ":"JWT",
 "alg":"RS256",
 "kid":"893ef3c8-c249-47a2-91e2-001a0b201647"
}

The verification of the response can be verified with kid=893ef3c8-c249-47a2-91e2-001a0b201647
which is published by the Key Management Server.

A.4.6.2. Demonstrating cipher key protection

The cipher key with kid=3236ac0e-7ecf-4376-bcdc-327f55bdf366 was registered by user Jane
identified as sub=af4f2285-979d-389a-892a-90aa9d776476. The key can be used with a client identified
by client_id=019b7173-a9ed-7d9a-70d3-9502ad7c0575 (attribute aud in the key response).

Trying to fetch the cipher key with a different client_id or sub results in HTTP status code 403. To
illustrate this behavior, use the OGC Testbed Token App [https://ogc.secure-dimensions.com/dcs/token-app/]

67

https://ogc.secure-dimensions.com/dcs/token-app/

and login as user bob with password secret.

CURL request to fetch a cipher key using Bob’s access token

curl -X GET "https://ogc.secure-dimensions.com/kms/keys/3236ac0e-7ecf-4376-bcdc-
327f55bdf366" -H "accept: application/json" -H "Authorization: Bearer
f4f225d8d7a44b1067cb55b7c48eabf08948e651"

Response forbidden for user Bob

{
 "code": 403,
 "error": {
 "type": "INSUFFICIENT_PRIVILEGES",
 "description": "stealing a key?"
 }
}

To delete a cipher key, the request must also contain proof or ownership for the key. This proof is
presented by the key_verifier value that matches the key_challenge processed by the
key_challenge_method send with the registration request. The key registration above used the
following values:

• key_challenge=foobar

• key_challenge_method=plain

The request can be made via OpenAPI like the figure shown next:

Figure 33. Key Management Server API to fetch a cipher key

Alternatively, the request can be made using the following CURL request:

68

Request to delete a cipher key submitting correct key_verifier

curl -X DELETE "https://ogc.secure-dimensions.com/kms/keys/3236ac0e-7ecf-4376-bcdc-
327f55bdf366?key_verifier=foobar" -H "accept: */*" -H "Authorization: Bearer
0a8859836218963fe0b3588d7d5a9620bda2d100"

The deleting of a key only removes the key data in the database which makes the key unusable. The
key identifier is kept but marked as inactive. This ensures that no further key can impersonate the
same identifier. Therefore, submitting the same request results in HTTP status code 410 - GONE and
not a 404 - NOT FOUND.

Sending a false key_verifier value results in a HTTP 403 status code:

Request to delete a cipher key submitting false key_verifier

curl -X DELETE "https://ogc.secure-dimensions.com/kms/keys/3236ac0e-7ecf-4376-bcdc-
327f55bdf366?key_verifier=a591a6d40bf420404a011733cfb7b190d62c65bf0bcda32b57b277d9ad9f
146e" -H "accept: */*" -H "Authorization: Bearer
0a8859836218963fe0b3588d7d5a9620bda2d100"

A.4.6.3. Managing a Public Key

The JSON Web Key interface of the Key Management Server allows to register and obtain private
keys. The registration endpoint /jwks accepts a JSON Web Key set via POST which allows the bulk
registration of public keys. The /jwks/{key_id} allows the registration of a single public key via
HTTP PUT. Both endpoints require the caller to provide a valid access_token.

69

Figure 34. Key Management Server API to register a public key set in JWKS format

A public key can be fetched via HTTP GET via the open endpoint /jwks/{key_id}.

70

Figure 35. Key Management Server API to register an individual public key in JWK format

For supporting the desktop / server use case, two entities can register public keys: (i) the DCS Server
and (ii) the DCS client. The DCS Server can register a public key set to ensure that the response to a
DCS key registration is encrypted. The registration of a JSON Web Key set for the client has the same
purpose: Ask the Key Management Server to return the response of the GET cipher key request
encrypted. An example of such an encrypted response is illustrated above.

The client has an alternative option to use a public key for encrypted cipher key responses: When
using Dynamic Client Registration with the Authorization Server, the JWKS become available via
the Authorization Server’s Token Introspection endpoint. The public key set registration via the
Authorization Server is implemented for the QGIS DCS plugin.

A.5. DCS Server
The Data Centric Security Server implemented for Testbed-16 is an extension to the Testbed-15
implementation:

• JSON format including JWT and JWE was implemented to return NATO STANAG 4778 alike data
structures. The client can now ask for encrypted data in NATO STANAG 4778 encoded as XML
and NATO STANAG 4778 alike encoded as JSON, JWT or JWE.

• Cipher keys are included by reference (rather than inline as for Testbed-15)

As for Testbed-15, the OGC API Features is leveraged on a typical Geoserver data set. In order to
demonstrate the ability that the cipher keys change with the classification level of the data objects,

71

the following fictitious classification for the Geoserver standard data set is assumed:

• feature type poi is labeled TOP_SECRET

• feature type poly_landmarks is labeled SECRET

• feature type tiger_roads is labeled CONFIDENTIAL

• feature type states is labeled CLASSIFIED

To access the protected data (feature types) four different users are available with different
clearance:

• user jane has clearance TOP_SECRET

• user bob has clearance SECRET

• user alice has clearance CONFIDENTIAL

• user joe has clearance CLASSIFIED

72

Figure 36. Data Centric Security Server

When following Access the data [https://ogc.secure-dimensions.com/dcs/collections], the feature types from
above are marked (protected) and a click on the feature type triggers the login via the
Authorization Server (AUTHENIX [https://www.authenix.eu]).

73

https://ogc.secure-dimensions.com/dcs/collections
https://www.authenix.eu

Figure 37. Authorization Server

After searching for the login organization OGC the login via the OGC Testbed IdP is required (login via
another provider will not return encrypted responses).

Figure 38. Login via OGC Testbed IdP

After a successful login with one of the users above and the password secret, the protected data is
displayed in the preview mode. The links in the top right corner provide access to the NATO
STANAG encrypted responses.

74

Figure 39. Preview of protected data poi

A.5.1. Requesting encrypted data

Requesting encrypted data from the DCS Server can simply be done by following the links in the top
right corner:

• STANAG+GML returns the STANAG 4778 encoded and encrypted data in XML encoding. Each data
object is a feature instance encoded in GML

• STANAG+JSON returns the STANAG 4778 alike structure encoded in JSON. Each data element is an
encrypted feature instance encoded in GeoJSON.

• STANAG+JWS returns the STANAG 4778 alike structure encoded in JSON with digital signature (JWT
format). Each data element is an encrypted feature instance encoded in Geo+JSON.

• GeoJSON+JWS returns the digitally signed feature collection encoded in GeoJSON

STANAG+GML response

<?xml version="1.0"?>
<mb:BindingInformation xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance.xsd"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xmime=
"http://www.w3.org/2005/05/xmlmime"
 xmlns:mb="urn:nato:stanag:4778:bindinginformation:1:0"
 xmlns:slab="urn:nato:stanag:4774:confidentialitymetadatalabel:1:0"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xsi:schemaLocation="urn:nato:stanag:4778:bindinginformation:1:0 4778.xsd">
 <mb:MetadataBindingContainer xml:id="WFS">

75

 <mb:MetadataBinding>
 <mb:Metadata xml:id="STANAG4774">
 <EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
 Type="http://www.w3.org/2001/04/xmlenc#Element">
 <EncryptionMethod Algorithm="http://www.w3.org/2009/xmlenc11#aes256-gcm"/>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>ed2ee63e-5442-4b6f-a44c-3961e78f5985</KeyName>
 </KeyInfo>
 <CipherData>

<CipherValue>AZL9PyzefgF8ScjO1gEn2SxcgtpF1Rv6r7Wxipvvz/Bz3kL9HPNpHBoolrqty3QY
X+hYnyYkRkA1xLsxIZwYG/wA6kJOXGRXZSJ2GFzNkjb3ct49bgeunRgW8lG16znw
u8IFgvQEIEheEkTjVZHT6s9ZoYZdMVE+9JejRPKNzAFKpeRFL6z2tifn767yKuHD
/KhxeoZoI9Ei9y5uQHSCzAs51981rIk2saEyyJt1HzW/gUAup65EapkK+i9MBWKb
4BBlvOlklhXx5bXyF/RWbuCbae4voLbWAfkbIk4PN6Gyzru5s1+brCzZEvnLgWUf
njp+nAD4Hr/AdXpqmLXj1JUx50kVM1LC1r4pnNARPNNbZ9VIWe4cmT2UA0JBuDBi
abG9jQP2pNaDMjfuUR5Nu6nNQ+yyEKSOWIQfMYHEz2mzJriokGwlCn6LeRR/vd/d
LlY6Q6Y=</CipherValue>
 </CipherData>
 </EncryptedData>
 </mb:Metadata>
 <mb:Metadata xml:id="FeatureType" xmime:contentType="application/xml">
 <EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
 Type="http://www.w3.org/2001/04/xmlenc#Element">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>3d2e5291-a723-49d0-8881-338ba564a2a4</KeyName>
 </KeyInfo>
 <CipherData>

<CipherValue>s5RIjtrqF4AbFWbNuhuMUkbF8gy0fhvVxVXVikGbk4LBVjdK9rRLxTbiobwbLfIs
VjNaFruAlI5avx7+zJHRguP8EO9JQvEhbF+8mC5Wv2zaokRUtogphF/yOaKMTqUK
ePF0htw442ZU6sbGGGmt1xkXtz0VLeENHYXS0syIr/b/JxhFrGNBp46bZXQuSAP9
AWCfeeOA6vSN7hjkFhtAKRLP9i+Sf1HTMv72El+NkhMTVm5AOWh7wIeTUcu8Z0gW
p+yM6K+6PEGoBTrSKkCnStMAGDO0k+B3zhcaTyP8rY8hdldVIqmgZSixuvVq6iQl
URE4K91ldoK4oDk4+wlrGxuE+VzKZ3N+hyYveKDvjqFxE+b14iXaxN/bvcf5o7zf
35mpOwLFVrQZKsydIxKRSFs2nRKxd8gWTk5QO0WbmQWGiMS9pBJ7WsZbH1B+gr3M
E8T4pDO2DFkxf8eB57FKH+4Yte1u0H4d3UWheoPjCPAQAT/TZZRiX3l2jqg6xdC5
ldldfoSha5HOkNYdrc3oi6eoqIX7SpawF0rVP+EB5yWaLdtp0XJ2vcLKhAY39ybw
Y8P+0K6TxuFvUspYFnsFZl80e34W66eSqX3RFzBUkT5KNNe4ieNDGvX4axlXENjH
+Q+LgrtoCFpqZiQ2XXsNudJducnGypfSiOfY2VrEUJMoj4+r7E42sTN5M/5UlTPy
0D0ntYg2NkKJ9mBqhKVVghj6CHwg2aq6Ttv3GftIvKKJO0SqsGdrNG2sEaI+Pc9i
DWObTpIaNna43kZ7dW0HzfjoZfDoHmycS/Q1lEkao6Y6OxszOh1srgBB3QPvuAG7
QQ0T/vQ2qpgYLhCnCVBSLOPE5oTtC73VIMMygZIzuGsQevbDe2sgHT9HhiD/4lfm
t7GYPjXogeR489EVdIdfAUUq2wzhmE2jugixOGwoRRXq93EQD3tyhn7ECxv5fs0m
65BibQvwhkHiAcZMXC6IpjFqltu24vpN0XPqkaJZWR6jrltWZ5/tL/RUsL2hwi0+
62EiFJzyaz8BTocuV5FupRwbjAwZ4mAqFtahqLIgXQDxTuD5KJay0uuzH8KY/kja
eU+uRuc2fdo3nTh+aLBUBq5qEHYY4Lg+srki6Q/oWRup4vw3ePa9QMrWgBQa3mXP
FIzQcEeyIEBOizi+ZaGugozf3G++5v8kFaamVTXnPSFt39oESSj0+dkGwP9oAbMl
iM9WID3l9yzozHsFGshfOrwix5bJ4V+ET5LAGk4yXiifyCmdT99Y1ZQKVYSkxyMz
MbRGi+WwDpYBP5p8tWjTg4V4wtoJLWTkyvlOFU/BOqPZRxnN6OwOsBUrbn5cGkHr

76

2jz8J9BRWtItE1USwVTw0g==</CipherValue>
 </CipherData>
 </EncryptedData>
 </mb:Metadata>
 <mb:Data>
 <EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
 Type="http://www.w3.org/2001/04/xmlenc#Element">
 <EncryptionMethod Algorithm="http://www.w3.org/2009/xmlenc11#aes256-gcm"/>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>caea4408-5115-4405-ba4d-ff150cce0f6a</KeyName>
 </KeyInfo>
 <CipherData>

<CipherValue>Hq0a3yJK6ow4MGTzFL8D+o3/WEP4xZVwMtKY4i+nf7UHOWTWL1C/6GkmWkQ9lj+H
r/Aa46eL73yFwrfEwN3EOtZeP1iU0Bh0K31pfXEsjhrwyUfraRFwqIwGv9wp3t2+
d/8aciab9+6j6g6Naw5oUS/+cSSgIc8sTPP58PQGspZiD06GMDNf+Lv5EB9e5ELY
0rHNRcVDW9l7OyM2y+COuMM0eolpt/cDLyh5NEb0SJ9bvn+jX1cLh1loZ48amevq
0Y8LoA4ce7zMXzBsMfNjVASpO/O8iaxhAA2i1KFmLhUVS3JE6Hv6z+wVcj3H/wN1
fFyN9A+yo3vzp0KiFCx9Ofh0wMWWo2o/30Ybwpa2k9XIfSwoktSFLtcz5oPmwpQT
g+1ikyOAHAghnLRR53kTXsOb7GxFm8i1K/gie1fpSeRhPBJKFoQYbKr3atTevIzz
1eCwUXh8Xs4Gkp8joSe//fdJc09sf6LB4rN3rthFg7q/Xrp/Opve1KVaCUCrQYsY
kFoRJ/+5RztexfhXslEY1rfkBaUwpmGJ/8I0Z7/D7+FIQZLOKsvNBcDDqkbwITc1
bVt4sA8TrpC+yTHVOXNEWrC6EP2t1alzxJUlKdi4vwj12XKVqUIx1TkBp8byXi03
bf0tIy7R8n2fQELoEVAA/HJry7pN3dwlJQw2N5Nxl194FIZjG8/nTj6h3z/K0cRT
iLosnyRqAESNoPuf4qVIwsAu1LcPdyY6bb3rRMZBcdDv2/rM0QK/+iYpBLAkG6Wj
PlN6pXAECc7mwfiBfL8JsLbaA9UHt7rwL6ttUWsUH2q0lXAodXWiukJObd7zHQUW
WWHMu3zCXBtBK3TvNKVOwYJldEEVZPg2o8sQ/0pjPshUsQ5ySq046gZ4q5PpB3c/
7C2TrnK2w6GlALWlH/3l1y0VOFtzODbbFCRjyMHuOqEeYBQ/qa0sEy5gBi+ZLgS5
L8cSVy6Gi+dxPkQ7zUdQL4w6UKBx88PDpJAFkjrATi65dGp/UXNsTtb6Uj3AGuf3
KTVV61mpN9pVBxuASq7Qwe3n3z6eATgv03XOQ5crhBOb168CLyYG1cjuoaCNEGmc
kQQeFj9sCf0wSKx8/gc9Atq2CEAR2LEmSMoLzPW4dZyVdI8RxEC5/6eznWohjJUE
qTMsrMJYvhz7WFqY2I099nOsUgwE/RGGdZUXYxn2mNogWjqqbwIkkH5++WoW2lJ7
hTlmHLBx35xI4rmWexBAZjuMIG9SAVu9eNn4hhbbG2+wukpL+EicBPzKmk8QsNYl
8hOSXL02V7jXxrPIHoocmU9XPJpr7D6tYhAn25mFcXiN5wWynNjh8VicAUq4S3mr
S5LjjZ5POo7WNahcYABpWHT86Ykw/usBbtkDohwevF8FTpalDctb5JYGC2KlmoFs
Sn1Naxp5XQ==</CipherValue>
 </CipherData>
 </EncryptedData>
 </mb:Data>
 </mb:MetadataBinding>
 </mb:MetadataBindingContainer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference Id="id" URI="#WFS">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>
 </ds:Transforms>

77

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>ywlTa+g5URzREK68R9sVy9MVTII=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

<ds:SignatureValue>U7BjCkr8DIOm7CWVM7EMDCiol3b0Eavj/kQIJUfi4WA++nm1wH4FNTYLL/s1wAl1
jeLn7g2bchE602OjE7q8/e85OsZEz/LRmXpWJnBg8KlqzPm7y/8oszZTA5memnUa
6SuP70kvKRaTeA9f4j77QS3nlzvPO3krXsk+Sj5HZye3mF91Gc6M0z5TBDRk6z5j
wfrSBaLGkd/0wVE2czHC6ctnivVneVN9R83z4c1jHik3uJoAGSQsEHpVl17rU1ba
h6FfrV/2T604KKUSNQCX82U7q6izlkb8WSHK2IqEAAUc9++gscBH4tOedc7wWixO
WfIdYBUiKCxffVmchjvlxA==</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:KeyName>Dr. No</ds:KeyName>
 <ds:X509Data>
 <ds:X509SubjectName>CN=Andreas Matheus,OU=Secure Dimensions GmbH,O=Secure
Dimensions GmbH,L=Munich,ST=Bavaria,C=DE</ds:X509SubjectName>

<ds:X509Certificate>MIIDuTCCAqGgAwIBAgIEYpLJdjANBgkqhkiG9w0BAQsFADCBjDELMAkGA1UEBhMC
REUxEDAOBgNVBAgTB0JhdmFyaWExDzANBgNVBAcTBk11bmljaDEfMB0GA1UEChMW
U2VjdXJlIERpbWVuc2lvbnMgR21iSDEfMB0GA1UECxMWU2VjdXJlIERpbWVuc2lv
bnMgR21iSDEYMBYGA1UEAxMPQW5kcmVhcyBNYXRoZXVzMB4XDTE1MTAyNTE0NDEw
MVoXDTE2MDEyMzE0NDEwMVowgYwxCzAJBgNVBAYTAkRFMRAwDgYDVQQIEwdCYXZh
cmlhMQ8wDQYDVQQHEwZNdW5pY2gxHzAdBgNVBAoTFlNlY3VyZSBEaW1lbnNpb25z
IEdtYkgxHzAdBgNVBAsTFlNlY3VyZSBEaW1lbnNpb25zIEdtYkgxGDAWBgNVBAMT
D0FuZHJlYXMgTWF0aGV1czCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB
AJBxrjwhMmOGnSKT4DLsOx+R+c4dN3gA74/03NdsxUdy2r6QB65AvF8Rm3YF5pJy
Hzdrlf43IObjOHK2yRn6p0tXpc5yYwBGd3tZMGTkyj4qhqqy/ug4LxYy4HYfCXE/
ec9UOTCDu7vfkbvmEfg8V0M2DfT6t5XnvFZmkUkSAi4L4vQ9PJthsFLyJXq2nNlh
tOMQeBWxcOzbog6EBAB7qaUyumlrrIojksHd9Tb4Om/BIp+JxcocRjGmSq7XoKZ1
GuXmWXSnrc877AnET/+Kbea4zqH+Oo44zP2G0XdCCMiKtL7nxqIAfwucp3SEGtqH
XGNv61RGsqihQbtlbhRkprcCAwEAAaMhMB8wHQYDVR0OBBYEFIVLBZDvNUo/OX9F
MKRLz7OFaUXXMA0GCSqGSIb3DQEBCwUAA4IBAQCA7FkGI0EOkJPr4yjCT8HxJvAd
lzNW539tl/SVYe4ducBm4J523G6POKvz6kVHbS30J2HiNd2FoQL9s2DMPN2ag9Q3
myzI8E9x8dowNKhaupmTJI/Edneqnp7pr/8/o612qBXTf00T4j8QP9mZxUreqC+x
TCV9GCO0XuIVpBM6sGbEiFfjg0xLs3HO7kBHla78WAb8EyZGv9aoHCsqoIE+A/L9
e++xrY09TN/wjJKrv665iRF3XG+WHj0lrUvzlPZzNHbLykqSo48DhDc/JmaadiqZ
cNFF8NBHOLzicsSo+GpeEnSJBKnCYwxStWJ+dFWoHQxwyHrkn+Om+EiQ6/2w</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
</mb:BindingInformation>

The response is a NATO STANAG 4778 encoded XML instance document inside element
<mb:BindingInformation>. The entire response is digitally signed (<ds:Signature> element). Each
feature is included in the <mb:Data> element along with metadata. The response above contains two
encrypted metadata elements where the <mb:Metadata xml:id="STANAG4774"> element contains the
NATO STANAG 4774 metadata and the <mb:Metadata xml:id="FeatureType"
xmime:contentType="application/xml"> element contains the XML Schema for the data structure of
the included feature (DescribeFeatureType response with WFS 2.0). The data and the two metadata
elements are encrypted with different cipher keys. The references in the response can be resolved

78

via the Key Management Server (/dcs/{key_id}) endpoint as described above.

STANAG+JWS response

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogIkRyLiBObyIsICJjdHkiOiAiYXBwbGljYXRpb24vc3RhbmFnK2pzb2
4ifQ.ewogICAgInR5cGUiOiAiU1RBTkFHNDc3OCIsCiAgICAidGltc3RhbXAiOiAiMjAyMC0xMC0xMlQwOToxM
TozM1oiLAogICAgIm51bWJlclJldHVybmVkIjogMSwKICAgICJudW1iZXJNYXRjaGVkIjogNiwKICAgICJsaW5
rcyI6IFsKICAgICAgICB7CiAgICAgICAgICAgICJocmVmIjogImh0dHBzOlwvXC9vZ2Muc2VjdXJlLWRpbWVuc
2lvbnMuY29tXC9kY3NcL2NvbGxlY3Rpb25zXC9wb2lcL2l0ZW1zP2xpbWl0PTEmZj1zdGFuYWcrandzJmtleV9
jaGFsbGVuZ2U9a2V5X2NoYWxsZW5nZV9tZXRob2Q9IiwKICAgICAgICAgICAgInJlbCI6ICJzZWxmIiwKICAgI
CAgICAgICAgInR5cGUiOiAiYXBwbGljYXRpb25cL3N0YW5hZytqd3MiLAogICAgICAgICAgICAidGl0bGUiOiA
iVGhpcyBkb2N1bWVudCIKICAgICAgICB9LAogICAgICAgIHsKICAgICAgICAgICAgImhyZWYiOiAiaHR0cHM6X
C9cL29nYy5zZWN1cmUtZGltZW5zaW9ucy5jb21cL2Rjc1wvY29sbGVjdGlvbnNcL3BvaVwvaXRlbXM_Zj1zdGF
uYWcrandzJmxpbWl0PTEmb2Zmc2V0PTEma2V5X2NoYWxsZW5nZT1rZXlfY2hhbGxlbmdlX21ldGhvZD0iLAogI
CAgICAgICAgICAicmVsIjogIm5leHQiLAogICAgICAgICAgICAidHlwZSI6ICJhcHBsaWNhdGlvblwvc3RhbmF
nK2p3cyIsCiAgICAgICAgICAgICJ0aXRsZSI6ICJOZXh0IHBhZ2UiCiAgICAgICAgfSwKICAgICAgICB7CiAgI
CAgICAgICAgICJyZWwiOiAiYWx0ZXJuYXRlIiwKICAgICAgICAgICAgImhyZWYiOiAiaHR0cHM6XC9cL29nYy5
zZWN1cmUtZGltZW5zaW9ucy5jb21cL2Rjc1wvY29sbGVjdGlvbnNcL3BvaVwvaXRlbXM_Zj1zdGFuYWcrandzJ
mxpbWl0PTEmIiwKICAgICAgICAgICAgInR5cGUiOiAiYXBwbGljYXRpb25cL2dlbytqc29uIiwKICAgICAgICA
gICAgInRpdGxlIjogIlRoaXMgZG9jdW1lbnQgYXMgR2VvSlNPTiIKICAgICAgICB9LAogICAgICAgIHsKICAgI
CAgICAgICAgInJlbCI6ICJhbHRlcm5hdGUiLAogICAgICAgICAgICAiaHJlZiI6ICJodHRwczpcL1wvb2djLnN
lY3VyZS1kaW1lbnNpb25zLmNvbVwvZGNzXC9jb2xsZWN0aW9uc1wvcG9pXC9pdGVtcz9mPXN0YW5hZytqd3Mmb
GltaXQ9MSYiLAogICAgICAgICAgICAidHlwZSI6ICJhcHBsaWNhdGlvblwvZ2VvK2p3cyIsCiAgICAgICAgICA
gICJ0aXRsZSI6ICJUaGlzIGRvY3VtZW50IGFzIGRpZ2l0YWxseSBzaWduZWQgR2VvSlNPTiIKICAgICAgICB9L
AogICAgICAgIHsKICAgICAgICAgICAgInJlbCI6ICJhbHRlcm5hdGUiLAogICAgICAgICAgICAiaHJlZiI6ICJ
odHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwvZGNzXC9jb2xsZWN0aW9uc1wvcG9pXC9pdGVtc
z9mPXN0YW5hZytqd3MmbGltaXQ9MSYiLAogICAgICAgICAgICAidHlwZSI6ICJhcHBsaWNhdGlvblwvc3RhbmF
nK2dtbCIsCiAgICAgICAgICAgICJ0aXRsZSI6ICJUaGlzIGRvY3VtZW50IGFzIFNUQU5BRyArIEdNTCIKICAgI
CAgICB9LAogICAgICAgIHsKICAgICAgICAgICAgInJlbCI6ICJhbHRlcm5hdGUiLAogICAgICAgICAgICAiaHJ
lZiI6ICJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwvZGNzXC9jb2xsZWN0aW9uc1wvcG9pX
C9pdGVtcz9mPXN0YW5hZytqd3MmbGltaXQ9MSYiLAogICAgICAgICAgICAidHlwZSI6ICJhcHBsaWNhdGlvblw
veG1sK2dtbDtjb250ZW50PWdtbDtwcm9maWxlPVwiaHR0cDpcL1wvd3d3Lm9wZW5naXMubmV0XC9kZWZcL3Byb
2ZpbGVcL29nY1wvMi4wXC9nbWwtc2YyXCI7dmVyc2lvbj0zLjJcIiIsCiAgICAgICAgICAgICJ0aXRsZSI6ICJ
UaGlzIGRvY3VtZW50IGFzIEdNTCIKICAgICAgICB9LAogICAgICAgIHsKICAgICAgICAgICAgInJlbCI6ICJhb
HRlcm5hdGUiLAogICAgICAgICAgICAiaHJlZiI6ICJodHRwczpcL1wvb2djLnNlY3VyZS1kaW1lbnNpb25zLmN
vbVwvZGNzXC9jb2xsZWN0aW9uc1wvcG9pXC9pdGVtcz9mPXN0YW5hZytqd3MmbGltaXQ9MSYiLAogICAgICAgI
CAgICAidHlwZSI6ICJ0ZXh0XC9odG1sIiwKICAgICAgICAgICAgInRpdGxlIjogIlRoaXMgZG9jdW1lbnQgYXM
gSFRNTCIKICAgICAgICB9CiAgICBdLAogICAgIm9iamVjdHMiOiBbCiAgICAgICAgewogICAgICAgICAgICAiT
WV0YWRhdGEiOiB7CiAgICAgICAgICAgICAgICAiQ29uZmlkZW50aWFsaXR5SW5mb3JtYXRpb24iOiB7CiAgICA
gICAgICAgICAgICAgICAgIlBvbGljeUlkZW50aWZpZXIiOiAiVEIxNiIsCiAgICAgICAgICAgICAgICAgICAgI
kNsYXNzaWZpY2F0aW9uIjogInRvcF9zZWNyZXQiCiAgICAgICAgICAgICAgICB9LAogICAgICAgICAgICAgICA
gIkNyZWF0aW9uRGF0ZVRpbWUiOiAiMjAyMC0xMC0xMlQwOToxMTozM1oiCiAgICAgICAgICAgIH0sCiAgICAgI
CAgICAgICJEYXRhIjogImV5SmhiR2NpT2lBaVpHbHlJaXdnSW1WdVl5STZJQ0pCTWpVMlEwSkRMVWhUTlRFeUl
pd2dJbXRwWkNJNklDSmtPR1ptWTJNeU15MHdPVGRpTFRRMVltUXRZbU5sTVMweFpUYzFPRGxoWlRBMllUUWlmU
S4uazVEOW9XNmFDUGI5N0dxd1BsQm9BZy5LY3NWcnNVa1psYjBjakF5Yk44UVJjdWd4WlFPOEVDWFFsNW1HLWl
oMGNGZTRsSkNaUWo0bTFYR0dzV19VcENVUXIyQ25LRkx2NHNjZWZBc3ZZU1NXNEw2eGdUeGxRSE9jdl9XYmFqd
3RxUWZzR210RkdhRWtwU0piSkhjTlZYRktKYm1iVV9YaTZ0TDdHYnJqWV9rOXZjUXV1TlVXd3hNa1J5U2l0X1o
4M2p2VnkzMGYzSWtpV1hBZ0xlcGQ0a0xpVUcyNTN2c2xWR1ktM2dneU15WnZkTU02TzV3MEtRWm9MUlFvRGxVb
TlDcmJsTFRnUHRnOF96LXhuVVlUdFhHbHdqVEN2OXBKUWYyWVNLem9GaDBXRUxYZjJDZGJhNmxxRWh5TWJnX1F
rTU9SRlNqRkVSbE5iSnUtVjRmemJ0UjVzVEFmTHR6TDVUU1M5cnliNENvYmc4M0hNS0lTSlRBeDEwZTJxRTJPW
EFqa2pCM3JGdlJsRmF0dWpPQ0dkd3VHQk9tc1ZOMVZtaFNyTDBUUDNHRkdZYXhNSlRBa2lLdUdCQ2x3NEJESUR

79

FLlRuY1J6YlVsQUx6TkNCQm5YRFpTdVdRU0JnSnkzREZGUlpRN2diUFNhZjgiCiAgICAgICAgfQogICAgXQp9C
g.o3GEWjM37ydZGYovsABi8E8ECFjBNDojJgeHF3Pp-kS4yX0IFdDQENUdwFt1QHKifkeQG4-
sdAo8HfrcWIPdsXnWNtEdu5NGuCpzBNu7HbXdbTdDeCe4xuEnEO-
5Dy23kGTuYJKkj6QeQYE9YV81whA2tqjukUzPt0DIqC-pS-RDBs0K63GsZRZUtZCuGbn-5GcqKPZ-
OCl3nTqt8PDbN8QcKz2UK1jHoHmgOfGQRdbfqiN1NkN56f8glpPl2QkvoFsPMAVScGmL56-UHtDQgGF3O7dr-
H2q2WTPhuRikLRp9F8DVZv4yA3SP72MH9mzP4kKxbWZvx5ZFQE-NNrrgw

Decoding the JWT header shows that the algorithm for the digital signature is RS256 and the key
name is Dr. No. The cty (content type) is expressed to be STANAG+JSON.

JWT header

{
 "alg": "RS256",
 "kid": "Dr. No",
 "cty": "application/stanag+json"
}

JWT payload

{
 "type": "STANAG4778",
 "timstamp": "2020-10-12T09:11:33Z",
 "numberReturned": 1,
 "numberMatched": 6,
 "links": [
 {
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?limit=1&f=stanag+jws&key_challenge=key_challenge_method=",
 "rel": "self",
 "type": "application\/stanag+jws",
 "title": "This document"
 },
 {
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&offset=1&key_challenge=key_challenge_method=",
 "rel": "next",
 "type": "application\/stanag+jws",
 "title": "Next page"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&",
 "type": "application\/geo+json",
 "title": "This document as GeoJSON"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi

80

\/items?f=stanag+jws&limit=1&",
 "type": "application\/geo+jws",
 "title": "This document as digitally signed GeoJSON"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&",
 "type": "application\/stanag+gml",
 "title": "This document as STANAG + GML"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&",
 "type": "application\/xml+gml;content=gml;profile=\"http:\/
\/www.opengis.net\/def\/profile\/ogc\/2.0\/gml-sf2\";version=3.2\"",
 "title": "This document as GML"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&",
 "type": "text\/html",
 "title": "This document as HTML"
 }
],
 "objects": [
 {
 "Metadata": {
 "ConfidentialityInformation": {
 "PolicyIdentifier": "TB16",
 "Classification": "top_secret"
 },
 "CreationDateTime": "2020-10-12T09:11:33Z"
 },
 "Data":
"eyJhbGciOiAiZGlyIiwgImVuYyI6ICJBMjU2Q0JDLUhTNTEyIiwgImtpZCI6ICJkOGZmY2MyMy0wOTdiLTQ1Y
mQtYmNlMS0xZTc1ODlhZTA2YTQifQ..k5D9oW6aCPb97GqwPlBoAg.KcsVrsUkZlb0cjAybN8QRcugxZQO8ECX
Ql5mG-
ih0cFe4lJCZQj4m1XGGsW_UpCUQr2CnKFLv4scefAsvYSSW4L6xgTxlQHOcv_WbajwtqQfsGmtFGaEkpSJbJHc
NVXFKJbmbU_Xi6tL7GbrjY_k9vcQuuNUWwxMkRySit_Z83jvVy30f3IkiWXAgLepd4kLiUG253vslVGY-
3ggyMyZvdMM6O5w0KQZoLRQoDlUm9CrblLTgPtg8_z-
xnUYTtXGlwjTCv9pJQf2YSKzoFh0WELXf2Cdba6lqEhyMbg_QkMORFSjFERlNbJu-
V4fzbtR5sTAfLtzL5TSS9ryb4Cobg83HMKISJTAx10e2qE2OXAjkjB3rFvRlFatujOCGdwuGBOmsVN1VmhSrL0
TP3GFGYaxMJTAkiKuGBClw4BDIDE.TncRzbUlALzNCBBnXDZSuWQSBgJy3DFFRZQ7gbPSaf8"
 }
]
}

STANAG+JSON response

81

{
 "type": "STANAG4778",
 "timstamp": "2020-10-12T08:59:11Z",
 "numberReturned": 1,
 "numberMatched": 6,
 "links": [
 {
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?limit=1&f=stanag+json&key_challenge=key_challenge_method=",
 "rel": "self",
 "type": "application\/stanag+json",
 "title": "This document"
 },
 {
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&offset=1&key_challenge=key_challenge_method=",
 "rel": "next",
 "type": "application\/stanag+json",
 "title": "Next page"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
 "type": "application\/geo+json",
 "title": "This document as GeoJSON"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
 "type": "application\/geo+jws",
 "title": "This document as digitally singed GeoJSON"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
 "type": "application\/stanag+jws",
 "title": "This document as digitally signed STANAG in JSON"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
 "type": "application\/stanag+gml",
 "title": "This document as STANAG + GML"
 },
 {
 "rel": "alternate",

82

 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
 "type": "application\/xml+gml;content=gml;profile=\"http:\/
\/www.opengis.net\/def\/profile\/ogc\/2.0\/gml-sf2\";version=3.2\"",
 "title": "This document as GML"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
 "type": "text\/html",
 "title": "This document as HTML"
 }
],
 "objects": [
 {
 "Metadata": {
 "ConfidentialityInformation": {
 "PolicyIdentifier": "TB16",
 "Classification": "top_secret"
 },
 "CreationDateTime": "2020-10-12T08:59:11Z"
 },
 "Data":
"eyJhbGciOiAiZGlyIiwgImVuYyI6ICJBMjU2Q0JDLUhTNTEyIiwgImtpZCI6ICI4N2RjODE0Yi02N2E2LTQwY
jgtOWMzNi00NDZiMzkwZjk1YmIifQ..qrZPZESremlwevxM0XemgA.ru9PkdcEveUMPiyNVau6BM36tv2c1fEK
Nz0bMPseTf1djcsHdJ13zN8d3dRbZwC6hgcGkaGES6Qo8OjjQeq1rRWhGG_2FVb1ttJmJcKA4orBrsPEH96aP8
yz-0lACHAhKXIX_xw9efvpTXkpVyiubfGHVe6--wrC-IH_WOTSZW-tKOkAz8ud92oNZKLh4O1xT3RmVb0uW-
w_BNcOaYBVubEBw_nII6J9ZFW30haHR32vAdaRhESYSats8jicVRNFvc5-MlK-
t4MNs9OxqI7OJzZ5KpflAXuBg6v1tzI6yuIQrqazcpPdUGpkVZi4b5CfbFK1Kjyz040Ld7zKsJMIXgDxTYB7Sl
Pq4xRCCvaCyypzMAIlYbR5Uo-Aqlzkn_O8Qm1IDfA07iqJCInpcVmEdTPCniOuxugbWQYpqtRPL-
Q.izLY7AmM1osMOnwI7CU7Sr-VoxwgNdSATrdtwp7IUZo"
 }
]
}

The response includes a JSON data structure with an array of (data) objects where each element
contains a Metadata and a Data element. The Metadata element above contains the unencrypted
description mimicking the STANAG 4774 structure. The Data element is in JWE encrypted format
using the compact serialization. Decoding the header shows:

{
 "alg": "dir",
 "enc": "A256CBC-HS512",
 "kid": "87dc814b-67a6-40b8-9c36-446b390f95bb"
}

The alg=dir denotes direct encoding of the data with a symmetric cipher key where the key is not
included inline. This results in the two dots (..) separating the JWE header and initialization vector.

83

For inline cipher keys, the encrypted key would be included between those dots. The enc=A256CBC-
HS512 defines the cipher key algorithm (A256CBC) and the hashing algorithm (HS512) to compute
the authentication tag. The actual key kid=87dc814b-67a6-40b8-9c36-446b390f95bb must be obtained
from the Key Management Server.

GeoJSON+JWS response

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogIkRyLiBObyIsICJjdHkiOiAiYXBwbGljYXRpb24vZ2VvK2pzb24ifQ
.ewogICAgInR5cGUiOiAiRmVhdHVyZUNvbGxlY3Rpb24iLAogICAgImxpbmtzIjogWwogICAgICAgIHsKICAgI
CAgICAgICAgImhyZWYiOiAiaHR0cHM6XC9cL29nYy5zZWN1cmUtZGltZW5zaW9ucy5jb21cL2Rjc1wvY29sbGV
jdGlvbnNcL3BvaVwvaXRlbXM_Zj1nZW8randzJmtleV9jaGFsbGVuZ2U9a2V5X2NoYWxsZW5nZV9tZXRob2Q9I
iwKICAgICAgICAgICAgInJlbCI6ICJzZWxmIiwKICAgICAgICAgICAgInR5cGUiOiAiYXBwbGljYXRpb25cL2d
lbytqd3MiLAogICAgICAgICAgICAidGl0bGUiOiAiVGhpcyBkb2N1bWVudCIKICAgICAgICB9LAogICAgICAgI
HsKICAgICAgICAgICAgInJlbCI6ICJhbHRlcm5hdGUiLAogICAgICAgICAgICAiaHJlZiI6ICJodHRwczpcL1w
vb2djLnNlY3VyZS1kaW1lbnNpb25zLmNvbVwvZGNzXC9jb2xsZWN0aW9uc1wvcG9pXC9pdGVtcz9mPWp3cyYiL
AogICAgICAgICAgICAidHlwZSI6ICJhcHBsaWNhdGlvblwvZ2VvK2pzb24iLAogICAgICAgICAgICAidGl0bGU
iOiAiVGhpcyBkb2N1bWVudCBhcyBHZW9KU09OIgogICAgICAgIH0sCiAgICAgICAgewogICAgICAgICAgICAic
mVsIjogImFsdGVybmF0ZSIsCiAgICAgICAgICAgICJocmVmIjogImh0dHBzOlwvXC9vZ2Muc2VjdXJlLWRpbWV
uc2lvbnMuY29tXC9kY3NcL2NvbGxlY3Rpb25zXC9wb2lcL2l0ZW1zP2Y9andzJiIsCiAgICAgICAgICAgICJ0e
XBlIjogImFwcGxpY2F0aW9uXC9zdGFuYWcranNvbiIsCiAgICAgICAgICAgICJ0aXRsZSI6ICJUaGlzIGRvY3V
tZW50IGFzIFNUQU5BRyArIEpTT04iCiAgICAgICAgfSwKICAgICAgICB7CiAgICAgICAgICAgICJyZWwiOiAiY
Wx0ZXJuYXRlIiwKICAgICAgICAgICAgImhyZWYiOiAiaHR0cHM6XC9cL29nYy5zZWN1cmUtZGltZW5zaW9ucy5
jb21cL2Rjc1wvY29sbGVjdGlvbnNcL3BvaVwvaXRlbXM_Zj1qd3MmIiwKICAgICAgICAgICAgInR5cGUiOiAiY
XBwbGljYXRpb25cL3N0YW5hZytqd3MiLAogICAgICAgICAgICAidGl0bGUiOiAiVGhpcyBkb2N1bWVudCBhcyB
kaWdpdGFsbHkgc2lnbmVkIFNUQU5BRyBpbiBKU09OIgogICAgICAgIH0sCiAgICAgICAgewogICAgICAgICAgI
CAicmVsIjogImFsdGVybmF0ZSIsCiAgICAgICAgICAgICJocmVmIjogImh0dHBzOlwvXC9vZ2Muc2VjdXJlLWR
pbWVuc2lvbnMuY29tXC9kY3NcL2NvbGxlY3Rpb25zXC9wb2lcL2l0ZW1zP2Y9andzJiIsCiAgICAgICAgICAgI
CJ0eXBlIjogImFwcGxpY2F0aW9uXC9zdGFuYWcrZ21sIiwKICAgICAgICAgICAgInRpdGxlIjogIlRoaXMgZG9
jdW1lbnQgYXMgU1RBTkFHICsgR01MIgogICAgICAgIH0sCiAgICAgICAgewogICAgICAgICAgICAicmVsIjogI
mFsdGVybmF0ZSIsCiAgICAgICAgICAgICJocmVmIjogImh0dHBzOlwvXC9vZ2Muc2VjdXJlLWRpbWVuc2lvbnM
uY29tXC9kY3NcL2NvbGxlY3Rpb25zXC9wb2lcL2l0ZW1zP2Y9andzJiIsCiAgICAgICAgICAgICJ0eXBlIjogI
mFwcGxpY2F0aW9uXC94bWwrZ21sO2NvbnRlbnQ9Z21sO3Byb2ZpbGU9XCJodHRwOlwvXC93d3cub3Blbmdpcy5
uZXRcL2RlZlwvcHJvZmlsZVwvb2djXC8yLjBcL2dtbC1zZjJcIjt2ZXJzaW9uPTMuMlwiIiwKICAgICAgICAgI
CAgInRpdGxlIjogIlRoaXMgZG9jdW1lbnQgYXMgR01MIgogICAgICAgIH0sCiAgICAgICAgewogICAgICAgICA
gICAicmVsIjogImFsdGVybmF0ZSIsCiAgICAgICAgICAgICJocmVmIjogImh0dHBzOlwvXC9vZ2Muc2VjdXJlL
WRpbWVuc2lvbnMuY29tXC9kY3NcL2NvbGxlY3Rpb25zXC9wb2lcL2l0ZW1zP2Y9andzJiIsCiAgICAgICAgICA
gICJ0eXBlIjogInRleHRcL2h0bWwiLAogICAgICAgICAgICAidGl0bGUiOiAiVGhpcyBkb2N1bWVudCBhcyBIV
E1MIgogICAgICAgIH0KICAgIF0sCiAgICAibnVtYmVyUmV0dXJuZWQiOiA2LAogICAgIm51bWJlck1hdGNoZWQ
iOiA2LAogICAgInRpbWVTdGFtcCI6ICIyMDIwLTEwLTEyVDA4OjM2OjQ4WiIsCiAgICAiZmVhdHVyZXMiOiBbC
iAgICAgICAgewogICAgICAgICAgICAidHlwZSI6ICJGZWF0dXJlIiwKICAgICAgICAgICAgImlkIjogInBvaS4
xIiwKICAgICAgICAgICAgImdlb21ldHJ5IjogewogICAgICAgICAgICAgICAgInR5cGUiOiAiUG9pbnQiLAogI
CAgICAgICAgICAgICAgImNvb3JkaW5hdGVzIjogWwogICAgICAgICAgICAgICAgICAgIC03NC4wMTA1LAogICA
gICAgICAgICAgICAgICAgIDQwLjcwNzYKICAgICAgICAgICAgICAgIF0KICAgICAgICAgICAgfSwKICAgICAgI
CAgICAgInByb3BlcnRpZXMiOiB7CiAgICAgICAgICAgICAgICAiTkFNRSI6ICJtdXNlYW0iLAogICAgICAgICA
gICAgICAgIlRIVU1CTkFJTCI6ICJwaWNzXC8yMjAzNzgyNy1UaS5qcGciLAogICAgICAgICAgICAgICAgIk1BS
U5QQUdFIjogInBpY3NcLzIyMDM3ODI3LUwuanBnIgogICAgICAgICAgICB9CiAgICAgICAgfSwKICAgICAgICB
7CiAgICAgICAgICAgICJ0eXBlIjogIkZlYXR1cmUiLAogICAgICAgICAgICAiaWQiOiAicG9pLjIiLAogICAgI
CAgICAgICAiZ2VvbWV0cnkiOiB7CiAgICAgICAgICAgICAgICAidHlwZSI6ICJQb2ludCIsCiAgICAgICAgICA
gICAgICAiY29vcmRpbmF0ZXMiOiBbCiAgICAgICAgICAgICAgICAgICAgLTc0LjAxMDgsCiAgICAgICAgICAgI
CAgICAgICAgNDAuNzA3NQogICAgICAgICAgICAgICAgXQogICAgICAgICAgICB9LAogICAgICAgICAgICAicHJ
vcGVydGllcyI6IHsKICAgICAgICAgICAgICAgICJOQU1FIjogInN0b2NrIiwKICAgICAgICAgICAgICAgICJUS

84

FVNQk5BSUwiOiAicGljc1wvMjIwMzc4MjktVGkuanBnIiwKICAgICAgICAgICAgICAgICJNQUlOUEFHRSI6ICJ
waWNzXC8yMjAzNzgyOS1MLmpwZyIKICAgICAgICAgICAgfQogICAgICAgIH0sCiAgICAgICAgewogICAgICAgI
CAgICAidHlwZSI6ICJGZWF0dXJlIiwKICAgICAgICAgICAgImlkIjogInBvaS4zIiwKICAgICAgICAgICAgImd
lb21ldHJ5IjogewogICAgICAgICAgICAgICAgInR5cGUiOiAiUG9pbnQiLAogICAgICAgICAgICAgICAgImNvb
3JkaW5hdGVzIjogWwogICAgICAgICAgICAgICAgICAgIC03NC4wMTA1LAogICAgICAgICAgICAgICAgICAgIDQ
wLjcwOTQKICAgICAgICAgICAgICAgIF0KICAgICAgICAgICAgfSwKICAgICAgICAgICAgInByb3BlcnRpZXMiO
iB7CiAgICAgICAgICAgICAgICAiTkFNRSI6ICJhcnQiLAogICAgICAgICAgICAgICAgIlRIVU1CTkFJTCI6ICJ
waWNzXC8yMjAzNzg1Ni1UaS5qcGciLAogICAgICAgICAgICAgICAgIk1BSU5QQUdFIjogInBpY3NcLzIyMDM3O
DU2LUwuanBnIgogICAgICAgICAgICB9CiAgICAgICAgfSwKICAgICAgICB7CiAgICAgICAgICAgICJ0eXBlIjo
gIkZlYXR1cmUiLAogICAgICAgICAgICAiaWQiOiAicG9pLjQiLAogICAgICAgICAgICAiZ2VvbWV0cnkiOiB7C
iAgICAgICAgICAgICAgICAidHlwZSI6ICJQb2ludCIsCiAgICAgICAgICAgICAgICAiY29vcmRpbmF0ZXMiOiB
bCiAgICAgICAgICAgICAgICAgICAgLTc0LjAwODYsCiAgICAgICAgICAgICAgICAgICAgNDAuNzExOQogICAgI
CAgICAgICAgICAgXQogICAgICAgICAgICB9LAogICAgICAgICAgICAicHJvcGVydGllcyI6IHsKICAgICAgICA
gICAgICAgICJOQU1FIjogImxveCIsCiAgICAgICAgICAgICAgICAiVEhVTUJOQUlMIjogInBpY3NcLzIyMDM3O
Dg0LVRpLmpwZyIsCiAgICAgICAgICAgICAgICAiTUFJTlBBR0UiOiAicGljc1wvMjIwMzc4ODQtTC5qcGciCiA
gICAgICAgICAgIH0KICAgICAgICB9LAogICAgICAgIHsKICAgICAgICAgICAgInR5cGUiOiAiRmVhdHVyZSIsC
iAgICAgICAgICAgICJpZCI6ICJwb2kuNSIsCiAgICAgICAgICAgICJnZW9tZXRyeSI6IHsKICAgICAgICAgICA
gICAgICJ0eXBlIjogIlBvaW50IiwKICAgICAgICAgICAgICAgICJjb29yZGluYXRlcyI6IFsKICAgICAgICAgI
CAgICAgICAgICAtNzQuMDExOCwKICAgICAgICAgICAgICAgICAgICA0MC43MDg1CiAgICAgICAgICAgICAgICB
dCiAgICAgICAgICAgIH0sCiAgICAgICAgICAgICJwcm9wZXJ0aWVzIjogewogICAgICAgICAgICAgICAgIk5BT
UUiOiAiY2h1cmNoIiwKICAgICAgICAgICAgICAgICJUSFVNQk5BSUwiOiAicGljc1wvMjIwMzc4MzktVGkuanB
nIiwKICAgICAgICAgICAgICAgICJNQUlOUEFHRSI6ICJwaWNzXC8yMjAzNzgzOS1MLmpwZyIKICAgICAgICAgI
CAgfQogICAgICAgIH0sCiAgICAgICAgewogICAgICAgICAgICAidHlwZSI6ICJGZWF0dXJlIiwKICAgICAgICA
gICAgImlkIjogInBvaS42IiwKICAgICAgICAgICAgImdlb21ldHJ5IjogewogICAgICAgICAgICAgICAgInR5c
GUiOiAiUG9pbnQiLAogICAgICAgICAgICAgICAgImNvb3JkaW5hdGVzIjogWwogICAgICAgICAgICAgICAgICA
gIC03NC4wMDE1LAogICAgICAgICAgICAgICAgICAgIDQwLjcxOTkKICAgICAgICAgICAgICAgIF0KICAgICAgI
CAgICAgfSwKICAgICAgICAgICAgInByb3BlcnRpZXMiOiB7CiAgICAgICAgICAgICAgICAiTkFNRSI6ICJmaXJ
lIiwKICAgICAgICAgICAgICAgICJUSFVNQk5BSUwiOiAicGljc1wvMjg2NDA5ODQtVGkuanBnIiwKICAgICAgI
CAgICAgICAgICJNQUlOUEFHRSI6ICJwaWNzXC8yODY0MDk4NC1MLmpwZyIKICAgICAgICAgICAgfQogICAgICA
gIH0KICAgIF0KfQo.g_PI7SdkdZEwdDqn50p98FjPyf9wFdQm_v_W4qCGYB99EfzU_v7nAw0EyKmWsXNoLVe4F
-Jph8O4ULIjYmWo8YHLvjrlbnuNfUUe_BPxdHhS5mdDKDGpS_KBaXEiPsD06hQ_E0YpCDP0uNIT2nOKeAcB
-kKUBlGSi
-5xShfNUF0OgqHZG5BMhIrb7TMClFqOA2YzyKmygLPDdiSYLBnSo5kauvJtG7VOFXkiQK8eRJNe965rOahIUWw
4Pb1bo_RIh6WbpvY2ruThJJb_TiFsRhQm_epEXKu5fse2xgcG4Hq9X_3JNo9Xva9KI7IrWhD1nP9j2WBgj4-
kEC2OhXoUyg

Response Header decoded

{
"alg": "RS256",
"kid": "Dr. No",
"cty": "application/geo+json"
}

Response Body decoded

{
 "type": "FeatureCollection",
 "links": [
 {

85

 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=geo+jws&key_challenge=key_challenge_method=",
 "rel": "self",
 "type": "application\/geo+jws",
 "title": "This document"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
 "type": "application\/geo+json",
 "title": "This document as GeoJSON"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
 "type": "application\/stanag+json",
 "title": "This document as STANAG + JSON"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
 "type": "application\/stanag+jws",
 "title": "This document as digitally signed STANAG in JSON"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
 "type": "application\/stanag+gml",
 "title": "This document as STANAG + GML"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
 "type": "application\/xml+gml;content=gml;profile=\"http:\/
\/www.opengis.net\/def\/profile\/ogc\/2.0\/gml-sf2\";version=3.2\"",
 "title": "This document as GML"
 },
 {
 "rel": "alternate",
 "href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
 "type": "text\/html",
 "title": "This document as HTML"
 }
],
 "numberReturned": 6,

86

 "numberMatched": 6,
 "timeStamp": "2020-10-12T08:36:48Z",
 "features": [
 {
 "type": "Feature",
 "id": "poi.1",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -74.0105,
 40.7076
]
 },
 "properties": {
 "NAME": "museam",
 "THUMBNAIL": "pics\/22037827-Ti.jpg",
 "MAINPAGE": "pics\/22037827-L.jpg"
 }
 },
 {
 "type": "Feature",
 "id": "poi.2",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -74.0108,
 40.7075
]
 },
 "properties": {
 "NAME": "stock",
 "THUMBNAIL": "pics\/22037829-Ti.jpg",
 "MAINPAGE": "pics\/22037829-L.jpg"
 }
 },
 {
 "type": "Feature",
 "id": "poi.3",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -74.0105,
 40.7094
]
 },
 "properties": {
 "NAME": "art",
 "THUMBNAIL": "pics\/22037856-Ti.jpg",
 "MAINPAGE": "pics\/22037856-L.jpg"
 }
 },

87

 {
 "type": "Feature",
 "id": "poi.4",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -74.0086,
 40.7119
]
 },
 "properties": {
 "NAME": "lox",
 "THUMBNAIL": "pics\/22037884-Ti.jpg",
 "MAINPAGE": "pics\/22037884-L.jpg"
 }
 },
 {
 "type": "Feature",
 "id": "poi.5",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -74.0118,
 40.7085
]
 },
 "properties": {
 "NAME": "church",
 "THUMBNAIL": "pics\/22037839-Ti.jpg",
 "MAINPAGE": "pics\/22037839-L.jpg"
 }
 },
 {
 "type": "Feature",
 "id": "poi.6",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -74.0015,
 40.7199
]
 },
 "properties": {
 "NAME": "fire",
 "THUMBNAIL": "pics\/28640984-Ti.jpg",
 "MAINPAGE": "pics\/28640984-L.jpg"
 }
 }
]
}

88

A.5.2. OpenAPI

The DCS Server’s API is described using OpenAPI v3: https://ogc.secure-dimensions.com/dcs/api/

Figure 40. DCS Server described in OpenAPI

Some data endpoints are protected as illustrated below.

89

https://ogc.secure-dimensions.com/dcs/api/

Figure 41. DCS Server Data endpoints described in OpenAPI

Fetching features via the OGC API - Features endpoint for a protected feature type requires to
provide a valid access token (via the lock) and to submit two additional parameters, not common to
OGC API:

• key_challenge is the (optionally hashed) one-time secret that allows the client in later
communication with the Key Management Server to prove ownership of the cipher keys that
will be created and registered by the DCS for the request.

• key_challenge_method is the hashing method to be used to verify the key_challenge in later
communication with the Key Management Server. When using plain, the key_challenge and
key_verifier values are identical.

The following is an example request leveraging Curl:

90

curl -X GET "https://ogc.secure-
dimensions.com/dcs/collections/poi/items?key_challenge=secret&key_challenge_method=pla
in&limit=10&crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84&bbox-
crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2FOGC%2F1.3%2FCRS84" -H "accept:
application/stanag+json" -H "Authorization: Bearer
adef6389a31d65cadbc024d8208777648c4cd6ed"

A.6. Conclusions
The DCS Server and the Key Management Server implemented for Testbed-16 demonstrate the
ability to encrypt geospatial data and metadata separately as denoted in NATO STANAG 4778. The
implementation illustrates the use of OGC API Features returning STANAG 4778 and 4774 encrypted
data in XML and JSON encoding. Data is encrypted from a clear data source (Geoserver default
data) with different cipher key strength, depending on the fictitious classification label of the
feature type. The cipher keys created by the DCS Server can be obtained with the client application
via the key identifier. Access control at the Key Management Server ensures that only a legitimate
user / client combination can fetch the cipher key to decrypt the data or to delete (inactivate) a
cipher key.

The Key Management Server supports encrypted responses to ensure data centric security at the
highest level. This requires the use of public keys that can be registered by a user, client or the DCS
server.

To ensure that all components (client, DCS server and Key Management Server) are able to share a
common security context, Bearer access tokens are used from a common Authorization Server as
defined in RFC 6750. The use of OAuth2 and OpenID Connect interfaces ensure an easy-to-use API as
many SDKs exist in various programming languages.

91

Appendix B: Engineering Aspects for D146
This annex introduces the engineering aspects of the DCS component D146 (Key Management
Server) implemented for Testbed-16 by Helyx Secure Information Systems Limited. In particular it
describes the architecture of the Key Management Server (KMS) and its interactions with clients.

B.1. Overview
Helyx decided to take an existing standard for key management services as a starting point for the
implementation of a KMS for DCS. Given the likely scenarios where DCS systems may be
implemented, it was felt that basing the KMS on an implementation of the OASIS Key Management
Interoperability Protocol (KMIP) Specification 2.x was of particular interest, given the strong
protection for keys afforded by KMIP-compliant Servers. KMIP defines standard interfaces for both
clients and servers and categorizes them in terms of basic and advanced cryptographic clients and
servers. As this is a research task, a hardware KMIP server was not available to the team, so a
software implementation in the form of PyKMIP Server was selected as the back-end key
management server with a database.

As well as providing a Server module, PyKMIP also provides a Client module that simplifies the
interactions with a KMIP Server. Client and Server communications are protected using mutually
authenticated TLS. This client is used as part of a Python Flask application that uses the Connexion
framework that handles HTTP requests based on OpenAPI Specification of the API described in
YAML format. Connexion maps the endpoints to our underlying Python functions; this is preferable
to other tools that generate the specification based on the underlying Python code. Connexion also
validates requests and endpoint parameters automatically, based on the specification, and supports
API versioning as well as providing a Web Swagger Console UI.

Figure 42. KMS architecture overview

92

B.2. Key Management Server (KMS)
The implementation of the interface and functionality for the KMS is based on the requirements
derived from the mobile / server use case. A number of different interface categories exist:

• Managing symmetric keys that can be used to encrypt/decrypt data and metadata

• Encrypt and MAC data and decrypt encrypted data

• Managing RSA key pairs that can be used to sign encrypted data.

B.2.1. Managing Symmetric Keys

The current implementation allows a client to create, read and delete a symmetric key.

Figure 43. Symmetric keys overview

B.2.1.1. OpenAPI Implementation

To create a symmetric key, the KMS requires an algorithm and an appropriate length for that key.
The KMS also allows giving a name (an identifier) to the key being created and an intended usage
for that key. If the user intends to use the other functionality of the KMS then a usage must be
supplied in line with the expected use of the key.

The return value of this endpoint is a JWK containing only the key ID.

93

Figure 44. Create symmetric key

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/key?algorithm=AES&length=128&name=key_1&usage=ENCRYPT,DECRYPT" \
 -H "accept: application/json" \
 -H "Content-Type: application/json" \
 -d "{\"symmetric_key\":\"string\"}"

To elicit a response similar to the following:

{
 "kid": "20123"
}

B.2.1.2. Get key

The symmetric key’s ID is required in order to get the key as a JWK. Within that JWK there is a use
parameter in line with RFC 7517.

94

Figure 45. Get symmetric key

Alternatively send a cURL request similar to the following:

curl -X GET "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/key/20123?wrapping_id=&wrapping_method=" \
 -H "accept: application/json"

To elicit a response similar to the following:

{
 "k": "zdKgK3iVW42X-OrNbJ98PQ",
 "kid": "20123",
 "kty": "oct",
 "use": "enc"
}

B.2.1.3. Delete key

This only requires the key ID of the symmetric key to be deleted and will return an empty 204
response if successful.

Figure 46. Delete symmetric key

Alternatively send a cURL request similar to the following:

95

curl -X DELETE "https://kms.example.ogc.org/Helyx-SIS/KMS/1.0.0/key/20123" \
 -H "accept: */*"

B.2.2. Managing RSA Key Pairs

The current implementation allows a client to create an RSA key pair, as well as to read and delete
their public and private key components.

Figure 47. Asymmetric keys overview

B.2.2.1. OpenAPI Implementation

Creating a key pair requires the algorithm and an appropriate length of the key. The server also
allows names to be specified for each key and an intended usage for each key. If the user wants to
use other functionality of the KMS, then the usage parameter should be supplied for the intended
use of the key.

The KMS will return JWKS containing both keys created. The first key will be public key and the
second key will be the private key.

96

Figure 48. Create asymmetric key

Alternatively send a cURL request similar to the following:

97

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/key_pair?algorithm=RSA&length=2048&public_key_name=public_key_1&private_
key_name=private_key_1&public_key_usage=VERIFY&private_key_usage=SIGN" \
 -H "accept: application/json" \
 -H "Content-Type: application/json" \
 -d
"{\"keys\":[{\"d\":\"string\",\"dp\":\"string\",\"dq\":\"string\",\"e\":\"string\",\"k
\":\"string\",\"kid\":\"string\",\"kty\":\"string\",\"n\":\"string\",\"p\":\"string\",
\"q\":\"string\",\"qi\":\"string\"}]}"

To elicit a response similar to the following:

{
 "keys": [
 {
 "kid": "21828"
 },
 {
 "kid": "21829"
 }
]
}

B.2.2.2. Get public key

The public key’s ID is required in order to get the key as a JWK. Within that JWK there is a use
parameter in line with RFC 7517.

Figure 49. Get public key

Alternatively send a cURL request similar to the following:

98

curl -X GET "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/public_key/21828?wrapping_id=&wrapping_method=" \
 -H "accept: application/json"

To elicit a response similar to the following:

{
 "e": "AQAB",
 "kid": "21828",
 "kty": "RSA",
 "n": "t6dZ02wgn19uZdgQT9qH5a3k_Bgch-4kmwtklYg8GYGEf29o2O0CQ-
oBR7OfgpyOasqpsEi3FIdEJ1rioVfepThtBnRy-mqiziJi6mrajfIxGeNSdGg-
q2IxMwH23Vh8icSjlZt90JvVP6GLKTNGjOkidZ6k5vbdExa-
n588y9hmHs6rpb1XyUbOsd7Uit_KHXkHMo_3DV52i0OyUw0cuIIuGWJeGE12CvRYBvoWbLgcI81ViduUz_PZom
WZ40D98J1-
BogZfxMEc4fY5li9B4Tx3W0CT54RnvpXv3RUW5aazVC6VtXJNE_EXGroeZKGa3m4yx2uwvgnwC65TivCxg",
 "use": "sig"
}

B.2.2.3. Delete public key

This only requires the key ID of the public key to be deleted and will return an empty 204 response
if successful.

Figure 50. Delete public key

Alternatively send a cURL request similar to the following:

curl -X DELETE "https://kms.example.ogc.org/Helyx-SIS/KMS/1.0.0/public_key/21828" \
 -H "accept: */*"

B.2.2.4. Get private key

The private key’s ID is required in order to get the key as a JWK. Within that JWK there is a use
parameter in line with RFC 7517.

99

Figure 51. Get private key

Alternatively send a cURL request similar to the following:

curl -X GET "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/private_key/21829?wrapping_id=&wrapping_method=" \
 -H "accept: application/json"

To elicit a response similar to the following:

100

{
 "d": "wUVuMlFqG5F8aJllswpRHy4JUtPrKDD8vU64zswZtBkrkEHC_hCFz2raG0d-
XvilaDc3L6_xn6_ynJGio8Z4Z0L_9WKRMPBABkA4V1Wvk_qtoTHMlYxxP7zSqw2lWvob0EP0l19_ak0dDtYkgN
g5EVQEnzYhBu7zltyi3DpYD2gt_SnJZa-EyuTUvFiVtvj9Qhjigz_0Q03O3xgXcf-
Io_sx6mpXRD2W9BuMW3K7ml6-7b0RO2Zt55GKf30b3OY0poKO4ZK4yuClAjPL0vshFUUXxHKLNXeGhE5feXl-
lFjewtO3Lky3q4ZToOfvrALQKHCvoaiBzSooz7W-Xt_8GQ",
 "dp":
"4VZ66NrGo8pcFVQbfavArGkwXxxy99rA1MQ810895I79pezQFsyNuWFwu33oHpSb3950YHdDEfbvj5MOqsvNk
UF4irwVVkh87D8q8rPLSfI9mj3F_gOwAlYv4ulHye6Upj_tLmRQ67shYC1vLqOSfMZ2Rx-
PCO5mqROFE21YHAU",
 "dq":
"qyFcBR4KmbGMtx6R6cwq1WvbCm7gYAzY7n9W37rMSbZr6mD7stb6whQBLEGjVBA9lYjXjKkkqcN8XQtZMaoYa
bcdIC2NyJbkTqmPQUyiSVeDtmYH1FNo35um42zU-XusLksZGfJv3iT-
OaBTIWveBt7KzPsLrCXy_YZplSSuj3U",
 "e": "AQAB",
 "kid": "21829",
 "kty": "RSA",
 "n": "t6dZ02wgn19uZdgQT9qH5a3k_Bgch-4kmwtklYg8GYGEf29o2O0CQ-
oBR7OfgpyOasqpsEi3FIdEJ1rioVfepThtBnRy-mqiziJi6mrajfIxGeNSdGg-
q2IxMwH23Vh8icSjlZt90JvVP6GLKTNGjOkidZ6k5vbdExa-
n588y9hmHs6rob1XyUbOsd7Uit_KHXkHMo_3DV52i0OyUw0cuIIuGWJeGE12CvRYBvoWbLgcI81ViduUz_PZom
WZ40D98J1-
BogZfxMEc4fY5li9B4Tx3W0CT54RnvpXv3RUW5aazVC6VtXJNE_EXGroeZKGa3m4yx2uwvgnwC65TivCxg",
 "p": "Vy6x5qgcuJEomw8Ivy1dC73sgZ3psvCapUjIgjyxD9iRvJc6Y7F4-eCwqND_U6w1g7t4gqfT4-
I0qchYYZ7zHrL3Q5Fq_h1iHOAsHklifFTNMW7pMJJKwZYkp0XuSVdEXjgkllWVL7nx79oSFSL6zdAOR4gIWBL7
jJz6XAcwz_o",
 "q": "obUY4JCTXXKlNw6XMZ2YgB8mIe3I7NL4Ke2I825T_gy6J-
7tp5aDt3ChxJ7Md6iUN5zH6PVGhSqVLAxwKTUbGj2A6yKFaFQGxAQoEDLZJw_Cc-uL8l-
s1cyTxaXPqLIq9ptC-8822v85QswumhDSl-JKaZXhY-M3VRcIgQY238o",
 "qi":
"lRpUf6mPGGf8GYh1clxqu8cfxgRzFFARIA_tWbWzDLFqluykkdyqFcpnRvAapt1b6o6ofbIddR1wQrrT6IHlu
s8gv5-O_6ZhlE2-hi2acj2Yn7dOvLRdmBaL-L7qzdYfzILDg8DCHrHfcZPQ76fIsKyFASx-
Smllthkam1HyFio",
 "use": "sig"
}

B.2.2.5. Delete private key

This only requires the key ID of the private key to be deleted and will return an empty 204 response
if successful.

101

Figure 52. Delete private key

Alternatively send a cURL request similar to the following:

curl -X DELETE "https://kms.example.ogc.org/Helyx-SIS/KMS/1.0.0/private_key/21829" \
 -H "accept: */*"

B.2.3. Other Functionality

B.2.3.1. Encrypt

The underlying PyKMIP server currently only supports symmetric key encryption. This symmetric
key must have the encrypt usage mask associated to it.

The KMS allows for many different methods of encrypting data. These different parameters include
the block cipher mode, the padding method and the hashing algorithm. This allows for the user to
input their own initialization vector (IV) as long as it’s base64 encoded. If an IV is not supplied, the
server will return one automatically generated, also base64 encoded.

102

Figure 53. Encrypt data

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/encrypt?key_id=20123&block_cipher_mode=CBC&padding_method=PKCS5&iv_count
er_nonce=YmFzZTY0ZW5jb2RldGhpcw&hashing_algorithm=SHA&hashing_length=256" \
 -H "accept: application/json" \
 -H "Content-Type: application/json" \
 -d "{\"plain_text\":\"SSdtIGEgdGVhcG90\"}"

To elicit a response similar to the following:

103

{
 "cipher_text": "A82OfAGma-S7AFb6rpN6Pw"
}

B.2.3.2. Decrypt

The symmetric key that encrypted the data should also have the decrypt usage mask in order to
allow for the decryption of the data.

If the same parameters are sent to the KMS as was inputted when encrypting the original piece of
data, then the KMS will decrypt the cipher text to the original data. This also includes the IV,
whether it was supplied by the user or created by the PyKMIP server.

104

Figure 54. Decrypt data

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/decrypt?key_id=20123&block_cipher_mode=CBC&padding_method=PKCS5&iv_count
er_nonce=YmFzZTY0ZW5jb2RldGhpcw&hashing_algorithm=SHA&hashing_length=256" \
 -H "accept: application/json" \
 -H "Content-Type: application/json" \
 -d "{\"cipher_text\":\"A82OfAGma-S7AFb6rpN6Pw==\"}"

To elicit a response similar to the following:

105

{
 "plain_text": "SSdtIGEgdGVhcG90"
}

B.2.3.3. MAC

MACing data requires the key that is to be used have the MAC generate and MAC verify usage masks
associated to them.

This function allows several different versions of the HMAC algorithm to be used on the data.

Figure 55. MAC data

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/mac?key_id=21830&algorithm=HMAC_SHA256" \
 -H "accept: application/json" \
 -H "Content-Type: application/json" \
 -d "{\"plain_text\":\"SSdtIGEgdGVhcG90\"}"

To elicit a response similar to the following:

{
 "mac": "0ZnilHhU8iJ98VGEiJPPyqFQ2PDTo8SxT0CpP-q8gCw"
}

106

B.2.3.4. Sign

Signing data requires the private key that will sign them have the sign usage mask associated to it.

Figure 56. Sign data

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/sign?private_key_id=21829&block_cipher_mode=CBC&padding_method=PSS&hashi
ng_algorithm=SHA&hashing_length=256" \
 -H "accept: application/json" \
 -H "Content-Type: application/json" \
 -d "{\"plain_text\":\"SSdtIGEgdGVhcG90\"}"

To elicit a response similar to the following:

107

{
 "signature":
"qrLLOC6uDRhG37O0mGIJZBD6A7t6hP0VExCw0G14wXYC6gDvvwADdF1WlyuBxTmB_BiT69k-PP0Dcy_6-
dr4Q47o5636NCR6by1BjcuXAZH1yANqtTLy-Em92YkXTj2d42k8-
oc7Wf6rITFcUiRdXG5_MeZyAmI9I0nPqSzkjw51vZCOR772HKpobbbvXtkEJdsNAQmYqo7AQzb8hgxwS6fO4BC
PpCKnI9EhY6knU2doEYgWdKAnJMXvlez0jgs9VpyZOxtXcf9tle0lc0vzj1BT0k8o2q3-yyoGmDeW8-
UnkuFAa5u_UPjpfdLr4L8lQVRbrx_mx2RRdYxwSi5fzQ"
}

B.2.4. Docker-Compose Deployment

The Key Management Server is run on two docker containers deployed using docker-compose. The
PyKMIP server is in one and the OpenAPI KMS is in the other.

KMIP relies on mutual TLS authentication to allow a client and server to communicate. In the Helyx
implementation, for research and development purposes, Helyx bundled the client and server
certificates within the container images. This is done as follows:

• Build the PyKMIP Server image:

◦ The certificates for the PyKMIP server and the client are created

◦ The PyKMIP image is built using these certificates and the PyKMIP package

◦ This image also has the config file, the policy file and certificates bundled into it

◦ The run command starts the PyKMIP server in Python

• Build the Key Management Server image:

◦ Bundle the required certificates for the client and the public key for the server

◦ Add an .env file to the image containing details of the PyKMIP server address and port: the
default values are KMS_SERVER_ADDRESS="pykmip-server"` and KMS_SERVER_PORT=5696

◦ Add the KMS Python source files and any required packages (including PyKMIP)

◦ The run command starts the KMS Flask server in Python.

A docker compose file is used to execute the two connected containers:

108

version: '3'

services:
 swagger_server:
 image: kms:0.0.1
 ports:
 - "8080:8080"
 environment:
 - KMS_SERVER_ADDRESS=pykmip_server
 - KMS_SERVER_PORT=5696
 pykmip_server:
 image: pykmip:0.0.1
 ports:
 - "5696:5696"

B.3. Conclusions
The implementation of an OpenAPI compliant interface to interact with a KMIP Server was largely
successful and provided a number of useful insights into how a KMS to support OGC APIs may be
integrated into such a service in the future.

At the start of the Testbed, the architecture was intended to be close to mirroring the KMIP
endpoints, in order to provide as much flexibility as possible to the client implementations. During
the course of the Testbed, there was significant thought put into how a KMS might interact with a
DCS client, including the standards used for encoding keys, encrypted data and signing data. These
ideas were not known at the time the decision was made on what the API might look like. As a
result, this implementation of the KMS is quite different to that implemented in D145.

Whilst it has great flexibility it also poses some challenges especially in the offline scenario: the
interface is relatively chatty, requiring a number of separate calls to the API to create a key, encrypt
data, MAC data, sign data and then retrieve a key; this is just for one data item. This is required to
be repeated for as many data items that exist and undertaking this via a RESTful interface can take
long time. There are a number of potential approaches for dealing with this, such as:

• Providing support for bulk operations

• Providing support for key creation, encryption, MACing and signing in a single operation.

In addition, it does not currently provide endpoints that allow a client to request a JWE or a JWS
directly, which would be useful to the clients as they have been implemented with these standards
in mind, which were not envisaged at the start of the Testbed. The KMS implements a content-type
within the request of application/json though it may be that alternative content-types could be
considered that modify the response according to their needs, for example application/jose+json.

A fundamental underpinning capability of KMIP-compliant servers is its support for KMIP
operation policies that provide access controls over keys and operations on them. An operation
policy is a set of permissions, indexed by object type and operation. For any KMIP object type and
operation pair, the policy defines who is allowed to conduct the operation on the object type. In the
current implementation, all operations are permitted by all users. However, if KMIP is to be used in

109

the future, consideration needs to be given to whether and how these policies align with
(Geo)XACML policies used to protect the data itself and how they might be kept up to date. This is
additionally complicated by the fact that the Flask web service that provides the RESTful API uses
its own mutual authentication with the KMIP Server; there is currently no capability to provide "on
behalf of" operations. It is possible that when a client is registered to the KMS, it could also register
a keypair with the KMS that is then also registered for authentication with the KMIP server and the
KMS dynamically switches its authentication keys based on the client. Otherwise, it may also be
possible for the KMS to provide its own authorization that could be linked to a PDP.

As PyKMIP is a software implementation that is not designed to be used in production, it does not
provide all key variants and encryption options that are available in a commercial implementation.
For example, it is not currently able to encrypt using an RSA key. Further development of the KMS
may require changes to the PyKMIP implementation or workarounds to emulate the KMIP
functionality within the KMS itself.

The KMS also has some of its own limitations due to the constraints of time and the focus on
particular features required of the client. These include:

• Clients are currently unable to supply their own keys to the KMS for storage: they must create a
new one

• Key wrapping is not currently supported i.e. One cannot wrap a key when getting a key and
return it as a JWE.

• As described above, it does not provide endpoints that support JWE or JWS

• Integration of an authorization server using OAuth 2.0.

110

Appendix C: Access Control Policies for DCS
Server and Mobile Clients

C.1. Overview
This annex introduces the engineering aspects of the policy decision and enforcement points and
the policy documents used to specify the rules of access to DCS protected content.

Two implementations for desktop client and mobile clients uses different policy enforcement
techniques for access control. In both cases we consider temporal and spatial aspects of access
control as well as a role-based security classification.

C.2. GeoXACML Policies for DCS Server in Desktop
Scenario
The DCS Server in the desktop/client scenario has the functionality to dynamically construct NATO
STANAG compliant responses from an OGC API Features backend service using XML or JSON
encodings. This DCS functionality is realized in two modules, as illustrated in Figure 20: The GeoPEP
and the GeoPDP.

According to the "Data Flow Model" of the XACML 3 standard (Data-flow diagram - Figure
1)[http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html], the GeoPEP implements the
PEP, the context handler and the obligation service. According to the (Figure 3 - Policy language
model)[http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html], an Authorization
Decision sent from the PDP to the PEP can contain a set of obligations (0..1 ObligationExpression).
The PEP processes each obligation which can be used to activate specific processing. When it comes
to control the GeoPEP for achieving the DCS processing goals for this testbed, specific obligations
are leveraged:

• XML Encryption

• XML Digital Signatures

• XML XSLT

• JSON Rewrite

• JSON Encryption (JWE)

• JSON Signatures (JWS)

In addition to the data response obligations listed above, the GeoPEP can also be instrumented to
modify the incoming request before sending it to the backend service. The relevant obligations to
achieve that request rewriting are:

• HTTP GET query_string rewrite

• HTTP POST rewrite for www-x-form-encoded request bodies

• HTTP POST rewrite for XML encoded request bodies

111

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

To explain how the policy controls the GeoPEP processing for the desktop/client use case, the
GeoXACML policy is illustrated using ALFA.

Figure 57. GeoXACML Policy Overview

As illustrated in Figure 54 the policy consists of a PolicySet and individual policies that apply to
specific circumstances. The urn:secd:policy:tb16:request-policy:format policy evaluates decisions
based on the request HTTP ACCEPT header. The urn:secd:policy:tb16:request-policy:location
policy ensures that users in a particular location have elevated access. The urn:secd:policy:tb16:*-
policy policies apply to particular data processing requirements.

112

The following listing illustrates the location part of the policy.

policy requestLocationPolicy = "urn:secd:policy:tb16:request-policy:location"
{
 apply denyOverrides
 rule requestLocationRule
 {
 permit
 target
 clause
 GeoXACML3.subject_location <=
"CRS=EPSG:4326;POLYGON((40.704586878965245 -74.0361785888672,40.76962180287486
-74.0361785888672,40.76962180287486 -73.94966125488283,40.704586878965245
-73.94966125488283,40.704586878965245 -74.0361785888672))":geometry
 and
 time <= "18:00:00Z":time
 on permit {
 obligation requestKVP {
 action = "insert"
 key = "bbox"
 value = "40.704586878965245,-74.0361785888672,40.76962180287486,-
73.94966125488283"
 }
 obligation requestKVP {
 action = "remove"
 key = "access_token"
 }
 obligation requestKVP {
 action = "remove"
 key = "subjectlocation"
 }
 }
 }
}

113

The following policy instruments the GeoPEP to transform backend service response into NATO STANAG
4778 compliant container format.

policyset stanagJSONPolicySet = "urn:secd:policy:tb16:stanag-json-policy-set"
{
 target
 clause
 f == "stanag+json" or
 accept == "application/stanag+json"
 apply denyOverrides
 featurePolicySet
 policy JSON {
 apply permitOverrides
 rule {
 permit
 }
 on permit {
 obligation responseJSON {
 content_type = "application/stanag+json"
 }
 }
 }
}

Important in the policy above is the involvement of the responseJSON obligation attached to the
PERMIT response.

To transform GML backend response into STANAG 4778 including Digital Signature and Encryption (for the
'poi' feature type), the following policy is used.

policyset stanagXMLPolicySet = "urn:secd:policy:tb16:stanag-gml-policy-set"
{
 target
 clause
 f == "stanag" or
 f == "stanag+gml" or
 accept == "application/stanag+gml"
 apply permitOverrides
 policy poiPolicy = "urn:secd:policy:tb16:poi-policy"
 {
 target
 clause
 path == "/dcs/collections/poi/items"
 apply permitOverrides
 rule responseLocationRule
 {
 permit
 target
 clause
 GeoXACML3.subject_location <=

114

"CRS=EPSG:4326;POLYGON((40.704586878965245 -74.0361785888672,40.76962180287486
-74.0361785888672,40.76962180287486 -73.94966125488283,40.704586878965245
-73.94966125488283,40.704586878965245 -74.0361785888672))":geometry
 and
 time <= "18:00:00Z":time
 on permit {
 obligation responseXSLT {
 document = "..."
 parameter = "unclassifiedFeatureType=states tiger_roads
poly_landmarks poi"
 }
 }

 }
 rule permitRule
 {
 permit
 target
 clause
 subject_clearance == "top_secret"
 or
 subject_affiliation == "OGC Testbed-16"
 on permit {
 obligation responseXSLT {
 document = "..."
 }
 }
 on permit {
 obligation responseENC {
 xpath = "//*[local-name() =
'Metadata'][./@xml:id='FeatureType']/*"
 responseENC.key_algorithm =
"http://www.w3.org/2009/xmlenc11#aes128-cbc"
 }
 obligation responseENC {
 xpath = "//*[local-name() = 'Metadata'][./@xml:id='STANAG4774']/*"
 responseENC.key_algorithm =
"http://www.w3.org/2009/xmlenc11#aes256-gcm"
 }
 obligation responseENC {
 xpath = "//*[local-name() = 'Data']/*"
 responseENC.key_algorithm =
"http://www.w3.org/2009/xmlenc11#aes256-gcm"
 }
 }
 }
 rule denyRule
 {
 deny
 target
 clause

115

 subject_clearance == "secret"
 or
 subject_clearance == "classified"
 or
 subject_clearance == "unclassified"
 }
 }
 on permit {
 obligation responseDSIG {
 private_key_file = "/etc/pki/tls/private/testbed15.pem"
 private_key_name = "Dr. No"
 certificate_file = "/etc/pki/tls/certs/testbed15.crt"
 id_element_value = "#WFS"
 id_element_qname = "id"
 }
 }
}

Examining the Obligations from the policy explain naturally how the GeoPEP converts XML
backend to NATO STANAG 4778:

• use of responseXSLT obligation to transform GML into NATO STANAG 4778 structure

• use responseENC obligation to encrypt Metadata, Data sections

• use responseDSIG obligation to digitally sign the response

C.3. GeoXACML Policies for Mobile Scenarios

C.3.1. Use Case:

• Access to the features is only possible if user location is within an operational boundary:

◦ POLYGON 40.8175 -74.0008, 40.753 -74.0008, 40.753 -73.9499, 40.8175 -73.9499, 40.8175
-74.0008

• Location of user is defined by attribute

◦ “urn:sd:location” := GeoXACML geometry: CRS=EPSG:4326;Point(40.76 -74.0)

• Bell-La Padula Policy for classified feature types

◦ Permit: clearance(user) >= classification(feature_type)

• Users have attribute clearance

◦ “urn:sd:clearance” := {top_secret, secret, confidential, classified}

• Resources are features of feature_type

◦ “urn:sd:feature-type” := {“poi”, “poly_landmarks”, “tiger_roads”, “states”}

• Classification per feature type

◦ “poi” := “top_secret”

◦ “poly_landmarks” := “secret”

116

◦ “tiger_roads” := “confidential”

◦ “states” := “classified”

• Any other feature type is not classified

C.3.2. GeoXACML Policy in ALFA

ALFA, the Abbreviated Language For Authorization, is a pseudocode language used in the
formulation of access-control policies.

Option (i)

Packaged a one inline PolicySet Produces one single Policy file

Figure 58. Single Policy file

Option (ii)

Packaged as linked Policies Produces one file for the PolicySet and one file per each Policy

117

Figure 59. Linked policies

C.3.3. Policy and Verification

Endpoint

• https://ogc.secure-dimensions.com/geopdp-mobile

POST requests with Http header Content-Type

• “Content-Type: application/xacml+json”

Example ADR

118

https://ogc.secure-dimensions.com/geopdp-mobile

Figure 60. ADR example

C.3.4. Verification

Table 8. First Table

ADR User Location Decision

0 CRS=EPSG:4326;Point(40.76 -74.0) Permit

1 CRS=EPSG:4326;Point(40.75 -74.0) Deny

Table 9. Second Table

ADR Clearance Feture Type Decision

10 top_secret poi, poi, poly_landmarks archsites Permit, Permit, Permit

20 secret secret poly_landmarks, poly_landmarks
tiger_roads

Permit, Permit

21 secret poi, poi archsites Deny, Deny

…

119

C.3.5. ADR Example

{
 "Request" : { 
 "ReturnPolicyIdList": false,
 "CombinedDecision": false,
 "Category": [
 { 
 "CategoryId": "urn:oasis:names:tc:xacml:1.0:subject-category:access-
subject",
 "Attribute": [
 { 
 "IncludeInResult": false,
 "AttributeId": "urn:sd:subject-location",
 "DataType": "urn:ogc:def:dataType:geoxacml:1.0:geometry",
 "Value": ["CRS=EPSG:4326;Point(40.76 -74.0)"]
 },
 { 
 "IncludeInResult": false, "AttributeId": "urn:sd:clearance",
 "DataType": "http://www.w3.org/2001/XMLSchema#string",
 "Value": ["top_secret"] 
 } 
] 
 },
 { 
 "CategoryId": "urn:oasis:names:tc:xacml:3.0:attribute-
category:resource",
 "Attribute": [
 { 
 "IncludeInResult": false, "AttributeId": "urn:sd:feature-type
",
 "DataType": "http://www.w3.org/2001/XMLSchema#string",
 "Value": ["poi"]
 }
]
 } 
]
 }
}

120

Appendix D: Data Centric Security Roles

D.1. Mobile Scenario
The Testbed-16 DCS scenario for the mobile client was defined as the following:

Cell-phone scenario

A Sargent in the U.S. National Guard has been deployed on a disaster recovery mission. He
carries with him a smart phone which contains sensitive data. When meeting with first
responders, how does he share critical information with them without compromising
sensitive information? How does internet connectivity affect that scenario?

Hypothesis: Use of the Data Centric Security techniques developed in Testbed-16 could
address this problem. All sensitive data is encapsulated in a Data Centric Security package.
Security policies are defined using GeoXACML. A Policy Enforcement Point (PEP) applet only
allows access that data allowed under the currently active security policy. Authorized users
can set the active security policy.

End State: The Sargent selects the security policy appropriate for the intended audience. He
can now access data on his smart phone without worries about exposing sensitive
information.

Multiple mobile implementations were created to explore how to address the goals of this scenario,
some of which include the concept of "DCS Roles".

D.2. DCS Roles
Within the Mobile Scenario, an individual DCS Role is either the clearance/security authorizations
for a specific person, or a generic clearance for a group of people (as defined by an administrator) -
a member of the "intended audience" with whom the primary user wishes to share critical
information without exposing sensitive information.

D.2.1. DCS Roles vs Users

Within this role-based mobile implementation, a user is the specific assigned user for the mobile
device. That user has their personal security clearance loaded onto the device as a DCS Role. In
addition to that personal DCS Role, per the scenario multiple generic DCS Roles representing
generic security clearances for the categories of people the user may encounter in the field who the
user may wish to share information.

D.2.2. DCS Roles vs DCS Data

Within this concept, each DCS Data item is to be restricted according to a specific Policy Identifier
and a specific Classification, as specified within a DCS Data container (as described elsewhere in
this document). Whereas each DCS Role could potentially specify access to multiple Classifications

121

and multiple Contexts.

This allows the "filtering" of data being displayed on the mobile device to show only DCS Data items
that meet the restrictions of the current active DCS Role.

Furthermore, this allows for (requires) the DCS Data and (list of) DCS Roles to be distributed and
installed separately on the mobile devices.

D.2.3. DCS Roles vs NATO STANAG 4774

The DCS Roles concept was informed by and adapted from NATO 4774 Appendix 2, which details
that each clearance must have (at least) the following items:

• PolicyIdentifier (e.g. "NATO", "USA", "GBR")

• ClassificationList (e.g. "UNCLASSIFIED, RESTRICTED, CONFIDENTIAL, SECRET….")

• Context (the different categories of information/context that this clearance allows)

The following is an "example clearance for the United Kingdom, a founding member of NATO" from
4774, as well as a GeoJSON adaptation equivalent.

122

UK NATO 4774 Example

<sclr:ConfidentialityClearance xmlns:sclr=
"urn:nato:stanag:4774:confidentialityclearance:1:0" xmlns=
"urn:nato:stanag:4774:confidentialitymetadatalabel:1:0"> <PolicyIdentifier>
NATO</PolicyIdentifier> <sclr:ClassificationList>
<Classification>UNCLASSIFIED</Classification> <Classification>
RESTRICTED</Classification> <Classification>CONFIDENTIAL</Classification>
<Classification>SECRET</Classification> <Classification>TOP SECRET</Classification>
</sclr:ClassificationList>
<Category TagName="Context" Type="PERMISSIVE">
<GenericValue>NATO</GenericValue>
App 2-A4
Edition A Version 1
Annex A to Appendix 2 to ADatP-4774
<GenericValue>EAPC</GenericValue> <GenericValue>GEORGIA</GenericValue>
<GenericValue>ISAF</GenericValue> <GenericValue>KFOR</GenericValue> <GenericValue>
PFP</GenericValue> <GenericValue>RUSSIA</GenericValue> <GenericValue>
UKRAINE</GenericValue> <GenericValue>Releasable</GenericValue>
</Category>
<Category TagName="Releasable To" Type="PERMISSIVE">
<GenericValue>NATO</GenericValue> <GenericValue>EAPC</GenericValue> <GenericValue>
ISAF</GenericValue> <GenericValue>KFOR</GenericValue> <GenericValue>PFP</GenericValue>
<GenericValue>GBR</GenericValue>
</Category>
<Category TagName="Only" Type="PERMISSIVE">
<GenericValue>NATO</GenericValue>
<GenericValue>GBR</GenericValue>
</Category>
<Category TagName="Additional Sensitivity" Type="RESTRICTIVE">
<GenericValue>ATOMAL</GenericValue> <GenericValue>BOHEMIA</GenericValue>
<GenericValue>CRYPTO</GenericValue>
</Category> </sclr:ConfidentialityClearance>

123

UK NATO GeoJSON Adaptation Example

 {
 "name": "UK NATO",
 "id": "GBR",
 "PolicyIdentifier": "NATO",
 "ClassificationList": [
 "UNCLASSIFIED",
 "RESTRICTED",
 "CONFIDENTIAL",
 "SECRET",
 "TOP SECRET"
],
 "Context": [
 "NATO",
 "EAPC",
 "GEORGIA",
 "ISAF",
 "KFOR",
 "PFP",
 "RUSSIA",
 "UKRAINE",
 "Releasable"
],
 "Only": [
 "NATO",
 "GBR"
]
 },

D.3. DCS Mobile Client Role Switching
The following is an example implementation of the mobile client displaying DCS Role selection on a
user device, as well as the filtering of different features by clearance as represented by DCS Role.

D.3.1. DCS Mobile Client Role Selection

124

Figure 61. Choose Role

125

Figure 62. Choose Role Selection

D.3.2. DCS Mobile Client - National Geospatial Intelligence Agency

126

Figure 63. NGA - US NATO TS

127

Figure 64. NGA - UK NATO TS

128

Figure 65. NGA - US HHS CON

D.3.3. DCS Mobile Client - United States Capitol Outbreak

129

Figure 66. US Capitol - US DHS S

130

Figure 67. US Capitol - Public UNC

D.3.4. DCS Mobile Client Bethesda Walter Reed

131

Figure 68. Bethesda Walter Reed - UK NATO TS

132

Figure 69. Bethesda Walter Reed - US HHS CON

133

Figure 70. Bethesda Walter Reed - Public UNC

134

Appendix E: Revision History
This table presents the document revision history.

Table 10. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

April 25, 2020 A. Balaban .1 all Initial draft
version

August 13, 2020 A. Balaban .2 all Second draft
version

October 15, 2020 A. Matheus .3 Appendix B Contributed first
draft

October 31, 2020 A. Balaban .4 all Incorporated
comments for
final draft

November 11,
2020

A. Matheus .5 Appendix D Contributed first
draft

November 11,
2020

A. Matheus .6 all Proofreading

November 18,
2020

A. Balaban 1.0 all Release version

November 20,
2020

A. Balaban 1.1 all Release version
with minor
adjustments

135

Appendix F: Bibliography

136

	OGC Testbed-16: Data Centric Security Engineering Report
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Data Centric Security (DCS)
	6.1. Introduction
	6.2. Key Concepts

	Chapter 7. Requirements, Scenarios and Architecture
	7.1. Requirements
	7.2. Scenarios (Use Cases)
	7.2.1. Use Case 1 (Online Streaming)
	7.2.2. Use Case 2 (Offline Authorization)

	7.3. DCS Architecture Components
	7.3.1. Scenario 1, DCS Desktop/Client/Server
	7.3.2. Scenario 2, DCS Mobile App/Client & Policy Enforcement Point

	7.4. DCS Architecture Interactions
	7.4.1. Desktop/Client/Server Interactions
	7.4.2. Mobile App/Server Interactions

	Chapter 8. Data Encodings, DCS Containers and Media Types
	8.1. Introduction
	8.2. DCS Container
	8.3. STANAG 4774/8 DCS Container
	8.4. STANAG 4774/8 DCS Container in JSON
	8.5. JOSE (JWS & JWE) based containers for JSON
	8.5.1. DCS Container based on JWS
	8.5.2. Structure of Information as Metadata
	8.5.3. DCS Container based on JWE

	8.6. Media Types and profiles for DCS content negotiation

	Chapter 9. Results
	9.1. Issue Explanations
	9.1.1. Third Party Open Source Library implementations impede the implementation of decryption
	9.1.2. Mobile Application and long-running synchronous operations
	9.1.3. Timeout Issues with Large Data Requests
	9.1.4. Mobile Process / Power Management

	Chapter 10. Future Work
	10.1. New features in DCS
	10.2. KMS for DCS
	10.3. Federated security and DCS
	10.4. Packaging of data in the scope of DCS
	10.5. Binary related Media Types
	10.6. DCS Roles and User Clearances vs Data Classification(s)

	Chapter 11. Technology Integration Experiments (TIEs)
	11.1. TIEs for Scenario One
	11.1.1. D120 / D121 TIE

	11.2. TIEs for Scenario Two
	11.2.1. Android Result Summary
	11.2.2. iOS Result Summary

	Appendix A: Engineering Aspects for D120 and D145
	A.1. Overview
	A.2. Deployment
	A.3. Protecting the Cipher Keys
	A.4. DCS Key Management Server
	A.4.1. Protecting Keys at Rest
	A.4.2. Managing Public Keys
	A.4.3. Managing Cipher Keys
	A.4.4. Create a Cipher Key
	A.4.5. OpenAPI
	A.4.6. Use Example

	A.5. DCS Server
	A.5.1. Requesting encrypted data
	A.5.2. OpenAPI

	A.6. Conclusions

	Appendix B: Engineering Aspects for D146
	B.1. Overview
	B.2. Key Management Server (KMS)
	B.2.1. Managing Symmetric Keys
	B.2.2. Managing RSA Key Pairs
	B.2.3. Other Functionality
	B.2.4. Docker-Compose Deployment

	B.3. Conclusions

	Appendix C: Access Control Policies for DCS Server and Mobile Clients
	C.1. Overview
	C.2. GeoXACML Policies for DCS Server in Desktop Scenario
	C.3. GeoXACML Policies for Mobile Scenarios
	C.3.1. Use Case:
	C.3.2. GeoXACML Policy in ALFA
	C.3.3. Policy and Verification
	C.3.4. Verification
	C.3.5. ADR Example

	Appendix D: Data Centric Security Roles
	D.1. Mobile Scenario
	D.2. DCS Roles
	D.2.1. DCS Roles vs Users
	D.2.2. DCS Roles vs DCS Data
	D.2.3. DCS Roles vs NATO STANAG 4774

	D.3. DCS Mobile Client Role Switching
	D.3.1. DCS Mobile Client Role Selection
	D.3.2. DCS Mobile Client - National Geospatial Intelligence Agency
	D.3.3. DCS Mobile Client - United States Capitol Outbreak
	D.3.4. DCS Mobile Client Bethesda Walter Reed

	Appendix E: Revision History
	Appendix F: Bibliography

