
OGC Testbed-15
Quebec Model MapML Engineering Report

Table of Contents
1. Subject. 4

2. Executive Summary. 5

2.1. Document contributor contact points . 5

2.2. Foreword . 6

3. References . 7

4. Terms and definitions . 8

4.1. Abbreviated terms . 8

5. Overview . 10

6. Background . 11

7. Québec Model MapML Service . 12

7.1. Service description. 12

7.2. Data layers served . 12

7.3. MapML and OGC API integration . 16

7.3.1. MapML representation of an OGC API collection description . 16

7.3.2. Styling considerations . 19

7.4. MapML encoding . 21

7.4.1. Issues encountered. 21

7.4.2. Artificial segments . 22

7.5. OGC API modules . 25

7.5.1. Common . 25

7.5.2. Vector features . 25

7.5.3. (A)RGB Imagery. 29

7.5.4. Coverage . 30

7.5.5. Tiles . 31

7.5.6. Styles . 34

8. Quebec model MapML Client . 36

8.1. Component Summary . 36

8.2. Component Design . 37

8.2.1. Step 1. Acquiring a Collections List. 38

8.2.2. Step 2. Acquiring a MapML document. 39

8.2.3. Step 3. Showing features from the MapML document. 39

8.3. Implementation Approach . 39

8.3.1. MapML Parser . 39

8.3.2. OpenLayers Front-end. 40

8.4. Component Implementation . 41

8.4.1. Runtime Environment (for the D106 web application) . 42

8.4.2. User Interface . 42

8.4.3. Future Considerations . 44

Appendix A: Revision History . 46

Publication Date: 2020-01-08

Approval Date: 2019-11-22

Submission Date: 2019-08-22

Reference number of this document: OGC 19-046r1

Reference URL for this document: http://www.opengis.net/doc/PER/t15-D023

Category: OGC Public Engineering Report

Editor: Scott Serich

Title: OGC Testbed-15: Quebec Model MapML Engineering Report

OGC Public Engineering Report

COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t15-D023
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Subject
This OGC Testbed-15 Engineering Report (ER) describes the Map Markup Language (MapML)
enabled client component implementation for the Quebec Lake-River Differentiation Model in the
Machine Learning (ML) task of Open Geospatial Consortium (OGC) Testbed-15 (T-15). This ER
presents the MapML parsing capabilities that were developed to illustrate the outputs of a ML
model to delineate lake and river features from an undifferentiated waterbody vector dataset in
Québec, Canada. Client data was accessed through an OGC Web Processing Service (WPS) interface
in coordination with an OGC API - Features implementation.

4

Chapter 2. Executive Summary
The Testbed-15 (T-15) Map Markup Language (MapML) work built on the momentum documented
in the OGC Testbed-14 MapML Engineering Report [http://www.opengis.net/doc/PER/t14-D012]. The T-15
ER includes a description of the MapML-enabled client component implementation for the Quebec
Lake-River Differentiation machine-learning (ML) task. Client parsing capabilities enabled display
of model outputs that delineated lake and river features from undifferentiated waterbodies.

MapML is a text format for encoding map information for the World Wide Web. The objective of
MapML is to allow Web-based user agent software (browsers and others) to display and edit maps
and map data without necessary customization.

MapML is unique relative to other maps on the web encodings but there is also some duplication.
What makes MapML unique is that it takes Spatial Data on the Web Best Practices [https://www.w3.org/

TR/sdw-bp/] and applies them for the direct benefit of HyperText Markup Language (HTML) users (as
contrasted with web developers).

As described by the MapML use cases and requirements [http://maps4html.github.io/HTML-Map-Element-

UseCases-Requirements]. MapML is an extension to HTML. If implemented, this implies that the
browser understands map/layer semantics (however those elements are eventually named) as well
as feature, property, or geometry semantics. MapML is intended to be user-oriented. This includes
enabling users to create web pages in all manner of styles while having a solid foundation in HTML
and Cascading Style Sheets (CSS) as well as JavaScript for progressive enhancement. Today, there is
no built-in map/layer behavior in web browsers, nor is there feature/property/geometry semantics.
MapML provides the ability to encode map/layer and feature/property/geometry semantics in a
single format that will be read and interpreted by web browsers directly. MapML brings geographic
information to the web browser, thereby making the web browser the user agent.

MapML maintains a different focus as compared to other geographic encodings such as GeoJSON,
Geography Markup Language (GML), and Keyhole Markup Language (KML). These encodings
require interpretation and/or processing and are not native in web browsers. MapML should not be
constrained by other encodings if the user requires additional capabilities such as markup in
coordinate strings and possibly other requirements. A major objective of MapML is to make the
browser "understand" not only where the user is but also to understand where features are in
relation to the user.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or contributors:

Contacts

Name Organization Role

Scott Serich Open Geospatial
Consortium

Editor

Gil Heo George Mason University Contributor

5

http://www.opengis.net/doc/PER/t14-D012
https://www.w3.org/TR/sdw-bp/
http://maps4html.github.io/HTML-Map-Element-UseCases-Requirements

Name Organization Role

Jérôme Jacovella-St-
Louis

Ecere Corporation Contributor

Peter Rushforth Natural Resources
Canada

Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

6

Chapter 3. References
The following normative documents are referenced in this ER:

• OGC: OGC 06-121r9, OGC® Web Services Common Standard (2010) [https://portal.opengeospatial.org/

files/?artifact_id=38867&version=2]

• OGC: OGC 07-036r1, OpenGIS® Geography Markup Language (GML) Encoding Standard - with
corrigendum (2016) [https://portal.opengeospatial.org/files/?artifact_id=74183&version=2]

• OGC: OGC 07-057r7, OGC® OpenGIS Web Map Tile Service Implementation Standard (2010)
[http://portal.opengeospatial.org/files/?artifact_id=35326]

• OGC: OGC 17-069r3, OGC API - Features - Part 1: Core (2019) [https://www.opengeospatial.org/

standards/ogcapi-features]

• OGC: OGC 12-007r2, OGC KML 2.3 (2015) [http://docs.opengeospatial.org/is/12-007r2/12-007r2.html]

• IETF: RFC 7946, The GeoJSON Format (2016) [https://tools.ietf.org/html/rfc7946]

• W3C: GeoLocation API (2016) [https://www.w3.org/TR/geolocation-API/]

• W3C: Hypertext Markup Language (HTML) (2019) [https://html.spec.whatwg.org/multipage/]

7

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://portal.opengeospatial.org/files/?artifact_id=74183&version=2
https://portal.opengeospatial.org/files/?artifact_id=74183&version=2
http://portal.opengeospatial.org/files/?artifact_id=35326
https://www.opengeospatial.org/standards/ogcapi-features
http://docs.opengeospatial.org/is/12-007r2/12-007r2.html
https://tools.ietf.org/html/rfc7946
https://www.w3.org/TR/geolocation-API/
https://html.spec.whatwg.org/multipage/

Chapter 4. Terms and definitions
For the purpose of this report, the definitions specified in Clause 4 of the OGC Web Services (OWS)
Common Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2] shall apply. In addition, the following terms and definitions apply.

● Dnnn

Deliverable IDs used during the initiative to uniquely identify various components, engineering
reports, etc. (for example, the D106 Quebec Model MapML Client component).

● map

portrayal of geographic information as a digital image file suitable for display on a computer
screen

● portrayal

presentation of information to humans (source: ISO 19117)

4.1. Abbreviated terms
• API - Application Programming Interface

• CORS - Cross-Origin Resource Sharing

• CSS - Cascading Style Sheets

• DOM - Document Object Model

• EC2 - Elastic Compute Cloud

• GML - Geography Markup Language

• HTML - Hypertext Markup Language

• IANA - Internet Assigned Numbers Authority

• ISO - International Organization for Standardization

• JPEG - Joint Photographic Experts Group

• JSON - JavaScript Object Notation

• KML - Keyhole Markup Language

• MapML - Map Markup Language

• MVC - Model-View-Controller

• OGC - Open Geospatial Consortium

• OWS - OGC Web Services

• PNG - Portable Network Graphics

• SVG - Scalable Vector Graphics

• URL - Uniform Resource Locator

• WFS - Web Feature Service

8

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• WMS - Web Map Service

• WMTS - Web Map Tile Service

• WPS - Web Processing Service

9

Chapter 5. Overview
Much of the OGC Testbed-15 Quebec Model MapML work was based on foundational work of the
MapML W3C Community Group [https://www.w3.org/community/maps4html/] and the OGC Testbed-14
MapML work documented in the Testbed-14 Engineering Report [http://www.opengis.net/doc/PER/t14-

D012].

Section 5 of this ER describes the background of the current work.

Section 6a describes the OGC API - Features implementation that served MapML data to the client.

Section 6b describes the Quebec MapML Client that rendered retrieved features to a browser user.

10

https://www.w3.org/community/maps4html/
http://www.opengis.net/doc/PER/t14-D012

Chapter 6. Background
The overall architecture of the Testbed-15 Machine Learning Task was based on a broad set of
scenarios ranging from image classification to dataset discovery. The objective of the Quebec Lake-
River Differentiation Model subtask was to create and deploy a machine-learning model to
differentiate between rivers and lakes from otherwise unlabeled bodies of water. The main focus of
the work was to provide a service to determine whether a body of water should be split into a lake
and a river, and to provide identified and labeled outputs when such splits occur. When no split
was required, each body of water was labeled as either lake or river. The procedure for applying
the model was to:

1. Recommend whether a water body should be split into lake and river features.

2. Evaluate the confidence level of a recommendation.

3. Apply the recommendation to the dataset.

4. Test and correct the resultant dataset for topological and cartographical issues.

5. Serve the data on an OGC API - Features interface using a MapML encoding.

Each service component was fronted by the relevant OGC interface, WPS for workflow
management and OGC API - Features for features.

11

Chapter 7. Québec Model MapML Service
In support of the Testbed-15 Québec Lakes/Rivers experiments, Ecere was responsible for the
development of a service component to facilitate access to the potentially large volumes of vector
data produced by running the differentiation Machine Learning model.

7.1. Service description
Ecere developed and deployed a new MapML-enabled OGC API end-point based on its newest
iteration of the GNOSIS Map Server and Software Development Kit.

The endpoint presents all supported OGC API capabilities as parts of a single resource tree.

The modular OGC API building blocks implemented for Testbed-15 include:

• (Vector) Features

• Tiles

• Styles (retrieval only)

The service currently offers the data in the EPSG:4326 (plate carree, WGS84 spheroid) coordinate
reference system (CRS). Using the draft OGC Tiles API specification, the data is provided in the tiling
scheme’s CRS, except for vector data formats mandating EPSG:4326 (e.g. GeoJSON). A number of
tiling schemes based on both spherical Mercator and EPSG:4326 are currently supported.

The data is available in different data formats:

• GeoJSON (vector)

• Mapbox Vector Tiles (vector)

• GNOSIS Map Tiles (vector, imagery, coverage — tiles only)

• 16-bit PNG (coverage with a specific range intended to accommodate digital elevation models,
until the service offers GeoTIFF support)

• PNG and JPEG (imagery)

• MapML (vector, support for which was implemented during Testbed-15 and was the focus of
this activity)

Support for GML and GeoECON, available in earlier iteration of the GNOSIS Map Server, will also be
re-enabled at the endpoint presented above.

7.2. Data layers served
A number of data layers are accessible from this service, including data from Natural Earth, NASA
BlueMarble (next generation), and regional sections of OpenStreetMap.

The data layers specific to the Testbed’s Québec Lakes/Rivers Machine Learning activities are
organized within group of collections named GRHQ. GRHQ stands for Géobase du réseau
hydrographique du Québec [https://mern.gouv.qc.ca/repertoire-geographique/reseau-hydrographique-grhq/],

12

https://mern.gouv.qc.ca/repertoire-geographique/reseau-hydrographique-grhq/
https://mern.gouv.qc.ca/repertoire-geographique/reseau-hydrographique-grhq/

free and open hydrography data covering the entire Province of Québec. These data are provided
by the Ministère de l’Énergie et des Ressources naturelles (MERN). Together with High Resolution
Digital Elevation Models, this was the source hydrography data set used for both training and
testing the machine learning model.

Originally, only the output data from the D104 - Quebec Lakes/Rivers Machine Learning Model
component was intended to be served. However due to constraints delaying the availability of that
output data, the source hydrography vector data was provided instead.

Figure 1. GRHQ served from GNOSIS Map Server visualized in QGIS (Overview)

Figure 2. GRHQ served from GNOSIS Map Server visualized in QGIS (Zoomed in)

13

Figure 3. GRHQ served from GNOSIS Map Server visualized in GNOSIS Cartographer

Once results from running the model became available, they were added to the service. However,
these results only reached the stage of defining bounding boxes within which lakes were detected
in the dataset, not a differentiated collection of polygon features as expected. This layer for these
detection bounding boxes is available as detections002, and covers only the small area over which
the machine learning model was used.

These two layers are available from the service:

• RH_S [http://maps.ecere.com/geoapi/collections/GRHQ/RH_S] (réseau hydrographique — surfaces,
polygonal features of the hydrographic network)

• detections002 [http://maps.ecere.com/geoapi/collections/GRHQ/detections002] (bounding boxes resulting
from D104 machine learning model, provided by CRIM)

The MapML representation for the description of these collections is available at:

• http://maps.ecere.com/geoapi/collections/GRHQ/RH_S?f=mapml (RH_S)

• http://maps.ecere.com/geoapi/collections/GRHQ/detections002?f=mapml (detections002)

14

http://maps.ecere.com/geoapi/collections/GRHQ/RH_S
http://maps.ecere.com/geoapi/collections/GRHQ/detections002
http://maps.ecere.com/geoapi/collections/GRHQ/RH_S?f=mapml
http://maps.ecere.com/geoapi/collections/GRHQ/detections002?f=mapml

Figure 4. GRHQ and lakes detection bounding boxes served from GNOSIS Map Server visualized in
GNOSIS Cartographer, Google Imagery

Figure 5. GRHQ and lakes detection bounding boxes served from GNOSIS Map Server visualized in
GNOSIS Cartographer, SRTM ViewFinderPanorama Elevation

For the moment, direct links to these groups of collections fall under the /collections/ resource with
{collectionID} containing slashes, e.g. http://maps.ecere.com/geoapi/collections/GRHQ/RH_S .

Note that the GRHQ provides several other layers, in addition to the RH_S polygonal features layer.
These layers have not been loaded onto the service for reasons of storage capacity, processing time,
and the fact that they were not required for the activity. However, the entire set of layers was
retrieved (necessitating a laborious manual process), and converted into a single GeoPackage,

15

http://maps.ecere.com/geoapi/collections/GRHQ/RH_S

making the data easier to use and transfer. The downside is that the GeoPackage is 23 gigabytes!
This GeoPackage was uploaded to a File Transfer Protocol (FTP) site hosted by OGC, in case the data
might prove useful to participants or sponsors for continuity of this work, such as to train and/or
run the machine learning model over the whole province.

7.3. MapML and OGC API integration
Originally the main capability that this activity was to deliver was described as a WFS 3.0 MapML
service, to be based on the draft version 3 of the OGC Web Feature Service (WFS) standard. Between
the time the Testbed 15’s Call for Proposal (CFP) was released and the end of the activity, WFS 3 had
officially become the OGC API - Features standard, the first of a new OGC API family of modular
service capabilities (OGC 17-069r3). There was also an interest within the initiative to investigate
the possibility of supporting tiled vector data. This interest was also the subject of separate work
within the testbed as shown by the development of an OGC API - Tiles draft specification.

The work done in this initiative attempted to adequately determine how MapML and the OGC API
could best integrate in a complimentary manner. This relied on discussions between the
stakeholders during the initiative, as well as past and on-going experience of the participants with
the evolving OGC API family of specifications within other projects of the OGC Innovation and
Standards Programs.

The first realization was that MapML is used for at least two traditionally distinct purposes in the
geospatial information community, notably:

• As a document defining a map, referencing geospatial data and styles available separately

• As an encoding for vector data, whether on its own or within such an aforementioned map
definition document

Please note that GeoJSON is already a well-established encoding widely used and supported by
libraries. GeoJSON is also the default encoding for OGC API – Features. Therefore, the
recommendation was made that perhaps MapML brings significantly more value as a map
definition language (e.g. as an HTML map element within a web page) than it does as another
encoding for geospatial data.

Nonetheless, the service developed focused on the encoding aspect which was identified as the
primary requirement but also tried to accommodate the definition and reference use case, notably
to enable MapML clients to access data using the Tiles API.

7.3.1. MapML representation of an OGC API collection description

The integration of map definition and linking to separate data and styles with the OGC API was
done at the level of the collection description resource. An attempt was made at providing a
MapML representation of the collection resource. Instead of the default JSON representation, this
representation is returned by specifying the f=mapml parameter when requesting the collection
description (/collections/{collectionId}?f=mapml).

Due to the nature and purpose of the collection resource not corresponding directly with the
concept of a MapML document this approach posed challenges as to exactly what could be featured

16

within this MapML representation. On one hand, a MapML document is expected to contain a
single reference to a particular dataset. On the other, an OGC API collection can be retrieved in
different manners, such as tiles or as whole features (potentially together with an intersection or
clipping bounding box).

Similarly, the same problem presents itself for linking to multiple encodings of the data, such as
offering features or tiles as GeoJSON, MapML, GNOSIS Map Tiles and Mapbox Vector Tiles.

The collection description resource for the OGC API is typically not parameterized, as its purpose is
only to describe the particular resource being offered. A MapML representation should therefore
also avoid introducing parameters to alter the response of retrieving a collection description
resource. This ensures the possibility of an OGC API simply directly serving data from a static file
system structure. Instead, it would be best to make it possible for a higher-level geospatial content
management system to reference a single generic MapML collection resource, while selecting
specific capabilities.

In order for a MapML representation of the collection description resource to integrate well with
the OGC API, it would be ideal if it could be harmonized as much as possible with its typical JSON
equivalent. This harmonization would cover aspects such as:

• The types of link relations,

• The ability to list tiled and non-tiled data links, of multiple encodings,

• The ability to list multiple usable styles, without a specific being already selected.

It was noted that a client could consider the type attribute of a link to recognize and select the best
supported encoding, and ignore alternate contents.

The MapML community would need to assess whether it is still possible and desirable to achieve
this harmonization based on the current evolutionary stage of the MapML specification.

Alternatively, the OGC API integration could focus solely on the encoding, and a geospatial content
management system could instead directly refer to the tiles or items being served by the OGC API,
avoiding the integration challenges of the collection description resource altogether.

Because no consensus could be reached during the testbed, it was decided to only provide a link to
the tiled data within the collection description (rel=tile). MapML is the encoding specified for those
vector tiles, and marks the first attempt at using MapML to encode vector tiles or integrating vector
tiles within a MapML document. The links to the features (rel=features) were still included in the
document, but commented out. A link to the items was still included together with a bbox
parameter for the purpose of querying (rel=query). Links to other supported encodings were also
provided within the document, but commented out.

GRHQ/RH_S collection description represented as MapML

<mapml>
 <head>
 <title>RH_S</title>
 <base href="http://maps.ecere.com/geoapi/collections/GRHQ/RH_S"/>
 <meta charset="utf-8"/>
 <meta content="text/mapml" http-equiv="Content-Type"/>

17

 <!--Collection Information-->
 <link rel='self' type='text/mapml' title='Information about the RH_S data (as
MapML)'
 href='./?f=mapml'/>
 <link rel='alternate' type='text/html' title='Information about the RH_S data
(as HTML)'
 href='./'/>
 <link rel='alternate' type='application/json' title='Information about the RH_S
data (as JSON)'
 href='./?f=json'/>
 <link rel='alternate' type='text/plain' title='Information about the RH_S data
(as ECON)'
 href='./?f=econ'/>

 <!--Tiling Schemes-->
 <link rel='tilingSchemes' type='text/html'
 title='Tiling schemes for RH_S (tiles interface; as HTML)' href='./tiles'/>
 <link rel='tilingSchemes' type='application/json'
 title='Tiling schemes for RH_S (tiles interface; as JSON)' href=
'./tiles?f=json'/>
 <link rel='tilingSchemes' type='text/plain'
 title='Tiling schemes for RH_S (tiles interface; as ECON)' href=
'./tiles?f=econ'/>

 <!--Styles-->
 </head>
 <body>
 <extent units="WGS84">
 <input name="zoomLevel" type="zoom" min="0" max="15"/>
 <input name="minLon" type="location" units="gcrs" axis="longitude" position=
"top-left"
 min="-85.1050051420546" max="-50.8421313888137"/>
 <input name="minLat" type="location" units="gcrs" axis="latitude" position=
"bottom-right"
 min="42.8771104951509" max="63.0380382893297"/>
 <input name="maxLon" type="location" units="gcrs" axis="longitude" position=
"bottom-right"
 min="-85.1050051420546" max="-50.8421313888137"/>
 <input name="maxLat" type="location" units="gcrs" axis="latitude" position=
"top-left"
 min="42.8771104951509" max="63.0380382893297"/>

 <!--Features Items-->
 <!--Note: requesting large extent may result in data
 more generalized than requested zoom level-->
 <!--link rel='features' type='text/mapml' title='RH_S (as MapML)'
 tref='./items.mapml?tilingScheme=CRS84Quad2L0Tiles&
 zoomLevel={zoomLevel}&clipbox={minLon},{minLat},{maxLon},{maxLat}'/>
 <link rel='features' type='application/vnd.geo+json' title='RH_S (as
GeoJSON)'

18

 tref='./items.json?tilingScheme=CRS84Quad2L0Tiles&
 zoomLevel={zoomLevel}&clipbox={minLon},{minLat},{maxLon},{maxLat}'/>
 <link rel='features' type='application/vnd.geo+econ' title='RH_S (as
GeoECON)'
 tref='./items.econ?tilingScheme=CRS84Quad2L0Tiles&
 zoomLevel={zoomLevel}&clipbox={minLon},{minLat},{maxLon},{maxLat}'/>
 <link rel='features' type='text/xml; subtype=gml/3.1.1' title='RH_S (as GML)'
 tref='./items.gml?tilingScheme=CRS84Quad2L0Tiles&
 zoomLevel={zoomLevel}&clipbox={minLon},{minLat},{maxLon},{maxLat}'/>
 <link rel='features' type='application/vnd.mapbox-vector-tile'
 title='RH_S (as Mapbox Vector Tile)'
 tref='./items.mvt?tilingScheme=CRS84Quad2L0Tiles&
 zoomLevel={zoomLevel}&clipbox={minLon},{minLat},{maxLon},{maxLat}'/-->

 <input name="row" type="location" axis="row" units="tilematrix"/>
 <input name="col" type="location" axis="column" units="tilematrix"/>

 <!--Tiles-->
 <link rel='tile' type='text/mapml' title='Tiles for RH_S (as MapML)'
 tref='./tiles/CRS84Quad2L0Tiles/{zoomLevel}/{row}/{col}.mapml'/>
 <!--link rel='tile' type='application/vnd.mapbox-vector-tile'
 title='Tiles for RH_S (as Mapbox Vector Tiles)'
 tref='./tiles/CRS84Quad2L0Tiles/{zoomLevel}/{row}/{col}.mvt'/>
 <link rel='tile' type='application/vnd.geo+econ'
 title='Tiles for RH_S (as GeoECON)'
 tref='./tiles/CRS84Quad2L0Tiles/{zoomLevel}/{row}/{col}.econ'/>
 <link rel='tile' type='application/vnd.geo+json'
 title='Tiles for RH_S (as GeoJSON)'
 tref='./tiles/CRS84Quad2L0Tiles/{zoomLevel}/{row}/{col}.json'/>
 <link rel='tile' type='text/xml; subtype=gml/3.1.1'
 title='Tiles for RH_S (as GML)'
 tref='./tiles/CRS84Quad2L0Tiles/{zoomLevel}/{row}/{col}.gml'/-->
 <!--link rel='tile' type='application/vnd.gnosis-map-tile'
 title='Tiles for RH_S (as GNOSIS Map Tiles)'
 tref='./tiles/CRS84Quad2L0Tiles/{level}/{row}/{col}.gmt'/-->

 <link rel='query' type='text/mapml' title='RH_S (as MapML)'
 tref='./items.mapml?tilingScheme=CRS84Quad2L0Tiles&
 zoomLevel={zoomLevel}&bbox={minLon},{minLat},{maxLon},{maxLat}'/>
 </extent>
 </body>
</mapml>

7.3.2. Styling considerations

The testbed examined the question of providing links to styles applicable to a collection.

One viewpoint posited that an OGC API collection is strictly data, facilitating its presentation in
different ways. Under this view, the collection description would remain neutral of the style, but
could list the styles which the client could separately decide to apply (e.g., in a higher-level MapML

19

document including or linking to this collection). A collection might have defined for it one or more
styles. The collection description resource, which itself would be style-agnostic, would provide
information about the availability of these styles. A style parameter could potentially be used
within a style sheet link to name the different styles, and the higher-level document could pick a
style, by also specifying a style parameter when defining a <layer>.

It was also noted that the specialized requirements of cartographic styling such as scale-dependent
styles, complex expressions, etc. can be more complex than what Web CSS was intended to address.
To address these more advanced needs, MapML-enabled clients could consider supporting Web-CSS
inspired specifications such as CartoCSS, GeoCSS, and GNOSIS CMSS.

An alternative viewpoint was that HTML/MapML combines data and affordances, but does separate
presentation (style) from content. Styles (CSS) are separated from (and linked to) the content. Under
this view, a named style could be included in a parameter. A MapML client could interpret multiple
style sheets linked from a single collection description as styles which should all be applied in
cascade.

The question of selecting alternative styles for MapML was examined in Testbed-14, with findings
presented in the Testbed-14 MapML Engineering Report [http://docs.opengeospatial.org/per/18-023r1.html#

_selecting_alternative_styles_for_mapml]. Since the styling aspect was not a core requirement for this
component, a resolution was not pursued. It is recommended that these considerations be
investigated in future work that takes into consideration the growing OGC API family
[https://www.opengeospatial.org/pressroom/pressreleases/3106] of standards.

Sample code appears below as an illustration.

20

http://docs.opengeospatial.org/per/18-023r1.html#_selecting_alternative_styles_for_mapml
https://www.opengeospatial.org/pressroom/pressreleases/3106

Styles section for NaturalEarth/cultural/ne_10m_admin_0_countries collection description

...

<!--Styles-->
<link rel='stylesheet' type='application/vnd.gnosis.cmss+eccss' style='default'
 href='./styles/default.cmss'/>
<link rel='stylesheet' type='application/vnd.ogc.sld+xml' style='default'
 href='./styles/default.sld'/>
<link rel='stylesheet' type='application/vnd.mapbox.style+json' style='default'
 href='./styles/default.json'/>

<link rel='stylesheet' type='application/vnd.mapbox.style+json' style='mbglImportTest'
 href='./styles/mbglImportTest.json'/>
<link rel='stylesheet' type='application/vnd.gnosis.cmss+eccss' style='mbglImportTest'
 href='./styles/mbglImportTest.cmss'/>
<link rel='stylesheet' type='application/vnd.ogc.sld+xml' style='mbglImportTest'
 href='./styles/mbglImportTest.sld'/>

<link rel='stylesheet' type='application/vnd.ogc.sld+xml' style='sldImportTest'
 href='./styles/sldImportTest.sld'/>
<link rel='stylesheet' type='application/vnd.gnosis.cmss+eccss' style='sldImportTest'
 href='./styles/sldImportTest.cmss'/>
<link rel='stylesheet' type='application/vnd.mapbox.style+json' style='sldImportTest'
 href='./styles/sldImportTest.json'/>

...

7.4. MapML encoding
The key capability to develop within this service component was the ability to encode vector
features according to the schema defined in the MapML specifications [https://maps4html.github.io/

MapML/spec/]. This schema is based on the OGC Simple Features data model. Instead of the default
GeoJSON encoding, vector features are encoded as MapML, by specifying the f=mapml parameter,
or appending a .mapml extension, for the /items resource or for a tile resource.

7.4.1. Issues encountered

Some issues with the MapML encoding specification were encountered, reported and resolved
during this initiative:

• There was an inconsistency with the casing of the tags, which should have been all lowercase
(issue 43 [https://github.com/Maps4HTML/MapML/issues/43]);

• Multipolygons should have considered a single valid polygon (also discussed within issue 43
[https://github.com/Maps4HTML/MapML/issues/43#issuecomment-507018476]);

• The <coordinates> tag may be unnecessary and could be omitted from within a <multipoint>.
This would make the schema more consistent with the GeoJSON encoding and reduce overhead
(issue 44 [https://github.com/Maps4HTML/MapML/issues/44]).

21

https://maps4html.github.io/MapML/spec/
https://github.com/Maps4HTML/MapML/issues/43
https://github.com/Maps4HTML/MapML/issues/43#issuecomment-507018476
https://github.com/Maps4HTML/MapML/issues/44

7.4.2. Artificial segments

In order to facilitate re-combining tiled polygonal geometry and avoiding rendering a stroke at tile
edges resulting from polygons that cross tile boundaries, a time-proven approach has been to mark
the artificial segments introduced by the tiling. See Testbed 13 - Vector Tiles ER
[http://docs.opengeospatial.org/per/17-041.html] for a detailed discussion of the topic. Two opposite
approaches were proposed and implemented for specifying those artificial segments in the MapML
encoding.

Interspersed within coordinates

The approach currently implemented marks the artificial segments directly within the coordinates
string, beginning with an opening tag and ending with a closing tag
after the last vertex, from which segments should start to be drawn again. This approach more
readily conveys to a human when looking at the MapML encoding where the artificial segments
begin and end than using numeric indices. This approach can be argued to be more in line with the
MapML concepts.

22

http://docs.opengeospatial.org/per/17-041.html

Artificial segments marked within coordinates

<geometry>
 <multipolygon>
 <polygon>
 <coordinates>-75.2879795367149 44.850602568211 -75.1641182933529
44.9017607809925
 -75.1246337667094 44.9295287035342 -75.0033046832082 44.9618030122688
 -74.9788414438748 44.9600862937191 -75.0098711316609 44.9434341237869
 -75.1222303607398 44.8970398049808 -75.3122711041934 44.8312465665629
 -75.2879795367149 44.850602568211</coordinates>
 </polygon>
 <polygon>
 <coordinates>-75.0044205502655 44.9823177989379 -74.9599575398279
44.9924035204175
 -75.0033046832082 44.9618030122688 -75.0044205502655
44.9823177989379</coordinates>
 </polygon>
 <polygon>
 <coordinates>-74.9483696896173 44.9460521195752 -74.9788414438748
44.9600862937191
 -74.9599575398279 44.9924035204175 -74.8956235121773 45
 -74.8597870124519 45 -74.8812889122871 44.9769959714338
 -74.9483696896173 44.9460521195752</coordinates>
 </polygon>
 <polygon>
 <coordinates>-74.9599575398279 44.9924035204175
 -74.9609017350302 45 -74.928713262223 45
 -74.9599575398279 44.9924035204175 -74.926052348471 45
 -74.9117177485809 45 -74.9599575398279 44.9924035204175</coordinates>
 </polygon>
 </multipolygon>
</geometry>

At the end of the coordinates

The approach initially proposed and favored by Ecere was to specify all artificial segments using a
tag after the coordinates string (right before the </coordinates> closing tag). A <noline/> tag with
'from' and 'to' parameters, with values representing the vertex index within the coordinate string
where the artificial segments begin and end.

This has the advantage of keeping the coordinates string intact, so that a simpler or unaware parser
that does not expect tags to be present within this coordinates string, is not affected by the
existence of such a <noline/> tag. This approach may be slightly simpler and efficient to implement
from both a parser and writer perspective, and may also result in fewer characters due to being a
single tag (depending on the length of the segments and the number of digits to specify indices).

An alternative view posited that since MapML is intended to be processed by browsers, which
provide similar functionality for human-readable text with markup, this might not be a significant
limitation. For example, browsers provide not only internal code infrastructure to manage this

23

design, but also document / node / element APIs to client script code in support of that. If feature
geometries were directly supported by browser infrastructure code, even more relevant script APIs
could be supplied, making in-browser geospatial Web application development even simpler. The
advantage of … is that it is inherently compatible with the CSS cascade,
implemented by browsers. A second reason is that it separates presentation (style) from content. A
<noline> tag is inherently presentation-oriented, whereas a can have the style
characteristics as specified by the CSS rule that targets it, including not drawing it or enhancing it in
some other way.

A counter-argument was made that <noline> is not necessarily presentation-oriented, and perhaps
the name of the tag could be changed to better reflect that. The <noline> tag is still strictly data,
marking the segment as artificially introduced by tiling. This is a property of the data rather than a
presentation attribute. It was also noted that if MapML is used as an encoding, a non-browser client
wanting to support MapML would also need to parse and display MapML content.

Artificial segments marked at the end of coordinates

<geometry>
 <multipolygon>
 <polygon>
 <coordinates>-75.2879795367149 44.850602568211 -75.1641182933529
44.9017607809925
 -75.1246337667094 44.9295287035342 -75.0033046832082 44.9618030122688
 -74.9788414438748 44.9600862937191 -75.0098711316609 44.9434341237869
 -75.1222303607398 44.8970398049808 -75.3122711041934 44.8312465665629
 -75.2879795367149 44.850602568211</coordinates>
 </polygon>
 <polygon>
 <coordinates>-75.0044205502655 44.9823177989379 -74.9599575398279
44.9924035204175
 -75.0033046832082 44.9618030122688 -75.0044205502655
44.9823177989379</coordinates>
 </polygon>
 <polygon>
 <coordinates>-74.9483696896173 44.9460521195752 -74.9788414438748
44.9600862937191
 -74.9599575398279 44.9924035204175 -74.8956235121773 45
 -74.8597870124519 45 -74.8812889122871 44.9769959714338
 -74.9483696896173 44.9460521195752<noline from='3' to='4'/></coordinates>
 </polygon>
 <polygon>
 <coordinates>-74.9599575398279 44.9924035204175
 -74.9609017350302 45 -74.928713262223 45
 -74.9599575398279 44.9924035204175 -74.926052348471 45
 -74.9117177485809 45 -74.9599575398279 44.9924035204175
 <noline from='1' to='2'/><noline from='4' to='5'/></coordinates>
 </polygon>
 </multipolygon>
</geometry>

24

7.5. OGC API modules
The following modular OGC API capabilities are available for all applicable data layers served at the
deployed endpoint.

7.5.1. Common

Table 1. Ecere OGC API - Common resources

Resource path Description

/ Landing page.

/api API description (NOTE: currently missing)

/conformance API conformance (NOTE: currently missing)

/collections The list of available collections

/collections/{collectionId} The description of a specific collection

/collections/{collectionId}/items The data of a specific collection

Example direct paths to collections listing and description:

http://maps.ecere.com/geoapi/collections/ (List of all collections served)

http://maps.ecere.com/geoapi/collections/GRHQ (Québec hydrography network)

http://maps.ecere.com/geoapi/collections/GRHQ?f=mapml (MapML representation, listing
commented out sub-collections)

http://maps.ecere.com/geoapi/collections/GRHQ/RH_S (hydrographic network surfaces)

http://maps.ecere.com/geoapi/collections/GRHQ/RH_S?f=mapml (MapML representation)

http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries
(Natural Earth Countries)

http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries?
f=mapml (as MapML)

http://maps.ecere.com/geoapi/collections/osm/ottawa/roads (Ottawa Roads from OpenStreetMap)

http://maps.ecere.com/geoapi/collections/osm/ottawa/roads?f=mapml (as MapML)

7.5.2. Vector features

Table 2. Ecere OGC API - Features resources

Resource path Description

/collections/{collectionId}/items The vector features for a specific collection

/collections/{collectionId}/schema WFS-style schema listing attributes and their
types

25

http://maps.ecere.com/geoapi/collections/
http://maps.ecere.com/geoapi/collections/GRHQ
http://maps.ecere.com/geoapi/collections/GRHQ?f=mapml
http://maps.ecere.com/geoapi/collections/GRHQ/RH_S
http://maps.ecere.com/geoapi/collections/GRHQ/RH_S?f=mapml
http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries
http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries?f=mapml
http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries?f=mapml
http://maps.ecere.com/geoapi/collections/osm/ottawa/roads
http://maps.ecere.com/geoapi/collections/osm/ottawa/roads?f=mapml

Example direct paths to vector features:

http://maps.ecere.com/geoapi/collections/GRHQ/RH_S/items (default GeoJSON encoding of the
hydrographic network) http://maps.ecere.com/geoapi/collections/GRHQ/RH_S/items.mapml (MapML
encoding of the hydrographic network)

NOTE

This example request returns geometry and attributes covering the entirety of a
very large dataset. A zoom level lower than the maximum will be used for this
request due to the extreme size of the data, but will still require some intense
processing from the server side. However, this processing time was greatly reduced
by optimizations performed during the initiative, after a performance problem was
discovered. The transfer time was also improved by implementing support for
deflate and gzip content encoding. However once decompressed, the response for
this request is still a large 55 megabytes of MapML encoding, which e.g. browsers
will struggle to render as text.

The features end-point supports a number of parameters:

• f (specify encoding);

• bbox (an intersecting bounding box);

• clipBox (a clipping bounding box);

• zoomLevel (a zoom level to specify a desired generalization level, based on the selected tiling
scheme, or defaulting to the GNOSIS Global Grid [http://docs.opengeospatial.org/is/17-083r2/17-

083r2.html#106]);

• tilingScheme (the tiling scheme defining the scale set to which zoomLevel is referring);

• time (for temporal datasets);

• properties (specify the list of properties to include; geometry is not included if specified and not
including 'geometry').

By specifying a zero-area box for the location (equal lower left and upper right coordinates, the
intersecting bounding box has notably been found useful in a MapML client to query the feature
properties:

http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?
bbox=-75,45,-75,45

26

http://maps.ecere.com/geoapi/collections/GRHQ/RH_S/items
http://maps.ecere.com/geoapi/collections/GRHQ/RH_S/items.mapml
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html#106
http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?bbox=-75,45,-75,45
http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?bbox=-75,45,-75,45

Figure 6. Only Canada, as a whole feature, returned by the above request

The geometry and only query specific attributes can also be omitted:

http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/
items.mapml?bbox=-75,45,-75,45&properties=name,pop_est

27

http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items.mapml?bbox=-75,45,-75,45&properties=name,pop_est
http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items.mapml?bbox=-75,45,-75,45&properties=name,pop_est

MapML output from the above request, omitting geometry

<mapml>
 <head>
 <title>ne_10m_admin_0_countries</title>
 <base href=

"http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countri
es"/>
 <meta charset="utf-8"/>
 <meta content="text/mapml" http-equiv="Content-Type"/>
 </head>
 <body>
 <extent units="WGS84">
 <input name="zoomLevel" type="zoom" value="2" min="0" max="6"/>
 <input name="minLon" type="location" value="-180" units="gcrs" axis="longitude"
 position="top-left" min="-180" max="180"/>
 <input name="minLat" type="location" value="-90" units="gcrs" axis="latitude"
 position="bottom-right" min="-90" max="90.0002058236639"/>
 <input name="maxLon" type="location" value="180" units="gcrs" axis="longitude"
 position="bottom-right" min="-180" max="180"/>
 <input name="maxLat" type="location" value="90.0002058236639" units="gcrs" axis
="latitude"
 position="top-left" min="-90" max="90.0002058236639"/>

 <link rel='features' type='text/mapml' title='ne_10m_admin_0_countries (as
MapML)'
 tref=
'http://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countri
es/
 items.mapml?tilingScheme=CRS84Quad2L0Tiles&
 zoomLevel={zoomLevel}&clipbox={minLon},{minLat},{maxLon},{maxLat}'/>
 </extent>
 <feature id="fclass.68" class="fclass">
 <properties>
 <table>
 <thead>
 <tr>
 <th role="columnheader" scope="col">Property name</th>
 <th role="columnheader" scope="col">Property value</th>
 </tr>
 </thead>
 <tbody>
 <tr><th scope="row">name</th><td itemprop="name">Canada</td></tr>
 <tr><th scope="row">pop_est</th><td itemprop="pop_est">33487208</td></tr>
 </tbody>
 </table>
 </properties>
 </feature>
 </body>
</mapml>

28

On the other hand, the clipping bounding box is preferable for requesting only a portion of a high
resolution very large single feature, such as a single polygon for the whole of Canada with highly
detailed coastline.

The zoom level parameter offers a generalized version of the data without requiring the use of tiles.

7.5.3. (A)RGB Imagery

Table 3. Ecere OGC API - (A)RGB Imagery resources

Resource path Description

/collections/{collectionId}/items The data for the whole layer (as JPEG or PNG)

The following parameters are supported:

• f (specify encoding);

• bbox or clipBox (a clipping bounding box);

• zoomLevel (a zoom level to specify a desired generalization level, based on the selected tiling
scheme, or defaulting to the GNOSIS Global Grid);

• tilingScheme (the tiling scheme defining the scale set to which zoomLevel is referring);

• width and/or height in pixels;

• time (for temporal datasets).

Example direct paths to imagery:

http://maps.ecere.com/geoapi/collections/BMNG%202004/items (NASA Blue Marble Next Generation
imagery mosaic)

Figure 7. NASA Blue Marble Next Generation imagery moasic returned by above request

29

http://maps.ecere.com/geoapi/collections/BMNG%202004/items

7.5.4. Coverage

Table 4. Ecere OGC API - Coverage resources

Resource path Description

/collections/{collectionId}/items The data for the whole layer (as 16-bit PNG,
eventually as GeoTIFF)

The following parameters are supported:

• f (specify encoding);

• bbox or clipBox (a clipping bounding box);

• zoomLevel (a zoom level to specify a desired generalization level, based on the selected tiling
scheme, or defaulting to the GNOSIS Global Grid);

• tilingScheme (the tiling scheme defining the scale set to which zoomLevel is referring);

• width and/or height in pixels;

• time (for temporal datasets).

Example direct paths to coverage (elevation data):

http://maps.ecere.com/geoapi/collections/SRTM_ViewFinderPanorama/items (SRTM
ViewFinderPanorama elevation data)

Figure 8. ViewFinderPanorama SRTM elevation data returned by above request

30

http://maps.ecere.com/geoapi/collections/SRTM_ViewFinderPanorama/items

Figure 9. Elevation used for building 3D terrain mesh, hill shading and coloring in GNOSIS
Cartographer

7.5.5. Tiles

Table 5. Ecere OGC API - Tiles resources

Resource path Description

/tiles The list of all tiling schemes

/tiles/{tilingSchemeId} The description of a specific tiling scheme

/collections/{collectionId}/tiles/{tilingSchemeId}/
{level}/{row}/{col}

The data for a specific tile from a collection

/collections/{collectionGroup}/tiles/{tilingScheme
Id}/{level}/{row}/{col}

Multi-layer data for a specific tile from a group
of collections

Tiled data are available for either individual layers or as multi-layer Mapbox Vector Tiles for a
group of vector collections.

The Tiles API supports the Tile Matrix Set extension to describe the tiling scheme.

Most of the tiling schemes supported are defined in the OGC Web Map Tile Service (WMTS)
standard. The tiling schemes supported include:

• GlobalCRS84Scale [http://maps.ecere.com/geoapi/tiles/GlobalCRS84Scale] (EPSG:4326, scale set with
round scale denominators, defined in WMTS 1.0 Appendix E.1);

• GlobalCRS84Pixel [http://maps.ecere.com/geoapi/tiles/GlobalCRS84Pixel] (EPSG:4326, scale set with
round pixels per degrees, defined in WMTS 1.0 Appendix E.2);

• GoogleCRS84Quad [http://maps.ecere.com/geoapi/tiles/GoogleCRS84Quad] (EPSG:4326, quad-tree/power
of 2 scale set defined in WMTS 1.0 Appendix E.3);

• CRS84Quad2L0Tiles [http://maps.ecere.com/geoapi/tiles/CRS84Quad2L0Tiles] (EPSG:4326, same as

31

http://maps.ecere.com/geoapi/tiles/GlobalCRS84Scale
http://maps.ecere.com/geoapi/tiles/GlobalCRS84Pixel
http://maps.ecere.com/geoapi/tiles/GoogleCRS84Quad
http://maps.ecere.com/geoapi/tiles/CRS84Quad2L0Tiles

GoogleCRS84Quad, but offset by one level to avoid intricacies);

• GNOSISGlobalGrid [http://maps.ecere.com/geoapi/tiles/GNOSISGlobalGrid] (EPSG:4326, variable tile
width matrix [http://docs.opengeospatial.org/is/17-083r2/17-083r2.html#14], defined in OGC TMS 1.0
Appendix H.2 [http://docs.opengeospatial.org/is/17-083r2/17-083r2.html#106]);

• GoogleMapsCompatible [http://maps.ecere.com/geoapi/tiles/GoogleMapsCompatible] (EPSG:3857,
spherical Mercator quad-tree scale set defined in WMTS 1.0 Appendix E.4).

The support for CRS84Quad2L0Tiles was added during the initiative to support the MapML needs,
as currently only the EPSG:4326 tiling scheme is officially supported by MapML.

Example direct paths to tiles:

http://maps.ecere.com/geoapi/collections/

osm/ottawa/tiles/CRS84Quad2L0Tiles/14/4053/9493.mvt [http://maps.ecere.com/geoapi/collections/osm/

ottawa/tiles/CRS84Quad2L0Tiles/14/4053/9493.mvt] (multi-layer Mapbox Vector Tile, OSM Ottawa)
GRHQ/RH_S/tiles/CRS84Quad2L0Tiles/6/16/37.mapml [http://maps.ecere.com/geoapi/collections/GRHQ/RH_S/

tiles/CRS84Quad2L0Tiles/6/16/37.mapml] (hydrographic network surfaces tiled vectors, as MapML)

Figure 10. Hydrography network vector tile

SRTM_ViewFinderPanorama/tiles/CRS84Quad2L0Tiles/6/16/37 [http://maps.ecere.com/geoapi/collections/

SRTM_ViewFinderPanorama/tiles/CRS84Quad2L0Tiles/6/16/37] (elevation data tile)

32

http://maps.ecere.com/geoapi/tiles/GNOSISGlobalGrid
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html#14
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html#14
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html#106
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html#106
http://maps.ecere.com/geoapi/tiles/GoogleMapsCompatible
http://maps.ecere.com/geoapi/collections/
http://maps.ecere.com/geoapi/collections/osm/ottawa/tiles/CRS84Quad2L0Tiles/14/4053/9493.mvt
http://maps.ecere.com/geoapi/collections/GRHQ/RH_S/tiles/CRS84Quad2L0Tiles/6/16/37.mapml
http://maps.ecere.com/geoapi/collections/SRTM_ViewFinderPanorama/tiles/CRS84Quad2L0Tiles/6/16/37

Figure 11. Elevation data tile

Figure 12. Elevation data tile (hillshaded with QGIS)

BMNG%202004/tiles/CRS84Quad2L0Tiles/6/16/37 [http://maps.ecere.com/geoapi/collections/BMNG%202004/

tiles/CRS84Quad2L0Tiles/6/16/37] (imagery tile)

Figure 13. Imagery mosaic tile

33

http://maps.ecere.com/geoapi/collections/BMNG%202004/tiles/CRS84Quad2L0Tiles/6/16/37

7.5.6. Styles

Table 6. Ecere OGC API - Styles resources

Resource path Description

/styles The list of all styles (NOTE: missing as of
November 25th, 2019)

/styles/{styleId} The style data for a given style (NOTE: missing as
of November 25th, 2019)

/collections/{collectionId}/styles The list of all styles associated with this
collection

/collections/{collectionId}/styles/{styleId} The style data for a given style

The style sheets are available in GNOSIS CMSS, SLD/SE and Mapbox GL JSON styles. The server can
either serve the different encodings (one or more) directly if available for each style, or generate
the missing ones on-the-fly. This functionality is experimental as numerous challenges are posed by
major differences in styling approach from one styling language and renderer to another. This
workflow is being improved to produce better conversion results.

The association between the styles and the data layers is done by storing style sheets with the
source data store itself, or through the concept of a stylable layer set. This is a unique resource
identifier which both the layers and styles can be associated with. One or more stylable layer set
can be specified within the styles and layers metadata.

Example direct paths to styles:

http://maps.ecere.com/geoapi/collections/

NaturalEarth/styles [http://maps.ecere.com/geoapi/collections/NaturalEarth/styles] (list of all styles for
Natural Earth)

NaturalEarth/styles/default [http://maps.ecere.com/geoapi/collections/NaturalEarth/styles/default] (Default
Natural Earth style, default CMSS encoding)

NaturalEarth/styles/default.sld [http://maps.ecere.com/geoapi/collections/NaturalEarth/styles/default.sld]
(Default Natural Earth style, SLD/SE encoding)

NaturalEarth/styles/default.json [http://maps.ecere.com/geoapi/collections/NaturalEarth/styles/default.json]
(Default Natural Earth style, Mapbox GL encoding)

34

http://maps.ecere.com/geoapi/collections/
http://maps.ecere.com/geoapi/collections/NaturalEarth/styles
http://maps.ecere.com/geoapi/collections/NaturalEarth/styles/default
http://maps.ecere.com/geoapi/collections/NaturalEarth/styles/default.sld
http://maps.ecere.com/geoapi/collections/NaturalEarth/styles/default.json

Figure 14. Default styles for Natural Earth

osm/styles [http://maps.ecere.com/geoapi/collections/osm/styles] (list of all styles for OpenStreetMap)

osm/styles/default [http://maps.ecere.com/geoapi/collections/osm/styles/default] (Default style for
OpenStreetMap, default CMSS encoding)

osm/styles/default.sld [http://maps.ecere.com/geoapi/collections/osm/styles/default.sld] (Default style for
OpenStreetMap, SLD/SE encoding)

osm/styles/default.json [http://maps.ecere.com/geoapi/collections/osm/styles/default.json] (Default style for
OpenStreetMap, Mapbox GL encoding)

35

http://maps.ecere.com/geoapi/collections/osm/styles
http://maps.ecere.com/geoapi/collections/osm/styles/default
http://maps.ecere.com/geoapi/collections/osm/styles/default.sld
http://maps.ecere.com/geoapi/collections/osm/styles/default.json

Chapter 8. Quebec model MapML Client
The Quebec model MapML Client (D106) displays MapML documents served by an implementation
of the OGC API - Features standard. The final geospatial results of the ML model are provided in a
vector format. The data at its different stages are displayed using MapML served by OGC API -
Features.

A scenario includes a single WPS instance that serves as an interface to the vectorization model.
The service/model needs to connect to various OWS instances at the backend. The WFS instance
serves the results of the vectorization process as MapML. A dedicated client application interacts
with the service instances and displays the MapML data.

Figure 15. Quebec scenario work items

The scenario begins when a client receives a notification from a WPS instance informing the client
that it is ready to provide a service. After that, the client requests features from an OGC API -
Features instance, and receives a MapML document which describes a final geospatial result of the
ML model as a vector format.

8.1. Component Summary
The Quebec model MapML Client (D106) is a web application which is executable on a web
browser. The D106 application logic is in the client-side of the web application, and the logic runs
on a browser engine inside a web browser.

The D106 client supports the following features:

• Showing vector features (MapML and GeoJSON format) served by OGC API - Features;

• Supporting spatial and temporal constraints;

• Executing generic operations served by WPS 2.0;

• Showing single and tile images served by Web Map Service (WMS), WMTS, ArcGIS REST, and
XYZ services;

• Supporting a pixel picker tool.

Figure 16 shows the top-level software architecture of the D106 client.

36

Figure 16. Top-level Software Structure

The server-side components consisted of a web server, a proxy server, and application resources
such as HTML files, scripts, images, and so on. A web browser loaded all the D106 application
relative resources, and then a browser engine (e.g., WebKit or Blink) executed them as client-side
components.

The D106 client sometimes needed to fetch cross-origin XML or JSON content, such as a response of
GetCapabilities of WPS or WMS/WMTS, Collections list of OGC API - Features, MapML documents,
etc. Cross-origin requests are not permitted under a Cross-origin resource sharing (CORS) same-
origin security policy in the browser.

For purposes of the testbed, a proxy mechanism was built to work around CORS prohibitions. Each
cross-origin URL was encapsulated in a new same-origin URL, and then sent to a proxy server for
bypass.

The longer-term recommendation is to use CORS headers to designate resources as being shared.
When sharing is not desired, the browser would enforce CORS same-origin security policy.

8.2. Component Design
The D106 deliverable is a web application, and its software structure is based on Model-view-
controller (MVC). Each client-side component has its own model, view, and controller, and the
components only share a few variables and methods with each other.

In the D106 deliverable, the client has 5 user interface components and 1 MapML component:

37

• Map Area: Manipulates the map area supported by OpenLayers.

• WFS Client: Fetches collections and their items served by OGC API - Features.

• Layers: Manages vector and image layers.

• WPS Client: Fetching and executing operations served by WPS 2.0.

• Toolbar: Supports spatial and temporal constraints, additional tools, and settings menu.

• MapML: Manipulates MapML document:

◦ Parser: Parses MapML document and then produces a MapML document object model;

◦ Document Object: MapML document object model;

◦ OpenLayers Front-end: Creates a layer-objects array of OpenLayers from a MapML
document object model.

Figure 17 shows a sequence diagram for the client fetching a collections list served by an OGC API –
Features instance, which writes and returns the item as a MapML document.

Figure 17. Fetching MapML document from OGC API - Features

8.2.1. Step 1. Acquiring a Collections List

An end-user interaction triggers a request to fetch a Collection from an OGC API - Features service
endpoint. The WFS Client sends the request via Ajax to a local web server, which uses the Proxy
Server to bypass the CORS restriction. (As described above, it is recommended that a longer-term
approach should use CORS headers instead of a proxy.) The Collection information asynchronously
returns the result to the WFS Client.

38

8.2.2. Step 2. Acquiring a MapML document

The WFS Client has a user interface for setting OGC API - Features parameters, such as selecting a
collection, appending spatial and temporal constraints, setting zoom level or output format, and so
on. The end-user can request features information by clicking the AddLayer button in the user
interface. The WFS Client sends a request for acquiring item features, and the WFS Client receives a
MapML document containing the desired item features.

8.2.3. Step 3. Showing features from the MapML document

Now the WFS Client has the desired MapML document containing multiple <feature> elements. The
WFS Client component sends this MapML content to the Layers component for adding the layer into
the map area. The Layers component parses the MapML text content to a MapML Document Object
model by using the MapML Parser. The view of D106 is based on an OpenLayers map library, so the
MapML Document Object is converted using the MapML OpenLayers Front-end. After conversion,
the generated layer object is appended as a layer of the OpenLayers map view.

8.3. Implementation Approach
To show a MapML document in the map area, the D106 component parses the MapML document by
using the MapML Parser and then converts it to an OpenLayers layer object using the MapML
OpenLayers Front-end. Specifically, the parser converts all <feature> elements to a single GeoJSON
object for ready showing in the map area.

A suggestion was also made to consider converting the MapML into canvas commands or Scalable
Vector Graphics (SVG) objects directly, especially if there is a risk of potentially exhausting available
memory.

8.3.1. MapML Parser

A raw MapML document is text content, and the MapML Parser converts the plain text of MapML
documents to a MapML Document Object. Figure 18 shows how each statement in a MapML
document becomes a part of a MapML Document Object. The <head> element becomes a head key,
which is a top key of the object. The <extent> element becomes an extent key, which is a sibling of
the head key. Each <feature> element becomes an element of a features array in a FeatureCollection
type of geojson key. The parser packs all <feature> elements into a single FeatureCollection of a
GeoJSON object.

39

Figure 18. MapML document parsing

Unlike the GeoJSON specification, the <properties> element of MapML is a free HTML format, so the
parser converts it as a single property named "CDATA".

An alternative view was posited that the idea of MapML is to be compatible with the HTML parser,
so that MapML becomes part of HTML (obviating any need to convert to JSON first). For now,
MapML services can be relied upon to be mostly compatible with MicroXML rules, which enables
use of the browser’s built-in XML parser. The HTML parser could also be used if its heuristics are
known, enabling manipulation of the output DOM directly using browser-provided DOM APIs.
Under this view, MapML is an HTML encoding of geospatial information, which is where the
semantics of geospatial information are currently absent. MapML fills this need.

8.3.2. OpenLayers Front-end

A MapML Document Object has an extent array and a GeoJSON object. In most cases, the item
features served by OGC API - Features are described in the <feature> elements in the MapML
response. Therefore, the most important part of the D106 deliverable as an OGC API - Features
Client is converting from <feature> elements of MapML to a single GeoJSON object.

To become a MapML viewer beyond being simply an OGC API - Features client, the D106 component
had to support <extent> elements as describing how a layer of map area is retrieved. Each <link> in
the <extent> element can describe raster or vector layers, and each of them will become an
(internal) layer. Figure 19 shows not only how a GeoJSON object becomes a vector layer in
OpenLayers, and also how each <link> in an extent will become a proper layer in OpenLayers in its
own right.

40

Figure 19. OpenLayers front-end for MapML

The name OlMapML is a Node.js package name that supports APIs for getting a layers array of
OpenLayers. The following example shows how to use the OlMapML Node.js package.

import MapML from './MapML.js';
import OlMapML from './OlMapML.js';
...
let content = "<mapml> ... </mapml>";

let mapml = new MapML();
let mapmlDoc = mapml.parse(content); // returns MapMLDoc
let geojson = mapmlDoc.getGeoJSON(); // GeoJSON object
// or
let olMapML = new OlMapML(mapmlDoc, { projection: 'EPSG:3857' }); //
OpenLayers front-end
let layers = olMapML.getLayers(); // OpenLayers Layer array (both <extent>
and <feature>s)
...

8.4. Component Implementation
The D106 deliverable D106 was a web application based on a React [https://reactjs.org/] user-interface
development framework. The deliverable was deployed on a Linux virtual machine supported by
the Amazon Elastic Compute Cloud (Amazon EC2) web service. The reader is invited to visit an

41

https://reactjs.org/

instance of the D106 deliverable [http://mapmlclient.com].

8.4.1. Runtime Environment (for the D106 web application)

• Processor: Intel Xeon CPU E5-2676 v3 @ 2.40GHz

• Memory: 1GB

• Storage: 10GB SSD

• OS: Linux Ubuntu 16.04 LTS

• Web Server: Apache HTTP Server 2.4.18

• Proxy Runtime: Python 2.7.12

8.4.2. User Interface

Figure 20 shows the top-level screen view on a modern web browser.

Figure 20. Top-level Main Screen Capture

There are six sections in the main view. Two Client (WPS, WFS) sections and one Layers section are
in the left area, one console section is in the bottom area, one toolbar section is in the top right side,
and one map view section is in center area.

• Map Area: OpenLayers map area (with a basemap, changeable on Settings).

• WPS client: Generic WPS 2.0 client.

• WFS client: Generic OGC API - Features client, especially supports the MapML item format.

• Layers: Layer control, adding a WMS, GeoJSON, or MapML layer directly from a URL or a local

42

http://mapmlclient.com

file.

• Console: Displays logs, especially when fetching URLs internally.

• Toolbar: Reloading, Bounding box selector, Date time selector, Pixel picker, Translating tool,
and Settings.

Figure 21 shows how to add a new OGC API - Features service endpoint.

Figure 21. Input OGC API - Features Service Endpoint

Figure 22 shows an OGC API - Features item parameter setting dialog box for fetching feature items.

Figure 22. Add Feature Items as a Map Layer

Figure 23 shows that vector features described in a MapML document display on the map area as a

43

vector layer. An end-user can select any feature in the map area, and its property information is
shown in a dialog box.

Figure 23. Display Features in a MapML document

8.4.3. Future Considerations

Although the Quebec model MapML Client D016 deliverable design was based on using vector
features described in a MapML document, MapML has potential benefits as a metadata document
in describing an OGC API - Features implementation and a selection of features from a data source.
The following are advantages of MapML as a service or client implementation of the OGC API -
Features - Part 1: Core standard.

MapML extension for OpenLayers

This deliverable implementation uses OpenLayers as a front-end map manipulation library, but it is
not a formal extension of the library. To become a formal extension of OpenLayers, the MapML
front-end should be implemented based on the abstract OpenLayers APIs, such as format, source,
and layer in the library hierarchy. The MapML parser of this deliverable can become a format class,
the fetching WFS logic can become a source class, and the front-end logic could become a layer
class.

Recursive features link

This deliverable implementation uses feature elements to show vector features data. MapML might
be capable of recursively including vector features from different service providers, realizable if a
client supported inner features links recursively.

44

Vector Tiles

This deliverable implementation partially supports vector tiles feature data, if a restricted map
projection type and tiling scheme are selected. MapML documents can include multiple vector tiles
features links, and these links are supported without any restricted conditions.

MapML for a metadata document

MapML is suitable for representing not only a selection of features from a data source, but may also
be useful as a metadata document describing a collection of information. It could provide links into
the collection using map semantics (bounding boxes, tiles, images, features etc.).

In future work, it might be interesting to see how a crawler could use a MapML representation of a
collection document to index a collection. Not only could it use information in the <head> element
such as Dublin Core metadata, but it could actually use the affordances to link into the collection
and crawl the feature information in the collection, in much the same way as HTML allows
crawlers to follow links they find to other HTML resources. Use of the crawled resources via a
search engine could constitute “Discovery” use case resolution.

45

Appendix A: Revision History
Table 7. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

August 22, 2019 Scott Serich .1 all initial IER draft

October 23, 2019 NRCan .2 all sponsor edits

October 28, 2019 Gil Heo .3 client content client content
edits

October 30, 2019 Jérôme
Jacovella-St-
Louis

.4 service content service content
edits

October 30, 2019 Scott Serich .5 front and back
sections

clean up

November 6,
2019

Scott Serich .6 service and
client content

incorporate
sponsor
feedback

November 10,
2019

Scott Serich .7 service content rework link
relations and
styling
considerations

November 11,
2019

Scott Serich .8 service content rework "MapML
representation
of OGC API
collection
description"

January 6, 2020 Scott Serich .9 all incorporate
recommended
changes from
Carl and Gobe

46

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Background
	Chapter 7. Québec Model MapML Service
	7.1. Service description
	7.2. Data layers served
	7.3. MapML and OGC API integration
	7.3.1. MapML representation of an OGC API collection description
	7.3.2. Styling considerations

	7.4. MapML encoding
	7.4.1. Issues encountered
	7.4.2. Artificial segments

	7.5. OGC API modules
	7.5.1. Common
	7.5.2. Vector features
	7.5.3. (A)RGB Imagery
	7.5.4. Coverage
	7.5.5. Tiles
	7.5.6. Styles

	Chapter 8. Quebec model MapML Client
	8.1. Component Summary
	8.2. Component Design
	8.2.1. Step 1. Acquiring a Collections List
	8.2.2. Step 2. Acquiring a MapML document
	8.2.3. Step 3. Showing features from the MapML document

	8.3. Implementation Approach
	8.3.1. MapML Parser
	8.3.2. OpenLayers Front-end

	8.4. Component Implementation
	8.4.1. Runtime Environment (for the D106 web application)
	8.4.2. User Interface
	8.4.3. Future Considerations

	Appendix A: Revision History

