
OGC Testbed-15
Machine Learning Engineering Report

Table of Contents
1. Subject . 4

2. Executive Summary . 5

2.1. Document contributor contact points . 6

2.2. Foreword . 6

3. References . 7

4. Terms and definitions. 8

4.1. Abbreviated terms . 8

5. Overview . 11

6. Background . 12

6.1. Relationship to OGC API - Processes (WPS 3) . 14

6.2. Machine Learning Techniques . 15

6.2.1. Reinforcement Learning. 16

6.2.2. Convolutional Neural Networks . 16

6.2.3. Recurrent Neural Networks. 16

7. Thread Architecture . 17

7.1. Petawawa Super Site research forest change prediction ML model scenario . 17

7.2. New Brunswick forest supply management decision maker ML model scenario 18

7.3. Quebec Lake river differentiation ML model scenario . 19

7.4. Richelieu River hydro linked data harvest model scenario. 21

7.5. Arctic Web Services Discovery ML model scenario. 21

8. Petawawa cloud mosaicking ML model . 23

8.1. Component Summary . 24

8.1.1. WPS Server . 24

8.1.2. Job / Queue Handler. 25

8.1.3. Internal Storage . 25

8.1.4. Orchestrator . 25

8.2. Component Design. 26

8.2.1. Cloud free mosaic generation . 27

8.2.2. ML model training . 29

8.3. Implementation Approach. 30

8.3.1. Job / Queue Handler. 30

8.3.2. WPS Server . 30

8.3.3. Cloud free mosaic generation status query . 33

8.3.4. Cloud free mosaic download . 34

8.3.5. Orchestrator . 36

8.4. Conclusions . 49

9. Petawawa Land Classification Model . 51

9.1. Pixel-wise Classification with Deep Learning . 51

9.1.1. Dataset. 51

9.1.2. Model. 52

9.1.3. Results . 54

9.2. Implementation of Web Processing Service (WPS) for Deep Learning Model . 55

9.2.1. Introduction of WPS wrapper implementation . 55

9.2.2. WPS Interface Description . 56

9.2.3. WPS Request Example and Result Demonstration. 58

10. New Brunswick forest supply management decision maker ML model . 62

10.1. Component Summary. 62

10.2. Component Design. 63

10.2.1. Set neural network . 64

10.2.2. Train an agent . 65

10.2.3. Harvest agent . 66

10.2.4. Transport agent . 66

10.2.5. Planning agent . 67

10.2.6. Run episodes . 68

10.3. Architecture . 68

10.4. Input data . 69

10.5. Routing engine . 69

10.6. Preprocessed forest model . 70

10.7. Price forecasting model . 71

10.7.1. Wood pricing forecasting . 71

10.7.2. Fuel pricing forecasting . 72

10.8. Other models - Business process parameters . 75

10.8.1. Harvest teams . 75

10.8.2. Transport teams . 75

10.8.3. Planning team and team allocation criteria . 75

10.8.4. Mills . 75

10.8.5. Machine Learning Model . 76

10.9. Component Implementation . 77

10.9.1. Implementations . 77

10.10. WPS Request / Response examples . 77

10.10.1. Configuration . 77

10.10.2. Training . 79

10.10.3. Execution . 80

10.10.4. Results. 81

10.11. Conclusions . 83

11. Quebec River-Lake Classification and Vectorization Model . 85

11.1. Component Summary. 85

11.2. Component Design. 85

11.3. Implementation Approach . 86

11.3.1. Application. 86

11.3.2. Data . 87

11.3.3. Machine Learning Model . 90

11.3.4. Convolutional Neural Network architecture. 90

11.3.5. Other experimental findings . 93

11.4. Component Implementation . 94

11.4.1. Process Description . 95

12. Arctic Discovery Catalog . 97

12.1. Overview . 97

12.2. Architecture . 97

12.3. Machine Learning Model Training . 99

12.3.1. Data Preparation . 99

12.4. ML Models . 100

12.4.1. Multilayer Perceptron (MLP) Neural Network Implementation . 100

12.4.2. Training Results . 100

12.5. Model Accuracy . 104

12.5.1. Results. 104

12.5.2. Standards . 105

12.5.3. Interoperability . 105

12.6. Future Directions. 105

12.6.1. Convolutional Neural Network Implementation . 105

12.6.2. Recurrent Neural Network Implementation. 105

12.6.3. Evergreen Harvester . 105

12.6.4. Unsupervised Learning . 106

13. Discussion . 107

13.1. OGC API - Processes Operations . 107

13.1.1. Suggestions for OGC API – Processes endpoints . 107

13.2. Recommendations . 108

13.2.1. D102 Recommendations. 108

13.2.2. D104 Recommendations. 111

13.2.3. D105 (OGC API - Features service) Recommendations . 112

14. Conclusion. 114

Appendix A: Configuration file for the ML application . 115

Appendix B: JSON file for ML App Process Description . 117

Appendix C: CWL file for the helper ML Application Package . 120

Appendix D: Log output of the training process for D104 . 121

Appendix E: Revision History . 122

Appendix F: Bibliography . 123

Publication Date: 2019-12-20

Approval Date: 2019-11-22

Submission Date: 2019-09-30

Reference number of this document: OGC 19-027r2

Reference URL for this document: http://www.opengis.net/doc/PER/t15-D002

Category: OGC Public Engineering Report

Editor: Sam Meek

Title: OGC Testbed-15: Machine Learning Engineering Report

OGC Public Engineering Report

COPYRIGHT

Copyright © 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t15-D002
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Subject
The Machine Learning (ML) Engineering Report (ER) documents the results of the ML thread in
OGC Testbed-15. This thread explores the ability of ML to interact with and use OGC web standards
in the context of natural resources applications. The thread includes five scenarios utilizing seven
ML models in a solution architecture that includes implementations of the OGC Web Processing
Service (WPS), Web Feature Service (WFS) and Catalogue Service for the Web (CSW) standards. This
ER includes thorough investigation and documentation of the experiences of the thread
participants.

4

Chapter 2. Executive Summary
This OGC ER documents work completed in the OGC Testbed-15 ML thread. This includes
documentation of experimental methods and results as well as addressing the integration of ML
models and outputs into an OGC Web Services (OWS) architecture. The thread covered several
scenarios that have commonalities, but do not interact directly. The purpose of the research in the
ML thread was to demonstrate the use of OGC standards in the ML domain through scenario
development. The scenarios used in the ML thread were:

• Petawawa Super Site Research forest change prediction model.

• New Brunswick forest supply management decision maker ML models.

• Quebec Lake river differentiation ML models.

• Richelieu River Hydro linked data harvest models.

• Arctic web services discovery ML model.

Each scenario has a set of supporting data coupled with cataloging and processing services to
support the aim. An ML model is at the core of each scenario. The objective was to have the model
make key decisions that a human in the system would typically make under normal circumstances.
Each scenario and corresponding implementations were supported by at least one client to
demonstrate the execution and parsing of outputs for visualization.

Publication of specific ML results in the draft Map Markup Language (MapML) specification focuses
on the client supporting the Quebec Lake scenario as the data service. This was an implementation
of the OGC Application Programming Interface (API) - Features standard. This implementation was
required to produce the outputs of the model in MapML. (Note: The OGC API - Features standard
was previously named WFS 3.0.) Likewise, the corresponding client was required to parse and
visualize the results using the MapML outputs from the data service. This client was provided as a
separate work item. The other scenarios were supported by clients provided by the model
originators to demonstrate their work. A full exploration and documentation of the MapML work is
documented in the MapML ER [http://www.opengis.net/doc/PER/t15-D023].

Each of the different work activities incorporated one or more ML techniques using different
datasets and parameters. The overall findings and recommendations from the ML thread consisted
of: Those regarding ML and those concerning the usage of OGC standards in ML use cases. Many of
the ML recommendations included further exploration of the techniques required to produce
suitable results. Recommendations of interest to the OGC are as follows:

• Define and discuss the candidate OGC API - Processing pattern for use in machine learning. This
type of exercise has already been done in the OGC Open Routing API Pilot
[https://www.opengeospatial.org/projects/initiatives/routingpilot] in which two different patterns were
created to explore the functionality. These were:

◦ Use of a lightweight concept routes as the path base with little constraint on the API design
pattern and use of conformance classes to configure clients automatically.

◦ A formal structure, based on the OGC API – Processes draft specification, for paths that start
with /processes/ and has many of the same API calls as WPS 2.0.

• Understand the utility of OGC standards for feeding dynamic data to ML models. As these

5

http://www.opengis.net/doc/PER/t15-D023
https://www.opengeospatial.org/projects/initiatives/routingpilot

models require considerable data to train, the thread participants felt that the current suite of
OGC standards for data dissemination is better suited for static or mostly static datasets.
Extensions specific for data streaming might be useful for all big data problems, not just ML.

• Explore the use of OGC standards to compare scenarios in previously trained ML models. There
are already a number of pre-trained models freely available as well as general feature models
that attempt to identify trends, patterns or objects from a variety of domains. Re-use of existing
models is likely to be important in the future of geospatial ML applications.

• • Use OGC standards to enable stress testing of ML models. The use of parameters within ML
processes is key to their ability to successfully predict based upon an unknown sample.
Currently this testing is carried out manually. However, stress testing via the OGC API -
Processes draft specification and then recording the parameters in a CSW would be useful in the
future for OGC standards to support. This approach strays into the realm of metadata profiling
for ML models, which may be a useful output of future endeavors that have a discovery aspect.

Overall, the thread produced a multitude of results that can be taken forward in future OGC
Testbeds and Pilots or more widely in the community.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Sam Meek Helyx SIS Editor

Tom Landry CRIM Contributor

Pierre-Luc Saint-Charles CRIM Contributor

Francis Charette-
Migneault

CRIM Contributor

Mario Beaulieu CRIM Contributor

Ignacio Correas Skymantics Contributor

William Cross Skymantics Contributor

Jerome St-Louis Ecere Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

6

Chapter 3. References
The following normative documents are referenced in this document.

• OGC: OGC 14-065r2, OGC WPS 2.0.2 Interface Standard: Corrigendum 2 (2018)
[https://portal.opengeospatial.org/files/14-065r2]

• OGC: OGC Web Feature Service 2.0.2 (2014) [http://docs.opengeospatial.org/is/09-025r2/09-025r2.html]

• OGC: OGC Catalog Service for the Web 2.0.2 (2007) [http://portal.opengeospatial.org/files/?

artifact_id=20555]

• OGC: OGC 06-121r9, OGC® Web Services Common Standard (2010) [https://portal.opengeospatial.org/

files/?artifact_id=38867&version=2]

7

https://portal.opengeospatial.org/files/14-065r2
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html
http://portal.opengeospatial.org/files/?artifact_id=20555
https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard (OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&

version=2]) shall apply. In addition, the following terms and definitions apply:

● overfitting

The production of an analysis that corresponds too closely or exactly to a particular set of data,
and therefore fails to fit additional data or predict future observations reliably. Source: Oxford
English Dictionary [https://www.oed.com/view/Entry/258314?rskey=mJU0Ot&result=2&isAdvanced=false#eid]

● dropout

The procedure of randomly dropping components of a neural network from a neural network
layer. This results in a scenario where at each layer more neurons are forced to learn the
multiple characteristics of the neural network. This can prevent overfitting. Source:
medium.com [http://medium.com]

● activation function

In artificial neural networks, the activation function of a node defines the output of that node
given an input or set of inputs. A standard computer chip circuit can be seen as a digital network
of activation functions that can be "ON" (1) or "OFF" (0), depending on input. Source: Wikipedia
[https://en.wikipedia.org/wiki/Activation_function]

● hyperparameter

In Bayesian statistics, a hyperparameter is a parameter of a prior distribution. The term is used
to distinguish them from parameters of the model for the underlying system under analysis.
Source: Wikipedia [https://en.wikipedia.org/wiki/Hyperparameter]

4.1. Abbreviated terms
• ADES - Application Deployment and Execution System

• AI - Artificial Intelligence

• API - Application Programming Interface

• AUPRC - Area Under Precision Recall Curve

• CLI - Command Line Interface

• CNN - Convolutional Neural Networks

• CRIM - Computer Research Institute of Montréal

• CRS - Coordinate Reference System

• CSW - Catalogue Service for the Web

• CVM - Controlled Vocabulary Manager

• CWL - Common Workflow Language

• DL - Deep Learning

8

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://www.oed.com/view/Entry/258314?rskey=mJU0Ot&result=2&isAdvanced=false#eid
https://www.oed.com/view/Entry/258314?rskey=mJU0Ot&result=2&isAdvanced=false#eid
http://medium.com
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Hyperparameter

• DNN - Deep Neural Network

• DVC - Data Version Control

• ER - Engineering Report

• EMS - Execution Management System

• GRHQ - Géobase du réseau hydrographique du Québec

• Helyx SIS - Helyx Secure Information Systems Limited

• HLS - Harmonized Landsat and Sentinel-2

• HRDEM - High Resolution Digital Elevation Model

• HTTP - Hypertext Transfer Protocol

• JSON - JavaScript Object Notation

• KB - Knowledge Base

• LiDAR - Light Detection and Ranging

• mAP - Mean Average Precision

• MapML - Map Markup Language

• ML - Machine Learning

• MLP - Multilayer Perceptron

• NIR - Near-Infrared

• NLTK - Natural Language Toolkit

• OGC - Open Geospatial Consortium

• ONNX - Open Neural Network Exchange Format

• OpenMI - Open Modeling Interface

• OWS - OGC Web Services

• PaaS - Platform as a Service

• Pub/Sub - Publication/Subscription

• RAKE - Rapid Automatic Keywork Extraction

• RDF - Resource Description Framework

• REST - Representational State Transfer

• RGB - Red, Green, Blue

• RL - Reinforcement Learning

• RNN - Recurrent Neural Network

• SPF - Spruce, Pine, Fir

• SOS - Sensor Observation Service

• TC - Technical Committee

• TF/IDF - Term Frequency-Inverse Document Frequency

• TIE - Technology Integration Experiments

9

• URL - Uniform Resource Locator

• VCS - Version Control Systems

• WCS - Web Coverage Service

• WES - Web Enterprise Suite

• WFS - Web Feature Services

• WICS - Web Image Classification Service

• WMS - Web Map Service

• WPS - Web Processing Service

• WPS-T - Transactional Web Processing Service

10

Chapter 5. Overview
The rest of the ER is organized as follows:

Chapter 6 provides an overview of previous ML work in the OGC and an overview of the work
items.

Chapter 7 describes the thread architecture.

Chapter 8 describes the component implementation that provides the Petawawa cloud mosaicking
model capability.

Chapter 9 describes the component implementation that provides the Petawawa land classification
model capability.

Chapter 10 describes the component implementation that provides the New Brunswick forest
supply management decision maker ML model capability.

Chapter 11 describes the Quebec River-Lake Classification and Vectorization ML model capability.

Chapter 12 describes the Arctic Discovery catalog.

Chapter 13 provides the overall discussion and recommendations from the work.

Chapter 14 provides the concluding remarks.

11

Chapter 6. Background
This OGC Engineering Report (ER) reports on the work performed and completed as part of the
Machine Learning (ML) thread in the OGC Testbed-15 initiative. ML has previously been explored in
the OGC through the ML thread in Testbed-14. While the work reported in this ER is not a direct
continuation from Testbed-14, the Testbed-14 Machine Learning ER provides many of the
recommendations and design influences leading to the work described in this ER. A major driving
factor behind this ER is a movement towards standardization of an interface designed for
interacting with ML models and processes.

The documents reviewed are largely from the OGC, but academic and industrial references are
included where relevant.

Previous OGC work that has influenced the Testbed-15 ML activity consists of the following
documents:

• 18-038r2 [http://docs.opengeospatial.org/per/18-038r2.html] - OGC Testbed-14: Machine Learning
Engineering Report

• 18-094r1 [http://docs.opengeospatial.org/per/18-094r1.html] - OGC Testbed-14: Characterization of RDF
Application Profiles for Simple Linked Data Application and Complex Analytic Applications
Engineering Report

• 18-097 [https://docs.opengeospatial.org/per/18-097.html] - OGC Environmental Linked Features
Interoperability Experiment Engineering Report

• 18-022r1 [https://docs.opengeospatial.org/per/18-022r1.html] - OGC Testbed-14: SWIM Information
Registry Engineering Report

• 18-090r1 [https://portal.opengeospatial.org/files/?artifact_id=82623] - OGC Testbed-14 Federated Clouds
Engineering Report

• 16-059 [http://docs.opengeospatial.org/per/16-059.html] - Testbed-12 Semantic Portrayal, Registry and
Mediation Engineering Report

• 15-054 [https://portal.opengeospatial.org/files/?artifact_id=64405] - Testbed-11 Implementing Linked Data
and Semantically Enabling OGC Services Engineering Report

• 14-049 - Testbed 10 Cross Community Interoperability (CCI) Ontology Engineering Report

• 19-003 [http://docs.opengeospatial.org/per/19-003.html] - OGC Testbed: Earth System Grid Federation
(ESGF) Compute Challenge

• 18-050r1 [https://docs.opengeospatial.org/per/18-050r1.html] - OGC Testbed-14: ADES & EMS Results and
Best Practices Engineering Report

• 18-049r1 [http://docs.opengeospatial.org/per/18-049r1.html] - OGC Testbed-14: Application Package
Engineering Report

• 17-035 [http://docs.opengeospatial.org/per/17-035.html] - OGC Testbed-13: Cloud ER

The earliest example of ML-type operations being exposed via an OGC interface is via Web Image
Classification Service (WICS). This service includes several calls that are suitable for configuring
and executing ML models behind an OGC interface. Specifically, these calls include:
GetClassification, TrainClassifier and DescribeClassifier. Although suitable for use in a small set of

12

http://docs.opengeospatial.org/per/18-038r2.html
http://docs.opengeospatial.org/per/18-094r1.html
https://docs.opengeospatial.org/per/18-097.html
https://docs.opengeospatial.org/per/18-022r1.html
https://portal.opengeospatial.org/files/?artifact_id=82623
http://docs.opengeospatial.org/per/16-059.html
https://portal.opengeospatial.org/files/?artifact_id=64405
http://docs.opengeospatial.org/per/19-003.html
https://docs.opengeospatial.org/per/18-050r1.html
http://docs.opengeospatial.org/per/18-049r1.html
http://docs.opengeospatial.org/per/17-035.html

circumstances, the WICS only supports image-specific calls. It does this through OGC web services
style applications that represent an older architecture model, prior to the recent move to a
resources-based model through OpenAPI. ML in the Testbed-15 context has broadened to include
different types of ML beyond image classification. The work in this Testbed moves towards a
decision support tool that utilizes multiple data types to build models and predict results.

The OGC Testbed-14 ML ER describes work that extends beyond WICS. It identifies and implements
several new calls that follow a similar pattern to WICS, but go beyond image classification. These
calls are as follows:

• TrainML

• RetrainML

• ExecuteML

These three calls follow the web services pattern of OGC services and offer the ability to create,
modify and execute ML models through a standardized interface. In addition to these calls are the
following ML Knowledge Base (KB) interactions:

• GetModels

• GetImages

• GetFeatures

• GetMetadata

As well as opening up the interfaces to include ML specific calls, the ML space has undergone
semantic enablement via a Controlled Vocabulary Manager (CVM). The interfaces used in Testbed-
14 consisted mainly of WPS-T 2.0 with Representational State Transfer (REST) and JavaScript Object
Notation (JSON) bindings. There is an ongoing initiative within the OGC Technical Committee (TC) to
enhance Web Processing Service (WPS) version 2.0 to 3.0 by implementing the REST/JSON bindings
as core functionality rather than as an extension. This is designed to bring WPS in line with the OGC
API - Features standard, which is also based on OpenAPI. Additionally, Testbed-14 brought about
experimental implementations of Web Map Service (WMS), Web Feature Service (WFS) and WPS
standards specifically for transparency and usage of ML models.

There are several explicit recommendations taken from the Testbed-14 ML ER, garnered from
experiences of ML in OGC Web Services (OWS). These include:

• Use of a Catalogue Service for the Web (CSW) as an interface to an ML KB.

• An International Organization for Standardization (ISO) application profile to record and
distribute KB Information

• Use of the OGC API - Features standard as a design pattern to manage the interaction with ML
capabilities.

• Consideration for use of the Open Modeling Interface (OpenMI) standard.

Moving on from interfaces and service standards, a further area enabling ML discussed in Testbed-
14 is the concept of Federated Clouds, that is, disparate cloud computing services that are federated
to share access credentials and therefore services, data and resources, are likely to play a role in the

13

ML space. Federation of cloud services is not a new concept and is simply managed when cloud
services (or any services for that matter) sit within the same administrative domain. Recently there
has been a shift in the computing world to assume resources-on-demand, including elastic
computational storage and computing power, that can be surged or stood down as required. All of
this is usually outsourced in a Platform-as-a-Service (PaaS) approach, where on-demand computing
is provided by an organization with significant resources (server farms) that are allocated
according to demand and provision. In short, federation enables participating organizations to
selectively share information across administrative domains for purposes of their choosing.

The Testbed-14 Federated Clouds ER sought to research and test the implications of utilizing
federated cloud architecture with a focus on cross administrative domain security for use case such
as data sharing. In the case of ML and in particular the ML thread in this Testbed, components
including ML models and clients are designed and maintained by different vendors (as in the real
world) but all need to interoperate. Therefore, understanding and applying the lessons learned and
recommendations from Testbed-14 Federated Cloud ER as needed is paramount to a successful set
of interoperability experiments.

ML models, outputs and predictions are complex, therefore cataloging, presenting and
disseminating data and metadata is of high importance. There are multiple languages, models and
standards that can be used to document, discover and disseminate complex offerings utilizing OGC
standards. In Testbed-14, dissemination of complex analytic applications and data was explored in
the OGC Testbed-14 Characterization of RDF Application Profiles for Simple Linked Data
Applications and Complex Analytic Applications ER. The ER covers several aspects of interest
including Resource Description Framework (RDF) profiles, Web Ontology Language (OWL) and
ontologies to describe certain aspects of complex analytical use cases. RDF is of particular
consideration as Testbed-14 sought to define a metadata model to describe RDF application profiles.
If operationalized, this was of tangible use within the ML thread as it provides a facility to discover
application profiles based upon specific ontologies. The work documented in this ER seeks to utilize
RDF where suitable to enable discovery of the complex analytical applications.

The architecture of the thread consists of a set of well-defined ML scenarios. The requirements
across the thread deliverables are broad enough to cover typical ML usage such as analysis of
imagery content through to the discovery of ML datasets, models and practices through the Arctic
Discovery catalog. The latter, activity is concerned with ML process metadata rather than just the
outputs. There are a set of stretch goals within the Call For Participation (CFP) that are also
discussed and prioritized according to likely value gain for the sponsors.

In terms of interfaces, each component is fronted by the relevant OGC service. Each of the ML
models is fronted by a WPS, either 1.0 or with the REST/JSON bindings and the catalog is an OGC
Compliant CSW (there is currently further work going on in OGC to define an OGC API specification
for catalogs). Additionally, data created by the ML models are exposed by the relevant data
interface, OGC API - Features for features and Web Coverage Service (WCS) for coverages.

6.1. Relationship to OGC API - Processes (WPS 3)

14

NOTE

WPS

Prior to the OGC API - Processes naming convention, the draft specification was
referred to as WPS 3.0. The official name of the draft specification is now OGC API -
Processes. This ER therefore, at times, acceptably refers to implementations of OGC
API - Processes as WPS.

As mentioned previously, there are several commonalities between each of the scenarios in terms
of the requirements. The scenarios are separate as they aim to deliver completely different outputs,
are focused on different areas and in some cases, are using different approaches to ML to achieve
their goals. However, each of the server-side components are required to be fronted by a WPS (with
REST bindings in some instances) and each has the option of utilizing Common Workflow Language
(CWL). Note that since the WPS implementations described in this ER conform to the draft OGC API
– Processes specification, they are referred to using both terms throughout this document.

At the time of writing, there is a debate within the OGC on how processing services should be
exposed using OpenAPI fronted, resource-based architectures. Some of the viewpoints are captured
in the OGC API Hackathon 2019 Engineering Report (OGC 19-062) which presents results from the
OGC API Hackathon 2019 event. The debate is largely concerned with the role of legacy WPS calls in
versions 1, 2, and transactional versions that include:

• From WPS 1.0

◦ GetCapabilities - provide the capabilities document describing the processes available

◦ DescribeProcess - describe a particular process

◦ Execute - execute a process

• Introduced in WPS 2.0

◦ GetStatus - provide the status of an asynchronous processes

◦ GetResult - provide the result of an asynchronous process

• Introduced in WPS-T

◦ DeployProcess - deploy a new process ready for Execution

◦ UnDeployProcess - undeploy a deployed process so it is no longer available

These calls provide functionality in a web services architecture that performs specific actions in
relation to processing. In the resource-based architecture approach, the calls are based upon the
HTTP verbs GET, POST, HEAD, PUT and DELETE.

6.2. Machine Learning Techniques
The terms "artificial intelligence" and "machine learning" are often used interchangeably or at
minimum in a hyphenated fashion. In truth, ML can be considered as a subset of Artificial
Intelligence (AI) techniques. Additionally, ML as an array of techniques contains a multitude of
different algorithms that are selected to produce the best result depending on the use case. Related
to the generic concept of ML is Deep Learning (DL), which is a subset of ML that uses large, multi-
layered, artificial neural networks for supervised or unsupervised ML problems.

15

This section contains a short overview of the techniques used in this thread. While there are several
nuanced differences, the main one to consider is the automation of model feedback.

In addition to this functionality, there are several non-functional requirements including:

• Use of TensorFlow [https://www.tensorflow.org]

• Continuing to work on CWL best practices from previous Testbeds.

• The demonstrator should be compatible with the Boreal Cloud OpenStack cloud environment of
Natural Resources Canada (NRCan). Boreal Cloud is NRCan’s high performance cloud
infrastructure based on OpenStack technology, located at the Pacific Forestry Centre in Victoria,
BC.

Supervision of a classification application depends on how much human intervention is required to
achieve a suitable model for prediction. Supervised Learning requires human intervention to
different degrees depending on the use case. Unsupervised Learning does not require any human
interaction while training the models as the ML model uses automated techniques to assess the
likely performance of the model.

6.2.1. Reinforcement Learning

This type of learning is usually implemented in game play applications and in use cases that
include autonomous vehicle navigation as there is no "correct" answer to a particular problem.
Instead the ML model looks to make the best decision given the circumstances with a view to
maximizing cumulative reward. The reinforcement aspect is the application of the reward within
the system, if cumulative reward increases then the system has a notion of a good decision and will
seek to perform similar actions to further increase reward.

6.2.2. Convolutional Neural Networks

A Convolutional Neural Network (CNN) uses convolutions to extract features from local regions of
an input. CNNs have gained popularity particularly through their excellent performance on visual
recognition tasks. CNNs use relatively little pre-processing compared to other image classification
algorithms. This means that the network learns the filters that in traditional algorithms were hand-
engineered. This independence from prior knowledge and human effort in feature design is a
major advantage. They have applications in image and video recognition, recommender systems,
image classification, medical image analysis, and natural language processing.

6.2.3. Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a class of artificial neural networks where connections
between nodes form a directed graph along a temporal sequence. This allows the model to exhibit
temporal dynamic behavior. Unlike feedforward neural networks, RNNs can use their internal state
(memory) to process sequences of inputs. This makes them applicable to tasks such as
unsegmented, connected handwriting recognition or speech recognition.

16

https://www.tensorflow.org

Chapter 7. Thread Architecture
The ML thread is comprised of a set of five scenarios with eight formal deliverables and several
clients provided by vendors in kind. As there are five separate scenarios, the thread participants
defined five separate architectures that were utilized to demonstrate the interoperability of
components through the interoperability testing process, also known as Technology Integration
Experiments (TIEs). This section describes the scenarios and supporting architectures in detail to
provide the reader with an overview of the thread goals, architectures for each of the threads, a
motivation for each of the threads, and any changes made during the course of the Testbed to
mitigate issues experienced. The five scenarios are as follows:

• Petawawa Super Site Research Forest Change Prediction ML Model

• New Brunswick forest supply management decision maker ML model

• Quebec lake-river differentiation model

• Richelieu River linked data harvest model

• Arctic web services discovery ML models

There are a common set of technical requirements for each of the scenarios. As with all Testbeds,
one of the goals is to utilize the latest versions of OGC standards This policy was operationalized in
this domain via usage of the OGC API - Processes draft specification. Likewise, data services are
made available through OGC API - Features implementations using the new OpenAPI style
resource-based approach and WMS/WCS for mapping and coverages. Although not an enforced
requirement, it is expected that each of the ML models is built using open source software with a
mention of TensorFlow. Each of these scenarios is discussed in turn in the following sections. Many
of the ML participants opted to use WPS 2.0 because they had existing operational
implementations.

7.1. Petawawa Super Site research forest change
prediction ML model scenario

Figure 1. Petawawa Super Site forest change architecture

The aim of this component deliverable was to 1) produce an ML model for detecting and removing
high altitude cloudlets (popcorn clouds) from Landsat 1 data in the Petawawa Super Site, and 2)
produce a second model for classifying a cloudless, automatically generated image mosaic into land
cover categories. The ML model performed the following functions:

17

1. Data discovery using an OGC CSW.

2. Discovery of usable imagery that has less than 70% cloud coverage.

3. Identification of parts of an image that are either cloud or cloud shadow.

4. Creation of a cloud free composite image using automated techniques.

5. Classify the resultant composite image into land cover using a second ML model.

In addition to this functionality, there are several non-functional requirements including:

• Use of TensorFlow

• Continuing to work on CWL best practices from previous Testbeds. CWL could potentially be
used to automate some of the test workflows or to enable the discovery to dissemination aspect
of the system. Although a non-functional requirement, the implementation aspect is optional.

• Ensuring demonstrator compatibility with the NRCan Boreal Cloud OpenStack environment.

This scenario is designed to exercise two ML models that are made available to a single client.
These include:

• A cloud and cloud shadow (artifact) identification model.

• A land cover classification model.

These two ML models form the backbone of the ML thread; however, they are supported by the
following services:

• Each ML model is fronted by a WPS 2.0 for simple execution of the services exposed by the
models.

• A CSW facilitates discovery of time-series enabled satellite imagery from Landsat and Sentinel-2
products.

• Attached to the cloud artifact identification model that creates a mosaic using multiple images
to build a cloud-free composite.

• Results are made available via the relevant interface (WFS 3.0, WMS, WCS).

Additionally, there is a requirement to continue the work done in Testbed-14 to utilize the CWL to
potentially automate some test workflows or to enable the discovery → ML1 → ML2 →
dissemination aspect of the system via pre-configuration. The CWL aspects of the thread are
optional and implemented where specified.

7.2. New Brunswick forest supply management
decision maker ML model scenario

18

Figure 2. New Brunswick forest supply management scenario architecture

This ML model was concerned with the efficient routing of timber from a managed woodland area
in New Brunswick. Road building and infrastructure management were also considered. This
model was atypical in terms of its usage of ML practices. It performed the following functions while
working towards similar non-functional requirements as described in the previous section:

1. Create a "wood flow model" to optimize routing for timber from source to market.

2. Recommend areas for new road construction to make the route more efficient.

3. Provide a list of recommended road closure locations and times to minimize disruption.

4. Consider data from different sources including: primary infrastructure, secondary
infrastructure, and prices of lumber, fuel and energy.

As mentioned previously, the scenarios in this thread were distinct and therefore treated as their
own work-item sets, rather than one large, interoperable thread. The New Brunswick scenario
contains many of the same constraints and requirements as the other scenarios, such as using a
WPS instance to front the model, a CSW for data discovery and cataloging, and WCS/WFS/WMS for
data dissemination. The ML model in this work package was complex and consisted of a set of ML
models to achieve the desired outcome. The ML model aspects of this work package were as
follows:

• Creation of a wood flow model, that is, optimization of resource allocation considering
optimized flow from forest to market.

• Recommendation of new infrastructure including roads and bridges to further optimize wood
flow considering life-cycle analysis.

• Utilization of peripheral supporting information including market prices of lumber, secondary
infrastructure, primary infrastructure and efficiency.

• Deployment of the capability on the NRCan Boreal Cloud OpenStack environment.

Execution of the workflow is somewhat simpler than the Petawawa scenario as the ML service can
be configured and executed without reaching back to client at any point, except when providing the
result.

7.3. Quebec Lake river differentiation ML model
scenario

19

Figure 3. Quebec Lake river differentiation model architecture

The objective of this work package was to create and deploy an ML model to differentiate
between rivers and lakes from otherwise unlabeled bodies of water in an image. The main focus of
the work was to provide a service to determine whether a body of water should be split into
a lake and a river. If so, then the lake and river portions of the split should be identified and
labeled. If no split is required, then each identified body of water should be labeled as
either lake or river. The procedure for applying the model is as follows:

1. Recommend whether a water body should be split into lake and river features.

2. Evaluate the confidence level of a recommendation.

3. Apply the recommendation to the dataset.

4. Test and correct the resultant dataset for topological and cartographical issues.

5. Present the data in a WFS 3.0 using MapML (described in another ER).

This scenario requires an ML model that is capable of differentiating between lakes and rivers from
imagery and Light Detection and Ranging (LiDAR) data. Currently bodies of water from these
datasets can be distinguished, but there is not a clear indication of where the line is drawn between
when a water body changes from a lake to a river and vice versa. This is not just an ML problem
but also an ontological problem. Therefore, any definition of the two concepts is built upon a
somewhat arbitrary definition, although a consistent one if an ML service is to be successful. In
addition to identifying rivers and lakes, the entire ML service needed to perform the following
functions in a workflow:

• Identify a water body and recommend whether a split needs to be made and apply a confidence
level to the recommendation.

• If a split is made then vectorize the bodies of water into lakes and rivers.

• Apply topological correction algorithms if required to remove errors including:

◦ Overlaps

◦ Slivers

◦ Gaps

• Name each feature according to a suitable naming convention as not all rivers and lakes have
accessible names.

• Serve the results via MapML using WFS 3.0.

Unlike the previous work packages, there is no data discovery requirement via a CSW. However,
there is a requirement to serve the results via an implementation of OGC API – Features, using
MapML.

20

7.4. Richelieu River hydro linked data harvest model
scenario

Figure 4. Richelieu River linked data harvesting scenario architecture

This work package differs from the others as it does not require imagery or ML in the traditional
sense. Instead this scenario seeks to mine the semantic web for relevant relations between datasets
and store the results as triples in the appropriate database. The model was based upon a set of
provided ontologies for features and relations to be harvested by the ML model. This scenario was
concerned with establishing links between datasets via the semantic web. The main work item in
this work package was the AI tool triple generator, which sought to harvest data from specific
datasets and gather relations between items of data. The details regarding the semantic aspects of
this work package are described in the OGC Testbed-15: Semantic Web Link Builder and Triple
Generator Engineering Report (OGC 19-021) and the ML aspects are described in
the Components section of this ER.

7.5. Arctic Web Services Discovery ML model scenario

Figure 5. Arctic Web Service discovery model ML architecture

The goal for this work package was to understand the data holdings of a particular domain and its
utility to the Arctic domain in terms of relevance to circumpolar science. The following structure
was used for this approach:

• The model was focused on the .ca domain to understand the assets that are available within this
domain and their relationship to other data assets.

• The ML model was trained to cycle through and categorize endpoints on the .ca domain and
make a decision on whether each has any relevance to circumpolar science.

• The identified datasets were given a confidence score and then entered into a CSW for later
discovery and use.

The concept of relevance can be determined in a variety of ways. For example, a geographical
bounding box can be used as a geofence but the model may also rely on keyword search as well as

21

other parameterization options. Essentially the ML aspect of the service was trained on a set of
attributes of a test ML service that was deemed to be relevant. It then crawled through all ESRI
REST endpoints and OGC services within the domain and made an assessment of each of the
services, providing information on their relevance.

22

Chapter 8. Petawawa cloud mosaicking ML
model
In the context of the Petawawa Super Site research forest change prediction ML model, the Testbed-
15 D100 component (i.e. cloud mosaicking ML model) aimed to create a cloud-free mosaic over the
Petawawa Research Forest by assembling the best non-cloud and most recent segments over a
given time frame. The cloud detection system was based on ML and CNN.

Figure 6. Petawawa Super Site research forest change prediction ML model

NOTE

Petawawa Research Forest

The 100 km2 Petawawa Research Forest is situated in Ontario, approximately two-
hours northwest of Canada’s capital city, Ottawa. Located in the mixedwood forests
of the Great Lakes–St. Lawrence Forest region, common tree species include white
pine (Pinus strobus L.), trembling aspen (Populus tremuloides Michx.), red oak
(Quercus rubra L.), red pine (P. resinosa Ait.), white birch (Betula papyrifera), maple
(Acer spp.), and white spruce (Picea glauca), among others (Wetzel et al. 2011). This
forest region is considered a transition between the boreal forests to the north,
which are dominated by coniferous species, and the deciduous-dominated forests to
the south.

The whole system was developed and deployed to be compatible with NRCan’s Boreal
Cloud (OpenStack cloud environment). The model can be accessed via a generic WPS client here
[https://borealweb.nfis.org/tb15d100wps/]. The mosaic is generated starting from surface reflectance
products available from NRCan’s National Forest Information System [https://saforah2.nfis.org/

index.html] for the following datasets:

Table 1. Datasets

Dataset Description

Landsat Archived Landsat Collection 1 data (1972–2018). Includes Landsat
Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), and the Operational Land Imager (OLI). With the
exception of MSS, all data is corrected to surface reflectance. Search terms:
“PRF” AND “Landsat”, “Landsat4”, “Landsat5”, “MSS”, “TM”, “ETM+”, “OLI”,
etc.

Sentinel-2 Archived Sentinel-2 data (2016–2018), corrected to surface reflectance.

23

https://borealweb.nfis.org/tb15d100wps/
https://saforah2.nfis.org/index.html

Dataset Description

Harmonized
Landsat and
Sentinel-2 (HLS)

Harmonized Landsat and Sentinel-2 surface reflectance data generated by
NASA/USGS (2013–2018)

WARNING

Landsat availability

With respect to the Landsat Dataset defined in Table 1, for this component the
search is based only on Landsat 7 ETM+. In any case, the MSS products cannot
be used due to the missing Blue band.

8.1. Component Summary
The following figure summarizes the main software constituting the component.

Figure 7. D100 High level architecture

The D100 component design is based on four main elements:

• WPS Server

• Job / Queue Handler

• Internal Storage

• Orchestrator

WARNING

Architecture Deltas

At the time of publication of this ER, the D100 component is based on WPS
version 1.0 and not WPS 3.0 as stated in the architecture. This was a stretch
goal for this work package. Likewise, the implementation does not use CWL.

8.1.1. WPS Server

The D100 component exposes a dedicated WPS enabled server (implementing the WPS 1.0
standard) for the requests. The WPS server is running on Flask, a Python lightweight Web Server
Gateway Interface (WSGI) web application framework using PyWPS. The endpoint handles the
following four different requests:

• Network training;

24

• Cloud free mosaic generation;

• Cloud free mosaic generation status query;

• Cloud free mosaic download.

Considering that both network training and mosaic generation are demanding activities, these types of
requests are queued in order to avoid blocking the WPS server. All the other requests are immediately
served. For the cloud-free mosaic generation, requesting either one of the two defaults: ready network
(one trained with 3 bands for Red-Green-Blue (RGB) and one with 4 bands for RGB + Near Infrared), or
a new network trained (either 3 or 4 bands) with a dedicated WPS request is possible.

8.1.2. Job / Queue Handler

The queue mechanism relies on Remote Dictionary Server (Redis), an in-memory data structure and
object persisting system supporting different kinds of abstract data structures. Every time the WPS
server receives the training and mosaic generation requests , the new request is pushed on a Redis
Queue (RQ), a Python library for queuing jobs and processing them in the background with so called
"workers". The relevant job is not automatically run and its execution is remanded to RQ. A worker is
another Python process running in the background as a work-horse to perform lengthy or blocking
tasks instead of performing the task inside a web process. At least one worker is always up-and-
running, but more than a single request instantiating more workers as needed according to application
loading and hardware resources available (default configuration is 5 workers) can be served. Every
time a worker is available, the job is retrieved from the RQ in a First In - First Out (FIFO) order and
executed in a new dedicated process.

8.1.3. Internal Storage

The Internal Storage component contains two different kinds of data: Trained network models and,
inside what is called Workspace, all downloaded bands, tiles, intermediate cloud masks generated
by the ML model, and the final mosaic for each request. By default, two models are present (as stated
before one trained with 3 bands for RGB and one with 4 bands for RGB + Near Infrared). Any custom
training requested by dedicated WPS call is also stored to be called later. All the models (stored
as PyTorch checkpoints) are persistent in time. The Workspace content, instead, is preserved for each
job only for a specific retention time. When time expires the specific folder is deleted to save storage.

8.1.4. Orchestrator

When a WPS request is received for cloud mosaicking, the worker runs a dedicated job
named Orchestrator. This was the core part of the D100 component and was composed of several
different subcomponents as follows:

• OGC Clients

• Bands Slicer

• ML Model

• Mosaic Builder

25

8.1.4.1. OGC Clients

Access to the catalog is required to create the mosaic. In order to search and to retrieve products bands,
the Orchestrator uses OWSLib Python library for both CSW and WCS requests. For each product
discovered from the catalogue service, several links are returned, one for each available band. The
number of bands downloaded depends on the model requested for the cloud detection (i.e. either 3
(RGB) or 4 (RGB + Near Infrared) bands).

Table 2. Bands Number Mapping

Dataset Red Green Blue NIR Resoluti
on (m)

Sentinel-2 4 3 2 8 10

Landsat-7 3 2 1 4 30

HLS 4 3 2 5 30

All required bands are downloaded to a dedicated folder inside the Workspace, one for each WPS
mosaic generation request. For each product found in the search, the relevant bands are downloaded
via WCS and stored in the Workspace of the Internal Storage. Only when all the bands have been
downloaded and just after the Bands Slicer is the ML model called.

8.1.4.2. Bands Slicer

In order to provide the ML model with proper input, all the downloaded bands are sliced into tiles
of 224 x 224 pixels and marked with proper geolocation / geographic information (needed later to
rebuild a single cloud mask image). This tile size was chosen to balance speed and performance in the
training phase.

8.1.4.3. ML Models

The generic ML model is based on a ResNet 18 [https://www.mathworks.com/help/deeplearning/ref/

resnet18.html] architecture developed on the PyTorch framework. The model accepts one single tile (224
x 224 pixels) composed of several bands (three or four) and generates a black and white image
representing the cloud mask of the inferred data with the same size. The pure white areas represent
pixels containing clouds while the black areas represent pixels where clouds are not present. Two
default models were made available: One trained with three bands (RGB) and one with four bands
(RGB + NIR).

8.1.4.4. Mosaic Builder

When all the tiles are processed by the ML model, the Mosaic Builder merges them into a single cloud
mask. The cloud mask is used as an alpha channel to be applied to the original product bands. This
result is then combined with the other cloud-free mosaics in a reverse time order. This allows cloud
pixels from earlier images to be substituted for non-cloud pixels from more recent images. The final
mosaic is generated in GeoTIFF RGB format.

8.2. Component Design
This section describes the overall lifecycle of the D100 component considering two main use cases

26

https://www.mathworks.com/help/deeplearning/ref/resnet18.html

covering all the functionalities:

• Cloud-free mosaic generation;

• ML model training / retraining.

8.2.1. Cloud free mosaic generation

The mosaic generation was triggered by a specific WPS request. The following figure shows the
sequence diagram for a generic mosaic generation process.

27

Figure 8. Cloud Free Mosaic Sequence Diagram

The D100 component receives a WPS execution request containing several input parameters (e.g. time

28

window, ML model to be used and so on). The request is queued and waits for the first
available worker to run the job. The client is notified with a response message indicating that the
request was received and a new job was created with a specific Job ID. This ID is later used by the client
to query the status of the request’s progress.

Figure 9. Job Status Diagram

Any subsequent request about Job status will return one of the following status:

• queued: The WPS request for a mosaic generation is received and queued but has not yet started.

• started: The Job is queued by a worker and is running.

• failed: The Job has encountered an unexpected error and is blocked.

• completed: The mosaic has been generated and is available for download.

• NONE: Either the Job ID is not valid or is no longer available (retention time expired).

As soon as a worker is available, it queues a Job and runs the Orchestrator. As a first step,
the Orchestrator queries the WCS server to retrieve all products covering the requested time window.
The result list is then sorted in descending percentage coverage order, and all the products having
cloud coverage greater than 70% are discarded. For each product found, the relevant bands are
downloaded, sliced into tiles, inferred in the ML Model, and reassembled to generate a single cloud
mask for the whole product. The Mosaic Builder also takes the product bands plus the cloud mask and
merges one product at a time, stacking the different results respecting the descending sorting order.
This process, from downloading the bands to image stacking is performed iteratively (i.e. handling one
product at a time) until either the area is entirely cloud free or no more products are available. Finally,
the resultant GeoTIFF RGB file is downloaded by the client.

8.2.2. ML model training

The D100 implementation was delivered using two different networks having the same architectures
but coping with tiles defined by either 3 (RGB) or 4 (RGB + NIR) bands. This approach is consistent
with the two process profiles described in the OGC Testbed-14 Machine Learning ER
[http://docs.opengeospatial.org/per/18-038r2.html] and the ML best practices work from Testbed-14. This
means that training or retraining of a network can be triggered by a dedicated WPS call. Considering
the nature and context of the cloud detection system, having a dynamic dataset (mainly to validate the
quality and accuracy of the network) is quite complex. Instead what can be requested is training a new

29

http://docs.opengeospatial.org/per/18-038r2.html

instance of the network (choosing 3 or 4 bands architecture), asking for specific batch size and number
of epochs. This new model is then stored in the Internal Storage and can be later recalled for the
generation of a cloud free mosaic.

8.3. Implementation Approach

8.3.1. Job / Queue Handler

In order to handle all the WPS execute calls, at least one running worker shall be present. Run the
following command line to start a new worker.

RQ Worker start-up command

prompt> rq worker –worker-ttl -1

In order to assure that each job queued is served, the parameter -worker-ttl is set to -1 to disable
expiration of the job.

Reviewing the status of the workers (i.e. how many are running and their queue status) can be
achieved with the rqinfo command.

RQ Worker status command

prompt> rqinfo

default | 0
1 queues, 0 jobs total

a24018a5cc594e9cb73779d5a8908afa (None None): ?
dde85a5880574f55853107e0899fa669 (None None): ?
db90b2fbb3e64b428d324766dff52ea0 (None None): ?
6833fe6f60fa4fe88426ca7aba88429a (None None): ?
3ee415e050a34403b4140b2d34b83f67 (None None): ?
5 workers, 1 queues

To stop the workers either kill the processes or close the prompt.

8.3.2. WPS Server

As described above, the WPS server is based on Flask and handles four different types of requests:
Network training, cloud free mosaic generation, generation status query, and cloud free mosaic
download. Beside these, the WPS instance exposes a generic interface such as the
standard GetCapabilities.

8.3.2.1. GetCapabilities

The GetCapabilities operation requests details of the services offered by the D100 component, including
service metadata and metadata describing the available processes. The response is an XML document

30

called the capabilities document, which contains a list of all available services. An example of
a GetCapabilities request is:

https://borealweb.nfis.org/tb15d100wps?
 service=WPS&
 version=1.0.0&
 request=GetCapabilities

The response is a standard WPS GetCapabilities XML response. The following is a snippet of the
services offered by the D100 component:

GetCapabilities XML sample response snippet

<!-- PyWPS 4.2.1 -->
<wps:Capabilities service="WPS" version="1.0.0" xml:lang="en-CA" xsi:schemaLocation=
"http://www.opengis.net/wps/1.0.0 ../wpsGetCapabilities_response.xsd" updateSequence="1">
 ...
 ...
 <wps:ProcessOffering>
 <wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>train_network</ows:Identifier>
 <ows:Title>Train Network</ows:Title>
 <ows:Abstract>Trigger a process to train the neural network</ows:Abstract>
 </wps:Process>
 <wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>compose_mosaic</ows:Identifier>
 <ows:Title>Compose Mosaic</ows:Title>
 <ows:Abstract>Trigger a process to compose a mosaic over a time
range</ows:Abstract>
 </wps:Process>
 <wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>get_status</ows:Identifier>
 <ows:Title>Get Status</ows:Title>
 <ows:Abstract>Retrieve the Job Status</ows:Abstract>
 </wps:Process>
 <wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>get_result</ows:Identifier>
 <ows:Title>Get Result</ows:Title>
 <ows:Abstract>Retrieve the Job Result</ows:Abstract>
 </wps:Process>
 </wps:ProcessOfferings>
 ...
 ...
</wps:Capabilities>

8.3.2.2. DescribeProcess

The DescribeProcess operation requests details of any services offered by the D100 component.

31

An example of a DescribeProcess request for a compose_mosaic service is:

https://borealweb.nfis.org/tb15d100wps?
 service=WPS&
 version=1.0.0&
 request=DescribeProcess
 identifier=compose_mosaic

All the available parameters, their nature and possible values (e.g. model type to train or model name
to infer) if constrained are provided in a standard response package. In the following sections all the
available services with relevant parameters are described.

8.3.2.3. Cloud free mosaic generation

In order to trigger the generation of a new cloud free mosaic, a specific WPS execute service is exposed
with the following parameters:

Table 3. Cloud free mosaic generation request parameters

Keywor
d

Description Sample Value

identifie
r

The name of action to be executed. Fixed compose_mosaic compose_mosaic

model The name of network to be used. Default values of pretrained network are
always available: RGB and RGBNIR

RGBNIR

start The start date of the time window in ISO Date format. 2017-06-01

stop The stop date of the time window in ISO Date format. 2017-07-01

An example of this request is:

https://borealweb.nfis.org/tb15d100wps?
 service=WPS&
 version=1.0.0&
 request=Execute&
 identifier=compose_mosaic
 datainputs=model=RGBNIR;start=2017-06-01;end=2017-07-01

If the request is accepted and queued correctly, the client is provided with the Job ID (e.g. d7111976-
3a9f-401c-a3d2-c1a5c30329ac) uniquely identifying the request. This Job Id is needed to perform a
status query.

32

Cloud free mosaic generation XML sample response

<?xml version="1.0" encoding="UTF-8"?>
<wps:ExecuteResponse xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows=
"http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://www.opengis.net/wps/1.0.0 ../wpsExecute_response.xsd" service="WPS" version=
"1.0.0" xml:lang="en-US" serviceInstance=
"https://borealweb.nfis.org/tb15d100wps?request=GetCapabilities&amp;service=WPS"
statusLocation="">
 <wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>compose_mosaic</ows:Identifier>
 <ows:Title>Compose Mosaic</ows:Title>
 <ows:Abstract>Trigger a process to compose a mosaic over a time
range</ows:Abstract>
 </wps:Process>
 <wps:Status creationTime="2019-08-21T15:34:49Z">
 <wps:ProcessSucceeded>PyWPS Process Compose Mosaic
finished</wps:ProcessSucceeded>
 </wps:Status>
 <wps:ProcessOutputs>
 <wps:Output>
 <ows:Identifier>jobID</ows:Identifier>
 <ows:Title>Job Identifier</ows:Title>
 <ows:Abstract></ows:Abstract>
 <wps:Data>
 <wps:LiteralData uom="urn:ogc:def:uom:OGC:1.0:unity" dataType="string"
>d7111976-3a9f-401c-a3d2-c1a5c30329ac</wps:LiteralData>
 </wps:Data>
 </wps:Output>
 </wps:ProcessOutputs>
</wps:ExecuteResponse>

8.3.3. Cloud free mosaic generation status query

In order to query the system about the status of a Job, a specific WPS execute service is exposed with
the following parameters.

Table 4. Cloud free mosaic generation status query request parameters

Keywor
d

Description Sample Value

identifie
r

The name of action to be executed. Fixed get_status get_status

job_id The Job ID returned by the cloud free mosaic generation XML sample
response.

d7111976-3a9f-
401c-a3d2-
c1a5c30329ac

An example of this request is:

33

https://borealweb.nfis.org/tb15d100wps?
 service=WPS&
 version=1.0.0&
 request=Execute&
 identifier=get_status
 datainputs=job_id=d7111976-3a9f-401c-a3d2-c1a5c30329ac

The status of the job follows the flow defined in Figure 9.

Cloud free mosaic generation status query XML sample response

<?xml version="1.0" encoding="UTF-8"?>
<wps:ExecuteResponse xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows=
"http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://www.opengis.net/wps/1.0.0 ../wpsExecute_response.xsd" service="WPS" version=
"1.0.0" xml:lang="en-US" serviceInstance=
"https://borealweb.nfis.org/tb15d100wps?request=GetCapabilities&amp;service=WPS"
statusLocation="">
 <wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>get_status</ows:Identifier>
 <ows:Title>Get Status</ows:Title>
 <ows:Abstract>Retrieve the Job Status</ows:Abstract>
 </wps:Process>
 <wps:Status creationTime="2019-08-21T15:46:22Z">
 <wps:ProcessSucceeded>PyWPS Process Get Status finished</wps:ProcessSucceeded>
 </wps:Status>
 <wps:ProcessOutputs>
 <wps:Output>
 <ows:Identifier>status</ows:Identifier>
 <ows:Title>Job Status</ows:Title>
 <ows:Abstract></ows:Abstract>
 <wps:Data>
 <wps:LiteralData uom="urn:ogc:def:uom:OGC:1.0:unity" dataType="string"
>finished</wps:LiteralData>
 </wps:Data>
 </wps:Output>
 </wps:ProcessOutputs>
</wps:ExecuteResponse>

8.3.4. Cloud free mosaic download

When the status query indicates processing has completed for the required Job ID, the URL for
downloading of generated mosaic can be retrieved. A specific WPS execute service is exposed with the
following parameters:

Table 5. Cloud free mosaic generation status query request parameters

34

Keywor
d

Description Sample Value

identifie
r

The name of action to be executed. Fixed get_result get_result

job_id The Job ID returned by the cloud free mosaic generation XML sample
response.

d7111976-3a9f-
401c-a3d2-
c1a5c30329ac

An example of this request is:

https://borealweb.nfis.org/tb15d100wps?
 service=WPS&
 version=1.0.0&
 request=Execute&
 identifier=get_result
 datainputs=job_id=d7111976-3a9f-401c-a3d2-c1a5c30329ac

If the requested job is finished and the completion time is within the retention time period, the URL of
the GeoTIFF RGB cloud free mosaic is returned. The URL is used to download the mosiac via standard
HTTP protocol.

35

Code Example XML

<?xml version="1.0" encoding="UTF-8"?>
<wps:ExecuteResponse xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows=
"http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://www.opengis.net/wps/1.0.0 ../wpsExecute_response.xsd" service="WPS" version=
"1.0.0" xml:lang="en-US" serviceInstance=
"https://borealweb.nfis.org/tb15d100wps?request=GetCapabilities&amp;service=WPS"
statusLocation="">
 <wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>get_result</ows:Identifier>
 <ows:Title>Get Result</ows:Title>
 <ows:Abstract>Retrieve the Job Result</ows:Abstract>
 </wps:Process>
 <wps:Status creationTime="2019-08-21T15:46:53Z">
 <wps:ProcessSucceeded>PyWPS Process Get Result finished</wps:ProcessSucceeded>
 </wps:Status>
 <wps:ProcessOutputs>
 <wps:Output>
 <ows:Identifier>status</ows:Identifier>
 <ows:Title>Job Status</ows:Title>
 <ows:Abstract></ows:Abstract>
 <wps:Data>
 <wps:LiteralData uom="urn:ogc:def:uom:OGC:1.0:unity" dataType="string"
>https://borealweb.nfis.org/tb15d100wps/d7111976-3a9f-401c-a3d2-
c1a5c30329ac</wps:LiteralData>
 </wps:Data>
 </wps:Output>
 </wps:ProcessOutputs>
</wps:ExecuteResponse>

8.3.5. Orchestrator

This software component is the core of the ML system and is in charge of searching and downloading
product bands, loading and triggering the model, and creating the final cloud free mosaic in GeoTIFF
RGB format. In order to optimize the execution performance of the Orchestrator (considering also that
downloading of product bands is time consuming), the Orchestrator was designed with the following
requirements:

• Only one product at the time is handled

• Product bands are retrieved only if the area covered by the current product still contains some
clouds in the temporary mosaic; otherwise it skips to the next product

• The mosaic generation ends as soon as the Petawawa area is entirely cloud free, or imagery
products are no longer available.

The NRCan forestry CSW service endpoint is located at https://saforah2.nfis.org/geonetwork-
main/srv/eng/csw [https://saforah2.nfis.org/geonetwork-main/srv/eng/csw].

36

https://saforah2.nfis.org/geonetwork-main/srv/eng/csw
https://saforah2.nfis.org/geonetwork-main/srv/eng/csw

NOTE

Filtering and metadata result assumption

The GetRecords request is sent with prf as specific filter in order to retrieve only
products covering the Petawawa Research Forest. The csw:GetRecordsResponse does
not contain a dedicated field for cloud coverage but this information is available in the
response (refer to the following snippet) as a "free text property". There is an
assumption that this value is always present in order to skip products with a cloud
coverage greater than 70%.

Following a GetRecords request, the WCS Server returns all matching products tagged with the
prf string and that were acquired within the range of the start / stop parameters provided in the job
request.

csw:GetRecordsResponse snippet for Cloud Coverage

<gmd:abstract xsi:type="gmd:PT_FreeText_PropertyType">
 <gco:CharacterString>Sentinel-2 surface reflectances images (L2A) in .SAFE format.
The surface reflectance products were generated by applying the Sen2Cor algorithm to the
Top of Atmosphere (L1C) Sentinel-2 images provided by the European Space Agency. For more
information on the Sen2Cor algorithm please visit http://step.esa.int/main/third-party-
plugins-2/sen2cor/.

 Sensor: MSI
 Platform: Sentinel2A
 Acquisition Date: 2017-07-18
 Provider: European Space Agency
 Cell Size (m): 20
 Cloud Cover (%): 7.9388
 </gco:CharacterString>
 ...
 ...
 ...
</gmd:abstract>

The main configuration parameters for the Orchestrator are stored inside the config.yaml file:

37

config.yaml sample file

Logging level
logging_level: INFO

Workspace and products download path
workspace_path: /data/ogctb15/workspace
download_path: downloads

#
Mosaicing
#

CSV endpoint
csw_endpoint: "https://saforah2.nfis.org/geonetwork-main/srv/eng/csw"

Cloud coverage percentage threshold to accept image
cloud_threshold: 70

#
Neural Network
#

Check point paths
cnn_checkpoint_path: "/data/ogctb15/checkpoints"
cnn_checkpoint_RGB: "ModelV2-CloudDetectionNetV2_RGB_epoch-100.20190727.pth"
cnn_checkpoint_RGBNIR: "ModelV2-CloudDetectionNetV2_RGBNIR_epoch-100.20190727.pth"

Tile size
tile_width: 224
tile_height: 224

Petawawa shape file
petawawa_shp: '/data/ogctb15/shapefiles/prf/petawawa_research_forest.shp'

Mosaic retention time (minutes)
retention_time: 30

First the Orchestrator checks if the area of the current product still contains clouds. If this is true, the
bands are downloaded via a WCS endpoint (one WCS request for each band) in the dedicated job folder
in the Workspace. The number of bands retrieved will be either 3 or 4 according to the required ML
model.

NOTE

WCS Coordinate Reference Systems

For all GetCoverage requests, for the BoundingBox coordinates either EPSG:26917 or
EPSG:26918 is used as CRS, according to the relevant product.

Once all bands are locally available, they are cut into 224 x 224 pixels tiles via the Bands Slicer to be
used for training the ML model. The requested ML model is loaded and run tile by tile (each tile

38

composed by the different bands). The output is an equivalently sized black & white image showing
cloud presence (in white).

Table 6. Sample cloud masks generated for the RGB bands for two different tiles

Red Green Blue Cloud Mask

When all tiles are processed and the relevant cloud masks created, the Mosaic Builder starts. The
outputs from the ML model are merged to generate the overall cloud mask for the whole product. The
cloud mask is then used as an alpha channel to maintain the areas being cloud-free and to have
transparency (i.e. holes) for cloudy pixels. In the opposite way from the cloud mask, the alpha channel
works by considering black as transparent (or 0% opacity) and white as solid (100% opacity). In order
to use the cloud mask as an alpha channel the mask has to be inverted. When the alpha channel is
applied, the resulting image becomes transparent in black portions of the alpha while in the pure white
areas (the ones without clouds) the image is preserved. An example is shown in Table 7. Images in this
table show transparent areas as red for viewing purposes only.

Table 7. Cloud masks generated for all bands of a single tile

Product Cloud Mask Alpha Channel Final

The newly generated image is then stacked below previous ones (if any) in order to cover the
transparencies (holes) of the previous round with the newest image. This stacking order is needed to
maintain the original reverse sorting designed to show most recent imagery of the area for the
requested time range at the top of the stack.

Every time the Mosaic Builder terminates, it checks whether the flattened stacked images overlapping
the Petawawa Forest area still contain clouds. If clouds are present, the Orchestrator performs another

39

round handling the next product until either the area is either cloud free or no more products are
available. When the job is terminated the final GeoTIFF RGB image is generated and stored in
the Workspace and becomes available for download. From then on, any get_status request will return
the job statistics as completed and the client can perform the get_result call to retrieve the download
URL. The download is available until retention time expires. At that time the Workspace will be cleaned
and the mosaic deleted.

8.3.5.1. Machine Learning Model

8.3.5.1.1. Model training

The D100 component is provided with two different pre-trained networks: One that works
with RGB bands and the other having an additional NIR band. In either case, the training of this
network with different custom parameters is triggered via a standard WPS execute call.

Table 8. Training network request parameters

Keywor
d

Description Sample Value

identifie
r

The name of action to be executed. Fixed train_network train_network

modelTy
pe

The type of network to be used. Either RGB or RGBNIR RGBNIR

model The name of network to be created RGBNIR_EPOCH100_
BATCH500

epoch The number of epochs to be used for training 100

batch The number of batch size to be used for training 500

An example of this request is:

https://borealweb.nfis.org/tb15d100wps?
 service=WPS&
 version=1.0.0&
 request=Execute&
 identifier=train_network
 datainputs=modelType=RGBNIR;modeel=RGBNIR_EPOCH100_BATCH500;epoch=100;batch=500

If the request is accepted and queued correctly the client is returned with a Job ID (e.g. d7111976-3a9f-
401c-a3d2-c1a5c30329ac) uniquely identifying the request. This Job Id is needed to perform a status
query and to monitor completion of training.

40

Training network XML sample response

<?xml version="1.0" encoding="UTF-8"?>
<wps:ExecuteResponse xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows=
"http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://www.opengis.net/wps/1.0.0 ../wpsExecute_response.xsd" service="WPS" version=
"1.0.0" xml:lang="en-US" serviceInstance=
"https://borealweb.nfis.org/tb15d100wps?request=GetCapabilities&amp;service=WPS"
statusLocation="">
 <wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>train_network</ows:Identifier>
 <ows:Title>Training network</ows:Title>
 <ows:Abstract>Trigger a process to train a custom network</ows:Abstract>
 </wps:Process>
 <wps:Status creationTime="2019-08-21T15:34:49Z">
 <wps:ProcessSucceeded>PyWPS Process Training network
finished</wps:ProcessSucceeded>
 </wps:Status>
 <wps:ProcessOutputs>
 <wps:Output>
 <ows:Identifier>jobID</ows:Identifier>
 <ows:Title>Job Identifier</ows:Title>
 <ows:Abstract></ows:Abstract>
 <wps:Data>
 <wps:LiteralData uom="urn:ogc:def:uom:OGC:1.0:unity" dataType="string"
>d7111976-3a9f-401c-a3d2-c1a5c30329ac</wps:LiteralData>
 </wps:Data>
 </wps:Output>
 </wps:ProcessOutputs>
</wps:ExecuteResponse>

The job lifecycle follows the same behavior as a compose_mosaic execution. Therefore, with get_status
it is possible to monitor the training status. Check if the network is available for the generation of a
new mosaic or if it is still in training is important. If still in training a get_result execution will not
provide any valuable results. As soon as the network is available, this is listed in the DescribeProcess
response for compose_mosaic service.

8.3.5.1.2. Model architecture

The network was developed in Python using the PyTorch framework, whereas the architecture is based
on a ResNet18 network followed by 3 deconvolution / upsample layers. Residual networks [1] were
developed to solve the so called vanishing gradient problem. This problem occurs when the network is
too deep. The gradients used to calculate the weights associated with the different layers quickly tend
to zero, resulting in the weights never being updated, which prevents learning from taking place. In
order to avoid this problem, ResNets use residual connections between layers:

41

Figure 10. Residual connection

Residual connections ease the solution of the vanishing gradient problem allowing networks to grow
deeper without the learning problems that would otherwise be found.

The particular flavor of ResNet that was adopted uses 18 layers (Figure 11) hence the name ResNet18.

42

Figure 11. ResNet18

Standard ResNets are used to solve classification problems such as what type of clouds are present in a
given image. However, the goal of the model was to produce an image with the same dimensions as the

43

input one, flagging every pixel occupied by a cloud. In order to achieve this, the ResNet was
“truncated”, essentially feeding the output of the 6th layer to the input of the up-sample layers. This
approach was successfully used in coloring networks taking input black and white images and
producing colored versions as outputs (e.g. as per the Sen2Cor model). This has implications on the
scale of details that can be captured by the network. A simplified diagram of the basic network used is
shown in Figure 12 and a summary of the full network in Figure 13.

Figure 12. Network simplified diagram

44

Figure 13. Network full architecture

The input of the network consists of 3 (or 4) images (according to the bands either RGB or RGB + NIR) of
size 224 x 224 pixels. For the training phase, an Adam Optimizer (Diederik P. Kingma and Jimmy Lei
Ba. Adam) and a Minimum Squares Error loss function as follows was used:

45

Figure 14. Minimum Squares Error loss function

Where y and yp are the output of the network ground truth.

8.3.5.1.3. Dataset preparation

As usual with neural networks, the preparation steps for training data are very important. Publicly
available datasets consisting of 18 Landsat images and four bands (RGB + NIR), each of them sliced
into 384 x 384 pixels tiles, were used for training. For each of the bands, two random rotations and four
mirroring operations were performed from the original 8400 images. Since the network was fed with
224 x 224 pixel tiles, two additional random crops for each input were performed. In summary, the
dataset contains 8400 x 6 (rotation and mirroring) x 2 crops leading to a total of 100800 different
images where 70% were used for training and 30% for testing. Note that Landsat imagery was selected
as it provided the best results in cloud detection.

NOTE

Dataset source

Concerning the source of the dataset, it was decided to use Landsat imagery from a
different source (i.e. https://github.com/SorourMo/38-Cloud-A-Cloud-Segmentation-
Dataset [https://github.com/SorourMo/38-Cloud-A-Cloud-Segmentation-Dataset]), rather than the
one originally provided by NRCan. According to S. Mohajerani and P. Saeedi: An end-
to-end Cloud Detection Algorithm for Landsat 8 Imagery [https://arxiv.org/abs/1901.10077],
the selected dataset compared with FMask cloud detection resulted in a better training
output (also as decribed later in Table 10).

8.3.5.1.4. Training

Training was performed for 100 epochs, splitting the training dataset into 150 batches. Figure 15 shows
the evolution of the loss with 4 bands. For every epoch the loss at the beginning of the epoch (blue
squares) and the average for the epoch (green squares) is shown. At the end of training the loss is
below 0.02, while with 3 bands the final loss was around 10% worse. The loss function was used to
evaluate how well the model responds to the training, this includes its learning capability and how the
predictions deviate from the actual result

46

https://github.com/SorourMo/38-Cloud-A-Cloud-Segmentation-Dataset
https://github.com/SorourMo/38-Cloud-A-Cloud-Segmentation-Dataset
https://arxiv.org/abs/1901.10077
https://arxiv.org/abs/1901.10077

Figure 15. Evolution of loss with epoch with 4 bands

Figure 16 shows some examples of the cloud masks produced by the network during the last epoch of
training for the 4-bands case.

Figure 16. Four Bands training output

The left image displays the ground truth, the middle image shows the output, and the right image
presents the comparison. Green shows false positives (non-cloudy area detected by the model as a
cloud) and blue shows false negatives (cloudy area not recognized).

47

8.3.5.1.5. Testing and model accuracy

For testing the output, the ground truth images with the output of the network were compared as
shown in Figure 16 and looking at false positives / negatives.

Table 9. Cloud masks testing for 3 and 4 bands

Bands Ground Truth Output Differences

RGB

RGB + NIR

From these examples, it can be noted that there is a tendency for the 3 bands model to overproduce
false negatives and that the 4-band model is more accurate. This is also confirmed by Overall
Accuracy in the performance metrics shown in Table 10. The performance is measured by computing
the Jaccard Index [https://en.wikipedia.org/wiki/Jaccard_index], Precision, Recall, Specificity and Overall
Accuracy (Figure 17).

Figure 17. Machine Learning Model performance measurements

Where TP, TN, FP and FN are respectively the total number of true positive, true negative, false
positive and false negative pixels. The measured performances are reported in Table 10:

48

https://en.wikipedia.org/wiki/Jaccard_index

Table 10. Model Accuracy

Method Performance (%)

3 Bands 4 Bands

Jaccard 62.55 75.99

Precision 90.50 83.00

Recall 65.65 89.99

Specificity 95.15 92.19

Overall Accuracy 86.09 91.39

As can be seen, the Overall Accuracy for the 3-band case is around 5% lower than the 4-band case.
Although some of the indicators seem to be better for the 3-band case, the numbers reflect the fact
while the network is - in this case - good at picking pixels where there are no clouds, it is less able to
identify pixels where there are clouds. This confirms the observations regarding the examples shown
above.

These results for the 4-band case are very encouraging and are similar to results obtained with other
networks with more complex topologies (e.g. G. Morales, A. Ramírez and J. Telles: End-to-end Cloud
Segmentation in High-Resolution Multispectral Satellite Imagery Using Deep Learning [https://arxiv.org/

abs/1904.12743]; Z. Zhu, S. Wang and C. E. Woodcock: Improvement and expansion of the Fmask
algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel-2 Images
[https://www.sciencedirect.com/science/article/pii/S0034425714005069]. Since we used the same training dataset
(albeit with a few variations) it is possible to make a direct comparison as the variations are not
significant. The performance of implemented network is comparable to that of FMask and, for some of
the quantities in Table 10, with a slightly better percentage.

8.4. Conclusions
The results of the Petawawa cloud mosaicking ML model (D100) component implementation and
testing prove that it is possible to use artificial neural networks to identify cloud coverage and to use
implementations of OGC standards to create, with ease, a cloud free mosaic over the Petawawa
Research Forest area. At the same time, using a reasonably simple network topology, the results
obtained are very close to the ones coming from far more complex networks. Not surprisingly, the 4-
band model produced better results with a higher accuracy. This is due to the fact that the network is
trained with more information.

Using NRCan’s Boreal Cloud resources assisted the development of this work, reducing processing time
for ML model training. This allowed the testbed participants to develop two differently trained
networks. Even if a GUI were not available, the OpenStack cloud environment was easy to access and
to use.

Concerning the pure development (with the exception of the network), plenty of Python libraries are
available that implement OGC standards. This is another positive even if some of them do not use the
latest version of the standard (e.g. the PyWPS library we used for the WPS server was limited to WPS
version 1.0.0). In any case, it was quite simple to integrate the code with
external CSW, WMS and WCS services.

49

https://arxiv.org/abs/1904.12743
https://arxiv.org/abs/1904.12743
https://www.sciencedirect.com/science/article/pii/S0034425714005069
https://www.sciencedirect.com/science/article/pii/S0034425714005069

Analyzing the ML model’s overall results, in more detail, the outcome is summarized in the following
three points:

1. The network is still not able to identify levels of detail at very high resolution. This is partly due to
the up-sample layers of the network that start their work looking at somewhat degraded feature
maps. A solution adopted in other work is to feed each level of the ResNet to an appropriate level of
the up-sample part of the network. This would guarantee that the reconstructed maps also consider
the higher resolution feature maps. On the other hand, using more complex methods for up-
sampling can in part mitigate this problem.

2. Regarding training, a fixed training data set was used thereby allowing for comparison of networks
trained with similar datasets without worrying about random effects introduced in testing different
training datasets. Performing random rotations and crops on a fraction of the training data for each
epoch would extend the training data set, making sure the network sees a much larger number of
cases while at the same time also seeing a fixed number of common cases throughout training;

3. Looking at the improvement passing from 3 to 4 bands, very likely the accuracy of the network can
be somewhat enhanced by performing training including additional bands such as, considering
Landsat-8 case, the cirrus band (band 9) and bands 6 and 7 (short-wave infrared bands).

50

Chapter 9. Petawawa Land Classification
Model

9.1. Pixel-wise Classification with Deep Learning
Applying deep learning techniques to support the land-cover classification of the Petawawa forest area
is described in this section. Pixel-wise classification, also known as Semantic Segmentation, is used to
assign a class label to every pixel of an image instead of just one label for the whole image.

9.1.1. Dataset

This classification component takes the output from component D100 as the input for the deep
classifier. It is represented by Landsat-8 cloud-free images (in .tif format and with three bands).

The label data, representing a ground-truth land cover classification of the Petawawa Research Forest,
can be downloaded from this link [https://pfc.cfsnet.nfis.org/cgi-bin/getDownload.cgi?MAPSHEET_ID=031F,031K].
Grayscale pixel values are defined to represent specific land cover classes.

Figure 18. The remote sensing image (bottom) and the label image (top).

Only the overlapping part (the dashed box shown on Figure 18) of both the Landsat-8 imagery and the
land cover classification dataset were used for this experiment. The data were eventually split into 375
pairs of remotely sensed and label image patches, with a size of 256*256 pixels. These paired patches
were then randomly split into training set and validation set of 9:1. Specifically, the training set
contains 337 image pairs, and the validation set contains 38 pairs.

For this dataset, there are a total of 21 land cover classes. The table below shows that the pixel

51

https://pfc.cfsnet.nfis.org/cgi-bin/getDownload.cgi?MAPSHEET_ID=031F,031K

distributions of the classes are unbalanced.

Table 11. Class distribution of the TreeSpecies dataset

Class label value pixels in training
set

pixels in
validation set

0 Cloud 11 587160 45842

1 Shadow 12 84182 1793

2 Water 20 2101281 209702

3 Rock/Rubble 32 14021 183

4 Exposed land 33 453132 67174

5 Bryoids 40 1692 47

6 Shrub tall 51 1126655 106207

7 Shrub low 52 122065 12193

8 Wetland-tree 81 136808 16209

9 Wetland-shrub 82 101967 7259

10 Wetland-herb 83 109245 7094

11 Herb 100 2021569 207416

12 Coniferous Dense 211 1964217 161203

13 Coniferous Open 212 2744294 23303

14 Coniferous Sparse 213 5942 587

15 Broadleaf Dense 221 4146148 392693

16 Broadleaf Open 222 1317120 125172

17 Mixedwood Dense 223 10508786 947408

18 Mixedwood Open 232 1079412 100624

19 Mixedwood Sparse 233 456503 43564

20 No data 0 86902 4695

9.1.2. Model

9.1.2.1. Choosing a deep learning model for the pixel-wise classification

In deep learning, a convolutional neural network (CNN) [https://en.wikipedia.org/wiki/

Convolutional_neural_network] is probably one of the most commonly used models for analyzing visual
images. The original CNN is more suitable for an image-level classification. However, CNN can still be
used for pixel-wise classifications by taking a small area around each pixel as the input for training
and prediction. However, the process would be very computationally intensive.

Fully Convolutional Networks (FCNs) are based on the original CNN, but the fully connected layers in
CNN are replaced by convolutional layers. Specifically, an FCN contains an encoder and a decoder. The
encoder gradually transforms an input into a series of representations with smaller spatial dimensions,
and then the decoder restores the representation to an output by deconvolution. In this way, FCNs
maintain a 2D structure of feature maps and is the first to implement the semantic segmentation of the

52

https://en.wikipedia.org/wiki/Convolutional_neural_network

image, i.e. the pixel-wise classification. However, one of the problems with FCNs is that their
segmentation results are often coarse. This is because some position information gets lost during the
pooling operation in the decoder.

U-NETs are an evolution of FCNs. They follow the encoder-decoder structure of FCNs, but with the
additional use of shortcut connections between the mirrored layers to easily pass the details of objects
from the encoder to the decoder. As a result, the segmentation result is precise and fine-grained.

SegNet also follows the encoder-decoder pattern. It is very similar to U-Net, but the upsampling method
is quite different. The upsampling in SegNet takes use of max-pooling indices which were stored during
downsampling in the encoder. This makes the model smaller and requires less memory.

9.1.2.2. The SegNet architecture

SegNet [http://mi.eng.cam.ac.uk/projects/segnet/] is therefore used as the deep classifier. The architecture is
shown below. The architecture consists of an encoder based on the 13 convolutional layers of the VGG-
16 [42] and a decoder which is a reverse process of the encoder.

Figure 19. Architecture of SegNet.

Blocks # conv/deconv layers #Filters Output size

conv_block_1 2 64 128×128

conv_block_2 2 128 64×64

conv_block_3 3 256 32×32

conv_block_4 3 512 16×16

conv_block_5 3 512 8×8

deconv_block_5 3 512 16×16

deconv_block_4 3 512 32×32

deconv_block_3 3 256 64×64

deconv_block_2 2 128 128×128

deconv_block_1 2 64 256×256

53

http://mi.eng.cam.ac.uk/projects/segnet/

9.1.3. Results

Figure 20. Accuracy on test data. (Black: without augmentation; Blue: with augmentation)

Figure 20. shows the learning curves of the model during training on the validation dataset with
regards to accuracy. Accuracy indicates that, among all the pixels, how many of them are correctly
classified by the model.

9.1.3.1. The learning behavior of the model during training

9.1.3.1.1. 1) Overfitting problem

The model (without augmentation) performs best when the number of iterations reaches about 40,000
and at that point the accuracy goes down. This is the overfitting phenomenon. Overfitting refers to a
model that models the training data too well but cannot generalize well for new data. This happens
when a model is trained too much or the training data set is too small.

9.1.3.1.2. 2) Solution

Accordingly, there are two simple ways to avoid overfitting. First, stop the training earlier, such as,
before 40,000 iterations. Second, try to use a large dataset for training. Sometimes, an existing dataset is
too limited and small, but can be enriched by data augmentation. Data augmentation is a technique to
artificially create new data from the original data. For example, data augmentation was done by
rotating, translation and flipping. The training dataset was expanded 7 times. As a result, as indicated
by the blue line in the Figure 20, the model trained with augmented dataset is less likely to be over
fitted.

9.1.3.2. Model performance

54

9.1.3.2.1. 1) Poor accuracy

As seen from Figure 20, the accuracy attained is low (0.545). But as there are 20 classes in the
classification task, the results are acceptable for this Testbed.

9.1.3.2.2. 2) The reasons

• Deep learning has great advantages for image-level classification but has limited potential for pixel-
wise classification. High-level semantic information needs to be extracted from the low-level
features for high level image-level classification. The model architecture makes deep learning
suitable for multi-level learning, which is useful for image-level classification. However, for pixel-
wise classification, the task of predicting the label of pixels in the RS image is relatively shallow, so
there is less opportunity for a deep learning model to be performant. In a review article, the
authors also conclude that the achievement of DL techniques in pixel-based classification has not
been groundbreaking.

• The test dataset presents a forest area with fine classes. So, there is a similarity between different
classes (e.g. Coniferous, Herb, Broadleaf and Mixedwood). This makes the classification difficult. In
contrast, many RS image classifications with deep learning techniques only focus on urban areas,
where fewer classes (e.g. Buildings, Roads, Water, and Vegetation) that differ greatly.

• The class imbalance problem for this data set is severe. Therefore, the imbalance complicates the
utility of the outputs. Even if the training set is large, the size of minority classes is still small due to
their extremely low proportion, which will cause sparseness in minority classes. Second, standard
classifiers with overall accuracy tend to be overwhelmed by majority classes. Therefore, minority
classes are ignored. These issues compound to negatively influence performance.

• Additional experiments with exactly the same model but using a different dataset (i.e. street view
image dataset CamVid [http://mi.eng.cam.ac.uk/research/projects/VideoRec/]) has been conducted, and the
best accuracy obtained is about 0.85. This indicates the Petawawa forest dataset could be a
particularly challenging dataset to classify. This may explain the sub optimal results.

9.1.3.2.3. 3) Possible improvements

For the class imbalance problem, there might be several ways to overcome the issue, including:

• Changing the evaluation metric: Use other metrics like ROC (i.e., Receiver Operating Characteristic)
rather than accuracy.

• Over-sampling majority classes and under-sampling minority classes.

• Class-weighting: Increase the weight of minority classes. When minority classes are misclassified,
the loss value should be multiplied by the corresponding weight, so as to make the classifier pay
more attention to such minority classes.

9.2. Implementation of Web Processing Service (WPS)
for Deep Learning Model

9.2.1. Introduction of WPS wrapper implementation

To help Testbed participants and the general public obtain convenient access to the trained deep

55

http://mi.eng.cam.ac.uk/research/projects/VideoRec/

learning model, the model was wrapped into a WPS and deployed using with Tomcat 8.5 and
GeoServer 2.12 (official WPS extension included). If needed, the whole WPS can be easily deployed to
any other desired server with some setup and configuration. Currently, the WPS can take any WCS or
arbitrary web service that responses a valid GeoTIFF image as input, and provide an output image of
land classification by performing preprocessing and deep learning model prediction. The figure below
describes the general workflow of the WPS.

Figure 21. fig.

Once the user makes an Execute request, the WPS takes a 256 by 256 pixel GeoTIFF with RGB channels
as input. This should be described in the request body. More commonly, the data would be provided by
a WCS instance with a subsetting operation implemented. However, the WPS can be connected with
any arbitrary web service as long as it returns GeoTIFFs that meet the implementation requirements.
The WPS first downloads the input GeoTIFF from the given web service to the WPS server. The data
will then be normalized and converted into a PNG image file. This operation not only generates the
compatible input file for the trained deep learning model, but also provide users the convenience of
comparing the input images and predictions. The normalization applied in each channel of the
GeoTIFF linearly maps the values from an arbitrary range to 0-255. This PNG image file is cached in the
server for future use and fed into a trained deep learning model. For each pixel in the input image, a
corresponding land classification label is predicted by the model. With a proper colormap, the
predicted land classification image is rendered. The WPS provides an optional control to decide
whether to return the normalized/rendered input image or the prediction image (input image by
default). Finally, the WPS prepares the response containing the specified image with some auxiliary
information, such as response mimetype, and returns the result to the user.

9.2.2. WPS Interface Description

An interface description of the implemented WPS can be obtained using the WPS DescribeProcess
request: http://cici.lab.asu.edu/geoserver2.12.0/ows?service=wps&version=1.0.0&
request=DescribeProcess&Identifier=gs:CNNProcessor. The DescribeProcess document is:

<wps:ProcessDescriptions xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ows="http://ww
w.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.net/wps/1.0.0"xmlns:xlink="http://ww
w.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xml:lang="en"
 service="WPS" version="1.0.0"xsi:schemaLocation="http://www.opengis.net/wps/1.0.0

56

http://cici.lab.asu.edu/geoserver2.12.0/ows?service=wps&version=1.0.0&request=DescribeProcess&Identifier=gs:CNNProcessor
http://cici.lab.asu.edu/geoserver2.12.0/ows?service=wps&version=1.0.0&request=DescribeProcess&Identifier=gs:CNNProcessor

http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">
<ProcessDescription wps:processVersion="1.0.0" statusSupported="true" storeSupported="tru
e">
<ows:Identifier>gs:CNNProcessor</ows:Identifier>
<ows:Title>WPS4CNN</ows:Title>
<ows:Abstract>WPS for CNN model.</ows:Abstract>
<DataInputs>
<Input maxOccurs="1" minOccurs="1">
<ows:Identifier>coverage</ows:Identifier>
<ows:Title>coverage</ows:Title>
<ows:Abstract>The raster to be predicted</ows:Abstract>
<ComplexData>
<Default>
<Format>
<MimeType>image/tiff</MimeType>
</Format>
</Default>
<Supported>
<Format>
<MimeType>image/tiff</MimeType>
<Encoding>base64</Encoding>
</Format>
<Format>
<MimeType>application/arcgrid</MimeType>
</Format>
</Supported>
</ComplexData>
</Input>
<Input maxOccurs="1" minOccurs="1">
<ows:Identifier>output</ows:Identifier>
<ows:Title>output</ows:Title>
<ows:Abstract>
"prediction" for predicted image, otherwise original rendered image.
</ows:Abstract>
<LiteralData>
<ows:AnyValue/>
</LiteralData>
</Input>
</DataInputs>
<ProcessOutputs>
<Output>
<ows:Identifier>result</ows:Identifier>
<ows:Title>result</ows:Title>
<ComplexOutput>
<Default>
<Format>
<MimeType>image/png</MimeType>
</Format>
</Default>
<Supported>
<Format>

57

<MimeType>image/png</MimeType>
</Format>
</Supported>
</ComplexOutput>
</Output>
</ProcessOutputs>
</ProcessDescription>
</wps:ProcessDescriptions>

There are two input parameters for this WPS instance. The first one is titled “coverage”, which should
be a WCS request that delegates to the WPS server. This request should respond with a 256 by 256
pixels GeoTIFF with RGB channels. The second input is titled as “output”. It takes a string as input. If
the string is exactly “prediction”, the WPS returns a predicted land classification image. Otherwise the
WPS returns the normalized/rendered input image. The output of the WPS is titled as “result”.
Currently only PNG as output format is supported.

9.2.3. WPS Request Example and Result Demonstration

The prediction result can be obtained using a WPS Execute request. Users should prepare a valid WPS
Execute XML body that meets the WPS interface and post the XML to http://cici.lab.asu.edu/
geoserver2.12.0/wps. An example post body is:

58

http://cici.lab.asu.edu/geoserver2.12.0/wps
http://cici.lab.asu.edu/geoserver2.12.0/wps

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute version="1.0.0" service="WPS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="http://www.opengis.net/wps/1.0.0" xmlns:wfs="http://www.opengis.net/wfs"
xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:gml="http://www.opengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wcs=
"http://www.opengis.net/wcs/1.1.1" xmlns:xlink="http://www.w3.org/1999/xlink"
xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">
 <ows:Identifier>gs:CNNProcessor</ows:Identifier>
 <wps:DataInputs>
 <wps:Input>
 <ows:Identifier>coverage</ows:Identifier>
 <wps:Reference mimeType="image/tiff" xlink:href="http://geoserver/wcs"
method="POST">
 <wps:Body>
 <wcs:GetCoverage service="WCS" version="1.1.1">
 <ows:Identifier>sf:L8</ows:Identifier>
 <wcs:DomainSubset>
 <ows:BoundingBox crs=
"http://www.opengis.net/gml/srs/epsg.xml#32618">
 <ows:LowerCorner>300000.0 5020000.0</ows:LowerCorner>
 <ows:UpperCorner>307680.0 5027680.0</ows:UpperCorner>
 </ows:BoundingBox>
 </wcs:DomainSubset>
 <wcs:Output format="image/tiff"/>
 </wcs:GetCoverage>
 </wps:Body>
 </wps:Reference>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>output</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>prediction</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 </wps:DataInputs>
 <wps:ResponseForm>
 <wps:RawDataOutput mimeType="application/octet-stream">
 <ows:Identifier>result</ows:Identifier>
 </wps:RawDataOutput>
 </wps:ResponseForm>
</wps:Execute>

In this request body, the input parameter “coverage” is described as a WCS post request with
DomainSubset operation that subsets a 256 by 256 pixel area from the whole coverage. The post
request delegates to the WPS server and sends a request to http://geoserver/wcs. This link is the short
reference of the WCS service implemented by the same GeoServer as the WPS. The link is the same as
http://cici.lab.asu.edu/geoserver2.12.0/wcs. Input parameter “output” is specified as “prediction”, so the
response will contain the predicted land classification image. The response image and corresponding

59

http://geoserver/wcs
http://cici.lab.asu.edu/geoserver2.12.0/wcs

legend in the right-hand side are demonstrated as follows:

Figure 22. fig.

60

Change the input parameter “output” to an arbitrary word, we get the following normalized/rendered
input image as the comparison:

Figure 23. fig.

61

Chapter 10. New Brunswick forest supply
management decision maker ML model
The New Brunswick forest ML model (D102) delivered a forest supply management decision maker ML
model for the province of New Brunswick. The capability was demonstrated through a live
demonstration and is documented in this chapter. The component modeled the New Brunswick road
network as a graph and estimated transportation costs from forest blocks to mills. Production volumes
and costs of each forest block were calculated based on historical data. The component then calculated
an optimal 5-year harvest plan based upon net revenues. As with the other sub-threads within the ML
thread, the New Brunswick forest ML model is a standalone ML component and does not depend on
other Testbed-15 ML deliverables.

10.1. Component Summary
Initial requirements were reformulated as the challenge proposed is a multidimensional optimization
problem that is not easily addressable with a traditional ML approach. The goal was to produce an
optimal or close-to-optimal multi-year harvesting plan for New Brunswick. However, the complexity of
the problem was increased by an undefined number of harvesting teams (each acting autonomously
and with its own characteristics). Additionally, there was an undefined number of transportation
means to deliver raw materials of different tree species and qualities to a series of mills and factories
to produce different products. A further complication is that the environment changes continuously.
Wood prices vary, winter snow makes transportation difficult, trees grow increasing inventory, or
decisions are made to modify the environment such as building a new road to a forest block or closing
a road for maintenance.

To solve these challenges, Reinforcement Learning (RL) was used. RL is an area of ML well suited to
finding the best decisions in a known environment. In a RL algorithm, an agent takes actions in an
environment in order to maximize a reward. Once the algorithm was set up, it was run many times to
train a neural network to learn what the best decisions to make in different situations are. This is the
same methodology used by AlphaGo to learn how to play Go and beat the best human player in the
world (more info at https://arxiv.org/abs/1712.01815). There are many resources in the Internet for a
quick introduction to RL, for example https://www.youtube.com/watch?v=JgvyzIkgxF0

The approach used in D102 was to divide the problem space into decision units or agent types within a
limited environment and action-set, and then train them in parallel to find the optimal combination.
Three different agent types were designed:

• Harvesting teams: responsible for the optimization of the operational decisions in an assigned
forest block, from harvesting wood to building new roads.

◦ Actions: continue harvesting current block, move to a different block, build a road to access the
block.

◦ Reward: value of wood volume harvested (independent of species) - costs (harvesting and
moving wood to the nearest road).

• Transportation teams: responsible for selection of the optimal mill to take delivery of harvested
wood from each forest stand.

62

https://arxiv.org/abs/1712.01815
https://www.youtube.com/watch?v=JgvyzIkgxF0

◦ Actions: take wood to the closest mill, take wood to the emptiest mill, take wood to the mill with
highest yield - the revenue realized from the harvested trees.

◦ Reward: value of wood volume transported (depends on species and mill yield) - costs of storage
(if mill is full) - costs of transportation.

• Planning team: responsible for the selection of policies to allocate forest stands to harvesting and
transportation teams.

◦ Actions: increase priority for hardwood species, increase priority for Spruce, Pine, and Fir (SFP)
species, increase priority for softwood species (affect forest allocation for harvesting teams).

◦ Reward: accumulated rewards from transportation teams.

10.2. Component Design
The solution was designed using RL as the main ML methodology. In order to interact with an
environment, RL is basically an agent that has a series of actions to choose from that return a state and
a reward for each action. The bigger the reward, the more the agent will be inclined to take that same
action in similar situations.

For the New Brunswick scenario, three different agent types were considered to divide the problem
space into three different areas for decision-making: planning, harvesting and transport. Planning was
responsible for deciding the species-based priorities, harvesting will take care of the operating
decisions in the forest and transport to choose the best mill to take the wood to.

Three main use cases were defined to cover interaction with the user:

• Set neural network - the user tunes the parameters for the neural networks.

• Train an agent - the user individually trains the harvest, transport or planning agents.

• Run episodes - once all the agents are trained, it can run episodes to find the best solution for multi-
year forest planning.

63

Figure 24. Use cases defined for D102

10.2.1. Set neural network

There were many parameters to tune optimally for RL. Each type of agent has a single neural network
to train, even if there can be several agent instances running in parallel in New Brunswick. This is the
case for the harvest and transport teams: Sharing a single brain that concentrates all experiences from
all the different teams, but each acts independently in their own area.

The parameters that can be tuned for each agent type are:

• Batch size: the number of training samples (that is, the list of state, action, reward, new state) taken
from memory to feed the neural network in each learning iteration. The higher the number, the
faster the neural network learns and the longer training takes. Typical values used in this project
range between 100 and 500.

• Learning rate: the speed at which newly acquired information overrides old information. The
higher the number, the faster the neural network will learn, at the risk of becoming unstable.
Typical values used in this project range between 0.01 and 0.0001.

• Gamma: also called the discount factor, determines how future expected rewards are considered,
balancing the importance of future rewards versus immediate ones. For example, building a road
to lower future harvesting costs, even if the immediate reward of this action is negative. For lower
gamma values, the agent will tend to focus on immediate rewards only. Typical values used in this
project range between 0.95 and 0.8.

• Memory capacity: also sometimes called the memory buffer, it defines the storage size of all the
experiences (that is, the list of state, action, reward, new state). The bigger the value, the more
variety of experiences it will store, taking a batch size of these in each learning iteration. For this
project, memory capacity was set up as cyclic, making sure that new experiences (based on new,

64

learned behavior), override the old ones that may no longer be relevant. Typical values used in this
project range between 1000 and 10000.

• Epsilon start, end and decay: an agent’s neural network starts with an empty buffer of
experiences and needs to explore the environment and experiment with the possible actions before
it can figure out the rules of the game. In order to facilitate this stage, an agent will choose actions
randomly with a probability calculated in the base of a threshold, calculated according to this
formula: threshold = epsilon end + (epsilon start - epsilon end) * exp(-1. * number of steps done /
epsilon decay). Typical values used in this project for epsilon start range between 0.9 and 0.95, for
epsilon end between 0.01 and 0.05, and for epsilon decay between 100 and 10000.

The following graph shows the evolution of the value of threshold; that is the probability that an agent
chooses a random action vs. deciding it based on its experience. Actions will be chosen randomly as the
memory is filled with experiences, and only then, when the neural network starts to learn, will the
Epsilon parameters be used.

Figure 25. Threshold evolution for memory capacity = 100, Epsilon start = 0.95, Epsilon end = 0.05 and Epsilon
decay = 1000

• Number of layers and number of neurons per layer: these parameters define the structure of
each neural network. The complexity of agent decisions is low and the tests performed well with
simple networks, using one or two layers with between 20 and 50 neurons each.

• Number of episodes: this parameter sets the number of episodes needed to complete training.

10.2.2. Train an agent

The process to train an agent is similar in all three cases. The environment provides the state to the
agent, then the agent gets the best action from the neural network, modifying the state from the
environment and receiving a reward. This process is stored and triggers a learning cycle, improving
the neural network.

65

10.2.3. Harvest agent

In the case of a harvest agent that has as an assigned forest block and stand, the environment provides
a state containing the following information:

• Area left to harvest in current stand

• Density of current stand

• Density of next stand in current block

• Distance to road in current stand

Figure 26. Training process for the harvest agent

With this information, the agent chooses one of the following actions:

• Continue harvesting current stand, which will be taken if the density is high enough. If the stand is
completely harvested it will automatically move to the next stand in the block. The reward received
will be a value of the chopped wood (independent of the species) minus harvesting costs.

• Move to a different block, which will be taken if the density of the current and next stands is not
high enough. The decision on which block to move next is external to the agent, taking into
consideration volume and density in the block, distance to the team’s base and type of wood
matching the priorities set by the planning team (if any). The reward received will be negative (i.e.
the cost of moving the team).

• Build a road, which will be taken if the area and density left to harvest is high enough to
compensate the costs that will depend on the distance to the road. The reward received will be
negative (i.e. the cost to build the road)

10.2.4. Transport agent

In the case of the transport agent, which has a wood stock assigned, the environment provides a state
containing the following information:

• Transport costs, stock and yield for the closest mill that fits the wood species to transport

• Transport costs, stock and yield for the emptiest mill that fits the wood species to transport

• Transport costs, stock and yield for the mill with the highest yield that fits the wood species to
transport

66

Figure 27. Training process for the transport agent

With this information, the agent chooses one of the following actions:

• Take the wood to the closest mill

• Take the wood to the emptiest mill

• Take the wood to the mill with the highest yield

The reward received will be the value of the transported wood (which will depend on the species, the
type of mill, the stock of the mill and the wood price at that moment) minus the transportation cost.

10.2.5. Planning agent

The case of the planning agent is different, as this agent cannot be trained independently of the other
two agents. The goal is to balance the harvesting of different species in order to optimize flow. This
agent only takes into consideration the status of the stock in the different mills as well as current wood
prices for each type (hardwood, SPF, softwood) and their trend.

With this information, the agent chooses one of the following actions:

• Increase priority for hardwood species

• Increase priority for SPF species

• Increase priority for softwood species

Each priority increase for one type of species makes a small priority decrease for the rest, keeping the
numbers balanced. Before the agent takes the new state and the reward, in order to see the effect of its
action it waits for several steps from the other teams.

67

Figure 28. Training process for the planning agent

10.2.6. Run episodes

Once all agents are properly trained, they can be set to play the game harmoniously and reassess
during the number of episodes set by the user. While running the episodes, the neural networks do not
go through learning iterations and the threshold is set fixed to Epsilon end in order to keep a minimum
randomness in the process.

The episode with the highest reward is then recorded for further manual analysis. Additionally, the top
25 percentile episodes generate aggregated statistics to find further insights that can help prepare a
multi-year plan. These statistics include the forest blocks that were harvested in most of these top
episodes, as well as the blocks where a road was built or the average stock in the mills.

10.3. Architecture
The architecture of the solution is described in the following diagram:

• Data is fed from NRCan’s web services or from direct download (e.g. data on prices).

• These data help build several models: forest, price forecasting, and routing engine. Other models
for which there is not sufficient data are made up based on educated guesses, such as agents, mills,
and road building models.

• These models help train the three different agents.

• Once trained, episodes can be run in order to select the best results.

68

Figure 29. Architecture diagram

10.4. Input data
The Skymantics forest model and supply management decision maker has access via WCS/WFS to
NRCan data, in particular layers providing information on forests, road networks, forest resource
roads, and mills:

• Forest layer: with more than 800,000 elements, each with more than 80 properties, it provides very
detailed information on all forest stands and blocks in New Brunswick, from stand taxonomy and
tree species distribution to treatment history. It is easy to make a rough estimation of the wood
volume per species in each stand based on this information, as well as its geographical location and
geometrical distribution.

• New Brunswick Road Network layer and Transportation Forest Resource Roads layer: these layers
provide all the information required to build a routing engine that can estimate the costs (both in
time and fuel consumption) from any forest road to any mill location in New Brunswick. Moreover,
it can help calculate the distance from any forest stand to the closest road.

• Mills layer: it provides the location, type, wood species consumed and product of all the mills in
New Brunswick, as well as their operational status.

These data are essential to build the decision maker, but they cannot be consumed directly and need to
be processed in order to build needed intermediate systems.

Apart from these, historical data on wood and fuel prices are downloaded in order to build a price
forecasting model.

10.5. Routing engine
There are two possible sources of road data to build the routing engine:

• New Brunswick Road Network layer, which includes only the main road network of New
Brunswick but with enough information to understand the taxonomy and properties of each road

69

• Transportation Forest Resource Roads layer, which includes the whole road network, including
every forest road, but without much additional information

Ideally, both sources should be merged in order to have the most accurate information for each road.
Due to time constraints, in this project only the Transportation Forest Resource Roads layer was used to
build the routing engine.

The routing engine was implemented in Python3, making use of ogr [https://gdal.org/] (to extract data
from WCS/WFS) and Vincenty’s Formula [https://en.wikipedia.org/wiki/Vincenty%27s_formulae] (to calculate
distances) libraries to speed up development. For the first stage, road data is extracted from WCS/WFS
and saved in a local MySQL database to speed up data manipulation. Next, by treating road segments
as edges of a graph and road junctions as nodes of the same graph, the graph is preprocessed in order
to spot intersections and calculate shortcuts, as well as to infer speed limits and the road hierarchy for
every edge.

Once preprocessing is complete, the graph is built and loaded into memory for faster computation. The
routing algorithm implemented is A* with Contraction Hierarchy optimization, defining three
hierarchy levels: 1 for forest roads, 2 for local roads and 3 for freeways and highways. With this graph
and algorithm it is now possible to find optimal or close to optimal routes from any point A to any point
B in New Brunswick in a fraction of a second, providing both the cost in time and the distance
travelled, which can easily be used to infer the cost of transportation. For this Testbed the cost was
simplified as a fixed amount per hour or fraction, as well as a fixed amount per kilometer. However,
more advanced and accurate estimations are possible.

10.6. Preprocessed forest model
The forest layer provides very detailed information on all forest stands and blocks in New Brunswick.
For this Testbed, the information extracted assisted in the location of each forest stand / block and
drawing its limits, and helped estimate the amount of wood in the stand, grouped per type of wood
(hardwood, SPF or softwood). The rest of the information was not used in this version of the forest
model.

The preprocessed forest model was implemented in Python3, making use of ogr (to extract data from
WCS/WFS) and Vicenty’s formula (to calculate distances) libraries to speed up development. To begin,
forest data is extracted from WCS/WFS and saved in a local MySQL database to speed up data
manipulation. Then, several calculations are carried out and the results stored in the database,
covering stand volume (total and per type of wood), density, distance to closest road and distance to all
currently active mills (making use of the routing engine). As the agents need to have all data ready for
consumption when performing training or running episodes, this preprocessing stage is of great
importance. For example, consider the case of route calculation to mills for the transport team. For
every model iteration the cost of transportation to the mills needed to be calculated several times.
Taking into account that every episode is made of more than a thousand iterations, that there should
be several transport teams working in parallel and that users would probably want to run several
hundreds of episodes in a row, having these costs pre-calculated has a very big impact on overall
system performance.

The Enhanced Forest Inventory data was not used to build the preprocessed forest model for two
reasons: 1) lack of time to process the data and include the data in the model and 2) there were other

70

https://gdal.org/
https://en.wikipedia.org/wiki/Vincenty%27s_formulae

factors much more critical to build the decision maker, which were related to the business process
parameters (see below) that were missing. For eventual future versions of the decision maker and once
the business process parameters have been properly dimensioned, integrating the Enhanced Forest
Inventory data will become important. This is in order to have more accurate numbers of wood
availability in the forest stands.

10.7. Price forecasting model
There are two prices that have an important effect on the operations that are modelled in this
deliverable: the wood price at the mills and fuel prices for wood transportation. Prices are acquired in
the form of timeseries. Timeseries allows the price evolution according to a time interval (days, weeks
or months) to be followed. Predicting future prices of either wood or fuel for the long term required for
this model (5 years) is almost impossible. However, decomposing the timeseries into its three main
components (trend, seasonal and residual) and analyzing them is possible. If the seasonal component
can be accurately predicted and is important with respect to trend and residual components, the
decomposition can serve as a good approximation.

10.7.1. Wood pricing forecasting

Wood prices are available at https://www.nrcan.gc.ca/current-lumber-pulp-panel-prices/13309

Being able to forecast wood prices should have a positive impact in fine-tuning the behavior of
transport agents. This is because the reward they receive will be more accurately estimated and
therefore they will be able to make better decisions on what wood to transport to which mill at each
moment. This approach should also have a positive impact in improving the behavior of the planning
agent. Instead of just monitoring the storage status of mills, the model is also aware of the price
evolution of each type of wood; it therefore has a richer set of information to base its decisions.

The wood prices data presented two main challenges: 1) they are not directly related to wood species
but to a mixture of wood type and mill products, and 2) they only provide 12-month data. The first
challenge was solved assuming direct relations. "Softwood lumber" refers to prices for every wood
from softwood species, "Panel" refers to prices for every wood from hardwood species and "Pulp"
refers to prices for every wood from SPF species. This is a gross approximation and should be refined
in further revisions.

The second challenge was solved by assuming that the 12-month data is actually the seasonal
component of the timeseries. Again, this approximation is objectionable but necessary, as without
multi-year data it is simply not possible to find the seasonal component of a timeseries.

With these assumptions, price variations might vary up to 40% in a year. This should have an
important effect on the rewards and the decisions made.

71

https://www.nrcan.gc.ca/current-lumber-pulp-panel-prices/13309

Figure 30. Yearly wood price evolution (normalized)

10.7.2. Fuel pricing forecasting

Fuel prices are available at https://www.nrcan.gc.ca/current-lumber-pulp-panel-prices/13309

As costs will be more accurately estimated, being able to forecast fuel prices should have a positive
impact on fine-tuning the behavior of transport agents. Thus, transport teams should favor closer mills
when fuel prices are high and high yield mills when fuel prices are low. The fuel prices data offer a
very complete dataset of the monthly evolution of fuel prices (gasoline, diesel, others) since 1979 in
different parts of Canada. For this model, the data included starts in year 2000, is from Saint John, New
Brunswick, and represents diesel fuel at full service or self-service filling stations. In order to have
consistent comparisons, prices are adjusted to their 2019-equivalent using historical Canadian inflation
rates [https://www.inflation.eu/].

72

https://www.nrcan.gc.ca/current-lumber-pulp-panel-prices/13309
https://www.inflation.eu/
https://www.inflation.eu/

Figure 31. Fuel prices timeseries

Analyzing the data series of fuel prices with the Dickey-Fuller test [https://en.wikipedia.org/wiki/

Dickey%E2%80%93Fuller_test] draws a p-value of 0.060783, meaning that the series is not stationary and
can be decomposed.

Once is the data are decomposed into the three main components, analyzing the residual component
with the Dickey-Fuller test draws a p-value of 0.000009, meaning that that component is strongly
stationary as would be expected. The different components are visible in the next image:

73

https://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test

Figure 32. Fuel timeseries decomposition

Further analyzing the different components, three important conclusions are drawn:

• The trend component shows how the price of diesel is affected by economic and geopolitical
factors. It is easy to spot increasing oil prices after the beginning of the 2008 crisis due to
speculation, followed by an important fall due to economic slowdowns and a corresponding
reduction in consumption. As well the effects of an OPEC production cut in 2009 and the outbreak
of Libyan civil war in 2011 are visible in this component. It is not possible to forecast these events,
which are responsible for the main part of price variation, up to $70.

• The seasonal component shows how the price of diesel is affected by the time of the year. This is the
part of pricing that is 100% predictable and that can be included in the model without any doubt.
However, it accounts for just $3 of price variation and thus, its effect in the model is very limited.

• The residual component shows how the price of diesel is affected by random aspects. This part is
very difficult to foresee or interpret, and it accounts for as much as $30 of price variation, about
10x the seasonal component.

Taking all this into consideration, the seasonal component of the diesel price will be included in the
model, even though it is not going to have a significant impact nor is it going to help improve accuracy,
as it is just a minimal part of the price forecast.

However, even if it does not seem possible to have an accurate long-term forecast of fuel prices, it
might be interesting in the future to run the model with different scenarios depending on fuel (or
wood) prices, such as high fuel prices - low wood prices, and evaluate how all the different agents
would behave. Or, what would be the price level at which the rewards will be higher for teams to stay
at home than going to work (that is, revenues are lower than costs). These applications are beyond the

74

scope of this project.

10.8. Other models - Business process parameters
Some elements of the solution, mostly models related to business processes, were built without enough
data. In these cases, parameters were defined making educated guesses after some Internet research.
These are the models that should be redone first in order to expect any accuracy in the results.

The parameters to properly design these models is described in the following subsections:

10.8.1. Harvest teams

• Number of harvest teams and the location of their bases

• Average area harvested per day

• Daily cost of harvesting

• Cost of transporting wood to the closest road

• Cost (time and $) to move the harvesting team to a different forest block

• Maximum distance from base for proper operation

• Daily costs of operating far from base

• Costs of road building

• Are these parameters similar to all harvest teams or do they vary significantly?

10.8.2. Transport teams

• Number of transport teams and the location of their bases

• Volume capacity

• Time required to load and unload trucks

• Relation between transport time (and load/unload time) and costs. Effect of distance to base.

• Fuel consumption per mile, for slow and fast roads.

• Are these parameters similar to all transport teams or do they vary significantly?

10.8.3. Planning team and team allocation criteria

• What are the criteria to select a stand to harvest? Only economical (potential revenues minus costs)
or are there other aspects to consider?

10.8.4. Mills

• Yield per product and type of wood consumed. Relation with public prices.

• Storage capacity per mill

• Relation between wood stock and yield

• Speed of wood consumption

75

• Are these parameters similar to all mill teams or do they vary significantly?

10.8.5. Machine Learning Model

PyTorch was used to create and train the neural networks. For each agent, the network starts with a
layer that has the same number of artificial neurons as the number of state variables. Then, the agent
creates as many hidden layers with as many artificial neurons as specified by the user. Finally, the last
layer contains as many neurons as the number of actions the agent can take. Between artificial neuron
layers, it adds a simple Relu activation function, that is, the positive part of its argument.

In order to train the model, an algorithm called Q-learning is used, which is able to find the optimal
action taking into consideration not only the immediate reward received, but also the expected
rewards generated by all successive steps applying the gamma parameter (or discount factor)
described previously. Q is actually the name of the function that calculates the quality of an action used
to provide the reinforcement.

However, when applying Q-learning in combination with a neural network (also called Deep Q-
Learning), there is the risk of making the learning process unstable or divergent. This is because small
updates to Q may substantially change the policy and data distribution, and thus change the
correlations between Q and the target values. In order to overcome this loss of stability, two
complementary techniques were used in this project: Experience Replay and Target Network.

• Experience Replay: this is where the batch size parameter comes to play, in combination with the
memory capacity. At each learning iteration, instead of just feeding the ML model with the latest
episodes, which would quickly lead to overfitting, the algorithm is fed with a random batch of past
experiences to update the neural network. Apart from avoiding overfitting, this technique helps
reduce correlation between experiences, it increases learning speed and it reuses past transitions to
avoid forgetting.

• Target Network: the Q-value should be calculated based on the rewards received and an
estimation of the future rewards produced by the subsequent new states. However, this would
mean that the function (or neural network) would try to predict its own output, which would easily
make the model diverge. In order to avoid that, a new neural network is created, called Target
Network, which initially is a copy of the training network. It is updated every 100 steps.

With these techniques there will be a stable and convergent Deep Q Network. However, it is easy to for
the network by adjusting the parameters, for example:

• Set a small memory capacity, especially combined with a relatively large batch size. This way the
effect of the Experience Replay technique will be diminished or canceled, and the agent will start to
overfit.

• Set a small Epsilon decay, especially with a small memory capacity. The agent will not have enough
time to explore the environment and will quickly start overfitting its decisions.

• Set a high learning rate, such as 0.1 or even 0.05. The model will probably become unstable.

• Set a very large number of episodes, especially with a small memory capacity and a small epsilon
decay. The model will soon replace the exploratory experiences with the exploitation ones, learning
only and repeatedly from its own decisions, leading to overfitting.

76

10.9. Component Implementation

10.9.1. Implementations

52North’s WPS2.0 compliant JavaPS was provided to extend ML processing in a networked manner.
Users could use the JavaPS to conduct three actions via the WPS interface: Configure the neural
network, train a given agent type, and run a specific model. These actions respectively are reachable
at:

http://52.224.191.252:8080/tb15/service?request=Execute&identifier=org.n52.javaps.service
.ConfigureNetwork&version=2.0.0
http://52.224.191.252:8080/tb15/service?request=Execute&identifier=org.n52.javaps.service
.TrainAgent&version=2.0.0
http://52.224.191.252:8080/tb15/service?request=Execute&identifier=org.n52.javaps.service
.ExecuteModel&version=2.0.0

10.10. WPS Request / Response examples

10.10.1. Configuration

The configuration endpoint allows users to both query current model configuration and set new
configuration values. All parameters except team_type are optional.

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd" service="WPS" mode="sync" response="document"
version="2.0.0">
 <ows:Identifier>org.n52.javaps.service.TB15Actions</ows:Identifier>
 <wps:Input id="nn">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>20</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="bs">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>200</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="es">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>.95</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="nl">

77

 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>2</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="ed">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>100</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="ee">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>.05</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="gm">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>.9</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="lr">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>.001</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="mc">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>1000</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="ne">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>100</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="team_type">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>harvest</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Output id="configuration" mimeType="application/xml"
 transmission="value" />
</wps:Execute>

A successful POST request to the configuration endpoint returns back all current configuration settings
for the specified agent, including those not changed by the user’s configuration request:

78

<?xml version="1.0" encoding="UTF-8"?>
<wps:Result xmlns:wps="http://www.opengis.net/wps/2.0"
xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd">
 <wps:JobID>3fbd0d14-ef79-46a5-9d12-37e468501bec</wps:JobID>
 <wps:ExpirationDate>2019-09-13T09:35:23.589033Z</wps:ExpirationDate>
 <wps:Output id="result">
 <wps:Data mimeType="application/xml" encoding="UTF-8">
 <wps:LiteralValue xmlns:wps="http://www.opengis.net/wps/2.0"
dataType="https://www.w3.org/2001/XMLSchema-datatypes#string">{"epsilon start": .95,
"epsilon end": .05, "number of layers": 2, "memory count": 1000, "agent": "harvest",
"epsilon decay": 100, "number of neurons": 20, "gamma": .9, "batch size": 200, "number of
episodes": 100, "learning rate": .001}</wps:LiteralValue>
 </wps:Data>
 </wps:Output>
</wps:Result>

10.10.2. Training

The various agents must be trained prior to execution. A user specifies which of the three agent types
to train and the number of agents running in parallel. Harvest and transport agents must be trained
before training the planning agent.

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd" service="WPS" mode="sync" response="document"
version="2.0.0">
 <ows:Identifier>org.n52.javaps.service.TB15Actions</ows:Identifier>
 <wps:Input id="team_type">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>harvest</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="number_of_agents">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>7</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Output id="trainingResult" mimeType="application/xml"
 transmission="value" />
</wps:Execute>

The WPS returns a link to a JSON collection describing the results of the training process.

79

<?xml version="1.0" encoding="UTF-8"?>
<wps:Result xmlns:wps="http://www.opengis.net/wps/2.0"
xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd">
 <wps:JobID>5b841718-6ec9-4829-94c8-8bc605945b2b</wps:JobID>
 <wps:ExpirationDate>2019-09-13T09:35:23.589033Z</wps:ExpirationDate>
 <wps:Output id="trainingResult">
 <wps:Data mimeType="application/xml" encoding="UTF-8">
 <wps:LiteralValue xmlns:wps="http://www.opengis.net/wps/2.0"
dataType="https://www.w3.org/2001/XMLSchema-datatypes#string"> ... </wps:LiteralValue>
 </wps:Data>
</wps:Result>

10.10.3. Execution

When launching the execution, users may optionally specify the number of episodes to run and the
length of those episodes.

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd" service="WPS" mode="sync" response="document"
version="2.0.0">
 <ows:Identifier>org.n52.javaps.service.TB15Actions</ows:Identifier>
 <wps:Input id="episode_length">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>3</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Input id="number_of_episodes">
 <wps:Data mimeType="text/xml">
 <wps:LiteralValue>240</wps:LiteralValue>
 </wps:Data>
 </wps:Input>
 <wps:Output id="executionResult" mimeType="application/xml"
 transmission="value" />
</wps:Execute>

Much like the training process, the WPS provides a response storing the best episode results and an
aggregated summary of execution in JSON and GeoJSON. These results are best retrieved
asynchronously, as long- running tasks may run into issues with connectivity being maintained across
long periods of time.

Additionally, the WPS provides all compliant methods such as GetCapabilities and DescribeProcess.

80

10.10.4. Results

10.10.4.1. Training process

When training an agent, it is necessary to specify the agent to train and, for the case of "harvest" and
"transport", it is optional to specify the number of agents used in the training. This is an important
parameter, particularly for the transport agent; the more agents running in parallel, the fuller mills
storage will be and, thus agents will need to deal with diminishing rewards.

During the training process, it is important to understand how agents' learn. The process is divided in
two different phases: exploring and learning.

• Exploring phase: the agent will take actions randomly and will record the experience in the form
of [state, action, reward, new state] until the memory capacity is full. These experiences will serve
as the base for learning in the next state.

• Learning phase: at each step the agent will make a decision on which action to take. This decision
will be either random or made by the neural network according to the epsilon parameters (start,
end and decay). The experience will be recorded in memory, overwriting an old experience, and a
batch (defined by the batch size parameter) of randomly selected experiences will be fed into the
neural network for learning (at a rate defined by the learning rate parameter). As training
progresses, the agent will be improving its decisions and the reward received at the end of each
episode.

Figure 33. Evolution of reward during the training process

As would be expected, the frequency each different action is taken evolves as agent training
progresses. Initially, when the agent training is in the exploring phase, all actions are taken with a
similar frequency but once the learning phase kicks in, they start to diverge. For example, the harvest
teams will usually receive a higher reward when chopping wood, and moving to a different forest
block or building a road will be actions taken only when the right conditions are met, which is at a
much lower frequency than chopping.

81

Figure 34. Evolution of the frequency of each action during the training process

10.10.4.2. Execution

When configuring the model, it is optional to specify the number of episodes to run and the length in
years of each episode. Once completed, the response sent back will include links to the best episode
and an aggregated summary of the best results.

Once the model is launched, episodes are run without any training being performed and recording all
of the results. At the end, the episode with the best result serves as a base to generate a detailed list of
the actions taken by all the agents, which can be used as a blueprint for the multiyear plan. However,
in reality this might not be too useful for a variety of reasons, such as the model not taking into account
every possible aspect or reluctance to follow a machine-generated plan. A second set of results comes
from the aggregated outcome of the top 25 percentile of the episodes with the highest reward. The most
commonly harvested forest stands, most commonly new roads built and busiest mills in these episodes
are marked and returned in a GeoJSON that can be visualized using standard tools, in order to serve as
a guide to elaborate the multiyear plan.

82

Figure 35. Screenshot of top harvested stands and busiest mills (overall view, using http://geojsonlint.com/)

Figure 36. Screenshot of top harvested stands (zoom view, using http://geojson.tools/)

10.11. Conclusions
During the implementation of the D102 component, RL techniques were successfully applied to make
use of data available through services conforming to OGC standards, and to simulate the operation of

83

http://geojsonlint.com/
http://geojson.tools/

wood harvest and transport at a province-wide scale. The model can be improved with a more
advanced description and implementation of existing business processes, more accurate
environmental data, as well as more data on how to define the different agents that interact in the
simulation. The model can be used as an additional information source to develop multi-year plans,
but with a little twist the model can also be used to help make business decisions and to find new ways
of optimizing the value chain. The model can also be used to evaluate the strengths and weaknesses of
the whole industry by performing stress tests that could help understand how future crises could
trigger disruption, identify where weak links are and determine what contingency plans could be
developed to soften a crisis. A series of recommendations have been drafted to help improve the use of
OGC standards for their use with RL applications. These can be found in the Discussion section.

84

Chapter 11. Quebec River-Lake Classification
and Vectorization Model

11.1. Component Summary
The trained model in component D104 (Quebec River-Lake Classification) was developed with
an application package that includes all required dependencies for data transformation, deep learning
model training, and model execution. The model distinguishes lakes from rivers by first detecting lakes
and then separating detected lakes from the undifferentiated hydrographic layer. The application
package is deployed as a process through an Execution Management System (EMS), and finally
executed either locally or on a distant system via an Application Deployment and Execution System
(ADES).

11.2. Component Design
The figure below depicts the conceptual model for the deliverable of the D104 component, showing the
various processes, either remote or local. The processes are launched through a series of manual
operations, function calls, or via OWS. The features datasets are downloaded then mounted on read-
only volumes so that the training process can access them. Trained models and metrics are also
exchanged through this shared volume, and constitute important inputs and outputs for the
component.

Figure 37. Conceptual model of the various processes involved

As a whole, the processes could be the basis of a basic ML API. As this is a conceptual model, the actual
process names employed in the implementation or documentation may differ. Below a short
description of the processes:

• parse data: opens the input data, selects the target features, balances the training dataset

• load data: prepares local chunks, splits the dataset into training/validation sets, transforms into
tensor

• load model: retrieves and loads neural network architecture, updates model weights

85

• train model: launches training process, produces updated models until criteria are met

• infer features: uses a trained model to produce an inference from inputs, yielding new features

• measure metrics: updates the metadata of the training process and of trained models

• refine features: uses geospatial operators to transform the inferred features

• get metrics: access the metadata produced by the training process

• download model: makes a trained model accessible to the local filesystem of the application

• download data: makes the input data accessible to the local filesystem of the application

For consistency with the Testbed-14 Machine Learning ER [http://docs.opengeospatial.org/per/18-038r2.html],
the addition of a get annotations process to this list would enable uses cases where an analyst conducts
in-the-loop machine learning operations.

CRIM’s framework for training and testing machine learning models as part of inference services and
workflows is called thelper. The code is hosted on GitHub as an open-source project at crim-ca/thelper
[https://github.com/crim-ca/thelper]. This framework primarily allows users to build and evaluate Deep
Neural Networks (DNNs) on predefined image analysis tasks (e.g. classification, object detection) using
a Command-Line Interface (CLI). The CLI and its underlying API provide an abstraction layer between
low-level ML libraries (e.g. scikit-learn, PyTorch) and applications seeking new ML capabilities. Pre-
designed model recipes (provided as JSON configuration files) are used to specify the data preparation
operations, the neural network architecture settings, and training behavior. This simplifies the model
creation process when working with evolving datasets and annotations.

11.3. Implementation Approach

11.3.1. Application

The application’s workflow was fixed and configuration-driven. All dependencies were packaged in a
base Docker image which was extended to include a trained model, thus becoming an application. The
application then offered a single-entry point, either for training or inference. The figure below depicts
the ML application and the embedded workflow.

Figure 38. High-level Machine Learning workflow for D104

A configuration file for the application is presented in Annex A, while some excerpts are provided in

86

http://docs.opengeospatial.org/per/18-038r2.html
https://github.com/crim-ca/thelper

subsections below.

11.3.2. Data

The two main sources of input data were a High-Resolution Digital Elevation Model (HRDEM) and a
subset of the Geobase du réseau hydrographique du Québec (GRHQ) [https://mern.gouv.qc.ca/repertoire-

geographique/reseau-hydrographique-grhq/] hydrographic network. The addition of satellite imagery was
considered, but discarded due to potential temporal inconsistencies. The region of interest was a patch
of land of about 200 square kilometers, north-west of the cities of Gatineau and Ottawa. Both data
sources were downloaded from NRCan’s NFIS Geoserver at https://opendata.nfis.org/, through WCS and
WFS 3.0 respectively. The figure below presents the region.

Figure 39. Region of interest used in the experiments. The colored region is the HRDEM (left).

For the considered region of interest, the HRDEM has a file size of 252 GB, for a coverage of 210 000 by
300 000 pixels and a spatial resolution of 1 meter. The maximum elevation value found in this region is
609.1 meters. The hydrographic network dataset contains 36,109 differentiated features, composed of

87

https://mern.gouv.qc.ca/repertoire-geographique/reseau-hydrographique-grhq/
https://opendata.nfis.org/

34 678 lakes and 1431 rivers. The projection used in both was NAD 83 / UTM zone 18N. The main
attributes of the hydrographic network features are presented in the following table. The type of
feature is represented by TYPECE, where a value of 10 corresponds to rivers and values of 21 and over
represent lakes.

Attribute Description

fid Record
number in the
dataset

ID_RHS Unique
identifier of
the object

TYPECE Object type

11.3.2.1. Data preparation

As stated previously, the data was assumed to be readily available for the application. In an operational
scenario, the ‘download data’ process can constitute an initial step in a workflow. In the general case,
the process uses a URL to fetch the data locally. Ideally, the application is to be deployed at run-time on
a distant infrastructure, near the data. In that scenario, the download data process would have the
responsibility of providing the ML application with a local path to the files by mounting a drive to the
data archive, instead of downloading the data from an OWS endpoint.

Once the data is locally available, the ML application parses the dataset. The following code excerpt
presents the data parser. A custom Python class named TB15D0104Dataset takes as parameters the
path of the vector and raster data, then reads the data from disk and applies the heuristics. The data
parser also receives area_min, area_max and max_dist as parameters. These last three heuristics allow
filtering of the input hydrographic features based on thresholds. This step allows the explicit selection
of features of interest to the task, namely lakes that are adjacent to rivers. This step also balances the
size distribution of the training set. Note that with relatively minor changes to the implementation,
the ‘data parser’ process could have been executed as a WPS instead of a local procedure call.

Excerpt of the data parser configuration for the ML application

 datasets:
 testbed15:
 type: "thelper.data.geo.ogc.TB15D104Dataset"
 params:
 raster_path: "data/testbed15/roi_hrdem.tif"
 vector_path: "data/testbed15/hydro_original.geojson"
 lake_area_min: 100
 lake_area_max: 200000
 lake_river_max_dist: 300

Once the data was parsed, all the vector information was rasterized. The resulting stack was
transformed into a PyTorch tensor, as depicted in the following code excerpt. The tensor was then
ready to be used by the train model process, which were local in the application space. There is a
possibility to serialize the tensor obtained for use in a further re-training of a model.

88

Transformation of the input data into a tensor

 loaders:
 base_transforms:
 operation: torchvision.transforms.ToTensor
 target_key: input

The following figure illustrates the content of the tensor. The content is a coverage stack composed of
the HRDEM and the rasterized hydro network. A third layer encodes the distance between any pixel
and its nearest lake pixel. This handcrafted feature is used as an attention layer to the model trainer.
The three images are then transformed to a tensor. Visualization of the tensor is done by mapping
values to RGB channels.

Figure 40. Formation of the input tensor used in training of a deep learning model

The evaluation of the lake detection model was accomplished by separating the available HRDEM and
the differentiated hydro features into two geographical subsets: one for training and one for validation.
These subsets are shown in the figure below: the purple region is used for training, and the yellow
region for validation. After feature preprocessing and filtering, the training subset consists of roughly
1500 crops of one square kilometer each that contain at least one lake of interest. The validation subset
counts roughly 600 crops of similar size.

89

Figure 41. Validation and training datasets

11.3.3. Machine Learning Model

The goal of the model is, given a set of hydrological features as well as HRDEM raster data, to
differentiate lakes from rivers. This goal can be reformulated as the detection of lakes since these are
more easily defined as entities and easier to observe as a whole. As such, using a ML model trained to
recognize and localize lakes from a set of mixed hydrological features, the goal of differentiating them
from rivers was also accomplished. Therefore, the object detection in this model targets only lakes.

11.3.4. Convolutional Neural Network architecture

Object detection models in the context of machine learning now come in many different forms. To
simplify development, the application uses a deep convolutional network combined with a region
proposal network [1]. This combination of models coined Faster R-CNN can be trained for the
regression of bounding boxes around objects of interest. While such axis-aligned bounding boxes are
not ideal for the fine-grained fragmentation of hydrological features, it was determined that post-
processing can be used to optimize or refine the boundaries between rivers and lakes. The use of an
instance-based detection and segmentation approach as in [2] would be more appropriate, as the
segmentation masks would remove the need for the post-processing of region boundaries.

The train model process then uses the tensor and starts the iterations. A log output of model training
can be found in Annex D. Below is the description of a default, pre-trained model as a starting point for

90

the process. It can be noted that while custom architectures can be specified, their metadata,
implementation and dependencies need to be provided separately. The implementation of D104 used
mostly default architectures supported by PyTorch.

Specification of a deep learning architecture

 model:
 type: torchvision.models.detection.fasterrcnn_resnet50_fpn
 params:
 pretrained: true

11.3.4.1. Model training and performance

The lake detection performance was evaluated based on bounding box localization accuracy based on
mean Average Precision (mAP). The model reached its peak performance on the validation subset after
only two training epochs (mAP=0.949) before starting to overfit. Average Precision is often used to
evaluate object detection models that produce bounding boxes. It was first defined by in the context of
the PASCAL VOC challenge [http://host.robots.ox.ac.uk/pascal/VOC/]. This metric reflects the precision and
sensitivity of a detection model by computing the area under the Precision-Recall curve formed while
evaluating bounding box predictions on an annotated dataset. Therefore, the metric can be used to
assess the overall performance of a model on a specific detection task. Along with this metric, assessing
the performance of the model can track the value of the model’s loss function during training as well as
evaluation. This makes it possible to further understand the performance of our module.

Below is an excerpt from the ML app configuration file that sets the metric measurement to Average
Precision.

Specification of a deep learning architecture

 trainer:
 metrics:
 mAP:
 type: thelper.optim.metrics.AveragePrecision

11.3.4.2. Inference outputs results

The following figure presents results of the infer features process, part of the ML workflow local to the
application.

91

http://host.robots.ox.ac.uk/pascal/VOC/

Figure 42. Results of the trained lake detection model

To generate a new set of features that differentiate lakes and rivers, the predicted lake bounding boxes
are assembled into a geometry collection that is used to slice the original hydro features. A
visualization of the collection of bounding boxes that correspond to lake predictions is shown below. In
the following figure, large lakes are covered by several individual detections.

Figure 43. Undifferentiated hydro network over detected bounding boxes of lake regions

The following figure presents the lake and river separations. Artefacts are still clearly visible, as use of
post-processing morphological and geometric operators was kept to a minimum. As described
previously, an instance-based detection and segmentation approach as in [2] would greatly reduce the
need for such post-processing features operations. Another advantage of a segmentation-first model
can be easily computed pixel-wise over the undifferentiated network as an operator on two coverages.

92

Figure 44. Detected lakes in red, rivers in green. Grey shaded area is the original HRDEM.

11.3.5. Other experimental findings

11.3.5.1. Model exportation and transfer learning

Models trained with this ML application can be exported in different formats (including the Open
Neural Network Exchange Format (ONNX) [https://onnx.ai/], an open ecosystem for interchangeable AI
models) for further refinements or to be reused in other systems. Once a model is trained, it should
ideally be exported in a format that would allow inference (evaluation) on generic platforms and
retraining. Retraining can either refer to "fine-tuning" for specific sub-tasks or more generally to
"transfer learning" for new tasks. Recent initiatives such as ONNX have introduced exchange formats
to simplify the inference process for neural networks using various back-ends. However, numerous
deep learning frameworks (including PyTorch and TensorFlow) only allow models to be exported in
the ONNX format, but are not easily imported from ONNX for retraining.

11.3.5.2. Use of WPS for interactive sessions

Training a model often requires monitoring its performance in real-time to evaluate when to stop,
without actually stopping the process execution to avoid reloading data. Obtaining results from an
ongoing WPS process execution is not well supported. There is often a need to go through a history of
model checkpoints and logs to analyze interesting cases. This approach is neither standardized nor
easily retrievable from WPS servers. While the application implements and supports ‘train model’
functions, experiments assumed an offline training phase resulting in a trained model. The infer
features process that follows is very well adapted to be offered through a WPS.

To circumvent these apparent limitations of WPS in interactive settings, specific triggers can be set in
advance, such as the divergence or convergence of metrics. Through a Publication/Subscription
(Pub/Sub) mechanism, a user can be alerted of the completion of the job, or that specific models or data
had been changed. The user could also decide to cancel or stop the train model process due to
notifications of divergence or potential overfitting. Another scenario is to allow a ‘parse logs’ process
to get metrics in real-time. This approach would be akin to dashboards such as TensorBoard, where
widgets could stop, cancel or restart the train model WPS.

11.3.5.3. Change tracking for models, data and annotations

Even if the source code used to implement predictive models is kept static, the behavior of the models
can change due to the varying availability and constant evolution of their training data. This affects the
reliability of models and reproduction of experiments, which is a cornerstone of scientific research.

93

https://onnx.ai/
https://onnx.ai/

Keeping track of changes in data is not an easy task, as Version Control Systems (VCS) are not typically
made to track large binary files. There exist solutions for small projects (e.g. Data Version Control (DVC)
[https://dvc.org/]), but these are usually limited to locally hosted datasets that are not updated often.

In a large-scale distributed system, keeping track of data changes happening on remote servers is
difficult. Most changes can only be observed in downstream processes when new requests for the data
are made. The responses to most standard requests formats also tend to not contain metadata
indicating data source or the latest modification time. Some efforts have been made to develop data
tracking solutions specifically for the geospatial domain, but have been limited to vector data (see e.g.
GeoGig [http://geogig.org/]). Keeping proper logs of all experiments including resource metadata and
access times has proven fairly useful for manual tracking of data updates. Furthermore, the "forensic"
analysis of these logs can lead to lowered model performance. Adding rigorous metadata fields related
to data sources and modification times to standardized web service requests would greatly improve
the robustness of ML training and evaluation services.

11.4. Component Implementation
The following figure presents the various modes of operation of the D104 application. As previously
described, the thelper library allows interactive command-line invocations of ML pipelines.
The Application Package is completed with creation of a CWL file describing the execution unit. This
CWL file can in turn be used in more elaborate workflows, subsequently packaged as applications.
Once the application is deployed, the EMS automatically exposes the process description as WPS 2.0
REST/JSON.

Figure 45. Command line, CWL and WPS-T 2.0 REST mode of operation

Below are the endpoints to test the two main operations of the ADES/EMS.

• Deployment: POST https://ogc-ems.crim.ca/weaver/processes

• Execution: POST https://ogc-ems.crim.ca/weaver/processes/toy-example/jobs

Below is the detailed architecture of the ADES/EMS component called Weaver. Aside from deployment

94

https://dvc.org/
http://geogig.org/
https://ogc-ems.crim.ca/weaver/processes
https://ogc-ems.crim.ca/weaver/processes/toy-example/jobs

and execution of Application Packages, and as documented in the OGC Testbed-14 Earth System Grid
Federation Compute Challenge ER [http://docs.opengeospatial.org/per/19-003.html], the component also allows
for the deployment of existing PS 1.0 endpoints. Registration of such a pre-deployed WPS instance
allows for CWL and WPS 2.0 REST/JSON support. This approach was proposed in a series of Technology
Integration Experiments (TIE) that other deployed machine learning WPS instances for the ML thread
used in that fashion.

Figure 46. Overall component design of the EMS/ADES solution

11.4.1. Process Description

As documented in ADES and EMS best practices, a CWL descriptor is first produced for the application.
Below is an excerpt of Appendix A, presenting the process description that encapsulates the ML app.
The automatically generated CWL file, to be passed in the content:unit field of the owsContext, is
presented in Appendix B.

95

http://docs.opengeospatial.org/per/19-003.html
http://docs.opengeospatial.org/per/19-003.html

.Excerpt of process Description for the ML application
"executionUnit":
 {
 "unit": {
 "cwlVersion": "v1.0",
 "class": "CommandLineTool",
 "requirements": {
 "DockerRequirement": {
 "dockerPull": "docker-registry.crim.ca/ogc-public/ogc-thelper-
tb15:0.1.2"
 }
 },
 "baseCommand": "ogc_thelper_tb15",
 "arguments": ["-o", "$(runtime.outdir)"],
 "inputs": {
 "raster_file": { <...> }
 },
 "vector_file": { <...> }
 },
 "outputs": {
 "output": {
 "outputBinding": {
 "glob": "$(runtime.outdir)/output.json"
 },
 "type": "File"
 }
 }
 }
 }

96

Chapter 12. Arctic Discovery Catalog

12.1. Overview

Figure 47. The Arctic

The Arctic Discovery Catalog component (D107) built an evergreen catalog of relevant Arctic
circumpolar web services from OGC and ESRI REST services that have some relevance to circumpolar
science. The component evaluated the confidence level of the service conformance to selection criteria,
and made the results available via an OGC CSW implementation. The component made use of open
source libraries (TensorFlow, PyTorch) and utilized various training datasets such as the Arctic-SDI
catalog, Arctic keywords, and an Arctic boundary file to train the model.

The Arctic Discovery Catalog was a standalone ML component in Testbed-15 that was not dependent on
any other Testbed-15 ML deliverables.

Figure 48. D107 Overview

12.2. Architecture
The architecture of the Arctic Discovery Catalog was as follows:

97

1. The Discovery and ML Engine trains the ML model using keywords, geographic areas, and
positive/negative training datasets

2. The Discovery and ML Engine runs in the background, harvests and processes each configured
endpoint and populates the WES CSW ebRIM data model with items that match the model

3. Users use the CSW Client to query the Arctic relevant content of the CSW

Figure 49. Sequence Diagram

1. Both positive and negative training data is harvested from various OGC web services into the
Training CSW

2. The training data is validated

3. The training data is classified

98

4. The Model Generator queries the training data from the Training CSW

5. The Model Generator processes the training data and builds the ML model

6. The Model Processor retrieves records from various online OGC services and applies the trained
model to filter the results

7. The filtered results are populated into an NRCan Arctic CSW

8. Clients can access the NRCan Arctic CSW to retrieve the Arctic-only records

12.3. Machine Learning Model Training
Training the ML model is one of the most important early stage steps of the entire process. The model
was trained using a variety of datasets as outlined below. These datasets included Arctic related
keywords, Arctic location names, Arctic regions, Arctic projections and existing Arctic and non-Arctic
catalogs.

Table 12. Training Datasets

Dataset Description

Keywords -
General

ArcticSDI, Arctic, Albedo, SeaIceExtent

Keywords -
Geographical
Names

svalbard, greenland, baffin, victoria island, ellesmere
island, resolute, beaufort, north sea, barents sea,

laptev, kara sea, east siberian sea, chukchi, severny,
arkhangelsk, archangel, bulunsky

Projections Polar Projections North (EPSG:3571-3576)

Catalogs Positive:
Arctic SDI Portal [https://geoportal.arctic-sdi.org],

CGDI Geospatial Web Services [https://www.nrcan.gc.ca/earth-
sciences/geomatics/canadas-spatial-data-infrastructure/19359],

Atlas of the Cryosphere: Northern Hemisphere
[https://nsidc.org/cgi-bin/atlas_north?service=WMS&

request=GetCapabilities&version=1.1.1],
Harvested Conservation of Arctic Flora and Fauna (CAFF)

abds [http://geo.abds.is/geoserver/base/wms?
Request=GetCapabilities&version=1.3.0],

Harvested Arctic SDI_US ArcGIS service
[https://services.nationalmap.gov/arcgis/rest/services/

ArcticSDI_US/MapServer],
Harvested Canadian Cryospheric Information Network

[https://ccin.ca],
Polar Data Catalog [https://polardata.ca]

Negative:
Geoscience Australia Product Catalog

[https://ecat.ga.gov.au/geonetwork/srv/eng/csw?
request=GetCapabilities&service=CSW],

Afghanistan Disaster Risk WebGIS [http://disasterrisk.af/
catalog/csw?service=CSW&version=2.0.2&request=GetCapabilities],
Tuna atlas [http://tunaatlas.d4science.org/geonetwork/srv/eng/

csw?service=CSW&request=GetCapabilities]

12.3.1. Data Preparation

CSW records were read from the Training CSW and 5 data fields were used:

99

https://geoportal.arctic-sdi.org
https://www.nrcan.gc.ca/earth-sciences/geomatics/canadas-spatial-data-infrastructure/19359
https://nsidc.org/cgi-bin/atlas_north?service=WMS&request=GetCapabilities&version=1.1.1
http://geo.abds.is/geoserver/base/wms?Request=GetCapabilities&version=1.3.0
http://geo.abds.is/geoserver/base/wms?Request=GetCapabilities&version=1.3.0
https://services.nationalmap.gov/arcgis/rest/services/ArcticSDI_US/MapServer
https://ccin.ca
https://polardata.ca
https://ecat.ga.gov.au/geonetwork/srv/eng/csw?request=GetCapabilities&service=CSW
http://disasterrisk.af/catalog/csw?service=CSW&version=2.0.2&request=GetCapabilities
http://tunaatlas.d4science.org/geonetwork/srv/eng/csw?service=CSW&request=GetCapabilities

1. Title

2. Abstract

3. Keywords / Subject

4. Projection

5. Bounding Box

The first three fields above are text-based fields which needed to be converted to numeric
representations for use in the model. The Natural Language Toolkit (NLTK) library was used to
normalize and extract stop word and training word tokens in the Title, and Abstract fields. Once the
word tokens were extracted, the Testbed participants investigated using two algorithms for computing
numeric keyword scores:

1. Word Tokens → TF/IDF → Numeric Score

2. Word Tokens → RAKE → Numeric Score

TIP
TF/IDF = Term Frequency-Inverse Document Frequency
A numerical statistic that is intended to reflect how important a word is to a document in
a collection or corpus. [dm]

TIP

RAKE = Rapid Automatic Keyword Extraction
An algorithm for extracting and ranking the keywords/phrases out of a document without
any other context except for the document itself. Used to create a keyword vocabulary
and search inputs for keywords

The records in the Training CSW were then used to train the various ML models.

12.4. ML Models

12.4.1. Multilayer Perceptron (MLP) Neural Network Implementation

Compusult has implemented a Multilayer Perceptron (MLP) neural network using Python and
Tensorflow. The MLP contains three layers as:

1. Total Length of Input Layer

2. 1024

3. Output Layer

12.4.2. Training Results

The results that were generated during the MLP model training are outlined in Table 13 below. Table 12
describes the columns that make up that table.

Table 13. Training / Testing Results Table Description

Iteration Iteration #

100

Time/Sam
ple

the time used to process each training sample

Training
Loss

−(ylog(p)+(1−y)log(1−p)) where
y - binary indicator (0 or 1) if class label c is the correct
classification for observation o
y - 0 or 1 if class label is the correct classification for
an observation.
p - predicted probability an observation is a class

Training
Accuracy

the correct prediction/total # of records

Test Loss Loss value for test data set

Test
Accuracy

Accuracy value for test data set

Table 14. Sample of Training / Testing Results

Iteration Time /
Sample

Training
Loss

Training
Accurac

y %

Test
Loss

Test
Accurac

y %

Epoch 1/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
24.6065

acc:
0.5156

4402/4402 [=======
========
========
=======]

0s
79us/sam

ple

loss:
25.5396

acc:
0.5091

val_loss
:

36.2915

val_acc:
0.1579

Epoch 2/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
11.3121

acc:
0.4944

4402/4402 [=======
========
========
=======]

0s
39us/sam

ple

loss:
10.3177

acc:
0.4982

val_loss
:

13.5758

val_acc:
0.1579

Epoch 3/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
4.4615

acc:
0.5031

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
4.6499

acc:
0.4968

val_loss
: 0.3788

val_acc:
0.8463

Epoch 4/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
1.6558

acc:
0.5759

101

Iteration Time /
Sample

Training
Loss

Training
Accurac

y %

Test
Loss

Test
Accurac

y %

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
1.5971

acc:
0.5566

val_loss
: 2.8048

val_acc:
0.1579

Epoch 5/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.9894

acc:
0.4894

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
0.9313

acc:
0.4952

val_loss
: 0.3311

val_acc:
0.8463

Epoch 6/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.5921

acc:
0.6992

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
0.5758

acc:
0.7008

val_loss
: 0.3570

val_acc:
0.8937

Epoch 7/50

4096/4402 [=======
========
========
==⇒…]

ETA: 0s loss:
0.4718

acc:
0.8193

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
0.4685

acc:
0.8310

val_loss
: 0.3903

val_acc:
0.9663

Epoch 8/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.4191

acc:
0.9807

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
0.4134

acc:
0.9832

val_loss
: 0.3574

val_acc:
0.9663

Epoch 9/50

4096/4402 [=======
========
========
==⇒…]

ETA: 0s loss:
0.3932

acc:
0.9683

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
0.3909

acc:
0.9702

val_loss
: 0.3024

val_acc:
0.9695

Epoch 10/50

102

Iteration Time /
Sample

Training
Loss

Training
Accurac

y %

Test
Loss

Test
Accurac

y %

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.3789

acc:
0.9467

4402/4402 [=======
========
========
=======]

0s
40us/sam

ple

loss:
0.3704

acc:
0.9541

val_loss
: 0.4982

val_acc:
0.9516

Epoch 11/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.3242

acc:
0.9891

4402/4402 [=======
========
========
=======]

0s
39us/sam

ple

loss:
0.3241

acc:
0.9891

val_loss
: 0.2345

val_acc:
0.9747

Epoch 12/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.3086

acc:
0.9858

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
0.3033

acc:
0.9873

val_loss
: 0.3659

val_acc:
0.9516

…

Epoch 48/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.0349

acc:
0.9992

4402/4402 [=======
========
========
=======]

0s
38us/sam

ple

loss:
0.0348

acc:
0.9993

val_loss
: 0.0757

val_acc:
0.9789

Epoch 49/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.0331

acc:
0.9997

4402/4402 [=======
========
========
=======]

0s
40us/sam

ple

loss:
0.0330

acc:
0.9995

val_loss
: 0.0668

val_acc:
0.9789

Epoch 50/50

3584/4402 [=======
========
=======
⇒……]

ETA: 0s loss:
0.0309

acc:
0.9994

103

Iteration Time /
Sample

Training
Loss

Training
Accurac

y %

Test
Loss

Test
Accurac

y %

4402/4402 [=======
========
========
=======]

0s
37us/sam

ple

loss:
0.0305

acc:
0.9995

val_loss
: 0.0561

val_acc:
0.9789

After the model was generated the basic structure of the MLP model is as described in Table 14.

Table 15. MLP structure

Layer (type) Output Shape Param #

flatten (Flatten) (None, 1799) 0

dense (Dense) (None, 256) 460800

dense_1 (Dense) (None, 128) 32896

dense_2 (Dense) (None, 64) 8256

dense_3 (Dense) (None, 1) 65

Total params: 502,017
Trainable params: 502,017
Non-trainable params: 0

12.5. Model Accuracy
The Precision and Recall Ratio metric is used to measure the accuracy of the model. The Area Under
Precision Recall Curve (AUPRC) method was used.

Compusult found a success rate of over 98% accuracy when using an MLP to categorize records as
"Arctic vs non-Arctic". This high success rate is somewhat alarming, and the model was analyzed to try
to determine the cause of the high success rate.

Due to the simplification of training data labeling, negative training data was chosen from three CSW
sources. This negative training data may share common keywords or features, which increased the
"bias" of the negative training data and decrease the "variant". This may be the reason why the
accuracy of the result is very high. Additionally, it was found that Arctic related records from the
positive training datasets all contained common keywords which leads to a very binary "Arctic vs non-
Arctic" classification.

12.5.1. Results

During this pilot the following results were achieved:

1. An instance of Compusult’s Web Enterprise Suite (WES) was deployed. The WES Catalog product
(based on CSW v2.0.2) used as an input catalog and populated with Arctic and non-Arctic records.

2. The catalog was configured to periodically harvest new records from various geospatial web
services.

3. A ML model was developed using TensorFlow and PyTorch and trained to categorize input records

104

as Arctic or non-Arctic.

4. A process was developed to periodically read new records from the input catalog and apply the ML
model as a filter to evaluate each record as Arctic or non-Arctic related.

5. All Arctic related records are written to another instance of WES, known as the Arctic Discovery
Catalog (based on CSW v2.0.2).

This Arctic Discovery Catalog is available online to the sponsors at link: http://ogc.compusult.com

12.5.2. Standards

The output Arctic Discovery Catalog is based on the OGC CSW v2.0.2. It is available online via a CSW
interface. Users can also log into WES and browse the catalog at http://ogc.compusult.com
[http://ogc.compusult.com] (user account required). The catalog is documented in the Testbed-15 D010 Catalog
ER.

12.5.3. Interoperability

Since the Arctic Discovery Catalog is a standards-based catalog, any user/system that has implemented the
OGC CSW standard can inter-operate with the Arctic Discovery Catalog using standard interfaces.

12.6. Future Directions

12.6.1. Convolutional Neural Network Implementation

Compusult investigated implementing a multilayer CNN using Python and TensorFlow but due to the high
accuracy rate of the MLP it was determined unnecessary due to the additional effort. The proposed CNN
would have 7 layers as follows:

1. Input Layer

2. Five Hidden Layers

3. Output Layer

The same dataset that was used to train the MLP would be used to train the CNN.

12.6.2. Recurrent Neural Network Implementation

Compusult also investigated the use of an RNN to further enhance information extraction and processing
of the Title and Abstract fields. An RNN would provide additional context to the complete sentence
structure but this was deemed unnecessary for a simple categorization problem such as Arctic vs non-
Arctic. This might be a candidate for a future Testbed.

12.6.3. Evergreen Harvester

An evergreen-catalog harvester that uses ML to help search engines associate documents with similar
thumbnails.

The harvester discovers new candidate web pages for possible inclusion in the catalog. If that page has a

105

http://ogc.compusult.com
http://ogc.compusult.com

thumbnail in its metadata, the harvester could feed it to an ML model (almost like an image classification
model) to help determine whether the candidate should be added to the catalog or not. The thumbnail
similarity would be just one bit of evidence among many. However, if a minimally viable use case is being
considered, the result of the thumbnail classification would determine whether to add the new page or
not.

12.6.4. Unsupervised Learning

Explore unsupervised learning - The idea would be that there are some web assets (documents, datasets,
etc.) that an ML model might consider worthy of including in an evergreen catalog. But we might not (yet)
be able to describe the reason why in words. It could just be that the asset has the right mix of feature
values to make it sufficiently similar to the assets used in model training. This is somewhat similar to the
"anti-D103" approach, as it could be perceived as working against the goal of building a verbal semantic
network.

106

Chapter 13. Discussion
As described in the Testbed-14 Machine Learning ER [http://docs.opengeospatial.org/per/18-038r2.html], there are
in general a defined set of ML operations that are common to all ML operations. In the web services world,
including WPS 2.0, these operations are as follows:

• TrainML

• RetrainML

• ExecuteML

The work carried out in this Testbed-15 thread followed the same basic pattern. Therefore there is some
vindication and confirmation of work carried out in previous Testbeds. The next section describes how the
work carried out in Testbed-14 and Testbed-15 in the ML space might translate to future profiles of the
emerging OGC API – Processes specification.

13.1. OGC API - Processes Operations
As mentioned previously, the OGC API – Processes draft specification is described using the OpenAPI
specification as a Swagger document. A final version of the Processes specification ready for OGC Member
and community review has yet to be agreed to and documented. However, other OGC Pilot projects can be
considered to get a feel for where the Processes specification might solidify. The OGC Open Routing API
Pilot [https://www.opengeospatial.org/projects/initiatives/routingpilot] seeks to make use of the OGC API – Processes
draft specification for routing. The OGC API Hackathon [https://www.opengeospatial.org/projects/initiatives/

oapihackathon19] that took place in London in June 2019 was also influential in defining OGC APIs, although
their relationship with WPS has yet to be rationalized.

13.1.1. Suggestions for OGC API – Processes endpoints

There are currently two schools of thought on API structure for OGC API – Processes. These are broadly as
follows:

• Type 1: /<baseURL>/<operation>

• Type 2: /processes/<baseURL>/jobs/<job>

The Type 1 pattern is the most simplistic in terms of structure as it does not mandate prefixes or
operations. In the Routing API Pilot, an example operation to get a route is as follows:

• GET /routes/<routeId>

The thinking behind this pattern is that the API architecture for the OGC is resource-based. Therefore all
operations should be treated as resources. The purpose of the Routing Pilot work was to get a route via the
interface. The method that the route is generated by is largely opaque to the user (or machine) that is
calling the service.

The alternative (Type 2) describes a more typical OGC pattern that seeks to preserve some of the
capabilities/patterns from WPS 2.0. This approach enables implementers to simply wrap their service
according to the OGC API – Processes specification and have the calls pass through to the old service. This

107

http://docs.opengeospatial.org/per/18-038r2.html
https://www.opengeospatial.org/projects/initiatives/routingpilot
https://www.opengeospatial.org/projects/initiatives/routingpilot
https://www.opengeospatial.org/projects/initiatives/oapihackathon19

approach does additional work in that it preserves the concept of WPS throughout the OGC and applies
some rigidity for implementers to design clients against. Which method is eventually adopted remains to
be seen. Some example, potential patterns for ML using Type 1 are as follows:

• POST /machineLearning/petawawa GET /machineLearning/newbrunswick/features?[id]

The equivalent patterns for the Type 2 pattern could be represented as:

• POST /processes/machinelearning/jobs

With the process ID put in the POST body, this returns a job-id GET /processes/machinelearning/jobs/<job-
id>/result. Type 1 is clearly more flexible, whereas Type 2 offers structure. The actual decisions on an API
pattern for the OGC could be defined in a Pilot program or future Testbed.

13.2. Recommendations
The work completed in the ML thread produced several recommendations that are documented in this
section. The primary objectives of the Testbed-15 ML thread were to:

1. Understand and define how the latest set of OGC services should be configured to work with ML
models.

2. Produce a Best Practices document specifically for ML and its use within the OGC. There is potentially
nothing geo-specific regarding ML models. ML technology usage within the geospatial domain is what
requires interaction and standardization.

13.2.1. D102 Recommendations

During the implementation of the D102 component, the input data were analyzed from an interoperability
point of view, and three different types of data were found:

1. Model data

2. Parameters

3. Time series

13.2.1.1. Model data

These are the data needed to build the model - that is, train or retrain the algorithms. Any substantial
change in the model data requires retraining the algorithms in order to keep their validity. For example, if
the woods types classification changes, the algorithms need to be retrained in order to consider the new
wood taxonomy. Feeding the model data to the algorithms iteratively from a WCS/WFS is not viable for two
reasons:

1. Model data usually requires preprocessing before being properly curated for a training feed. Raw data
is rarely useful for direct input into training. For example, the raw data provided by NRCan consists,
among others layers, of forest stand coordinates and the forest road network. However, in order to
train the harvest agents the minimum distance to a road for each forest stand needs to be calculated.
Calculating the distance on-the.

2. Even if model data is offered fully curated and ready to feed for training, fetching each element

108

remotely is extremely inefficient compared to fetching them locally. Taking into account that in each
training cycle each element can be required thousands of times, it is just not feasible to fetch the
element remotely every time. In summary, WCS/WFS endpoints are expected to provide generic data in
a standard way to build value-added products or services. However, they are not expected to provide
specific, pre-processed data as efficiently as a local database. This opens an interesting topic: Updates.
If an ML model needs to download remote, generic data from a WCS/WFS and preprocess it in order to
train its algorithms, the model will need two things:

3. Ensure that trained algorithms are valid after model data updates (within a reasonable range). For
example, if harvest agents are now using more powerful machinery and they can chop a bigger area
per day, the algorithms should be able to cope with the change. This requires the model to be trained
using a variety of values in those parameters that are likely to change (see below).

4. Ensure that predictions and simulations are based on the latest available data. For example, if a forest
block has been harvested in real life, the model should be able to update its database and not to suggest
further harvesting in that same block during simulations.

Recommendation: Explore the specific case of ML models feeding from dynamically updated data from
WCS/WFS instances. Alternatively, sensor related services such as SensorThings API
[https://www.opengeospatial.org/standards/sensorthings] or Sensor Observation Service (SOS)
[https://www.opengeospatial.org/standards/sos] could also be applied. Such an exploration would help to draw a
series of best practices.

13.2.1.2. Parameters

Each agent is defined by a series of parameters that can vary between different scenarios or even between
agents. For example, transport agents can have different load capacities, different fuel consumption or
travel costs, or even different costs for loading or unloading the wood cargo. Parameters are needed, either
directly or indirectly, as input data for training. However, once this is complete, the model can be run with
different parameter values in order to compare results. This requires that the parameter values used for
training are carefully selected, allowing the algorithms to learn the effect of each parameter in the overall
result.

If the algorithms have been properly trained and small changes in agent parameters do not require
retraining, this approach can be a very powerful tool to compare scenarios to help make business
decisions. For example, if we are considering adding a new truck to our fleet, would the new truck
increase overall revenue or would it saturate the mills and generate costs? If a provider has a fleet of large
and expensive trucks, if a customer chooses a provider with small and more mobile units, would it help
the customer be more dynamic and optimize better the price variations or would it operate less
efficiently?

The interest of parameters is not limited to active agents. The process can easily be applied to mills. For
example, if a new mill is opened in a specific location, would it help boost overall production or would it
just cannibalize the business of other similar mills in the province? If there is a mill with a particularly
high demand, would it make sense to enlarge its capacity? What would be the estimated return on
investment?

The use of standards can become crucial in this case if a ML model is carefully built, trained and offered
publicly for land owners, forest companies, private mills or logistic operators as a powerful tool to help
them make wiser decisions. Using standards, they could plug their data (such as the size and

109

https://www.opengeospatial.org/standards/sensorthings
https://www.opengeospatial.org/standards/sos

characteristics of trucks, in the case of a logistic operator) and explore different scenarios to compare
results (such as opening a new logistic base in Moncton in order to serve the Western part of the province
more efficiently, or renew the fleet with more fuel-efficient trucks).

Recommendation: Explore the use of OGC standards to compare scenarios via a previously trained ML
model.

13.2.1.3. Time series

The potential to predict prices accurately over long periods of time is limited, but time series can be
exploited as a way to evaluate extreme scenarios and evaluate the ability of the entire industry to
withstand stress. Different scenarios can be explored with extreme conditions to identify breaking points
and prepare contingency plans to assess and soften incoming crises. For example, a scenario could be run
with mounting fuel prices in order to find the point at which transport teams consider it more rewarding
to stay at home than to move wood cargo to the mills. Or a stress test in which wood prices are decreasing
and fuel prices increasing would show which mills would be the first to suffer from low wood stock levels.

Timeseries are a particular type of parameter data, and as such they are needed as input for training, with
a carefully selected set of values that allow the algorithms to learn the effect of the state of each time series
in the overall result. Similarly, as with parameters, the use of standards can become crucial if a ML model
is offered publicly to different players in the industry. Continuing with the example of a logistic operator,
this could allow them to analyze the scenario of mounting fuel prices and prepare contingency plans.

Recommendation: explore the use of OGC standards to perform stress tests via a previously trained ML
model.

13.2.1.4. Recommendations for OGC Standards

At the outset of D102 New Brunswick development, it was assumed a "normal" processing workflow would
suffice for WPS requests. However, this assumption turned out to be false. Training an agent or running a
full simulation might take hours or days, depending on the configuration and the parameters.
Conventional HTTP requests were too long-running to keep open sockets. Consequently, considerations
into HTTP callbacks must be considered for future ML-WPS combinations. As processes on a ML server
may take hours to days, it is much more efficient to split the request-response into two distinct sessions-
one for job creation and ML processes execution, and another session for data callback via HTTP POST on
the WPS.

Additional functionality could be envisioned using “OGC API” standards. For example, NRCan’s data
repository could model all mills, harvest and transport teams together, published through an OGC API -
Features implementation. Time estimations for fuel and wood prices could be offered through an OGC API
- Processes implementation using this data and fed back into the Features API.

Future work in these areas meshes well with proposed OGC API paradigms. In the previous example we
discussed transport agents. The manipulation of parameters would be axiomatic in an OGC API - Processes
world. For example, various Transport teams and their resources may be easily represented in a RESTful
manner- i.e.: NRCan/NewBrunswick/Scenario325/Teams/Transport/Transport2/Trucks/ToyoyaHatchback
where more expressive parameters may be outlined (i.e. POSTing of new transport truck resources,
number of trucks, fuel prices, etc.) to facilitate finer-grained results. In this fashion, multiple teams may be
either pulled from an OGC API - Features implementation or created as resources on an OGC API -

110

Processes implementation and used to run multiple, multivariate estimation processes. This would allow
the generation of RL models similar to the one built by Skymantics. New scenarios could be explored by
tuning the data via an OGC Process API.

An additional advantage of OGC APIs may be seen in the possible modularity of cloud-based processing
while maintaining logical union. For example, the logical delineation of transport and harvest team
endpoints or even different scenario endpoints may have distinct, differing physical storage areas in a
cloud environment. Thus, a federated system of databases may be abstractly represented as a single
Features API and offered via one single WFS endpoint. Consequently, multiple cloud-based processing
services may be employed in ML processing of scenarios in an OGC API - Process fashion, with multiple
scenarios represented as scaled-out services. Such an approach provides modularity and scalability
benefits for both OGC WPS and WFS deployments, Big Data OGC working groups, and client-sponsored
Pilots.

13.2.2. D104 Recommendations

Based on work presented in D104 Component section of this ER, the following recommendations for future
work are suggested:

13.2.2.1. OGC API - Machine Learning

• Adopt a common API that captures typical geospatial ML workflows and processes.

• Enable OGC API - Processing in ML dashboards, such as Tensorboard.

• Add use cases considering in-the-loop data annotation and validation by an analyst.

13.2.2.2. Learned models

• Experiment with instance-based detection and segmentation approaches, instead of bounding box
detection.

• Provide expert-tuned morphologic and geometric transformations of hydrographic networks.

• Develop services to export train models in various formats.

13.2.2.3. OGC API - Processes

• Add event-driven architectures such as Pub/Sub for machine learning processes, triggered by:

◦ A threshold crossed on predetermined metrics of the trained model while in process, delivering
alerts to the user.

◦ Updated source data or annotated dataset, requiring retraining.

◦ A feature with associated low confidence score, requiring user intervention.

13.2.2.4. Open Architecture

• Install on both an ADES and an EMS on Pacific Boreal Cloud.

• Conduct additional TIEs for:

◦ Application Packaging of ML frameworks and workflows.

◦ Execution of ML applications through ADES and EMS.

111

◦ Use of pre-deployed WPS endpoints in CWL workflows.

◦ Creation of data parsing (pre-processing) and refinement (post-processing) processes in CWL.

13.2.3. D105 (OGC API - Features service) Recommendations

Based on discussions with participants and experiences from this initiative, an approach for future work is
discussed in this section.

13.2.3.1. Client-driven real-time distributed execution of Machine Learning model

Implementing a client-driven workflow executing the trained Machine Learning in a distributed manner
in the cloud, with the ability to do so in real-time on any portion of a very large dataset, would likely best
support the operational needs for which these experiments were devised. Given more time, this might
have been the desired outcome for this activity, but this work was deemed out of scope.

The architecture defined in the CFP did not support achieving the suggested workflow approach. The
intermediary data delivery component could be removed thereby allowing the clients to request the data
directly from the server. This approach would avoid unnecessary back and forth communication and
remove architectural complexity. Including the delivery service produces the following logical set of
interactions:

1. The client makes a request to either the delivery service or the processing service.

2. The processing service uploads the results to the delivery service (with the mechanism as yet
undefined)

3. The delivery service then informs the client the data is ready.

4. The client requests the data from the delivery service.

5. The delivery service then returns the data.

These steps show that the architectural choices made in the CFP have led to five interactions where only
two were required in the simplified proposal (request & response). Another solution was processing the
data for different geographical areas and at different scales. As such, tiles offer an attractive solution to the
problem. Such a system could benefit from many core concepts introduced by the OGC API family of
capabilities, such as its modular aspect; OGC API - Features, Tiles and Processes could be combined for the
client to make processing requests for the specific area and scale of interest.

As discussed in the OGC Open Routing Pilot Engineering Reports, a hybrid approach to OGC API - Processes
(/processes and /routes) should be possible. Using this approach processes can still be described, but
arbitrary APIs can be defined to initiate processing (with options for synchronous and asynchronous
processing, and more options for polling, callbacks or alternative approach). This would enable a
combination of the Processing and Tiles API so that issuing a tile request can initiate a process, or to define
the Maps API for server-side rendering as a process.

If the required processing can be done on a tile-by-tile basis, the service can then execute the ML model (or
any other type of processing allowing this) on each tile. This could be done in a parallel manner therefore
enabling the great scalability of distributed computing, and leveraging large numbers of CPU and/or GPU
cores. Caching can be introduced and calibrated to balance excessive repetitive processing with memory
and disk storage capacity.

112

As recommended by CRIM as an outcome of the experiments, the Mask R-CNN method of detection would
indeed lend itself very well to the approach discussed in this section and the workflow could be
implemented extremely efficiently, and be returned almost immediately to the client.

On the far end of the processing side, the input to the processes can also be accessed on a tile-by-tile basis,
minimizing the data load, and the requirement for transferring data across the network if it is stored
remotely (e.g. the GRHQ and HRDEM data input into the Machine Learning model). Complex workflows
could also be defined strictly in terms of chaining OGC APIs, offering much more flexibility to the user on
the client-side than requiring the definition of the workflow beforehand to be deployed on a single
processing server. For example, existing algorithms for hydrography analysis of DEM (such as these
available in QGIS) could be chained as a preprocessing step before being interpreted by the Neural
Network, likely resulting in much improved detection results.

This methodology should also enable integrating within the workflow any data, or processes, offered via
any available OGC API. Also, this creates the possibility of uploading multiple algorithms to multiple
datasets in a completely distributed manner, all the while still providing real-time input to the user.

This immediate feedback allows the user to adjust parameters for the processing without having to wait
for long processes to complete before validating results, and wasting valuable computing resource.

The client could browse anywhere within an arbitrarily large or detailed dataset and experience the same
instant responsiveness. At the same time also saving processing and storage power on the server side for
only processing data requested by clients (but still caching as desired). Potentially this also enables the use
of the latest data updated as often as necessary, even in real-time (e.g. satellite imagery being continuously
received). This seems particularly well suited e.g. for monitoring natural disasters.

This is an approach that Ecere is actively researching and promoting, while also advocating to ensure that
the new OGC API standards enable these types of capabilities. See these OGC API - Common issue
[https://github.com/opengeospatial/oapi_common/issues/17] and OGC API - Processes issue [https://github.com/

opengeospatial/wps-rest-binding/issues/47] for additional details on these ideas.

Further exploration in future OGC Innovation Program activities is recommended.

113

https://github.com/opengeospatial/oapi_common/issues/17
https://github.com/opengeospatial/oapi_common/issues/17
https://github.com/opengeospatial/wps-rest-binding/issues/47
https://github.com/opengeospatial/wps-rest-binding/issues/47

Chapter 14. Conclusion
The work performed in the OGC Testbed-15 ML thread exercised OGC standards in the context of Machine
Learning using five different scenarios. The scenarios incorporated a set of use cases that included
traditional ML techniques for image recognition, understanding the linkages between different terms to
identify a dataset, and vectorization of identified water bodies using satellite imagery. Overall, this Testbed
thread provided opportunities to explore ML methods and application across different use cases while
contributing to the discourse in terms of OGC standards requirements. The existing OGC standards utilized
in the thread included:

• WPS

• WFS

• CSW

However, these are web service-based standards that will soon be complemented by OGC API
specifications that are based on OpenAPI descriptions and RESTful principals. For example, the OGC API –
Features standard is tightly controlled as conceptually, it is tightly coupled to geospatial data and
operations. Contrarily, the OGC API - Processes draft specification is still undergoing activities to provide a
definition. One option in this exercise is to have a very loose definition of an API and allow implementers
to essentially follow the OpenAPI description of the OGC API.

114

Appendix A: Configuration file for the ML
application

115

CWL file wrapping the Docker image of thelper as a ML Application Package

 name: "testbed15-predict"
 datasets:
 testbed15:
 type: "thelper.data.geo.ogc.TB15D104Dataset"
 params:
 raster_path: "data/testbed15/roi_hrdem.tif"
 vector_path: "data/testbed15/hydro_original.geojson"
 px_size: 3
 lake_area_min: 100
 lake_area_max: 200000
 lake_river_max_dist: 300
 roi_buffer: 1000
 srs_target: "2959"
 reproj_rasters: false
 display_debug: true
 parallel: 0
 loaders:
 workers: 0
 batch_size: 1
 base_transforms:
 - operation: torchvision.transforms.ToTensor
 target_key: input
 collate_fn:
 type: thelper.data.loaders.default_collate
 params:
 force_tensor: false
 train_split:
 testbed15: 0.9
 valid_split:
 testbed15: 0.1
 # with this section, we define the metrics that will be used by the test 'trainer'
 # this is basically the prediction outputs that the model will produce during inference
 trainer:
 metrics:
 mAP:
 type: thelper.optim.metrics.AveragePrecision
 output:
 type: thelper.train.utils.DetectLogger
 params:
 format: json
 # details about the model
 model:
 type: torchvision.models.detection.fasterrcnn_resnet50_fpn
 params:
 pretrained: true

116

Appendix B: JSON file for ML App Process
Description
JSON file providing the Process Description for the ML App Package, where unit element of offering refers to CWL
file in Annex

{
 "processDescription": {
 "processVersion": "0.1.2",
 "process": {
 "id": "ogc-tb15-lake-river-detector",
 "title": "OGC Testbed-15 Lake/River detector",
 "abstract": "Lake/River vector differentiation using deep learning model with
bounding box detections. Built by researchers and developers from the Centre de Recherche
Informatique de Montréal / Computer Research Institute of Montreal (CRIM).",
 "keywords": [
 "machine learning",
 "deep learning",
 "neural network",
 "detection",
 "lake",
 "river"
],
 "inputs": [
 {
 "id": "raster_file",
 "title": "Raster file",
 "abstract": "Input HRDEM TIF file (High-Resolution Digital Elevation
Model).",
 "formats": [
 {
 "mimeType": "image/tif",
 "default": true
 }
],
 "minOccurs": 1,
 "maxOccurs": 1
 },
 {
 "id": "vector_file",
 "title": "Vector file",
 "abstract": "GeoJSON feature collection file representing Lake/River
undifferentiated vectors.",
 "formats": [
 {
 "mimeType": "application/json",
 "default": true
 }
],

117

 "minOccurs": 1,
 "maxOccurs": 1
 }
],
 "outputs": [
 {
 "id": "output",
 "title": "Detection results",
 "abstract": "Predicted differentiated Lake/River vectors as GeoJSON
feature collection.",
 "formats": [
 {
 "mimeType": "application/json",
 "default": true
 }
]
 }
]
 }
 },
 "jobControlOptions": [
 "async-execute"
],
 "outputTransmission": [
 "reference"
],
 "executionUnit": [
 {
 "unit": {
 "cwlVersion": "v1.0",
 "class": "CommandLineTool",
 "requirements": {
 "DockerRequirement": {
 "dockerPull": "docker-registry.crim.ca/ogc-public/ogc-thelper-
tb15:0.1.2"
 }
 },
 "baseCommand": "ogc_thelper_tb15",
 "arguments": ["-o", "$(runtime.outdir)"],
 "inputs": {
 "raster_file": {
 "type": "File",
 "inputBinding": {
 "position": 1
 }
 },
 "vector_file": {
 "type": "File",
 "inputBinding": {
 "position": 2
 }

118

 }
 },
 "outputs": {
 "output": {
 "outputBinding": {
 "glob": "$(runtime.outdir)/output.json"
 },
 "type": "File"
 }
 }
 }
 }
],
 "deploymentProfileName": "http://www.opengis.net/profiles/eoc/dockerizedApplication"
}

119

Appendix C: CWL file for the helper ML
Application Package
CWL file wrapping the Docker image of thelper as a ML Application Package

 ## following definition should match the 'executionUnit.unit' section of 'process-
deploy.cwl'
 cwlVersion: v1.0
 class: CommandLineTool
 requirements:
 DockerRequirement:
 dockerPull: docker-registry.crim.ca/ogc-public/ogc-thelper-tb15:0.1.1
 baseCommand: ogc_thelper_tb15
 arguments:
 - "-vv" # will log additional debug messages (not used for real process deployment)
 - "-o"
 - "$(runtime.outdir)"
 inputs:
 raster_file:
 type: File
 inputBinding:
 position: 1
 vector_file:
 type: File
 inputBinding:
 position: 2
 outputs:
 output:
 outputBinding:
 glob: "$(runtime.outdir)/output.json"
 type: File

120

Appendix D: Log output of the training process
for D104
[2019-08-22 13:22:13,300 - 12196] INFO : created training log for session 'testbed15-train' [2019-08-22
13:22:13,598 - 12196] DEBUG : logstamp = GTW-LABOVISI1656-20190822-132213 [2019-08-22 13:22:13,598 -
12196] DEBUG : version = 0.3.9:52f42bae663aa1f3d635f0cf91213a915cc294ea [2019-08-22 13:22:13,598 -
12196] DEBUG : loading available devices [2019-08-22 13:22:21,184 - 12196] INFO : parsed metric 'mAP':
thelper.optim.metrics.AveragePrecision(target_class=None, max_win_size=None) [2019-08-22 13:22:21,184 -
12196] DEBUG : uploading model to '[2]'… [2019-08-22 13:22:21,294 - 12196] DEBUG : loss: None [2019-08-22
13:22:21,294 - 12196] DEBUG : optimizer: SGD (Parameter Group 0 dampening: 0 lr: 0.005 momentum: 0.9
nesterov: False weight_decay: 0.0005) [2019-08-22 13:22:21,296 - 12196] INFO : at epoch#0 for 'testbed15-
train' (dev=[2]) [2019-08-22 13:22:21,296 - 12196] DEBUG : learning rate at 0.00500000 [2019-08-22
13:22:21,296 - 12196] DEBUG : fetching data loader samples… [2019-08-22 13:22:24,922 - 12196] INFO : train
epoch#0 (iter#0) batch: 1/2031 (0%) loss: 2.464282 [2019-08-22 13:22:26,703 - 12196] INFO : train epoch#0
(iter#1) batch: 2/2031 (0%) loss: 1.687276 [2019-08-22 13:22:28,438 - 12196] INFO : train epoch#0 (iter#2)
batch: 3/2031 (0%) loss: 1.156375 [2019-08-22 13:22:29,130 - 12196] INFO : train epoch#0 (iter#3) batch:
4/2031 (0%) loss: 1.014334 [2019-08-22 13:22:30,571 - 12196] INFO : train epoch#0 (iter#4) batch: 5/2031 (0%)
loss: 0.474855 [2019-08-22 13:22:32,073 - 12196] INFO : train epoch#0 (iter#5) batch: 6/2031 (0%) loss:
1.555177 [2019-08-22 13:22:33,637 - 12196] INFO : train epoch#0 (iter#6) batch: 7/2031 (0%) loss: 1.676842
[2019-08-22 13:22:35,412 - 12196] INFO : train epoch#0 (iter#7) batch: 8/2031 (0%) loss: 1.170705 [2019-08-22
13:22:36,895 - 12196] INFO : train epoch#0 (iter#8) batch: 9/2031 (0%) loss: 1.559234 [2019-08-22
13:22:38,043 - 12196] INFO : train epoch#0 (iter#9) batch: 10/2031 (0%) loss: 0.454997

121

Appendix E: Revision History

NOTE
Example History (Delete this note).

replace below entries as needed

Table 16. Revision History

Date Editor Release Primary clauses
modified

Descriptions

June 15, 2016 I. Simonis .1 all initial version

July 22, 2016 I. Simonis .9 all comments
integrate

September 7,
2016

S. Simmons 1.0 various preparation for
publication

March 23, 2017 I. Simonis 2.0 all template
simplified

January 18, 2018 S. Serich 2.1 all additional
guidance to
Editors; clean up
headings in
appendices

122

Appendix F: Bibliography
1. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks. CoRR. abs/1506.01497, (2015).

2. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR. abs/1703.06870, (2017).

3. Rajaraman, A.; Ullman, J.D. (2011). "Data Mining" (PDF). Mining of Massive Datasets. pp. 1–17.

4. X. Zhang, S. Ren and J. Sun: Deep Residual Learning for Image Recognition, in CVPR, 2016.

5. Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 2014.
arXiv:1412.6980v9.

6. S. Mohajerani and P. Saeedi: An end-to-end Cloud Detection Algorithm for Landsat 8 Imagery - arXiv
preprint arXiv:1901.10077.

7. G. Morales, A. Ramírez and J. Telles: End-to-end Cloud Segmentation in High-Resolution Multispectral
Satellite Imagery Using Deep Learning arXiv:1904.12743v1.

8. Z. Zhu, S. Wang and C. E. Woodcock: Improvement and expansion of the fmask algorithm: cloud, cloud
shadow, and snow detection for landsats 47, 8, and sen- tinel 2 images,” Remote Sens. of Env., vol. 159,
pp. 269 – 277, 2015. Last updated 2019-09-23 13:25:53 +0100.

123

	OGC Testbed-15: Machine Learning Engineering Report
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Background
	6.1. Relationship to OGC API - Processes (WPS 3)
	6.2. Machine Learning Techniques
	6.2.1. Reinforcement Learning
	6.2.2. Convolutional Neural Networks
	6.2.3. Recurrent Neural Networks

	Chapter 7. Thread Architecture
	7.1. Petawawa Super Site research forest change prediction ML model scenario
	7.2. New Brunswick forest supply management decision maker ML model scenario
	7.3. Quebec Lake river differentiation ML model scenario
	7.4. Richelieu River hydro linked data harvest model scenario
	7.5. Arctic Web Services Discovery ML model scenario

	Chapter 8. Petawawa cloud mosaicking ML model
	8.1. Component Summary
	8.1.1. WPS Server
	8.1.2. Job / Queue Handler
	8.1.3. Internal Storage
	8.1.4. Orchestrator

	8.2. Component Design
	8.2.1. Cloud free mosaic generation
	8.2.2. ML model training

	8.3. Implementation Approach
	8.3.1. Job / Queue Handler
	8.3.2. WPS Server
	8.3.3. Cloud free mosaic generation status query
	8.3.4. Cloud free mosaic download
	8.3.5. Orchestrator

	8.4. Conclusions

	Chapter 9. Petawawa Land Classification Model
	9.1. Pixel-wise Classification with Deep Learning
	9.1.1. Dataset
	9.1.2. Model
	9.1.3. Results

	9.2. Implementation of Web Processing Service (WPS) for Deep Learning Model
	9.2.1. Introduction of WPS wrapper implementation
	9.2.2. WPS Interface Description
	9.2.3. WPS Request Example and Result Demonstration

	Chapter 10. New Brunswick forest supply management decision maker ML model
	10.1. Component Summary
	10.2. Component Design
	10.2.1. Set neural network
	10.2.2. Train an agent
	10.2.3. Harvest agent
	10.2.4. Transport agent
	10.2.5. Planning agent
	10.2.6. Run episodes

	10.3. Architecture
	10.4. Input data
	10.5. Routing engine
	10.6. Preprocessed forest model
	10.7. Price forecasting model
	10.7.1. Wood pricing forecasting
	10.7.2. Fuel pricing forecasting

	10.8. Other models - Business process parameters
	10.8.1. Harvest teams
	10.8.2. Transport teams
	10.8.3. Planning team and team allocation criteria
	10.8.4. Mills
	10.8.5. Machine Learning Model

	10.9. Component Implementation
	10.9.1. Implementations

	10.10. WPS Request / Response examples
	10.10.1. Configuration
	10.10.2. Training
	10.10.3. Execution
	10.10.4. Results

	10.11. Conclusions

	Chapter 11. Quebec River-Lake Classification and Vectorization Model
	11.1. Component Summary
	11.2. Component Design
	11.3. Implementation Approach
	11.3.1. Application
	11.3.2. Data
	11.3.3. Machine Learning Model
	11.3.4. Convolutional Neural Network architecture
	11.3.5. Other experimental findings

	11.4. Component Implementation
	11.4.1. Process Description

	Chapter 12. Arctic Discovery Catalog
	12.1. Overview
	12.2. Architecture
	12.3. Machine Learning Model Training
	12.3.1. Data Preparation

	12.4. ML Models
	12.4.1. Multilayer Perceptron (MLP) Neural Network Implementation
	12.4.2. Training Results

	12.5. Model Accuracy
	12.5.1. Results
	12.5.2. Standards
	12.5.3. Interoperability

	12.6. Future Directions
	12.6.1. Convolutional Neural Network Implementation
	12.6.2. Recurrent Neural Network Implementation
	12.6.3. Evergreen Harvester
	12.6.4. Unsupervised Learning

	Chapter 13. Discussion
	13.1. OGC API - Processes Operations
	13.1.1. Suggestions for OGC API – Processes endpoints

	13.2. Recommendations
	13.2.1. D102 Recommendations
	13.2.2. D104 Recommendations
	13.2.3. D105 (OGC API - Features service) Recommendations

	Chapter 14. Conclusion
	Appendix A: Configuration file for the ML application
	Appendix B: JSON file for ML App Process Description
	Appendix C: CWL file for the helper ML Application Package
	Appendix D: Log output of the training process for D104
	Appendix E: Revision History
	Appendix F: Bibliography

