
OGC Testbed-15
Semantic Web Link Builder and Triple Generator

Table of Contents
1. Subject. 4

2. Executive Summary. 5

2.1. Document contributor contact points . 5

2.2. Foreword . 5

3. References . 7

4. Terms and definitions . 8

4.1. Abbreviated terms . 8

5. Overview . 10

6. Introduction. 11

6.1. Problem Definition. 11

6.2. Status Quo. 11

6.2.1. Lack of a Multi-Modal Data Integration Framework . 11

6.2.2. Lack of a Unified, Extensible Logical Graph Model . 12

6.2.3. Lack of Formal Semantics. 12

6.2.4. Lack of Consistent Means for Recording and Exploiting Provenance and Pedigree

Information (Source and Method)

 12

7. Data Integration . 13

7.1. Classifying Data: Structured, Unstructured, Semi-structured . 13

7.2. Linked Data and Semantic Web . 14

7.3. 5-Star Linked Open Data . 15

7.4. Semantic Mediation . 16

7.5. Deduplication . 17

8. Data Fusion . 21

8.1. Conflict Classification . 21

8.2. Data Fusion Strategies and Answers . 21

8.3. Data Fusion Answers . 22

8.4. Conflict Resolution Functions . 23

9. Shapes Constraint Language (SHACL). 26

9.1. Comparison of OWL and SHACL. 27

9.2. SHACL Shapes . 27

9.3. Constraint Components. 30

9.3.1. Built-in Constraint Components . 32

9.3.2. User-defined Constraint Components . 33

9.3.3. Rules. 34

9.3.4. Functions . 35

9.3.5. Node Expressions . 37

9.4. Application Profiles . 38

9.4.1. Profiles Vocabulary . 39

10. Data Sources . 40

10.1. NRCAN Datasets . 40

10.2. DBPedia. 43

10.3. Wikidata . 44

10.4. Geonames. 45

10.5. OpenStreetMap . 46

10.6. Freebase . 47

11. Implementation . 48

11.1. Architecture. 48

11.1.1. Semantic Integration Pipeline . 48

11.2. SHACL Engine . 49

11.3. Correlation Ontology . 50

11.3.1. LinkSetSpecification. 50

11.3.2. CorrelationRuleSet . 50

11.3.3. CorrelationRule . 50

11.4. Similarity Ontology . 51

11.4.1. Similarity Method. 51

11.4.2. Comparison . 52

11.4.3. Comparator . 52

11.4.4. Aggregation . 52

11.4.5. Aggregator . 52

11.5. Metrics Ontology. 53

11.5.1. Metric. 53

11.5.2. Metric Type . 54

11.5.3. Metric Unit . 54

11.5.4. Example . 55

11.6. Correlation Engine . 59

11.7. Semantic Mediation Ontology . 59

11.7.1. Alignment . 60

11.7.2. Class Mapping . 60

11.7.3. Property Mapping. 60

11.8. REST API . 61

11.9. WPS . 65

11.10. Web Crawling . 65

12. Future Work . 67

12.1. Semantic Mediation Engine . 67

12.2. Fusion Ontology and Fusion Engine . 67

12.3. Integrated Fusion Pipeline . 67

12.3.1. Fusion REST Service . 67

12.3.2. Integration of Semantic Data Cubes with Conversational Agent . 67

Appendix A: Appendix A . 69

A.1. Metric Ontology . 69

A.2. Similarity Ontology . 70

A.3. Mediation Ontology . 73

Appendix B: Revision History . 77

Appendix C: Bibliography. 78

Publication Date: 2019-12-17

Approval Date: 2019-11-22

Submission Date: 2019-10-31

Reference number of this document: OGC 19-021

Reference URL for this document: http://www.opengis.net/doc/PER/t15-D001

Category: OGC Public Engineering Report

Editor: Esther Kok, Stephane Fellah

Title: OGC Testbed-15: Semantic Web Link Builder and Triple Generator

OGC Public Engineering Report

COPYRIGHT

Copyright © 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t15-D001
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Subject
This OGC Testbed 15 Engineering Report (ER) describes a generalized approach towards performing
data fusion from multiple heterogeneous geospatial linked data sources. The specific use case is
semantic enrichment of hydrographic features provided by Natural Resources Canada (NRCan). The
ER attempts to define and formalize the integration pipeline necessary to perform a fusion process
for producing semantically coherent fused entities.

4

Chapter 2. Executive Summary
The web and enterprise intranets have facilitated access to a vast amount of information. When
data from multiple sources can be combined together, its usefulness increases dramatically. Users
want to query information from different sources, combine it and present it into a uniform,
complete, concise and coherent view using an information integration system. However, today
there is no well-defined multi-modal data integration framework available. Such a framework can
provide the user a complete yet concise and coherent overview of all existing data without the need
to access each of the data sources separately. Complete because no object is forgotten in the result,
concise because no object is represented twice, and coherent because the data presented to the user
is without logical contradiction. Ensuring coherence is difficult because information about entities
is stored in multiple sources and because of semantic heterogeneity.

A number of ontologies for supporting correlation and semantic mediation are defined using the
new World Wide Web Consortium (W3C) Shape Constraint Language, as well as a correlation
engine that has been implemented to be accessible through an Application Programming Interface
(API) based on Representational State Transfer (REST). Future work will need to implement
semantic mediation and fusion engine.

This engineering report makes the following recommendations for future work:

• The implementation of a semantic mediation engine supported by a mediation ontology.

• The formalization of different types of conflict and resolution strategies, enabled by ontologies.

• The demonstration of a complete fusion pipeline that includes semantic mapping, correlation,
mediation and integration of entities from multiple sources defined in different ontologies.

• Extension of the REST-based Fusion Service API to support Create, Read, Update and Delete
(CRUD) functions.

• Integration of Semantic Data Cubes with Conversational Agents.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Esther Kok Solenix Editor/Contributor

Stephane Fellah ImageMatters Editor/Contributor

Nicola Policella Solenix Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

5

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

6

Chapter 3. References
The following normative documents are referenced in this document.

NOTE: Only normative standards are referenced here, e.g. OGC, ISO or other SDO standards. All other
references are listed in the bibliography.

• OGC: OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2]

• OGC: OGC 09-026r2, OGC Filter Encoding 2.0 Encoding Standard - With Corrigendum, 2014
[http://docs.opengeospatial.org/is/09-026r2/09-026r2.html]

• OGC: OGC 11-052r4, OGC GeoSPARQL- A Geographic Query Language for RDF Data, 2011
[https://portal.opengeospatial.org/files/?artifact_id=47664]

• OGC: OGC 14-106. Unified Geo-data Reference Model for Law Enforcement and Public Safety,
2014 [https://docs.opengeospatial.org/bp/14-106/14-106.html]

• W3C: RDF Schema 1.1, W3C Recommendation 25 February 2014 [http://www.w3.org/TR/rdf-schema/]

• W3C: OWL 2 Web Ontology Language Document Overview (Second Edition), W3C
Recommendation 11 December 2012 [https://www.w3.org/TR/owl2-overview/]

• W3C: OWL 2 Web Ontology Language, Direct Semantics (Second Edition), W3C Recommendation
11 December 2012 [http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/]

• W3C: OWL 2 Web Ontology Language, Structural Specification and Functional-Style Syntax
(Second Edition), W3C Recommendation 11 December 2012 [http://www.w3.org/TR/2012/REC-owl2-

syntax-20121211/]

• W3C: SKOS Simple Knowledge Organization System Reference, W3C Recommendation 18
August 2009 [http://www.w3.org/TR/2009/REC-skos-reference-20090818/]

• W3C: Data Catalog Vocabulary (DCAT), W3C Recommendation 16 January 2014
[https://www.w3.org/TR/vocab-dcat/]

• W3C: SPARQL Protocol and RDF Query Language (SPARQL), last visited 12-09-2016
[https://www.w3.org/TR/rdf-sparql-query]

• W3C: JSON-LD 1.1: A JSON-based Serialization for Linked Data - Candidate Recommendation,
2019 [https://www.w3.org/TR/json-ld/]

• W3C: JSON-LD 1.0: A JSON-based Serialization for Linked Data - W3C Recommendation, 2014
[https://www.w3.org/TR/2014/REC-json-ld-20140116/]

• ISO: ISO 19106:2004 Geographic information — Profiles [https://www.iso.org/standard/26011.html]

• ISO: ISO 19101-2:2018 Geographic information — Reference model — Part 2: Imagery
[https://www.iso.org/standard/69325.html]

7

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
http://docs.opengeospatial.org/is/09-026r2/09-026r2.html
https://portal.opengeospatial.org/files/?artifact_id=47664
https://docs.opengeospatial.org/bp/14-106/14-106.html
https://docs.opengeospatial.org/bp/14-106/14-106.html
http://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/rdf-sparql-query
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.iso.org/standard/26011.html
https://www.iso.org/standard/69325.html

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● Unstructured Data

Traditional unstructured data is made of text documents and other file types such as videos,
audios, images. Large amount of unstructured data is coming from sources external from
enterprise such as social media. Natural language text is usually considered Unstructured Data.

● Semi-structured Data

Semi-structured Data is technically a subset of unstructured data and refers to tagged or
taggable data that does not strictly follow a tabular or database record format. Examples include
languages like XML, JSON and HTML.

● Structured Data

Structured data is "data that resides in fixed fields within a record or file". Examples include
tables, spreadsheets, or databases (relational or NoSQL). Structured data is mostly understood
today as data that conforms to a well-known schema (RDBMS schema, XML schema, JSON
Schema). Schema defines the structure and syntactic constraints on the data.

● Triple

A Triple is the most high-level abstraction in the semantic web. It describes a statement using a
triple of "Subject - Predicate - Object". URIs are used to identify the subject of the statement. The
object of the statement can be another URI or a literal like a string or number. The triple model
is a minimalist model to capture any form of data including table, tree, graph.

● Semantic Mediation

Semantic mediation is defined as the transformation from one conceptual model to another, in
particular from one ontology to another. Instances of the target classes are created from the
values of instances of the source classes.

4.1. Abbreviated terms
• API Application Programming Interface

• DCAT Data Catalog Vocabulary

• DCAT-AP DCAT Application Profile for Data Portals in Europe

• EARL Evaluation and Report Language EU European Union

• ER Engineering Report

• GeoDCAT-AP Geographical extension of DCAT-AP

• ISO International Organization for Standardization

• N3 Notation 3 format

• OGC Open Geospatial Consortium

8

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• OWL Web Ontology Language

• RDF Resource Description Framework

• RDFS RDF Schema

• SHACL SHape Constraint Language

• SKOS Simple Knowledge Organization System

• SPARQL SPARQL Protocol and RDF Query URI Uniform Resource Identifier

• TTL Turtle Format

• URI Uniform Resource Identifier

• URL Uniform Resource Locator

• W3C World Wide Web Consortium

• XML eXtensible Markup Language

9

Chapter 5. Overview
Section 6: Introduction defines the problem of enriching geospatial data with semantic data using
hydro features as a specific use case while also addressing the status quo of semantic enrichment.

Section 7: Data Integration discusses the topic of data integration, outlines the challenges and
defines a formal approach for performing data fusion from multiple heterogeneous data sources.

Section 8: SHACL introduces the new W3C Shapes Constraint Language (SHACL) standard, a
language for validating RDF graphs against a set of conditions, depicting shapes of graph data, and
providing validation, transformation and inference rules. This ontology is used in the correlation
and semantic mediation ontology and simplify previous mediation ontologies designed in previous
OGC Testbeds 10, 11 and 12.

Section 9: Data Sources describes the main data sources that are used for the implementation of the
integration pipeline which can perform data fusion from multiple heterogeneous geospatial linked
data sources.

Section 10: Implementation presents the implementation of the integration pipeline and main work
done in this Testbed thread. The section shows the architectural overview, the approach for
correlation phase and semantic mediation and the REST API designed to support the correlation
phase.

Section 11: Future Work addresses future work in this field.

Appendix A documents the ontologies developed during this Testbed.

10

Chapter 6. Introduction
This section defines the problem of enriching geospatial data with semantic data using
hydrographic features as a specific use case. This section also addresses the status quo of semantic
enrichment.

6.1. Problem Definition
Efforts in OGC Testbeds-11 [1] and 12 [2, 3] targeted semantic mediation support. The focus was
exploring the high-level description of ontologies and the metadata needed to enable search on
controlled vocabularies. As part of the Testbed-12 activity, a REST API was developed to access
vocabulary metadata. This Semantic Registry Service was used as an aide in a first pass of the data
in the further enrichment of an existing knowledge base.

The work described in this ER utilizes the vocabulary described in the Semantic Registry
Information Model (SRIM) as an enabler for further knowledge base population. The SRIM is
defined as a superset of the W3C DCAT standard and encoded as an OWL (Web Ontology Language)
ontology. However, there should be restrictions in place (such as mandatory, recommended or
optional fields) that cannot be captured with OWL, and require human interpretation. The Shape
Constraint Language (SHACL) [4, 5] is a W3C standard that provides a framework to define the
shape of the graph data. Proposed future work included investigation of SHACL shapes for its
applicability to application profiles, form generation and data entry, data validation and quality
control of linked data information.

The work described in this ER was focused on enriching geospatial structured data sources. The
tools created in this Testbed harvest semantic data sources and attempt to correlate and fuse this
information. The hydrological features for the Richelieu River/Watershed were the data source for
this use case. One of the challenges in the work was to overcome mapping the ontology vocabulary
in the Semantic Registry Information model to other ontologies used in geospatial databases. The
alignment and "mapability" needs to be addressed to confirm the relation and/or add more
information to the relation.

The high-level goal of the work described in this ER was to perform knowledge base population on
the hydrological entities in the Richelieu River/Watershed. The ultimate goal was to see if the
solution for this use case could be generalized for multiple problems.

6.2. Status Quo
This section describes the current challenges related to data integration and fusion.

6.2.1. Lack of a Multi-Modal Data Integration Framework

Inexpensive networks such as the web and enterprise intranets have facilitated the access to a vast
amount of information. An information integration system can be utilized to combine and present
data from multiple sources to increase the usefulness of the information. Unfortunately, today there
is no well-defined multi-modal data integration framework available that can present a complete,
concise, and coherent representation of the data to the user.

11

6.2.2. Lack of a Unified, Extensible Logical Graph Model

Current end-to-end data processing environments are plagued by inconsistent data models and
formats that were developed in closed technology platform/program settings, are often proprietary,
are not easy to extend, and are not suited for satisfying “Unified Knowledge Graph” needs. Such an
eclectic approach leads to logical inconsistencies that must be addressed by human-intensive tools
and processes, which impedes operational readiness and time-to-action. Logical inconsistencies can
also render data useless. Moreover, the automation of graph workflows is severely inhibited by the
lack of a well-known, standards-based logical graph model that works across many systems and
organizations.

6.2.3. Lack of Formal Semantics

Current data processing environments do not formally model and explicitly represent semantics,
nor do they address the semantic validity and consistency of their data and data models. This leads
to ambiguity in most data, which increases the cognitive workload on users, severely inhibits
machine-to-machine interoperability and understanding, and greatly reduces the potential for
task/workflow automation (machine reasoning) and multi-source data integration.

6.2.4. Lack of Consistent Means for Recording and Exploiting Provenance
and Pedigree Information (Source and Method)

Few systems formally capture and exploit the provenance and pedigree (P&P) of sources and
methods. Moreover, rarely is P&P captured for all significant information elements, nor done
consistently between systems. This leads to downstream processing impediments where users are
unable to conflate or assess their confidence in data. In turn, this uncertainty inhibits the
automation of data processing workflows, and increases the operating burden on users.

What is needed is a formal recording and tracking of P&P information about the sources and
methods of all major information elements for all repository holdings. This is essential to database
integrity management and answering questions users may have about the source and method for
any information that is subsequently extracted, disseminated, and exploited. Formal recording and
tracking of P&P information must be built into the database, and handled as a key function of
database services.

12

Chapter 7. Data Integration
To improve the usefulness of data from different sources, an information integration system can be
defined to present the data to the user. This section discusses the challenges of data integration and
discusses an approach for performing data fusion from multiple heterogeneous data sources.

7.1. Classifying Data: Structured, Unstructured, Semi-
structured
Before we delve into how to implement a robust integration system, it is important that we
understand the different types of data that are available on the network. Data can be placed into
three categories: unstructured, semi-structured, structured.

• Unstructured Data are data that are not so easily organized or formatted. Traditional
unstructured data are made of text documents and other file types such as videos, audios, and
images. Large volumes of unstructured data are coming from sources external from
enterprises, such as social media, and constitute the vast majority of available data on the web
(about 80 percent of all available data [6]). The volume increases every year. Collecting,
processing, and analyzing unstructured data presents a significant challenge. With more
information becoming available via the web, and most of which is unstructured, finding ways to
use the data has become a vital strategy for many businesses. Recent advances in Deep Learning
have addressed many challenges that seemed impossible to solve just 10 years ago. Deep Neural
Networks are now capable of identifying objects in images and video scenes, robustly identify
entities and relationships, and understand context and meaning in texts. (ex. BERT [7], OpenAI
GPT-2 [8], RoBERTA [9]). While these types of data are out of scope for this Testbed,
investigating the application of these latest advances in future Testbeds will help tap into the
vast knowledge information buried in this information.

• Semi-structured Data is technically a subset of unstructured data and refers to tagged or
taggable data that does not strictly follow a tabular or database record format. Examples
include languages like XML, JSON and HTML.

• Structured Data is "data that resides in fixed fields within a record or file" (Webopedia).
Examples include tables, spreadsheets, or databases (relational or NoSQL). Structured data is
most understood today as data that conforms to a well-known schema (RDBMS schema, XML
schema, JSON Schema). Schema defines the structure and syntactic constraints on the data.

While this categorization of data is well understood and widely adopted in the industry, it misses an
important aspect: whether the data can be understood by machine-based algorithms or not.
Understanding data means that computers can unambiguously interpret the meaning of
information and be capable of inferring new information from data. This capability is the realm of
Linked Data and the Semantic Web. Semantics are required for data and service interoperability.
Semantics are also imperative for machine-to-machine understanding, reasoning (inference), and
automation. Semantics greatly aid in search and navigation. They constitute the unifying means for
interrelating heterogeneous data. They also aid in data abstraction, categorization, organization,
and validation. Finally, semantics give data context and unambiguous meaning.

Many people use the term “data format” to suggest that they have a common, interoperable data

13

model. In the world of formal data modeling, this is considered to be flawed thinking that is fraught
with system interoperability challenges. This thinking tends to surface in rushed stovepipe
development efforts, and in settings where data modeling experts are absent. (System engineers
and software developers who lack data modeling expertise notoriously skirt formal data models,
and often misinterpret or vary from data standards.) For example, many developers make the
simple mistake of treating a file format as their data model for interoperability. First of all, a (file)
format is simply a convenient encoding for point-to-point data exchange purposes. A format is not a
logical data model, per se, although it may have a formal logical data model behind it. Whereas a
well-designed file format like Shapefile or KML may resolve schema and syntax issues, they do not
explicitly deal with the semantics and context of the content it exchanges. Likewise, a collection of
(file) formats is not a data model. File formats may actually hinder interoperability because each
format requires custom mapping and translation software to another format, and the transformed
results often do not align with sound, industry-approved coherent data models that were designed
with interoperability in mind (as well exemplified by the work at OGC). Whereas file formats may
be effective convenience mechanisms for point-to-point data exchanges, they are not good
interoperability mechanisms for open service-based platforms and environments with many-to-
many data exchange nodes. In summary, they tend to keep us from achieving the desired higher
level of uniformity, logical consistency, and semantic harmony we seek for a System-of-Systems.

7.2. Linked Data and Semantic Web
In a famous article of Scientific American [10] Tim Berners-Lee described the aim of the Semantic
Web bringing the web to its full potential. To enable wider adoption of the Semantic Web, the term
of Linked Data was introduced in 2008 [11], which provides a simplified view of semantic web as a
web of linkage between data nodes. The idea of linked data is similar to the web of hypertext, but
the semantic web is not merely about publishing data on the web, but more about making links in
such a way that a person or a machine can explore the data. The linked data leads to other related
data. The semantic web is also constructed in such a way that it can be parsed and reasoned about.
The web of hypertext is constructed with links anchored in HTML documents, but the semantic web
is constructed in such a way that arbitrary links between entities are described by Triples in RDF.
URIs are used to identify any kind of concept. [12]

The following describes some of the important concepts of the semantic web:

• URI: Uniform Resource Identifier is a sequence of characters that unambiguously identifies an
abstract or physical resource. A URI can be used as a reference inside an RDF graph. Any
resource describing any real-world or an abstract concept is identified by a URI, which is
unambiguous and can be defined in a decentralized way (using domain ownership).

• Triple: A Triple is the most high-level abstraction in the semantic web. It describes a statement
using a triple of "Subject - Predicate - Object". URI’s are used to identify the subject of the
statement. The object of the statement can be another URI or a literal like a string or number.
The triple model is a minimalist model to capture any form of data including a table, tree, or
graph.

• RDF: The Resource Description Framework (RDF) is a data model for representing any kind of
information in the web (using the triple model). RDF is intended as a base notation for a range
of extended notations such as OWL and RDF schema.

• RDFS: RDF Schema defines classes that represent concepts for the triples. RDFS captures

14

information about the types of relationships between facts and add meaning to the facts. This
allows definition of sub-types of more general types.

• OWL: Web Ontology Language (OWL) is a Semantic Web language designed to represent rich
and complex knowledge about things, groups of things, and relations between things. OWL adds
semantics to RDF schema, also expressed in Triples. OWL allows for the deeper specification of
the properties of classes, creating possibilities to not only join data from different sources as
linked data, but also to define inferencing rules (transitive, symmetric, and inverse
relationships for example).

The rise of the semantic web and linked open data has helped create a large number of available
open data sources that could be explored. They could contain controlled vocabularies that structure
and constrain the interpretation of the available data. Vocabularies can for example be defined as
ontologies using RDF Schema and OWL, linked data with SPARQL, or as constraints that can be
defined using SHACL. Ontologies define the meaning of the linked data, which can be modelled as a
directed labelled graph. The nodes represent resources and the edges represent properties,
assigned to the meaning in the ontology. Access to vocabularies is often provided at a SPARQL
endpoint. SPARQL and its geospatial extension GeoSPARQL are now well-established standards for
querying Linked Data representation that contains geospatial information.

SPARQL: SPARQL Protocol and RDF Query Language, the generic RDF query language.

Unfortunately, in practice a lot of resources and properties do not have resolvable resource URIs, so
the exploration of other linked data is hindered. The principles of 5-star linked open data, which
are described in the next subsection, aim to resolve some of the hindrance. Figure 1 illustrates the
5-star principles.

7.3. 5-Star Linked Open Data
As a means to encourage individual users and governments to implement and improve on linked
data [12] in 2010 Tim Berners-Lee developed a 5-star system for grading linked open data. Linked
data is not necessarily linked open data, where the data is published under an open license. Linked
data can also be 5-star (see Figure 1) within an internal system, but linked open data is data that
follows the following graded scale:

1. On the web: available on the web (whatever format) (but with an open license in order to be
Open Data)

2. Machine-readable data: available as machine-readable structured data

3. Non-proprietary format: as (2) plus non-proprietary format

4. RDF standards: all the above plus use of open standards from W3C (RDF and SPARQL) to be
identifiable, so that others can link to the data

5. Linked RDF: all the above plus linking the data to other data to provide context

15

Figure 1. Five Star open data model

7.4. Semantic Mediation
Semantic mediation is defined as the transformation from one conceptual model to another, in
particular from one ontology to another. Instances of the target classes are created from the values
of instances of the source classes. Related work on this topic was documented in OGC Testbed-11
Symbology Mediation ER (OGC 15-058 [1]).

Semantic Mediation was addressed to some extent in OWS-8 [13], OWS-9 [14] and OWS-10 [15].
Those Testbeds were mostly focused on performing semantic mediation for taxonomies. For
example, gazetteers such as the Geographic Names Information System (GNIS) [https://www.usgs.gov/

core-science-systems/ngp/board-on-geographic-names/download-gnis-data], GEOnet Names Server
[http://geonames.nga.mil/gns/html/], and Geonames [http://geonames.org] often use different taxonomies
for classifying feature types. To support semantic mediation, mappings are required from one
concept in a source taxonomy to another one in the target taxonomy (using SKOS mapping
relationships such as skos:exactMatch, skos:broadMatch, skos:closeMatch). The semantic mediation
was demonstrated using the OGC Web Feature Service-Gazetteer (WFS-G), however the mediation
was performed as black box on syntactic representation of the features (using Geography Markup
Language (GML)). In OWS-10, the hydrology sub-thread of CCI [15] attempted to address a more
general approach for mediation by defining some mapping between two different hydrologic
models. However, the solution was based on UML tools that perform the mapping and no formal
model was defined to encode the semantic mapping. The mapping between different hydrological
models was formalized through mediation by means of shared semantics. A two-step mapping
approach was applied using the HY_Features model as mediating model. In the first step, the

16

https://www.usgs.gov/core-science-systems/ngp/board-on-geographic-names/download-gnis-data
http://geonames.nga.mil/gns/html/
http://geonames.org

hydrological models is mapped to common feature concepts of HY_Features. In the second step, the
HY_Features model is “re-mapped” to the target models. To achieve semantic interoperability
among the National Hydrography Dataset Plus (NHD)+ - and National Hydrographic Network (NHN)
data models, two separate mappings are required: (1) mapping of NHD+ features to the equivalent
concepts of HY_Features, and (2) mapping NHN features to HY_Features equivalents.

To address the semantic mediation of symbology, Testbed-11 addressed semantic mediation by
representing information as linked data (see OGC 15-058). The goal of Testbed-11 was to formally
address the semantic mediation for taxonomies by defining extensions to GeoSPARQL
(geosparql:skosMatch) to perform the semantic mapping and providing an extensible, sharable
encoding of the semantic mappings that can be processed by machine. A RESTful Semantic
Mediation Service was demonstrated to perform semantic mapping between the Homeland
Security Working Group (HSWG) Incident Model to the EMS Incident Model. For this purpose,
existing linked data standards (RDF, OWL, SPARQL) were leveraged to represent semantic
mappings. These semantic mappings can be managed by a semantic mediation service to perform
transformation between two models. OGC 15-058 [1], Symbology Mediation Engineering Report
from Testbed-11 describes the basic principles of semantic mediation using the example of two
portrayal ontologies that need to be aligned in an ad hoc manner. In Testbed-12 (OGC 16-059 [2]),the
semantic mediation work in Testbed-12 was closely related to the semantic portrayal work
described above and built on the achievements from Testbed-11. Testbed-12 focused on the usage of
a schema registry to store information about schemas and schema mappings to support ad hoc
transformations between source and a target schemas. Schema mappings were considered as a
simple form of semantic mediation, but were defined without explicit formalization of the
underlying semantic knowledge required to map from one schema to another. For that reason, the
idea was to design a Semantic Mediation Service REST API and integrate the API with the Semantic
Registry and the CSW ebRIM profile for Schema Registry.

Since the conclusion of Testbed-13, W3C has standardized the SHACL specification [5]. The SHACL
specification shows a lot of overlap with the work performed during Testbed-11 (see OGC 15-058).
In particular, SHACL defines Shapes, Parameter, Function and Rules that have been defined in the
semantic mapping ontology from Testbed-11. A comparison of SHACL with OWL was performed
during Testbed-14 (OGC 18-094r1) and a model was defined to represent application profile for
linked data. Within this context, an application profile defines a subset of concepts and properties
from one or more ontologies to support mediation and in many use cases, semantic mediation is
needed between two application profiles. W3C is currently conducting an effort to define
application profiles for Linked data [16] and many application profiles such as DCAT-AP and
GeoDCAT are encoded using the SHACL standard. One of the main efforts of Testbed-15 was to
update the mapping ontology by using the SHACL standard. By doing so, the semantic mediation
can be considerably simplified and be usable with emerging SHACL APIs. This would favor
interoperability and sharing of semantic alignments.

7.5. Deduplication
When integrating multiple linked data sources, equivalent entities may be identified with different
identifiers. The goal of the deduplicaton phase is to identify entities that are similar semantically in
order for them to be merged into one single entity in the next phase: semantic fusion. To perform
this task, the rules of linkage between two entities that are similar need to be defined.

17

The literature suggests a number of Linked Data frameworks addressing this task (also called
Linked Discovery). Silk - Link Discovery Framework [17] uses the declarative Silk - Link
Specification Language (Silk-LSL) defined in XML and a proprietary path syntax to define the
linkage rules. Data publishers can specify which types of RDF links should be discovered between
data sources as well as which conditions data items must fulfill in order to be interlinked. These
link conditions can apply different similarity metrics to multiple properties of an entity or related
entities which are addressed using a path-based selector language. The resulting similarity scores
can be weighted and combined using various similarity aggregation functions.

Silk accesses data sources via the SPARQL protocol and can thus be used to discover links between
local and remote data sources. SILK uses a multi-dimensional blocking technique (MultiBlock [18])
to optimize the linking runtime through a rough index pre-matching. To parallelize the linking
process, SILK relies on MapReduce. The framework allows user-specified link types between
resources as well as owl:sameAs links. SILK incorporates element-level matchers on selected
properties using string, numeric, temporal and geo-spatial similarity measures. SILK also supports
multiple matchers, as it allows the comparison of different properties between resources that are
combined together using match rules. SILK also implements supervised and active learning
methods for identifying Link Specifications (LS) for linking. One of the shortcomings of the
framework is that it uses a proprietary document-based format for configuring linkset specification
and custom path syntax. The model does not provide a mechanism for defining additional
constraints on the nodes referred by the paths. The SILK framework comes with a workbench
which allows to define the link set specification in a visual way (see Figure 2).

Figure 2. SILK Workbench

Another, and more recent framework, is the Linked discovery framework for MEtric Spaces
(LIMES). This framework implements time-efficient approaches for large-scale link discovery based
on the characteristics of metric spaces. [19] It is easily configurable via a configuration file as well
as through a graphical user interface. According to its web site: [20]

"LIMES implements novel time-efficient approaches for link discovery in metric spaces. Our

18

approaches facilitate different approximation techniques to compute estimates of the similarity
between instances. These estimates are then used to filter out a large amount of those instance
pairs that do not suffice the mapping conditions. By these means, LIMES can reduce the number of
comparisons needed during the mapping process by several orders of magnitude. The approaches
implemented in LIMES include the original LIMES algorithm for edit distances, HR3 [21],
HYpersphere aPPrOximation algorithm (HYPPO) [22], and ORCHID [23]. Additionally, LIMES
supports the first planning technique for link discovery HELIOS [24], that minimizes the overall
execution of a link specification, without any loss of completeness. Moreover, LIMES implements
supervised and unsupervised machine-learning algorithms for finding accurate link specifications.
The algorithms implemented here include the supervised, active and unsupervised versions of
EAGLE [25] and WOMBAT [26].

The LIMES framework consists of eight main modules of which each can be extended to
accommodate new or improved functionality. The central modules of LIMES is the controller
module, which coordinates the matching process. The matching process is carried out as follows:
First, the controller calls the configuration module, which reads the configuration file and extracts
all the information necessary to carry out the comparison of instances, including the URL of the
SPARQL-endpoints of the knowledge bases S (source) and T(target), the restrictions on the instances
to map (e.g., their type), the expression of the metric to be used and the threshold to be used.

Given that the configuration file is valid w.r.t. the LIMES Specification Language (LSL), the query
module is called. This module uses the configuration for the target and source knowledge bases to
retrieve instances and properties from the SPARQL-endpoints of the source and target knowledge
bases that adhere to the restrictions specified in the configuration file. The query module writes its
output into a file by invoking the cache module. Once all instances have been stored in the cache,
the controller chooses between performing Link Discovery or Machine Learning. For Link
Discovery, LIMES will re-write, plan and execute the Link Specification (LS) included in the
configuration file, by calling the rewriter, planner and engine modules resp. The main goal of
Linked Discovery is to identify the set of links (mapping) that satisfy the conditions opposed by the
input LS. For Machine Learning, LIMES calls the machine learning algorithm included in the
configuration file, to identify an appropriate LS to link S and T. Then it proceeds in executing the LS.
For both tasks, the mapping will be stored in the output file chosen by the user in the configuration
file. The results are finally stored into an RDF or an XML file. ""

Like the SILK framework, the configuration of LIMES is defined with a proprietary XML format and
syntax for expressing rules as illustrated in Figure 3

19

Figure 3. LIMES Workbench

The Testbed-15 approach to model correlation is based on Open Linked Data Standards (RDF,
SHACL, OWL, SPARQL). The rationale is to be able to favor reusability of the correlation rules
between two linked data sets, by leveraging the linking properties that is built-in in the linked data
framework by referring to URI identifier. Three ontologies were formalized to model metrics
Metrics Ontology, similarity Similarity Ontology and correlation Correlation Ontology to support
correlation task using a correlation engine implemented for this testbed.

20

Chapter 8. Data Fusion
In the context of data integration, Data Fusion is defined as the “process of fusing multiple records
representing the same real-world object into a single, consistent, and clean representation [27].

8.1. Conflict Classification
Due to the decentralized nature of the web, different communities can represent the same-real
world objects in different way. This results in conflicts. We can distinguish three type of conflict [
27].

• Schematic conflicts: Such as, different attribute names or differently structured data sources.

• Identity conflicts: As the way of identifying a real-world object may be different in the data
sources.

• Data conflicts: For the same real-world object (e.g., a building), semantically equivalent
attributes, from one or more sources, do not agree on its attribute value (e.g., source 1 reporting
“23” as the building’s age, source 2 reporting “25”).

The first two kinds of conflict are resolved during the semantic mediation and correlation phase of
data integration. The third kind of conflict, data conflicts, remain and are not resolved until data
fusion and are caused by the remaining multiple representations of same real-world objects.

We distinguish two kinds of data conflict: (a) uncertainty about the attribute value, caused by
missing information; and (b) contradictions, caused by different attribute values [27]:

• Uncertainties: An uncertainty is a conflict between a non-null value and one or more null
values that are all used to describe the same property of an object. In the Testbed-15 scenario,
this is caused by missing information, such as null values in the sources, or an attribute
completely missing in one source. The reason for considering uncertainties as a special case of
conflict is that they are generally easier to cope with than contradictions. We deliberately
choose to assume most null values in a data integration scenario being unknown values. But
even with considering null values as being inapplicable or withheld, as are the three most
common semantics of null values [28], the assessment of the different techniques and systems
remains valid.

• Contradictions: A contradiction is a conflict between two or more different non-null values
that are all used to describe the same property of the same object. In the Testbed-15 data
integration scenario, this is the case if two or more data sources provide two or more different
values for the same attribute on the same object, sameness as given by the schema matching
and duplicate detection steps before.

8.2. Data Fusion Strategies and Answers
We can distinguish three categories of conflict strategies:

• Conflict-ignoring strategies do not make a decision as to what to do with conflicting data and
sometimes are not even aware of data conflicts. An example for an ignoring strategy is Pass It

21

On, which presents all values and that way defers conflict resolution to the user.

• Conflict-avoiding strategies acknowledge the existence of possible conflicts in general, but do
not detect and resolve single existing conflicts. Instead, they handle conflicting data by applying
a unique decision equally to all data, such as preferring data from a special source with the
Trust Your Friends strategy.

• Conflict resolution strategies do regard all the data and metadata before deciding on how to
resolve a conflict. They can further be subdivided into deciding and mediating strategies,
depending on whether they choose a value from all the already present values (deciding) or
choose a value that does not necessarily exist among the conflicting values (mediating).

Bleiholder et al (2005) [29] formalize some possible conflict handling strategies summarized in
Table 1

Table 1. Possible Conflict Handling Strategies from Bleiholder et al (2005)[19]

Strategy Classification Short Description

PASS IT ON ignoring escalates conflicts to user or
application

CONSIDER ALL POSSIBILITIES ignoring creates all possible value
combinations

TAKE THE INFORMATION avoiding, instance based prefers values over null values

NO GOSSIPING avoiding, instance based returns only consistent tuples

TRUST YOUR FRIENDS avoiding, metadata based takes the value of a preferred
source

CRY WITH THE WOLVES resolution, instance based,
deciding

takes the most often occurring
value

ROLL THE DICE resolution, instance based,
deciding

takes a random value

MEET IN THE MIDDLE resolution, instance based,
mediating

takes an average value

KEEP UP TO DATE resolution, metadata based,
deciding

takes the most recent value

8.3. Data Fusion Answers
The fusion result to an integrated information system should have the following characteristics:

• Complete: A complete answer contains all the objects (extensionally complete) and also all
attributes (intentionally complete) that have been present in the sources. A complete answer is
not necessarily concise, as it may contain objects or attributes more than just once.

• Concise: An answer is concise if all real-world objects (extensionally concise) and all
semantically equivalent attributes (intentionally concise) present are described only once.

• Consistent: A consistent answer contains all tuples from the sources that are consistent with
respect to a specified set of integrity constraints (inclusion or functional dependencies) [30]. In
this sense, such an answer is not necessarily complete, as all inconsistent object representations

22

are left out of the result. However, given that one of the integrity constraints is a key constraint
on some real-world identifier, a consistent answer is extensionally concise for all included
object representations.

• Complete and Consistent: A complete and consistent answer combines the advantages of
completeness and conciseness and consists of all real-world object descriptions

8.4. Conflict Resolution Functions
The following table summarizes a number conflict resolution functions found in the literature [29].

Table 2. Conflict Resolution Functions with Type (S(ingle), SP(arameter), M(ultiple)P, SMP), Domain (A(ll),
N(umeric),C(ategorical),T(axonomical), D(ate),S(tring)) and D(eciding) or M(ediating).

Function Description Type Doma
in

D or
M

All Returns all values. S A D

Any Returns an arbitrary (non-NULL) value. S A D

First Returns the first (non-NULL) value, respectively. Requires
ordering of the values on input.

S A D

Last Returns the last (non-NULL) value, respectively. Requires
ordering of the values on input.

S A D

Random Returns a random (non-NULL) value. The chosen value
differs among calls on the same input.

S A D

Certain If input values contain only one distinct (non-NULL) value,
returns it. Otherwise returns NULL or empty output
(depending on the underlying data model).

S A D

Best Returns the value with the highest data quality value. The
quality measure is application-specific.

SP A D

TopN Returns n best values (see Best). n is a parameter. S A D

Threshold Returns values with data quality higher than a given
threshold. The threshold is given as a parameter.

SP ND D

BestSource Returns a value from the most preferred source. The
preference of source may be explicit (given preferred order
of sources) or based on an underlying data quality model.

SP A D

MaxSourceMe
tadata

Returns a value from the source with a maximal source
metadata value. The metadata value may be, e.g., timestamp
of the source, access cost or a data quality indicator. The
used type of source metadata is either given as a parameter
or fixed.

SP A D

MinSourceMet
adata

Returns a value from the source with the minimal source
metadata value (see MaxSourceMetadata).

SP A D

Latest Returns the most recent (non-NULL) value. Recency may be
available from another property, value/entity metadata or
source metadata (the last case is a special case of
MaxSourceMetadata).

SP A D

23

Function Description Type Doma
in

D or
M

ChooseSource Returns a value originating from the source given as a
parameter.

SP A D

Vote Returns the most-frequently occurring (non-NULL) value.
Different strategies may be employed in case of tie, e.g.,
choosing the first or a random value.

S A D

WeightedVote Same as Vote but each occurrence of a value is weighted by
the quality of its source.

SP A D

Longest Returns the longest (non-NULL) value. S SCT D

Shortest Returns the shortest (non-NULL) value. S SCT D

Min Returns the minimal (non-NULL) value according to an
ordering of input values.

S SND M

Max Returns the maximal (non-NULL) value according to an
ordering of input values.

S SND M

Filter Returns values within a given range. The minimum and/or
maximum are given as parameters.

SP SND D

MostGeneral Returns the most general value according to a taxonomy or
ontology.

SP T D

MostSpecific Returns the most specific value, according to a taxonomy or
ontology (if the values are on a common path in the
taxonomy).

SP T D

Concat Returns a concatenation of all values. The separator of
values may be given as a parameter. Annotations such as
source identifiers may be added to the result.

S A M

Constant Returns a constant value. The constant may be given as a
parameter or be fixed (e.g. NULL).

SP A M

CommonBegin
ning

Returns the common substring at the beginning of
conflicting values.

S S M

CommonEndi
ng

Returns the common substring at the end of conflicting
values.

S S M

TokenUnion Tokenizes the conflicting values and returns the union of
the tokens.

SP S M

TokenIntersec
tion

Tokenizes the conflicting values and returns the
intersection of the tokens.

SP S M

Avg Returns the average of all (non-NULL) input values. S N M

Median Returns the median of all (non-NULL) input values. S N M

Sum Returns the sum of all (non-NULL) input values. S N M

Count Returns the number of distinct (non-NULL) values. S A M

Variance,
StdDev

Returns the variance or standard deviation of values,
respectively.

S N M

24

Function Description Type Doma
in

D or
M

ChooseCorres
ponding

Returns the value that belongs to an entity (resource) whose
value has already been chosen for a property A, where A is
given as a parameter.

MP A D

ChooseDepend
ing

Returns the value that belongs to an entity (resource) which
has a value v of an property A, where v and A are given as
parameters.

MP A D

MostComplete Returns the (non-NULL) value from the source having
fewest NULLs for the respective property across all entities.

SP A D

MostDistingui
shing

Returns the most distinguishing value among all present
values for the respective property.

SP A D

Lookup Returns a value by doing a lookup into the source given as a
parameter, using the input values.

SP A M

MostActive Returns the most often accessed or used value. SP A D

GlobalVote Returns the most-frequently occurring (nonNULL) value for
the respective property among all entities in the data
source.

S A D

Coalesce Takes the first non-null value appearing. S A D

Group Returns a set of all conflicting values. Leaves resolution to
the user.

S A x

Highest
Quality

Evaluates to the value of highest information quality,
requiring an underlying quality model.

SP A D

Most Recent Takes the most recent value. Most recentness is evaluated
with the help of another property or other data about
recentness of tuples/values.

SMP A D

Most Active Returns the most often accessed or used value. Usage
statistics of the knowledge base can be used in evaluating
this function.

S A D

Choose
Correspondin
g

Chooses the value that belongs to the value chosen for
another column.

S A D

Most complete Returns the value from the source that contains the fewest
null values in the attribute in question.

S A D

Most
distinguishing

Returns the value that is the most distinguishing among all
present values in that property.

S A D

Highest
information
value

According to an information measure this function returns
the value with the highest information value.

S A D

This list of functions could be used as a starting point to design an ontology for fusion which
defines conflict resolution function (may be based on SHACL functions). Unfortunately, due to time
constraints, this would have to be investigated in future Testbeds.

25

Chapter 9. Shapes Constraint Language
(SHACL)
As SHACL is used in the ontologies defined for this Testbed to support a knowledge fusion pipeline,
this section provides an overview of the W3C standard Shape Constraint Language (SHACL).

Work in previous Testbeds [31] utilized RDF and OWL to define sets of classes and properties that
could be reused by a large number of external vocabularies. RDF Schema is a vocabulary for
expressing classes and their properties, as well as associations of properties with classes. OWL is an
extension of RDF Schema to express restrictions. However, providing restrictions and constraints in
the ontology itself, and enforcing them cannot be captured with these technologies. Providing
restrictions required the user or developer to read the documentation and implement the
constraints in code.

The Shape Constraint Language (SHACL) is a W3C standard vocabulary for describing and
validating RDF graph structures. These graph structures are captured as "shapes", which
correspond to nodes in RDF graphs. These shapes identify predicates and their associated
cardinalities, and datatypes. SHACL shapes can be used to communicate data structures associated
with a process or interface, to generate or validate data, or to drive user interfaces. The vocabulary
allows for well-defined and complex integrity constraints defined in RDF and SPARQL/JavaScript
constraints. SHACL is not a replacement for RDFS/OWL, but a complementary technology that is not
only very expressive but also highly extensible.

Both OWL and SHACL rely on RDF Schema to define vocabulary terms (classes/properties) and their
hierarchies (subclasses, sub-properties). The property constraints (cardinality, valid values, etc.) can
be captured using SHACL. SHACL can accommodate multiple profiles by providing different shapes
for the same ontology.

The SHACL vocabulary is not only defined in RDF itself, but the same macro mechanisms can be
used by anyone to define new high-level language elements and publish them on the web. This
means that SHACL will not only lead to the reuse of data schemas but also to domain-specific
constraint languages. Further, SHACL can be used in conjunction with a variety of languages beside
SPARQL, including JavaScript. Complex validation constraints can be expressed in JavaScript so that
they can be evaluated client-side. In addition, SHACL can be used to generate validation report for
quality control with potentially suggestions to fix validation errors. Overall, SHACL is a future-proof
schema language designed for the Web of Data.

In summary, features of SHACL include:

• RDF vocabulary used to express shapes, targets and constraints.

• Constraints can be expressed in extension languages like SPARQL.

• SHACL shapes can be mixed with other semantic web data that is compatible with RDF and
linked data principles.

• SHACL definitions can be serialized in multiple RDF formats.

26

9.1. Comparison of OWL and SHACL
There is a fundamental difference in the interpretation of OWL restrictions versus SHACL
constraints. OWL is designed for inferencing, meaning that the interpretation of restrictions leads
to OWL making assumptions and inferences about the data. OWL is based on an Open-World
Assumption [4], where absent statements and properties can be filled later, and absence of data
does not invalidate the statement. The application should infer the missing data. Violations in for
example cardinality mean that the OWL processor will assume the violating values must represent
the same entity with different URIs. This is because OWL makes a distinction between URI and real-
world entity where multiple URIs can represent the same entity. This is also referred to as the
Unique-Name Assumption. [4]

SHACL is designed based on a Closed-World Assumption [4], where lack of data invalidates the
statement, meaning that the interpretation of restrictions is based on the assumption that the
knowledge base is complete or can be assumed to be as complete as possible with the current
information. Aside from the built-in constraints, SHACL constraints can be expressed using SPARQL
or in JavaScript, making it highly flexible and extensible. In contrast to OWL, where limited data
validation is done via inferencing, SHACL separates checking data validity from reasoning and
inferring new facts. OWL’s built-in nature of the Open World Assumption and the Unique Name
Assumption contradicts established approaches from schema languages and makes the meaning of
certain statements (e.g., cardinality) different from what most modelers expect. [4]

Due to the differences in design philosophy and implementation, one of the main advantages of
SHACL over OWL is that SHACL is extensible while OWL is limited to the features as defined by the
OWL committee. In the end, the SHACL vocabulary is complementary to OWL, but has a higher
usability. The usability increase can be experienced through the SHACL shapes in the definition of
constraints and constraint targets, as well as the built-in constraint types.

9.2. SHACL Shapes
When the SHACL standard was released by the W3C in 2017, it introduced the concept of shapes.
SHACL shapes are described in terms of RDF graphs, which is then referred to as a shapes graph,
and follow a hierarchy of shapes based on the RDF Schema language. SHACL aims to validate RDF
graphs against the shapes, where the data being validated is called a data graph.

There are two types of shape: node shape that declare constraints directly on a node and property
shape that declare constraints on the values associated with a node through a path. Node shapes
declare constraints directly on a node e.g., node kind (Internationalized Resource Identifier (IRI),
literal or blank), IRI regex, etc. Property shapes declare constraints on the values associated with a
node through a path, e.g., constraints about a certain ongoing or incoming property of a focus node;
cardinality, datatype, numeric min/max, etc. (see Figure 4)

27

Figure 4. SHACL Shape Hierarchy

SHACL shapes may define several target declarations. Target declarations specify the set of nodes
that will be validated against a shape, e.g., directly pointing to a node, or all nodes that are subjects
to a certain predicate, etc. The target declarations of a shape in a shapes graph are triples with the
shape as the subject and one of sh:targetNode, sh:targetClass, sh:targetObjectsOf or
sh:targetSubjectsOf as a predicate.

Shapes also declare constraints which are constraints on the focus nodes and value nodes of their
properties. Constraints to be applied to the target, e.g. cardinalities, ranges of values, data types,
property pairs, etc. They can also declare rules that can be used to add inferences or perform
mapping from one model to another (see Figure 5).

Figure 5. SHACL Architecture Overview

A more detailed description of the SHACL model is shown in Figure 6. The SHACL specification has
a number of extensions that enable expanding the expressiveness of the validation. The SHACL-
SPARQL extension provides mechanism to add Constraint Component plugins and Rules based on
the standard SPARQL. The SHACL advanced features provides additional mechanism to add rules
for inferencing and transformation. SHACL-JS provides JavaScript extensions for SHACL, which
could implement functions for constraint component validators, target selections and rules.

28

Figure 6. SHACL Detailed Architecture

RDF terms produced by targets are not required to exist as nodes in the data graph. Targets of a
shape are ignored whenever a focus node is provided directly as input to the validation process for
that shape. A focus node is an RDF term that is validated against a shape using the triples from a
data graph.

An RDF graph uses namespaces to anchor to the appropriate (ontology) vocabularies, which can be
stored in industry standard formats like Turtle, JSON-LD and RDF/XML. SHACL itself is defined as
part of a namespace as well. There are a number of standard namespace prefixes that can be
encountered as part of the shapes definition:

Table 3. Namespace Prefix Bindings

Prefix Namespace

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

sh: http://www.w3.org/ns/shacl#

xsd: http://www.w3.org/2001/XMLSchema#

While SHACL is defined using OWL, there was no UML diagrams available for the specification. To
support the implementation of the SHACL engine, a UML Object Model compliant with the SHACL
ontology has been defined as part of this work. The model may not capture all the nuances of the
specification. However, the model was designed to have share a common understanding. The
model should not be considered normative, but only informative. The model provides extensions
points for Functions, Rules, Constraint Components and TargetTypes. The built-in and most
commonly used constraint components can be directly set to the shapes to simplify their encodings.
An overview of the model is shown in Figure 7.

29

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/ns/shacl#
http://www.w3.org/2001/XMLSchema#

Figure 7. Shape Model

The next subsections describe the other first-class business objects of the SHACL specification in
more detail.

9.3. Constraint Components
Constraint Components are at the core of the validation process. SHACL defines the concept of
constraint components which are associated with shapes to declare constraints. Each node or
property shape can be associated with several constraint components.

Constraint components are identified by an IRI and have two types of parameters: mandatory and
optional. The association between a shape and a constraint component is made by declaring values
for the parameters (called parameter bindings). The parameters are also identified by IRIs and have
values. Most of the constraint components in SHACL Core have a single parameter and follow the
convention that if the parameter is named sh:p, the corresponding constraint component is named
sh:pConstraintComponent. The Constraint Component model is shown in Figure 8.

30

Figure 8. Constraint Model

Constraint components are associated with validators, (see Figure 9), which define the behavior of
the constraint. Writing custom Constraint Component is considered as an advanced feature of the
system. However, this provides a powerful extension mechanism to represent more advanced
constraints such as spatial-temporal constraints.

For example, the DASH [http://datashapes.org/constraints.html] namespace includes a collection of
SHACL constraint components that extend the Core of SHACL with new constraint types including
value types, string-based, property pairs, relationship constraint components.

31

http://datashapes.org/constraints.html

Figure 9. Validator Model

9.3.1. Built-in Constraint Components

The SHACL Core contains a list of built-in constraint components that are classified in Table 3. In
the table, the parameter names are included because they are shorter than the component IRIs.

Table 4. Built-in Constraint Components

Operation Parameters

Cardinality constraints sh:minCount, sh:maxCount

Value types sh:class, sh:datatype, sh:nodeKind, sh:in, sh:hasValue

Value range constraints sh:minInclusive, sh:maxInclusive, sh:minExclusive, sh:maxExclusive

String based constraints sh:minLength, sh:maxLength, sh:length, sh:pattern

Language based sh:uniqueLang, sh:languageIn

Logical constraints sh:and, sh:or, sh:xone, sh:not

Shape-based constraints sh:node, sh:property sh:qualifiedValueShape,
sh:qualifiedValueShapesDisjoint sh:qualifiedMinCount
sh:qualifiedMaxCount

Closed shapes sh:closed, sh:ignoredProperties

Property pair constraints sh:equals, sh:disjoint sh:lessThan, sh:lessThanOrEquals

Non-validating constraints sh:name, sh:description, sh:order, sh:group

The following ConstraintComponent is defined in SHACL as built-in.

32

sh:MinCountConstraintComponent
 a sh:ConstraintComponent ;
 rdfs:label "Min-count constraint component"@en ;
 rdfs:comment "A constraint component that can be used to restrict the minimum
number of value nodes."@en ;
 sh:parameter sh:MinCountConstraintComponent-minCount ;
 rdfs:isDefinedBy sh: .

sh:MinCountConstraintComponent-minCount
 a sh:Parameter ;
 sh:path sh:minCount ;
 sh:datatype xsd:integer ;
 sh:maxCount 1 ;
 rdfs:isDefinedBy sh: .

sh:minCount
 a rdf:Property ;
 rdfs:label "min count"@en ;
 rdfs:comment "Specifies the minimum number of values in the set of value
nodes."@en ;
 rdfs:range xsd:integer ;
 rdfs:isDefinedBy sh: .

9.3.2. User-defined Constraint Components

User-defined constraint components are defined by declaring a list of parameters and associating
them with validators. Those validators are usually declared in SPARQL, although there is a WG
note for allowing JavaScript-based validations.

SHACL-SPARQL provides a mechanism to declare reusable constraint components based on SPARQL
query. Once defined, they can be used just like the other built-in SHACL Core components, without
the need to write SPARQL. Figure 10 shows an example of SHACL-SPARQL Constraint Component.

33

Figure 10. SPARQL Constraint Component

To create a new Constraint Component, a new vocabulary and vocabulary release needs to be
created, so we can assign a unique namespace for the component.

The serialization of the user-defined constraints is be stored as Linked Data and indexed as JSON
Objects with parameters and validator inline, so they can be quickly searched and retrieved, which
improves performance of SHACL validators.

9.3.3. Rules

Business rules can be associated with shapes (that satisfy specific constraint conditions) to derive
inferred RDF triples from existing asserted triples. SHACL rules build on SHACL to form a light-
weight RDF vocabulary for the exchange of rules.

The UML Rule Model is shown in Figure 11

34

Figure 11. Rule Model

There are two main ways to describe rules. The first one is using the simple TripleRule class, which
is an objectification of a statement. The second way is to use SPARQL construct, which is capable of
creating multiple triples. A W3C note also proposed creating triples using a JavaScript Rule
implemented by a JS function. Additional types could be added down the road using Typescript [32]
or Kotlin [33].

The model also introduces the concept of RuleSet (which does not exist in SHACL). A RuleSet is an
aggregation of Rules that capture all the business rules for a given domain. A RuleSet can also
include reference to other rule sets. A RuleSet can be associated to an RDF dataset to add extra
inferences on top of existing OWL reasoners. A RuleSet can also be used to implement the
transformation from one model to another.

9.3.4. Functions

Functions play an important role in the constructions of rules, queries, targets and constraint
components. The SPARQL query language provides a number of built-in functions that are defined
by well-defined symbols (e.g. +, STRLEN, CONCAT…) but also uses IRI for user-defined functions
(such as GeoSPARQL spatial functions).

SHACL functions declare operations that produce an RDF term based on zero or more parameters
and a data graph. Each SHACL function has an IRI. The actual execution logic (or algorithm) of a
SHACL function can be declared in a variety of execution languages. SHACL defines one specific

35

kind of SHACL functions, the SPARQL-based function. JavaScript-based Functions are defined in the
separate SHACL-JS document. If it declares execution instructions for these platforms, the same
function IRI can potentially be executed on a multitude of platforms.

SHACL functions can be called within FILTER or BIND clauses and similar features of SPARQL
queries. SHACL functions can also be used declaratively in frameworks such as the SHACL node
expressions which are used in SHACL rules. In those scenarios they may be used to perform data
transformations such as string concatenation.

The UML Function Model is shown in Figure 12

Figure 12. Function Model

Function Parameters

The parameters of a SHACL function are declared using the property sh:parameter. This
corresponds closely to the parameter declarations of SPARQL-based constraint components, and the
same syntax rules apply.

Parameters are ordered, corresponding to the notation of function calls in SPARQL such as
ex:exampleFunction(?param1, ?param2). The ordering of function parameters is determined as
follows:

If any of the parameters have a value for sh:order then all of them are ordered in ascending order
by the parameters' numeric values of sh:order, using 0 as default value if unspecified. If none of the
parameters have a value for sh:order then all of them are ordered in ascending order of the local

36

names of their declared sh:path values. Each parameter may have its property sh:optional set to
true to indicate that the parameter is not mandatory. If a function gets invoked without all its
mandatory parameters then it returns no result node (an error in SPARQL, producing unbound in a
BIND statement).

sh:returnType

A function may declare a single return type via sh:returnType.

A function has at most one value for sh:returnType. The values of sh:returnType are IRIs.

The return type may serve for documentation purposes only. However, in some execution
languages such as JavaScript, the declared sh:returnType may inform a processor how to cast a
native value into an RDF term.

SPARQL-based Functions

SHACL instances of sh:SPARQLFunction that are IRIs in a shapes graph are called SPARQL-based
functions.

SPARQL-based functions have exactly one value for either sh:ask or sh:select. The values of these
properties are strings that can be parsed into SPARQL queries of type ASK (for sh:ask) or SELECT
(for sh:select) using the SHACL-SPARQL prefix declaration mechanism. SELECT queries return
exactly one result variable and do not use the SELECT * syntax.

When the function is executed, the SPARQL processor pre-binds variables based on the provided
arguments of the function call. In the SHACL functions example above, the value for the parameter
declared as ex:op1 is pre-bound to the SPARQL variable $op1, etc. For ASK queries, the function’s
return value is the result of the ASK query execution, i.e. true or false. For SELECT queries, the
function’s return value is the binding of the (single) result variable of the first solution in the result
set. Since all other bindings will be ignored, such SELECT queries should only return at most one
solution. If the result variable is unbound, then the function generates a SPARQL error.

9.3.5. Node Expressions

This section defines a feature called node expressions. Node expressions are declared as RDF
nodes in a shapes graph and instruct a SHACL engine as to how to compute a set of nodes for a
given focus node. Each node expression has one of the following types, each of which is defined
together with its evaluation semantics in the following sub-sections.

Table 5. Node Expression Types

Node Expression Type Syntax (Informative) Summary

Focus Node Expression sh:this The set consisting of the current
focus node.

Constant Term Expression Any IRI or literal except sh:this The set consisting of the given
term.

Function Expression Blank node with a list-valued
triple

The results of evaluating a
given SHACL Function.

37

Node Expression Type Syntax (Informative) Summary

Path Expression Blank node with sh:path The values of a given property
path.

Filter Shape Expression Blank node with sh:filterShape
and sh:nodes

The sub-set of the input nodes
that conform to a given shape.

Intersection Expression Blank node with sh:intersection The intersection of two or more
input sets.

Union Expression Blank node with sh:union The union set of two or more
input sets.

The basic idea of these expressions is that they can be used to derive a set of RDF nodes from a
given focus node, such as the set of all values of a given property of the focus node. Some of these
expressions can be nested: i.e, they use the output of another expression as their input, leading to
evaluation chains and trees.

[ex:concat (
 [sh:path ex:firstName]
 [sh:path ex:lastName]
)
] .

9.4. Application Profiles
A profile in the context of linked data is defined as "a named set of constraints on one or more
identified base specifications, including the identification of any implementing subclasses of
datatypes, semantic interpretations, vocabularies, options and parameters of those base
specifications necessary to accomplish a particular function." Application profiles are included in
this definition.

NOTE: ISO and OGC define an Application Profile as a set of one or more base standards and -
where applicable - the identification of chosen clauses, classes, subsets, options and parameters of
those base standards that are necessary for accomplishing a particular function [ISO 19101, ISO
19106].

A profile is based on an existing specification, like a standard, that can either be another profile or
another specification. A profile can be expressed using a single specification, or there can be more
than one component. A profile, in the context of linked data, may consist of:

• A vocabulary in the form of a schema (such as OWL or XML schema)

• A text file containing documentation for persons doing data creation

• Actionable validation code, such as a SHACL document

Profiles serve to enable different views of the same data, making it possible to define a specification
of the data to fit specific user or application needs. The original vocabulary does not change, but the
specific representation does. They can take a number of forms and can have a variety of
relationships to existing vocabularies, standards, and other profiles. The applicability of the profile

38

can be tested for goodness of fit to assess the appropriateness for a certain application.

In the context of application profiles, a profile may consist of one or more (sub)sets of terms that
gain information from one or more other vocabularies deemed appropriate for a specific
application operating in a specific context.

9.4.1. Profiles Vocabulary

The Profiles Vocabulary [https://www.w3.org/TR/dx-prof/] is an RDF vocabulary formalized by W3C to
describe profiles of (one or more) standards for information resources. It describes the general
pattern of narrowing the scope of a specification with additional, but consistent, constraints, and is
particularly relevant to data exchange situations where conformance to such profiles is expected
and carries additional context. The Profiles Vocabulary enables profile descriptions to specify the
role of resources related to data exchange such as schemas, ontologies, rules about use of
controlled vocabularies, validation tools, and guidelines. The ontology may however be used to
describe the role of artefacts in any situation where constraints are made on the usage of more
general specifications.

39

https://www.w3.org/TR/dx-prof/

Chapter 10. Data Sources
To support this Testbed, NRCan has provided a set of TTL files related to hydrological features that
could be used as a seed for semantic enrichment from different data sources. We have investigated
a number of data sources that could potentially be used for the semantic enrichment, however due
to time constraints, the semantic enrichment was demonstrated only on two data sources: DBPedia
and Wikidata. The reason for using these two sources was because they provided ready-to-use
SPARQL endpoints that could be used by the integration framework without the need to perform a
semantic mapping from data to Linked Data. This section also describes other potential data
sources that could be used in the future for further enrichment.

10.1. NRCAN Datasets
The NRCan datasets contains features classes shown in Figure 13

Figure 13. NRCan Ontology Classes

The NRCan datasets contains features properties shown in Figure 14

40

Figure 14. NRCan Ontology Properties

The following is a sample of original hydrologic features defined by NRCan.

41

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix sesame: <http://www.openrdf.org/schema/sesame#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix fn: <http://www.w3.org/2005/xpath-functions#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dct: <http://purl.org/dc/terms/>.
@prefix hy: <http://geosciences.ca/def/hydraulic#>.
@prefix dcat: <http://www.w3.org/ns/dcat#>.
@prefix ex: <http://gin.gw-info.net/example#>.
@prefix gw: <http://geosciences.ca/def/groundwater#>.

<https://geoconnex.ca/id/waterbody/9483b203be4111d892e2080020a0f4c9> a
hy:HY_WaterBody;
rdfs:label "Plan d'eau: Ruisseau a l'Ours"@fr, "Water body: Ruisseau a l'Ours"@en.

<https://geoconnex.ca/id/waterbody/1e041853be2d11d892e2080020a0f4c9> a
hy:HY_WaterBody;
rdfs:label "Plan d'eau: Riviere L'Acadie"@fr, "Water body: Riviere L'Acadie"@en.

<https://geoconnex.ca/id/waterbody/3effba23be2a11d892e2080020a0f4c9> a
hy:HY_WaterBody;
rdfs:label "Plan d'eau: Riviere des Hurons"@fr, "Water body: Riviere des Hurons"@en.

<https://geoconnex.ca/id/waterbody/60c56a06be4911d892e2080020a0f4c9> a
hy:HY_WaterBody;
rdfs:label "Plan d'eau: Riviere Richelieu"@fr, "Water body: Riviere Richelieu"@en.

<https://geoconnex.ca/id/catchment/02OJ> a hy:HY_Catchment;
rdfs:label "Bassin versant: Richelieu"@fr,"Watershed: Richelieu"@en.

<https://geoconnex.ca/id/catchment/02OJ*CD> a hy:HY_Catchment;
hy:contains <https://geoconnex.ca/id/featureCollection/wellsIn02OJ_CD>;
 rdfs:label "Bassin versant: Ruisseau Landry - Riviere Richelieu"@fr,"Watershed:
Ruisseau Landry - Riviere Richelieu"@en.

To perform the correlation tasks, the labels were normalized by removing the typing prefix such as
"Water body:" or "Plan d’eau: ". By doing so the matching scoring was given better results against
DBPedia and Wikidata. The following shows a sample of cleaned feature labels:

42

Normalized labels on NRCan dataset.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix hy: <http://geosciences.ca/def/hydraulic#>.

<https://geoconnex.ca/id/waterbody/60c56a06be4911d892e2080020a0f4c9> a
hy:HY_WaterBody;
 rdfs:label "Riviere Richelieu"@fr,
 "Richelieu River"@en.

<https://geoconnex.ca/id/catchment/02OJ*CF> a hy:HY_Catchment;
 rdfs:label "Riviere des Iroquois "@fr,
 "Iroquois River"@en.

<https://geoconnex.ca/id/waterbody/1e041853be2d11d892e2080020a0f4c9> a
hy:HY_WaterBody;
 rdfs:label "Riviere L'Acadie"@fr,
 "Acadia River"@en.

<https://geoconnex.ca/id/waterbody/3effba23be2a11d892e2080020a0f4c9> a
hy:HY_WaterBody;
 rdfs:label "Riviere des Hurons"@fr,
 "Huron River"@en.

As the above data sources do not provide any specialized information on wells and stations, there
were few useful properties beyond the label and the type of the feature that could be leveraged for
performing the fusion against the open source data. Only water bodies and catchments provided
some results.

10.2. DBPedia
The most successful and popular wiki by far is probably Wikipedia, the largest online encyclopedia
created and maintained by a global distributed author community. Wikipedia is translated into 306
languages and the English version contains more than 5.9 million articles. However, Wikipedia is
intended for human reading and cannot be processed by machines. To address this challenge,
semantic web technology was used to make better use of the knowledge embedded in Wikipedia
pages. DBPedia [https://wiki.dbpedia.org/] is a community effort to extract structured information from
Wikipedia and to make this information available on the web. DBPedia allows the user to ask
sophisticated queries against Wikipedia (using SPARQL), and to link other data sets on the web to
Wikipedia data.

This section discusses the different data sources that are used as data input in the implementation,
and the different challenges that they present.

43

https://wiki.dbpedia.org/

Figure 15. DBPedia Hydrologic Classes

We also identified the following relevant properties from DBPedia:

• outflow

• mouth place of

• mouth mountain of

• geometry

• source1location

• westOf

• northWestOf

• southWestOf

• eastOf

• northOf

• southOf

10.3. Wikidata
Wikidata is a project of Wikimedia Deutschland which started on October 30, 2012. The aim of the
project is to provide data which can be used by any Wikipedia project, including Wikipedia.
Wikidata does not only store facts, but also the corresponding sources, so that the validity of facts
can be checked. Labels, aliases, and descriptions of entities in Wikidata are provided in more than
350 languages. Wikidata is a community effort, i.e., users collaboratively add and edit information.
Also, the schema is maintained and extended based on community agreements.

The relevant properties from Wikidata for this project are shown in Figure 16:

44

Figure 16. Wikidata relevant Hydrofeature Classes

10.4. Geonames
The GeoNames [https://www.geonames.org/] geographical database is available for download free of
charge under a creative commons attribution license. The database contains over 25 million
geographical names and consists of over 11 million unique features including 4.8 million populated
places and 13 million alternate names. All features are categorized into one of nine feature classes
and further subcategorized into one of 645 feature codes [http://forum.geonames.org/gforum/posts/list/

130.page]. There are a number of features code related to Hydrologic features codes:

The feature code H represents hydrofeatures such as stream, lake, bay, channel, pond, etc. Table 5
has some relevant feature types that are relevant for this testbed:

Table 6. Geonames Hydrofeature relevant codes

Code Description

CHN channel the deepest part of a stream, bay,
lagoon, or strait, through which the main
current flows

CNL canal an artificial watercourse

PND pond a small standing waterbody

RSV reservoir(s) an artificial pond or lake

SEA sea a large body of salt water more or less
confined by continuous land or chains of islands
forming a subdivision of an ocean

STM stream a body of running water moving to a
lower level in a channel on

STMM stream mouth(s) a place where a stream
discharges into a lagoon, lake, or the sea

STMX section of stream

45

https://www.geonames.org/
http://forum.geonames.org/gforum/posts/list/130.page

STRT strait a relatively narrow waterway, usually
narrower and less extensive than a sound,
connecting two larger bodies of water

WLL well a cylindrical hole, pit, or tunnel drilled or
dug down to a depth from which water, oil, or
gas can be pumped or brought to the surface

WLLQ abandoned well

WLLS wells cylindrical holes, pits, or tunnels drilled or
dug down to a depth from which water, oil, or
gas can be pumped or brought to the surface

WTLD wetland an area subject to inundation, usually
characterized by bog, marsh

WTRC watercourse a natural, well-defined channel
produced by flowing water, or an artificial
channel designed to carry flowing water

10.5. OpenStreetMap
OpenStreetMap is built by a community of mappers who contribute and maintain data about roads,
facilities, waterways, trails, cafés, railway stations, and much more, all over the world.

Figure 17 shows relevant features for the NRCan datasets.

46

Figure 17. Relevant Hydrofeature Classes from OpenStreetMap

10.6. Freebase
Freebase [https://web.archive.org/web/20120516075431/http://blog.freebase.com/2008/10/30/

introducing_the_rdf_service/] is a Knowledge Graph (KG) announced by Metaweb Technologies, Inc. in
2007 and was acquired by Google Inc. on July 16, 2010. In contrast to DBpedia, Freebase had
provided an interface that allowed end-users to contribute to the KG by editing structured data.
Besides user-contributed data, Freebase integrated data from Wikipedia, Notable Names Database
(NNDB), Fashion Model Directory (FMD), and MusicBrainz. Freebase uses a proprietary graph
model for storing also complex statements. On December 16, 2014, the Freebase team announced
that Freebase would shutdown its services on June 30, 2015. Wikimedia Deutschland and Google
plan to integrate Freebase data into Wikidata in the near future – a tool for that will be developed
prior to August 2015 – and to then close the Freebase website at the earliest three months later.

47

https://web.archive.org/web/20120516075431/http://blog.freebase.com/2008/10/30/introducing_the_rdf_service/

Chapter 11. Implementation

11.1. Architecture
The integration pipeline system needs to address a number of challenges to get a unified integrated
view of the information from different data sources [34]:

• Syntactic and semantic heterogeneity of data.

• Schema, identity, and data conflicts.

• Incorrect or otherwise flawed data.

• Identification of a target schema and schema translation.

• Presentation of results.

11.1.1. Semantic Integration Pipeline

One of the main goals of this Testbed was to establish a Linked Data integration framework capable
to integrate various data sources expressed as Linked data and fuse the information into a unified,
coherent and complete view. While the time frame to accomplish the implementation of the whole
framework was too short for this Testbed, participants attempted to identify and define the main
components of the integration framework pipeline. More work will be needed in future Testbeds to
complete the whole pipeline.

Data integration systems use various combinations of steps to cope with the data integration
challenges enumerated above. The approach used is illustrated in Figure 18 and consists of the
following steps:

1. Ingestion: data are mapped to data schema

2. Semantic Integration: data are mapped against a semantic model (ontology)

3. Mediation: Semantic Model are mediated to a common model

4. Deduplication: Entities that are identical semantically are correlated using similarity metrics

5. Conflict Resolution: Correlated entities are fused together following some conflict resolution
policies.

Figure 18. ProposedIntegration Pipeline

Note that Step 3 and Step 4 can be switched in order.

48

Ingestion

The integration workflow starts with the ingestion phase which collects new sources of graph data,
and ends with these contents being properly incorporated into the integrated, unified, complete,
coherent model. Source Data can be received from a variety of sources, in various states of
maturity and exploitation readiness. The source content models and formats vary widely, making it
difficult to reduce all source graphs to an acceptable harmonized state for ready ingestion into the
integration pipeline. We can distinguish them into the following categories of data sources:

• RDF repositories: Makes information directly available as Linked Data accessible through
SPARQL endpoints: information can remain on the remote SPARQL repositories and be
queryable using SPARQL repositories

• Linked Data dumps: These data can be easily ingested into local RDF repositories and be
queryable using SPARQL.

• Data sources that have APIs mappable to SPARQL queries: Examples of such data sources
are SQL datastores, NoSQL stores providing API such as ElasticSearch, MongoDB, Neo4J, XML
stores. These types of stores can use a virtual knowledge layer that perform SPARQL query
rewriting to native query (SQL, Gremlin, Elasticsearch API, etc). The advantage of this approach
is that the data remains in their native store and leverage the existing lifecycle and optimization
existing in these stores (Spatial indexing for example). Multiple virtual mappings can be defined
for the same store using different ontologies.

• Structured Data formats that is not accessible through APIs or with limited API
expressiveness (not mappable to SPARQL): Examples of such sources are CSV, JSON, XML
files, Twitter feed, RSS feeds, etc. The typical approach to ingest these types is by writing RDF
scrapping code that converts the format to RDF and stores the results in an RDF repository.

• Unstructured Data: This requires a more advanced processing pipeline to make the data
readily available for integration with other sources of information. An example of a processing
pipeline is to process text information by using Natural Language Processing (NLP) to extract
annotations such as lexical entities, relationships and semantic grounding of the entities and
relations. The output of the pipeline would be a Linked Data graph capturing the tacit
knowledge conveyed by the text document. This output requires to be stored in an RDF
repository to be further integrated with other data sources.

11.2. SHACL Engine
During this Testbed, the participants evaluated the use of an open source SHACL engine. The
reference implementation of SHACL implemented by TopQuadrant was investigated. While the
engine provides a complete implementation of SHACL-Core and SHACL Advanced Feature, it does
not provide fine grained control of the different SHACL artefacts used by the different ontologies
used for this Testbed. The integration with external resources such as SPARQL endpoint was not
easily implementable, as the reference implementation requires at this point using graphs stored in
memory. For this reason, Image Matters implemented its own SHACL engine that provides fine
grained control of the SHACL elements such as functions, rules, property shapes, constraint
components. The SHACL API was integrated with the correlation engine and is planned to be used
for the mediation and fusion engine in the future. The performance of the new engine SHACL was
about 10 times faster than the reference implementation for the test cases defined by W3C.

49

11.3. Correlation Ontology
The ontology is defined by the namespace: http://purl.org/ontology/correlation# and uses the
preferred prefix corr. The UML model for this ontology is shown in Figure 19.

Figure 19. Correlation Model

11.3.1. LinkSetSpecification

The main concept is the corr:LinkSetSpecification. This concept defines a source and a target
dataset (modelled as void:Dataset [35]) that needs to be correlated. As part of the definition,
specifications exist for which types of RDF links should be discovered between data sources as well
as which conditions data items must fulfil in order to be interlinked. These link conditions may
combine various similarity metrics and can take the graph around a data item into account, which
is addressed using a SHACL Property shape, which refers to a path with constraints on the value.
The correlation engine will access the data sources that should be interlinked via the SPARQL
protocol and can thus be used against local as well as remote SPARQL endpoints.

When correlating two entities you might want to map it to a link type, which is configurable, 'same
as' or 'similar to' are examples. LinkSet is a map to a CorrelationRuleSet, which is an aggregation of
correlation rules.

11.3.2. CorrelationRuleSet

A corr:CorrelationRuleSet defines the set of correlation rules (sim:CorrelationRule) between two
schemas (schema can be an ontology or an application profile). The corr:CorrelationRuleSet can
be reused by different corr:LinkSetSpecification to map different pairs of datasets complying with
the source and target schema supported by the corr:CorrelationRuleSet.

11.3.3. CorrelationRule

A correlation rule (corr:CorrelationRule) defines the rule of correlation between two entities
adhering to a specific shape (shacl:NodeShape) in their respective source and target schemas. A

50

http://purl.org/ontology/correlation#

correlation is always associated with a similarity method (sim:SimilarityMethod) which is used to
calculate the similarity score between two entities. The correlation rule defines the minimum
threshold (corr:threshold) to use to generate a correlation link between two entities and an
optional parameter to indicate the number of links (corr:numLinks) to generate.

11.4. Similarity Ontology
The Similarity Ontology defines concepts and properties for describing similarity methods to
correlate entities described as Linked Data. The ontology uses the standard W3C SHACL Property
Shape and SHACL Path model to describe the path and constraints on source and target node that
needs to be correlated. The ontology leverages the Metrics Ontology (described below) to refer to
metrics used for comparison. This ontology addresses some of the shortcomings of previous linked
discovery framework such as SILK and LIMES by providing a model that is based on open
standards (RDF, OWL and SHACL) favoring its reusability using standard Linked Data mechanism.
This model can be extended by adding new functions (defined in SHACL) and constraint conditions
that need to be satisfied on the node values that needs to be compared. The ontology is also
modularized in such a way that it can be reused in different domains and applications.

The ontology is defined by the namespace: http://purl.org/ontology/fusion/similarity# and uses
the preferred prefix sim. The UML model is shown in Figure 20

Figure 20. Similarity UML Model

11.4.1. Similarity Method

Two nodes of an RDF graph (literal or resource) have a similarity measure determined by a
similarity method using a specific metric. SimilarityMethod is the top abstract class of the

51

http://purl.org/ontology/fusion/similarity#

ontology. It has two subclasses that can be instantiated Comparison and Aggregation.

11.4.2. Comparison

A sim:Comparison is defined as a subclass of sim:SimilarityMethod. It refers to a source property
value and target property value specified with a shacl:PropertyShape. A shacl:PropertyShape
must have a path from the focus node to a value node using the shacl:Path model. The nodes
referred by the path can have additional constraints defined by shacl:ConstraintComponent as
specified in the SHACL model. An example of constraints could be a node value that is defined a
given language (English or French for example) using the constraint component shacl:languageIn.
The values referred by the sim:sourceProperty and sim:targetProperty are compared using a
sim:Comparator.

WARNING
The UML shows a generic property constraintComponent on
shacl:PropertyShape as a placeholder for the numerous built-in constraint
component properties (such as shacl:minCount, shacl:languageIn,sh:in,etc.)

11.4.3. Comparator

A comparator refers to a metric:Metric that is relevant for type of data that needs to be compared
(spatial, temporal, lexical, semantic). The comparator has a property sim:maxDistance with
optionally an associated metric:metricUnit. This is used to set the value of the comparator to 0 if
the value of the comparison exceeds this distance. This property can be used with a Euclidian
distance metric that is set to 0 if the calculated distance exceeds, for example, 10 km. Finally the
comparator can optionally take a sim:minScore to keep only comparison that are greater than the
minimum score value.

11.4.4. Aggregation

A sim:Aggregation is defined as a subclass of sim:SimilarityMethod which is composed of one or
more sim:AggregationComponent elements that refer to a sim:SimilarityMethod instance
(Comparator or nested Aggregation). Each component has a weight and/or sim:missingWeight
that is used by an sim:Aggregator to calculate the final similarity score. The missing weight is used
when there a component of the aggregation does not exist. The missing weight is used as a default
value for component.

11.4.5. Aggregator

sim:Aggregator defines the way the weighted aggregation components are aggregated together to
get a final score. There are a number of sim:Aggregator instances predefined in the ontology:

sim:Average Calculate the weight average of the aggregation
components

sim:GeometricMean Calculate the geometric mean of the aggregation
components

sim:Maximum Returns the maximum value of the aggregate
components

52

sim:Minimum Returns the minimum value of the aggregate
components

sim:QuadraticMean Calculate the quadratic mean of the aggregation
components

Other types of aggregator can be added such as geometric aggregator.

11.5. Metrics Ontology
There are a large number of metrics (whether distance or similarity metrics) that can be used to
compare entity attributes such as lexical, spatial, temporal, semantic, numeric metrics. However,
the participants have not identified any existing ontology that formalize these metrics. Therefore, a
new ontology module to represent metrics is introduced in this Testbed. The metrics ontology
module was defined separately in order to favor reusability for other applications. The ontology
provides the core concepts to define metrics and their types that can be classified using different
classification scheme. The aim of the ontology is to provide an extensible framework to introduce
new metrics when necessary.

The ontology is defined by the namespace: http://purl.org/ontology/metrics# and uses the
preferred prefix metric. The UML model of the ontology is shown in Figure 21.

Figure 21. Metrics UML Model

11.5.1. Metric

metric:Metric is a top class and is always defined by a URI. The property metric:isNormalized is a
property that indicates whether a metric is normalized (between 0 and 1) or not.

metric:Metric has two sub-classes:

• metric:DistanceMetric: Measures a distance, meaning the larger the measured value, the less

53

http://purl.org/ontology/metrics#

similar are the values that are compared.

• metric:SimilarityMetric: Measure a similarity distance. Typically, the value are normalized
between 0 and 1, which 0 indicating that the two values are dissimilar, and 1 indicating that
there are equals.

Metrics that have been implemented and are available are described in table Table 7.

Table 7. Metric Categories

Metric Category

Equality Discrete

Numeric Distance Numeric

Euclidian distance Spatial

Haversine distance Spatial

Hausdorff similarity Spatial

Frechet distance Spatial

Temporal interval similarity Temporal

Date Time distance Temporal

Duration Distance Temporal

Levenshtein String

Tokenized Levenshtein String

Jaro distance String

Jaro Winkler String

Needleman Wunsh String

Dice Coefficient String

Level 2 Jaro String

Level 2 Levenshtein String

Jaccard distance Semantic

11.5.2. Metric Type

The metric:MetricType class is modelled as a subclass of skos:Concept, so they can be modelled
flexibly in a classification scheme (modeled as skos:ConceptScheme) (taxonomy). The Metric is
associated with zero or more metric:MetricType instances using the property metric:metricType
following a soft typing approach (instead of strong typing using rdf:type property). This allows
more flexibility to classify Metric instance using different classification approaches such as spatial,
temporal, numeric, discrete, semantic, string.

11.5.3. Metric Unit

metric:MetricUnit is used to define a unit of measure. There are a number of ontologies for units
of measurement that are available. QUDT [36] is one the most popular. We decided not to commit to
any of the ontologies available, so we simply introduced the class metric:MetricUnit that can be

54

used to "tag" any unit of measure instance defined in other ontologies. The ontology introduces two
properties that refer to a MetricUnit: metric:metricUnit and its sub-property
metric:preferredMetricUnit.

11.5.4. Example

The following is an example of LinkSetSpecification between NRCan hydrology model and DBPedia
accessible through SPARQL Endpoints. The LinkSetSpecification specification correlate NRCAN
HY_WaterBody and HY_Catchment with DBpedia BodyOfWater using a Levenshtein string
similarity metric [37] on the rdfs:label. Any correlations with similarity score above 0.91 are
returned.

@prefix : <http://www.imagemattersllc.com/testbed15/hydro/correlationModels#> .
@prefix corr: <http://purl.org/ontology/correlation#> .
@prefix void: <http://rdfs.org/ns/void#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ks: <http://www.usersmarts.com/ont/2005/06/ks#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix prm: <http://www.smartrealm.com/ont/ks/param#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix kspf: <http://www.knowledgesmarts.com/ontologies/pf#> .
@prefix ksfun: <http://www.usersmarts.com/ont/2005/06/ks/functor#> .
@prefix shacl: <http://www.w3.org/ns/shacl#> .
@prefix metric: <http://purl.org/ontology/metrics#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sim: <http://purl.org/ontology/fusion/similarity#> .
@prefix dash: <http://datashapes.org/dash#> .
@prefix ksd: <http://www.usersmarts.com/ont/2007/02/ks/descriptor#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

: a owl:Ontology ;
 shacl:declare [shacl:namespace "http://dbpedia.org/ontology/" ;
 shacl:prefix "dbo"
] ;
 shacl:declare [shacl:namespace "http://dbpedia.org/resource/" ;
 shacl:prefix "dbr"
] ;

 shacl:declare [shacl:namespace "http://www.w3.org/2000/01/rdf-schema#" ;
 shacl:prefix "rdfs"
] .

:WaterBodyShape a shacl:NodeShape ;
 shacl:targetClass <http://geosciences.ca/def/hydraulic#HY_WaterBody>,
 <http://geosciences.ca/def/hydraulic#HY_Catchment>.

:RiverInCanadaShape a shacl:NodeShape ;
 shacl:target :RiverInCanadaSPARQLTarget .

:RiverInCanadaSPARQLTarget

55

 a shacl:SPARQLTarget ;
 shacl:prefixes : ;
 shacl:select "SELECT ?this \n WHERE { ?this a dbo:BodyOfWater;\n
dbo:sourceCountry dbr:Canada . }" .

:nrcan-dbpedia-correlation-set
 a corr:CorrelationRuleSet ;
 rdfs:comment "Rule Set to map NRCAN Hydro ontology to DBPedia" ;
 rdfs:label "CorrelationRuleSet NRCAN Hydro-Dbpedia" ;
 corr:correlationRule :RiverCorrelationRule ;
 corr:sourceSchema <http://geosciences.ca/def/hydraulic#> ;
 corr:targetSchema <http://dbpedia.org/ontology/> .

:RiverCorrelationRule
 a corr:CorrelationRule ;
 corr:sourceShape :WaterBodyShape ;
 corr:targetShape :RiverInCanadaShape ;
 sim:similarityMethod :NameComparison .

:NameComparison a sim:Comparison ;
 sim:comparator [a sim:Comparator ;
 metric:metric metric:Levenshtein
] ;
 sim:sourceProperty [
 shcl:path rdfs:label
];
 sim:targetProperty [
 shcl:path rdfs:label
];
 sim:threshold "0.91"^^xsd:double .

metric:Levenhstein a metric:Metric .

:NRCAN-Wikidata-LinkSetSpec
 a corr:LinkSetSpecification ;
 corr:correlationRuleSet :nrcan-dbpedia-correlation-set ;
 corr:sourceDataset <http://nrcan.org> ;
 corr:targetDataset <http://dbpedia.org> ;
 corr:linkType owl:sameAs.

<http://nrcan.org> a void:Dataset ;
 void:sparqlEndpoint <http://localhost:33335/contexts/nrcan/sparql> .

<http://dbpedia.org>
 a void:Dataset ;
 void:sparqlEndpoint <http://localhost:33335/contexts/dbpedia/sparql> .

The following example shows a LinkSetSpecification correlating NRCan hydrology model and
Wikidata accessible through SPARQL endpoints. The LinkSetSpecification specification correlates
NRCan HY_WaterBody with Wikidata wd:Q4022 class (River [https://www.wikidata.org/wiki/Q4022])

56

https://www.wikidata.org/wiki/Q4022

using a Levenshtein string similarity metric [37] on the rdfs:label. Any correlations with similarity
score above 0.9 are returned.

@prefix : <http://www.imagemattersllc.com/testbed15/hydro/correlationModels#> .
@prefix corr: <http://purl.org/ontology/correlation#> .
@prefix void: <http://rdfs.org/ns/void#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ks: <http://www.usersmarts.com/ont/2005/06/ks#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix prm: <http://www.smartrealm.com/ont/ks/param#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix kspf: <http://www.knowledgesmarts.com/ontologies/pf#> .
@prefix ksfun: <http://www.usersmarts.com/ont/2005/06/ks/functor#> .
@prefix shacl: <http://www.w3.org/ns/shacl#> .
@prefix metric: <http://purl.org/ontology/metrics#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sim: <http://purl.org/ontology/fusion/similarity#> .
@prefix dash: <http://datashapes.org/dash#> .
@prefix ksd: <http://www.usersmarts.com/ont/2007/02/ks/descriptor#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

: a owl:Ontology ;
 shacl:declare [shacl:namespace "http://www.wikidata.org/prop/" ;
 shacl:prefix "wdp"
] ;
 shacl:declare [shacl:namespace "http://www.wikidata.org/prop/direct/" ;
 shacl:prefix "wdt"
] ;
 shacl:declare [shacl:namespace "http://www.wikidata.org/entity/" ;
 shacl:prefix "wd"
] ;
 shacl:declare [shacl:namespace "http://www.w3.org/2000/01/rdf-schema#" ;
 shacl:prefix "rdfs"
];
 shacl:declare [shacl:namespace "http://www.wikidata.org/entity/statement/"
;
 shacl:prefix "wds"
] ;
 shacl:declare [shacl:namespace "http://www.wikidata.org/prop/" ;
 shacl:prefix "p"
] ;
 shacl:declare [shacl:namespace "http://schema.org/" ;
 shacl:prefix "schema"
] ;
 shacl:declare [shacl:namespace "http://www.wikidata.org/value/" ;
 shacl:prefix "wdv"
] .

:WaterBodyShape a shacl:NodeShape ;
 shacl:targetClass <http://geosciences.ca/def/hydraulic#HY_WaterBody>,

57

 <http://geosciences.ca/def/hydraulic#HY_Catchment>.

:RiverInCanadaShape a shacl:NodeShape ;
 shacl:target :RiverInCanadaSPARQLTarget .

:RiverInCanadaSPARQLTarget
 a shacl:SPARQLTarget ;
 shacl:prefixes : ;
 shacl:select "SELECT ?this \n WHERE { ?this wdt:P31 wd:Q4022;\n wdt:P17
wd:Q16 . }" .

:nrcan-wikidata-correlation-set
 a corr:CorrelationRuleSet ;
 rdfs:comment "Rule Set to map NRCAN Hydro ontology to Wikidata" ;
 rdfs:label "CorrelationRuleSet NRCAN Hydro-Wikidata" ;
 corr:correlationRule :RiverCorrelationRule ;
 corr:sourceSchema <http://geosciences.ca/def/hydraulic#> ;
 corr:targetSchema <http://www.wikidata.org/ontology#> .

:RiverCorrelationRule
 a corr:CorrelationRule ;
 corr:sourceShape :WaterBodyShape ;
 corr:targetShape :RiverInCanadaShape ;
 sim:similarityMethod :NameComparison .

:NameComparison a sim:Comparison ;
 sim:comparator [a sim:Comparator ;
 metric:metric metric:Levenshtein;

] ;
 sim:sourceProperty [
 shcl:path rdfs:label
];
 sim:targetProperty [
 shacl:path rdfs:label
];
 sim:threshold "0.9"^^xsd:double .

metric:Levenhstein a metric:Metric .

:NRCAN-Wikidata-LinkSetSpec
 a corr:LinkSetSpecification ;
 corr:correlationRuleSet :nrcan-wikidata-correlation-set ;
 corr:sourceDataset <http://nrcan.org> ;
 corr:targetDataset <http://wikidata.org>;
 corr:linkType owl:sameAs .

<http://nrcan.org> a void:Dataset ;
 void:sparqlEndpoint <http://localhost:33335/contexts/nrcan/sparql> .

58

<http://wikidata.org>
 a void:Dataset ;
 void:sparqlEndpoint <https://query.wikidata.org/sparql> .

11.6. Correlation Engine
A correlation engine built on top of the SHACL engine was implemented to handle the Correlation
LinkSetSpecification. The engine accepts a LinkedSetSpecification, a source and target model,
which could be served through a SPARQL endpoint or loaded in memory and parameters to include
generated statements and closure of target nodes. The engine was integrated with a RESTful API, so
it could be made accessible by web client.

11.7. Semantic Mediation Ontology
The semantic mediation ontology is used to transform an entity expressed in a given ontology A to
an entity expressed in a target ontology B. A first version of this ontology was defined during
Testbed-12 to support the semantic mediation service. A number of supporting constructs needed to
be introduced such as Rule and Function expressible in RDF. For this Testbed, an update of the
ontology was done to leverage the SHACL standard. By leveraging SHACL shapes to select target
entities, functions and rules to model transformation, the model is considerably simplified
compared to the version developed during Testbed-12. The new ontology introduce only 3 core
classes: alignment (mediation:Alignment), class mapping (mediation:ClassMapping) and
property mapping (mediation:PropertyMapping) (see Figure 22).

Figure 22. Mediation UML Model

The ontology is defined by the namespace: http://purl.org/ontology/mediation# and uses the
preferred prefix mediation.

59

http://purl.org/ontology/mediation#

11.7.1. Alignment

A semantic alignment (mediation:Alignment) defines a mapping between a source
(mediation:sourceSchema) and a target (mediation:sourceSchema) schema (schema:Schema
defined in Testbed-12). A schema can refer to an ontology or an application profile (expressed in
SHACL for example). The Application Profile representation is currently being standardized at W3C
[16]. A semantic alignment is composed of zero or more class mappings (mediation:ClassMapping)
using the association (mediation:classMapping).

11.7.2. Class Mapping

A ClassMapping defines the semantic mapping between two entities types satisfying specific
constraints. These constraints on the types and other attributes are defined by SHACL Node Shapes
(shacl:NodeShape) for the source (sourceShape association) and the target entity (targetShape
association).

A shacl:NodeShape is defined by a URI. This URI can be the URI of an rdfs:Class or owl:Class and
the identifier of the shape, which can have one or more shacl:Target. In addition, the node shape
can be constrained with property shapes (shacl:PropertyShape) or other node shape constraint
components.

The use of the SHACL Node Shape provides more flexibility than the approach used in Testbed-11
[38]. Node shapes can be defined in application profiles and be reused for the semantic mapping.

11.7.3. Property Mapping

ClassMapping can be associated with zero or more property mapping
(mediation:PropertyMapping) using the association (mediation:propertyMapping). Each
PropertyMapping refers to a source and target property shape (shacl:PropertyShape). The initial
version of the ontology was using only shacl:Path. However, the approach was not satisfactorily
capturing some constraints on the target nodes of the path (such the language of a literal value).
shacl:PropertyShape requires a shacl:Path using the property shacl:path and can have one or
more shacl:ConstraintComponents to express the constraints that the node values needs to
satisfied.

The mediation:PropertyMapping also supports transformation of values with the SHACL
NodeExpression defined in the SHACL Advanced Feature specification. This allows the
transformation of source values to new target values such as concatenation of multiple fields. For
example, foaf:surname and foaf:firstName properties could be concatenated to a model that
accepts only a fullname property such as schema:fullname..

Finally, property mapping may require some inference rules to add additional triples into the target
entities. For example, if a source entity models a rectangle with a width and height property, we
may want to infer in the target ontology that the rectangle is a square if the width and height are
equals. SHACL provides an example mechanism to define rules using SPARQLRule or simple
shacl:TripleRule. An mediation:PropertyMapping can be associated with zero or more rules
using the property mediation:transformationRule.

Due to the short duration for this Testbed, the implementation of a mediation engine supporting

60

this model was not implemented. This should be addressed in future work.

11.8. REST API
A semantic mediation service was implemented during Testbed-12. The service managed schemas
and schema mapping, and performed transformation from one schema to another. The service
followed REST principles and used JSON-LD and the Hypermedia Application Language (HAL). It is
anticipated that a variety of clients may use the Semantic Fusion Service, and as a consequence it is
difficult to accommodate the needs of every type of client. The REST API will evolve and be
modified as more requirements and features are added to the service. As long as the clients are
using the semantics of the link relation types, the hypermedia-driven API provides a robust
approach to evolve the API without breaking the client ecosystem. For this reason, the service has
adopted a hypermedia-driven RESTful API by default, which meets level 3 of the Richardson
Maturity Model [http://martinfowler.com/articles/richardsonMaturityModel.html].

For this Testbed, a REST-based Fusion Service API was implemented with a POST endpoint to
perform correlation between two datasets expressed in different ontologies. Future extensions of
the service will implement Create-Read-Update-Delete (CRUD) operations to manage
LinkSetSpecification, Alignment and Fusion Policies, and to perform mediation and fusion
operations. This could be addressed in future Testbeds.

The POST operation for correlation was accessible at the endpoint /correlate. The endpoint accepted
a multipart/form-data with the following key-value pairs that are used to configure the correlation
engine described above, in Correlation Engine.

Table 8. Request parameters

parameter
name

type description Card.

includeStat
ement

boolean Boolean indicating if the response include the statements for
each correlated pairs

0..1

includeTar
gets

boolean Boolean if the closure of correlated node are included in the
response

0..1

correlation
Model

RDF Model RDF Model including the LinkSetSpecification to use for
correlation

1

sourceMod
el

RDF Model
(RDF/XML,

TTL,
NTriples)

Source Model to correlate 0..1

targetMode
l

RDF Model
(RDF/XML,

TTL,
NTriples)

Target Model to correlate 0..1

The response of the POST operations returns an RDF Model with similarity links and optionally the
statements and targets node closure (according the setting of the request parameters).

61

http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html

Sample NRCan Data

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix hy: <http://geosciences.ca/def/hydraulic#>.

<https://geoconnex.ca/id/waterbody/60c56a06be4911d892e2080020a0f4c9> a
hy:HY_WaterBody;
 rdfs:label "Riviere Richelieu"@fr,
 "Richelieu River"@en.

<https://geoconnex.ca/id/catchment/02OJ*CF> a hy:HY_Catchment;
 rdfs:label "Riviere des Iroquois "@fr,
 "Iroquois River"@en.

<https://geoconnex.ca/id/waterbody/1e041853be2d11d892e2080020a0f4c9> a
hy:HY_WaterBody;
 rdfs:label "Riviere L'Acadie"@fr,
 "Acadia River"@en.

<https://geoconnex.ca/id/waterbody/3effba23be2a11d892e2080020a0f4c9> a
hy:HY_WaterBody;
 rdfs:label "Riviere des Hurons"@fr,
 "Huron River"@en.

LinksetSpecification NRCan to DBpedia

@prefix : <http://www.imagemattersllc.com/testbed15/hydro/correlationModels#> .
@prefix corr: <http://purl.org/ontology/correlation#> .
@prefix void: <http://rdfs.org/ns/void#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ks: <http://www.usersmarts.com/ont/2005/06/ks#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix prm: <http://www.smartrealm.com/ont/ks/param#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix kspf: <http://www.knowledgesmarts.com/ontologies/pf#> .
@prefix ksfun: <http://www.usersmarts.com/ont/2005/06/ks/functor#> .
@prefix shacl: <http://www.w3.org/ns/shacl#> .
@prefix metric: <http://purl.org/ontology/metrics#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sim: <http://purl.org/ontology/fusion/similarity#> .
@prefix dash: <http://datashapes.org/dash#> .
@prefix ksd: <http://www.usersmarts.com/ont/2007/02/ks/descriptor#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

: a owl:Ontology ;
 shacl:declare [shacl:namespace "http://dbpedia.org/ontology/" ;
 shacl:prefix "dbo"
] ;
 shacl:declare [shacl:namespace "http://dbpedia.org/resource/" ;

62

 shacl:prefix "dbr"
] ;

 shacl:declare [shacl:namespace "http://www.w3.org/2000/01/rdf-schema#" ;
 shacl:prefix "rdfs"
] .

:WaterBodyShape a shacl:NodeShape ;
 shacl:targetClass <http://geosciences.ca/def/hydraulic#HY_WaterBody>,
 <http://geosciences.ca/def/hydraulic#HY_Catchment>.

:RiverInCanadaShape a shacl:NodeShape ;
 shacl:target :RiverInCanadaSPARQLTarget .

:RiverInCanadaSPARQLTarget
 a shacl:SPARQLTarget ;
 shacl:prefixes : ;
 shacl:select "SELECT ?this \n WHERE { ?this a dbo:BodyOfWater;\n
dbo:sourceCountry dbr:Canada . }" .

:nrcan-dbpedia-correlation-set
 a corr:CorrelationRuleSet ;
 rdfs:comment "Rule Set to map NRCAN Hydro ontology to DBPedia" ;
 rdfs:label "CorrelationRuleSet NRCAN Hydro-Dbpedia" ;
 corr:correlationRule :RiverCorrelationRule ;
 corr:sourceSchema <http://geosciences.ca/def/hydraulic#> ;
 corr:targetSchema <http://dbpedia.org/ontology/> .

:RiverCorrelationRule
 a corr:CorrelationRule ;
 corr:sourceShape :WaterBodyShape ;
 corr:targetShape :RiverInCanadaShape ;
 sim:similarityMethod :NameComparison .

:NameComparison a sim:Comparison ;
 sim:comparator [a sim:Comparator ;
 metric:metric metric:Levenshtein
] ;
 sim:sourceProperty [
 sh:path rdfs:label
];
 sim:targetProperty [
 sh:path rdfs:label
];
 sim:threshold "0.91"^^xsd:double .

metric:Levenhstein a metric:Metric .

:NRCAN-Wikidata-LinkSetSpec
 a corr:LinkSetSpecification ;
 corr:correlationRuleSet :nrcan-dbpedia-correlation-set ;

63

 corr:sourceDataset <http://nrcan.org> ;
 corr:targetDataset <http://dbpedia.org> ;
 corr:linkType owl:sameAs.

<http://nrcan.org> a void:Dataset ;
 void:sparqlEndpoint <http://localhost:33335/contexts/nrcan/sparql> .

<http://dbpedia.org>
 a void:Dataset ;
 void:sparqlEndpoint <https://dbpedia.org/sparql> .

Figure 23 shows the correlation of the NRCan sample with DBPedia without including the DBPedia
triples.

Figure 23. Request example 1

Figure 24 shows the correlation of the NRCAN sample with DBPedia with enriched DBPedia triples.

64

Figure 24. Request example 2

11.9. WPS
The REST API for the fusion service can be integrated with a WPS interface. At the time of
publishing this ER, the integration was not performed due to lack of time. However, the
participants are planning on writing a WPS plugin in GeoServer that will connect to the REST API
correlation endpoint of the fusion service. However, the WPS service will not be able to support full
CRUD operations. Using the REST API is preferable for making the resource resolvable and to
integrate with web clients.

11.10. Web Crawling
This section discusses web crawling of linked data information. While this capability was not
implemented during the Testbed due to time constraints and focus on solving data fusion problem,
the participants captured some of the requirements and ideas of what a semantic web crawler
would look like in the context of data discovery and data integration. The participants assume that
a semantic crawler is configured to harvest linked data information about some entities of interests
expressed in a given ontology.

The first problem to overcome is how do you determine what data sources to crawl. The initial step
is to find if there a is semantic mapping specification from the entity ontology to other ontologies
(see below model about LinkedSet specification). These semantic mappings can be managed in a
semantic registry (as demonstrated in Testbed-12 for Semantic Mediation Service) or in a
vocabulary management service. Once all the mapped ontologies have been identified, we need to
identify data sources that use these ontologies. The search of these data sources (datasets) can be
done again using the Semantic Registry which describes metadata about the datasets including the
spatial scoping, temporal scoping, ontologies used and access information (SPARQL endpoint for
example).

65

Once the data sources with relevant ontologies have been identified, the crawler will query. For
each entity to enrich, a query is formulated to each data source using the associated linkedSet
specification to return candidate entities to be correlated and fuse. When an item has an
owl:sameAs link to an equivalent entity, the crawler can be configured to follow the link and fetch
additional triples from the resolvable URL. The triples are aggregated to be further analyzed and
fused. The results of the crawler and fusion process can be stored in an RDF repository or returned
through an API in an asynchronous manner.

66

Chapter 12. Future Work
The scope of this Testbed was very broad and attempted to tackle the hard problem of semantic
fusion from heterogeneous data sources. A thorough analysis of the integration pipeline was
performed, and we managed to formalize the different phases (mediation, correlation, fusion)
needed to produce semantic coherent fused entities. Unfortunately, due to time limitations, only the
formalization of the correlation and mediation ontology was finished along with the
implementation of a SHACL engine and correlation engine. More work is needed to demonstrate
the complete integration pipeline. The following are recommendations for future work.

12.1. Semantic Mediation Engine
The implementation of a mediation engine supporting the mediation ontology should be addressed
in future work. In particular, the OGC should investigate the transformation from one ontology to
another, an application profile to another profile, and be able to transform source query to a target
query on the fly by using query rewriting techniques leveraging the semantic mapping
specification.

12.2. Fusion Ontology and Fusion Engine
The analysis of conflict resolution needed in the fusion phase was performed in this Testbed. In
future Testbeds, the formalization of the different types of conflict and resolution strategies should
be formalized. This is so they can be used by a fusion engine to implement the fusion of similar
entities coming from multiple sources. The fusion process needs to produce fused entities that are
semantically coherent. To be consistent with the other ontologies designed during this Testbed and
that favor interoperability and reusability, the ontology should use the SHACL standard. To
demonstrate the usage of the fusion ontology, a fusion engine should be implemented to
demonstrate the fusion of entities coming out from the correlation phase in the fusion pipeline.

12.3. Integrated Fusion Pipeline
For a future Testbed, a complete fusion pipeline should be demonstrated by leveraging the data to
semantic mapping, correlation, mediation and fusion ontologies to perform the integration of
entities from multiple sources defined in different ontologies.

12.3.1. Fusion REST Service

For this Testbed, a REST-based Fusion Service API implemented a POST endpoint to perform
correlation between two datasets expressed in different ontologies. Future extensions of the service
will implement CRUD operations to manage LinkSetSpecification, Alignment and Fusion Policies
and perform mediation and fusion operation. This could be addressed in a future Testbed.

12.3.2. Integration of Semantic Data Cubes with Conversational Agent

The focus of this task was to perform the integration of semantic information. The assumption of
this Testbed was to use linked data sources (exposed as SPARQL endpoints). For future Testbeds, we

67

propose integrating Natural Language Processing (NLP) with semantic techniques by integrating
semantic data with conversational agents (such as Google Assistant or Alexa). Conversational agent
accepts text or speech input and convert the utterances into intents with entities (called slots). The
slots can be mapped to semantic concepts used by linked datasets and transformed to GeoSPARQL
queries. The results of the query can be transformed into natural language utterances. This
integration of linked data with Natural Language understanding will lower the bar to access
geospatial data. There is a large volume of data that is available as data cubes and OGC/W3C are
considering extension of the W3C RDF Cube standard to support geospatial operations
(https://www.w3.org/TR/qb4st/). This model can be used as a starting point for future Testbed and be
extended to general linked datasets.

68

https://www.w3.org/TR/qb4st/

Appendix A: Appendix A

A.1. Metric Ontology

baseURI: http://purl.org/ontology/metrics
prefix: metrics

@prefix : <http://purl.org/ontology/metrics#> .
@prefix metrics: <http://purl.org/ontology/metrics#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://purl.org/ontology/metrics>
 a owl:Ontology ;
 owl:versionInfo "Created with TopBraid Composer" ;
.
metrics:DistanceMetric
 a owl:Class ;
 rdfs:label "Distance metric" ;
 rdfs:subClassOf metrics:Metric ;
.
metrics:Metric
 a owl:Class ;
 rdfs:label "Metric" ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty metrics:isNormalized ;
] ;
.
metrics:MetricType
 a owl:Class ;
 rdfs:label "Metric type" ;
 rdfs:subClassOf owl:Thing ;
.
metrics:MetricUnit
 a owl:Class ;
 rdfs:label "Metric unit" ;
 rdfs:subClassOf owl:Thing ;
.
metrics:SimilarityMetric
 a owl:Class ;
 rdfs:label "Similarity metric" ;
 rdfs:subClassOf metrics:Metric ;
.
metrics:isNormalized

69

 a owl:DatatypeProperty ;
 rdfs:label "is normalized" ;
 rdfs:range xsd:boolean ;
.
metrics:metric
 a owl:ObjectProperty ;
 rdfs:label "metric" ;
 rdfs:range metrics:Metric ;
.
metrics:metricType
 a owl:ObjectProperty ;
 rdfs:label "metric type" ;
 rdfs:range metrics:MetricType ;
.
metrics:metricUnit
 a owl:ObjectProperty ;
 rdfs:label "metric unit" ;
 rdfs:range metrics:MetricUnit ;
.
metrics:preferredMetricUnit
 a owl:ObjectProperty ;
 rdfs:label "preferred metric unit" ;
 rdfs:range metrics:MetricUnit ;
 rdfs:subPropertyOf metrics:metricUnit ;
.

A.2. Similarity Ontology

baseURI: http://purl.org/ontology/fusion/similarity
imports: http://www.w3.org/ns/shacl#
prefix: sim

@prefix : <http://purl.org/ontology/fusion/similarity#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix sim: <http://purl.org/ontology/fusion/similarity#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://purl.org/ontology/fusion/similarity>
 a owl:Ontology ;
 rdfs:comment "Similarity Ontology used to perform correlation task" ;
 rdfs:label "Similarity Ontology" ;
 owl:imports <http://www.w3.org/ns/shacl#> ;
 owl:versionInfo "v1" ;
.
sim:Aggregation
 a owl:Class ;
 rdfs:label "Aggregation" ;

70

 rdfs:subClassOf sim:SimilarityMethod ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:aggregator ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:component ;
] ;
.
sim:AggregationComponent
 a owl:Class ;
 rdfs:label "Aggregation component" ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:similarityMethod ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:missingWeight ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:weight ;
] ;
.
sim:Aggregator
 a owl:Class ;
 rdfs:label "Aggregator" ;
 rdfs:subClassOf owl:Thing ;
.
sim:Average
 a sim:Aggregator ;
 rdfs:label "Average" ;
.
sim:Comparator
 a owl:Class ;
 rdfs:label "Comparator" ;
 rdfs:subClassOf owl:Thing ;
.
sim:Comparison
 a owl:Class ;
 rdfs:label "Comparison" ;
 rdfs:subClassOf sim:SimilarityMethod ;
 rdfs:subClassOf [

71

 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:comparator ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:sourceProperty ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:targetProperty ;
] ;
.
sim:GeometricMean
 a sim:Aggregator ;
 rdfs:label "Geometric mean" ;
.
sim:Maximum
 a sim:Aggregator ;
 rdfs:label "Maximum" ;
.
sim:Minimum
 a sim:Aggregator ;
 rdfs:label "Minimum" ;
.
sim:QuadraticMean
 a sim:Aggregator ;
 rdfs:label "Quadratic mean" ;
.
sim:SimilarityMethod
 a owl:Class ;
 rdfs:comment "Abstract base class for similarity methods. There are two kinds of
similarity methods: Comparison and Aggregation. This is class is needed to allow
nested composition." ;
 rdfs:label "Similarity method" ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty sim:threshold ;
] ;
.
sim:aggregator
 a owl:ObjectProperty ;
 rdfs:label "aggregator" ;
 rdfs:range sim:Aggregator ;
.
sim:comparator
 a owl:ObjectProperty ;

72

 rdfs:label "comparator" ;
 rdfs:range sim:Comparator ;
.
sim:component
 a owl:ObjectProperty ;
 rdfs:label "component" ;
 rdfs:range sim:AggregationComponent ;
.
sim:missingWeight
 a owl:DatatypeProperty ;
 rdfs:label "missing weight" ;
 rdfs:range xsd:decimal ;
.
sim:similarityMethod
 a owl:ObjectProperty ;
 rdfs:label "similarity method" ;
 rdfs:range sim:SimilarityMethod ;
.
sim:sourceProperty
 a owl:ObjectProperty ;
 rdfs:label "source property" ;
 rdfs:range <http://www.w3.org/ns/shacl#PropertyShape> ;
.
sim:targetProperty
 a owl:ObjectProperty ;
 rdfs:label "target property" ;
 rdfs:range <http://www.w3.org/ns/shacl#PropertyShape> ;
.
sim:threshold
 a owl:DatatypeProperty ;
 rdfs:label "threshold" ;
 rdfs:range xsd:decimal ;
.
sim:weight
 a owl:DatatypeProperty ;
 rdfs:label "weight" ;
 rdfs:range xsd:decimal ;
.

A.3. Mediation Ontology

baseURI: http://purl.org/ontology/mediation
imports: http://www.w3.org/ns/shacl#

@prefix : <http://purl.org/ontology/mediation#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .

73

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://purl.org/ontology/mediation>
 a owl:Ontology ;
 owl:imports sh: ;
 owl:versionInfo "1.0" ;
.
:Alignment
 a owl:Class ;
 a sh:NodeShape ;
 rdfs:comment "An alignment defines the rule of transformation from one schema to
another. A schema can be an ontology or an application profile" ;
 rdfs:label "Alignment" ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty :sourceSchema ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty :targetSchema ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty :classMapping ;
] ;
.
:ClassMapping
 a owl:Class ;
 rdfs:label "Class mapping" ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty :sourceNode ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty :targetNode ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty :propertyMapping ;
] ;
.
:PropertyMapping

74

 a owl:Class ;
 rdfs:comment "A property mapping maps values from a source path to target path. The
values can be calculated using transformation" ;
 rdfs:label "Property mapping" ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty :targetProperty ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty :transformation ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty :sourceProperty ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty :transformationRule ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty sh:rule ;
] ;
.
:classMapping
 a owl:ObjectProperty ;
 rdfs:label "class mapping" ;
 rdfs:range :ClassMapping ;
.
:propertyMapping
 a owl:ObjectProperty ;
 rdfs:comment "propertyMapping can be used to specify that a class mapping has a
given property mapping" ;
 rdfs:domain :ClassMapping ;
 rdfs:label "property mapping" ;
 rdfs:range :PropertyMapping ;
.
:sourceNode
 a owl:ObjectProperty ;
 rdfs:label "source node" ;
 rdfs:range [
 a owl:Class ;
 owl:unionOf (
 sh:NodeShape

75

 owl:Class
) ;
] ;
.
:sourceProperty
 a owl:ObjectProperty ;
 rdfs:comment "Source values defined a SHACL Node expression or Resource" ;
 rdfs:label "source path" ;
 rdfs:range rdfs:Resource ;
.
:sourceSchema
 a owl:ObjectProperty ;
 rdfs:label "source ontology" ;
 rdfs:range owl:Ontology ;
.
:targetNode
 a owl:ObjectProperty ;
 rdfs:label "target node" ;
 rdfs:range [
 a owl:Class ;
 owl:unionOf (
 sh:NodeShape
 owl:Class
) ;
] ;
.
:targetProperty
 a owl:ObjectProperty ;
 rdfs:comment "Target values defined a SHACL Node expression or a Property" ;
 rdfs:label "target path" ;
 rdfs:range rdfs:Resource ;
.
:targetSchema
 a owl:ObjectProperty ;
 rdfs:label "target ontology" ;
 rdfs:range owl:Ontology ;
.
:transformation
 a owl:ObjectProperty ;
 rdfs:comment "SHACL Node expression transforming source value nodes to target nodes.
Accept a constant or function expression" ;
 rdfs:label "transformation" ;
 rdfs:range rdfs:Resource ;
.
:transformationRule
 a owl:ObjectProperty ;
 rdfs:label "transformation rule" ;
 rdfs:range sh:Rule ;
.

76

Appendix B: Revision History
Table 9. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

2019-05-31 E. Kok .1 all initial version

2019-10-31 E. Kok 1.0 all issue for
submission as
pending to OGC
TC Meeting

2019-11-11 E. Kok 1.1 all revision based
on internal
feedback

2019-12-12 G. Hobona 1.1 all OGC staff final
review and edits

77

Appendix C: Bibliography
1. Fellah, S.: OGC® Testbed-11 Incorporating Social Media in Emergency Response Engineering

Report. Open Geospatial Consortium, https://portal.opengeospatial.org/files/?artifact_id=64385
(2015).

2. Fellah, S.: Testbed-12 Semantic Portrayal, Registry and Mediation Engineering Report. Open
Geospatial Consortium, http://docs.opengeospatial.org/per/16-059.html (2016).

3. Gobe Hobona, R.B.: Testbed-12 Catalogue and SPARQL Engineering Report. Open Geospatial
Consortium, http://docs.opengeospatial.org/per/16-059.html (2016).

4. Holger Knublauch: OWL and SHACL Compared, https://spinrdf.org/shacl-and-owl.html, (2017).

5. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Recommendation. 20,
(2017).

6. Grimes, S.: Unstructured data and the 80 percent rule. Carabridge Bridgepoints. 10 (2008).

7. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805. (2018).

8. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are
unsupervised multitask learners. OpenAI Blog. 1, (2019).

9. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov,
V.: Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
(2019).

10. Berners-Lee, T., Hendler, J., Lassila, O., others: The semantic web. Scientific american. 284, 28–37
(2001).

11. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: The story so far. In: Semantic services,
interoperability and web applications: emerging concepts. pp. 205–227. IGI Global (2011).

12. Tim Berners-Lee: Linked Data, https://www.w3.org/DesignIssues/LinkedData.html, (2019).

13. Hobona, G., Brackin, R.: OWS-8 CCI Semantic Mediation Engineering Report. Open Geospatial
Consortium, https://portal.opengeospatial.org/files/?artifact_id=46342 (2011).

14. Hobona, G., Brackin, R.: OWS-9 CCI Semantic Mediation Engineering Report. Open Geospatial
Consortium, https://portal.opengeospatial.org/files/?artifact_id=51840&version=1 (2012).

15. Ingo Simonis, S.F.: OGC® Testbed 10 Cross Community Interoperability (CCI) Ontology
Engineering Report. Open Geospatial Consortium, https://portal.opengeospatial.org/files/?
artifact_id=58974 (2014).

16. Atkinson, Coyle, Isaac, Car: Profile Guidance W3C Editor’s Draft 18 October 2019,
https://w3c.github.io/dxwg/profiles/, (2019).

17. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk-a link discovery framework for the web of data.
LDOW. 538, 53 (2009).

18. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link discovery without
losing recall. In: WebDB (2011).

19. Ngomo, A.-C.N., Auer, S.: LIMES—a time-efficient approach for large-scale link discovery on the
web of data. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011).

78

https://portal.opengeospatial.org/files/?artifact_id=64385
http://docs.opengeospatial.org/per/16-059.html
http://docs.opengeospatial.org/per/16-059.html
https://spinrdf.org/shacl-and-owl.html
https://www.w3.org/DesignIssues/LinkedData.html
https://portal.opengeospatial.org/files/?artifact_id=46342
https://portal.opengeospatial.org/files/?artifact_id=51840&version=1
https://portal.opengeospatial.org/files/?artifact_id=58974
https://portal.opengeospatial.org/files/?artifact_id=58974
https://w3c.github.io/dxwg/profiles/

20. Kleanthi Georgala: LIMES, http://aksw.org/Projects/LIMES.html, (2018).

21. Ngomo, A.-C.N.: Link discovery with guaranteed reduction ratio in affine spaces with minkowski
measures. In: International Semantic Web Conference. pp. 378–393. Springer (2012).

22. Ngomo, A.-C.N.: On link discovery using a hybrid approach. Journal on Data Semantics. 1,
203–217 (2012).

23. Ngomo, A.-C.N.: ORCHID–reduction-ratio-optimal computation of geo-spatial distances for link
discovery. In: International Semantic Web Conference. pp. 395–410. Springer (2013).

24. Ngomo, A.-C.N.: Helios–execution optimization for link discovery. In: International Semantic
Web Conference. pp. 17–32. Springer (2014).

25. Ngomo, A.-C.N., Lyko, K.: Eagle: Efficient active learning of link specifications using genetic
programming. In: Extended Semantic Web Conference. pp. 149–163. Springer (2012).

26. Sherif, M.A., Ngomo, A.-C.N., Lehmann, J.: Wombat - a generalization approach for automatic
link discovery. In: European Semantic Web Conference. pp. 103–119. Springer (2017).

27. Bleiholder, J., Naumann, F.: Data Fusion. ACM Comput. Surv. 41, 1:1–1:41 (2009).

28. Garcia-Molina, H.: Database systems: the complete book. Pearson Education India (2008).

29. Bleiholder, J., Naumann, F.: Declarative data fusion–syntax, semantics, and implementation. In:
East European Conference on Advances in Databases and Information Systems. pp. 58–73.
Springer (2005).

30. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases. In:
PODS. pp. 68–79. Citeseer (1999).

31. Fellah, S.: OGC Testbed-14: Characterization of RDF Application Profiles for Simple Linked Data
Application and Complex Analytic Applications Engineering Report. Open Geospatial
Consortium, http://docs.opengeospatial.org/per/18-094r1.html (2018).

32. Microsoft: TypeScript Language, https://www.typescriptlang.org/, (2019).

33. Kotlin Foundation: Kotlin Language, https://kotlinlang.org/, (2019).

34. Michelfeit, J., Knap, T., Nečaskỳ, M.: Linked data integration with conflicts. arXiv preprint
arXiv:1410.7990. (2014).

35. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets with the void
vocabulary. (2011).

36. Hodgson, R., Keller, P.J., Hodges, J., Spivak, J.: QUDT-quantities, units, dimensions and data types
ontologies. USA Available http://qudt. org March. (2014).

37. wikipedia: Levenhstein Distance, https://en.wikipedia.org/wiki/Levenshtein_distance, (2019).

38. Fellah, S.: Testbed-11 Implementing Linked Data and Semantically Enabling OGC Services
Engineering Report. Open Geospatial Consortium, https://portal.opengeospatial.org/files/?
artifact_id=64405 (2015).

79

http://aksw.org/Projects/LIMES.html
http://docs.opengeospatial.org/per/18-094r1.html
https://www.typescriptlang.org/
https://kotlinlang.org/
http://qudt
https://en.wikipedia.org/wiki/Levenshtein_distance
https://portal.opengeospatial.org/files/?artifact_id=64405
https://portal.opengeospatial.org/files/?artifact_id=64405

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. �Introduction
	6.1. Problem Definition
	6.2. �Status Quo
	6.2.1. Lack of a Multi-Modal Data Integration Framework
	6.2.2. Lack of a Unified, Extensible Logical Graph Model
	6.2.3. Lack of Formal Semantics
	6.2.4. Lack of Consistent Means for Recording and Exploiting Provenance and Pedigree Information (Source and Method)

	Chapter 7. Data Integration
	7.1. Classifying Data: Structured, Unstructured, Semi-structured
	7.2. Linked Data and Semantic Web
	7.3. 5-Star Linked Open Data
	7.4. Semantic Mediation
	7.5. Deduplication

	Chapter 8. Data Fusion
	8.1. Conflict Classification
	8.2. Data Fusion Strategies and Answers
	8.3. Data Fusion Answers
	8.4. Conflict Resolution Functions

	Chapter 9. �Shapes Constraint Language (SHACL)
	9.1. Comparison of OWL and SHACL
	9.2. SHACL Shapes
	9.3. Constraint Components
	9.3.1. Built-in Constraint Components
	9.3.2. User-defined Constraint Components
	9.3.3. Rules
	9.3.4. Functions
	9.3.5. Node Expressions

	9.4. Application Profiles
	9.4.1. Profiles Vocabulary

	Chapter 10. Data Sources
	10.1. NRCAN Datasets
	10.2. DBPedia
	10.3. Wikidata
	10.4. Geonames
	10.5. OpenStreetMap
	10.6. Freebase

	Chapter 11. Implementation
	11.1. Architecture
	11.1.1. Semantic Integration Pipeline

	11.2. SHACL Engine
	11.3. Correlation Ontology
	11.3.1. LinkSetSpecification
	11.3.2. CorrelationRuleSet
	11.3.3. CorrelationRule

	11.4. Similarity Ontology
	11.4.1. Similarity Method
	11.4.2. Comparison
	11.4.3. Comparator
	11.4.4. Aggregation
	11.4.5. Aggregator

	11.5. Metrics Ontology
	11.5.1. Metric
	11.5.2. Metric Type
	11.5.3. Metric Unit
	11.5.4. Example

	11.6. Correlation Engine
	11.7. Semantic Mediation Ontology
	11.7.1. Alignment
	11.7.2. Class Mapping
	11.7.3. Property Mapping

	11.8. REST API
	11.9. WPS
	11.10. Web Crawling

	Chapter 12. �Future Work
	12.1. Semantic Mediation Engine
	12.2. Fusion Ontology and Fusion Engine
	12.3. Integrated Fusion Pipeline
	12.3.1. Fusion REST Service
	12.3.2. Integration of Semantic Data Cubes with Conversational Agent

	Appendix A: Appendix A
	A.1. Metric Ontology
	A.2. Similarity Ontology
	A.3. Mediation Ontology

	Appendix B: Revision History
	Appendix C: Bibliography

