OGC Testbed-15

Open Portrayal Framework Engineering Report

Table of Contents

1. Subject
2. Executive Summary
2.1. Document contributor contact points
2.2. Foreword
3. References
4. Terms and definitions
4.1. Abbreviated terms
5. Overview
6. Open Portrayal Framework Scenario
6.1. Scenario Details
7. Emerging OGC Web APIs
7.1. API Styles and Conceptual Model for Style Encoding & Metadata
7.2. API Maps and Tiles
7.3. API Images
7.4. API Changesets
8. GeoPackage
8.1. Introduction
8.2. GeoPackage Extensions and Profiles
8.3. GeoPackage to support the Open Portrayal Framework
8.3.1. Conveying Styling Rules
8.3.2. Coupling Layers and Styles
8.3.3. Making Styles Accessible Operationally
8.4. Implementations and Lessons Learned
9. Technical Discussions
9.1. Background Color
9.2. Styleable Layer Set
9.3. Conversions Between style Encodings
9.3.1. GeoSolutions
9.3.2. Ecere
9.4. Sprites
9.5. Mediatypes for an Open Portrayal Framework
10. Further Information and Videos
Appendix A: Annex A: OPF Implementations
A.1. Implementation GeoSolutions
A.1.1. Available services and layers
A.1.2. OGC API implementation approach
A.1.3. Features API endpoint
A.1.4. Images API endpoints

© 00 J O U1 U Wb

10
11
12
16
16
17
18
19
20
20
20
23
24
24
25
25
27
27
33
34
34
36
38
39
41
42
42
42
43
44
46

A.1.5. Tiles API endpoints
A.1.6. Styles API endpoints
A.2. Client Components and Scenario Details
A.2.1. Links
A.3. Implementation interactive instruments
A.3.1. Overview
A.3.2. New API building blocks
A.4. Implementation (Ecere)
A.4.1. Service components
A.4.2. GeoPackage producer
A.4.3. Client components
A.5. Implementation CubeWerx
A.5.1. Available services and layers
A.5.2. Tiles API endpoints
A.5.3. Styles API endpoints
A.5.4. Image API endpoints
A.6. Implementation Compusult
A.6.1. Overview
A.6.2. Scenario Details
A.7. Implementation Image Matters

Appendix B: Revision History

47
49
50
62
63
63
64
68
69
83
83
94
94
95
96
96
97
97
98
123
125

Publication Date: 2020-02-06

Approval Date: 2019-11-22

Submission Date: 2019-10-31

Reference number of this document: OGC 19-018

Reference URL for this document: http://www.opengis.net/doc/PER/t15-D015
Category: OGC Public Engineering Report

Editor: Martin Klopfer

Title: OGC Testbed-15: Open Portrayal Framework Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/t15-D015
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

Chapter 1. Subject

This Engineering Report (ER) describes the OGC Testbed-15 Open Portrayal Framework (OPF)
Thread requirements, scenario, high-level architecture, and solutions. Main topics addressed in the
OPF Thread include style changing and sharing, converting style encodings, client- / server-side
rendering of vector- and raster data and data provision in denied, disrupted, intermittent, and
limited bandwidth (DDIL) infrastructure situations. The work in the OPF Thread was focused on an
OGC Application Programming Interface (API) oriented approach.

Chapter 2. Executive Summary

This Engineering Report provides a detailed summary of the Open Portrayal Framework (OPF)
Thread in OGC Testbed-15, executed from April to November 2019.

The Open Portrayal Framework is a set of emerging specifications that support interoperable
portrayal of heterogeneous geospatial data. The Open Portrayal Framework facilitates the
rendering of geospatial data in a uniform way, according to specific user requirements. The
primary topics addressed in the OPF thread covered supporting style sharing and updates, client-
and server-side rendering of both vector- and raster data, and converting styles from one encoding
to another; all following a single conceptual style model. In addition, the requirement to render
data according to style definitions in a scenario with denied, disrupted, intermittent, and limited
bandwidth (DDIL) infrastructure has been addressed.

This Engineering Report describes the Open Portrayal Framework requirements, scenario, high-
level architecture, and solutions that were developed. Further details on the work carried out in the
OPF Thread are provided in the following ERs:

* OGC Testbed-15: Encoding and Metadata Conceptual Model for Styles Engineering Report
[http://www.opengis.net/doc/PER/t15-D011]

The shift from traditional Web Services towards Web APIs has strongly influenced the work in the
OPF Thread and as a result three draft specification Engineering Reports have been developed:

* OGC Testbed-15: Styles API Engineering Report [http://docs.opengeospatial.org/per/19-010r2.html]

* OGC Testbed-15: Maps and Tiles API Engineering Report [http:/docs.opengeospatial.org/per/19-
069.html]

* OGC Testbed-15:Images and ChangesSet API Engineering Report [http://docs.opengeospatial.org/per/
19-070.html]

A high-level summary is available in the following ER:

* OGC Testbed-15: Portrayal Summary Engineering Report [http://www.opengis.net/doc/PER/t15-D017]

2.1. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role
Martin Klopfer Frisia IT Editor

Jeff Yutzler Image Matters Contributor
Joe Jagiella Image Matters Contributor
Clemens Portele interactive instruments Contributor
Keith Pomakis CubeWerx Inc. Contributor

http://www.opengis.net/doc/PER/t15-D011
http://docs.opengeospatial.org/per/19-010r2.html
http://docs.opengeospatial.org/per/19-069.html
http://docs.opengeospatial.org/per/19-070.html
http://www.opengis.net/doc/PER/t15-D017

Name

Andrea Aime
Stefano Bovio
Jerome St-Louis

Joan Maso Pao

Jeff Harrison
Matt Sorenson
Carl Reed

Ingo Simonis

2.2. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide

Organization
GeoSolutions
GeoSolutions
Ecere

Universitat Autonoma de
Barcelona (CREAF)

AGC
AGC
0GC
OGC

supporting documentation.

Role

Contributor
Contributor
Contributor

Contributor

Contributor
Contributor
Contributor

Contributor

Chapter 3. References

The following normative documents are referenced in this document.
e OGC 06-121r9, OGC® Web Services Common Standard (2010) [https://portal.opengeospatial.org/files/?
artifact id=38867&version=2]

* OGC: OGC 02-070, Styled Layer Descriptor, Version 1.0 (2002) [http://portal.opengeospatial.org/files/?
artifact_id=1188]

* OGC: OGC 05-078r4, Styled Layer Descriptor, Version 1.1 (2007) [http://portal.opengeospatial.org/files/?
artifact id=22364]

e OGC: OGC 17-069r3, OGC API - Features - Part 1: Core (2019) [http://docs.opengeospatial.org/is/17-069r3/
17-069r3.html]

* OGC: OGC 05-077r4, OpenGIS Symbology Encoding Implementation Specification (2006)
[http://portal.opengeospatial.org/files/?artifact_id=16700]

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
http://portal.opengeospatial.org/files/?artifact_id=1188
http://portal.opengeospatial.org/files/?artifact_id=22364
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://portal.opengeospatial.org/files/?artifact_id=16700

Chapter 4. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply:

Style

a sequence of rules of symbolizing instructions to be applied by a rendering engine on one or
more features and/or coverages

Style encoding

specification to express a style as one or more files
NOTE In Testbed-15 Mapbox Styles, OGC SLD versions 1.0 and 1.1 are used.

Icons

In computing, an icon is a pictogram or ideogram displayed on a computer screen in order to
help the user navigate a computer system. https://en.wikipedia.org/wiki/Icon_(computing)

Layer

A layer is an abstraction of reality specified by a geographic data model (feature, coverage...) and
represented using a set of symbols (Style) to plot it. A layer contributes to a single geographic
subject and may be a theme.

Sprites
A sprite is a computer graphics term for a two-dimensional bitmap that is integrated into a
larger scene.

Stylesheet

representation of a style in a style encoding.

Style metadata

essential information about a style needed to support users to discover and select styles for
rendering their data and for visual style editors to create user interfaces for editing a style.

Coverages API

OGC API-Coverages provides the API building block to access coverages as defined by the
Coverage Implementation Schema (CIS) 1.1 on the Web.

Features API

OGC API-Features provides the API building block to create, modify and query features on the
Web.

Maps API
OGC API-Maps provides the API building block to describe, build and retrieve web maps.

Styles API

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://en.wikipedia.org/wiki/Icon_(computing

OGC API-Styles is a Web API that enables map servers and clients as well as visual style editors to
manage and fetch styles.

Tiles API

OGC API-Tiles provides API building block to describe, build and retrieve tiles from any resource
that can be subdivided in a regular set of tiles (e.g., maps, features and coverages).

Web API

API using an architectural style that is founded on the technologies of the Web. [source: OGC API
- Features - Part 1: Core]

4.1. Abbreviated terms

API

Application Programming Interface

0GC

Open Geospatial Consortium

SLD
OGC Styled Layer Descriptor

SE
Symbology Encoding

WCS

Web Coverage Service

WES

Web Feature Service

WMS
Web Map Service

WMTS
Web Map Tile Service

Chapter 5. Overview

An overview of the major work items of the Testbed-15 Open Portrayal Framework thread is shown
in Figure 1.

Encoding and Metadata
Conceptual Model
for Styles

Framework

scenario GeoPackage

with styles

Open Portrayal Framework
w

17 " e
{ | “ . ;

v/

APl Images

APl Maps

o

API Change sets API Tiles

Figure 1. Overview of the Testbed-15 Open Portrayal Framework major work items

The scenario for the emerging Open Portrayal Framework is described in detail in the following
chapter Open Portrayal Framework Scenario. The scenario discussion explains the driving
requirements for the various developments conducted in Testbed-15. Among these developments
are a series of draft OGC Web APIs.

The draft OGC APIs are discussed from a more abstract viewpoint, with some of the major
discussion items and design decisions being highlighted in the chapter Emerging OGC Web APIs. A
detailed documentation of the APIs can be found in the respective ERs that are listed in the
Executive Summary.

An enhanced GeoPackage model was developed to facilitate advanced styling in offline situations.
The main results are discussed in the chapter GeoPackage.

The ER concludes with the documentation of a number of participant general discussions and
design decisions required to complete the OPF Thread. These are reported in the chapter Technical
Discussions.

A detailed description of implementation aspects and presentation of the results provided by the
participants is presented in Annex A: OPF Implementations.

10

Chapter 6. Open Portrayal Framework
Scenario

The goal of the Testbed-15 Open Portrayal Framework thread was to implement a data discovery,
access, and styled rendering scenario. The scenario included data updates performed as
background tasks and support for online/offline functionality. The scenario is illustrated in Figure
2. Conceptually close steps are colored in matching shades of gray (i.e. steps 1-4, 5-6, 7-9, and 10-11).
Logically differentiated Users 1-3 in this scenario can be realized as a single physical user.

Step 5: Discover User 2

data, find Step 6: Load

modified style,
display the data

reference to
style, load data

Step 8: New
image triggers tile Step 4: Upload
_ updates modified style
Image archive to style server
Step 7: User Styles server
uploads new
satellite scene to
image archive Step 2:Load and
style and display
Data server data with Visual Style Editor
stylesheet applied Step 3: Load
Step 1: Discover Visual Style
data, find Editor, modify
reference to style
Step 9: Request style, load data
User 3 only data that

have changed
User/1

Step 11: Load data
and references to
styles and symbols
from server to
build GeoPackage

DEVICE

Step 10: User
requests
GeoPackage for
offline usage

GeoPackage
builder

Figure 2. The Testbed-15 Open Portrayal Framework scenario

Step 1: The user discovers API endpoints that provide vector, raster, or tiled vector or tiled raster
data, maps, or coverages. The data can be retrieved via implementations of the OGC API — Features
standard, or via emerging OGC API specifications for -Tiles and -Maps in addition to traditional OGC
Web Services (OWS) such as WMS, WMTS, or WES/WCS. Corresponding styles are made available at
a dedicated endpoint. Links between the two allow understanding which style works with which
data, and vice versa.

11

Step 2: User-1 loads styling instructions from the style server via the Styles API. Requirement: Style
information shall be available at a dedicated endpoint that allows users to manage and modify
styles.

Step 3: A user can modify any style using Visual Style Editors. These tools allow modifying styles
and ideally transform styles from one encoding to another (e.g. from OGC SLD to Mapbox Style or
vice versa).

Step 4: Styles are retrieved from the style API endpoint, modified in the Visual Style Editor, and
uploaded to the style server again. The modified style is available to other users.

Step 5: Other users (here User-2) discover the same data. The references to the applicable styles
have not changed.

Step 6: User-2 follows the reference to the styles and loads these. The rendered data now looks as
defined by User-1.

Step 7: A third user or remote system makes new satellite imagery available to an image archive.

Step 8: This process triggers the re-building of individual tiles as served by Web API endpoints
(APIs -Tiles or -Maps).

Step 9: Users interested in the changes since a given checkpoint can access the changed tiles (i.e. the
change set) exclusively. This would allow large tile stores to be updated incrementally.

Step 10/11: In the future, the full scenario should be available to both online and offline situations.
In this Testbed the focus was on adding styles and other data layers to OGC GeoPackages.

6.1. Scenario Details

The following paragraphs show the various implementations that have been created by
participants in Technology Integration Experiments (TIEs) conducted in Testbed-15 and provide
additional information.

Step 1 The user discovers API endpoints that provide vector, raster, or tiled vector or tiled raster
data, maps, or coverages. The user loads the data and finds references to corresponding styles to
render the data correctly (or retrieves pre-rendered tiles that apply the stylesheets).

12

Ecere

GeoSolutions

Styles Images

Interactivelnstruments

Styles Tiles Features

Ecere

Styles Images Features

CubeWerx

D 666

Styles Tiles Images WMS, WFS,
WMTS, WCS

\//

GeoSolutions Compusult

Figure 3. Step 1 & 2: Discover data and styles, load data, display data

Step 2 The references to the applicable styles point to a server that provides access to the styles via
the Styles API. The user loads the style and applies the stylesheet to the data. Not happy with the
result, the user decides to modify the style.

Three clients have been produced in Testbed-15 that interact with the various service endpoints as
illustrated below.

Step 3 A user can modify any style using a Visual Style Editor. These tools allow modifying styles
and ideally transform styles from one media type to another (e.g. from OGC SLD to Mapbox Style or
vice versa).

Ecere
Visual Style Editor

GeoSolutions

Styles Images

AN ‘\

Interactivelnstruments

Styl es Tlles Features

Ecere

Styles Images Features

CubeWerx

== 1110

Styles Tiles Images WMS, WFS,
WMTS, WCS

GeoSolutions
Visual Style Editor

Figure 4. Step 3: Load Visual Style Editor, change and update style

Two Visual Style Editors were implemented in Testbed-15. Both are described and illustrated in

13

Annex A: OPF Implementations and illustrated in the videos listed in the section Videos and
Outreach Material. Both editors are capable of retrieving a style from a style server, updating the
style locally, and re-distributing the style by uploading it to the style server.

Step 4 Once the stylesheet has been adapted to the user’s needs, the user may decide to make the
modified style available via the Style API. The Style API provides transactional capabilities for that
purpose.

Step 5 In Step 5, another User-2 discovers the same data as User-1. The references in the data to the
applicable styles have not changed, since the data server is not aware of any modifications to styles.
User-2 retrieves the data via the various API endpoints (API Maps or Tiles) similar to User-1.

Step 6 User-2 discovers references to the applicable styles and loads these similar to User-1 before.
Except, that the loaded stylesheets now also contain the styling instructions which User-1 defined
before, using the Visual Style Editor.

Step 7 & 8 Other users or systems make new satellite imagery available to an image archive. This
process triggers the re-building of individual tiles as served by tile service endpoints.

The steps involve an implementation of the new OGC API - Images draft specification that allows
uploading images to an image archive. The API basically functions like a catalog API and is further
described in the section API Images. Three implementations of this API have been developed in the
Testbed-15 activities.

Ecere
New imagery

GeoSolutions Interactivelnstruments Ecere CubeWerx

Styles Images Styles Tiles Features Styles Images Features Styles Tlles Images WMS 'WFS,
\\ WMTS, WCS

//

GeoSolutions: Compusult:
New imagery New imagery

Figure 5. Step 7 & 8: New sat-scene added to image server and update tiles behind the scene

Step 9 User-1 needs to have the latest data for a given region. To avoid loading the entire data set
again, User-1 requests all changed data since the last checkpoint (here: since the last request).
Because new imagery data is now available, the data server provides a set of updated tiles.

The step makes use of the draft OGC API - Change Set specification as documented in the section API
Changesets.

Step 10 & 11 The Open Portrayal Framework is envisioned to provide full support for online/offline

14

mixed environments. For the offline situation, GeoPackages are used as a data container that
supports a draft extension for styles and symbols. The necessary extensions are described in the
section GeoPackage.

Image Matters Compusult Ecere
GeoPackage GeoPackage GeoPackage

Compusult Ecere
GeoPackage client GeoPackage client

Figure 6. Step 10 & 11: Offline handling using Geopackage

GeoPackage builders ideally load all data using the same API endpoints as the users before.

15

Chapter 7. Emerging OGC Web APIs

Testbed-15 required revision of the Web Map Tile Service (WMTS) standard to align the service
definition with the emerging OGC API family of standards and specifications that are documented
using OpenAPI and to allow for image transactions and style support. Early in the process, the
Testbed participants decided to implement these requirements in the form of a set of Web APIs,
each API handling specific functionality. Eventually, the Open Portrayal Framework developed the
following draft APIs.

* Styles [http://www.opengis.net/doc/PER/t15-D012] to manage styles at dedicated style endpoints
* Maps [http://www.opengis.net/doc/PER/t15-D014] to handle pre-rendered geospatial data

» Tiles [http://www.opengis.net/doc/PER/t15-D014] to handle tiled geospatial data available for
rendering

* Images [http://www.opengis.net/doc/PER/t15-D016] to allow uploading of images to image archives,
and

* ChangeSets [http://www.opengis.net/doc/PER/t15-D016] to allow clients to request only incremental
changes since a given checkpoint.

The Maps and Tiles APIs as well as Images and Change Sets APIs are documented together in the
OGC Testbed-15 Images and Change Sets Engineering Report OGC 19-070 [http://www.opengis.net/doc/PER/
t15-D014]. Eventually, the standards vetting and approval process for each API will be handled by a
dedicated Standards Working Group within the OGC Standards Program. This work could result in
five individual OGC APIs being documented and approved as OGC standards.

This report briefly discusses general aspects of each of these draft API specifications in the
following chapters.

7.1. API Styles and Conceptual Model for Style
Encoding & Metadata

The Styles API is a Web API that enables map servers and clients as well as visual style editors to
manage and fetch styles. This draft API is documented in OGC Testbed-15: Styles API Engineering
Report (OGC 19-010) [http://www.opengis.net/doc/PER/t15-D012]. The Styles API is consistent with the
emerging OGC API family of standards. The Styles API implements the draft conceptual model for
style encodings and style metadata as documented in the OGC Testbed-15: Concept Model for Style
Encoding & Metadata Model Engineering Report (OGC 19-023) [http://www.opengis.net/doc/PER/t15-D011].
The draft conceptual model provides information for understanding styles intended usage,
availability, compatibility with existing layers, as well as supporting style search. The conceptual
model defines three main concepts:

* The style is the main resource.

» Each style is available in one or more stylesheets - the representation of a style in an encoding
like OGC Styled Layer Descriptor (SLD) 1.0 [http:/portal.opengeospatial.org/files/?artifact_id=1188],
Symbology Encoding (SE) 1.1 [http://portal.opengeospatial.org/files/?artifact_id=16700], Cascading Style
Sheets (CSS) [https://docs.geoserver.org/latest/en/user/styling/css/index.html], or Mapbox GL

16

http://www.opengis.net/doc/PER/t15-D012
http://www.opengis.net/doc/PER/t15-D014
http://www.opengis.net/doc/PER/t15-D014
http://www.opengis.net/doc/PER/t15-D016
http://www.opengis.net/doc/PER/t15-D016
http://www.opengis.net/doc/PER/t15-D014
http://www.opengis.net/doc/PER/t15-D012
http://www.opengis.net/doc/PER/t15-D012
http://www.opengis.net/doc/PER/t15-D011
http://www.opengis.net/doc/PER/t15-D011
http://portal.opengeospatial.org/files/?artifact_id=1188
http://portal.opengeospatial.org/files/?artifact_id=16700
https://docs.geoserver.org/latest/en/user/styling/css/index.html
https://docs.geoserver.org/latest/en/user/styling/css/index.html
https://docs.mapbox.com/mapbox-gl-js/style-spec/

[https://docs.mapbox.com/mapbox-gl-js/style-spec/]. Clients can use the stylesheet of a style that fits best
based on the capabilities of available tools and their preferences.

* For each style there is style metadata available, with general descriptive information about the
style, structural information (e.g., layers and attributes), and so forth to allow users to discover
and select existing styles for their data.

The conceptual model was developed taking into account the knowledge gained in the draft OGC
Symbology Conceptual Model: Core part [https:/portal.opengeospatial.org/files/89616] and the Vector Tiles
Pilot (VTP) [http://docs.opengeospatial.org/per/18-101.html] activities. The VTP, conducted just before
Testbed-15 started, produced a first prototype of a Styles API independent of the style encoding

Testbed-15 developed the Styles API to allow management, sharing, and usage of styles
independently from concrete API endpoints. With the new API, datasets that are shared by other
Web APIs implementing the OGC API - Features - Part 1: Core standard or the draft OGC API -
Coverages or draft OGC API - Tiles specifications can reference applicable styles served by dedicated
Style Web API endpoints.

The Styles Web API proof-of-concept supports full CRUD (create, read, update, delete) and thus
features reusability of styles in an unprecedented way. In combination with Visual Style Editors,
commonly used styles can be adapted, transformed from one serialization format to another
(Testbed-15 experimented with OGC SLD/SE, MapBox GL, CSS, and CNOSIS internal style format)
and shared again after modification.

Web APIs implementing the draft OGC API - Maps specification fetch styles and render spatial data
(features or coverages) on the server. Map clients fetch styles and render spatial data (features or
coverages) on the client.

In order to support styles, data APIs (for example, supporting the OGC API-Features standard and/or
the draft OGC API Tiles) require additional capabilities, too. These are:

 List and manage the applicable styles per feature collection (path /collections/{collectionId}).

* Add a queryables resource (path /collections/{collectionId}/queryables) to support clients such
as visual style editors to construct expressions for selection criteria in queries on features in the
collection. "Queryable" means that the property may be used in styling rules or other filter
expressions.

The Styles API specification uses OpenAPI 3.0 [http://spec.openapis.org/oas/v3.0.2] to specify the building
blocks of the APIL

7.2. API Maps and Tiles

The OGC Web Map Tile Service [http:/portal.opengeospatial.org/files/?artifact_id=35326] (WMTS)
implementation standard provides a standard based solution to serve digital maps using
predefined image tiles. The standard builds on the Capabilities model, which is common to all OGC
Web Service standards from the Key-Value-Pair (KVP) and Simple Object Access Protocol (SOAP) era,
to advertise the tiles the service has available through a standardized declaration in the
ServiceMetadata (aka Capabilities) document. This declaration defines the tiles available in each
layer (i.e. each type of content), in each graphical representation style, in each format, in each

17

https://portal.opengeospatial.org/files/89616
https://portal.opengeospatial.org/files/89616
http://docs.opengeospatial.org/per/18-101.html
http://docs.opengeospatial.org/per/18-101.html
http://spec.openapis.org/oas/v3.0.2
http://portal.opengeospatial.org/files/?artifact_id=35326

coordinate reference system, at each scale, and over each geographic fragment of the total covered
area. The ServiceMetadata document also declares the communication protocols and encodings
through which clients can interact with the server. Clients can interpret the ServiceMetadata
document to request specific tiles.

The new version of WMTS should be better aligned with the emerging OGC API family of standards.
These APIs

* leverage fundamental Web concepts,
* are documented using OpenAPI, and

* replace the Capabilities concept with a combination of landing page content and hypermedia
controls.

This new family of (emerging) standards reflects the design change from existing Web service
standards (W*S) towards Web APIs in order to serve geospatial data more natively on the Web. The
Web API OGC API - Maps and Tiles draft specifications were further developed in Testbed-15 in
response to these design changes.

As documented in the beginning of this chapter, Testbed-15 participants developed a series of APIs
to cover functionality offered by a revised, transactional WMTS. The draft Maps and Tiles APIs,
documented in detail in OGC document 19-069 [http://www.opengis.net/doc/PER/t15-D014] adopt an
approach similar to that of the OGC API - Features - Part 1: Core standard. The OGC API - Tiles draft
specification describes a service that retrieves data representations as tiles. Tiles are organized into
Tile Matrix Sets consisting of regular tile matrices available at different scales or resolutions. The
OGC API - Tiles draft specification is described as a building block that can be plugged into an OGC
API - Features service to retrieve tiled feature data (sometimes called vector tiles or tiled vector
data) or to an OGC API — Maps implementation to retrieve rendered tiles (sometimes called map
tiles). Thus, depending on the source data and the behavior of the corresponding service, a client
may receive tiled vector data (e.g. as Mapbox, GeoJSON, etc.), or raster data (e.g. TIFF, NetCDF, etc.).
In the future, tiles could even support multiple data formats in a single tile container, i.e. raster
data and vector data in a single tile. The same concept is applicable to layers. A tile container could
contain multiple layers (that can be of different types as well).

The maps part of the draft OGC API - Maps and Tiles specification describes an API that presents
some data as maps by applying a style. These maps can be retrieved as tiles (if OGC API - Tiles is
also adopted by the implementation) or as maps of any size generated on the fly.

7.3. API Images

The requirement for a Web API to handle new imagery came up in the context of updated tile
caches. Basically, a new image becomes available and needs to be added to an image archive. The
provisioning of that image then triggers the re-generation of tiles in an adjacent tile store for the
area affected by the new image (or even the entire area, depending on tiling concepts and
methodologies). So far, a direct connection between the image archive and the tile store is assumed.
In a future initiative, this connection can be further analyzed and further decoupled. The Images
API is described in full detail in OGC Testbed-15:Images and ChangesSet API Draft Specification
Engineering Report [http://www.opengis.net/doc/PER/t15-D016] (OGC 19-070).

18

http://www.opengis.net/doc/PER/t15-D014
http://www.opengis.net/doc/PER/t15-D016
http://www.opengis.net/doc/PER/t15-D016

The initial discussion focused on an image specific solution. However, it quickly became clear that
the image archive case is nothing more than an asset catalog. An image catalog has just one main
difference to most other catalogs: An image catalogue stores the images themselves and not just
references, as most other catalogs do. This resulted in the Spatial Temporal Asset Catalog (STAC)
[https://github.com/radiantearth/stac-spec] being considered for use in the Testbed.

STAC is a Web API-enabled generic catalog solutions for spatio-temporal assets. "The Spatio
Temporal Asset Catalog (STAC) specification aims to standardize the way geospatial assets are
exposed online and queried. A 'spatiotemporal asset' is any file that represents information about the
earth captured in a certain space and time. The initial focus is primarily on remotely-sensed imagery
(from satellites, but also planes, drones, balloons, etc), but the core is designed to be extensible to SAR
(Synthetic Aperture Radar), full motion video, point clouds, hyperspectral, LiDAR (Light Detection and
Ranging) and derived data like NDVI (Normalized Difference Vegetation Index), Digital Elevation
Models, mosaics, etc." (STAC) [https://github.com/radiantearth/stac-spec].

7.4. API Changesets

The Changeset building block describes a mechanism for partial data updates to maintain
synchronization between a server and a client cache that could be applied to any data service. Each
retrieval of data from the server has associated a checkpoint identifier that is used in further
communications. The Testbed-15 Open Portrayal Framework thread concentrated on updates to
imagery stores. The filter mechanisms use checkpoint identifiers to constrain the response to tiles
updated for a given target area since a provided checkpoint.

This work on changesets is closely related to the work on Delta Updates as performed in the
Testbed-15 "Delta Updates" thread. In that thread, the goal was to develop a general solution to
reduce the volume of transferred feature data in Denied, Degraded, Intermittent and Limited
(DDIL) Bandwidth environments. Delta Updates explored how servers can decide to further reduce
the amount of update data by leveraging classification schemes. Depending on the applied
classification schema, the server may only send top priority updates in DDIL conditions and further
lower priority updates, once conditions improve. The OGC Testbed-15: Delta Updates Engineering
Report [http://www.opengis.net/doc/PER/t15-D005] describes the delta updates solution and describes how
prioritized delta updates can be served using a transactional extension for the OGC API — Features
and the WPS standard/OGC API - Processes in front of WFS instances.

Within the OPF thread, the participants decided to keep the classification scheme available, since
this approach might prove beneficial in future work. For Testbed-15, all tiles have been part of the
same class, i.e. the schema has been ignored at implementation stage.

The Changeset API is described in full detail in OGC Testbed-15:Images and ChangesSet API Draft
Specification Engineering Report [http://www.opengis.net/doc/PER/t15-D016].

19

https://github.com/radiantearth/stac-spec
https://github.com/radiantearth/stac-spec
http://www.opengis.net/doc/PER/t15-D005
http://www.opengis.net/doc/PER/t15-D005
http://www.opengis.net/doc/PER/t15-D016
http://www.opengis.net/doc/PER/t15-D016

Chapter 8. GeoPackage

Testbed-15 contributed in a large extent to the development of the Proposed OGC GeoPackage
Enhancements Discussion Paper [https:/portal.opengeospatial.org/files/?artifact_id=89670&version=1] as
published as OGC document 19-047. In this section, the main elements are briefly summarized.
Focus is provided on experimentation experiences and lessons learned during the implementation
phase of the Testbed-15 Open Portrayal Framework Thread.

8.1. Introduction

The Open Geospatial Consortium (OGC) GeoPackage Encoding Standard was developed for the
purpose of providing an open, standards-based, platform-independent, portable, self-describing,
compact format for transferring geospatial information. GeoPackage has proven to be an effective
"container" mechanism for bundling and sharing geospatial data for a variety of operational use
cases. However, GeoPackage stakeholders have observed persistent interoperability issues,
particularly with regards to metadata, extensions, and portrayal.

While OGC 19-047 discusses a series of enhancements, this chapter focuses on enhancements
directly relevant for portrayal, including enhancements to deal with change sets that are part of the
Testbed-15 Open Portrayal Framework scenario.

8.2. GeoPackage Extensions and Profiles

Section 6.1.2 of OGC 19-047 [https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#
_styles_metadata] introduces a concept for building metadata profiles. Metadata profiles are an
optional agreement on how metadata is to be used in a GeoPackage to meet a particular purpose.
Through the GeoPackage extension mechanism, a community of interest may define one or more
metadata profiles that specify the encoding, scope, and purpose of a particular type of metadata.
Without this mechanism, a GeoPackage client would be forced to inspect all metadata content to
respect an out-of-band (non-machine-encoded) agreement to determine how metadata is being
used in that file.

The GeoPackage Style Metadata Profile [https:/portal.opengeospatial.org/files/?artifact_id=89670&version=1#
metadata_styles_extension] satisfies the need for metadata for styles. The second profile introduces
data governance aspects to GeoPackages. The GeoPackage Delta Update Profile
[https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#metadata_updates_extension] allows
tracking local updates to a GeoPackage, so that they can be applied to another repository.
GeoPackage is a single-user database with no built-in security, so any management of updates
beyond version and checksum will rely on the trustworthiness of software and users. With that
understanding, the GeoPackage Metadata Extension supports the elements needed to track updates
made locally. Please note: The name Delta Update was used in early stages of Testbed-15
development and was only superseded by Change Set towards the end of the initiative.

An important GeoPackage mechanism produced during Testbed-15 was Semantic Annotations
[https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#_semantic_annotations]. This activity
addressed interoperability issues caused by lack of formal semantics in data descriptions. There is
an unbounded set of ancillary information that may be operationally relevant to GeoPackage users.

20

https://portal.opengeospatial.org/files/?artifact_id=89670&version=1
https://portal.opengeospatial.org/files/?artifact_id=89670&version=1
https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#_styles_metadata
https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#metadata_styles_extension
https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#metadata_updates_extension
https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#_semantic_annotations

Members of the GeoPackage community have periodically proposed adding additional columns to
existing GeoPackage tables to address one-off operational needs. This approach does not scale, and
adding additional columns to existing tables introduces interoperability risks and does not
necessarily meet operational needs due to unclear semantics.

The proposed Semantic Annotations extension allows such information to be placed on any
GeoPackage business objects. The schema for a Semantic Annotation is straight-forward, including
resolvable URIs and types along with a human-readable name and description. Semantic
Annotations are linked to business objects via the Related Tables Extension. Section 6.3.1
[https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#sa_layers_to_styles] ~explains how the
mechanism can be applied to link layers to styles, which is essential to identify appropriate styling
rules, symbols, and fonts for data layers. Since the styles that will work for a particular layer are
independent of the data (and may be produced by one or more completely different organizations),
a loose coupling between layers and styles is preferred. By annotating layers (either conventional
or tiled vector data) with known valid styles, a GeoPackage client may provide a user a reasonable
set of style options to choose from. Whether the styles are stored directly in the GeoPackage or are
accessible through a separate style service, the client will be able to retrieve the styles and apply
them to the data in the layer.

The following figure illustrates the Semantic Annotation concept. Based on GeoPackage’s Related
Tables Extension [http:/docs.opengeospatial.org/is/18-000/18-000.html], the data content and its
organization in a layer is linked to the stylesheets by leveraging the Semantic Annotation concept.

21

https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#sa_layers_to_styles
http://docs.opengeospatial.org/is/18-000/18-000.html
http://docs.opengeospatial.org/is/18-000/18-000.html

Figure 7. Styles linked to layers based on the GeoPackage related table and Semantic Annotation concepts

The same approach can be applied to Stylable Layer Sets. The stylable layer set concept was
introduced to group multiple styles that apply to the same data set or schema. For example, a
stylable layer set could apply to a theater of operations and could group a set of styles (e.g.,
"topographic”, "satellite overlay", and "night"). The original proposal called for a column to be
added to a pair of tables, but the semantic annotation approach would be more flexible and could
be applied to both conventional and tiled vector layers. In this latter case, both the layers and the

/
 base_table_name 1

i
system tables \
N

atable»
gpkg_contents

“rowid": integer
table_name: text

J T

1 7
/ ,table_name
)

|
extension tables\ ,’

controller tables \

@ stables
gpkgext_related_tables

id: integer
base_table_name: text

~ 1 7] related_table_name: text

relation_name: text
mapping_table_name: text
T

base_primary_column: text

related_primary_column: text

|
|
1
|
|
I
|
1
|

base_table_name 2
I
I
I

I
irelated_table_name 1,2

N
@ atable»
gpkgext_vt_layers
table_name: text
name: text
description: text
min_zoom: integer

max_zoom: integer
attributes_table_name: text

ol

@ gpkgext_stylesheets 1

wtables I

id: integer |
style: text]
format: text |
stylesheet: blob)
title: text
description: text
uri: text

base_id

mapping tabl

base_id

' .
uri !
1

\
= !
semantic tablés\ -

Y 1%

atable»
gpkgext_semantic_annotations

id: integer

type: text

name: text
description: text
uri: text

rd

s

related_id

related_id _ - -

*

i

-

' -

® wtables
contents_to_sa

wtable» - =
vi_layers_to_sa =]

base_id
related_id

base_id
related_id

mapping_table_name 1

styles could be annotated with one or more stylable layer sets.

22

]

]

|
|

|
|

|

|

|

|
|
|
|
|
|
|
:mapping_table_name 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i

controller tables \

@ atablex
‘gpkgext_related_tables
id: integer
base_table_name: text

_ = — — = 7 | base_primary_column: text
- =~ 7| |related_table_name: text =
- - related_primary_celumn: text -

=" - relation_name: text - -
P P mapping_table_name: text -~ -~
- L . ~ S
- . ~ .
g . s 1 A N ~
,/base_table_name 1 . L | A N ~ .
4 -~
‘ ‘ [Y N ~.
systemutables ’ ’ 'w N N -

of ’ i v v ~
! ! ! \ \ \
@ atables v I ! \ 1 \

gpkg_contents. ! n .

i
N base_table_name 2 base_table_name 3

r

e '
rowid™: integer f \
table_name: text f

I ’

'

Y [| ‘ \
! i ‘

' - v
*table_name | ' ,related_table_name 1,23 |
! I
n | | i
extension tables \ . ! |
N \ Y .
atables «tables |
® gpkgext_vt_layers ®gpkgex_stvleshee|s \\
|

id: integer

style: text
format: text
stylesheet: blob
title: text
description: text
uri: text

Bl 7

table_name: text

name: text

description: text
min_zoom: integer
max_zoom: integer
attributes_table_name: text

imapping_table_name 2 mapping_table_name 3

'
'
]
'
[
1 'mapping_table_name 1
I
'
'
'
l

\ |
base_id ‘uri \
N |

semantic tablgs \ !

NV 1

|
[
]
]
[
|
I
|

\ @ «tabler I
\ gpkgext_semantic_annotations 1

id: integer h
type: text ; B
name: text , ! ,
description: text ’

uri: text

v T ’ e -

base_id base_id

mapping tables) ?, N -7
N 3 £ NV -7
@ wtables atables @ atables ==
contents_to_sa vt_layers_to_sa stylesheets_to_safefp — — = 7
base_id base_id base_id
related_id related_id related_id

Figure 8. Styles linked to layers based on the GeoPackage related table and Semantic Annotation concepts

A third practical example for Semantic Annotation is Layer-to-Layer Linking
[https://portal.opengeospatial.org/files/?artifact_id=89670&version=1#_example_3_layer_to_layer_linking]. When a
GeoPackage contains a relatively large volume of vector data (either in conventional feature or
tiled vector layers), a recommended practice is to pre-render raster tiles that cover a large
geographic area. This reduces the need to render extreme numbers of features at run-time. In
scenarios wher