
OGC CDB Vector Data in GeoPackage
Interoperability Experiment

Table of Contents
1. Summary . 4

1.1. Requirements & Research Motivation . 4

1.2. Prior-After Comparison. 5

1.3. Recommendations for Future Work . 5

1.4. Document contributor contact points . 5

1.5. Foreword . 6

2. References . 7

3. Terms and definitions . 8

3.1. Abbreviated terms . 8

4. Overview . 9

4.1. IE Overview . 9

4.2. Engineering Report Section Overviews. 9

5. Details of the Experiments Performed . 10

5.1. A CDB Data Store - General Overview . 10

5.2. CDB Data and Tools Used by Participants. 11

5.2.1. Overview. 11

5.2.2. Experiment 1: Conversion - The CDB Data Stores and tools used in this IE 11

5.2.3. Key discussion topics related to CDB data stores . 13

5.3. Details Related to Experiment 2 . 13

5.3.1. Option 1a – 1:1 Conversion of Shapefiles to GeoPackages . 13

5.3.2. Option 1b – Conversion of Shapefiles to GeoPackages using Normalized SQL Data 14

5.3.3. Option 1c – Flattened Attribution . 15

5.3.4. Option 1d – Flattened Attribution + extensions. 15

5.4. Experiment 3 - Each CDB LOD as a layer in GeoPackage . 16

5.5. Experiment 4: Store each Geocell of Vector Data as a layer in GeoPackage 16

6. IE Experiment Results . 18

6.1. Aechelon Technology IE Report . 18

6.1.1. Use case and experiment focus . 18

6.1.2. Aechelon Experiment Methodology . 18

6.1.3. Metrics . 19

6.1.4. Legend . 21

6.1.5. Notes and observations . 21

6.2. CAE Results for Experiment 2 . 22

6.2.1. Focus of the Experiment . 22

6.2.2. Comparing File Formats . 22

6.2.3. Modifications to the GDAL/OGR Library . 23

6.2.4. Converting a Full CDB . 24

6.2.5. Network Test . 24

6.2.6. Real-Time CDB Client Device . 25

6.3. Compusult Results from Experiment 2 . 26

6.4. FlightSafety Experiment Results . 26

6.4.1. FlightSafety International’s Use Case for CDB . 26

6.4.2. FlightSafety Experiment Focus . 26

6.4.3. FlightSafety Experiment Methodology . 27

6.4.4. FlightSafety Metrics . 28

6.4.5. Shapefile vs. GeoPackage Experiment 2 Testing . 29

6.4.6. GeoPackage Experiments 3 and 4 Testing. 32

6.4.7. Further GeoPackage Experiment 3 & 4 Testing . 35

6.5. Hexagon US Federal Technology Experiment Report . 37

6.5.1. Experiment Methodology - Dataset Conversion . 37

6.5.2. Experiment Methodology - Visualization . 37

6.5.3. Metrics . 38

6.5.4. Notes on Metrics . 39

6.5.5. Notes and Observations. 39

6.6. Guidance. 40

7. Recommendations, Observations, and Conclusions . 41

7.1. Backwards compatibility in the CDB context. 41

7.1.1. FlightSafety observations on backwards compatibility . 41

7.2. Findings . 41

7.2.1. Aechelon Findings . 41

7.2.2. CAE Findings . 42

7.2.3. FlightSafety Findings . 42

7.2.4. Hexagon/Luciad Findings . 43

7.3. Recommendations . 43

7.3.1. Aechelon . 43

7.3.2. CAE Recommendations . 43

7.3.3. FlightSafety Recommendations. 44

7.3.4. Hexagon/Luciad Recommendation . 45

7.3.5. Some unanswered questions for SWG discussion . 45

Appendix A: Revision History . 46

Appendix B: Bibliography . 47

Publication Date: 2019-08-20

Approval Date: 2019-06-28

Submission Date: 2019-06-05

Reference number of this document: OGC 19-007

Reference URL for this document: http://www.opengis.net/doc/PER/CDB-GPKG-IE

Additional Formats (informative):

Category: OGC Public Engineering Report

Editor: Carl Reed, PhD

Title: OGC CDB Vector Data in GeoPackage Interoperability Experiment

OGC Public Engineering Report

COPYRIGHT

Copyright © 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an Engineering Report created as a
deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. This Engineering Report is distributed for review and comment. The content is
subject to change without notice and may not be referred to as an OGC Standard. Further, any
Engineering Report should not be referenced as required or mandatory technology in
procurements. However, the discussions in this document could very well lead to the definition of
an OGC Standard.

1

http://www.opengis.net/doc/PER/CDB-GPKG-IE
https://docs.opengeospatial.org/per/19-007.pdf
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary
This OGC Engineering Report (ER) documents the results of the CDB Vector Data in GeoPackage
Interoperability Experiment (IE). The participants in this IE tested transforming CDB Shapefile
vector data into one or more GeoPackage(s) and storing the result in a CDB data store. GeoPackage
Version 1.2 and CDB Version 1.1 and related Best Practices were the standards baseline used for this
experiment. The IE builds on the work described in the OGC CDB, Leveraging GeoPackage
Discussion Paper [https://portal.opengeospatial.org/files/?artifact_id=82553].

A primary objective of this IE was to agree and document possible change requests and/or best
practices for storing vector data in a CDB data using encodings and/or containers other than
Shapefiles. These suggested changes requests and/or best/practices will be used as the basis for CDB
Standards Working Group (SWG) discussions related to possible revisions to the CDB standard.

The experiments performed in this Interoperability Experiment included:

• Experiment 1: Conversion of Shapefiles in one or more CDB data stores into GeoPackages as
required for Experiments 2, 3, and/or 4.

• Experiment 2: One-to-one conversion of a Shapefile into a GeoPackage.

• Experiment 3: Store each CDB Level of Detail (LOD) as a layer in GeoPackage.

• Experiment 4: Store each Geocell of Vector Data as a layer in GeoPackage.

While there are a number of issues, such as file path naming conventions that need to considered
and agreed to by the SWG, the participant consensus is that the GeoPackage approach identified
and tested in Experiment 2 is a strong candidate for inclusion in Version CDB 1.2. Experiment 2
focused on a one to one conversion of Shapefiles into GeoPackages.

Please note that a reader of this Engineering Report should have a basic understanding of both the
CDB storage model and the GeoPackage Standard. Details on the Experiments performed in this IE
can be found here Details of the Experiments Performed.

Key Recommendation 1: Experiment 2 Option C provides both a reduction in the dataset’s file count
and minimizes the impact to existing CDB applications accessing data in the current tiled directory
structure. This approach should be seriously considered as part of CDB Version 1.2. There are
several issues that the SWG needs to discuss and resolve, such as how to indicate vector storage
type.

Key Recommendation 2: Consider additional Interoperability Experiments to fully explore (and
optimize) Experiments 3 and 4 with an objective of perhaps specifying one or both of these
approaches in CDB version 2.0.

1.1. Requirements & Research Motivation
In the commercial modelling and simulation industry, geospatial data content generation and use is
exploding at a rate that is outpacing the innovation and utilization of the traditional Modelling and
Simulation (M&S) industry. At the same time, the M&S and Geospatial Intelligence (GEOINT)
industries are on a path to convergence. Within the OGC, there are two geospatial standards that

4

https://portal.opengeospatial.org/files/?artifact_id=82553
https://portal.opengeospatial.org/files/?artifact_id=82553

best enable the unification of the M&S and GEOINT industries: OGC CDB and GeoPackage. OGC CDB
and GeoPackage are both standards increasingly used in M&S and GEOINT industry. However, they
both contain weaknesses and strengths when it comes to the combined needs of both industries.

1.2. Prior-After Comparison
This IE is based on preliminary work conducted under funding by the U.S. Army Geospatial Center
(AGC). The results of that work is publicly released as OGC Document Number 18-077: OGC CDB and
GeoPackage Discussion Paper [https://portal.opengeospatial.org/files/?artifact_id=80537&version=1] [1]. The
Discussion Paper documents the results of research, design, and prototype efforts to present the
OGC with an approach to creating “GeoCDB” — a technology mashing of GeoPackage and OGC CDB
— as a deterministic repository of easily read data geospatial datasets suitable for storage, runtime
access, and dissemination for live, virtual, constructive, gaming, and mission command (MC)
systems.

1.3. Recommendations for Future Work
This Interoperability Experiment addressed the specific issue of how best to and develop guidance
for storing GeoPackage containers in a CDB data store. As a result of the experiments conducted in
this IE activity, the participants have identified a number of other potential interoperability
experiments that could be conducted in the future.

This current IE and potential future ones will provide highly relevant input into the specification
and development of CDB Version 2.0.

1.4. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Role Name Organization

Initiator/Lead David Graham CAE

Technical Lead Carl Reed Carl Reed & Associates

editor Carl Reed Carl Reed & Associates

Initiator Kevin Bentley Cognitics

Initiator Holly Black CACI

Initiator Hermann Brassard Presagis

Initiator Brian Ford FlightSafety

Initiator Ryan Franz FlightSafety

Initiator Jay Freeman CAE

Initiator Glen Johnson VATC

Initiator Mike Lokuta CAE

Initiator Bernard Leclerc CAE

5

https://portal.opengeospatial.org/files/?artifact_id=80537&version=1
https://portal.opengeospatial.org/files/?artifact_id=80537&version=1

Role Name Organization

Initiator Lance Marrou Leidos

Initiator Earl Miller USSOCOM

Initiator Ronald Moore Leidos

Initiator Susan Raymie USSOCOM

Initiator Sara Saeedi University of Calgary

Participant Jordan Dauble Simblocks.io

Participant Paul Foley KaDSci

Participant Priamos Georgiades Aechelon

Participant Robert Goff Hexagon US Federal

Participant Dave Lajoie Presagis

Participant Graham Long Thales

Participant Jason McDonald Compusult

Participant Nacho Sans-Pastor Aechelon

Participant Kathleen Ski ISPA Technology

Participant Trent Tinker Luciad

1.5. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

6

Chapter 2. References
The following normative documents are referenced in this Engineering Report.

• OGC: OGC 15-113r5 [https://portal.opengeospatial.org/files/15-113r5], Volume 1: OGC CDB Core
Standard: Model and Physical Data Store Structure, Open Geospatial Consortium, 2018

• OGC: OGC 16-070r3 [https://portal.opengeospatial.org/files/16-070r3], Volume 4: OGC CDB Best Practice
use of Shapefiles for Vector Data Storage, Open Geospatial Consortium, 2018

The following informative documents are referenced in this Engineering Report.

• OGC: OGC 18-077r2 [https://portal.opengeospatial.org/files/?artifact_id=82553], OGC CDB, Leveraging
GeoPackage Discussion Paper, Open Geospatial Consortium, 2019

7

https://portal.opengeospatial.org/files/15-113r5
https://portal.opengeospatial.org/files/16-070r3
https://portal.opengeospatial.org/files/?artifact_id=82553

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

3.1. Abbreviated terms
The following abbreviated terms provides a list of the abbreviated terms and the symbols necessary
for understanding this document.

• CRS Coordinate Reference System

• GPKG GeoPackage

• ER Engineering Report

• GDAL Geospatial Data Abstraction Library

• IE Interoperability Experiment

• IG Image Generation

• OGC Open Geospatial Consortium

• OGR OGR Simple Features Library

• OWS OGC Web Services

• SRS Spatial Reference System

• SWG Standards Working Group

8

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Chapter 4. Overview

4.1. IE Overview
The current approved OGC CDB 1.1 Standard provides a Best Practices document describing the
encoding of vector data using Esri Shapefiles. All previous versions of CDB (including OGC CDB
Standard 1.0 and the Industry-maintained CDB Specification 3.2 and prior) have only described
vector data encoding in Shapefiles. All known CDB content and repositories that include vector data
are encoded using Shapefiles. As a result, there have been numerous requests to test and document
how other vector encodings could be stored in a CDB data store. This requirement is captured in
OGC Change Request 545 [http://ogc.standardstracker.org/show_request.cgi?id=545]. Another identified
issue is that every use of Shapefiles creates four physical files on storage. This has performance
implications for such operations as transferring CDB structured content from one device to
another.

The goal of this IE was achieved by replicating the experimentation conducted in the OGC CDB,
Leveraging GeoPackage Discussion Paper [https://portal.opengeospatial.org/files/?artifact_id=82553]. IE
participants represented CDB content creators, maintainers of CDB repositories, implementers of
CDB datasets in run-time and non-run-time CDB use cases, or new CDB 1.1 users who are evaluating
CDB implementations.

The IE participants helped produce this OGC Engineering Report that discusses whether the
recommended alternate GeoPackage encoding of CDB vector data is fit for use and submission to
the OGC for consideration as an approved change to the OGC CDB 1.1 Standard and/or related Best
Practices.

4.2. Engineering Report Section Overviews.
Section 4 introduces the background and requirements for adding GeoPackages as a storage format
in a CDB data store. It describes the situation prior to the Interoperability Experiment and discusses
the requirements defined by the CDB user base.

Section 5 discusses the experiments in detail. The concept of operation also provides
recommendations on preferred strategies.

Section 6 discusses the results of the various experiments performed as part of this initiative. A
clear mapping of requirements for proposed GeoPackages in a CDB data store candidate
standard/best practice is provided.

Section 7 provides a summary of the main findings and discusses proposed change requests.

Annex A provides detailed performance information.

9

http://ogc.standardstracker.org/show_request.cgi?id=545
https://portal.opengeospatial.org/files/?artifact_id=82553
https://portal.opengeospatial.org/files/?artifact_id=82553

Chapter 5. Details of the Experiments
Performed
This section details the experiments and participant involvement in each experiment. The
experiments performed in this Interoperability Experiment included:

• Experiment 1: Conversion of Shapefiles in one or more CDB data stores into GeoPackages as
required for Experiments 2, 3, and/or 4.

• Experiment 2: One-to-one conversion of a Shapefile into a GeoPackage. The four sub-options are
described below.

• Experiment 3: Store each CDB LOD as a layer in GeoPackage.

• Experiment 4: Store each Geocell of Vector Data as a layer in GeoPackage.

The following table provides an overview of which experiments were executed by each participant.

Participant Experiment 1 Experiment 2 Experiment 3 Experiment 4

Aechelon X X X X

CAE X X

Compusult X X X X

FlightSafety X X X X

Hexagon/Luciad X X X X

VATC X X

5.1. A CDB Data Store - General Overview
A CDB structured data store is physically arranged on disk into the following top-level directory
structures:

• Metadata contains a set of Extensible Markup Language (XML) metadata and controlled
vocabulary files that are global to the data store.

• GTModel contains geotypical models, generic models that are defined once in the CDB and are
intended to be rendered in multiple places throughout the data store (contrast with geospecific
or GS models). They are not intended to represent specific objects, but simply a typical
representation of an object type such as a tree.

• MModel contains Moving Models, which do not have a fixed location and are intended to be
dynamically placed and moved throughout a simulation. An example is an automobile or
aircraft.

• Tiles contains tiled datasets. This is the structure in which the majority of vector-based
Shapefiles are stored.

• Navigation contains global navigation datasets.

A CDB data stored is structured into partitions that organizes the world into regular cells (tiles). For

10

latitudes from –50° to 50° of latitude, a CDB Geocell is 1° × 1°, from latitude 50° to 70° the cell size is
1° × 2°, and so on. Within each cell, the tiled datasets are organized into a Level of Detail (LOD)
hierarchy. More specifically, the CDB storage model relies on three important means to organize the
data: a) Tiles which organize the data into zones defined by its location with respect to a WGS84
reference system; b) Layers (or datasets) which organize different types of data in a tile; and c)
LODs which organize the data in each layer of each tile by its detail.

Most CDB datasets are organized in a tile structure and stored in the \CDB\Tiles\ directory. The tile
structure facilitates access to the information in real-time by any runtime client devices. However,
for some datasets that require minimal storage, such as, Moving Models or Geotypical Models, there
is no significant advantage to be added for such a tile structure. Such datasets are referred to as
global datasets and consist of data elements that are global to the earth.

Point, line, and area features are encoded in a CDB store as Shapefiles and are organized into
several Vector Datasets and LODs. For each LOD, the CDB standard specifies the maximum number
of points allowed per Tile-LOD and the resulting average Feature Density is defined. All vector data
in a CDB store are referenced to the WGS 84 Earth-centered, Earth-fixed terrestrial reference
system and geodetic datum.

5.2. CDB Data and Tools Used by Participants

5.2.1. Overview

Three complete CDB data stores were provided for use in this Interoperability Experiment. The
provision of CDB data stores and the subsequent conversion of Shapefiles into GeoPackages was
defined in the IE Activity Plan in Experiment 1 [2]. The participants identified a number of activities
associated with executing Experiment 1. A key objective of this experiment was to capture and
compare metrics as well as to identify and document any differences in the Shapefile to
GeoPackage conversions that resulted from the use of different conversion tools.

5.2.2. Experiment 1: Conversion - The CDB Data Stores and tools used in this
IE

This section provides a short summary of the CDB data stores and tools used by each of the
participants in this OGC Interoperability Experiment. Greater detail for each participants work can
be found in Section 6 (Results) of this report.

Aechelon

Aechelon used the following CDB data stores in their experiments:

• Yemen (4 geocells), from Presagis.

• Downtown Los Angeles (1 geocell), from VATC.

• Greater Los Angeles (4 geocells), from Cognitics.

Aechelon used the following tools in their experiments. The CDB data stores were used as the
source for content to feed a publishing process into the Aechelon Image Generator (IG) runtime
format. The publishing software is in Python, with invocations of C++ EXEs for performance-critical

11

processing. The feature scan step is entirely in Python, version 3.5. The changes implemented on
the publisher side to support GeoPackage were the minimal necessary to get functional parity with
the Shapefile based implementation. In other words, no attempt was made to optimize the code to
take advantage of the internals of the GeoPackage files using SQLite, and all data access went
through the OGR module.

CAE Montreal

CAE did not use the sample CDB provided by the participants because their goal was to compare the
performance of their internal applications when running with a CDB produced by CAE before and
after the replacement of Shapefiles with GeoPackage files. However, they believe that our findings
may apply equally well to other databases.

CAE used a slightly modified version of GDAL for converting Shapefiles to GeoPackages. See Section
6 Results for more detailed information.

FlightSafety

FlightSafety used the 4 geocell Yemen from Presagis, the 1 geocell downtown Los Angeles from
VATC, and the 27 geocell Northwest Pacific CDB from Congitics. FlightSafety used modified GDAL
and Python scripts to convert the datasets to GeoPackage. FlightSafety used their own software
implementation to read in and perform queries on the GeoPackage files for testing.

Hexagon/Luciad

Hexagon/Luciad utilized the Yemen CDB data store. The tools used for all experiments are elements
of Luciad CDB Studio.

The CDB Studio is a component based modular application developed using the Luciad Platform, a
development platform for solving C4ISR needs in the Defense, Aviation and Maritime domains. The
Luciad CDB Studio provides the ability to create OGC CDB data stores directly from imagery,
elevation, and vector geospatial data products. The application also has strong support for
GeoPackages. It can export any source, including CDB into GeoPackage imagery, elevation, or vector
data. It also supports a GeoPackage styling extension and the ability to convert CDB 3D Models into
OGC 3D Tiles stored in GeoPackage.

Presagis

Presagis provided a CDB data store for the country of Yemen.

VATC

VATC provided a CDB data store created from fully open data sources [1: For the IE, VATC made the
data available at https://storage.cloud.google.com/epic_builder/OGC_IE/LosAngeles_CDB.zip?
_ga=2.3746352.-1225582785.1543877247]. The data provided in the VATC CDB data store are in one
CDB Geocell containing downtown Los Angeles.The data include:

• USGS NAIP 1m background (Entire Geocell) (CDB LOD 7)

• USGS HighRes Ortho Program 1ft Ortho (Southern section of Geocell) (CDB LOD 9)

12

https://storage.cloud.google.com/epic_builder/OGC_IE/LosAngeles_CDB.zip?_ga=2.3746352.-1225582785.1543877247
https://storage.cloud.google.com/epic_builder/OGC_IE/LosAngeles_CDB.zip?_ga=2.3746352.-1225582785.1543877247

• USGS 1/3 NED Elevation (CDB LOD 4 for an entire geocell)

• OpenStreetMap Vector Map (Entire geocell)

• Los Angeles County Building footprint information. (Approximately 1,734,043 buildings were
extruded from the footprint data)

VATC used opensource libraries that were modified to support CDB (this includes OpenSceneGraph,
osgEarth, and GDAL). They did not apply any changes to the GDAL library for this IE and the built
GDAL version from the 3rd Party is expected to suffice for this experiment.

5.2.3. Key discussion topics related to CDB data stores

Given the size of the CDB data stores used in this IE, there was discussion related to how best to
provide data stores updated with GeoPackage content. The general consensus was that
downloading the entire data store just to get the GeoPackages was non-optimal and time wasteful.
Therefore, the participants discussed using Version metadata (Volume 1 CDB Standard, Clause
5.1.8). They determined that the original CDB data with Shapefiles would be Version 1 and that CDB
enhanced with GeoPackages would be Version 2.

5.3. Details Related to Experiment 2
Experiment 2 focused on approaches to replacing each Shapefile with a corresponding GeoPackage
in an existing CDB data store thereby consolidating the three geometry files into a single
GeoPackage. The objective was to determine the best practices for not only replacing Shapefiles but
also allowing the storage and use of both Shapefiles and GeoPackages in a CDB data store. Part of
this experiment was to also evaluate and compare performance using the baseline CDB datasets
made available as part of Experiment 1. Finally, this experiment also focused on evaluating and
analyzing and results from Experiment #2 related to performance, backwards-compatibility and
risks to interoperability.

The Participants further identified four possible Options for converting and/or using GeoPackages
in a CDB data store. These Options are labeled as Option 1a, Option 1b, Option 1c, and Option 1d in
the remainder of this ER.

5.3.1. Option 1a – 1:1 Conversion of Shapefiles to GeoPackages

This experiment researched the direct one-to-one conversion of Shapefiles in a CDB data store into
a corresponding set of Geopackages. GDAL [https://www.gdal.org/drv_geopackage.html] and various
commercial tools were used to do the transfer of Shapefile content to a GeoPackage. Characteristics
of the Option 1a approach are:

• There is a potential 4:1 reduction in the number of files.

• There is one layer (table) per GeoPackage.

• The Feature Class and Extended Attribute files have no geometry.

• “Off the Shelf” GeoPackage Viewers will have no compatibility over the feature class and
extended attributes layers.

• This approach under-utilizes the capabilities of GeoPackage.

13

https://www.gdal.org/drv_geopackage.html

Figure 1. One to one conversion of Shapefiles to GeoPackages

5.3.2. Option 1b – Conversion of Shapefiles to GeoPackages using
Normalized SQL Data

This experiment researched the approach of using normalized SQL in the conversion of Shapefiles
into GeoPackages. This approach has the following characteristics:

• Utilizes a standard normalized relational database design, utilizing foreign keys.

• There is a 4:1 to 7:1 reduction in the number of files.

• There are three layers per GeoPackage.

• The Feature Class and Extended Attribute tables have no geometry.

• However, “Off the Shelf” GeoPackage software will not be aware of the extended and feature
class attributes. This can be somewhat mitigated when a SQL View is used, which gives viewers
(clients) read-only visibility over these attributes.

Figure 2. Use of Normalized SQL

14

5.3.3. Option 1c – Flattened Attribution

This experiment researched the approach of using flattened attribution in the conversion of
Shapefiles into GeoPackages. This approach has the following characteristics:

• There is a 4:1 to 7:1 reduction in the number of files.

• Some duplication of data, resulting in larger files.

• There is one layer per GeoPackage.

• The Feature Class and Extended Attributes are populated for each feature.

• This approach utilizes a standard normalized relational database design, utilizing foreign keys.

• Full “Off the Shelf” GeoPackage software compatibility.

Figure 3. Flattened Attributes Approach

5.3.4. Option 1d – Flattened Attribution + extensions

This experiment researched the approach of using flattened attribution plus the GeoPackage
related Tables extension in the conversion of Shapefiles into GeoPackages. The reason for using the
extension was to enhance the ease of moving data in both directions (Shapefile to GeoPackage and
visa-versa) using existing tools and without any data loss. This approach has the following
characteristics:

• Flatten CDB standard instance and class attribute – maximum GIS tools compatibility

• “Off the Shelf” GeoPackage software compatibility for CDB standard attributes.

• Table (related tables) for extended attributes

• This approach utilizes a standard normalized relational database design, utilizing foreign keys.

• Some duplication of data, resulting in larger files (Class attributes).

• There is one layer per GeoPackage.

• The Feature Class and Extended Attributes are populated for each feature.

15

Figure 4. Flattened Attributes Approach

5.4. Experiment 3 - Each CDB LOD as a layer in
GeoPackage
The methodology for Experiment 3 involves:

The goal of this experiment was to significantly reduce the number of files in both a CDB data store
and in the resulting GeoPackage. Steps in this experiment include:

• Modify implementation software to support storing an entire CDB dataset in a single
GeoPackage with each LOD stored in a single table.

• Evaluate and compare performance using the baseline CDB datasets and the Alternative #2
datasets.

• Evaluate analysis and results from Experiment #3 for performance, backwards-compatibility
and risks to interoperability.

In this approach, the tables in the GeoPackage correspond to each LOD of CDB. Including negative
LODs, the GeoPackage would contain 34 tables for each of the CDB LODs. Each CDB geotile would
contain a GeoPackage to correspond to the CDB data stores (such road networks, geospecific points,
etc.). CDB tiles for a data store combine into a single GeoPackage table within that given LOD where
the tile definition (row and column) would be queryable attributes for each feature. In simple
language, to find the features in a tile for a particular geotile’s road network in LOD 3 of CDB, a
consumer would open the road network GeoPackage, open the table that corresponds to LOD, and
query for results where the column and row reference matches the CDB tile.

5.5. Experiment 4: Store each Geocell of Vector Data as
a layer in GeoPackage
The methodology involves:

This experiment extends Experiment 3 (above) to have a single GeoPackage per Geocell in a CDB
data store. This results in all LODs and all CDB feature layers in a single GeoPackage. The steps in
this experiment include:

• Modify implementation software to support storing an entire GeoCell in a GeoPackage.

• Evaluate and compare performance using the baseline CDB datasets and the Alternative #3

16

datasets.

• Evaluate analysis and results from Experiment #4 for performance, backwards-compatibility
and risks to interoperability.

In this approach, the tables in the GeoPackage correspond to each data store of CDB (such road
networks, geospecific points, etc.). The GeoPackage would contain eight (8) layers representing each
of the CDB data stores (GSFeature, GTFeature, GeoPolitical, RoadNetwork, RailRoadNetwork,
PowerLineNetwork, and HydrographyNetwork). CDB tiles and LODs for a data store combine into a
single GeoPackage table where the tile definition (row and column) and LOD would be queryable
attributes for each feature. In simple language, to find the features in a location for a particular
geotile’s road network in LOD 3 of CDB, a consumer would open the geotile’s GeoPackage, open the
table that corresponds to data store, and query for results where the LOD column and row
reference matches the CDB tile and LOD.

Note: The Cognitics conversion scripts created a GeoPackage per dataset rather than a GeoPackage
per geocell tile.

17

Chapter 6. IE Experiment Results
This section of the Engineering Report provides details of the results of the experiments performed
by each of the IE participants.

6.1. Aechelon Technology IE Report

6.1.1. Use case and experiment focus

The following is a description of a key use case in the Aechelon content processing workflow to use
in an image generator.

• A CDB data store is used as the source for content to feed a publishing process into the Aechelon
Image Generator (IG) runtime format. While reducing CDB storage requirements is a
consideration, the primary concern in this workflow is with read access speed. Even so, the time
taken by the 'feature scan' step of the publishing process, where the CDB source vector files are
scanned to identify the features to import, is 2 orders of magnitude smaller than the rest of the
pipeline. However, any improvements in speed and/or storage requirements have a positive
impact on the efficiency of the Achelon publication workflow.

• Note: After the feature scan step in the publishing process, all references to all features are in
various Python data structures, which are then given to the first of multiple processing steps to
begin the data transformations. For example, point features with models will have their
OpenFlight models converted to an intermediate Aechelon-specific model format, while their
instance geographical data are saved in an Aechelon-specific lookup table format.

The publishing software is in Python, with invocations of C++ EXEs for performance-critical
processing. The feature scan step is entirely in Python, version 3.5. Please note that for the image
generation workflow, only metadata fields that affect the appearance of features are considered
and remainder of the CDB content is ignored, such as tactical data, or the entire geopolitical dataset.
The hydrography network dataset is also ignored since the RMTexture dataset is used to identify
areas of water.

For the purposes of this experiment, five feature types were considered and processed: Cultural,
Lights, Powerlines, Railroads, and Trees. All of the performance information provided in the tables
below is related to these five feature types.

6.1.2. Aechelon Experiment Methodology

The following is a concise description of the methodology used for execution of the Aechelon
committed tasks in this Interoperability Experiment.

• Following generation of the GeoPackage files for each Experiment, changes were made as
needed in the publishing scripts to be able to read and publish the GeoPackage structured data.

• Each feature type was tested by spot-checking in the image generator using a small reference
database with representative data for each of the five feature types.

• The next step was to convert the following three of the four CDB data stores made available for
the interoperability experiments. However, the entire publication end-to-end workflow for

18

image generation was not performed due to the considerable time it would take for each run.
CDB data processed for the Aechelon experiments were:

◦ Yemen (4 geocells), from Presagis.

◦ Downtown Los Angeles (1 geocell), from VATC.

◦ Greater Los Angeles (4 geocells), from Cognitics.

• To generate data for Experiment 2, option 1A:

◦ Ran Option1.py from the Cognitics conversion scripts in the master branch
(https://github.com/Cognitics/GeoCDB/tree/master).

◦ Deleted existing .shp, .shx, sidecar .dbf, .dbt & .prj files (i.e. kept .dbf files holding
class/extended data.)

• To generate data for Experiment 2, option 1C:

◦ Ran Option1.py from the Cognitics conversion scripts in the Presagis branch
(https://github.com/Cognitics/GeoCDB/tree/Presagis).

◦ Deleted the existing .shp, .shx, .dbf, .dbt & .prj files.

• To generate data for Experiment 2, option 1D:

◦ Ran Option1d.py from the Cognitics conversion scripts in the master branch (after update of
March 17, 2019, and some local edits to protect against 'None' during conversion of the LA
databases.)

◦ Deleted the existing .shp, .shx, .dbf, .dbt & .prj files.

• To generate data for Experiment 3:

◦ Ran Option3.py from the Cognitics conversion scripts in the master branch (after update of
March 17, 2019, and some local edits to uncomment writing the class metadata to the
instance tables and to protect against 'None' during conversion of the LA databases.)

◦ Deleted the 100_GSFeature, 101_GTFeature, 202_RailroadNetwork and
203_PowerlineNetwork folders from each geocell.

• To generate data for Experiment 4:

◦ Ran Option4.py from the Cognitics conversion scripts in the master repository (after update
of March 17, 2019, and some local edits to uncomment writing the class metadata to the
instance tables and to protect against 'None' during conversion of the LA databases.)

◦ Deleted the 100_GSFeature, 101_GTFeature, 202_RailroadNetwork and
203_PowerlineNetwork folders from each geocell.

• Then, for each option, disabled the publishing process beyond the 'feature scan' step and
captured the following metrics for the three CDB data stores.

6.1.3. Metrics

The following three tables provide basic performance metrics for the three CDB data stores
processed in Experiments 2, 3, and 4. Providing performance metrics is one of the tasks identified
in Experiment 1 of the GeoPackage in CDB IE.

In the tables below, "Baseline" refers to metrics based on the source Shapefiles. Option 1A, Option

19

https://github.com/Cognitics/GeoCDB/tree/master
https://github.com/Cognitics/GeoCDB/tree/Presagis

1C, and Option 1D refer to the sub-options for Experiment 2 (one to one transformation of
Shapefiles into GeoPackages).

Table 1. Yemen (4 geocells)

Baseline Option
1A

Option
1C

Option
1D

Exper. 3 Exper. 4

Dataset(
s)

Feat
count

PVF
count

time time time time time time

tree 64091 440 8 7 7 16 6 2

light 60 13 <1 <1 <1 <1 1 1

cultural 16502 409 12 9 5 7 5 4

powerli
ne

975 20 <1 <1 <1 <1 1 1

railroad 0 0 0 0 0 0 0 0

total
time

21 17 13 24 14 8

file
count

8224 2056 1023 1023 10 10

size
(MB)

34.2 152.5 161.9 165.9 57.6 38.1

Table 2. Downtown Los Angeles (1 geocell)

Baseline Option
1A

Option
1C

Option
1D

Exper. 3 Exper. 4

Dataset(
s)

Feat
count

PVF
count

time time time time time time

tree 2 1 <1 <1 <1 <1 <1 <1

light 0 0 0 0 0 0 0 0

cultural 1730622 1948 9:01 7:13 3:06 3:34 3:26 3:41

powerli
ne

1208 56 2 1 1 1 <1 1

railroad 1386 4 1 <1 <1 <1 <1 1

total
time

9:04 7:15 3:08 3:36 3:27 3:44

file
count

12540 4180 2090 2090 4 4

size
(MB)

2185.7 2309.2 958.5 1021.5 791.5 798.0

Table 3. Greater Los Angeles (4 geocells)

20

Baseline Option
1A

Option
1C

Option
1D

Exper. 3 Exper. 4

Dataset(
s)

Feat
count

PVF
count

time time time time time time

tree 5 2 <1 1 <1 <1 1 <1

light 0 0 0 0 0 0 1 <1

cultural 3138841 6013 15:02 12:02 6:14 7:25 6:57 7:17

powerli
ne

3932 160 1 1 1 1 1 1

railroad 9367 87 1 1 1 1 1 <1

total
time

15:04 12:05 6:16 7:27 7:01 7:19

file
count

38961 12986 6493 6493 14 14

size
(MB)

3738.2 4275.9 1958.6 2067.0 1335.7 1339.3

6.1.4. Legend

• Feat count: feature count of valid features found of the given type

• PVF count: primary vector file count, after validation, for the given type (i.e. only counting .shp
files for Experiment 1 or .gpkg files for Experiment 2.)

• Time: in minute:second notation when over 1 minute, else in seconds

• The cultural feature dataset is from both 100_GSFeatures (S001_T001 & S002_T001) and
101_GTFeatures (S001_T001)

• File count: total number of files from 100_GSFeatures, 101_GTFeatures, 202_RailroadNetwork &
203_PowerLineNetwork

• Size: storage, in MB, used by all the files from 100_GSFeatures, 101_GTFeatures,
202_RailroadNetwork & 203_PowerLineNetwork

6.1.5. Notes and observations

• All source CDB files were on a local RAID drive so network traffic did not contribute to the
timings.

• In the Greater Los Angeles database, there were somehow more features of some types coming
from GeoPackage files compared to Shapefiles (3140180 instead of 3138841 cultural features,
and 4012 instead of 3932 powerline features), but there were also over 1000 warnings from OGR
during conversion and while reading of the type "Warning 1: Unable to parse srs_id '100000'
well-known text ''." After the 1000th such warning, also got "More than 1000 errors or warnings
have been reported. No more will be reported from now." Perhaps the conversion from
Shapefiles to GeoPackages with ogr2ogr - an executable provided by OGR - generated these
excess invalid files. These warnings appeared in the Downtown LA database as well, but the
feature counts matched after conversion. Checking any further downstream for discrepancies

21

in the processing pipeline was not performed.

• For the powerline network dataset, statistics include both the tower point features and the wire
lineal features.

• There is a slight increase in the file size in the Los Angeles databases when comparing the
results of Experiment 3 and Experiment 4. However, there is a significant decrease in the size of
the Yemen database. From a quick inspection of the data, this seems to correlate with the fact
that almost all the cultural features in Los Angeles come from 100_GSFeatures which require
unique records per instance, whereas for Yemen the majority of cultural features come from
101_GTFeatures.

• Experiment 3 has slightly better timings for large-count datasets than Experiment 4 in our use
case since we scan each LOD in order, so having LODs in separate layers in the option 3
GeoPackage performs better.

6.2. CAE Results for Experiment 2

6.2.1. Focus of the Experiment

CAE focused on Experiment #2 as described in Section 5 - Details of the Experiments Performed.
Specifically, CAE focused on the part of the experiment where each Shapefile is replaced by one
GeoPackage file.

CAE performed a series of tests to measure the impact of Shapefile-to-GeoPackage conversion on
file size, file count, network transfer, and decode performance. These tests are detailed in the
following sections.

CAE conclusion with some observations and recommendations for futher development of the
standard can be found in Section 7 - Recommendations.

6.2.2. Comparing File Formats

The first step of the CAE experiment was to compare other file formats that would be appropriate
to store CDB Vector Data. These formats include GeoJSON and GML in addition to Shapefiles and
GeoPackages. The table below lists the observed file sizes.

Table 4. Converted File Sizes

Shapefile GeoPackage GeoJSON GML

Small input 0.5 KB 112 KB 0.5 KB 3.6 KB

Medium input 32 KB 152 KB 48 KB 106 KB

Large input 336 KB 520 KB 824 KB 928 KB

Largest input 2686 KB 3084 KB 4410 KB 9008 KB

Notes and observations:

• GeoPackages are very space-inefficient at encoding small numbers of features. An amount of
data that requires 0.5 KB in Shapefile or GeoJSON encoding was observed to require 112 KB as
output by ogr2ogr. However, not all database objects generated by ogr2ogr appear to be strictly

22

required by the standard, and we were able to construct a GeoPackage that should be minimally
standard-compliant in as little as 36 KB. This was done by not including optional tables, indexes,
triggers, or sequences.

• The actual space required on disk increases these numbers to varying degrees. The minimum
disk space required for a Shapefile in this test CAE observed to be 12 KB (3 files times 4 KB
allocation unit size).

• GeoJSON and GML are less space-efficient than binary alternatives at larger file sizes. GML is
particularly large, being in some cases more than twice the size of a GeoJSON file and three
times the size of the corresponding Shapefile. However, GeoJSON and GML remain interesting
from the standpoint of interoperability.

Notably, CAE also observed that every new table added to a SQLite database increases the size by a
minimum of 4 KB, which is presumably an internal allocation unit intended to support real-time
addition of data rows.

CAE also did a simple read-performance test on each of these files. For this test, CAE measured the
time taken by GDAL to open the file, iterate through all features, then close the file. All
measurements represent the mean of 8 runs.

Table 5. Initial Read Performance Test

Shapefile GeoPackage GeoJSON GML

Small input 2.3 ms 4.6 ms 0.7 ms 2.3 ms

Medium input 5.5 ms 4.6 ms 4.3 ms 4.7 ms

Large input 14.3 ms 6.7 ms 53.0 ms 18.6 ms

Largest input 278.5 ms 40.4 ms 347.0 ms 183.3 ms

Notes and observations:

• GeoPackage read performance scales extremely well at these file sizes. However, there is a fixed
overhead that is rather larger than for the other file formats.

• GML read performance scales favorably to Shapefiles, with a fixed overhead comparable to
Shapefiles (at least in GDAL).

• GeoJSON has a very low fixed overhead, but scales surprisingly poorly. CAE strongly suspects
that this performance problem is due to GDAL’s use of the libjson library. For future
performance tests with this format, CAE strongly recommends using RapidJSON (
http://rapidjson.org/) or other comparably fast JSON parser. At least one benchmark (
https://github.com/mloskot/json_benchmark) reports libjson as being 30 times slower than
RapidJSON for GeoJSON data, and another benchmark reports that libjson does not correctly
handle UTF-8 data (https://github.com/miloyip/nativejson-benchmark), which could be an
interoperability issue. With a faster JSON parser, CAE expects performance to be similar to GML
or even faster due to smaller file size.

6.2.3. Modifications to the GDAL/OGR Library

In preparation for more comprehensive tests, CAE then made a few minor modifications to the
GDAL library to ensure that the Shapefile-to-GeoPackage conversion was sufficiently lossless for

23

http://rapidjson.org/
https://github.com/mloskot/json_benchmark
https://github.com/miloyip/nativejson-benchmark

our purposes.

CAE made the following modifications:

• Stopping the library from optimizing away the M dimension in the case of 2D measured
geometry. (This optimization saves some space where all M values are nodata, but it changes the
declared type of the geometry.)

• Mapping the Logical DBF field type to the OGR field type OFTInteger subtype OFSTBoolean. The
DBF logical field type was previously handled as a string.

• Mapping the DBF logical values "T" and "F" to "1" and "0", respectively.

• Allowing the DBF reader to correctly read dates with the format YYYY/MM/DD.

6.2.4. Converting a Full CDB

CAE did not use the sample CDB provided by the participants because their goal was to compare the
performance of CAE internal applications when running with a CDB produced by CAE before and
after the replacement of Shapefiles with GeoPackage files.

However, CAE believes that their findings may apply equally well to other databases.

CAE built a customized script that invoked the ogr2ogr executable to convert all vector files in two
CDBs. Class DBF files and junction DBF files were converted to standalone GeoPackage files.

CAE found that the conversion to GeoPackages can substantially increase the amount of disk space
required for vector data.

Table 6. Disk Space Required

ESRI Shapefiles ESRI Shapefiles (disk) GeoPackages

CDB 1 10.1 GB 10.4 GB 16.4 GB

CDB 2 12.4 GB 20.6 GB 119.1 GB

Notes and observations:

• Some of the CAE CDBs have a very large number of very small vector files. This leads to an
increase in disk space usage: CDB 2 in particular requires 20.6 GB to store 12.4 GB of Shapefiles
(assuming a 4 KB allocation unit).

• CAE has not done a complete measurement of file size distributions, but in the case of CDB 1, we
do know that over 40 percent of the Shapefiles consist of a single .dbf. The median Esri
Shapefile size (sum of .shp/.shx/.dbf/.dbt) is about 3 KB, lower quartile under 1 KB, upper
quartile 38 KB. Only 20% of the Shapefiles are larger than 112 KB.

• CDB 2, which CAE believes approaches a worst-case scenario in terms of disk usage increase,
has a nearly 6 times increase in on-disk vector data-storage requirements (from 20.6 GB to 119.1
GB). This constitutes a non-negligible risk.

6.2.5. Network Test

The CAE application of CDB involves networked client/server systems, so a key performance factor

24

is the time required to request and transfer files over a network. For this test, CAE measured the
time taken for a client to request and transfer a selection of vector data files from a networked
server. Files were loaded "cold": the CDB data volume was freshly mounted immediately before
each test to ensure that the OS file cache was clear. This test loaded files from CDB 2.

Table 7. Network Test

ESRI Shapefiles GeoPackages

Request/Open/Transfer Time 5132 ms 3475 ms

Files Transferred 669 files 223 files

Data Transferred 107 MB 161 MB

Notes and observations:

• This test does not load class- or extended-attribute files.

• The file-count reduction ratio is 3:1, not 4:1. We do not store 0-byte files if we can avoid it.

• The amount of data transferred is larger for GeoPackages than for Shapefiles, but the number of
files requested is substantially smaller. The largest performance factor in this test seems to be
the reduction in the number of files requested, not the I/O volume.

• The data transfer increase was only about 1.5x, compared with a 9.6x increase (12.4 GB to 119.1
GB) in total vector data for this CDB. This test should therefore not be taken an indication of
worst-case performance, and suggests that the density of geographic features could vary
considerably from location to location. Determination of an accurate worst-case performance
profile would require more extensive experiments.

6.2.6. Real-Time CDB Client Device

The final test was to benchmark the loading time for a certain geographical region in a real time
system. CAE measured the decode time, number of files and data transfer volume. The real time
system is the client device consuming OGC CDB data over the network. This test loaded files from
both CDB 1 and CDB 2.

Table 8. Real-Time CDB Client Test

ESRI Shapefiles GeoPackages difference (+/-)

Decode-only Time 7.37 s 5.65 s (GDAL [*])
10.81 s (internal)

+9.09 s

Files decoded 5680 files 2838 files 50% fewer files

Data transferred 479 MB 906 MB 89.1% more bytes

[*] Our observed GeoPackage decode time is split into GDAL-related processing and internal format
conversion (which is not optimized). Although our total GeoPackage decode time was measured at
9.09 seconds slower than Shapefile decode time, the GDAL-only portion of the decode time was 1.72
seconds faster. Writing a well-optimized GeoPackage decoder that decoded directly from SQLite
into CAE’s internal representation should expect a small performance win.

Notes and observations:

25

• This test loads class- and extended-attribute files where present.

• The file-count reduction ratio is 2:1, not 4:1. We do not store 0-byte files if we can avoid it.

• We did observe a slight overall slowdown in the system, but the total slowdown was less than
the 9.09 seconds observed in the decode process. This suggests that the performance gained by
halving the file count was greater than the performance lost by doubling the I/O bandwidth
requirements.

6.3. Compusult Results from Experiment 2
Approach: One GeoPackage per LOD per dataset

CDB: CDBYemen_4.0.0

Available Datasets:

• 101_GTFeature

• 100_GSFeature

• 401_Navigation

• 201_RoadNetwork

Number of Shapefiles processed: 358 Number of GeoPackages created: 18 Total byte size of
Shapefiles (bytes): 3,569,324 Total byte size of GeoPackages (bytes): 41,715,712 Elapsed time
(seconds): 173

6.4. FlightSafety Experiment Results

6.4.1. FlightSafety International’s Use Case for CDB

FlightSafety has developed both a CDB generation tool and a CDB Publisher client. The performance
requirements of the CDB Publisher are much greater than CDB generation, so this report will focus
on loading and consuming a CDB dataset. The CDB Publisher uses a CDB data store as the source
data for building the synthetic environment for FlightSafety’s VITAL 1100 image generator system.
These systems are used for pilot training on a variety of flight simulator systems. The Publisher
does not do any preprocessing of the CDB dataset; all CDB data that it consumes is discovered and
loaded during the publishing. This approach was chosen due to the world-wide scope of CDB and
unknown quantity of content. The CDB well defined storage structure makes it easy to find the
file(s) containing the data needed for the synthetic environment creation. Based on the flight
training system requirements, an appropriate level of detail of vector and model data is discovered
and loaded. The Publisher adapts to the available levels of detail of vector data, and the flight
characteristics of the training device. The publishing system is primarily in C, and the testing was
all performed with C libraries and code. The Shapefile API that is tested is a custom FlightSafety
library, optimized for faster performance.

6.4.2. FlightSafety Experiment Focus

The experiments were focused on just-in-time uses of CDB, similar to how a FlightSafety visual

26

system would use the data. Statistics were collected on the original CDB dataset, and the converted
GeoPackage CDB datasets. These were used to infer the cost of database configuration management
and transmission/deployment to a training device. Testing was done on both currently encoded CDB
Shapefiles and on converted GeoPackage encoded files (Experiment 2, options 1, 3, and 4). Tests
focused on the latency of loading files, processing data, and closing files. Tests were done on
different conversion options and settings to come up with optimal recommendations

6.4.3. FlightSafety Experiment Methodology

The following describes the methodology used to evaluate, convert and test the CDB datasets using
GeoPackage vector encoding.

Data Acquisition:

Three CDB datasets were downloaded (from Cognitics, Presagis, and VATC) and loaded on an
internal system. The datasets were then split into two CDBs, one of which contains all vector data
and the other containing all the other CDB content. These two CDBs were linked together using
CDB’s versioning mechanism. This allowed the FlightSafety publisher to see the data as a single
dataset. Further: - Any official or unofficial extension to the CDB was removed for testing purposes.
- Any 0 size vector files were deleted from the CDB with vector data. These were 0 size shp and shx
files for datasets that should only be dbf, and cases of 0 size dbt files when they weren’t needed
alongside their dbf parent file.

Data Evaluation:

All three CDB datasets were flown using FlightSafety’s VITAL 1100 image generator and CDB
publisher. During the fly-through, any data artifacts were noted and recorded.

Data Conversion:

The Python conversion scripts developed by Cognitics, Inc. were downloaded from GitHub. The
scripts were modified to properly flatten class-level attributes into the feature table, and to
properly handle DBase floating point and logical field types. Index tables were also added to aid
SQL queries designed to get back data for a specific CDB vector file. Script changes were published
to a public GitHub under a FlightSafety account (link). When the scripts were run, they created a
new output directory for the CDB vector data. The Metadata folder was copied from the original
vector CDB version, which then links this GeoPackage version to the rest of the CDB data. The three
main conversion scripts used implemented GeoPackage encoding for Experiment 2 (and sub-
options), Experiment 3 and Experiment 4.

GeoPackage Testing:

The initial data collection centered on the number of vector files and how much disk space was
consumed. All full CDB storage devices used a 4 KB block size and recorded sizes include the "dead"
space due to the minimum block size. The initial tests were testing Shapefiles vs. Option 1. All
vector files were located and timed on the file open and accessing the data within the file. Total
processing time was recorded and compared between the two encodings. This test accessed the
geometry and all the attributes, whether they would have been used by the FlightSafety CDB
publisher or not.

27

The next set of tests involved working with worst case examples and comparing the same file open
and access time as before, but for single files. This highlights performance on the largest vector
files. The average performance times are reported here.

Further testing was performed to see what the trade-offs were between Experiments 2, 3, and 4.
These included loading identical vectors (from a single original Shapefile) from each of three
GeoPackage files converted in different ways:

• GeoPackage Experiment 2 in the IE Activity Plan was a straight conversion of the Shapefile. The
GeoPackage contains a single data table with flattened class-level attributes, with the same
number of records as the original Shapefile

• GeoPackage Experiment 3 in the IE Activity Plan was a conversion of each CDB dataset’s
features into a table for each level of detail (LOD) and component selector set, placed into a
single GeoPackage (1 per dataset). It also contained the most tables, and typically had more
feature records than option 1 but fewer than option 4.

• GeoPackage Experiment 4 in the IE Activity Plan was a conversion of each CDB dataset’s
features into a table for each component selector set, placed into a single GeoPackage (1 per
dataset). This method placed all levels of detail into the same table, resulting in a handful of
tables, but possibly millions of features per table.

Note: The results for Experiment 1 (Conversion) are provided in the discussions of IE Experiments 2, 3,
and 4.

6.4.4. FlightSafety Metrics

Original Dataset Statistics

Basic statistics were collected on the original CDB datasets used in the Interoperability Experiment.
The CDB storage size and file counts do not include any 0-sized files (they were not required by the
CDB specification) and do not include non-standard extension data. The last two rows represent the
proportion of vector data in the CDB, by the percentage of files and storage used. The vector
datasets used are: - 100_GSFeature - 101_GTFeature - 102_GeoPolitical - 201_RoadNetwork -
202_RailroadNetwork - 203_PowerlineNetwork - 204_HydrographyNetwork - 401_Navigation

Table 9. Table of Dataset Statistics

Northwest Pacific Yemen Los Angeles

Provider Cognitics Presagis VATC

CDB Geocell Tiles 27 4 1

CDB Storage Size 214 GB 17.4 GB 59.6 GB

CDB File Count 427,536 files 112,837 files 62,895 files

Vector Storage Size 9,152 MB 53.4 MB 2,381 MB

Vector File Count 109,490 files 4714 files 13,075 files

% of CDB storage as
vectors

4.18 % 0.30 % 3.90 %

28

Northwest Pacific Yemen Los Angeles

% of CDB files as
vectors

25.6 % 4.18 % 20.8 %

The main takeaway from this table is that vector data does not consume a large amount of storage
space, but accounts for a prodigious number of files within a typical CDB. The main driver of file
counts are that Shapefiles are a multi-file format, where three (or four with the .prj projection file)
files represent a single Shapefile. In addition to the multi-file format, CDB uses extra class-level and
extended-level attributes encoded as extra DBF files. So anywhere from 3 to 8 files are used to
represent a single logical vector file.

Specific Vector File Test Data

Some of the testing below involved loading specific point/linear/areal vectors that represent a
single Shapefile. For these tests, examples were found that represent "worst-case" examples of large
vector files. These larger files would take more time to load, and most occurred within higher LODs
that would lead to larger tables in Experiments 3 and 4. The following table records the specific
Shapefile data for individual tests.

Northwest Pacific Yemen Los Angeles

Point Vector N46W124_D101_S002
_T001_L04_U15_R12

N12E045_D100_S001_
T001_L04_U12_R0

N34W119_D100_S001
_T001_L05_U8_R20

Linear Vector N48W123_D201_S002
_T003_L01_U0_R0

N12E045_D201_S002_
T003_L00_U0_R0

N34W119_D201_S002
_T003_L04_U1_R15

Areal Vector N47W120_D204_S002
_T005_L02_U0_R2

N12E044_D100_S002_
T005_L02_U3_R3

N34W119_D204_S002
_T005_L03_U4_R7

6.4.5. Shapefile vs. GeoPackage Experiment 2 Testing

Experiment 2 Conversion Statistics

Before the first set of tests, the CDB datasets were converted one-to-one from Shapefiles to
GeoPackage, using the Option 1a conversion. Dataset statistics were then collected on the new
datasets and compared with the original datasets.

Northwest Pacific Yemen Los Angeles

Shapefile Vector
Storage Size

9,152 MB 53.4 MB 2,381 MB

Shapefile Vector
File Count

109,490 files 4714 files 13,075 files

GeoPackage Storage
Size

17,827 MB 157.9 MB 938 MB

GeoPackage File
Count

25,083 files 1,146 files 2,615 files

Relative Size (>1 is
larger)

1.95 2.96 0.39

29

Northwest Pacific Yemen Los Angeles

% Fewer Vector
Files

77 % 76 % 80 %

File counts for the GeoPackage CDB were between a 4:1 and 5:1 reduction in vector files. The size
changes varied dramatically, likely due to how efficient the attributes were packed into the original
Shapefile’s instance and class-level DBF files. In general, an increase in CDB size is expected using
the approaches defined in Experiment 2.

Experiment 2 Testing Focus

The testing focused on the latency of loading and processing the vector data files, and traversing all
the geometry features and attributes. This approach was used to simulate a flight simulation
client’s use of CDB.

Test Procedure 1

The first test was to traverse the entire CDB dataset, find all the vector files and collect the time it
took to open, process, and close each vector file. For each dataset, every vector file was located by
walking the directory structure, and then the file loading and processing was timed. This test was
run 30 times on the smaller CDB datasets (Yemen and Los Angeles) and 10 times on the larger
Northwest Pacific dataset. The sum of the file load and process steps are recorded below (while
ignoring the file search times).

All Vector Files Northwest Pacific Yemen Los Angeles

Shapefile Timing 835 sec 10.2 sec 27.5 sec

GeoPackage Timing 478 sec 4.2 sec 25.7 sec

GeoPackage Speed
Comparison

42% faster 58% faster 6.7% faster

Average Shapefile
Storage Size

374 kB 48 kB 923 kB

This table shows, on average, that using GeoPackages is faster than using Shapefiles. These results
imply that GeoPackage has a better advantage with smaller files. For example, GeoPackage
performed best on Yemen with its relatively small Shapefile/vector files. However, there is less of
an advantage with larger vector files. Therefore, further testing using larger files is recommended.

Test Procedure 2

The next set of tests focused on some of the largest individual vector files. This test was performed
to evaluate some of the worst case examples. The exact file names are mentioned above in the
Specific Vector File Test Data section. These test datasets were much larger than the average vector
file and cover the three basic geometry types: Points, Line Strings and Polygons. This allowed
testing of files that have many attributes compared to coordinates (points), and testing of files with
many coordinates compared to the number of attributes (polygons).

• The file size for Shapefiles includes both the instance-level files (.shp, .shx, .dbf) and the class-
level attributes (.dbf), but no extended attributes or projection information. The GeoPackage file

30

size was the single .gpkg file.

• The timing numbers include opening the file and traversing the geometry and every attribute in
each record, including those that would otherwise not be used by the FlightSafety client. The
timing test was performed 100 times alternating between loading from the Shapefile CDB
dataset, and the equivalent GeoPackage CDB dataset.

• The last row represents the relative performance of GeoPackage as compared to Shapefiles,
with a number higher than 1.0 representing increased speed.

Point Vectors Northwest Pacific Yemen Los Angeles

Feature Count 16,384 5,552 4,734

Shapefile Size 1.91 MB 1.40 MB 3.63 MB

GeoPackage Size 3.93 MB 1.46 MB 1.18 MB

Shapefile Read 55.8 ms 64.4 ms 17.4 ms

GeoPackage Read 82.3 ms 36.78 ms 39.9 ms

Relative
GeoPackage
Performance
(>1.0 is faster)

0.678 1.751 0.437

GeoPackage performance numbers were mixed for point data. The GeoPackage performance seems
linear with the number of features, but the Shapefile API tested was much faster on one case (Los
Angeles) and much slower on another (Yemen).

Note: The Northwest Pacific dataset uses a minimal number of class-level attributes, resulting in a
larger flattened GeoPackage size. In contrast, the Los Angeles dataset uses mostly unique class-level
attributes, which yields a larger overall Shapefile size, but smaller GeoPackage size because fewer
class-level attributes needed to be duplicated.

Line String Vectors Northwest Pacific Yemen Los Angeles

Feature Count 8,183 2,457 3,343

Shapefile Size 1.96 MB 0.71 MB 2.83 MB

GeoPackage Size 2.65 MB 1.08 MB 1.18 MB

Shapefile Read 62.2 ms 26.3 ms 17.4 ms

GeoPackage Read 49.9 ms 19.0 ms 23.1 ms

* Relative
GeoPackage
Performance
(>1.0 is faster)*

1.246 1.383 1.225

The use of GeoPackage increased performance across the board when linear data (22-38%) is
processed and used.

PolygonVectors Northwest Pacific Yemen Los Angeles

Feature Count 94 198 127

31

PolygonVectors Northwest Pacific Yemen Los Angeles

Shapefile Size 388 kB 387 kB 126 kB

GeoPackage Size 512 kB 556 kB 188 kB

Shapefile Read 9.3 ms 10.0 ms 7.3 ms

GeoPackage Read 6.3 ms 6.4 ms 4.9 ms

Relative
GeoPackage
Performance
(>1.0 is faster)

1.476 1.569 1.502

Larger performance increases for areal data (47% - 56%), at the cost of relatively larger storage size.
However, the sample size (number of polygon features) is quite small.

6.4.6. GeoPackage Experiments 3 and 4 Testing

Experiments 3 & 4 Conversion Statistics

In addition to the one-to-one Shapefile to GeoPackage encoding, FlightSafety wished to also test the
other GeoPackage encodings represented by Experiments 3 and 4. Conversions were performed to
create these new CDB datasets using the modified Python conversion scripts. These were tested
against the Experiment CDB datasets used in the previous tests. The dataset statistics (file sizes and
counts) are in the table below. Conversion notes include:

• The parts of the file name (dataset code/component selectors/lod/row/column values) were
initially stored as strings. Converting these to integers led to about a 10% improvement over the
initial string conversion.

• Index tables were created for the parts of the filename that did not comprise the table name.
This led to significant improvements that were up to 90% faster than without the
index. — Experiment 3 table names were of the form: "D100_L04_S001_T001". So indexes were
created for the row and column values, assuming that a user might want to generate a SQL
query on that table’s row and column values. — Experiment 4 table names were of the form:
"D100_S001_T001". So indexes were created for the LOD, row and column values, assuming that
a user might want to generate a SQL query on that table’s LOD and row and column values.

Conversion
Statistics

Northwest Pacific Yemen Los Angeles

GeoPackage
Experiment 2 File
Count

25,083 files 1,146 files 2,615 files

GeoPackage
Experiments 3/4
File Count

161 files 22 files 7 files

% Fewer Vector
Files
Experiments 3/4 vs
Experiment 2

99.4 % 98 % 99.7 %

32

As expected the number of files is much smaller for Experiments 3 or 4.

Conversion
Statistics

Northwest Pacific Yemen Los Angeles

Shapefile Storage
Size

9,152 MB 53.4 MB 2,381 MB

GeoPackage Ex 2
Storage Size

17,827 MB 157.9 MB 938 MB

GeoPackage Ex 3
Storage Size

16,479 MB 59.3 MB 728 MB

GeoPackage Ex 4
Storage Size

16,729 MB 55.5 MB 740 MB

Experiments 2 & 3
Relative Size
(> 1 is larger)

0.92 0.38 0.78

Experiments 2 & 4
Relative Size
(> 1 is larger)

0.94 0.35 0.79

Shapefile vs
Experiment 3 Size
(> 1 is larger)

1.80 1.11 0.31

Shapefile vs
Experiment 4 Size
(> 1 is larger)

1.83 1.04 0.31

In all cases, the combined GeoPackage datasets required less storage than the Experiment 2
GeoPackage files. This was true even though the combined datasets have index tables that the
Experiment 2 GeoPackages do not have. Note that in all cases even combining the GeoPackage files
into a minimal set does not lead to a smaller vector dataset than Shapefiles.

Testing Procedure

The testing focus for comparing the different GeoPackage encoding Experiments was on the latency
of loading the GeoPackage file and using SQL queries to return the records converted from a single
Shapefile. This approach is similar to the Shapefiles vs GeoPackage testing done above, but the test
was constructed slightly differently.

• The GeoPackage was opened and an SQL query was performed to return the data that
represented a single Shapefile’s vector data. In each query, the number of records in the table
varied according to the type of conversion performed, but the amount of data and the values
returned by the query were identical.

• The SQL queries used for each GeoPackage Experiment were variations on the following: --
Experiment 2: SELECT * FROM 'D100_S001_T001_L04_U12_R0' -- Experiment 3: SELECT * FROM
'100_GSFeature_L04_S001_T001' WHERE _UREF='12' AND _RREF='0' -- Experiment 4: SELECT *
FROM '100_GSFeature_S001_T001' WHERE _LOD='4' AND _UREF='12' AND _RREF='0'

• For timing purposes, each GeoPackage’s open and query was run 100 times, alternating
between each Experiment test in succession.

33

• The relative speed row shows the performance hit of opening a larger GeoPackage with more
tables and more records to search through. For example, a 2.0 represents a test that took twice
as long as the Experiment 2 test.

Point Queries Northwest Pacific Yemen Los Angeles

Experiment 2 Table
Size (Count)

16,384 5,552 4,734

Experiment 2 Read
GeoPackage

87.3 ms 39.6 ms 38.6 ms

Experiment 3 Table
Size (Count)

3,375,935 7,766 493,936

Experiment 3 SQL
Query

138.2 ms 59.3 ms 51.5 ms

Speed Relative to
Experiment 2
(>1 is faster)

0.63 0.67 0.75

Experiment 4 Table
Size (Count)

6,865,325 43,122 2,842,150

Experiment 4 SQL
Query

173.9 ms 44.9 ms 79.7 ms

Speed Relative to
Experiment 2
(>1 is faster)

0.50 0.88 0.48

Experiment 3 GeoPackage file opens are sensitive to the number of tables in the GeoPackage, and
tend to dominate the timing of cases with fewer features. Experiment 4 produced fewer tables and
faster GeoPackage opens, but is more sensitive to the number of records in the table that need to be
searched.

Line String Queries Northwest Pacific Yemen Los Angeles

Experiment 2 Table
Size (Count)

8,183 2,457 3,343

Experiment 2 Read
GeoPackage

53.8 ms 22.3 ms 26.4 ms

Experiment 3 Table
Size (Count)

16,454 2,457 80,697

Experiment 3 SQL
Query

63.6 ms 24.5 ms 28.7 ms

Speed Relative to
Experiment 2
(>1 is faster)

0.85 0.91 0.92

Experiment 4 Table
Size (Count)

79,512 2,457 149,757

Experiment 4 SQL
Query

52.4 ms 23.0 ms 29.7 ms

34

Line String Queries Northwest Pacific Yemen Los Angeles

Speed Relative to
Experiment 2
(>1 is faster)

1.03 0.97 0.89

In both Experiments 3 and 4, GeoPackage files perform slightly worse, but perform better than the
point query because of fewer features returned.

Polygon Queries Northwest Pacific Yemen Los Angeles

Experiment 2 Table
Size (Count)

94 198 127

Experiment 2 Read
GeoPackage

5.4 ms 6.1 ms 4.3 ms

Experiment 3 Table
Size (Count)

207 330 1,238

Experiment 3 SQL
Query

11.3 ms 16.2 ms 6.3 ms

Speed Relative to
Experiment 2
(>1 is faster)

0.48 0.37 0.69

Experiment 4 Table
Size (Count)

2,250 1,531 1,480

Experiment 4 SQL
Query

6.1 ms 7.4 ms 5.0 ms

Speed Relative to
Experiment 2
(>1 is faster)

0.88 0.82 0.86

The overhead of opening GeoPackage files with a large number of tables in the Experiment 3
encoding is particularly prominent in the polygon queries. The Experiment 4 encoding is close to
the single vector file per GeoPackage timing.

6.4.7. Further GeoPackage Experiment 3 & 4 Testing

Testing Procedure

The initial SQL query testing only performed a single query per GeoPackage open and close. A more
typical use case with Experiments 3 and 4 would be to hold a GeoPackage file open for longer
periods of time, and perform more queries per file access. In this test, the same query was
performed but 100 queries were performed while the file was open. There are limitations to the
results of this test, as the same query was performed over and over. It was likely that the parts of
the file being accessed remained in memory the whole time, and this only measures the time to
copy the data out of the GeoPackage file. However, this is a starting point toward understanding the
performance of repeated queries in a large file.

The test results show the time per query, plus a 1/100 portion of the GeoPackage open and close
time. The table also compares this time with Experiment 2’s performance, where there is little

35

gained by keeping the GeoPackage open.

Test Results

Points - 100 Queries Northwest Pacific Yemen Los Angeles

Experiment 2 - 1
Query

87.3 ms 46.0 ms 38.6 ms

Experiment 3 - 100
Queries Average

64.6 ms 25.9 ms 26.4 ms

Percent Faster than
Experiment 2

26% 35% 32%

Experiment 4 - 100
Queries Average

68.2 ms 24.2 ms 23.8 ms

Percent Faster than
Experiment 2

22% 39% 38%

Keeping the GeoPackage open between queries improves performance but note that not all cases
are faster than the original Shapefile performance.

Line Strings - 100
Queries

Northwest Pacific Yemen Los Angeles

Experiment 2 - 1
Query

53.8 ms 22.3 ms 26.4 ms

Experiment 3 - 100
Queries Average

34.1 ms 11.8 ms 13.3 ms

Percent Faster than
Experiment 2

37% 47% 49%

Experiment 4 - 100
Queries Average

34.9 ms 11.1 ms 13.3 ms

Percent Faster than
Experiment 2

35% 50% 49%

Polygon - 100
Queries

Northwest Pacific Yemen Los Angeles

Experiment 2 - 1
Query

5.4 ms 6.1 ms 4.3 ms

Experiment 3 - 100
Queries Average

1.1 ms 1.6 ms 0.78 ms

Percent Faster than
Experiment 2

80% 75% 82%

Experiment 4 - 100
Queries Average

0.79 ms 1.1 ms 0.85 ms

Percent Faster than
Experiment 2

85% 82% 80%

36

This approach shows that there is some significant overhead in opening large GeoPackage files.
Keeping the GeoPackages open can mitigate some of the overhead. We do not believe that a full
client would see this level of performance, but there is a good possibility a client would see
improved performance over Experiment 2.

6.5. Hexagon US Federal Technology Experiment
Report

6.5.1. Experiment Methodology - Dataset Conversion

Experiment 1 - While the initial direction of the Interoperability Experiment involved utilizing the
provided open source scripts to facilitate the conversion, there was an interest expressed from a
Data Creator role in performing this operation with other software. CDB Studio features the
capability to both ingest and generate CDB data stores so this was a natural fit for this application
and Hexagon US Federal’s participation. The conversion process was developed to align closely
with the provided workflow but was slightly altered in specific ways in line with how the
application ingests data. Although an exhaustive analysis of the differences between the custom
conversion logic and the provided scripts was not performed, where possible any differences are
noted in this report. For Experiment 1, the Shapefile data was converted by adding the feature
geometry and instance-level attributes into a GeoPackage using built-in capabilities in the
LuciadLightpseed API. Class attributes were stored in a separate table using the pattern in Option
1b where the CNAM attribute for each feature is a foreign key for the class attributes table. The
extended attributes were stored in a separate RTE table as in Option 1d and linked by a mapping
table in accordance with the RTE spec.

Experiment 2 – For this experiment the vector feature and attribute information for each tile was
converted into a single GeoPackage dataset. The CDB directory structure was maintained with
folders under each vector component for the levels of detail and U designation and individual
GeoPackages for each R offset.

Experiment 3 – In this experiment all datasets for a specific vector component were combined into
a single GeoPackage. The resulting dataset differed slightly from the suggested approach in that the
individual tile datasets were not combined into a feature layer in the GeoPackage and instead were
kept in separate layers. This facilitated the current architecture of CDB Studio which was built to
ingest the data in a tiled manner. It is entirely possible to adjust this pattern to utilize combined
features and leverage spatial queries against this larger feature table which might produce an
ingest performance increase, but this modification was beyond the scope of the Interoperability
Experiment. Class attributes were consolidated for the component into a single table.

Experiment 4 – For the final experiment all the component datasets were further combined to
create a single GeoPackage per geocell. As in Experiment 3, the class attributes were combined into
a single table per component.

6.5.2. Experiment Methodology - Visualization

The visualization methodology was consistent between all experiments and relied heavily on the
existing logic of the CDB Studio application with minor modifications. Standard visualization

37

metrics were recorded and did not differ greatly between the original and the experimental
datasets which was expected as the LuciadLightspeed API was designed in the Model-View-
Controller (MVC) paradigm and keeps the source data and display components independent. Data
ingestion was shown to be the more pertinent metric affecting the overall performance of the
visualization software. CDB data stores are ingested using a lazy loading strategy to alleviate
memory concerns. The current implementation did not utilize the extended attributes so although
these were added to the converted GeoPackages they had no impact on the data ingest for
visualization. CDB Studio was also designed to match the CDB data stores’ tiled architecture and
data loads are done as tiles are needed to populate the current display area and scale. Further
modifications could be done to improve efficiency with the vector data stored in the combined
GeoPackages as in experiments 3 and 4 and produce faster data ingestion but this was out of scope
for this Interoperability Experiment.

Visualization metrics were gathered on the initial load of the CDB datasets which involves an
animated pan/zoom to the dataset area and an initial display of the data in a view encompassing
the entire dataset bounds and at a coarse detail level.

6.5.3. Metrics

Table 10. Yemen

Shapefile Experiment 2 Experiment 3 Experiment 4

Time to Convert
(s)

N/A 475 392 505

Size on Disk
(MB)

52.2 156 61.8 60.2

File Count 9000 1011 24 4

Data Ingest (s) 0.82 0.30 3.07 3.80

Heap Memory
Usage (MB)

146 176 192 271

Frames Per
Second 170-210

Table 11. Downtown LA

Shapefile Experiment 2 Experiment 3 Experiment 4

Time to Convert
(s)

N/A 1626 21436 37113

Size on Disk
(MB)

2389.1 1075.2 840.0 839.5

File Count 15198 2533 7 1

Data Ingest (s) 0.26 0.69 134.3 124.3

Heap Memory
Usage (MB)

210 144 4368 7061

Frames Per
Second 170-240

38

6.5.4. Notes on Metrics

Time to Convert – This is the total time to process the conversion of the dataset from the original
version containing Shapefile data into GeoPackages. Deletion of the original Shapefile data was
done as a secondary manual step and was not included in this metric.

Size on Disk – The size on disk was obtained by viewing the Windows Explorer properties window
on the Tiles folder of the generated data. It is not inclusive of unmodified data components such as
imagery and elevation. The size reported for the original Shapefile dataset was a measure of the
replaced files.

File Count – Similar to the size on disk, this metric was gathered by viewing the Windows Explorer
properties view on the Tiles folder of the generated data and does not include data components that
were unaffected by the GeoPackage conversion process.

Data Ingest – Data ingest is the time taken to load all vector data needed the initial display of the
CDB data. The visualization logic loads data on demand for the given tiles so this is a subset of the
full dataset and could vary greatly depending on the areas and levels of detail being viewed. This
metric also only reflects the modified vector datasets.

Memory Usage – Similar to the data ingest metric, the memory usage is a measure of the heap
memory footprint of the ingested data repeated across the different sample datasets. The number
reported was the delta of general system heap memory utilized before loading the CDB dataset and
after. Note that this is not the final memory footprint of the datasets but instead can include
temporary data structures used during the ingest process that could later be garbage collected. As
such this metric is meant to show the typical memory overhead involved with loading and
visualizing a CDB dataset and not the continuing persistent state.

Frames Per Second (FPS) – The frames per second values were gathered by utilizing a diagnostic
overlay in the CDB Studio application during the data ingest. This value fluctuates during the tests
and a visual inspection of the overlay data was used to determine the typical range of these
fluctuations.

6.5.5. Notes and Observations

• The relative times for the dataset conversion differed with the size of the datasets involved.
Generating the E3 and E4 datasets for Yemen were roughly on par with or faster than E2’s one-
to-one conversion, but the large LA dataset showed a vast increase in time for E3 and E4 so the
value of the specific method is tied to the expected use case. The E2 dataset with the one-to-one
Shapefile to GeoPackage conversion was still faster than the original dataset which indicates
that this increase involves GeoPackage access and scalability with large datasets.

• The size of the GeoPackage datasets were above that of the original Shapefile data. This may be
due to overhead and additional metadata in the GeoPackage format as it was much more
prevalent on E2’s one-to-one conversion.

• Adaptations to the architecture of CDB Studio could further improve efficiency with
GeoPackage. Enhancements in the LuciadLightspeeed API could also aid performance, such as
built-in RTE handling to minimize JDBC connections.

• Backwards compatibility was built in with minimal effort in the modifications by defining a

39

hierarchy of where to look for vector data. This order was arbitrarily chosen for this
Interoperability Experiment, but a suggestion would be to define this order as part of a revision
to the CDB standard.

6.6. Guidance
A couple of performance comments (so far):

1. Structure of the data matters. Timing differences in SQL queries on integers rather than strings
is enough to matter.

2. As mentioned by others, opening a GeoPackage with lots of tables is slower than having a single
table (Experiment 3). .Doing a query to get features out of a very large table is MUCH slower
(Experiment 4). 40x slowdowns were observed for heavily forested areas when querying 4700
points out of a table with >2.8M points.

3. The more columns a table has, the larger the slowdown (i.e., a query in Experiment 4 vs a query
in Experiment 3 might take twice as long with 8 columns, but 4 times as long with 30 columns)

a. With more time, testing Experiment 2, Option 1b might be worthwhile. It should yield faster
queries to not flatten class-level attributes into the feature table.

40

Chapter 7. Recommendations, Observations,
and Conclusions
This section discusses conclusions and recommendations. There is also a section on the issue of
backwards compatibility. A number of issues for future discussion and consideration were also
identified. These include:

• Forwards compatibility in the CDB context.

• How to let an application know what vector data encoding is/are available.

• Versioning and GPKG and CDB 1.2.

• Additional testing for Experiments 3 and 4 in terms of optimization.

7.1. Backwards compatibility in the CDB context

7.1.1. FlightSafety observations on backwards compatibility

Our view is that a form of Experiment 2 is backwards compatible with the existing specification, for
the following reasons:

• The CDB concept of a single "logical" file representing a vector file is preserved.

• The CDB conceptual model leans toward mixing the data model and the files on disk. This
should be disentangled in a future version of CDB, but it is difficult to do in a minor revision.

• CDB Versioning, where one file from a CDB dataset replaces/hides a file from another CDB
dataset, would be difficult to fit together with a GeoPackage that contained "all" the vector files
for that dataset. A preferable solution is to evolve the conceptual model to handle this case in
CDB 2.0.

7.2. Findings

7.2.1. Aechelon Findings

• For the three Experiment 2 options Aechelon tested, the best outcome in both time and file size
came from option 1C.

• For Experiments 3 and 4, speed is slightly improved relative to Experiment 3 sub-option 1D but
not sub-option 1C. On the other hand, the resulting storage size is markedly improved when
compared against all options in Experiment 2, as would be expected. This is because, by design,
these Experiments 3 and 4 go against the spirit of CDB data segmentation by file at the LOD
level. This makes it more difficult to remove LODs, if so desired, when copying or exporting the
CDB vector data. As such, the approaches used in Experiments 3 and 4 may not be as easy to
incorporate and adopt as part of the CDB Standard.

41

7.2.2. CAE Findings

Although previous experiments with one-to-one Shapefile-to-GeoPackage conversion have been
very positive, our experiences indicate mixed results. On one hand, we observe substantial benefit
in reducing the number of files stored and loaded, and we also observe the possibility of a
comparable (or faster) decode time. However, on the other hand, we see potentially-problematic
increases in the amount of storage space required.

The negative effects are amplified for CDBs with large numbers of Shapefiles that have small
numbers of features. The GeoPackage format (especially as outputted by GDAL) is very space-
inefficient when it comes to encoding tiles with small quantities of data. Notably, even if we moved
to a 1-tile-per-table instead of a 1-tile-per-file approach, the underlying SQLite format seems to
allocate a minimum of 4 KB per table regardless of how little data is in it.

Please see CAE recommendations

7.2.3. FlightSafety Findings

• Shapefiles are a problematic format for several reasons: -- Shapefiles are a multi-file format to
represent a single "logical" file. Management of multi-file formats is always a bit harder than
handing a single file. -- The CDB standard’s use of extra DBF (DBase III) files for class-level and
extended-level attribution is not standard for any current GIS tool which makes the multi-file
format problem worse. -- There are other small-level issues with Shapefiles, including limited
field name length, limited numbers of attributes, limited data types, and a single geometry type
per Shapefile. -- In all three test CDB datasets, the number of files greatly exceed the proportion
of space on disk. The large number of small files causes problems with efficient disk space
usage and slows the distribution of a CDB dataset.

• Replacing a single Shapefile with a GeoPackage (Experiment 2) seems to be a better solution for
CDB 1.2 or a future CDB 1.x -- Changes to CDB clients involve less work than other than the
Experiment 3 and 4 approaches. -- On average, the performance was better with GeoPackage --
On specific worst case tests, Line Strings and Polygons were faster with GeoPackage. Points
were mixed, but likely fast enough for this use case. -- It would also fit within CDB’s pre-existing
versioning mechanism better than the Experiment 3 and 4 approaches, as it can maintain the
single "file" paradigm where a vector file replaces/hides another vector file (even if the "file" is
really a multi-file format). -- The class-level attributes would be easy to import into a flattened
GeoPackage. Importing extended-level attributes as a related table makes sense as well,
although redesigning the odd extended attribute encoding would be recommended. -- The SWG
is encouraged to implement a single vector encoding per CDB dataset/version, and a way to
discover the vector encoding implemented from a file in the Metadata folder.

• GeoPackage Experiments 3 or 4 would be best suited to a future compatibility-breaking version
of CDB 2.0. -- CDB client changes would be more extensive, but the performance gain would
likely be worth the effort. -- More detail and additional specification requirements would be
necessary to describe how to version CDB datasets when that dataset no longer maintains the
"traditional" directory and file format that versioning was designed for. -- The SQL query when
loading the vectors that would be contained within a single shapefile can take twice as long as
when these vectors are in a single GeoPackage, but the open cost can be amortized across many
queries if the GeoPackage files remain open for a longer period of time.

42

• The OGC Interoperability Experiment was a good testing ground to develop familiarity with
GeoPackage and to help the SWG come to a better consensus on the use of GeoPackage. We
would recommend having more IE’s as other parts of the specification are reviewed and
improved.

7.2.4. Hexagon/Luciad Findings

Standard Visualization Metrics - Overall visualization performance was similar between all
experiments for each dataset. Converting to GeoPackage has no significant impact either positive or
negative on visualization once the data is loaded.

Data Ingest - Data ingest for visualization was highly dependent on the size and structure of the
underlying GeoPackage datasets and the architecture of the data ingest code. Both load times and
heap memory usage were much greater for the combined GeoPackages on large datasets. While
major adjustments to the GeoPackage interactivity was beyond the scope of this IE, minor
modifications to reduce file I/O on the combined datasets showed potential for improvement in
data loading time.

Data Conversion - For data conversion the best results were also obtained from Experiments 3 & 4.
The caveat here is that some memory issues were encountered with the provided datasets as more
layers and data were added to a single GeoPackage which introduces questions of scalability for
these approaches.

7.3. Recommendations
This section describes key recommendations from each of the participating organizations. A short
summary of the recommendations is provided is the Summary Section of this Engineering report.

7.3.1. Aechelon

To achieve the improvements in storage while also maintaining the speeds comparable with sub-
option 1C and addressing the file-per-LOD issue, Aechelon recommends two additional
experiments: (a) where each component selector of each LOD is in its own GeoPackage file. This is
effectively a variant of sub-option 1C where the U and R references of the same component
selectors are combined into one file; and (b) where each dataset’s LODs are in a separate
geopackage file. This is effectively a variant of Experiment 3 where instead of storing each LOD in a
separate layer in the same GeoPackage file, each LOD is a separate file.

If Aechelon were to recommend only one processing alternative, among those in this experiment,
for inclusion as an alternate primary vector format in a future OCG CDB revision, it would be
option 1C in Experiment 2.

7.3.2. CAE Recommendations

Suggestion 1: Storage versus Transport Format

CAE has essentially been using GeoPackage as a data transfer format in this experiment, when
GeoPackage design seems to be much better used as a data storage format. The GeoPackage format

43

encodes indexes, triggers, sequences, and metadata as well as feature data, and it also supports
real-time addition, removal, and update of records. In this experiment, CAE made use of none of
these features.

CAE suggests considering GeoJSON as a candidate format for the one-to-one Shapefile conversion
case (Option 1a). With GeoJSON, we may obtain the same reduction in file count while
simultaneously obtaining better performance and storage characteristics for CDBs with large
numbers of small vector files. To obtain scalable performance characteristics with GeoJSON, CAE
suggests implementations use RapidJSON or similar parser (rather than libjson, which is currently
used by GDAL).

It is also worth noting that GeoJSON supports other variants of the Option 1 experiment; e.g.,
attribute flattening (Options 1c/1d).

Suggestion 2: GeoPackage as an Incremental Data Store Version

In this experiment, CAE explored the idea of placing GeoPackages inside a CDB. CAE suggests that
this may not be the best approach for maximizing compatibility. GeoPackage, like CDB, functions
conceptually as an independent data store. CAE would like to raise the possibility of using
GeoPackage as an incremental data store version, which would essentially allow a GeoPackage to
replace a CDB version at its root (at least to the extent that all data inside the CDB can be converted
losslessly into GeoPackage data). The idea is to be able to add a GeoPackage as an incremental
version without modifying the underlying CDB, or vice versa. What CAE would have to do in this
case is define a bidirectional equivalency between a CDB directory path and a GeoPackage/SQLite
index—this would allow us clearly-defined semantics for mixing and matching GeoPackage and
CDB data stores, with minimal impact on existing standards and implementations.

Suggestion 3: The CDB Directory Hierarchy as a Key-Value Store

CAE would like to raise a particular opportunity for future-proofing the standard. Conceptually, the
CDB directory hierarchy functions as an index: Any given directory path is essentially a key, and the
value accessed by the key is a file. If we introduce a level of abstraction that allows us to discuss the
CDB as a type of key-value store, then we open up a range of new possibilities in terms of physical
implementation. For example, there are any number of database engines that are able to function
as fast key-value stores, from lightweight mobile solutions like SQLite to highly-distributed cloud-
capable NoSQL solutions like MongoDB. This would conceptually simplify the idea of a geographic
database, allowing implementors more freedom to choose the storage technology that best suits
them while simultaneously providing a natural path toward remote/Internet query of CDBs.

7.3.3. FlightSafety Recommendations

GeoPackage Recommendations

• From our experience, GDAL’s GeoPackage driver will create non-standard GeoPackage files. The
SWG needs to decide if that is allowed, or if a stricter GeoPackage implementation is required.

◦ GDAL defaults to using "fid" as the primary key in geometry tables. GeoPackage specifies "id"

◦ As the conversion scripts use GDAL to convert geometry from Shapefile to GeoPackage,
GDAL allows the creation of MultiPolygon and MultiLineString features in Polygon and

44

LineString tables (respectively). When this happens, GDAL emits a warning that it is not
creating standard GeoPackage files. We would recommend standardizing with GeoPackage,
in only allowing a single geometry type within a table.

◦ The conversion from shapefile logical fields to GeoPackage should be standardized. It would
be best to convert any CDB logical field (whether it was logical, string, or integer) into a
GeoPackage boolean field.

◦ The table name should include enough information to be unique, no matter which approach
as tested in Experiments 2, 3, and 4 is implemented.

• The dataset/component selectors/lod/up/right values must be stored in the table. Integers are
recommended for storage for better performance.

• If the SWG decides on using option 3 or 4 for a future version of CDB, then index search tables
should be required for better performance when querying data from a specific CDB Tile-LOD.

7.3.4. Hexagon/Luciad Recommendation

Further investigation into the optimal structure of combining multiple sub-datasets (rail,
hydrography, etc) and multiple levels of detail into a single GeoPackage could alleviate several
encountered performance drawbacks with the CDB datasets in Experiments 3 & 4. At this point
without this investigation and guidance Hexagon US Federal recommends the CDB architecture
presented in Experiment 2 which provides both a reduction in the dataset’s file count and
minimizes the impact to existing CDB applications accessing data in the current tiled directory
structure.

7.3.5. Some unanswered questions for SWG discussion

1. Forwards compatibility in the CDB context

2. How to let an application know what vector data encoding is/are available.

3. Versioning and GPKG and CDB 1.2

4. Guidance on using conversion tools, such as GDAL, to generate consistent and "legal"
GeoPackages so that interoperability is enhanced.

45

Appendix A: Revision History
Table 12. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

2019-01-26 C. Reed .1 all Cloned initial
version

2019-03-30 C. Reed .2 all Added various
overview
sections

2019-05-29 C. Reed .3 all Added in
experiment
results

46

Appendix B: Bibliography
1. Freeman, J., Bentley, K., Moore, R., Chambers, S., Quesenberry, G.: OGC CDB, Leveraging

GeoPackage Discussion Paper. Open Geospatial Consortium, https://portal.opengeospatial.org/
files/?artifact_id=82553 (2019).

2. Graham, D.: OGC CDB Geopackage Interoperability Experiment Activity Plan. Open Geospatial
Consortium, https://portal.opengeospatial.org/files/?artifact_id=81666&version=1 (2018).

47

https://portal.opengeospatial.org/files/?artifact_id=82553
https://portal.opengeospatial.org/files/?artifact_id=82553
https://portal.opengeospatial.org/files/?artifact_id=81666&version=1

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements & Research Motivation
	1.2. Prior-After Comparison
	1.3. Recommendations for Future Work
	1.4. Document contributor contact points
	1.5. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	4.1. IE Overview
	4.2. Engineering Report Section Overviews.

	Chapter 5. Details of the Experiments Performed
	5.1. A CDB Data Store - General Overview
	5.2. CDB Data and Tools Used by Participants
	5.2.1. Overview
	5.2.2. Experiment 1: Conversion - The CDB Data Stores and tools used in this IE
	5.2.3. Key discussion topics related to CDB data stores

	5.3. Details Related to Experiment 2
	5.3.1. Option 1a – 1:1 Conversion of Shapefiles to GeoPackages
	5.3.2. Option 1b – Conversion of Shapefiles to GeoPackages using Normalized SQL Data
	5.3.3. Option 1c – Flattened Attribution
	5.3.4. Option 1d – Flattened Attribution + extensions

	5.4. Experiment 3 - Each CDB LOD as a layer in GeoPackage
	5.5. Experiment 4: Store each Geocell of Vector Data as a layer in GeoPackage

	Chapter 6. IE Experiment Results
	6.1. Aechelon Technology IE Report
	6.1.1. Use case and experiment focus
	6.1.2. Aechelon Experiment Methodology
	6.1.3. Metrics
	6.1.4. Legend
	6.1.5. Notes and observations

	6.2. CAE Results for Experiment 2
	6.2.1. Focus of the Experiment
	6.2.2. Comparing File Formats
	6.2.3. Modifications to the GDAL/OGR Library
	6.2.4. Converting a Full CDB
	6.2.5. Network Test
	6.2.6. Real-Time CDB Client Device

	6.3. Compusult Results from Experiment 2
	6.4. FlightSafety Experiment Results
	6.4.1. FlightSafety International’s Use Case for CDB
	6.4.2. FlightSafety Experiment Focus
	6.4.3. FlightSafety Experiment Methodology
	6.4.4. FlightSafety Metrics
	6.4.5. Shapefile vs. GeoPackage Experiment 2 Testing
	6.4.6. GeoPackage Experiments 3 and 4 Testing
	6.4.7. Further GeoPackage Experiment 3 & 4 Testing

	6.5. Hexagon US Federal Technology Experiment Report
	6.5.1. Experiment Methodology - Dataset Conversion
	6.5.2. Experiment Methodology - Visualization
	6.5.3. Metrics
	6.5.4. Notes on Metrics
	6.5.5. Notes and Observations

	6.6. Guidance

	Chapter 7. Recommendations, Observations, and Conclusions
	7.1. Backwards compatibility in the CDB context
	7.1.1. FlightSafety observations on backwards compatibility

	7.2. Findings
	7.2.1. Aechelon Findings
	7.2.2. CAE Findings
	7.2.3. FlightSafety Findings
	7.2.4. Hexagon/Luciad Findings

	7.3. Recommendations
	7.3.1. Aechelon
	7.3.2. CAE Recommendations
	7.3.3. FlightSafety Recommendations
	7.3.4. Hexagon/Luciad Recommendation
	7.3.5. Some unanswered questions for SWG discussion

	Appendix A: Revision History
	Appendix B: Bibliography

