Earth System Grid Federation (ESGF)
Compute Challenge

Table of Contents

1. Summary
1.1. Requirements & Research Motivation
1.2. Prior-After Comparison
1.3. Recommendations for Future Work
1.3.1. Recommended Future Tasks
1.3.2. Recommended Future Deliverables
1.4. Document Contributor Contact Points
1.5. Acknowledgements
1.6. Foreword
2. References
3. Terms and definitions
3.1. Abbreviated terms
4. Overview
5. Testbed 14 Recap
5.1. Architecture
5.1.1. Interfaces
5.1.2. Implementation
6. ESGF Compute Challenge
6.1. Background Information
6.1.1. ESGF Mission
6.1.2. ESGF Priorities
6.2. Compute Challenge Implementations
6.3. ESGF Compute Working Team API
6.3.1. Inputs
6.3.2. Output
7. Solution
7.1. Architecture
7.2. Application Package
7.2.1. Process Deployment
7.2.2. Workflow Integration
8. Applications and Workflows
8.1. ESGF CWT Applications
8.2. Application Chaining
8.2.1. Utility Applications
8.2.2. Workflow Chaining WPS 1.0 Processes
8.2.3. Workflow Linking two Subsetters of CWT and WPS 1.0 Types
9. Discussion

9.1. Application and Process Terminology

O© 00 Oy O O U1 U1 U1 P

WoWw N NN N NN NN NN NN R R R R R R s s s s s s
R R O 9 9 0 W NN R RO O 00 00 G W e

9.2. Transition from WPS 1.0 to WPS 2.0

9.3. From Docker Image to Application

9.4. CWL File Formats

9.5. Metalinks

9.6. NASA NCCS STRATUS

9.7. Applicability to Machine Learning

9.8. Generation of CWL Wrappers for ESGF CWT API

9.9. ESGF Supporting Material
Appendix A: Sample Python code for ESGF CWT API
Appendix B: CWL file for WPS 1.0 provider
Appendix C: CWL file for NASA EDAS
Appendix D: JSON file of an ESGF CWT API execute body
Appendix E: CWL file of the WPS 1.0 workflow
Appendix F: JSON file for the WPS 1.0 workflow execute request body
Appendix G: CWL file for the WPS 1.0 to LLNL CWT workflow
Appendix H: CWL file for the WPS 1.0 to NASA CWT workflow
Appendix I: Revision History
Appendix J: Bibliography

31
31
31
32
32
32
33
33
34
35
37
39
41
43
44
46
48
49

Publication Date: 2019-09-24

Approval Date: 2019-06-28

Submission Date: 2019-05-16

Reference number of this document: OGC 19-003

Reference URL for this document: http://www.opengis.net/doc/PER/ESGF-er
Category: OGC Public Engineering Report

Editor: Tom Landry, David Byrns

Title: Earth System Grid Federation (ESGF) Compute Challenge

OGC Public Engineering Report
COPYRIGHT

Copyright © 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/ESGF-er
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

Chapter 1. Summary

This Open Geospatial Consortium (OGC) Engineering Report (ER) will describe the advancement of
an Execution Management System (EMS) to support Web Processing Service (WPS) climate
processes deployed on the Earth System Grid Federation (ESGF). The report introduces climate data,
processes and applications into Common Workflow Language (CWL) workflows with the intent of
advancing: application packaging, deployment and execution in clouds; interoperability of services
in federated cyberinfrastructures; and geospatial workflows towards standardization. Work
presented in this report is a direct continuation of the Earth Observation & Clouds (EOC) thread of
Testbed-14. This report is expected to be of relevance to Testbed-15, both to the Earth Observation
Process and Application Discovery (EOPAD) task and the Machine Learning task. This engineering
report will describe: relevant work conducted in OGC Testbed-14; ESGF and its compute challenge;
adaptations of existing climate processes into workflows; interoperability experiments with ESGF
endpoints conforming to a common APIL

1.1. Requirements & Research Motivation

The Thematic Exploitation Platform (TEP) open architecture advanced in previous testbeds tackled
Earth observation data in the context of federated, heterogeneous infrastructures. The main
requirements included support for application deployment, execution and chaining, as well as the
agreed authentication and authorization mechanisms. All interfaces needed to be agreed upon and
standardized so as to achieve the Sponsors' (European Space Agency, Natural Resources Canada)
interoperability goals.

It was observed by certain testbed participants, observers and stakeholders that the same set of
requirements applies to climate data, processes and infrastructure. As such, the U.S. Department of
Energy’s (DOE) Office of Biological and Environmental Research (BER) sponsored additional
engineering work to ESGF interoperability. The general objectives proposed and presented to ESGF
stakeholders are as follows, in order of importance:

Test common ESGF climate processes and their compute nodes

Demonstrate Testbed-14 TEP architecture for climate processes and applications

Advance application packaging, deployment and execution in clouds

Advance interoperability of services in ESGF federated cyberinfrastructure

Advance geospatial workflows towards standardization

Explore use of Earth Observation (EO) data and processes in support of climate infrastructure

N o ok W

Facilitate use and exchange of Machine Learning (ML) systems and learned models

1.2. Prior-After Comparison

Previous work in OGC testbeds allowed definition of application packages in workflow-enabled
environments, and their subsequent deployment and execution on distributed secured
infrastructures. Data discoverability was superficially addressed through inclusion of OpenSearch
capabilities to identify and select the appropriate data from catalogs. Applications developed for
the occasion included stacking, subsetting, feature detection and index computation, both on

optical and Synthetic-Aperture Radar (SAR) data. All these concerns are of particular interest for
OGC’s Earth Observation Exploitation Platform (EO Ex Platform) Domain Working Group (DWG).

The work described in this ER improves interoperability of workflows with pre-deployed WPS 1.0
and WPS 2.0 processes. It also enables the inclusion of pre-deployed processes adhering to the ESGF
Compute Working Team (CWT) Application Programming Interface (API). The workflows proposed
in this work include climate data (CMIP6, statistically downscaled climate scenarios, variables and
indexes), climate processes (index computation) and base processes (subsetting, averaging). Three
different infrastructures were used for interoperability experiments.

The last two objectives of the ESGF concept, the use of EO in support of climate infrastructures and
the integration of ML systems, were only partially and informally addressed in this work. It is
expected that work planned and conducted in OGC Testbed-15, as well as in other collaborative
innovation projects, will continue to support these efforts and drive future requirements. This
report contains relevant content potentially supporting OGC request for information (RFI)
[https://portal.opengeospatial.org/files/83548] on Earth Observation Big Data Architecture.

1.3. Recommendations for Future Work

This section presents recommended potential future tasks and deliverables that can support
advancement of requirements and expand research motivations. The reader can also refer to
Section 9 of this Engineering Report for discussion and open issues for further details.

1.3.1. Recommended Future Tasks

1. Common architecture for climate and Earth Observation (EO) platforms

2. ML systems and models interoperability in federated cyberinfrastructures

1.3.2. Recommended Future Deliverables

Recommended Future Components
The following components are suggested to be deployed for testing, demonstration and integration
purposes. The resulting functionalities of these components could support both recommended
future tasks.

. Clients that can support both EO and climate data

. ESGF Application Profile

. Open Search enabled catalog for climate data

1

2

3

4. Ontology to use in CWL file formats supported in workflows

5. ML models for detection and localization of extreme climate events
6

. ML systems supporting interfaces for interoperable Deep Learning (DL) models, where trained
models from a ML system can be loaded into a different one to be used for inference

7. ML-enabled application packages and workflows, where a packaged ML system is used in
conjunction with pre-processing steps

https://portal.opengeospatial.org/files/83548

8. Additional application packages, with different variations of input/output mappings of Docker
containers and underlying executable code

9. Advanced clients to provide user feedback on all previously mentioned future components
Recommended Future Engineering Reports (ER)

The following Engineering Reports are suggested to support and document experiments conducted
inside previously mentioned recommended future tasks and components.

1. EO and climate federated infrastructures ER
2. Climate data and processes best practices ER

3. Geospatial ML systems best practices ER

1.4. Document Contributor Contact Points

All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization
Tom Landry CRIM

David Byrns CRIM

David Caron CRIM

Francis Charette-Migneault CRIM

1.5. Acknowledgements

In addition to participants and observers in this testbed activity, the following institutions
collaborated in the ESGF Compute Challenge and coordinated their efforts:

* Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)

* Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)

e Deutsches Klimarechenzentrum (DKRZ)

* Lawrence Livermore National Laboratory (LLNL)

* NASA Center for Climate Simulation (NASA NCCS)

* Quranos

* University of Utah

1.6. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. References

The following normative documents are referenced in this document.

e OGC: OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/files/?
artifact_id=38867&version=2], 2010

* OGC: OGC: OGC 13-026r8, OGC OpenSearch Extension for Earth Observation 1.0
[https://portal.opengeospatial.org/files/13-026r8], 2016

* OGC: OGC: OGC 14-065r2, OGC Web Processing Service 2.0.2 Interface Standard Corrigendum
[https://portal.opengeospatial.org/files/14-065r2], 2018

* OGC: OGC: OGC 13-032r8, OGC OpenSearch Geo and Time Extensions 1.0.0
[https://portal.opengeospatial.org/files/?artifact_id=56866], 2014

* OGC: OGC: OGC 12-168r6, OGC® Catalogue Services 3.0 - General Model
[http://docs.opengeospatial.org/is/12-168r6/12-168r6.html], 2016

* W3C: A JSON-based Serialization for Linked Data [https:/www.w3.0rg/2018/jsonld-cg-reports/json-1d/],
2018

* CWL: CWL group: Common Workflow Language Specifications, v1.0.2 [https://www.commonwl.org/
v1.0/], 2018

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://portal.opengeospatial.org/files/13-026r8
https://portal.opengeospatial.org/files/14-065r2
https://portal.opengeospatial.org/files/?artifact_id=56866
http://docs.opengeospatial.org/is/12-168r6/12-168r6.html
https://www.w3.org/2018/jsonld-cg-reports/json-ld/
https://www.commonwl.org/v1.0/

Chapter 3. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

* AIMS (Analytics and Informatics Management Systems)

Program at LLNL enabling data discovery and knowledge integration across the scientific climate
community. (AIMS [https://aims.linl.gov/])

* CDAT (Community Data Analysis Tools)

CDAT is a powerful and complete front-end to a rich set of visual-data exploration and analysis
capabilities well suited for data analysis problems. (CDAT [https://cdat.lIlnl.gov/])

* CDMS (Climate Data Management System)

Object-oriented data management system specialized in organizing multidimensional gridded data
used in climate analyses for data observation and simulation. (CDMS [https:/cdatlinl.gov/

documentation/cdms/cdms.html])
e CMIP

Sponsored by the World Climate Research Programme’s Working Group on Coupled Modeling,
CMIP is a community-based infrastructure for climate model diagnosis, validation,
intercomparison, documentation, and data access. (CMIP [https://www.wcrp-climate.org/wgcm-cmip])

* CREATE (Collaborative REAnalysis Technical Environment)

NASA project that centralizes numerous global reanalysis data sets into a single advanced data
analytics platform. (CREATE [https://cds.nccs.nasa.gov/tools-services/create/])

* Controlled vocabulary

A controlled vocabulary is an organized collection of terms used to index content in order to
facilitate information retrieval (OGC 17-040). Controlled vocabularies provide a way to organize
knowledge for subsequent retrieval. They are used in subject indexing schemes, subject headings,
thesauri, taxonomies and other forms of knowledge organization systems.

e Dask

Dask is a flexible library for parallel computing in Python. It offers dynamic task scheduling
optimized for computation and “Big Data” collections. (Dask [https://dask.org/])

* Deep learning

Deep learning is a class of machine learning algorithms that: use a cascade of multiple layers of
nonlinear processing units for feature extraction and transformation; learn in supervised and/or
unsupervised manners; learn multiple levels of representations that correspond to different levels
of abstraction.

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://aims.llnl.gov/
https://cdat.llnl.gov/
https://cdat.llnl.gov/documentation/cdms/cdms.html
https://www.wcrp-climate.org/wgcm-cmip
https://cds.nccs.nasa.gov/tools-services/create/
https://dask.org/

* Downscaling

A method that can provide climate model outputs at a finer resolution than their original
resolution. Two different approaches are prioritized: statistical downscaling and dynamical
downscaling.

* EDAS (Earth Data Analytics Service)

Developed by NASA NCCS, EDAS is a high-performance big data analytics framework built on
Dask/xarray. It allows researchers to leverage computing power to analyze large datasets located at
the NCCS through a web-based interface, thereby eliminating the need to download the data. EDAS

[https://www.nccs.nasa.gov/services/analytics/EDAS]
* Index (climate index)

Term used to refer to climate properties that are not measured in the field or calculated by climate
models but rather that are calculated or derived from climate variables such as temperature and
precipitation. Examples include the number of growing degree-days, freeze-thaw cycles, and the
drought code index. (see variable)

* netCDF (Network Common Data Form)
Machine-independent, self-describing binary data format (unidata.ucar.edu/software/netcdf/).
* OpenAPI

The OpenAPI Specification is a specification for describing APIs implemented according to
Representational State Transfer (REST) principles.

» Profile

Set of one or more base standards and - where applicable - the identification of chosen clauses,
classes, subsets, options and parameters of those base standards that are necessary for
accomplishing a particular function [ISO 19101, ISO 19106].

» STRATUS (Synchronization Technology Relating Analytic Transparently Unified Services)

NASA project offering an integrative framework presenting a unified API and workflow
orchestration for varied climate data analytic services.

e Variable (climate variable)

The term climate variable is used to refer to a variable that can be measured directly in the field (at
meteorological stations for example) or that is calculated by climate models. (See Index)

* Xarray

Xarray is an open source project and Python package focused on multi-dimensional arrays. It
includes a library of domain-agnostic functions for advanced analytics and visualization with these
data structures. (Xarray [http:/xarray.pydata.org/en/stable/])

10

https://www.nccs.nasa.gov/services/analytics/EDAS
http://xarray.pydata.org/en/stable/

3.1. Abbreviated terms

ACL Access Control List

ADES Application Deployment and Execution Service
AOI Area Of Interest

AP Application Package

API Application Programming Interface

BER Biological and Environment Research

CCCS Canadian Center for Climate Services

CERFACS Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique

CRIM Computer Research Institute of Montreal
CWL Common Workflow Language

CWT Compute Working Team

DKRZ Deutsches Klimarechenzentrum

DOE U.S. Department of Energy

ECCC Environment and Climate Change Canada
EMS Execution Management Service

EO Earth Observation

EOC Earth Observation Clouds

EP Exploitation Platform

ER Engineering Report

ESA European Space Agency

ESGF Earth System Grid Federation

HPC High-Performance Computing

IdP Identity Provider

IPCC Intergovernmental Panel on Climate Change
IT Information Technology

JSON JavaScript Object Notation

KNMI Koninklijk Nederlands Meteorologisch Instituut
LLNL Lawrence Livermore National Laboratory
MEP Mission Exploitation Platform

ML Machine Learning

NASA National Aeronautics and Space Administration
NCCS NASA Center for Climate Simulation

NRCan Natural Resources Canada

11

12

PAVICS Power Analytics and Visualization for Climate Science

PCIC Pacific Climate Impacts Consortium
OWS OGC Web Services

REST REpresentational State Transfer
SWG Software Working Group

TB Testbed

TEP Thematic Exploitation Platform

TIE Technology Integration Experiments
TOI Time Of Interest

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

WEFS Web Feature Service

WPS Web Processing Service

Chapter 4. Overview

Section 5 briefly recaps the work done in Testbed-14 regarding the execution and deployment of
applications and workflows. The section also reviews the potential implications for Testbed-15.

Section 6 describes the ESGF Compute Challenge, a community effort into which this activity has
been coordinated.

Section 7 presents the solution developed in this activity. It documents the execution management
system and its extension to the ESGF Compute Working Team API.

Section 8 introduces the workflows and application packages created for interoperability
experiments with ESGF API. It also lists the relevant climate processes and data used.

Section 9 lists issues of interest and findings that the work performed by the participants allowed to
identify.

Annex A provides a client-side Python sample through ESGF CWT APL.

Annex B provides a CWL file for the ice_days process of Finch WPS 1.0 provider. Finch is a
component used to compute climate indices.

Annex C provides a CWL file for the subset process of NASA EDAS provider, exposed through ESGF
CWT APL

Annex D provides a JSON file, containing all required inputs and outputs for a ESGF CWT API
process.

Annex E provides a JSON file for WPS 1.0 workflow of climate processes.
Annex F provides a JSON file for the request body of a WPS 1.0 workflow.
Annex G provides a CWL file for the WPS 1.0 to CWT workflow using LLNL AIMS WPS provider.

Annex H provides a CWL file for the WPS 1.0 to CWT workflow using NASA EDAS WPS provider.

13

Chapter 5. Testbhed 14 Recap

Section 5 presents key elements of Testbed-14 relevant to this work, such as common architecture,
interfaces and implementations. In general, the reader is invited to refer to the following
Engineering Reports produced in the EOC thread.

* OGC Testbed-14: ADES & EMS Results and Best Practices Engineering Report [1]

* OGC Testbed-14: Application Package Engineering Report [2]

Additionally, the reports below offer additional insights supporting challenges of the Earth System
Grid Federation and helping scope specifications for next generation architecture. These topics are
very briefly covered in the discussion section and are introduced as recommended future work in
the summary of this report.

* OGC Testbed-14: Federated Clouds Engineering Report [3]

* OGC Testbed-14: Machine Learning Engineering Report [4]

5.1. Architecture

The figure below is taken from the Testbed-14 ADES & EMS Results and Best Practices ER [1] and
shows the architecture adopted. The main building blocks included the Client, the Execution
Management Service (EMS), the FEDEO OpenSearch gateway and an Application Deployment and
Execution Service (ADES). While OpenSearch, ADES and the Client play an important role in the
EOC thread of Testbed-14, they are not really considered in the current report. This report focuses
on an extension to the EMS allowing support of a large variety of applications types. The desired
outcome is a backward compatibility with existing infrastructure, all while extending compatibility
with process providers using their own interfaces.

The collection
determines the

execution
platform

Collection + TOI + AOI
FEDEO

. Collection + TOI + AOI
TEP Client _ OpenSearch
EMS

(WPS-T REST + EO Image[] + MEP gateway

CWL Engine for
Workflows)

Figure 1. Final Testbed-14 EOC Thread Architecture

5.1.1. Interfaces

This subsection presents the WPS interface used in the execution components, as well as the
packaging and chaining of applications.

14

WPS-T 2.0 REST/JSON

In Testbed 14, a RESTful protocol for the WPS interface was designed. The interface serves both the
ADES and EMS components as they share the same functionality set. The complete specification
defined wusing OpenAPI can be found on Github [https:/github.com/opengeospatial/D009-
ADES_and_EMS_Results_and_Best_Practices_Engineering_Report/blob/master/code/ades_wpst.json]. This interface
proposes how to deploy, list, execute and monitor processes, as well as getting back the process
result. While the specification covers other aspects, these are the main operations on which this
report focuses.

Application Package

The Application Package ER [2] defined how the applications should be packaged. It introduced a
novel way to capture how the parameters could be passed to the application and how the results
are retrieved. A WPS-T DeployProcess document defines the application’s inputs and outputs, as
well as the execution unit. The novel way to define that execution unit is to add a Common
Workflow Language (CWL [5]) file that is exactly conceived to describe how to execute Docker
applications and how parameters and results can be provided and retrieved. Docker is a set of
software products for creating, deploying, and running applications inside containers. Each WPS
input can precisely map to the Docker command line arguments. The output can be easily retrieved
by mounting a volume inside the Docker container where the output is expected to be created. The
DeployProcess document still supports defining directly the Docker image as an execution unit, but
in that case ows:metadata must be provided to emulate what is contained in the CWL. The current
report describes the modification to the CWL execution unit and shows how it can be used to easily
make the EMS more versatile.

Application Chaining

Application chaining is an important part of the Testbed-14 project. Proposed interoperability
experiments involve simple chaining, where in a workflow composed of application A and B,
output of A is being fed into B. Both applications are packaged as Docker images and their
execution is forwarded to an ADES. That forwarding is dynamic. Based on the data source, the
system determines where application execution should occur, so that the data does not have to be
moved around. That implies that at runtime, an ADES is targeted based on the data source, hence
the application is deployed to that ADES. It is then executed before deployment of the second
application, parametrized with the output of the first one.

5.1.2. Implementation

For this work, CRIM’s implementation is considered. It is already partly committed into ESGF code
base and is being extended to support interoperability with ESGF deployed services, as described in
Section 6. The EMS implementation is based on components of the Open Source software
framework Birdhouse [6]. The Twitcher [https:/github.com/Ouranosinc/twitcher] component acts as a
Policy Enforcement Point (PEP). It has been extended to offer a WPS 2.0 JSON proxy to WPS 1.0
endpoints, and to comply to the EMS API which involves adding the dynamic deployment of
processes and CWL workflow capabilities. The Magpie [https:/github.com/Ouranosinc/Magpie]
component is used as an adapter to manage ACLs of deployed processes and process permissions
(WPS requests) for a given user’s credentials. The following component diagram shows the relation
between Twitcher and Magpie.

15

https://github.com/opengeospatial/D009-ADES_and_EMS_Results_and_Best_Practices_Engineering_Report/blob/master/code/ades_wpst.json
https://github.com/Ouranosinc/twitcher
https://github.com/Ouranosinc/Magpie

Magpie
."—’
[y
MongoDB
Providers
r 1
Twitcher E Self proxying
WPS-T 2.0 API
for AuthZ
R —]
oy Authorization ~ro0ed
EMS]
PYWPS l CWL ¢ ADES Job «interface»
- ¥) == —EMS or ADES jobs—>| Single or =¥
“WPS 1.0 part of Workflow WPS-T 2.0
[
ADES Jobs
v
Docker «interface»
\ ESGF CWT API
~-Get External
Providers
P — > API 2] Celeryr$j
Provider H t r—face
Rest API Submit . External «inte: »
Handler jobs > Provider Jobs WPS 1.0
. ! »
> PST
2.0

EMS/ADES Jobs—

MongoDB

Applications

Figure 2. EMS component developed by CRIM and proposed extension to other WPS interfaces.

Incoming requests initially hit the top-left proxy connector, that first performs an authorization
using the Magpie component. If the user is allowed, the request is forwarded by the proxy to the
bottom left WPS-T interface, which implements the OpenAPI specification described above.
Submitted jobs are managed in a queue implemented using Celery [7]. The handler forwards the
job to a legacy WPS 1.0 PyWPS server which performs all the parameters validation. All jobs are
then processed by the CWL engine which can execute the job in situ, if playing the ADES role, or an
EMS forwarding it to the proper ADES based on the data source.

16

Chapter 6. ESGF Compute Challenge

Section 6 presents the Earth System Grid Federation (ESGF) collaborative effort and introduces its
recent Compute challenge. The section also presents some of ESGF requirements, priorities,
solutions and contributed implementations.

6.1. Background Information

Led by the Office of Biological and Environmental Research (BER) of the U.S. Department of Energy
(DOE), ESGF is an international multi-agency federation that develops, deploys, and maintains
software to facilitate advancements in geophysical science. ESGF’s open-source, operational code
base disseminates model simulation, observational, and reanalysis data for research assessments
and model validation via secure storage and dissemination of petabytes of data.

Addressing “big data” challenges in Earth system research, ESGF is a collaboration of numerous
computer scientists, data scientists, and climate researchers. The federation houses an enormous
database of global observational and simulation data — more than five petabytes — and manages
the high-performance computing (HPC) hardware and software infrastructure necessary for
scientific climate research. In the nearly two decades since its launch, ESGF has grown to serve
25,000 users on six continents [8]. More details can be found in ESGF Brochure [https:/esgf.linl.gov/
esgf-media/pdf/2017-ESGF-Brochure.pdf] or in Discussion for other supporting material and citations.

6.1.1. ESGF Mission
The ESGF mission is to:

» Support current CMIP6 activities, and prepare for future assessments

» Develop data and metadata facilities for inclusion of observations and reanalysis products for
CMIP6 use

* Enhance and improve current climate research infrastructure capabilities through involvement
of the software development community and through adherence to sound software principles

 Foster collaboration across agency and political boundaries
* Integrate and interoperate with other software designed to meet the objectives of ESGF

* Create software infrastructure and tools that facilitate scientific advancements

6.1.2. ESGF Priorities
As of early 2019, the priorities of ESGF are as follows:

e Containerized architecture

OAuth 2.0 deployments

CMIP6 data replication

* Next-generation search services

Scalability on multiple fronts

17

https://esgf.llnl.gov/esgf-media/pdf/2017-ESGF-Brochure.pdf

* Machine learning tools

* Compute nodes challenges

On that last element, the Compute Working Team (CWT) currently conducts iterative deployments
and tests to stand up multiple production-ready, officially certified ESGF compute nodes. This effort
includes data selection, security scans, API development, scalability tests, documentation updates,
and regular status reports. The current Engineering Report is one of the contributions to this
challenge.

6.2. Compute Challenge Implementations

The ESGF Compute Challenge participants completed various experiments and integrations. The
EMS implementation described in this report is based on components from both Birdhouse and
PAVICS. The Solution described in this report focuses on providing access to deployed ESGF CWT
API processes and providers in application packages and workflows. Future work includes
exposing application packages through ESGF CWT API, either manually or dynamically. Below is a
list of the various systems and frameworks involved in the Compute Challenge.

* AIMS [https://computation.llnl.gov/projects/aims-analytics-and-informatics-management-systems] - Analytics
and Informatics Management Systems, LLNL.
e Birdhouse [http://bird-house.github.io/]] Framework, DKRZ/CEDA/IPSL. See [9].

o C41 [https://climate4impact.eu/impactportal/general/index.jsp] - Climate4Impact,
CERFACS/IPSL/KNMI/CMCC.

* EDAS [https://www.nccs.nasa.gov/services/analytics/EDAS] - Earth Data Analytic Services Framework,
NASA Goddard SEC. See [10].

* OpenVisus [https://github.com/sci-visus/OpenVisus], University of Utah. See [11].
* Ophidia [https:/github.com/OphidiaBigData/ophidia-analytics-framework] Analytics Framework, CMCC.
See [12].

* PAVICS [https://ouranosinc.github.io/pavics-sdi/] - Platform for the Analysis and Visualization of
Climate Science, Ouranos/CRIM. See [13].

EDAS can be used as an analytics engine for the ESGF through STRATUS, an integrative framework
developed at NASA NCCS. STRATUS presents a unified API and workflow orchestration for varied
climate data analytic services. See Discussion section for more information on STRATUS.

As of early April, only AIMS and EDAS offered endpoints implementing the ESGF Compute Working
Team API. Interoperability experiments conducted on these providers for this work are
documented in Section 7 and Section 8, while the API is briefly described below.

6.3. ESGF Compute Working Team API

The ESGF Compute Working Team (CWT) is working to improve interoperability and compute
capabilities within the federation using Web services technology. The OGC WPS standard has been
selected to ensure machine-to-machine interoperability. A reference server implementation of a
compute node [https:/github.com/ESGF/esgf-compute-wps] is offered. Certification datasets are listed in a

18

https://computation.llnl.gov/projects/aims-analytics-and-informatics-management-systems
http://bird-house.github.io/
https://climate4impact.eu/impactportal/general/index.jsp
https://www.nccs.nasa.gov/services/analytics/EDAS
https://github.com/sci-visus/OpenVisus
https://github.com/OphidiaBigData/ophidia-analytics-framework
https://ouranosinc.github.io/pavics-sdi/
https://github.com/ESGF/esgf-compute-wps

GoogleDocs [
https://docs.google.com/document/d/1pxz1Kd3JHfFp8vR2JCVBfApbsHmbUQQstifhGNdc6U0/edit?usp=sharing] living
document. The process requirements are defined on GitHub [https:/github.com/ESGF/esgf-compute-api/
blob/devel/docs/source/cwt.compat.rst]. These requirements are partially duplicated below for
convenience.

6.3.1. Inputs
The datainputs parameter consists of the following three types.

¢ Domain
e Variable

* Operation

Domain

This WPS input should use the identifier domain. The input is passed an array of domains that are
comprised of one or more dimensions.

* id [Required]
* mask [Optional]

* One or more dimensions keyed using a descriptive identifier. [Required]

Variable

This WPS input should use the identifier variable. The input is passed an array of variables that
define all inputs for the process.

* id [Required] - Can be extended with a | followed by an identifier that will be used to reference
the variable

* uri [Required]
* domain [Optional]
Operation

This WPS input should use the identifier operation. The input is passed an array of operations.

* name [Required]

* input [Required] - List of inputs

result [Optional] - Name that can be referenced by other operations when creating workflows

domain [Optional]
» axes [Optional]
 gridder [Optional]

» Zero or more additional parameters [Optional]

19

https://docs.google.com/document/d/1pxz1Kd3JHfFp8vR2JCVBfApbsHmbUQQstifhGNdc6U0/edit?usp=sharing
https://github.com/ESGF/esgf-compute-api/blob/devel/docs/source/cwt.compat.rst

6.3.2. Output
The WPS process should only have a single output whose identifier is output.

* uri [Required]
* id [Optional]
* domain [Optional]

* mime-type [Optional]

20

Chapter 7. Solution

Section 7 presents the solution adapting Testbed-14 implementations towards interoperability with
ESGF compute nodes. The section revisits the architecture, introduces two new profiles and offers
code samples for integration of deployed services into workflows.

7.1. Architecture

The goal of the extension presented in this report is to improve the EMS in order to increase
compatibility across existing systems. The EMS provided for Testbed-14 offers a WPS-T 2.0
interface, yet should be able to run multiple application types and use them in heterogeneous
workflows. Using a single interface should allow execution of a large array of existing applications
and, moreover, use them inside workflows. Two new application types are considered in this
project. The first is for backward compatibility and consists of execution of existing process served
by WPS 1.0 endpoint. The second is to broaden furthermore the application scope by covering the
ESGF Compute Working Team (CWT) APIL.

Multiple approaches have been considered to achieve this goal. The first approach is to keep the
EMS as is, package every type of application into Docker images, and provide alongside them a CWL
describing invocation mechanisms. However, packaging existing providers would yield huge
Docker images with multiple processes. This could simply prove impossible for external providers
for which the code is unavailable. The second approach, much simpler, however defeats one of the
principles of Testbed-14 which is to bring the application to the data. This approach consists of
packaging all the information required to make a standard WPS 1.0 or ESGF CWT API request.

A DeployProcess document is still provided but two new profile names have been introduced,
wpsApplication and ESGFWpsApplication, that require fewer elements as everything needed can be
extracted from the existing endpoints. In the WPS 1.0, the CWL file can even be generated
transparently at deployment time since the parameters mapping is trivial. The CWL file itself allows
to specify execution requirements so that the engine can change the execution unit and perform a
classic WPS 1.0 or ESGF CWT API execute request, without a prior deployment request.

21

Magpie

Fetch external providers and create App
package for each of their processes
MongoDB
Providers To be replaced by a release of PYWPS
|supporting the REST API
S) Weaver
itcher
2] 2] 2] CcwL £
iati API Cele
oy «-{ Authorization |—'p,md WPS-T v Workflow WPS 1.0 Job i
e Handler [— oo b «interface»
= o = WPS 1.0
owstib K
ESGF CWT API Job «nterface»
Hen | ESGF CWTAPI

Job

WPS-T 2.0 Job S — c\;r;;r_f?czeg
5 i
PywPS or ADES j

Workflow ADES Docker Job Docker
Engine

]

Figure 3. New EMS component called Weaver and its workflow packages.

As described in Section 5, in Testbed-14, CRIM’s EMS implementation was all contained in a
component named Twitcher. This component is part of the Open Source software framework
Birdhouse [9]. In the current solution, Twitcher is separated into two components so that each one
can focus primarily on its own role and make the architecture simpler. The previous diagram
resumes the situation. Twitcher now operates as regular proxy and a Security Enforcement Point
(PEP), alongside the permission provider, Magpie. The WPS-T 2.0 REST interface and the CWL
engine are moved to a new component named Weaver [https:/github.com/crim-ca/weaver].

7.2. Application Package

This subsection describes the various application profiles developed and introduces their
integration into workflow. Subsetting and climate indices calculation are also introduced as key
processes relevant to ESGF.

7.2.1. Process Deployment

The DeployProcess document conforms to the existing API but requires fewer optional elements.
Using the wpsApplication deployment profile name, it only requires the process id and an
execution unit referencing a WPS 1.0 endpoint. Inputs, outputs and CWL file can be implicitly
deduced.

Below is a JSON file deploying a WPS 1.0 endpoint offering computation of climate indices. In this
case, the WPS component named Finch [https:/github.com/bird-house/finch] exposes the xclim
[https://xclim.readthedocs.io/en/latest/readme.html] Python library developed by Ouranos and funded in
part by Environment and Climate Change Canada (ECCC). This library is based on Xarray and
benefits from the parallelization provided by Dask. XClim has for objective to make it as simple as
possible for users to compute indices from large climate datasets, and for scientists to write new
indices with very little boilerplate. The example below returns Ice Days, which takes into account
the number of days in which the temperature never rises above 0 degrees Celsius and stays below
freezing point.

22

https://github.com/crim-ca/weaver
https://github.com/bird-house/finch
https://xclim.readthedocs.io/en/latest/readme.html

JSON file for a WPS 1.0 process deploy request

"processDescription”: {
"process": {
"id": "Finch_IceDays"
}
1

"executionUnit": [

{
"href":

"https://finch.crim.ca/wps?service=WPS&request=describeprocess&version=1.0.0&identifie
r=ice_days"
}
1,
"deploymentProfileName": "http://www.opengis.net/profiles/eoc/wpsApplication”

For the ESGF CWT processes, the CWL must be provided as a reference or inline, since parameter
mapping is more involved than for WPS 1.0. This is discussed further in the Discussion section.
Below is a JSON file deploying a WPS 1.0 endpoint enforcing the ESGF CWT API In that case, the
example is a subsetting process offered by NASA EDAS. This process is conceptually similar to
setting an area and time of interest to Earth observation data, and returning the extracted data.

JSON file for an ESGF CWT process deploy request

{
"processDescription”: {
"process": {
"id": "nasa_esgf_subset"
}
b
"executionUnit": [
{
"unit": {
<cwl file content show below>
}
}
1
"deploymentProfileName": "http://www.opengis.net/profiles/eoc/ESGFWpsApplication”
+

7.2.2. Workflow Integration

The CWL file is modified so that the CWL engine can instantiate the appropriate job
implementation. To that effect, the hints section of the CWL file are used. This replaces the
traditional DockerRequirement value for extensions requirements, which are WPS1Requirement
and ESGF-CWTRequirement. Under that key, a dictionary containing all the parameters required to
make an execute request to WPS 1.0 provider is added. The only difference with the CWL provided

23

during Testbed-14 is the hints section declaring the WPS1Requirement and two parameters: the
provider endpoint and the process which is wrapped. The file format is also now enforced in the
CWL file. Below, a CWL example file describes one of the climate processes for the WPS 1.0
provider. A full example of the CWL file, containing inputs and outputs, can be found in Annex B.

Excerpt of CWL file for the ice_days process of Finch WPS 1.0 provider

{
"cwlVersion": "v1.0",
"$namespaces": {
"edam": "http://edamontology.org/"
H
“class": "CommandLineTool",
"hints": {
"WPSTRequirement": {
"process": "ice_days",
"provider": "https://finch.crim.ca/wps"
}
},
“inputs": {<...>},
"outputs": {<...>}
}
}

When the CWL engine encounters the file presented above, it recognizes the WPS1Requirement
thus creating a WPS 1.0 Job. That job uses the same interface as the WPS-T 2.0 Job, but rather than
deploying and executing an application on a remote ADES, it calls the WPS 1.0 execute request of
the provider and process given in parameters. The result is then fetched similarly to the ADES
implementation. In the following CWL excerpt, the ESGF-CWTRequirement triggers the creation of a
CWT Job that will use the ESGF-compute-api Python package to run the process with a proper
parameters mapping. Once again, there is no deployment involved and once the process execution
completes, the result is fetched. A full example of the CWL file, containing inputs and outputs, can
be found in Annex C.

Excerpt of CWL file for the NASA EDAS Subset process

{
"cwlVersion": "v1.0",
"class": "CommandLineTool",
"hints": {
"ESGF-CWTRequirement": {
"provider": "https://edas.nccs.nasa.gov/wps/cwt",
"process": "xarray.subset"
}
b
“inputs": {<...>},
"outputs": {<...>}
}
}

24

Chapter 8. Applications and Workflows

Section 8 documents interoperability experiments conducted between CRIM’s EMS, LLNL AIMS and
NASA EDAS endpoints in context of ESGF Compute Challenge. The section presents execution body
samples and workflows.

8.1. ESGF CWT Applications

Currently, only a small portion of the ESGF WPS processing is implemented in Weaver. This is
largely due to the fact that ESGF WPS inputs are nested, and this nested structure must be
translated to a flat one to correspond to standard WPS inputs or to Weaver’s inputs. Some of these
nested parameters are easy to implement because they are always the same across each process,
but others cannot be automatically queried. A full example JSON file, containing all required inputs
and outputs for the process, can be found in Annex D. Below is an excerpt of an execution body.

25

Excerpt of a JSON file of a CWT process execute body

{
"mode": "async",
"response": "document",
"inputs": [
{
"id": "files",
"href":
"https://boreas.ouranos.ca/twitcher/ows/proxy/thredds/dodsC/birdhouse/nrcan/nrcan_nort
hamerica_monthly/tasmin/nrcan_northamerica_monthly_2015_tasmin.nc"

H
{
"id": "variable",
"data": "tasmin"
I,
{
"id": "api_key",
"data": "{{ api_key }}"
I,
{
"id": "time_start",
"data": "0"
H
{
"id": "lat_start",
"data": "60"
I,
< >
P
"outputs": [
{
"id": "output",
"transmissionMode": "reference"
}
]

}

The files and variable parameters correspond to the ESGF CWT API variable input, as described in
ESGF section. The api_key must be obtained by creating an account on the Lawrence Livermore
National Laboratory (LLNL) website. The other inputs are a flat representation of the ESGF
'Domain’' input. So far, the time and lat/lon attributes are present in every NetCDF file encountered
so they are easy to implement and re-use for each process. The ESGF processes successfully tested
are CDAT.aggregate and CDAT.subset, deployed on AIMS2 servers.

8.2. Application Chaining

For the application chaining, the CWL engine is now able to process all application types only by
instantiating the proper job type. To demonstrate that interoperability, two workflows have been

26

produced and will be presented in this section. Beforehand, utility applications will be introduced.

8.2.1. Utility Applications

This concept has been added to further improve compatibility. They are small Python applications,
still packaged as CWL, that can make some adaptation between related type. For example, some
applications yield JSON files containing an array of NetCDF files. The JSON output is therefore
incompatible with an application wanting NetCDF files as inputs. The utility application can be
chained between the two. This way, the CWL engine feeds the JSON output into the utility apps that
will provide an array of NetCDF files, ready to be consumed by the next application. These
applications are really lightweight because the CWL file is only wrapping a Python function already
inside the Weaver EMS component. Below is a sample CWL file of the JSON to NetCDF.

CWL file for the JSON to NetCDF utility application

#!/usr/bin/env CWL-runner
CWLVersion: v1.0
$namespaces:
iana: "https://www.iana.org/assignments/media-types/"
edam: "http://edamontology.org/"
class: CommandLineTool
baseCommand: python
arquments: ["-m", "weaver.processes.builtin.jsonarray2netcdf", $(runtime.outdir)]
inputs:

input:
type: File
format: iana:application/JSON
inputBinding:
position: 1
outputs:
output:
format: edam:format_3650
type:
type: array
items: File
outputBinding:
glob: "*.nc"

8.2.2. Workflow Chaining WPS 1.0 Processes

The first workflow consists of a subsetter and a climate indices process. The deploy body is exactly
the same as in Testbed-14 as shown here. It contains the deployment profile name indicating that it
is a workflow, a process id and a CWL reference containing the workflow.

27

JSON file for the WPS 1.0 workflow

{

"processDescription”: {
"process": {
"id": "WorkflowSubsetIceDays",
"title": "Workflow of Subset and Ice Days",
"abstract": "Workflow that first executes a bounding box subset of a
region and afterwards calculates days with ice within the obtained region."

}

}

"executionUnit": [
{

"href": "tests/functional/application-
packages/workflow_subset_ice_days.CWL"
}

1
"deploymentProfileName": "http://www.opengis.net/profiles/eoc/workflow"

The CWL is also built the same way as in Testbed-14. It contains the class indicating that it is a
workflow, the workflow inputs and outputs and the steps referencing CWL files. This workflow
contains two WPS 1.0 steps and one utility json2nc step converting the output type of the first step
into an acceptable type for the third one as introduced in the previous section. Below is an excerpt
of the CWL files, where some details were removed for concision. A complete listing of this CWL file
can be found in Annex E. To execute that workflow, the same execute request body as in Testbed-14
is used. The complete execute request body for the workflow can be found in Annex F.

Excerpt of a CWL file of the WPS 1.0 workflow

{
"cwlVersion": "v1.0",
"class": "Workflow",
"requirements": [
{
"class": "StepInputExpressionRequirement"
}
1
“inputs": {<...>},
"outputs": {<...>},
"steps": {
"subset": {<...>},
"json2nc": {<...>},
"ice_days": {<...>}
}
}

In Annex F, the tasmax input provides a reference to a required maximum temperature NetCDF file
which is shown on the left in the image below. The lat/lon inputs are required as well by the

28

subsetter process, and finally the freq input is mapped to the ice days process. The subsetter
performs its task using the provided bounding box, the JSON output is decapsulated by the jsonZnc
step, and the NetCDF file is then fed to the last process which calculates the ice days over the
provided region. The result of this workflow on Canada statistically downscaled climate scenarios is
shown on the right in the image below.

air temperature Number of Ice Days (Tmax < 0C)

W .
-1410 -1232 -105.4 876 -69.8 -520 -80.0 770 740 710 -68.0 -65.0
longitude (°E) longitude (°E)

air temperature (K) Number of Ice Days (Tmax < 0C) (days)

2348 2440 2531 2622 2713 2804 30 86 142 198 254 310

Figure 4. Image showing workflow input / output example.

8.2.3. Workflow Linking two Subsetters of CWT and WPS 1.0 Types

The second workflow has been tried both ways, first subsetting by CWT then by WPS 1.0, and using
the opposite order, WPS 1.0 first then feeding the CWT interface. As for the first workflow, the
deploy body is unchanged from the previous Testbed (except for the CWL file name) and is omitted
here. The first CWL, detailed in Annex G, shows that the WPS 1.0, crim _subset, is linked to the
second step, linl_subset, a CWT process executed on the AIMS2 server at LLNL.

The second CWL file, detailed in Annex H, shows the opposite, this time using the CWT interface of
the NASA server, nasa_subset, to feed the WPS 1.0 process, crim_subset. In this workflow, a utility
application is also used to convert the file type obtained from the nasa_subset step to a string type
required by the crim_subset further supporting the usefulness of these utility applications. The
result of subsetting on CMIP6 data is shown on the right in the image below.

29

File Edit View History Bookmarks Plot Window Help

/et \(array1

Near-Surface Air Temperature

Near-Surface Air Temperature

By

]

X

v
= | SO
|
HE | I —— |
e 3 lase | | 1
==
- L —] | |
— 00 b l
Near-Surface Air Temperature (K) Near-Surface Air Temperature (K)
2184 2359 2535 2710 288,5 308,1 2512 2557 2603 2649 2695 2741
Data Min = 218.4, Max = 306.1, Mean = 285.2 Data Vin = 251.2,Max = 274.1
/ Array(s) \ scale)/ Map \ overlays \ shading | contours | vectors | Labels | "Array(s) | cale | Map | Overlays | Shading | Contours | Vectors | Labels
Projecton: Equirectangular < Gid: Spacng:[150 [EW x[150 « (NS Vector Style: [Anow | Spadng: [110[%, Array 1values are positive [Exst_
Colr: —], weioht: [75[% Array 2valies are posite North

[Offst paralis
| Clor: [mmmm o], weight: | solo%

Center on: Lon, 0,0, Lat. 00N
Std. paralel:| 0,01 stje: [soid
Labels: [None. v|-seles o

Border: Weights| 150[%

Reference Value: 205,5530777

Scale Sample:

visble

Figure 5. Image showing subsetting of CMIP6 data as processed by CRIM subsetter.

30

Chapter 9. Discussion

Section 9 opens up the discussion by further elaborating on findings or on raising open issues from
the work.

9.1. Application and Process Terminology

There is a need to (re-)establish a common vocabulary for the software artefacts involved. For
instance, the terms Application, Application Package, Process, Service and Endpoint lend themselves
to be used interchangeably. The potential confusion is even more important in context of
Workflows that can chain applications and execute deployed processes.

9.2. Transition from WPS 1.0 to WPS 2.0

Current adoption of WPS 2.0 standard is still very limited. For instance, 52°North implementations
such as javaPS [https:/github.com/52North/javaPS/releases/tag/v1.2.0] are based on OGC Web Processing
Service standard version 2.0; PyWPS [https://pywps.readthedocs.io/en/master/] server is currently only
planning support for this version. In the near future, one can still expect to see new WPS 1.0
endpoints appear. By enabling support of pre-deployed WPS 1.0 services into a WPS 2.0 workflow
environment, and onwards to WPS 3.0, the Solution presented in this report has the potential to
facilitate a transition phase for legacy deployments. This relative ease to provide WPS 2.0 RESTful
interfaces comes at the expense of the increased software complexity involved with an EMS/ADES
implementation such as Weaver.

It has been shown with the previous workflows that interoperability between WPS 1.0 and ESGF
CWT interface can be achieved with the Weaver component. If climate processes could have been
available as a Docker application during the short project time frame, a workflow composed of all
WPS 1.0, ESGF CWT and WPS-T 2.0 interface could have been tested also.

9.3. From Docker Image to Application

In the process of adapting the EMS to climate applications, it became clear that having a Docker
image of an application is not a sufficient condition to consider it an Application Package. Docker
images are often packaged with ease of installation and deployment in mind, but not runtime
considerations such as execution. In PAVICS [13] and Birdhouse [9], climate processes are packaged
as Docker images, alongside a WPS server. These processes are intended to be run as a service, so
that requests are made to it and result are fetched from it. The Docker container is deployed and
then is always running. To convert this service into an Application Package as described in [2], the
processes would need to be packaged without any web server, database or file server. The Docker
image must define a run command that map inputs directly to the process function. The result must
then be extracted from the container after it has been run. It is a completely different paradigm
that require careful consideration to define clear entry points to the executable code.

9.4. CWL File Formats

In CWL, tools and workflows can take File types as input and produce them as output. This

31

https://github.com/52North/javaPS/releases/tag/v1.2.0
https://pywps.readthedocs.io/en/master/

specification documents the use the tool and allows simple type-checking when creating parameter
files. It is possible to reference existing ontologies, like EDAM, or reference a local ontology.
Additional investigation for creation of such an ontology for EO and climate is required, and
recommended as future work in the summary.

9.5. Metalinks

One recommendation from OGC Testbed-14: ADES & EMS Results and Best Practices Engineering
Report [1] is to use Metalinks for multiple outputs. During the ESGF Compute Challenge, Ouranos
and DKRZ produced an implementation that adds MetaFile and MetaLink classes, code that has
been merged in PyWPS [https:/github.com/geopython/pywps/pull/466]. The intent is to improve user
experience with respect to WPS outputs storing multiple files under the same identifier. For
example, when computing an indicator on an ensemble of climate simulations, the output is going
to be a list of files. At the moment, a usual way to send that back to the user is to either zip these
files and provide the reference to the zip file, or create a txt file storing the list of references.

In this implementation, a process developer declares an output as a FORMATS.METALINK,
instantiates a MetaLink object and fills it with all the output files and their metadata (name,
description). The server returns an XML file matching the metalink schema. Metalink files are
recognized and individual files downloaded and converted into objects. The MetaLink format opens
up interesting possibilities, including distributing files as torrents or use of a checksum.
Additionally, impacts of Metalink support in workflow environments is to be investigated.

9.6. NASA NCCS STRATUS

NASA Stratus Framework provides a set of standards and APIs to facilitate the integration of
disparate analytic services into unified workflows with a common interface. The Stratus
framework has been partially implemented at NCCS and a limited deployment is in the initial stages
of testing and security review. As the framework addresses several challenges of EO platforms, it is
presented to the reader of this report as a solution potentially complementing ESA Thematic
Exploitation Platform (TEP) open architecture. Below are STRATUS primary requirements, as listed
in its white paper [https:/github.com/nasa-nccs-cds/stratus/blob/master/docs/STRATUS-WhitePaper-1.0.pdf]:

* Modular Endpoints: Requires a common endpoint API that can be used to wrap any analytic
operator and expose it as an instantiation of a singular analytic module interface.

* Modular Layers: Requires a technology-agnostic architectural layer specification adhering to a
common APIL, which can be instantiated using a wide range of applicable technologies.

* A common language: Requires a common request-response language for describing workflows
that can be assimilated and understood by all of the architectural layers and endpoints.

9.7. Applicability to Machine Learning

In Testbed-15 Machine Learning tasks, there is a specification to “continue the work of cloud
computing from Testbed 13, 14 with work on WPS and possibly CWL (Common Workflow
Language), and continue the LiDAR best practices work from Testbed 14”. This applies for these
deliverables:

32

https://github.com/geopython/pywps/pull/466
https://github.com/nasa-nccs-cds/stratus/blob/master/docs/STRATUS-WhitePaper-1.0.pdf

* D100 Petawawa cloud mosaicking Machine Learning model

* D101 Petawawa land cover classification Machine Learning model

* D102 New Brunswick forest Machine Learning model
It is to be noted that work documented in OGC Testbed-14: Machine Learning Engineering Report [
4] presents a Dockerized, self-contained application package of PyTorch, including helper libraries.

The work presented in the current report is therefore seen as potentially complementary to the ML
common architecture to be defined in the Machine Learning thread.

9.8. Generation of CWL Wrappers for ESGF CWT API

In this work, a CWL descriptor such as the one in Annex B is generated automatically using
DescribeProcess on a pre-deployed WPS 1.0 service. The process description is expected to explicitly
define all inputs and outputs. In the case of ESGF CWT API compliant process, DescribeProcess
effectively lists Domain, Variable and Operation inputs, as specified in the API and described in
Section 6. The multiple values of these parameters have to be passed separately in a JSON file. As
such, they values are not automatically available for the CWL generation. A CWL file has to be
manually edited to explicitly add and map the all inputs. An example can be seen in Annex C. To
remediate this, a specific set of inputs, or profile, could be defined as a shared interface between
deployed ESGF processes. Additionally, the EMS could implement special logic to parse the multiple
values of an ESGF CWT API compliant service.

9.9. ESGF Supporting Material

The following publications offer a thorough view on various challenges and requirements of ESGF:

 Strategie Roadmap for the Earth System Grid Federation [14]
 Big Data Challenges in Climate Science: Improving the next-generation cyberinfrastructure [15]

* Enabling Reanalysis Research Using the Collaborative Reanalysis Technical Environment
(CREATE) [16]

* Requirements for a global data infrastructure in support of CMIP6 [17]

» Addressing the massive CMIP6 data science challenge through the ESGF global federation [18]

33

Appendix A: Sample Python code for ESGF
CWT API

Sample Python code for ESGF CWT API
import esgf
NH = esgf.Domain(dimensions=[

esgf.Dimension(0.0, 90.0, esgf.Dimension.values, name='latitude'),

]I

name = 'd0")

tas = esgf.Variable('http://.../tas.nc', "tas', name="v@', domains=[NH])
wps = esgf.WPS('http://.../wps")
avg = wps.get_process('averager.mv')

parameters = [
esgf.NamedParameter('axes', 'latitude'),

]

avg.execute([tas], domain=None, parameters)

34

Appendix B: CWL file for WPS 1.0 provider

CWL file for the ice_days process of Finch WPS 1.0 provider

{
"cwlVersion": "v1.0",
"$namespaces”: {
"edam": "http://edamontology.org/"
I
"class": "CommandLineTool",
"hints": {

"WPS1Requirement": {
"process": "ice_days",
"provider": "https://finch.crim.ca/wps"

}

I
“inputs": {

"tasmax": {

"default": {
"mimeType": "application/x-netcdf",
"schema": null,
"encoding": "baseb4"

H

"type": {

"items": "File",
"type": "array"

I

"format": "edam:format_3650"

+

"freq": {

"default": "YS",

"type": {

"symbols": [
"ys",
"Ms*",
"QS-DEC",
"AS-JUL"

1,

"type": "enum"

}

}

b
"outputs": {

"output_netcdf": {
"outputBinding": {
"glob": "output_netcdf.nc'
H
"type": "File",
"format": "edam:format_3650"

}I

36

"output_log": {
"outputBinding": {
"glob": "output_log.*"
I
"type": "File",
"format": "edam:format_1964"

}

Appendix C: CWL file for NASA EDAS

CWL file for the NASA EDAS Subset process exposed through ESGF CWT API

{
"cwlVersion": "v1.0",
"class": "CommandLineTool",
"hints": {
"ESGF-CWTRequirement": {
"provider": "https://edas.nccs.nasa.gov/wps/cwt",
"process": "xarray.subset"
}
b
"inputs": {
"files": "File",
"variable": {
"type": "string"
I
"time_start": {
"type": "float",
"default": null
I
"time_end": {
"type": "float",
"default": null
I
"time_crs": {
"type": "string",
"default": null

I

"lat_start": {
"type": "float",
"default": null

I

"lat_end": {
"type": "float",
"default": null

I

"lat_crs": {
"type": "string",
"default": null

I

"lon_start": {
"type": "float",
"default": null

I

"lon_end": {

"type": "float",
"default": null
j¥

38

}

"lon_crs": {
"type": "string",
"default": null

}
utputs": {

"output": {

"outputBinding": {
"glob": "output_netcdf.nc"

}
"type": "File"

}

Appendix D: JSON file of an ESGF CWT API
execute body

JSON file of an ESGF CWT API execute body

{
"mode": "async",
"response”: "document",
“inputs": [
{
"id": "files",
"href":
"https://boreas.ouranos.ca/twitcher/ows/proxy/thredds/dodsC/birdhouse/nrcan/nrcan_nort
hamerica_monthly/tasmin/nrcan_northamerica_monthly_2015_tasmin.nc"

I,
{
"id": "variable",
"data": "tasmin"
H
{
"id": "api_key",
"data": "{{ api_key }}"
I,
{
"id": "time_start",
"data": "@"
I,
{
"id": "time_end",
"data": "5"
H
{
"id": "time_crs",
"data": "values"
I,
{
"id": "lat_start",
"data": "60"
I,
{
"id": "lat_end",
"data": "40"
H
{
"id": "lat _crs",
"data": "values"
I,
{

"id": "lon_start",

"data“: ll_80"

"id": "lon_end",
lldatall: Il_60ll

"id": "lon_crs",
"data": "values"
}
P
"outputs": [
{
"id": "output",
"transmissionMode": "reference"
}
]
}

40

Appendix E: CWL file of the WPS 1.0
workflow

CWL file of the WPS 1.0 workflow

{

"cwlVersion": "v1.0",
"class": "Workflow",
"requirements": [
{
"class": "StepInputExpressionRequirement"
}
1.
"inputs": {
"tasmax": {
"type": {
"type": "array",
"items": "string"
+

h
"lat0": "float",

"lat1": "float",
"lon@": "float",
"lon1": "float",
"freq": {
"default": "YS",
"type": {
“type": "enum",
"symbols": ["YS", "MS", "QS-DEC", "AS-JUL"]

}
Jr
"outputs": {
"output": {
"type": "File",
"outputSource": "ice_days/output_netcdf"
}
+
"steps": {
"subset": {
“run": "ColibriFlyingpigeon_SubsetBbox.cwl",
"in": {
"resource": "tasmax",
"lat@": "1at@",
"lat1": "lat1",
"lon@": "lon@",
“lon1": "lon1"
s
"out": ["output"]

41

42

|
"json2nc": {
“run": "jsonarray2netcdf",
ll_inll: {
"input": "subset/output"

I
"out": ["output"]
b
"ice_days": {
“run": "Finch_IceDays.cwl",
"in": {
“tasmax": "json2nc/output”,
"freq": "freq"
H
"out": ["output_netcdf"]
}

Appendix F: JSON file for the WPS 1.0
workflow execute request body

JSON file for the WPS 1.0 workflow execute request body

{
"mode": "async",
"response”: "document",
“inputs": [
{
"id": "tasmax",
"href":
"https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/fileServer/birdhouse/nrcan/nrcan
_canada_daily_v2/tasmax/nrcan_canada_daily_tasmax_2017.nc"

I
{
"id": "lat@",
"data": 43
Iy
{
"id": "lat1",
"data": 50
Iy
{
"id": "lon@",
"data": -80
I
{
"id": "lon1",
"data": -65
Iy
{
"id": "freq",
"data": "MS"
}
1,
"outputs": [
{
"id": "output",
"transmissionMode": "reference"
}
]

}

Appendix G: CWL file for the WPS 1.0 to
LLNL CWT workflow

CWL file for the WPS 1.0 to LLNL CWT workflow

{
"CWLVersion": "v1.0",
"class": "Workflow",
"requirements": [

{
"class": "StepInputExpressionRequirement"
}
1.
"inputs": {
"files": "string[]",
"variable": "string",
"esgf_api_key": "string",
"11n1_1at@": "float",
"11nl_1lat1": "float",
"11n1_1on@": "float",
"11n1l_1lon1": "float",
"erim_lat@": "float",
"erim_lat1": "float",
"crim_lon@": "float",
"erim_lon1": "float"
Iy
"outputs": {
"output": {
"type": "File",
"outputSource": "11lnl_subset/output”
}
Jr
"steps": {

"crim_subset": {
"run": "ColibriFlyingpigeon_SubsetBbox.CWL",
"in": {
"resource": "files",
"1at@": "crim_lat@",
"lat1": "crim_lat1",
"lon@": "crim_lon@",
"lon1": "crim_lon1"
I
"out": ["output"]
H
"11n1_subset": {
"run": "SubsetESGF.CWL",
"in": {
"files": "crim_subset/output"”,
"variable": "variable",

44

"api_key": "esgf_api_key",
"lat_start": "11lnl_lat@",
"lat_end": "11nl_lat1",
"lon_start": "11nl_lon@",
"lon_end": "11n1l_lon1"

I

"out": ["output"]

45

Appendix H: CWL file for the WPS 1.0 to
NASA CWT workflow

CWL file for the WPS 1.0 to NASA CWT workflow

{
"CWLVersion": "v1.0",
"class": "Workflow",
"requirements": [

{
"class": "StepInputExpressionRequirement"
}
1.
"inputs": {
"files": "File",
"variable": "string",
"nasa_lat@": "float",
"nasa_lat1": "float",
"nasa_lon@": "float",
"nasa_lon1": "float",
"erim_lat@": "float",
"erim_lat1": "float",
"crim_lon@": "float",
"crim_lon1": "float"
Iy
"outputs": {
"output": {
"type": "File",
"outputSource": "crim_subset/output”
}
Iy
"steps": {

"nasa_subset": {
"run": "SubsetNASAESGF.CWL",
"in": {
"files": "files",
"variable": "variable",
"lat _start": "nasa lat@",
"lat_end": "nasa_lat1",
"lon_start": "nasa_lon@",
"lon_end": "nasa_lon1"
I
"out": ["output"]
H
"file2string_array": {
“run": "file2string_array",
"in": {
"input": "nasa_subset/output"

}I

46

}

"out": ["output"]

rim_subset": {
"run": "ColibriFlyingpigeon_SubsetBbox.CWL",
"in": {
"resource": "file2string_array/output”,
"1at@": "crim_lat@",
"lat1": "crim_lat1",
"lon@": "crim_lon@",
"lon1": "crim_lon1"
s
"out": ["output"]

47

Appendix I: Revision History

Table 1. Revision History

Date

March 11, 2019

March 15, 2019

March 28, 2019

March 31, 2019

April 1, 2019

April 10, 2019

April 11, 2019
May 14, 2019

May 16, 2019

48

Editor

T. Landry

D. Byrns

D. Byrns

T. Landry

D. Byrns

T. Landry

T. Landry
T. Landry

T. Landry

Release

Primary
clauses
modified

all
all

all

all

all

all

all
all

solution,
discussion

Descriptions

initial version

technical
background

workflows and
applications

annexes and
various edits

references/titles
fixes

summary,
discussion,
editorial
changes

near-final draft

internal revision
of document

response to
comments

Appendix J: Bibliography

1.

10.

11.

12.

13.

14.

Sacramento, P, others: OGC Testbed-14: ADES & EMS Results and Best Practices Engineering
Report. OGC 18-050,0pen Geospatial Consortium, http://www.opengeospatial.org/docs/er (2018).

Sacramento, P.,, others: OGC Testbed-14: Application Package Engineering Report. OGC 18-
049,0pen Geospatial Consortium, http://www.opengeospatial.org/docs/er (2018).

Lee, C.A., others: OGC Testbed-14: Federated Clouds Engineering Report. OGC 18-049,0pen
Geospatial Consortium, http://www.opengeospatial.org/docs/er (2018).

Landry, T., others: OGC Testbed-14: Machine Learning Engineering Report. OGC 18-038,0pen
Geospatial Consortium, http://www.opengeospatial.org/docs/er (2018).

Amstutz, P, Crusoe, M.R,, Tijani¢, N., Chapman, B., Chilton, J., Heuer, M., Kartashov, A., Leehr, D.,
Ménager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., Stojanovic, L.: Common Workflow
Language, v1.0. Specification. (2016).

Ehbrecht, C,, Landry, T., Hempelmann, N., Huard, D., Kindermann, S.: Projects Based on the Web
Processing Service Framework Birdhouse. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-4/W8, 43-47 (2018).

Chen, C, others: OGC Testbed-13: Cloud ER. OGC 17-035,0pen Geospatial Consortium,
http://docs.opengeospatial.org/per/17-035.html (2017).

Auten, H.H., Ames, A.S., Williams, D.N.: 7th Annual Earth System Grid Federation Face-to-Face
Conference Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)
(2018).

Ehbrecht, C., Kindermann, S., Stephens, A., Denvil, S.: Web Processing Services for Copernicus
Climate Change Service. EGU General Assembly Conference Abstracts. 20, 6491 (2018).

Maxwell, T.P, Duffy, D., Carriere, L., Potter, G.L.: The Earth Data Analytic Services (EDAS)
Framework. AGU Fall Meeting Abstracts. (2018).

Petruzza, S., Venkat, A., Gyulassy, A., Scorzelli, G., Federer, F., Angelucci, A., Pascucci, V., Bremer,
P.-T.: Scaling Big Data Neuroscience: From Interactive Analytics to HPC Platforms. In: Big Data
and HPC: Ecosystem and Convergence, TopHPC 2017, Tehran, Iran, 24-26 April 2017. pp. 53-68
(2017).

Fiore, S., Plociennik, M., Doutriaux, C., Palazzo, C., Boutte, J., Zok, T., Elia, D., Owsiak, M., D’Anca,
A., Shaheen, Z., Bruno, R., Fargetta, M., Caballer, M., Molto, G., Blanquer, I., Barbera, R., David,
M., Donvito, G., Williams, D., Aloisio, G.: Distributed and cloud-based multi-model analytics
experiments on large volumes of climate change data in the earth system grid federation eco-
system. In: IEEE International Conference on Big Data (Big Data). pp. 2911-2918 (2016).

Gauvin St-Denis, B., Landry, T., Huard, D.B., Byrns, D., Chaumont, D., Foucher, S.: PAVICS: A
platform for the Analysis and Visualization of Climate Science - adopting a workflow-based
analysis method for dealing with a multitude of climate data sources. AGU Fall Meeting
Abstracts. (2017).

Williams, D.N., Lautenschlager, M., Balaji, V., Cinquini, L., DeLuca, C., Denvil, S., Duffy, D., Evans,
B., Ferraro, R., Juckes, M., Trenham, C.: Strategie Roadmap for the Earth System Grid Federation.
In: Proceedings of the 2015 IEEE International Conference on Big Data (Big Data). pp. 2182-2190.
IEEE Computer Society, Washington, DC, USA (2015).

49

http://www.opengeospatial.org/docs/er
http://www.opengeospatial.org/docs/er
http://www.opengeospatial.org/docs/er
http://www.opengeospatial.org/docs/er
http://docs.opengeospatial.org/per/17-035.html

15.

16.

17.

18.

50

Schnase, J., J. Lee, T., A. Mattmann, C., Lynnes, C, Cinquini, L., M. Ramirez, P, F. Hart, A,
Williams, D., Waliser, D., Rinsland, P., Phillip Webster, W., Q. Duffy, D., A. McInerney, M., S.
Tamkin, G., Potter, G., Carriere, L.: Big Data Challenges in Climate Science: Improving the next-
generation cyberinfrastructure. IEEE Geoscience and Remote Sensing Magazine. 4, 10-22 (2016).

Potter, G.L., Carriere, L., Hertz, J., Bosilovich, M., Duffy, D., Lee, T., Williams, D.N.: Enabling
Reanalysis Research Using the Collaborative Reanalysis Technical Environment (CREATE).
Bulletin of the American Meteorological Society. 99, 677-687 (2018).

Balaji, V., E. Taylor, K., Juckes, M., Lawrence, B., Durack, P., Lautenschlager, M., Blanton, C.,
Cinquini, L., Denvil, S., Elkington, M., Guglielmo, F., Guilyardi, E., Hassell, D., Kharin, S,
Kindermann, S., Nikonov, S., Radhakrishnan, A., Stockhause, M., Weigel, T., Williams, D.:
Requirements for a global data infrastructure in support of CMIP6. Geoscientific Model
Development. 11, 3659-3680 (2018).

Evans, B.J.K,, Lautenschlager, M., Cinquini, L., Denvil, S., Ames, S., Ferraro, R., Balaji, V., Kershaw,
P, Landry, T., Williams, D.N.: Addressing the massive CMIP6 data science challenge through the
ESGF global federation. AGU Fall Meeting Abstracts. (2018).

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements & Research Motivation
	1.2. Prior-After Comparison
	1.3. Recommendations for Future Work
	1.3.1. Recommended Future Tasks
	1.3.2. Recommended Future Deliverables

	1.4. Document Contributor Contact Points
	1.5. Acknowledgements
	1.6. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. Testbed 14 Recap
	5.1. Architecture
	5.1.1. Interfaces
	5.1.2. Implementation

	Chapter 6. ESGF Compute Challenge
	6.1. Background Information
	6.1.1. ESGF Mission
	6.1.2. ESGF Priorities

	6.2. Compute Challenge Implementations
	6.3. ESGF Compute Working Team API
	6.3.1. Inputs
	6.3.2. Output

	Chapter 7. Solution
	7.1. Architecture
	7.2. Application Package
	7.2.1. Process Deployment
	7.2.2. Workflow Integration

	Chapter 8. Applications and Workflows
	8.1. ESGF CWT Applications
	8.2. Application Chaining
	8.2.1. Utility Applications
	8.2.2. Workflow Chaining WPS 1.0 Processes
	8.2.3. Workflow Linking two Subsetters of CWT and WPS 1.0 Types

	Chapter 9. Discussion
	9.1. Application and Process Terminology
	9.2. Transition from WPS 1.0 to WPS 2.0
	9.3. From Docker Image to Application
	9.4. CWL File Formats
	9.5. Metalinks
	9.6. NASA NCCS STRATUS
	9.7. Applicability to Machine Learning
	9.8. Generation of CWL Wrappers for ESGF CWT API
	9.9. ESGF Supporting Material

	Appendix A: Sample Python code for ESGF CWT API
	Appendix B: CWL file for WPS 1.0 provider
	Appendix C: CWL file for NASA EDAS
	Appendix D: JSON file of an ESGF CWT API execute body
	Appendix E: CWL file of the WPS 1.0 workflow
	Appendix F: JSON file for the WPS 1.0 workflow execute request body
	Appendix G: CWL file for the WPS 1.0 to LLNL CWT workflow
	Appendix H: CWL file for the WPS 1.0 to NASA CWT workflow
	Appendix I: Revision History
	Appendix J: Bibliography

