
Vector Tiles Pilot Extension
Engineering Report

Table of Contents
1. Summary . 4

1.1. Requirements & Research Motivation . 4

1.2. Findings and Challenges encountered. 5

1.3. Prior-After Comparison. 6

1.4. Recommendations for Future Work . 7

1.5. Document contributor contact points . 8

1.6. Foreword . 8

2. References . 9

3. Terms and definitions . 10

3.1. Abbreviated terms . 11

4. Overview . 12

5. Concept of Operations. 13

5.1. Data Preparation. 13

5.2. Web Services / Web APIs . 13

5.3. GeoPackage Provisioning . 13

5.4. Integrated Clients . 13

6. Meeting the Challenge. 15

6.1. Pilot Architecture . 15

6.2. Conceptual Model . 16

6.2.1. Conceptual Model Challenges . 18

6.2.2. SLD Model Versus Mapbox Styles Model . 20

6.3. Technology Integration Experiments . 24

7. Implementation Approaches. 26

7.1. Data Preparation. 26

7.1.1. Producing Tiled Feature Data . 26

7.1.2. Producing Stylesheets . 27

7.2. Web Service Implementations . 28

7.2.1. Web Feature Service . 28

7.2.2. Web Map Tile Service (Mapping 1) . 34

7.2.3. Web Map Tile Service (Mapping 2) . 39

7.3. GeoPackage Provisioning . 40

7.3.1. Producing GeoPackages. 40

7.3.2. Supporting Attributes in GeoPackage . 43

7.3.3. Supporting Style Sheets in GeoPackage. 45

7.3.4. Deploying GeoPackages. 47

7.4. Integrated Clients . 47

7.4.1. Binding to a WMTS, WFS and/or GeoPackage . 47

7.4.2. Requesting Tiled Feature Data from a WMTS . 50

7.4.3. Requesting Tiled Feature Data from a WFS . 62

7.4.4. Modifying Style Sheets. 68

7.4.5. Displaying Tiled Feature Data . 74

7.4.6. Querying Tiled Feature Data . 97

8. Discussion . 102

8.1. Differences between WMTS and Mapbox Layers. 102

8.2. Differences Between SLD and Mapbox Styles . 102

8.3. Using Offerings to Correlate Tiled Feature Data Layers to Style Sheets 102

8.3.1. Analysis . 102

8.4. Using OWS Contexts to Describe Map Views . 103

8.4.1. Analysis . 103

Appendix A: GeoPackage Tiled Feature Data Extensions (Informative). 104

A.1. Tiled Feature Data Extension . 104

A.1.1. Extension Title . 104

A.1.2. Introduction . 104

A.1.3. Extension Author . 104

A.1.4. Extension Name or Template . 104

A.1.5. Extension Type . 104

A.1.6. Applicability . 104

A.1.7. Scope . 105

A.1.8. Specification . 105

A.2. GeoPackage Mapbox Vector Tiles Extension. 106

A.2.1. Extension Title . 106

A.2.2. Introduction . 106

A.2.3. Extension Author . 106

A.2.4. Extension Name or Template . 106

A.2.5. Extension Type . 107

A.2.6. Applicability . 107

A.2.7. Scope . 107

A.2.8. Specification . 107

A.3. GeoPackage GeoJSON Vector Tiles Extension . 107

A.3.1. Extension Title . 107

A.3.2. Introduction . 107

A.3.3. Extension Author . 108

A.3.4. Extension Name or Template . 108

A.3.5. Extension Type . 108

A.3.6. Applicability . 108

A.3.7. Scope . 108

A.3.8. Specification . 108

A.4. GeoPackage Styles Extension . 108

A.4.1. Extension Title . 109

A.4.2. Introduction . 109

A.4.3. Extension Author . 109

A.4.4. Extension Name or Template . 109

A.4.5. Extension Type . 109

A.4.6. Applicability . 109

A.4.7. Scope . 109

A.4.8. Specification . 109

A.5. GeoPackage OWS Context Extension . 110

A.5.1. Extension Title . 110

A.5.2. Introduction . 110

A.5.3. Extension Author . 110

A.5.4. Extension Name or Template . 111

A.5.5. Extension Type . 111

A.5.6. Applicability . 111

A.5.7. Scope . 111

A.5.8. Specification . 111

Appendix B: GeoPackage Extensions Requirements (Normative) . 114

B.1. GeoPackage Tiled Feature Data Extension. 114

B.1.1. gpkg_contents . 114

B.1.2. gpkg_extensions . 114

B.1.3. gpkgext_tfd_layers . 115

B.1.4. gpkgext_tfd_fields . 116

B.2. GeoPackage Mapbox Vector Tiles Extension . 117

B.2.1. gpkg_extensions . 117

B.2.2. User Defined Tiles Tables . 118

B.3. GeoPackage GeoJSON Vector Tiles Extension . 118

B.3.1. gpkg_extensions . 118

B.3.2. User Defined Tiles Tables . 118

B.4. GeoPackage Styles Extension . 119

B.4.1. gpkg_extensions . 119

B.4.2. gpkgext_stylesheets . 119

B.4.3. gpkgext_stylesheets . 120

B.5. GeoPackage OWS Context Extension. 121

B.5.1. gpkg_extensions . 121

B.5.2. gpkgext_contexts . 121

B.5.3. gpkgext_context_resources . 124

B.5.4. gpkgext_context_offerings . 127

Appendix C: The OpenAPI Styles API. 129

C.1. Overview . 129

C.2. API definition . 130

C.2.1. Encoding . 130

C.2.2. Landing page . 130

C.2.3. Style set . 131

C.2.4. Style . 134

C.2.5. Collection metadata . 135

C.2.6. Conformance declaration . 137

C.3. Open issues and future work . 137

Appendix D: WMTS 1.0 Styles API Profile Specification . 140

D.1. Introduction . 140

D.2. Declaration Of Profile . 140

D.3. Style URL Templates (RESTful) . 140

D.3.1. GET . 140

D.3.2. PUT. 141

D.3.3. DELETE . 141

D.3.4. OPTIONS. 141

D.4. GetStyle Operation (KVP) . 142

D.5. Security Considerations . 142

D.6. Limitations And Future Work . 143

Appendix E: Revision History . 144

Appendix F: Bibliography . 145

Publication Date: 2019-04-30

Approval Date: 2019-04-14

Submission Date: 2019-04-02

Reference number of this document: OGC 18-101

Reference URL for this document: http://www.opengis.net/doc/PER/VTPExt

Category: OGC Public Engineering Report

Editor: Jeff Yutzler

Title: Vector Tiles Pilot Extension Engineering Report

OGC Public Engineering Report

COPYRIGHT

Copyright © 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/VTPExt
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary
The purpose of the OGC Vector Tiles Pilot Extension (VTPExt) was to address portrayal and style
encoding concerns that were discovered in the initial phase of the Vector Tiles Pilot (VTP). During
the VTPExt, participants selected a common baseline style used by all participants and in some
cases created additional style offerings. The work conducted during the VTPExt has adhered to the
established findings from the initial VTP documented in the VTP Summary Engineering Report (ER)
[1].

This document describes the following:

• the research and evaluation to determine approach(es) to apply styling to Mapbox and GeoJSON
Tiled Feature Data through Web Feature Service (WFS) 3.0, Web Map Tile Service (WMTS) 1.0,
and GeoPackage (GPKG) 1.2,

• the styling approach, challenges, and interoperability considerations discovered during the
initiative, and

• any extensions required or best practices recommended to facilitate development, encoding,
offering, and exchange of styles. This includes how styles are offered from servers, how the
desired style offering can be selected by the client from multiple server style offerings (e.g.
GetStyles request), and how clients can apply their own styles.

Throughout this summary, references are made to the later chapters of the ER to allow for easy
discovery of specific technical explanation without repeating them here.

1.1. Requirements & Research Motivation
Following the extension of WFS, WMTS, and GeoPackage to support tiled feature data and the
creation of draft specifications to conceptualize tiled feature data created during the VTP,
stakeholders observed the need to address styling for tiled feature data. In order to fully realize the
proposed tiled feature data extensions, methods by which to ensure a consistent standard across
the OGC standards baseline needed to be addressed. The requirements and recommendations for
the VTPExt were derived from concerns identified during the initial VTP. These requirements and
recommendations are outlined in Table 1 along with their associated Concept of Operations
(CONOPs) items detailed in Concept of Operations.

Table 1. Recommendations and Requirements

Recommendation Requirement CONOPs
Referen
ce

Establish a method for
creating Tiled Feature Data
styles independently of the
production of Tiled Feature
Data.

Implement the capability to allow for the production of
Tiled Feature Data Styles

5.1

4

Recommendation Requirement CONOPs
Referen
ce

Investigate methods for
serving and requesting Tiled
Feature Data styles using
OGC standards.

Demonstrate the application of Tiled Feature Data styles
across WFS, WMTS and GPKG services for Desktop, Web
and Mobile.

5.2 and
5.4

Demonstrate portrayal of
Tiled Feature Data styles for
varying display
environments in a
standardized manner.

Implement the use of three styles (topographic, satellite
overlay, and night / high contrast) to cover the a
demonstrable range of display environments.

5.2 to 5.4

Establish a method for
storing Tiled Feature Data
styles in a form suitable for
workflows in Denied,
Degraded, Intermittent or
Limited (DDIL)
environments.

Implement a method which stores the Tiled Feature Data
styling in a GeoPackage while keeping the style decoupled
from the data.

5.3

Implement Tiled Feature
Data styles in the OGC Style
Layer Descriptor (SLD) and
Mapbox style (MBstyle)
formats.

The VTPExt outputs should use both SLD and MBstyle
standards and address the associated encoding
implications for both OGC Web Services and GeoPackage
extensions.

5.1 to 5.4

The previous list of recommendations and requirements showed that further consideration was
needed to establish an approach for implementing tiled feature data styling across the OGC
standards baseline. This includes OGC web services (WFS, WMTS), integrated clients on multiple
platforms (web browser, desktop, and mobile), multiple style standards and formats (Mapbox, SLD),
and multiple data formats (Mapbox Vector Tiles, GeoJSON Vector Tiles, and GeoPackages). Along
with these requirements, there was also a need to demonstrate the integrated use of tiled feature
data styles in existing applications and technologies to prove the feasible use of styles in an
operational context.

1.2. Findings and Challenges encountered
Participants were able to demonstrate the portrayal of the common baseline tiled feature data
styles across all three platforms, with very little visual difference between the Mapbox and SLD
style formats. This portrayal provides a standardized visualization without the need for users to be
aware of which format they are viewing. Each approach for the WFS, WMTS, and GeoPackage
clients was slightly different depending on the standard implementations and the associated client
types (see Implementation Approaches). The participants validated that they successfully addressed
one or more of the above requirements through Technology Integration Experiments (TIEs). These
TIEs built on the initial VTP TIEs and added style implementations. The outputs from the TIEs are
presented visually on a Youtube Channel [https://www.youtube.com/playlist?

list=PLQsQNjNIDU86fv8nJP0KT9C81ZbwvldWO] and are recorded in the section Technology Integration
Experiments.

5

https://www.youtube.com/playlist?list=PLQsQNjNIDU86fv8nJP0KT9C81ZbwvldWO

The initial WFS and WMTS visualization of the three feature styles was achieved fairly early in the
process as part of the exploratory integration of the styles into the existing VTP demonstrations.
This involved both extending the server side WFS and WMTS services to allow for the styles to be
retrieved and adding the ability to call these new server side capabilities to web clients. For both
service standards, additional API elements were added to allow access to both Mapbox and SLD
styles for the same service. In the section Implementation Approaches, participants outlined how
their capabilities incorporate styles into the existing standards. These implementations did
encounter limitations of the existing service standards regarding the separation of styles from the
feature data. This was addressed by a number of participants who used a number of alternative
methods to allow styles to be appropriately referenced. Nonetheless, participants agreed that
WMTS requires modification to handle styles separately from the feature data.

While implementing these standard extensions, some participants explored the possibility of
supporting both server-side and client-side rendering in their integrated clients. This capability
provides additional flexibility in DDIL scenarios. Some participants provided clients that render the
styles locally. One of the clients provides a simple tool for choosing whether the styles are rendered
server side or client side. Since users may wish to alter a style without relying on an online service,
support for style editing in addition to style rendering was also explored.

Implementing style functionality in the GeoPackage extension constituted much of the effort during
the VTPExt. The primary challenge was storing the styles in a manner which allows for easy
discovery of the styles without additional overhead for client applications and users (GeoPackage
Provisioning). In addition, participants investigated approaches for allowing GeoPackages to store
OWS Context documents which in turn reference styles for tiled feature data (Compusult). The
continued development of this style functionality involved considerable overlap with the
GeoPackage Extensions work and discussion with the GeoPackage Standards Working Group
(SWG).

Participants noted that the server-side and the GeoPackage-style approaches should contribute to a
common Conceptual Model that would be flexible enough to support both online and offline
implementations. The conceptual model devised represents the ideal solution with styles sitting
independently from features. However, as explained above, the existing service standards
prevented the complete separation of styles from the features. Therefore, the goal outlined in the
conceptual model was only partially achieved. The scope of the VTPExt did not allow for updating
the existing service standards to provide this complete separation. That said, the implementations
partially achieved the objective so this work should represent a solid basis for the emerging Open
Portrayal Framework that will be explored during Testbed-15.

The possible need for style conversion between the two formats, Mapbox and SLD, was also
identified. Some of the participants provided conversion support while others used preexisting
conversion functionality, such as in GeoServer, to demonstrate conversion capabilities. Again, the
observation was made that support for style conversion should be standardized in the future for
WFS, WMTS, and GeoPackage.

1.3. Prior-After Comparison
Prior to VTPExt, there was no consensus regarding the appropriate implementation of styling for
tiled feature data. Although Mapbox styles were successfully used during the VTP, there was no

6

standardized portrayal across all demonstrators. In addition there was no method for users to
create or apply styles to tiled feature data, which is a major benefit that Vector Tiles afford, or
methods for using SLD standards for styling Vector Tiles served by Web Map Service (WMS) and
WMTS. Furthermore, there was no established method for styling feature data within GeoPackages.
This hindered the ability for GeoPackage clients to portray feature data in a common way.

This work has produced demonstrable additions to the proposed VTP extensions, tested across
compatible Commercial Off-The-Shelf (COTS) applications using different style encodings, to show
the appropriate use of styles with the proposed OGC Vector Tile Extensions.

By addressing the above requirements in the context of real-world application, the demonstrators
account for the use of styles by end users as well as the technical functionality required to serve
Tiled Feature Data. For instance, the demonstrators include the ability for users to change style
colors, apply new styles and create new styles via a user interface.

1.4. Recommendations for Future Work
The results from the VTPExt provide a solid foundation for the emerging Open Portrayal
Framework, which will be explored further in the Portrayal Thread of Testbed-15.

1. There is not currently an OGC standard for styles encoded in JavaScript Object Notation (JSON).
Some stakeholders have indicated that a JSON-based encoding would be simpler to implement
than SLD. While Mapbox Styles is a JSON encoding, it has certain limitations that make it
inappropriate for some applications. Any work on a new encoding should be based on the
emerging Open Portrayal Framework conceptual model.

2. Limitations were discovered in the WMTS model that make it impossible to add new styles to an
existing system. An OpenAPI-based approach similar to the approach used in WFS 3.0 would
provide valuable flexibility.

3. A draft Styles API has been developed and implemented during VTPExt based on the WFS 3.0
Core API and the emerging Open Portrayal Framework conceptual model. The scope of the API
has been limited to the aspects that have been in focus in VTPExt. A number of open issues and
items for future work have been identified.

4. Recent experiments outside of the VTP have demonstrated that it is possible to publish tiled
feature data via a serverless architecture, i.e., one where the tiles are published directly to a
web accessible location (e.g., a file bucket) using predictable URLs, not via web services such as
WMTS and WFS. OGC should investigate how this approach fits in with the rest of the OGC
Standards Baseline.

5. There are a number of possibilities for future work pertaining to attributes inside GeoPackage.
This Pilot investigated a number of approaches for storing attributes outside of the tiled feature
data but still inside the GeoPackage. The decision made by the participants was a compromise
based on expediency that does not necessarily satisfy all of the requirements.

6. GeoPackage does not currently have an interoperable mechanism for symbols. A candidate
approach was proposed, but other activities took priority. Future work to address this gap
would allow symbols to be shared and displayed consistently in different GeoPackage clients.

7

1.5. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization

Jeff Yutzler Image Matters

Theo Brown Helyx SIS

Sam Meek Helyx SIS

Carl Reed Carl Reed and Associates

Clemens Portele interactive instruments

Andrea Aime GeoSolutions

Stefano Bovio GeoSolutions

Adam Parsons Compusult

Keith Pomakis CubeWerx

Jerome Jacovella-St-Louis Ecere

Terry Idol OGC

Gobe Hobona OGC

Jeff Harrison AGC

Matt Sorenson Strategic ACI

1.6. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

8

Chapter 2. References
The following normative documents are referenced in this document.

• OGC: OGC 12-080r2, OGC OWS Context Conceptual Model 1.0 Standard, 2014
[https://portal.opengeospatial.org/files/?artifact_id=55182]

• OGC: OGC 12-128r15, OGC GeoPackage 1.2.1 Standard, 2018 [https://www.geopackage.org/spec120/

index.html]

• OGC: OGC 07-057r7, OGC® OpenGIS Web Map Tile Service Implementation Standard, 2010
[http://portal.opengeospatial.org/files/?artifact_id=35326]

• OGC: OGC 17-069, OGC® Web Feature Service 3.0: Part 1 - Core Candidate Standard, 2018
[https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html]

• IETF: RFC-7946 The GeoJSON Format, 2016 [https://tools.ietf.org/html/rfc7946]

• IETF: RFC-1951 DEFLATE Compressed Data Format Specification version 1.3, 1996
[https://tools.ietf.org/html/rfc1951]

9

https://portal.opengeospatial.org/files/?artifact_id=55182
https://www.geopackage.org/spec120/index.html
http://portal.opengeospatial.org/files/?artifact_id=35326
https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc1951

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

• Extended GeoPackage

A GeoPackage that contains any additional data elements (tables or columns) or SQL
constructs (data types, indexes, constraints or triggers) that are not specified in
this encoding standard.

• GeoPackage file

A platform-independent SQLite database file that contains GeoPackage data and
metadata tables with specified definitions, integrity assertions, format
limitations and content constraints.

• Stylable Layer Set

A StylableLayerSet is a set of layers (those identified as associated with that
StylableLayerSet) to which a particular set of style sheet documents (those
associated with that StylableLayerSet) can be applied to. The multiple layers
within a multi-layer tile set would typically be associated with a unique
StylableLayerSet. A StylableLayerSet could also be shared by multiple tile sets
meant to be used together (especially when each tile set contains a single layer),
or by a group of tile sets or layers following the same schema(s).

• Style

A style organizes the rules of symbolizing instructions to be applied by a
rendering engine on one or more geographic features and/or coverages. (from working
group consensus Jan 18, 2019)

• Style Sheet

A style sheet is a container for styling rules for a single layer or for multiple
layers.

• Styles API

A Web API for accessing, uploading, deleting and editing styles.

10

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• Tile

A tessellated representation of geographic data, often part of a set of such
elements, covering a spatially contiguous extent which can be uniquely defined by a
pair of indices for the column and row along with an identifier for the tile matrix
(adapted from OGC 07-057r7)

• Tile Set

A definition how tiles are organized. It contains a definition of the geographic
extent and geographic location as well as a coordinate reference system

NOTE

A comment on the correct terminology for 'Vector Tiles' is appropriate before
continuing. The decision made by the participants is as follows: When explicitly
referring to the conceptual model and addressing tiled point, linestring and
polygon data in a formal context the correct terminology is Tiled Feature Data.
When discussing the initial pilot, the extension work and the associated
extensions using the terms 'Vector Tile(s)' is accepted.

3.1. Abbreviated terms
• BLOB Binary Large OBject

• COTS Customer Off The Shelf

• DDIL Denied, Degraded, Intermittent, or Limited

• GPKG GeoPackage

• KML Keyhole Markup Language

• MVT Mapbox Vector Tiles

• OGC Open Geospatial Consortium

• OWS OGC Web Services

• RTE Related Tables Extension

• SRS Spatial Reference System

• SWG Standards Working Group

• VT Vector Tiles, Vector Tiling, Vectiles

• VTP Vector Tiles Pilot

• VTPExt Vector Tiles Pilot Extension

• WFS Web Feature Service

• WMS Web Map Service

• WMTS Web Map Tile Service

11

Chapter 4. Overview
• Section 5 presents a CONOPs for the use of tiled feature data. This includes a number of use

cases that are examined in further detail later in the document.

• Section 6 describes how Pilot participants delivered the capabilities identified as needed by the
CONOPS. This section includes the overall pilot architecture, strategic approaches, and the TIEs
that were performed as part of the Pilot.

• Section 7 presents the implementation approaches for WFS 3, WMTS, and GeoPackage styling
extensions that were demonstrated during the Pilot.

• Section 8 describes discussion topics that came up during the Pilot. This includes topics other
working groups may wish to discuss outside of the confines of the VTPExt.

• Appendix A presents informative GeoPackage Tiled Vector Data Extensions specifications that
were developed as part of the Pilot.

◦ Appendix A.1 presents the GeoPackage Tiled Feature Data Extension. This extension
provides support for tiled feature data through the GeoPackage tiles option. Instead of PNG
or JPG files, each tile BLOB is a Vector Tile.

◦ Appendix A.2 presents the GeoPackage Mapbox Vector Tiles Extension. This extension
allows the content of a GeoPackage tile BLOB to be a Mapbox Vector Tile as per the Mapbox
Vector Tiles (MVT) specification [https://www.mapbox.com/vector-tiles/specification/] version 2.1
[https://github.com/mapbox/vector-tile-spec/tree/master/2.1].

◦ Appendix A.3 presents the GeoPackage GeoJSON Vector Tiles Extension. This extension
allows the content of a GeoPackage tile BLOB to be a GeoJSON file.

◦ Appendix A.4 presents the GeoPackage GeoPackage Styles Extension. This extension allows
for styles and symbols to be stored as BLOBs inside dedicated tables.

◦ Appendix A.5 presents the GeoPackage OWS Context Extension. This extension provides a
way to store information describing a list of geospatial resources, including but not limited
to maps, their layers, and the styles of those layers.

• Appendix B presents the GeoPackage extensions in Appendix A as normative requirements that
could be the basis for an OGC standard.

• Appendix C presents API building blocks for managing and fetching styles via a Web API based
on WFS 3.0 Core standard.

• Appendix D presents a WMTS 1.0 profile that defines a set of KVP operations and RESTful
endpoints providing a client with the ability to GET, PUT and DELETE style definitions.

• Appendix E presents the revision history of this document.

• Appendix F contains a Bibliography.

12

https://www.mapbox.com/vector-tiles/specification/
https://www.mapbox.com/vector-tiles/specification/
https://github.com/mapbox/vector-tile-spec/tree/master/2.1

Chapter 5. Concept of Operations

5.1. Data Preparation
1. After acquiring or producing feature data, a data manager produces tiled feature data.

2. A cartographer produces style sheets that define the rules for portraying tiled feature data on a
map. These are organized into style sets which correspond to a single (feature) application
schema. There may be more than one option for each style set.

5.2. Web Services / Web APIs
1. A data manager prepares a dataset consisting of features.

2. An administrator deploys the dataset to a geospatial data server and configures the server to
serve the data in one or more of the following ways:

a. as features via a Web API that conforms to the draft Web Feature Server 3.0 standard (WFS),

b. as tiled feature data via a web service that conforms to the Web Map Tile Server (WMTS)
standard or via a Web API that extends the WFS API mentioned in the previous item

c. as server-rendered bitmap image tiles of the features

3. An administrator deploys style sheets (see Data Preparation, #2) to the server.

5.3. GeoPackage Provisioning
1. A data manager produces one or more GeoPackages containing tiled feature data. In particular,

these GeoPackages will allow operators to function in Denied, Degraded, Intermittent, and
Limited (DDIL) environments.

a. In the simpler case, the data manager produces GeoPackages without modifying the source
vector tiles.

b. In the more complex case, the data manager modifies the source vector tiles to remove the
attribute information and store the attributes in relational tables. This approach supports
more efficient data storage, querying, and analysis.

2. Optionally, the data manager adds style sheets (see Data Preparation, #2) to the GeoPackage to
support subsequent tiled feature data visualization.

3. Optionally, the data manager adds offerings that correlate available tiled feature data layers to
available style sheets.

4. Optionally, the data manager adds OWS Contexts to the GeoPackage to allow an operator to
select from a predefined set of map views.

5. A data manager deploys one or more GeoPackages to the target device.

5.4. Integrated Clients
1. An operator uses an integrated client to bind with one or more web services containing tiled

13

feature data layers. Once that binding has occurred, the analyst may be able to do the following:

a. Retrieve vector tiles from a server

b. Select an available style sheet (see Web Services / Web APIs, #3) to portray the tiled feature
data with specific styling rules

2. An operator uses an integrated client to open one or more GeoPackages containing tiled feature
data layers. Once the GeoPackage has been opened, the operator may be able to do the
following:

a. If style sheets (see GeoPackage Provisioning, #1b) have been added to the GeoPackage, the
analyst may select a style sheet for each tiled feature data layer.

b. If offerings have been added (see GeoPackage Provisioning, #3), the analyst may be able to
select from a list of offerings that reference both tiled feature data layers and associated
style sheets.

c. If OWS Contexts (see GeoPackage Provisioning, #4) have been added to the GeoPackage, the
analyst may select from them directly.

3. An operator uses an integrated client to perform visualization and/or analysis on tiled feature
data. Potential capabilities include the following:

a. Display the tiled feature data on a map, using a default style and/or a specific style sheet

b. Query the tiled feature data to filter or isolate an individual feature

c. Perform analysis on tiled feature data, which could include something as basic as displaying
specific features and attributes (e.g., in tabular form) or something more complex

14

Chapter 6. Meeting the Challenge

6.1. Pilot Architecture
The architecture of the pilot is illustrated in Figure 1.

It shows the three types of clients that are intended to consume tiled feature data and produce and
use styles:

• Desktop clients,

• Web clients, and

• Mobile clients.

On the producer side, there are also three starting points that are explored for storing and
providing access to tiled feature data and styles:

• Servers that provide access to features via the WFS 3.0 API. In this case, the the API has been
extended to provide access tiles and styles as additional resource types in addition to the
features.

• Servers that support the WMTS 1.0 standard and in VTPExt provide access to the tiled feature
data. In VTPExt the servers also support an extended interface for managing and accessing
styles for portraying the tiled feature data (server-side or client-side portrayal).

• SQLite databases according to the GeoPackage 1.2 standard. Additional tables have been defined
for storing tiles and style sheets.

Mapbox Vector Tiles and GeoJSON are used to encode the tiled feature data, Mapbox Style and SLD
are used to encode styles in style sheets.

15

Figure 1. Vector Tiles Pilot Architecture

This architecture attempts to address tiled feature data consistently across the relevant suite of OGC
standards, that is based on a common conceptual model. This approach provides implementers
with guidance for tiled feature data no matter their use case.

NOTE

This document sometimes uses the term "WFS" as a shorthand notation for a server
that provides a Web API according to the draft WFS 3.0 Core standard, extended
with additional resource types for tiles and styles, following the same API design
approach of WFS 3.0 and using OpenAPI. The API building blocks for the tile and
style resources, however, are unlikely to be standardized as part of the WFS 3.0
series since the scope of WFS 3.0 are features. Instead tiles and styles should be
specified in other standards (revisions of existing OGC standards or new OGC
standards).

6.2. Conceptual Model
This project introduces the concepts of stylesheets and style sets. Once a style set is established and
associated with one or more tile sets, it is then possible to provide the user with a set of options for
portraying those tile sets. This work has further developed the Tiled Feature Data Conceptual Model
created during the initial VTP [2] to account for Feature Tile styling, see Figure 2. This Conceptual
Model underpins the Vector Tiles Pilot Architecture above (Figure 1, labeled number 7).

16

Figure 2. Tiled Feature Data Conceptual Model

The extension to the Tiled Feature Data Conceptual Model is described by the classes 'Style',
'StyleSheet' and 'StyleRule'.

• The Style class provides a choice of style, such as "Topographic", "Night", or "Satellite Overlay".

• The StyleSheet class is the primary concept in the extension for storing a collection of style
rules. The two properties of StyleSheet depicted in the conceptual model are identifiers. The
combination of these two identifiers and a Style provides a single StyleSheet.

◦ The format property of the StyleSheet class stores the format type, such as "Mapbox" or
"SLD".

◦ The stylableLayerSet property provides a further identifier, allowing for a more granular
choice of style options. The stylableLayerSet identifier corresponds to the equivalent
identifier in a Layer. This relates a StyleSheet to a set of features. Notice the Feature class
also has a stylableLayerSet property. Therefore, if a StyleSheet has the stylableLayerSet
OGCVectorTilePilot (as an example), this means that this StyleSheet is for styling the
Features which have the stylableLayerSet OGCVectorTilePilot. This provides the ability to
define views of data. If five Features have the stylableLayerSet OGCVectorTilePilot then a
StyleSheet, under Night Style, with the format Mapbox and the stylableLayerSet

OGCVectorTilePilot can be used to specify a night style in the desired format which is
appropriate for a specific group of Features (in this case 5) which have the stylableLayerSet
property OGCVectorTilePilot.

• The StyleRule class corresponds to the Rule class in the draft OGC Symbology Conceptual Core
Model [3], as it is used to organize symbolizing instructions for a single feature.

Included in the Conceptual model on left side is the stylableLayerSet property in the Layer class.
This allows for a data set creator to assign Features in Tiled Feature Data to a group for styling.

17

In the Conceptual Model (Figure 2) the style additions are intentionally left disconnected from the
Tiled Feature Data model on the left hand side. This is to demonstrate that the styling extension
depicted has been designed to be flexible enough to be applied to other data set types in the future,
not just Tiled Feature Data. This also accounts for the independent creation of styles, meaning styles
can be created and managed by cartographers independent of the Tiled Feature Data and their
associated Tile Sets.

The whole Conceptual Model is representative of the agreed definition of a style (see Terms and
definitions), which is repeated below for convenience:

A style organizes the rules of symbolizing instructions to be applied by a rendering
engine on one or more geographic features and/or coverages.

In relation to the above model, the connected classes on the right-hand side (Style, StyleSheet, and
Style Rule), are the elements which organize the rules of symbolizing instructions to be applied by
a rendering engine.

The connected classes on the left-hand side represent an example of "one or more geographic
features and/or coverages". In the above case the features are tiled feature data.

6.2.1. Conceptual Model Challenges

Devising a conceptual model for the VTPExt work was challenging due to the variety across all
intended implementations. These included three OGC standards, two style formats, and three client
implementations each with schemas and approaches. The description of this challenge below is
intended to provide a non-technical explanation of the contrast between these elements why this
had an impact on conforming to a single Conceptual Model. The technical explanations and
implementation solutions for these challenges are in the following chapters and are referenced
where appropriate.

WFS 3.0 and WMTS 1.0 follow considerably contrasting paradigms. The WFS 3.0 OpenAPI-based
approach is inherently flexible and extensions (e.g., the WFS 3.0 landing page or the WFS collection
level) can easily be added. The WFS 3.0 flexibility, as illustrated in Figure 3, shows that a WFS can
use any desired API structure to separate the styles from the layers.

18

Figure 3. Basic WFS Structure

In contrast, the WMTS 1.0 document approach, as illustrated in Figure 4, does not have this
flexibility. This is because the base resource of a WMTS is the Capabilities Document, which
contains the set of layers. A layer may contain multiple styles, each referring to a different pre-
rendered tile cache. The Capabilities Document can only reference styles that are in a Layer and
with this structure, there is no way to store styles independently of a layer. The interim solution
was to use style references in the capabilities document rather than adding styling to existing
WMTS.

19

Figure 4. Basic WMTS Structure

6.2.2. SLD Model Versus Mapbox Styles Model

The formats chosen for this work are OGC’s SLD style and the Mapbox Style format produced by
Mapbox. These contrast significantly which provided another challenge to overcome. In the SLD
model, a layer is defined by one or more styles. Each of these styles is defined by one or more
feature-type styles, where each feature-type style is specific to a feature set that is available to the
server. However, the Mapbox Styles model does not work this way. In the Mapbox Styles model, a
style is a top-level object. The definition of a Mapbox style can be requested or specified outside of
the definition of a layer. Also, a Mapbox layer is not defined by styles.

The proposed WFS style API does not suffer from these differences. The WFS does not have any pre-
existing notions of layers and styles. Also, a WFS feature type is a conceptual match for a Mapbox
layer, so the Mapbox Styles model is a more natural fit.

For WMTS, things are more complicated. The WMTS service as defined by OGC is built on top of the
SLD model, with a strictly defined model for the relationship between layers and styles. That is,
each WMTS layer has one or more styles. The WMTS interface does not allow the client to request a
tile of a specific feature set, only of a specific style of a specific WMTS layer. For this reason, the
natural endpoints for a WMTS styles API are:

• {wmtsRestEndpointBaseUrl}/layers

• {wmtsRestEndpointBaseUrl}/layers/{layerId}

• {wmtsRestEndpointBaseUrl}/layers/{layerId}/{styleId}

20

As a result, there is no top-level concept of a style in WMTS. That is, one cannot refer to a WMTS
style outside of the context of the WMTS layer that it is part of. When a tile of a WMTS layer is
requested, it must be requested with respect to a specific style. In addition, a WMTS layer without
any styles has no content because the styles of a layer indicate what feature sets to render.

The Mapbox Styles model does not have the equivalent of a WMTS layer. A WMTS layer is not the
same thing as a Mapbox layer, and a WMTS style isn’t the same thing as a Mapbox style. The WMTS
is not entirely incompatible with the Mapbox Styles model, however, CubeWerx has identified two
mappings that could be used.

Mapping #1 (WMTS Layer ≈ Mapbox Layer)

In this mapping, a WMTS layer is considered the rough equivalent of a Mapbox layer, and the set of
all styles with same ID across all of the WMTS layers of the server is considered the rough
equivalent of a Mapbox style sheet. In order for this mapping to work, a WMTS layer must be
defined to serve exactly one feature set.

Figure 5. WMTS Mapping #1

21

This is where the styles/{styleId} endpoints as implemented by CubeWerx’s WMTS Mapping #1
Implementation come into play. Each of these endpoints represents a style sheet, or in WMTS terms,
the definition of a single style that’s defined across multiple layers.

This mapping has two major disadvantages:

1. Since a WMTS tile always contains exactly one WMTS layer, the client would be required to
fetch the tiles for each feature set separately. So if it takes N tiles to fill a map, and there are M
feature sets, the client would need to request and render N×M separate tiles, which is not very
feasible.

2. There is an awkward disconnect between the resources represented by the styles/{styleId}
endpoint and the way styles are referenced in the rest of the WMTS API. For example, it would
require the client to equate styles with equivalent IDs across multiple layers when presenting
the user with styling options and when making the tile requests.

Mapping #2 (WMTS Style ≈ Mapbox Style Sheet)

In this mapping, a WMTS style is considered the rough equivalent of a Mapbox style sheet, and the
feature sets rendered by that style are considered the rough equivalent of a Mapbox layer.
Therefore, a WMTS layer is nothing more than a set of style sheets. When a WMTS client requests a
tile from a WMTS server, what it’s doing is requesting a tile of a specific stylesheet of a WMTS layer.
Every feature set in the StylableLayerSet list of that stylesheet is rendered into the tile, in the styles
defined by that stylesheet.

22

Figure 6. WMTS Mapping #2

This mapping has the following operations:

• GET layers/{layerId} to request all of the stylesheets of a WMTS layer

• GET layers/{layerId}/{styleId} to request a specific stylesheet of a WMTS layer

• PUT layers/{layerId}/{styleId} to define or redefine a stylesheet for a WMTS layer

• DELETE layers/{layerId}/{styleId} to remove a stylesheet of a WMTS layer.

23

This mapping does not suffer from either of the disadvantages of Mapping #1, since each tile would
contain multiple feature sets (Mapbox Layers), and the awkward disconnect between the
styles/{styleId} endpoint and the way styles are referenced in the rest of the WMTS API can be
avoided.

One disadvantage of this mapping, though, is that a client cannot request a single feature set
without PUTting a custom style containing just the desired feature set (assuming the user is even
authorized to PUT). One way around this is to have the WMTS server serve an individual layer for
each feature type in addition to the conglomerate layer. A client can determine the relationship
between the conglomerate layer and the component layers in one of two ways:

1. by GETting the desired style of the conglomerate layer, collecting the list of reference feature
sets, and assuming the convention that each of these feature sets are also requestable as a
WMTS layer with the same ID as the feature set, or

2. by adopting a layer ID convention where the ID of a component layer is prefixed with the ID of
the conglomerate layer and a colon (":"). E.g., if "Daraa" is the conglomerate layer, the client
could know by convention that the layers "Daraa:AgricultureSrf" and "Daraa:CulturePnt" (also
advertised by the WMTS capabilities document) are component layers of "Daraa".

Component layers have the advantage of being compatible with Mapping #1 as well.

6.3. Technology Integration Experiments
The table below presents the results of the Technology Integration Experiments (TIEs) for this Pilot
Extension.

Table 2. GeoPackage TIEs

Producers\Clients Image Matters Compusult Ecere

CubeWerx X X X

Compusult X X X

Ecere X X X

Table 3. WMTS TIEs

Services\Clients Compusult Ecere GeoSolutions (in-kind)

CubeWerx X X (no attributes support
for lack of schema)

Not tested

CubeWerx (static) X (resource API not yet
supported)

Not tested

GeoSolutions X (no GetStyles request
for KVP API)

X (NOTE: Client uses
static styles with WMTS
vector tiles)

Ecere X X (no attributes support
for lack of schema)

Not tested

Table 4. WFS TIEs

24

Services\Clients Ecere GeoSolutions

ii X (no attributes support for lack
of schema)

X

Ecere X X

GeoSolutions X X (no attributes support for lack
of schema)

25

Chapter 7. Implementation Approaches

7.1. Data Preparation

7.1.1. Producing Tiled Feature Data

As part of this project, two formats for tiled feature data were used, namely Mapbox Vector Tiles
(MVT) and GeoJSON Vector Tiles.

CubeWerx

The CubeWerx WMTS has been augmented to produce both Mapbox Vector Tiles (MVT) and
GeoJSON Vector Tiles in addition to tiles in the standard JPEG and PNG image formats. These tiles
are generated from the source data by simplifying them to the tile resolution. The tiles of the
common zoom levels are pre-generated for optimum performance, and the rest are generated on
demand and cached. A static WMTS has also been prepared, in which all of the tiles have been pre-
generated.

interactive instruments GmbH

The provisioning of features and tiled feature data in VTPExt is unchanged from the Vector Tiles
Pilot. The three datasets of OpenStreetMap data from Syria or Iraq that have been converted to the
Topographic Data Store application schema of NGA have been deployed to a PostgreSQL database.

ldproxy [https://interactive-instruments.github.io/ldproxy/], an open source software product that has been
extended by interactive instruments in VTP and VTPExt to support the relevant API extensions, is
then used to provide the datasets as features and as tiled feature data.

The tiles in Mapbox Vector Tiles and GeoJSON are generated from the feature data on demand. The
most commonly used type of tiles (tiles with all features in the tile area and all the properties of
each feature) are cached by the server in the file system of the server to increase performance in
the most frequent use cases.

For more details see the Vector Tiles Pilot WFS 3.0 Engineering Report [4].

Compusult

The Compusult GeoPackage Producer runs as a web-browser based application, as well as being
accessible via an OGC Web Processing Service (WPS) instance. The GeoPackage Producer supports
producing Mapbox Vector Tile and GeoJSON Vector Tile based GeoPackages in a user selected
projection system and a uploaded vector source (Shapefile(s), GeoDatabase, SqliteDB, etc.). The
producer has the ability to convert all feature types into a single MVT tileset or produce one tileset
for each feature type.

Feature type geometries have their bounds clipped using a buffer to ensure clients can render
freely without having to worry about artificial line segments from tile bounds or clipped line
strokes. Automatic layer order for drawing purposes is detected by examining feature type size,
bounds, and type. Attributes can also be minimized by removing known empty/no data strings from

26

https://interactive-instruments.github.io/ldproxy/

feature attributes.

Ecere

Ecere’s GNOSIS SDK provides the capability to import data from a number of geospatial data
formats and standard web services into its tiled data store. This data store consists of pyramidal
multi-resolution tiled layers, following the variable width GNOSIS Global Grid. The tiled data is
stored in the open GNOSIS Map Tiles format and data attributes are stored in SQLite databases.
Ecere’s GNOSIS Cartographer GIS tool is used to import this data and produce GeoPackages from it.
Ecere’s GNOSIS Map Server can serve tiles or whole features directly from this data store. Both the
GeoPackage producer as well as the map server have the ability to re-project the data to a different
coordinate reference system (e.g Web Mercator rather than WGS-84), to re-tile the data according to
a different tiling scheme (e.g. GoogleMapsCompatible), or to re-encode the data in a different
format. In addition to GNOSIS Map Tiles, Mapbox Vector Tiles, GeoJSON, GeoECON, and Geography
Markup Language (GML) tiles are currently supported.

7.1.2. Producing Stylesheets

GeoSolutions

GeoSolutions produced stylesheets by hand, writing each of the three styles (topographic, satellite
overlay, and night) in the two different languages (SLD and Mapbox Styles). This first approach
helped participants to understand differences between this encodings and implement proper
language converters client side to get a final translated OpenLayers style. GeoServer is also able to
transform MBStyle and GeoCSS to SLD automatically, this conversion has been tested in clients and
compared with the manually setup styles.

Ecere

Although Ecere mainly used the style sheets produced by GeoSolutions for the purpose of this pilot
phase, Ecere’s GNOSIS Cartographer visualization tool has the ability to import, edit, and export
style sheets. This tool currently supports exporting style sheets to SLD/SE, but this functionality is
still being improved upon. Support for importing Mapbox GL styles was a major focus of the
VTPExt. Style sheets in GNOSIS Cascading Map Style Sheets format were handwritten as the export
functionality for this format is still being implemented. Both the GeoPackage producer and the map
server will eventually have the ability to produce styles on the fly in any requested supported
format. With the ability to import styles definitions from multiple supported formats, it will
effectively act as a styles translator. However, for the purpose of this pilot, style sheets documents
were pre-loaded.

27

Figure 7. Styles editor in Ecere’s GNOSIS Cartographer

7.2. Web Service Implementations

7.2.1. Web Feature Service

Analysis

Since tiled feature data is primarily used for visualization, it is generally not desirable to show all
data at all zoom levels due to the possibility of overcrowding the tiles will lots of sub-pixel features.
Of course, it is still possible, while inefficient, to associate the collection/layer with a style with no
scale dependencies and no feature filtering, and let the generalization mechanism determine if a
feature is big enough to fit.

GeoSolutions

The GeoServer WFS3 module has been extended during the pilot to deliver vector tiles and styles.
GeoServer already had the ability to produce Mapbox Vector Tiles as a WMS and WMTS output. In
both cases, the data sources are read in accordance to the retrieved bounding box and the style
associated server side in the GeoServer configuration, which is used to drive scale dependencies
and feature filtering, or in other words, determine what the contents of the vector tiles should be.

28

Figure 8. GeoServer Vector Tiles Production

Tiles in WFS3 are always generated on-the-fly from data, although a caching layer may be added in
the future. Tiles are exposed via the following resources:

• wfs3/tilingSchemes, to retrieve all available tiling schemes

• wfs3/tilingSchemes/{tilingSchemeId}, to retrieve a specific tiling scheme by id

• wfs3/collections/{collectionId}/tiles, to retrieve all available tiling schemes for the collection

• `wfs3/collections/{collectionId}/tiles/{tilingSchemeId}/{zoomLevel}/{row}/{column}, to
retrieve a tile of the dataset, eventually specifying the format

The styles can be deployed in a variety of ways:

• Using the GeoServer user interface, to upload them or create them, eventually edit them, and
associate them with layers as needs be

• Using the GeoServer RESTful administration API, which allows other applications to manipulate
the configuration programmatically via service calls

• Using the WFS style extensions developed during the pilot.

In particular, the styling extension provides the following resources:

• wfs3/styles, to list all dataset level styles, allows creation of new styles via POST

• /styles/{styleId}, to retrieve a style body of a particular style (with a format specification,
allowing for on the fly conversion when supported), but also to modify it, via PUT, or remove it,
via DELETE

• wfs3/collections/{collectionId}/styles, which lists the styles associated to a particular
collection, and allows creation of a new one via POST request

• wfs3/collections/{collectionId}/styles/{styleId} allowing to get the body of a collection

29

associated style, as well as creation, modification and removal via the PUT and DELETE
methods.

Dataset and collection styles serve different workflows:

• A dataset style typically contains styling directives for a number of collections. In order to
produce a map the client will first fetch the style, and then go back to the server to retrieve the
necessary tiles from the referenced collections.

• A collection style typically only styles the collection at hand, so it is more suitable for a
workflow where the client first decides which data/themes/collection to display, and only after
needs to locate styles suitable to display them.

It is to be noted that this approach was discovered to be incompatible with GeoServer’s own style
handling, and more in general, with a general notion of cross layer style sharing. A style can be
shared across layers under a few conditions, that are often met in real deployments:

• The style is so simple that it will not have style dependencies, e.g., a generic "red square point"
style can be used against any point layer, like the GeoServer built in point style
[https://raw.githubusercontent.com/geoserver/geoserver/2.14.2/data/release/styles/default_point.sld]

• The style is sophisticated enough that it will automatically determine the geometry type of the
feature being displayed and do something sensible with it, like the GeoServer generic style
[https://raw.githubusercontent.com/geoserver/geoserver/2.14.2/data/release/styles/default_generic.sld]

• A style that references attributes in the dataset, in an environment where there are naming
convention for particular attributes appearing in different layers, e.g. "indicator"

Based on these observations, a change of the styling API is suggested to make collections link to
styles, instead of owning them and their bodies, for example:

• wfs3/styles, to list all styles, along with some attribute to determine if the style is meant to be a
basemap or to depict a specific collection

• wfs3/collections/{collectionId}styles, listing pointers to the resources above, and allowing
modifications via PUT to modify the "collection to style" associations

Finally, a performance related note. GeoServer WFS3 cannot currently deliver multi-layer
collections, meaning a client needs to fetch vector tiles from several collections in order to build a
complex map. Given that WFS3 is not schema driven, it would be actually possible to create a multi-
layer collection delivering an aggregate vector tile (leveraging "layer groups", see also the WMTS
GeoSolutions section), or add an extension to request multiple collections at the same time (being a
dynamic request parameter, it may conflict with an eventual caching layer).

In order to deploy a GeoServer with vector tiles support, one can download a development version
of GeoServer [http://geoserver.org/release/master/], add the vector tiles extension [https://docs.geoserver.org/

latest/en/user/extensions/vectortiles/index.html], and include the WFS3 [https://build.geoserver.org/geoserver/

master/community-latest/geoserver-2.16-SNAPSHOT-wfs3-plugin.zip] community module. The source code for
GeoServer and both modules above can be found at GeoServer’s GitHub account [https://github.com/

geoserver/geoserver/tree/master/src].

30

https://raw.githubusercontent.com/geoserver/geoserver/2.14.2/data/release/styles/default_point.sld
https://raw.githubusercontent.com/geoserver/geoserver/2.14.2/data/release/styles/default_generic.sld
http://geoserver.org/release/master/
http://geoserver.org/release/master/
https://docs.geoserver.org/latest/en/user/extensions/vectortiles/index.html
https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.16-SNAPSHOT-wfs3-plugin.zip
https://github.com/geoserver/geoserver/tree/master/src

interactive instruments GmbH

The provisioning of features and tiled feature data in VTPExt has been described in the section
"Producing Tiled Vector Data" above.

Support for styles as additional resources has been added in VTPExt. The OpenAPI Styles API is
used to create, update, fetch and delete style sheets. Only style sheets in the Mapbox Style language
are supported in VTPExt. The style sheets are stored on the file system of the server.

The OpenAPI Styles API section includes a discussion about the design considerations and open
issues.

interactive instruments also investigated whether tile and style resources could be useful for the
API representation of the Web API. Unlike other OGC standards, WFS 3.0 not only focusses on data
represented in JSON, eXtensible Markup Language (XML), databases, etc., but also on HyperText
Markup Language (HTML) as an important representation of data. The conclusions were as follows:

• There is little utility in providing an HTML page for each tile because tiles are partitions of
space to simplify the processing of the features by software, not by humans.

• For styles, there are multiple possibilities. A HTML representation could be a legend displaying
the styling rules and symbols. Alternatively, it could even be a editor that allows to update the
style (using the API), if the user has sufficient rights. (This capability was out-of-scope for the
VTPExt.)

• Tiled feature data and styles can be used to provide an additional resource that provides an
interactive map for each style. Links to the maps have been added to the HTML landing page of
the dataset. The links are dynamically created from the set of available styles for the dataset.

31

Figure 9. Screenshot of landing page for the Daraa dataset

The interactive map uses OpenLayers and fetches the Mapbox Vector Tiles from the server via the
API. The map converts the Mapbox style sheet, which is also fetched from the server via the API, on-
the-fly, to an OpenLayers style that is used to render the tiles.

32

Figure 10. Map of Daraa dataset using the 'topographic' style

The map includes the capability to display or hide each layer of the map.

Figure 11. Map of Daraa dataset without the transportation features

Ecere

Ecere enhanced its GNOSIS Map Server with the capability to serve style sheets from its WFS3
service. For this initial implementation, only the styles end-point within a particular feature
collection was added. Style sheets in SLD/SE, Mapbox GL styles, and GNOSIS Cartographic Map Style
Sheets are made available for the VTP Daraa dataset.

33

The end-point for listing available styles for the Daraa2 meta-collection is available at:

http://maps.ecere.com/hms/collections/vtp/Daraa2/styles http://maps.ecere.com/hms/collections/vtp/
Daraa2/styles?f=json (JSON)

while specific styles and encodings are available at:

Night Style

http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/night?f=mbstyle
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/night?f=sld
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/night?f=cmss

Topographic Style

http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/topographic?f=mbstyle
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/topographic?f=sld
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/topographic?f=cmss

Overlay Style

http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/overlay?f=mbstyle
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/overlay?f=sld
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/overlay?f=cmss

Styles are also accessible from within a sub-layer, e.g., the TransportationGround curves:

http://maps.ecere.com/hms/collections/vtp/Daraa2/TransportationGroundCrv/styles

However these style sheets currently simply link to the full style sheet. A future version will likely
filter out rules, only keeping the styling rules pertaining to the selected sub-layer.

With the Ecere service serving a large organized collection of layers, a global styles list above the
collections resource would require the concept of a stylable layer set to distinguish identical style
names available for different set of layers served from the same end-point. This may be
implemented in the future.

Another new capability which was implemented during the VTPExt was the generation of Mapbox
Vector Tiles containing multiple layers. Those tiles are made available from:

http://maps.ecere.com/hms/collections/vtp/Daraa2/tiles

while a specific sub-layer is accessible from endpoints like the following:

http://maps.ecere.com/hms/collections/vtp/Daraa2/TransportationGroundCrv/tiles

See the Vector Tiles Pilot WFS3 Engineering report for more information on Ecere’s WFS3
capability serving tiled vector feature data.

7.2.2. Web Map Tile Service (Mapping 1)

This implementation is based on Mapping #1 (WMTS Layer ≈ Mapbox Layer).

34

http://maps.ecere.com/hms/collections/vtp/Daraa2/styles
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles?f=json
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles?f=json
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/night?f=mbstyle
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/night?f=sld
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/night?f=cmss
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/topographic?f=mbstyle
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/topographic?f=sld
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/topographic?f=cmss
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/overlay?f=mbstyle
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/overlay?f=sld
http://maps.ecere.com/hms/collections/vtp/Daraa2/styles/overlay?f=cmss
http://maps.ecere.com/hms/collections/vtp/Daraa2/TransportationGroundCrv/styles
http://maps.ecere.com/hms/collections/vtp/Daraa2/tiles
http://maps.ecere.com/hms/collections/vtp/Daraa2/TransportationGroundCrv/tiles

GeoSolutions

The GeoServer WMTS serves tiled feature data built with the same approach/architecture described
in the GeoSolutions WFS server chapter, with the following interesting variations:

• The tile layer needs to be explicitly configured, along with the formats being produced/cached,
allows usage of any available or user defined tileset

• Tiles can be either generated on request, if missing, or be pre-populated via a seeding procedure

• Unlike WFS 3.0, the WMTS protocol did not require any extension to serve Mapbox Vector Tiles,
the existing support allows to simply specify them as a new output format.

The WMTS was also augmented with a styling API, implemented as a community module and made
available on the GeoServer web site for anyone to use.

The WTMS styling module adds a few ResourceURL for each layer, providing access to styles usable
with the given layer, e.g.:

<ResourceURL resourceType="defaultStyle" format="application/vnd.ogc.sld+xml"
template="https://backoffice-maps.geo-
solutions.it/geoserver/gwc/service/wmts/reststyles/layers/vtp:SettlementSrf/styles/set
tlementsrf_sld?f=application%2Fvnd.ogc.sld%2Bxml"/>
<ResourceURL resourceType="style" format="application/vnd.geoserver.mbstyle+json"
template="https://backoffice-maps.geo-
solutions.it/geoserver/gwc/service/wmts/reststyles/layers/vtp:SettlementSrf/styles/set
tlementsrf_mbstyle?f=application%2Fvnd.geoserver.mbstyle%2Bjson"/>
<ResourceURL resourceType="style" format="application/vnd.ogc.sld+xml"
template="https://backoffice-maps.geo-
solutions.it/geoserver/gwc/service/wmts/reststyles/layers/vtp:SettlementSrf/styles/set
tlementsrf_mbstyle?f=application%2Fvnd.ogc.sld%2Bxml"/>
<ResourceURL resourceType="style" format="application/vnd.geoserver.geocss+css"
template="https://backoffice-maps.geo-
solutions.it/geoserver/gwc/service/wmts/reststyles/layers/vtp:SettlementSrf/styles/set
tlementsrf_css?f=application%2Fvnd.geoserver.geocss%2Bcss"/>
<ResourceURL resourceType="style" format="application/vnd.ogc.sld+xml"
template="https://backoffice-maps.geo-
solutions.it/geoserver/gwc/service/wmts/reststyles/layers/vtp:SettlementSrf/styles/set
tlementsrf_css?f=application%2Fvnd.ogc.sld%2Bxml"/>

In the above block, the layer is associated with three different hand-written styles,
settlementsrf_sld, settlementsrf_mbstyle, and settlementsrf_css. The SLD style, settlementsrf_sld,
is offered as SLD only, while the for the MapBox and GeoCSS styles, settlementsrf_mbstyle, and
settlementsrf_css the capabilities document provides also alternate links, that transforms the style
to SLD on the fly.

The above resources also support PUT and DELETE operations, allowing the client to modify,
remove, and add styles associated to a particular layer.

Conceptually, the extension suffers from the following issues:

35

• The ResourceURL templates were meant for GET requests only. The capabilities document
advertises neither support for the other operations nor the list of allowed content types. The
client may perform an OPTIONS request to discover the other methods.

• Unlike WFS, there is no RESTful "dataset" level style management, as WMTS provides no service
wide ability to advertise a ResourceURL.

On the other side, WMTS was designed in GeoServer to also handle "layer groups", a special type of
layer designed for basemaps that draws a list of basic layers in a given sequence, thus allowing a
client to get multi-layer tiles. The styles associated to these layers contain an aggregation of all the
style for all the layers in the group.

In order to deploy a GeoServer with vector tiles support one can download a development version
of GeoServer [http://geoserver.org/release/master/], add the vector tiles extension [https://docs.geoserver.org/

latest/en/user/extensions/vectortiles/index.html] and finally include the WMTS styles
[https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.16-SNAPSHOT-wmts-styles-plugin.zip]
community module. The source code for GeoServer and both modules above can be found at
GeoServer’s GitHub account [https://github.com/geoserver/geoserver/tree/master/src].

CubeWerx

CubeWerx has provided a live WMTS at https://tb14.cubewerx.com/cubewerx/cubeserv/vtext and a
static (filesystem-only) WMTS at https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/
WMTSCapabilities.xml, both of which implement the proposed WMTS 1.0 Styles API Profile
Specification. For the purposes of demonstrating Mapping #1, both of these servers expose the
following layers:

Daraa:AgricultureSrf
Daraa:CulturePnt
Daraa:CultureSrf
Daraa:FacilityPnt
Daraa:HydrographyCrv
Daraa:HydrographySrf
Daraa:MilitarySrf
Daraa:SettlementSrf
Daraa:StructurePnt
Daraa:TransportationGroundCrv
Daraa:UtilityInfrastructureCrv
Daraa:UtilityInfrastructurePnt
Daraa:VegetationSrf

Each of these layers is equipped with Night, Topographic, and Overlay styles, each of which style
the single feature set corresponding to the layer. Tiles can be requested in MVT, GeoJSON, PNG,
JPEG, or JOP (JPEG or PNG as appropriate). If one of the latter three formats is requested, the tile
rendering is performed on the server side.

Individual style definitions can be requested or modified through endpoints of the form:

36

http://geoserver.org/release/master/
http://geoserver.org/release/master/
https://docs.geoserver.org/latest/en/user/extensions/vectortiles/index.html
https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.16-SNAPSHOT-wmts-styles-plugin.zip
https://github.com/geoserver/geoserver/tree/master/src
https://tb14.cubewerx.com/cubewerx/cubeserv/vtext
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/WMTSCapabilities.xml
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/WMTSCapabilities.xml

https://tb14.cubewerx.com/cubewerx/cubeserv/vtext/wmts/1.0.0/layers/{layer}/{style}.sl
d
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/layers/{layer}/{style}.sld

as dictated by the style URL templates advertised in the servers' capabilities documents, e.g.,

https://tb14.cubewerx.com/cubewerx/cubeserv/vtext/wmts/1.0.0/layers/Daraa%3ATransporta
tionGroundCrv/Night.sld
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/layers/Daraa%3ATransportationGround
Crv/Night.sld

Style definitions can also be requested from the live WMTS through the KVP GetStyle operation,
e.g.,

https://tb14.cubewerx.com/cubewerx/cubeserv/vtext?SERVICE=WMTS&VERSION=1.0.0&REQUEST=G
etStyle&LAYER=Daraa%3ATransportationGroundCrv&STYLE=Night&FORMAT=application%2Fvnd.ogc
.sld%2Bxml

Since this way of modeling styles, i.e., piecemeal per layer, is not aligned with the Mapbox model,
participants have experimented with an additional set of endpoints that represent the definition of
a single style that is defined across multiple layers. These endpoints are available on the live and
static CubeWerx WMTSs at:

https://tb14.cubewerx.com/cubewerx/cubeserv/vtext/wmts/1.0.0/styles/{style}.sld
https://tb14.cubewerx.com/cubewerx/cubeserv/vtext/wmts/1.0.0/styles/{style}.json
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/styles/{style}.sld
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/styles/{style}.json

Such resources are represented in SLD as a set of one or more layers, each of which has exactly one
style, all with the specified style ID. Unfortunately, this creates an awkward disconnect between the
resources represented by these endpoints and the way styles are referenced in the rest of the
WMTS API. For this reason, these endpoints were not included in the proposed WMTS 1.0 Styles API
Profile Specification. Modelling such endpoints in WMTS requires more research and
consideration.

Ecere

Ecere enhanced its GNOSIS Map Server with the capability to serve style sheets from its WMTS
service. The Ecere WMTS service currently only supports Key Value Pair (REST support is not yet
implemented). For this initial implementation, only the requests for styles associated with a
particular feature collection were added. Style sheets in SLD/SE, Mapbox GL styles, and GNOSIS
Cartographic Map Style Sheets are made available for the VTP Daraa dataset.

The list of available styles is included as part of the WMTS capabilities document using the <Style>
tag of a <Layer> element.

37

http://maps.ecere.com/wmts?SERVICE=WMTS&REQUEST=GetCapabilities

The request for a given style (GetStyles operation) for the Daraa2 meta-collection takes the form of:

http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer={layer}&
style={style}&format={format}

The Daraa styles made available are accessible from:

Night Style

http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=night&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=night&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=night&format=cmss

Topographic Style

http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=topographic&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=topographic&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=topographic&format=cmss

Overlay Style

http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=overlay&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=overlay&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&
style=overlay&format=cmss

Styles are also accessible with a sub-layer selected, e.g., the TransportationGround curves:

http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&
layer=vtp:Daraa2:TransportationGroundCrv&style=night&format=mbstyle

However, these style sheets currently simply link to the full style sheet. A future version will likely
filter out rules, only keeping the styling rules pertaining to the selected sub-layer.

Another new capability which was implemented during the VTPExt was the generation of Mapbox
Vector Tiles containing multiple layers. Those tiles for the Daraa2 dataset are made available from:

http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetTile&layer=vtp:Daraa2&
tileMatrixSet={tileMatrixSet}&tileMatrix={tileMatrix}&tileRow={tileRow}&tileCol={tileCol}&
format=mvt

38

http://maps.ecere.com/wmts?SERVICE=WMTS&REQUEST=GetCapabilities
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer={layer}&style={style}&format={format}
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer={layer}&style={style}&format={format}
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=night&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=night&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=night&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=night&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=night&format=cmss
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=night&format=cmss
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=topographic&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=topographic&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=topographic&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=topographic&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=topographic&format=cmss
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=topographic&format=cmss
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=overlay&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=overlay&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=overlay&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=overlay&format=sld
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=overlay&format=cmss
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2&style=overlay&format=cmss
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2:TransportationGroundCrv&style=night&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetStyles&layer=vtp:Daraa2:TransportationGroundCrv&style=night&format=mbstyle
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetTile&layer=vtp:Daraa2&tileMatrixSet={tileMatrixSet}&tileMatrix={tileMatrix}&tileRow={tileRow}&tileCol={tileCol}&format=mvt
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetTile&layer=vtp:Daraa2&tileMatrixSet={tileMatrixSet}&tileMatrix={tileMatrix}&tileRow={tileRow}&tileCol={tileCol}&format=mvt
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetTile&layer=vtp:Daraa2&tileMatrixSet={tileMatrixSet}&tileMatrix={tileMatrix}&tileRow={tileRow}&tileCol={tileCol}&format=mvt

while a specific sub-layer is accessible from endpoints like the following:

http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetTile&
layer=vtp:Daraa2:TransportationGroundCrv&tileMatrixSet={tileMatrixSet}&
tileMatrix={tileMatrix}&tileRow={tileRow}&tileCol={tileCol}&format=mvt

The convention of using the colon (:) separator to establish the relationship between meta-layer
(e.g. Daraa2) and sub layer (e.g. TransportationGroundCrv) was adopted.

See the Vector Tiles Pilot WMTS Engineering report [5] for more information on Ecere’s WMTS
capability serving tiled vector feature data.

7.2.3. Web Map Tile Service (Mapping 2)

This implementation is based on Mapping #2 (WMTS Style ≈ Mapbox Style Sheet).

CubeWerx

To demonstrate Mapping #2, the live CubeWerx WMTS at https://tb14.cubewerx.com/cubewerx/
cubeserv/vtext, and the static CubeWerx WMTS at https://tb14.cubewerx.com/cubewerx/
staticDaraaWmts/WMTSCapabilities.xml, both of which implement the proposed WMTS 1.0 Styles
API Profile Specification, have also exposed the following conglomerate layer:

Daraa

This layer is equipped with Night, Topographic, and Overlay styles, each of which style all 13
feature sets. Tiles can be requested in MVT, GeoJSON, PNG, JPEG, or JOP (JPEG or PNG as
appropriate). If one of the latter three formats is requested, the tile rendering is performed on the
server side.

A style definition for this layer can be requested or modified through endpoints of the form:

https://tb14.cubewerx.com/cubewerx/cubeserv/vtext/wmts/1.0.0/layers/Daraa/{style}.sld
https://tb14.cubewerx.com/cubewerx/cubeserv/vtext/wmts/1.0.0/layers/Daraa/{style}.json
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/layers/Daraa/{style}.sld
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/layers/Daraa/{style}.json

as dictated by the style URL templates advertised in the servers' capabilities documents, e.g.,

https://tb14.cubewerx.com/cubewerx/cubeserv/vtext/wmts/1.0.0/layers/Daraa/Night.sld
https://tb14.cubewerx.com/cubewerx/cubeserv/vtext/wmts/1.0.0/layers/Daraa/Night.json
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/layers/Daraa/Night.sld
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/layers/Daraa/Night.json

Style definitions can also be requested from the live WMTS through the KVP GetStyle operation,
e.g.,

39

http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetTile&layer=vtp:Daraa2:TransportationGroundCrv&tileMatrixSet={tileMatrixSet}&tileMatrix={tileMatrix}&tileRow={tileRow}&tileCol={tileCol}&format=mvt
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetTile&layer=vtp:Daraa2:TransportationGroundCrv&tileMatrixSet={tileMatrixSet}&tileMatrix={tileMatrix}&tileRow={tileRow}&tileCol={tileCol}&format=mvt
http://maps.ecere.com/wmts?service=WMTS&version=1.0.0&request=GetTile&layer=vtp:Daraa2:TransportationGroundCrv&tileMatrixSet={tileMatrixSet}&tileMatrix={tileMatrix}&tileRow={tileRow}&tileCol={tileCol}&format=mvt
https://tb14.cubewerx.com/cubewerx/cubeserv/vtext
https://tb14.cubewerx.com/cubewerx/cubeserv/vtext
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/WMTSCapabilities.xml
https://tb14.cubewerx.com/cubewerx/staticDaraaWmts/WMTSCapabilities.xml

https://tb14.cubewerx.com/cubewerx/cubeserv/vtext?SERVICE=WMTS&VERSION=1.0.0&REQUEST=G
etStyle&LAYER=Daraa&STYLE=Night&FORMAT=application%2Fvnd.ogc.sld%2Bxml

7.3. GeoPackage Provisioning
The data flow for GeoPackage provisioning (label 6 in Figure 1) is illustrated in Figure 12. This data
flow is agnostic to implementation details such as data formats and styling approaches.

Figure 12. GeoPackage Data Sequence

7.3.1. Producing GeoPackages

In the previous ER, a set of extensions was proposed to support tiled feature data in a GeoPackage.
These extensions, with minor modifications, are described in Tiled Feature Data Extension,
GeoPackage Mapbox Vector Tiles Extension, and GeoPackage GeoJSON Vector Tiles Extension. Draft
specifications for these extensions are in GeoPackage Extensions Requirements (Normative).

Compusult

The Compusult GeoPackage Producer runs as a web-browser based application, as well as being
accessible via an OGC Web Processing Service (WPS) instance. The GeoPackage Producer supports
producing Mapbox Vector Tile and GeoJSON tile based GeoPackages in a user selected projection
system and an uploaded vector source (Shapefile(s), GeoDatabase, SqliteDB, etc.). The producer has
the ability to convert all feature types into a single Mapbox Vector Tile or produce a single Vector
Tile layer for each feature type.

Uploaded content may contain SLD or Mapbox Style documents which are mapped to appropriate

40

layers using the Tiled Feature Data extension along with the GeoPackage styles extension. Stylesets
are determined based on folder structure within an uploaded source. If required for no bandwidth
environments, external symbols are mapped to the gpkext_symbols table, and URN references are
updated in the corresponding style document.

Furthermore, the producer also has the ability to embed feature attributes into the Mapbox Vector
Tile or to use a GeoPackage Related Tables Extension [https://www.geopackage.org/18-000.html] to
produce attributes tables and appropriate mappings for optimal storage. The result of the Vector
Tile Extension is a GeoPackage that is compliant to specifications of the National System for
Geospatial Intelligence (NSG).

Figure 13. Compusult GeoPackage Producer Settings

41

https://www.geopackage.org/18-000.html

Figure 14. Compusult GeoPackage Producer Result

CubeWerx

The CubeWerx GeoPackage producer is an administrator-level command-line tool. It can generate
GeoPackages of MVT, GeoJSON, or PNG tiles, and has been augmented to support the Tile Feature
Data, Mapbox Vector Tiles and GeoPackage Styles extensions. (Currently, though, the contents of the
gpkgext_stylesheets and gpkgext_symbols tables need to be filled in manually.)

Ecere

The Ecere GeoPackage producer is embedded within Ecere’s GNOSIS Cartographer GIS tool. The
GeoPackage producer was updated to match the minor changes to the emerging tiled feature data
extension specifications. A set of layers can be selected for inclusion within the GeoPackage, and
multiple options are available for generating different types of GeoPackages. These options include
the following:

• whether to have attributes embedded within the tiles, or in attributes tables

• whether to generate tiles containing multiple layers, or individual tile sets for each layer

• tile format, including GNOSIS Map Tiles, Mapbox Vector Tiles, GeoJSON, GeoECON, and GML

• tiling scheme

The ability to include style sheets within the GeoPackage was improved upon to conform to the new
styling extension agreed upon during this pilot phase (see section below for more details).

See the Vector Tiles Pilot GeoPackage Engineering report [6] for more information on Ecere’s vector
tiles GeoPackage producer.

42

Figure 15. Exporting GeoPackages in Ecere’s GNOSIS Cartographer

7.3.2. Supporting Attributes in GeoPackage

By default, GeoPackage clients should retrieve feature attributes directly from the vector tiles. This
minimizes the burden on GeoPackage producers because the vector tiles do not need to be modified
in any way. There are limitations to this approach:

• There is potentially a storage requirement cost because attributes are duplicated across tiles.
This cost can manifest itself two ways:

◦ when features appear in multiple zoom levels (this cost increases linearly based on the tile
pyramid depth)

◦ when features span multiple tiles (this cost is irregular depending on how many large
features are present)

• Neither JSON nor Google Protocol Buffers support the querying that would be used to find the
attributes for a particular feature. Either the data must be stored in memory or the entire vector
tile must be scanned each time. This will scale poorly in many operational settings.

• It is not realistic to perform an attribute query and find the set of matching features because of
the aforementioned lack of querying and because the results may span an unknown number of
vector tiles. This will not scale to a non-trivial number of vector tiles.

In response, participants agreed to add a attributes_table_name column to gpkgext_tfd_layers.
When a client sees a non-null value in this table, it should ignore the attributes in the vector tiles
and instead use the attributes table.

Analysis

In general, embedded attribute GeoPackages are four times as large as their counterparts. This
factor increases exponentially as tile matrix levels increase.

Heterogeneous Attribute Schemas

Neither GeoJSON nor MVT are prescriptive regarding attributes. Heterogeneous attribute schemas
cannot be translated directly into relational tables. Tile sets that contain multiple layers are
potentially a problem because they are more likely to have heterogeneous attribute schemas.
However, since the GeoPackage producer attempting to use this attribute mechanism would have
to modify the vector tiles anyway, it is reasonable to force the producer to split the tile set into

43

multiple tile sets to ensure that each tile set has a homogeneous schema. Possible approaches to
mitigate this issue include the following:

• Make the heterogeneous schema homogeneous by combining the schemas together. Of course,
this would lead to a lot of NULL values in the attributes table.

• Store attributes with tables of key/value pairs, much like how MVTs store attributes internally,
with the attributes table referencing occurrences of key/values combinations. This would have
the added advantage of greatly reducing storage overhead of duplicate values (particularly
relevant for repeating character strings), but it would be more complicated to query.

Attributes Table Name

The attributes_table_name column in gpkgext_tfd_layers represents a set of tradeoffs.

One benefit of this approach is that it supports multiple layers within the same tileset even if the
layers have independent attribute schemas. As indicated in Displaying Tiled Feature Data Analysis,
it is preferable to minimize the number of tilesets because that simplifies the number of drawing
operations, a critical scalability point in mobile clients. However, there may be scenarios where it is
be more scalable to keep each layer in its own tileset, particularly if particular views only require a
subset of the available layers.

Potential drawbacks include the following:

• When this mechanism is in use, a client must discover the name of the primary key in the
attributes table to correlate the features with the attributes. This is done through inspection of
the attributes table schema. There is no requirement for an attributes table to have a primary
key column because attributes may be also stored in views and the concept of primary keys for
views does not exist in SQLite. The GeoPackage SWG recommends that attributes tables have
primary keys and that if views are used instead of tables, that the first column of the view
contains unique numeric values so that it can function like a primary key.

• This approach creates a dual logical path scenario. A client has to look for the attributes in two
places, the vector tiles and the specified attributes table. GeoPackage SWG members have
declared this to be an anti-pattern and have discouraged this approach in other areas. Their
preference is for there to be a single logical path that is discoverable when the GeoPackage is
loaded. In this case, clients that do not support this extension will ignore it and use the default.

Many Features to Many Tiles Extension (original Attributes Extension)

A many features to many tiles extension (originally named Tiled Feature Data Attributes Extension)
was originally proposed during the VTP and documented in the GeoPackage Extensions ER, but was
not used during the VTPExt. This extension provided a way to establish a relationship between
multiple tiles and multiple features, leveraging the Related Tables Extension. As a side advantage,
this provided a way to link an attributes table with a tileset, using the related_table_name field of
the gpkgext_relations table to locate the attributes table for a tile set. However, this did not support
the use case of a single tileset containing multiple layers together with one attributes table per
layer, as the gpkgext_relations table had no way to identify a specific layer. For this reason, the
attributes_table_name column of gpkgext_tfd_layers approach was chosen instead to identify a
table of attributes, supporting the queryable attributes use case.

44

This extension can still be considered for its ability to indicate which features are in which tiles, or
which tiles contain certain features, by its mapping table specified by the Related Tables Extension.
If such an extension is adopted, note that the attributes_table_name column of gpkgext_tfd_layers
would still be useful together with this extension to identify which mapping table to use for which
layer in the use case of a single tile set (with multiple layers) and multiple attributes table (one per
layer). Without this, a client would not automatically know which tiles to search to find the
geometries for specific features. This would lead to scalability problems if the extents for the query
are not known.

A proposed alternative to this extension would be storing the geospatial extent of the feature in the
attributes table, potentially as an R-tree entry additionally offering spatial indexing capability for
attributes queries. This would directly provide the extent of such a feature (e.g., for 'zoom to extent'
capability), as well as greatly restrict the number of tiles to examine to retrieve the geometry for
that feature.

Compusult

The Compusult GeoPackage producer has the ability to embed feature attributes into its Tiled
Feature Data or to use a GeoPackage Related Tables Extension [https://www.geopackage.org/18-000.html]
to produce attributes tables and appropriate mappings for optimal storage. When attributes are not
embedded, the attributes_table_name is specified to ensure optimal compatibility when dealing
with Tiled Feature Data containing more than one feature type. The Related Tables Extension is
preferred to allow a client to query the features associated with a tile without ever having to
inspect the tiles content. The GeoPackage producer also contains logic to allow a client to remove
empty placeholder values that frequently appear in vector feature data such as '-999999' 'NULL' etc.

Ecere

The Ecere GeoPackage producer can either embed attributes within the tiles or generate an
attributes table. The attributes table is identified by the attributes_table_name field of the
gpkgext_tfd_layers table. A future version will probably store the extent of individual features to
facilitate spatial queries, potentially conforming with the existing GeoPackage R-tree extension.
Support for heterogeneous attributes stored using keys and values tables is also a capability being
considered, which would be particularly useful for storing full OpenStreetMap data. The many
features to many tiles extension is not currently supported but could eventually be optionally
supported if it sees adoption.

7.3.3. Supporting Style Sheets in GeoPackage

A table is needed to store stylesheets in a GeoPackage. This table must also store style sets and
options and formats for those style sets. The table design is presented in Stylesheet Table Definition.

Analysis

A table was proposed in the GeoPackage Extensions ER, but that table was not sufficient to meet the
needs identified in the CONOPS. There were some minor recommendations from the first proposal
for this table:

• add a description column to provide some context for the row beyond the styles_set and option

45

https://www.geopackage.org/18-000.html

columns which could be cryptic

• use the name stylesheet for the column containing the actual style BLOB instead of data or
style.

In addition, a participant proposed a layer column for gpkgext_stylesheets that would correlate a
stylesheet to the layer it would apply to. The purpose of this column is to declare what layer this
style can be used for. While this may be handy as part of a system that solely uses tiled feature data,
it would not be applicable to ordinary feature tables that also would benefit from a styling
capability. Because of the limited utility, it is unlikely that this approach would be accepted by the
GeoPackage SWG. Since the data manager would have the information needed to populate this
column when producing the GeoPackage, the offering mechanism described below would work just
as well.

NOTE
This ER also presents a proposed table for storing symbols, but this topic was not a
focus of this pilot project.

Compusult

The Compusult GeoPackage producer scans the uploaded source content locating SLD or Mapbox
Style documents which are mapped to appropriate layers using the Tiled Feature Data extension
along with the GeoPackage Styles Extension. A Tiled Feature Data layer is mapped to an SLD layer if
any style has a FeatureTypeName matching the source vector data. Stylesets are determined based
on folder structure within an uploaded source. If required for no bandwidth environments,
external symbols are mapped to the gpkext_symbols table, and URN references are updated in the
corresponding style document. In the future, a generic style data-store will be used to create/select
feature type styles, allowing the client to choose to produce SLD or Mapbox style.

CubeWerx

CubeWerx has prepared two GeoPackages for the VT-Pilot Extension TIEs, with fully-populated
gpkgext_stylesheets and gpkgext_symbols tables. One of these GeoPackages formulated its SLD styles
as per Mapping #1, while the other formulated its SLD styles as per Mapping #2. The Mapbox styles
are the same in each of the GeoPackages. CubeWerx considers it likely that Mapping #1 will be the
preferred mapping for GeoPackages (at least for the SLD formulation), despite the fact that
Mapping #2 is likely to be the preferred mapping for the WMTS API.

Rather than having the SLD encoding of the styles reference graphic symbols on an external web
server, which would violate the principle that GeoPackages should be self-contained, the symbols in
the gpkgext_symbols table are referenced by their symbol_id.

Ecere

The styles definitions included in the gpkgext_stylesheets by Ecere’s GeoPackage producer are
organized by stylable layer set and style, while supporting different encodings for the same style
definition. The GeoPackages produced included SLD/SE, Mapbox GL Styles, and GNOSIS
Cartographic Style Sheets. The process is currently driven by pre-generated styles documents, but
will eventually be fully integrated with GNOSIS Cartographer’s styling system, translating styles
descriptions on-the-fly to the supported formats. Additionally, the ability to embed symbols (in a

46

gpkgext_symbols table) that can be referenced by the style sheet was added, allowing these
GeoPackages to be fully self-sufficient.

7.3.4. Deploying GeoPackages

In this project, most implementers deployed GeoPackages manually to the target platform.

Compusult

Compusult deployed GeoPackages by adding them to a 'Portfolio' in its COTS software, or producing
one from uploaded content. Compusult’s GOMobile Desktop/Android client is able to search,
discover, and add this content for rendering and analysis. GOMobile also allows users to upload
local GeoPackages or to local them on the root of its device(Android). Compusult COTS software also
has the ability to provide WMS/WMTS services based on uploaded/created GeoPackages using the
internal tiled or simple feature data and its existing GeoPackage rendering client.

7.4. Integrated Clients

7.4.1. Binding to a WMTS, WFS and/or GeoPackage

Compusult (WMTS Client)

The Compusult WMTS client binds to a WMTS services using a publishing service to a Catalogue
Service for the Web (CSW) client. Published services are exposed in the GOMobile client to be
rendered. The WMTS client was updated to support GetStyles KVP operations as well as style
Resource URL templates to support the retrieval of layer styles.

47

Figure 16. Compusult CSW Binding - WMTS Services

Compusult (GeoPackage Client)

The Compusult GeoPackage client binds to a GeoPackage in multiple ways. A client can upload the
GeoPackage directly to GOMobile, or a GeoPackage can be uploaded to Compusult COTS software
where it is added to the CSW and exposed as a raw file or a WMS/WMTS service based on its
content. GOMobile accesses the services through the CSW and renders the content.

48

Figure 17. Compusult CSW Binding - GeoPackage Services

Figure 18. Compusult GOMobile Binding

Ecere (WFS / WMTS / GeoPackage Client)

Ecere used the same client, GNOSIS Cartographer, for all visualization experiments. As with any
other supported geospatial data source, the binding is done by pointing the client to a WFS or
WMTS service, or GeoPackage data source by specifying a URL, file, or directory path, from the Map
Library’s Add… button. The client will automatically recognize any supported geospatial data source
and make it available for visualization. A new, consistent interface was added to present the list of
default styles made available together with the data, regardless of the source type. Selecting such a
style will automatically trigger its use for visualization. Multiple data sources can be visualized
together, regardless of their origin. Although the exact same GNOSIS functionality demonstrated on
the desktop is also available for the Web and Mobile platforms, there was no time in this pilot phase
to demonstrate those capabilities on those other platforms.

49

Figure 19. Ecere’s GNOSIS Cartographer Visualizing multiple types of data sources

7.4.2. Requesting Tiled Feature Data from a WMTS

The WMTS Feature Tile extension allows for selecting tiled feature data and their associated styles
as shown in Figure 20. This is by far the most simple of the extensions, as the existing WMTS
specification allows for styles to be specified using the existing style parameter.

Figure 20. WMTS Style Sequence Diagram

GeoSolutions WMTS Simple Client

The application provides a simple environment to test style conversions client side (SLD to
OpenLayers Style and MBStyle to OpenLayers Style) and get an overview of the editing workflow
using WMTS vector tiles served via GeoServer [http://geoserver.org/].

The demo application, built with the MapStore [https://mapstore.geo-solutions.it/mapstore/#/] framework,

50

http://geoserver.org/
https://mapstore.geo-solutions.it/mapstore/#/

uses OpenLayers [https://openlayers.org/] as map renderer.

The initial configuration is stored in a JSON file listing layers and available styles, after the
initialization, all style bodies are loaded and the application requests vector tiles via WMTS GetTile
defined in the configuration file.

The application lists 3 variations of the same style Topographic, Night and Overlay.

link to demo repository: https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/
MapStoreStyle

link to live demo: http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wmts.html#/

Figure 21. WMTS - Client Sequence Diagram

Figure 22. MapStore Client is Rendering Overlay Style in SLD Language with WMTS Vector Tiles

51

https://openlayers.org/
https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/MapStoreStyle
https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/MapStoreStyle
http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wmts.html#/

Figure 23. MapStore Client is Rendering Overlay Style in Mapbox Style Language with WMTS Vector Tiles

Compusult WMTS Client

After binding with WMTS services, the Compusult GOMobile client requests tiled feature data based
on a services WMTS Capabilities Document. KVP and RESTful GetTile operations are supported
along with tile formats of application/vnd.mapbox-vector-tile, application/vnd.geo+json, and other
accepted aliases. If the WMTS service supports the GetStyles KVP operation or has style type
Resource Templates the WMTS client will request a client specified style and format to render the
vector content. Both SLD and Mapbox Style documents are supported, and can be applied to either
GeoJSON or MVT tiles. The CubeWerx static WMTS services use default styling to render its MVT
content and the standard WMTS 1.3.0 protocol to access pre-rendered tiled feature data in the PNG
format.

Figure 24. Compusult GOMobile WMTS Services

52

Figure 25. Compusult GOMobile WMTS Layer Selection

Figure 26. Compusult GOMobile WMTS Tile Format Selection

Figure 27. Compusult GOMobile WMTS Style Selection

53

Figure 28. Compusult GOMobile Ecere WMTS (Overlay Style)

54

Figure 29. Compusult GOMobile CubeWerx WMTS GeoJSON (Topographic Style)

Figure 30. Compusult GOMobile CubeWerx WMTS MVT (Night Style)

55

Figure 31. Compusult GOMobile CubeWerx WMTS Static (PNG)

56

Figure 32. Compusult GOMobile GeoSolution WMTS (Topograhic Style Mapbox)

Figure 33. Compusult GOMobile GeoSolution WMTS (Overlay Style SLD)

57

Figure 34. Compusult GOMobile GeoSolution WMTS (Night Style SLD)

Ecere WMTS Client

Ecere was able to reconfirm the interoperability with the GeoSolutions WMTS that was
demonstrated during the VTP. The Ecere GNOSIS WMTS client functionality has been tested
successfully within GNOSIS Cartographer with both the Cubewerx and Ecere WMTS services.
Unfortunately, Ecere was unable to test the styles API from the GeoSolutions or CubeWerx static
WMTS because the Ecere client currently only support KVP operations, not the resources API, and
those services did not expose a GetStyles KVP operation. Neither the CubeWerx nor the Ecere
WMTS service could be styled properly for attributes-specific styles because the Ecere client is
currently very dependent on pre-defined attributes schemas. As a result, the need for a mechanism
to retrieve attributes schemas through WMTS was discussed, but was not implemented by any
participant. Support for listing sub-layers (feature types) inside meta layers, as well as retrieving
schemas will likely be implemented in both the Ecere WMTS service and client in the future.

58

Figure 35. Ecere client visualizing CubeWerx WMTS Service using the Night style

Figure 36. Ecere client visualizing CubeWerx WMTS Service using the Topographic style

59

Figure 37. Ecere client visualizing CubeWerx WMTS Service using the Overlay style (Google Maps data
underneath)

Figure 38. Ecere client visualizing GeoSolutions WMTS Service (styles not yet working due to no GetStyles
operations)

60

Figure 39. Ecere client visualizing Ecere WMTS Service using the Night style

Figure 40. Ecere client visualizing Ecere WMTS Service using the Topographic style

61

Figure 41. Ecere client visualizing Ecere WMTS Service using the Overlay style (Google Maps data
underneath)

7.4.3. Requesting Tiled Feature Data from a WFS

The Feature Tiles API (documented in the Vector Tiles Pilot WFS 3.0 Engineering Report) and The
OpenAPI Styles API, both extending the API specified by WFS 3.0 Core, allow for selecting vector
tiles and their associated styles as shown in Figure 42.

The design goal for the APIs is to support two approaches of how clients can use the server. The two
approaches are complementary, but not exclusive.

1. One option is to study the API using its API definition (at /api) and then develop client
applications based on the API documentation, the examples and typically an interactive HTML
client derived from the API definition (e.g., using Swagger UI). Familiarity with OpenAPI is
expected, but no previous knowledge of WFS 3.0 or any other OGC standard is required.
OpenAPI also supports code-generation based on the API definition.

2. The other option is to navigate the API based on the API responses and the knowledge about the
resource definitions. They will typically start at the landing page, analyze the information,
follow links to other resources, etc. The OpenAPI definition may be used to determine details
e.g. on filter parameters, but this may not be necessary depending on the application. A client
may navigate from the landing page to the /tiles and /tiles/{tilingSchemeId} resources (for
tiles that include all features) or alternatively to the /collections/{collectionId}/tiles and
/collections/{collectionId}//tiles/{tilingSchemeId} resources (for layer/collection-specific
tiles) to determine the available tiling schemes and the URI template for accessing the
individual tiles. The client may also fetch the /styles and /styles/{styleId} resources to
determine the available styles for the data. The client can then use this information to render
the tiled feature data using the available styles.

62

Figure 42. WFS GET Style Sequence Diagram

NOTE
Since the VTPExt focused on styling, most participants had no new content on this
topic in this ER. Please see the WFS 3.0 Vector Tiles Extension Engineering Report
(OGC 18-078) for more details.

Ecere WFS Client

The Ecere GNOSIS WFS client functionality has been tested successfully within GNOSIS
Cartographer with both the interactive instruments, GeoSolutions, and Ecere WFS3 services.
However, neither the CubeWerx nor the GeoSolutions WFS service could be styled properly for
attributes-specific styles because the Ecere client is currently very dependent on pre-defined
attributes schemas. The Ecere service currently provides an attributes schema as an XML Schema

63

Document using a /schema end-point. (This mechanism is also currently supported by the CubeWerx
WFS3 service, but this was not tested during the VTPExt.) The need for a standard mechanism to
retrieve attributes schemas through WFS was discussed towards the end of the pilot. The Ecere
WFS service and client will be adjusted to support the resulting standard approach, once decided
upon.

Figure 43. Ecere client visualizing interactive instruments WFS Service using the Night style

Figure 44. Ecere client visualizing interactive instruments WFS Service using the Topographic style

64

Figure 45. Ecere client visualizing Interactive Instruments WFS Service using the Overlay style (Google
Maps data underneath)

Figure 46. Ecere client visualizing GeoSolutions WFS Service using the Night style

65

Figure 47. Ecere client visualizing GeoSolutions WFS Service using the Topographic style

Figure 48. Ecere client visualizing GeoSolutions WFS Service using the Overlay style (Google Maps data
underneath)

66

Figure 49. Ecere client visualizing Ecere WFS Service using the Night style

Figure 50. Ecere client visualizing Ecere WFS Service using the Topographic style

67

Figure 51. Ecere client visualizing Ecere WFS Service using the Overlay style (Google Maps data
underneath)

7.4.4. Modifying Style Sheets

The WFS Feature Tile extension also allows for editing a WFS style as shown in (Figure 52) below.

68

Figure 52. WFS Edit Style Sequence Diagram

GeoSolutions

WFS3 Client

This client shows a complete workflow to get styles using a GeoServer [http://geoserver.org/],
Interactive Instruments, or Ecere WFS3 service and editing of styles client side.

The demo application has been build with MapStore [https://mapstore.geo-solutions.it/mapstore/#/]
framework and it uses OpenLayers [https://openlayers.org/] as map renderer.

As represented in Figure 53, the application performs following steps:

1. get all layers from a WFS3 collection

69

http://geoserver.org/
https://mapstore.geo-solutions.it/mapstore/#/
https://openlayers.org/

2. get all dataset styles not assigned to layers from WFS3 styles

3. for each style it requests the style body

4. the client splits all style bodies and verifies if the name inside the NamedLayer (SLD) or 'source-
layer' (MBStyle) matches with a layer in the collection

5. for each match in the collection the client will render a separate layer and apply the portion of
styles previously matched.

6. after every editing the style is recomposed and the client can request to the server to update or
delete the current style (PUT or DELETE)

TIP

Link to demo repository: https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/
master/MapStoreStyle

Link to live demo: GeoServer WFS3 Service: http://vtp2018.s3-eu-west-
1.amazonaws.com/vtpext-wfs.html#/

Interactive instruments WFS3 Service: http://vtp2018.s3-eu-west-1.amazonaws.com/
vtpext-wfs.html#/?wfs3=interactive_instruments

Ecere WFS3 Service: http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wfs.html#/?
wfs3=ecere

70

https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/MapStoreStyle
https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/MapStoreStyle
http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wfs.html#/
http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wfs.html#/
http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wfs.html#/?wfs3=interactive_instruments
http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wfs.html#/?wfs3=interactive_instruments
http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wfs.html#/?wfs3=ecere
http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wfs.html#/?wfs3=ecere

Figure 53. WFS3 - Client Sequence Diagram

71

Figure 54. MapStore Client Splits Styles in Named Layer in SLD of Topographic Style with WFS3 Vector Tiles

Figure 55. MapStore Client Editing Color of Agriculture Surface of Topographic Style with WFS3 Vector
Tiles

72

Figure 56. MapStore Client Shows the Complete Night Mapbox Style with GeoServer WFS3 Service

Figure 57. MapStore Client Shows the Complete Night Mapbox Style with Interactive Instrument WFS3
Service

73

Figure 58. MapStore Client Shows the Complete Night Mapbox Style with Ecere WFS3 Service

7.4.5. Displaying Tiled Feature Data

Analysis

On a mobile client, performance and scalability issues potentially have a greater impact. This
particularly applies to drawing to the screen; the less drawing the better. One participant found
that creating a single image out of all of the layers, rather than one image for each layer, was
significantly better for performance. With this in mind, it is more convenient to have all of the
layers in a single tile set. If the layers are kept separate, it would be better for the client to produce
one aggregate image than to create one image for each layer.

GeoSolutions

GeoSolutions produced a WMTS Client. This demo shows an application built with MapStore
[https://mapstore.geo-solutions.it/mapstore/#/] framework that lets the user switch the rendering between
server and client side using a WMS Service from GeoServer [http://geoserver.org/]. GeoServer exposes
WMS tiles in different formats, including vector ones such as MVT, so in a GetMap request it is
possible to set the format parameter to 'application/vnd.mapbox-vector-tile'.

All the styles are retrieved from the GeoServer REST administration API and are listed in the client
in three formats: SLD, MBStyle or GeoCSS. When the application is rendering client-side, SLD and
MBstyle are directly converted to OpenLayers Style while GeoCSS format is requested as SLD from
GeoServer. The GeoServer REST administration API exposes all configuration elements, including
styles, stores, and layers, and allows other applications to programmatically retrieve and alter the
GeoServer setup (admin level authentication required).

TIP

Link to demo repository: https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/
master/MapStoreStyle

link to live demo: http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wms.html#/

74

https://mapstore.geo-solutions.it/mapstore/#/
http://geoserver.org/
https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/MapStoreStyle
https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/MapStoreStyle
http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wms.html#/

Figure 59. WMS - Client Sequence Diagram

Figure 60. MapStore Client Shows Tiles Rendered Server Side of Transportation Ground Layer with WMS
Tiles

75

Figure 61. MapStore Client Render Tiles Client Side of Transportation Ground Layer with WMS Vector Tiles

Ecere

Ecere’s GNOSIS Cartographer was used as client to display tiled feature data from either its native
GNOSIS data store, WMTS, WFS3, or GeoPackages supporting the extensions developed for the
VTP/VTPExt. The tool is capable of displaying the feature data in either 3D (optionally draped onto
3D terrain) or cartographic projections, and it can dynamically apply styles in real-time. Support for
importing styles in the Mapbox GL styles definition format was developed during the VTPExt. The
Ecere client can now import styles from Mapbox GL styles, SLD/SE, and its GNOSIS Cartographic
Map Style Sheets. In addition to the WMTS and WFS interoperability experiments described above,
GeoPackages produced by Compusult, CubeWerx, and Ecere were successfully visualized, using the
different styles.

Figure 62. Ecere client visualizing CubeWerx GeoPackage using the Night style

76

Figure 63. Ecere client visualizing CubeWerx GeoPackage using the Topographic style

Figure 64. Ecere client visualizing CubeWerx GeoPackage using the Overlay style (Google Maps data
underneath)

77

Figure 65. Ecere client visualizing Compusult GeoPackage using the Night style

Figure 66. Ecere client visualizing Compusult GeoPackage using the Topographic style

78

Figure 67. Ecere client visualizing Compusult GeoPackage using the Overlay style (Google Maps data
underneath)

Figure 68. Ecere client visualizing Ecere GeoPackage using the Night style

79

Figure 69. Ecere client visualizing Ecere GeoPackage using the Topographic style

Figure 70. Ecere client visualizing Ecere GeoPackage using the Overlay style (Google Maps data
underneath)

Image Matters

Mobile Client

The Experience Reality mobile client, among other functions, can render and display GeoPackages
on a map view. This client is capable of rendering GeoPackages with conventional feature tables
styled with CartoCSS and tiled feature data styled with the Mapbox style specification. There are
trade-offs to each approach, with respect to use on a mobile device. To render and display features
from a GeoPackage with enumerated feature tables, the client reads the geometry from the table,

80

reads the CartoCSS styling information corresponding to that table, and draws the features directly
on the map in the correct location. Each layer can be enabled and disabled individually. This is very
quick and responsive. However, this keeps the rendered features in memory, of which a mobile
device has precious little. Drawing too many features simultaneously will severely slow down the
mobile client, and possibly crash the application, due to running out of memory. This is a common
occurrence when there are a few dozen feature layers in the same viewport.

To address this issue, the mobile client also supports tiled feature data, which is handled differently.
To render and display this data, each layer has its styling information parsed beforehand, and both
are aggregated into an object called a Tile Provider. While enabled, the Tile Provider will render
and display tiles that are within the viewport of the map view. The tile is rendered into an image,
and stored into a cache on the local disk, so it is only rendered once. The cached image is displayed
on the map as it is requested. This significantly improves the performance of the mobile client
while all of the features are enabled, as there is only one image to display per tile, and it is cached
on the local disk. However, this means the ability to enable and disable each layer individually is
lost. To allow that feature, there would need to be a separate Tile Provider for each individual layer,
which would reintroduce the memory issue, as there would be one image per layer enabled per tile.

To summarize, a non-Vector Tile approach renders more easily, but has performance issues while
displaying on a mobile client. Using tiled feature data makes rendering more difficult and virtually
prohibits enabling individual layers, but displays far more smoothly.

81

Figure 71. Image Matters Mobile Client rendering Compusult GeoPackage with Topographic style

82

Figure 72. Image Matters Mobile Client rendering Compusult GeoPackage with Overlay style

83

Figure 73. Image Matters Mobile Client rendering Compusult GeoPackage with Night style

84

Figure 74. Image Matters Mobile Client rendering CubeWerx GeoPackage with Topographic style

85

Figure 75. Image Matters Mobile Client rendering CubeWerx GeoPackage with Overlay style

86

Figure 76. Image Matters Mobile Client rendering CubeWerx GeoPackage with Night style

87

Figure 77. Image Matters Mobile Client rendering Ecere GeoPackage with Topographic style

88

Figure 78. Image Matters Mobile Client rendering Ecere GeoPackage with Overlay style

89

Figure 79. Image Matters Mobile Client rendering Ecere GeoPackage with Night style

Compusult GOMObile Client

The Compusult GOMobile client retrieves GeoPackages, GeoPackage services, and WMTS services
from a CSW which has this content published in it. WMTS services are rendered using
GetTile/GetStyle operations or using the RESTful equivalent. SLD and Mapbox styles are parsed and
converted to an abstract styling model which is used to render vector tile content. GeoPackage style
rendering supports both embedded feature attributes and attributes stored using the GeoPackage
Vector Tile Attribute extension. Clients are able to specify the tile format and style format for the
most flexible solution. Mapbox Vector Tile and GeoJSON tile formats are supported, along with
Mapbox Style and SLD style formats. Style documents are cached to ensure documents are not
requested multiple times when dealing with a multi-layer GeoPackage which leverages from the
same style document. When attributes are stored using the GeoPackage Related Tables Extension, it

90

allows for simple editing of features, which leads to the ability to dynamically style the tiled feature
data.

Figure 80. Compusult GOMobile GeoPackage Binding

Figure 81. Compusult GOMobile GeoPackage Style Selection

91

Figure 82. Compusult GOMobile GeoPackage Ecere Single MVT Tileset/Embedded Attributes (Night Style
SLD)

92

Figure 83. Compusult GOMobile GeoPackage Multi-Tileset MVT/Attributes Extension (Topographic Style
Mapbox)

93

Figure 84. Compusult GOMobile GeoPackage Single Tileset GeoJSON (Overlay Style Mapbox)

94

Figure 85. Compusult GOMobile GeoPackage CubeWerx Single Tileset MVT/Embedded Attributes
(Topographic Style Mapbox)

95

Figure 86. Compusult GOMobile GeoPackage CubeWerx Single Tileset MVT/Embedded Attributes (Overlay
Style Mapbox)

96

Figure 87. Compusult GOMobile GeoPackage CubeWerx Single Tileset MVT/Embedded Attributes (Night
Style SLD)

7.4.6. Querying Tiled Feature Data

GeoSolutions

The GeoSolutions WMTS Simple client described above provides a tool to request feature
information directly from the vector tiles. It is enabled by clicking on the marker button in the
bottom right corner.

TIP Link to live demo: http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wmts.html#/

97

http://vtp2018.s3-eu-west-1.amazonaws.com/vtpext-wmts.html#/

Figure 88. MapStore Client Get Feature Info from WMTS Vector Tiles

Compusult

The Compusult GOMobile client allows the user to click on the map and detect any feature
information available in the rendered services. Both WMTS and GeoPackages which serve vector
tile content can be queried and displayed to the client. GeoPackages with both embedded attributes
and related tables attributes are supported.

Figure 89. Compusult GOMobile Feature Selection (GeoPackage)

98

Figure 90. Compusult GOMobile Multiple Features (WMTS)

99

Figure 91. Compusult GOMobile Feature Info (GeoPackage)

Ecere

The Ecere client can query attributes from tiled feature data. For GeoPackages, this works with both
embedded attributes as well as through an attributes table. Use of the attributes table allows
complex queries, which would be further empowered by the use of spatial indexing based on the
storage of feature extents outside the tiled feature data. The ability to query attributes from WMTS
and some WFS3 instances is currently impeded by the lack of an implemented mechanism to

100

retrieve attributes schemas.

Figure 92. Ecere’s GNOSIS Cartographer querying attributes

101

Chapter 8. Discussion

8.1. Differences between WMTS and Mapbox Layers
It is important to note that a WMTS layer is not the same as a Mapbox layer. A WMTS layer is
defined by its styles, where each style renders one or more feature types. It is these individual
feature types that are equivalent to Mapbox layers. Therefore, a WMTS tile (which can only be for a
single WMTS layer) can contain more than one Mapbox layer, and the set of Mapbox layers that a
WMTS tile contains is dictated by the requested style.

8.2. Differences Between SLD and Mapbox Styles
Mapbox styles approach scale dependencies by allowing specification of zoom levels, either as
limits for display, or in tables to associate different symbolizer properties at different scales. The
zoom levels refer to the common Web Mercator tileset, creating difficulties in styling maps in other
coordinate reference systems.

A StyledLayerDescriptor element in an SLD document is a complex hierarchical container that may
contain multiple styles and serve as a style library (see "library mode" in the SLD 1.0 specification).
In particular, a StyledLayerDescriptor element can contain multiple NamedLayer elements, and
each NamedLayer element can be associated with multiple UserStyle elements, to be used as
alternatives (one of them can be marked as the default). Each UserStyle in turn can contain
multiple FeatureTypeStyle elements, each one referring to a different "feature type". So,
theoretically, a single NamedLayer could contain features with different structure and different
type name, and the UserStyle element could style them all.

A Mapbox style instead defines a single map to be displayed, listing layers and their styling. In this
respect, a MBStyle document resembles a SLD UserStyle, while no similar structure is provided for
the StyledLayerDescriptor level.

8.3. Using Offerings to Correlate Tiled Feature Data
Layers to Style Sheets
By populating the gpkgext_context_offerings table proposed in the GeoPackage OWS Context
Extension, a data manager creates an explicit association between tiled feature data layers and
style sheets. If new style sheets are developed, they can be added to the gpkgext_stylesheets table
and new offerings can be added to the gpkgext_context_offerings table. Unfortunately, no
participants were able to explore this capability during the VTPExt.

8.3.1. Analysis

By making OWS Context tables atomic, implementers can establish links between tile sets and styles
without the full complexity of OWS Context.

One participant proposed a styles_set column in gpkgext_vt_layers. This does not align well to the
CONOPS. Operationally, the data provider may not be the cartographer tasked with producing the

102

map. GeoPackages will appear with vector tiles in them and styles may be applied later down the
line. While it is the intent, there is no guarantee that style sheets will be universal. Even if URIs are
used for styles_set instead of numeric IDs, this approach will still break down if two different
organizations are responsible for producing their own stylesheets.

8.4. Using OWS Contexts to Describe Map Views
OWS Context is designed to describe a set of geospatial resources. In this scenario, there is one
context for each common operational picture (e.g., topographic, satellite, and night view). Each
context contains resources and offerings (map tiles, feature tiles, etc.) needed to represent that
view. This extension is presented in GeoPackage OWS Context Extension. Unfortunately, no
participants were able to explore this capability during the VTPExt.

8.4.1. Analysis

Use of OWS Context does add complexity to the ensuing GeoPackage. In an attempt to mitigate this
complexity, the number of tables was reduced to three and the stylesheets table was split into a
separate extension.

It is possible that a GeoPackage client may not support the format of the stylesheet specified in an
OWS Context but that it will support a format present in another equivalent stylesheet row (same
styles_set and option, different format). This scenario will be a nuisance for the client but is not
insurmountable.

An initial proposal was presented in the GeoPackage Extensions ER, but it was incomplete and a
consensus was not reached during the initial Pilot period. In addition to changes in the stylesheets
table as described previously, there were some minor changes from the proposed table structure
from the GeoPackage Extensions ER:

• Name the top level table gpkgext_contexts instead of gpkgext_context for consistency.

• Move layer_name and query from gpkgext_resources to gpkgext_offerings.

• The proposal in the previous ER did not indicate how to specify a layer within a vector tiles set.
Since a vector tiles table is not usable without specifying the actual layer, one way to do this
would be to have a compound string like table_name/layer_name as the layer_name of
gpkgext_context_resources. The code would indicate that it is a vector tiles table so a client would
know to expect a compound layer there.

103

Appendix A: GeoPackage Tiled Feature Data
Extensions (Informative)
Five GeoPackage extensions were developed as part of this Pilot project. This section presents each
one using the GeoPackage Extension Template [http://www.geopackage.org/spec120/#extension_template].
This section is informative, providing information relevant to a developer or administrator who
wishes to understand how these extensions are supposed to work. Potential normative
requirements are presented in GeoPackage Extensions Requirements (Normative).

A.1. Tiled Feature Data Extension

A.1.1. Extension Title

Tiled Feature Data

A.1.2. Introduction

The GeoPackage Tiled Feature Data extension defines the rules and requirements for encoding tiled
feature data in a GeoPackage data store.

WARNING
This extension does not define an encoding for tiled feature data. To be usable,
an additional extension such as GeoPackage Mapbox Vector Tiles Extension or
GeoPackage GeoJSON Vector Tiles Extension must also be used.

This extension, like all GeoPackage extensions, is intended to be transparent and to not interfere
with GeoPackage-compliant, but non-supporting, software packages.

A.1.3. Extension Author

Image Matters LLC, in collaboration with the participants of the OGC Vector Tiles Pilot.

A.1.4. Extension Name or Template

im_vector_tiles (If this extension is adopted by OGC, then gpkg_tiled_feature_data will be named as
an alias.)

A.1.5. Extension Type

This extension provides new requirements dependent on GeoPackage Clause 2.2 (tiles)
[http://www.geopackage.org/spec120/index.html#tiles].

A.1.6. Applicability

This extension defines an alternate way to encode feature information into a GeoPackage.

104

http://www.geopackage.org/spec120/#extension_template
http://www.geopackage.org/spec120/index.html#tiles

A.1.7. Scope

read-write

A.1.8. Specification

If this extension is in use, then all of the Tiles Option [http://www.geopackage.org/guidance/getting-

started.html#tiles] applies. The individual tiles (tile_data in a tile pyramid user data table) are vector
tiles.

NOTE Individual vector tiles MAY be deflate compressed.

There are two additional required metadata tables, gpkgext_tfd_layers and gpkgext_tfd_fields, that
mirror the vector_layers key from the JSON object from the metadata from MBTiles
[https://github.com/mapbox/mbtiles-spec/blob/master/1.3/spec.md#vector_layers]. This allows client software to
understand the feature schemas without having to open individual tiles.

gpkg_extensions

To use this extension, add the following rows to this table.

Table 5. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

gpkgext_tfd_layers NULL im_tiled_feature_d
ata

a reference to this
file

read-write

gpkgext_tfd_fields NULL im_tiled_feature_d
ata

a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

gpkg_contents

Like any other content type, add a row for each tile set, using a data_type of "tiled-features".

gpkg_spatial_ref_sys

Like any other content type, the Spatial Reference System (SRS) for the content to be stored must be
registered in this table. See clause 1.1.2 in the core GeoPackage standard. While any valid SRS may
be used, Web Mercator (EPSG:3857) maintains compatibility with MVT.

gpkgext_tfd_layers

The gpkgext_tfd_layers table describes the layers in a tiled feature data tile set. The columns in this
table are:

• id is a primary key

• table_name matches the entry in gpkg_contents

105

http://www.geopackage.org/guidance/getting-started.html#tiles
https://github.com/mapbox/mbtiles-spec/blob/master/1.3/spec.md#vector_layers

• name is the layer name

• description is an optional text description

• minzoom and maxzoom are the optional integer minimum and maximum zoom levels

• stylable_layer_set is the optional name to identify the intended styles and stylesheets for the
layer

• attributes_table_name is the optional name of an attributes table containing the attributes
(when not embedded in the vector tiles)

gpkgext_tfd_fields

The gpkgext_tfd_fields table describes the fields (attributes) for a tiled feature data layer. The
columns in this table are:

• id is a primary key

• layer_id is a foreign key to id in gpkgext_tvd_layers

• name is the field name

• type is either "String", "Number", or "Boolean"

NOTE This table is not to be used for layers with a non-null attributes_table_name.

A.2. GeoPackage Mapbox Vector Tiles Extension

A.2.1. Extension Title

Mapbox Vector Tiles

A.2.2. Introduction

The GeoPackage Mapbox Vector Tiles extension defines the rules and requirements for encoding
vector tiles in a GeoPackage data store as Mapbox Vector Tiles. This extension is based on the
Mapbox Vector Tiles (MVT) specification [https://www.mapbox.com/vector-tiles/specification/] version 2.1
[https://github.com/mapbox/vector-tile-spec/tree/master/2.1]. Note that this format uses Google Protocol
Buffers [https://github.com/google/protobuf] as the content encoding for each tile.

This extension, like all GeoPackage extensions, is intended to be transparent and to not interfere
with GeoPackage-compliant, but non-supporting, software packages.

A.2.3. Extension Author

Image Matters LLC, in collaboration with the participants of the OGC Vector Tiles Pilot.

A.2.4. Extension Name or Template

im_vector_tiles_mapbox (If this extension is adopted by OGC, then gpkg_mapbox_vector_tiles will be
named as an alias.)

106

https://www.mapbox.com/vector-tiles/specification/
https://github.com/mapbox/vector-tile-spec/tree/master/2.1
https://github.com/google/protobuf
https://github.com/google/protobuf

A.2.5. Extension Type

This extension defines an encoding for the Tiled Feature Data Extension.

A.2.6. Applicability

This extension defines a specific encoding for Vector Tiles in a GeoPackage.

A.2.7. Scope

read-write

A.2.8. Specification

If this extension is in use, then all of Tiled Feature Data Extension applies.

User Data Tables

Like other tile-based content, the physical data is stored in user-defined tiles tables
[http://www.geopackage.org/guidance/getting-started.html#user-data-tables]. The tile_data is a Google Protocol
Buffer as defined by MVT [https://github.com/mapbox/vector-tile-spec/blob/master/2.1/vector_tile.proto].

gpkg_extensions

To use this extension, add a row to this table for each tile pyramid user data table.

Table 6. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

tile pyramid user
data table name

tile_data im_vector_tiles_ma
pbox

a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

A.3. GeoPackage GeoJSON Vector Tiles Extension

A.3.1. Extension Title

GeoJSON Vector Tiles

A.3.2. Introduction

The GeoPackage Vector Tiles extension defines the rules and requirements for encoding vector tiles
in a GeoPackage data store using The GeoJSON Format [https://tools.ietf.org/html/rfc7946].

This extension, like all GeoPackage extensions, is intended to be transparent and to not interfere
with GeoPackage-compliant, but non-supporting, software packages.

107

http://www.geopackage.org/guidance/getting-started.html#user-data-tables
https://github.com/mapbox/vector-tile-spec/blob/master/2.1/vector_tile.proto
https://tools.ietf.org/html/rfc7946

A.3.3. Extension Author

Image Matters LLC, in collaboration with the participants of the OGC Vector Tiles Pilot.

A.3.4. Extension Name or Template

im_vector_tiles_geojson (If this extension is adopted by OGC, then gpkg_geojson_vector_tiles will
be named as an alias.)

A.3.5. Extension Type

This extension defines an encoding for the Tiled Feature Data Extension.

A.3.6. Applicability

This extension defines a specific encoding for Vector Tiles in a GeoPackage.

A.3.7. Scope

read-write

A.3.8. Specification

If this extension is in use, then all of [TiledVectorDataExtensionClause] applies.

User Data Tables

Like other tile-based content, the physical data is stored in a GeoJSON Feature Collection
[https://tools.ietf.org/html/rfc7946#section-3.3].

gpkg_extensions

To use this extension, add a row to this table for each tile pyramid user data table.

Table 7. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

tile pyramid user
data table name

tile_data im_vector_tiles_ge
ojson

a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

A.4. GeoPackage Styles Extension

WARNING This subsection is under discussion and may change radically.

108

https://tools.ietf.org/html/rfc7946#section-3.3

A.4.1. Extension Title

Styles

A.4.2. Introduction

This extension provides a mechanism for styles in a GeoPackage.

A.4.3. Extension Author

Image Matters LLC, in collaboration with the participants of the OGC Vector Tiles Pilot and the OWS
Context SWG.

A.4.4. Extension Name or Template

styles (will become gpkg_styles if adopted by OGC)

A.4.5. Extension Type

New requirement dependent on GeoPackage Core (Clause 1) [http://www.geopackage.org/spec/#core].

A.4.6. Applicability

This extension allows for stylesheets to be stored in a GeoPackage. How those stylesheets are used
is outside of the scope of this specification, but they could be incorporated into OWS Context (see
GeoPackage OWS Context Extension.

A.4.7. Scope

read-write

A.4.8. Specification

gpkg_extensions

To use this extension, add the following rows to this table as needed.

Table 8. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

gpkgext_stylesheet
s

null styles a reference to this
file

read-write

gpkgext_symbols null styles a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

109

http://www.geopackage.org/spec/#core

gpkgext_stylesheets

This table contains stylesheets, organized by style set and option. The columns of this table are:

• id is a primary key

• layer_set is text defining a layer set that is suitable for styling in a common way

• style is text describing a specific implementation for a layer set

• format is the format of the stylesheet (e.g., mbstyle or sld)

• stylesheet is the actual stylesheet BLOB

• title is a text title

• description is a text description

gpkgext_symbols

This table contains symbols, organized by style set and option. The columns of this table are:

• id is a primary key

• symbol_id is an string identifier such as a URI that can uniquely identify the symbol

• content_type is the media type (formerly MIME type, e.g., image/svg+xml or image/png) of the
symbol

• symbol is the actual symbol BLOB

• title is a text title

• description is a text description

NOTE
As with other GeoPackage tables, this specification takes no position on how either
of these tables are to be used by a client.

A.5. GeoPackage OWS Context Extension

WARNING This subsection is under discussion and may change radically.

A.5.1. Extension Title

OWS Context

A.5.2. Introduction

This extension provides a mechanism for storing OWS Context [http://owscontext.org] content in a
GeoPackage. It is aligned with the OWS Context Conceptual Model [https://portal.opengeospatial.org/files/

?artifact_id=55182].

A.5.3. Extension Author

Image Matters LLC, in collaboration with the participants of the OGC Vector Tiles Pilot and the OWS

110

http://owscontext.org
https://portal.opengeospatial.org/files/?artifact_id=55182

Context SWG.

A.5.4. Extension Name or Template

owscontext (will become gpkg_owscontext if adopted by OGC)

A.5.5. Extension Type

New requirement dependent on GeoPackage Core (Clause 1) [http://www.geopackage.org/spec/#core]. It is
optionally dependent on the Styles Extension.

A.5.6. Applicability

This extension adds an additional level of organization to existing GeoPackage data.

A.5.7. Scope

read-write

A.5.8. Specification

The following UML diagram illustrates the relationship between the four OWS Context tables.

Figure 93. OWS Context Model

gpkg_extensions

To use this extension, add the following rows to this table as needed.

Table 9. gpkg_extensions Table Rows

111

http://www.geopackage.org/spec/#core

table_name column_name extension_name definition scope

gpkgext_contexts null ows_context a reference to this
file

read-write

gpkgext_context_re
sources

null ows_context a reference to this
file

read-write

gpkgext_context_of
ferings

null ows_context a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

gpkgext_contexts

This table describes OWS Context instances. The columns of this table are:

• id is a primary key

• title, abstract, author, publisher, creator, rights, and keywords are text descriptions

• last_change is a timestamp in ISO 8601 format

• min_x, min_y, max_x, max_y, srs_id, min_time, and max_time are the spatio-temporal extents of the
context

• metadata_id is a foreign key to gpkg_metadata for use with the metadata extension
[http://www.geopackage.org/spec121/#extension_metadata].

gpkgext_context_resources

This table represents an owc:SQLResource, which could be a file, service, or inline content. The
columns of this table are:

• id is a primary key

• context_id is a foreign key to id from gpkgext_contexts

• title, abstract, author, publisher, rights, description, and keywords are text descriptions

• min_x, min_y, max_x, max_y, srs_id, min_time, and max_time are the spatio-temporal extents of the
context

• active is a boolean flag indicating the state of the resource within the context document

• min_scale_denominator and max_scale_denominator are the minimum and maximum display
scales

• order is the ascending order of the resource

• requestURL is the service request URL or file URL (. for the current file)

• code identifies the type of resource (e.g., GPKG or WMS)

gpkgext_context_offerings

This table contains owc:Offering instances which could be a service layer or table. The columns of

112

http://www.geopackage.org/spec121/#extension_metadata

this table are:

• id is a primary key

• resource_id is a foreign key to id from gpkg_context_resources

• stylesheet_id is a foreign key to id from gpkgext_stylesheets (see gpkgext_stylesheets)

• code is a code identifying the type of offering

• method is the name of the operation method request (e.g., GET)

• type is the media type of the return result

• layer_name is a single layer, table, or view name (for tiled feature data, put both the table name
and layer name, separated by /, for example "tiles_Daraa/AgricultureSrf")

• query is an actual SQL or HTTP query

• contents is the actual data (for inline data)

TIP TODO: Provide some example codes.

113

Appendix B: GeoPackage Extensions
Requirements (Normative)
This section describes the normative requirements for the GeoPackage extensions described in this
document. It is in the form of a draft specification that may ultimately be adopted by OGC.

B.1. GeoPackage Tiled Feature Data Extension

Requirements Class : Tiled Feature Data

http://www.opengis.net/spec/gpkg-tfd/1.0/tiled-feature-data

Target type Token

Dependency www.opengis.net/spec/gpkg/1.2.0/opt/tiles

WARNING
This extension does not define an encoding for vector tiles. To be usable, an
additional extension such as GeoPackage Mapbox Vector Tiles Extension or
GeoPackage GeoJSON Vector Tiles Extension must also be used.

B.1.1. gpkg_contents

Table Values

Requirement TFDE1
– Tiled Feature Data
Presence

/req/tiled_feature_data/presence

A GeoPackage with at least one row in gpkg_contents with a
data_type of "tiled-feature-data" SHALL comply with this
extension.

Requirement TFDE2
– gpkg_contents
Rows

/req/tiled_feature_data/gcr

Each row in gpkg_contents with a data_type of "tiled-feature-data"
SHALL be a tile set as described by this extension.

WARNING
A tile used in this extension MAY be deflate compressed [https://tools.ietf.org/html/

rfc1951]. For maximum interoperability, a client SHOULD inspect a tile,
determine whether it is compressed, and respond accordingly.

B.1.2. gpkg_extensions

Table Values

114

http://www.opengis.net/spec/gpkg-tfd/1.0/tiled-feature-data
https://tools.ietf.org/html/rfc1951

Requirement TFDE3
– gpkg_extensions
Rows

/req/tiled_feature_data/ger

A GeoPackage that complies with this extension SHALL contain
rows in the gpkg_extensions table for gpkgext_tfd_layers and
gpkgext_tfd_fields as described in gpkg_extensions Table Rows.

Requirement TFDE4
– gpkg_extensions
Encoding

/req/tiled_feature_data/ger-encoding

For each tile set of tiled feature data, there SHALL be one and only
one corresponding row in gpkg_extensions specifying an extension
describing the encoding for the tiles in the tile_data column of
the tile pyramid user data table.

B.1.3. gpkgext_tfd_layers

Table Definition

Requirement TFDE5
–
gpkgext_tfd_layers
Table

/req/tiled_feature_data/gpkgext_tfd_layers/table

A GeoPackage that complies with this extension SHALL contain a
gpkgext_tfd_layers table as per Tiled Feature Data Layers Table
Definition and [gpkgext_tfd_layers_sql].

Table 10. Tiled Feature Data Layers Table Definition

Column
Name

Colu
mn
Type

Column Description Null
Allo
wed

Key Uniq
ue

id INTE
GER

Autoincrement primary key no PK yes

table_name TEXT Name of the table user-defined tiles table containing
the tiled feature data

no FK yes
(see
[tfde4
])

name TEXT Layer Name no yes
(see
[tfde4
])

description TEXT Text description yes

minzoom INTE
GER

Minimum zoom level yes

maxzoom INTE
GER

Maximum zoom level yes

115

Column
Name

Colu
mn
Type

Column Description Null
Allo
wed

Key Uniq
ue

stylable_lay
er_set

TEXT name to identify the intended styles and stylesheets for
the layer

yes

attributes_t
able_name

TEXT name of an attributes table yes

Table Values

Requirement TFDE6
–
gpkgext_tfd_layers
table reference

/req/tiled_feature_data/gpkgext_tfd_layers/table_ref

For each row in gpkgext_tfd_layers, there SHALL be a table or
view of the name referenced in table_name and that table or view
SHALL have an entry in gpkg_contents.

Requirement TFDE7
– gpkgext_relations
Base Table

/req/tiled_feature_data/gpkgext_tfd_layers/uniqueness

The rows in gpkgext_tfd_layers SHALL have a jointly unique
table_name and name.

Requirement
TFDE10 – Attributes
Table

/req/tiled_feature_data/gpkgext_tfd_layers/attributes

Each non-null attributes_table_name value in gpkgext_tfd_layers
SHALL have a corresponding entry in gpkg_contents with a
data_type of "attributes".

NOTE
If a row of gpkgext_tfd_layers has a non-null attributes_table_name, it is expected
that the corresponding tiled feature data will not have attributes in its tiles and that
a client will retrieve select attributes from the attributes table.

B.1.4. gpkgext_tfd_fields

Table Definition

Requirement TFDE8
– gpkgext_tfd_fields
Table

/req/tiled_feature_data/gpkgext_tfd_fields/table

A GeoPackage that complies with this extension SHALL contain a
gpkgext_tfd_fields table as per Tiled Feature Data Fields Table
Definition and [gpkgext_tfd_fields_sql].

Table 11. Tiled Feature Data Fields Table Definition

116

Column
Name

Colu
mn
Type

Column Description Null
Allow
ed

Key

id INTEG
ER

Autoincrement primary key no PK

layer_id INTEG
ER

An id from gpkgext_tfd_layers no FK

name TEXT Field name no

type TEXT "String", "Number", or "Boolean" no

Table Values

Requirement TFDE9
– gpkgext_tfd_fields
table reference

/req/tiled_feature_data/gpkgext_tfd_fields/table_ref

For each row in gpkgext_tfd_fields, the layer_id SHALL have a
corresponding entry in gpkgext_tfd_layers.

B.2. GeoPackage Mapbox Vector Tiles Extension

Requirements Class : Mapbox Vector Tiles

http://www.opengis.net/spec/gpkg-vt/1.0/mapbox-vector-tiles

Target type Token

Dependency www.opengis.net/spec/gpkg/1.2.0/opt/tiles

Dependency http://www.opengis.net/spec/gpkg-tfd/1.0/tiled_feature_data

NOTE

At the time of writing, Mapbox Vector Tiles is not a standard. Because of this, this
extension is not a candidate for becoming an OGC standard. However, it is a
candidate for being a community extension [http://www.geopackage.org/extensions.html]
and an OGC Best Practice [http://www.opengeospatial.org/docs/bp].

B.2.1. gpkg_extensions

Table Values

Requirement
MVTE1 –
gpkg_extensions
Rows

/req/mvte/ger

A GeoPackage that contains a row in the gpkg_extensions table for
im_vector_tiles_mapbox or its alias as described in
gpkg_extensions Table Rows SHALL comply with the Mapbox
Vector Tiles Extension as described by this document.

117

http://www.opengis.net/spec/gpkg-vt/1.0/mapbox-vector-tiles
http://www.opengis.net/spec/gpkg-tfd/1.0/tiled_feature_data
http://www.geopackage.org/extensions.html
http://www.opengeospatial.org/docs/bp

B.2.2. User Defined Tiles Tables

Table Values

Requirement
MVTE2 – Tile
Format

/req/mvte/tile_format

For each tile set governed by this extension, tile_data column
values of the corresponding tile pyramid user data table SHALL
contain Mapbox Vector Tiles as per the Mapbox Vector Tiles (MVT)
specification [https://www.mapbox.com/vector-tiles/specification/] version
2.1 [https://github.com/mapbox/vector-tile-spec/tree/master/2.1].

B.3. GeoPackage GeoJSON Vector Tiles Extension

Requirements Class : GeoJSON Vector Tiles

http://www.opengis.net/spec/gpkg-tfd/1.0/geojson-vector-tiles

Target type Token

Dependency www.opengis.net/spec/gpkg/1.2.0/opt/tiles

Dependency http://www.opengis.net/spec/gpkg-tfd/1.0/tiled_feature_data

B.3.1. gpkg_extensions

Table Values

Requirement
GVTE1 –
gpkg_extensions
Rows

/req/gvte/ger

A GeoPackage that contains a row in the gpkg_extensions table for
im_vector_tiles_geojson or its alias as described in
gpkg_extensions Table Rows SHALL comply with the GeoJSON
Extension as described by this document.

B.3.2. User Defined Tiles Tables

Table Values

Requirement
GVTE2 – Tile
Format

/req/gvte/tile_format

For each tile set governed by this extension, tile_data column
values of the corresponding tile pyramid user data table SHALL
contain GeoJSON Feature Collections as per The GeoJSON Format
[https://tools.ietf.org/html/rfc7946].

118

https://www.mapbox.com/vector-tiles/specification/
https://www.mapbox.com/vector-tiles/specification/
https://github.com/mapbox/vector-tile-spec/tree/master/2.1
https://github.com/mapbox/vector-tile-spec/tree/master/2.1
http://www.opengis.net/spec/gpkg-tfd/1.0/geojson-vector-tiles
http://www.opengis.net/spec/gpkg-tfd/1.0/tiled_feature_data
https://tools.ietf.org/html/rfc7946

B.4. GeoPackage Styles Extension

B.4.1. gpkg_extensions

Table Values

Requirement SS1 –
gpkg_extensions
Rows

/req/gsse/ger

A GeoPackage that complies with this extension SHALL contain
rows in the gpkg_extensions table for gpkgext_stylesheets as
described in [styles_ger_table].

B.4.2. gpkgext_stylesheets

The gpkgext_stylesheets table implements owc:StyleSet.

Table Definition

Requirement SS2 –
gpkgext_stylesheets
Table

/req/gsse/gpkgext_stylesheets/table

A GeoPackage that complies with this extension SHALL contain a
gpkgext_stylesheets table as per Stylesheet Table Definition and
[gpkgext_stylesheets_sql].

Table 12. Stylesheet Table Definition

Column Name Column Type Column
Description

Null Allowed Key

id INTEGER Autoincrement
primary key

no PK

styles_set TEXT a string defining
the styles set

yes

style TEXT a enumeration
corresponding to
the styles_set
option

yes

format TEXT style format (e.g.,
"mbstyle" or "sld")

no

stylesheet BLOB the actual
stylesheet

no

title TEXT a title yes

description TEXT a description yes

119

Table Values

Requirement SSE3 –
gpkgext_stylesheets
Base Table

/req/gsse/gpkgext_stylesheets/uniqueness

The rows in gpkgext_stylesheets SHALL have a jointly unique
styles_set, style, and format for rows with a non-null styles_set
and style.

B.4.3. gpkgext_stylesheets

The gpkgext_stylesheets table implements owc:StyleSet.

Table Definition

Requirement SS4 –
gpkgext_stylesheets
Table

/req/gsse/gpkgext_stylesheets/table

A GeoPackage that complies with this extension SHALL contain a
gpkgext_stylesheets table as per Stylesheet Table Definition and
[gpkgext_stylesheets_sql].

Table 13. Symbols Table Definition

Column Name Column Type Column
Description

Null Allowed Key

id INTEGER Autoincrement
primary key

no PK

symbol_id TEXT a string defining
the styles set

no

content_type TEXT media type (e.g.,
"image/png" or
"image/svg")

no

symbol BLOB the actual symbol no

title TEXT a title yes

description TEXT a description yes

Table Values

Requirement SSE5 –
gpkgext_stylesheets
Base Table

/req/gsse/gpkgext_symbols/uniqueness

The rows in gpkgext_symbols SHALL have a jointly unique
symbol_id and content_type.

120

B.5. GeoPackage OWS Context Extension

B.5.1. gpkg_extensions

Table Values

Requirement
OWCE1 –
gpkg_extensions
Rows

/req/owce/ger

A GeoPackage that complies with this extension SHALL contain
rows in the gpkg_extensions table as described in
[owscontext_ger_table].

Requirement
OWCE2 – Stylesheet
Extension
Dependency

/req/owce/ger-stylesheet

A GeoPackage with at least one non-null stylesheet_id in
gpkgext_context_offerings SHALL comply with GeoPackage Styles
Extension.

Requirement
OWCE3 – Metadata
Extension
Dependency Rows

/req/owce/ger-metadata

A GeoPackage with at least one non-null metadata_id in
gpkgext_contexts SHALL comply with the GeoPackage Metadata
Extension [http://www.geopackage.org/spec/#extension_metadata].

B.5.2. gpkgext_contexts

Table Definition

Requirement
OWCE4 –
gpkgext_contexts
Table

/req/owce/gpkgext_contexts/table

A GeoPackage that complies with this extension SHALL contain a
gpkgext_contexts table as per OWS Context Table Definition and
[gpkgext_contexts_sql].

Table 14. OWS Context Table Definition

Column Name Column Type Column
Description

Null Allowed Default Key

id INTEGER Autoincrement
primary key

no PK

121

http://www.geopackage.org/spec/#extension_metadata
http://www.geopackage.org/spec/#extension_metadata

Column Name Column Type Column
Description

Null Allowed Default Key

title TEXT A human-
readable title
for the OWS
Context
document

no

abstract TEXT A human-
readable
description of
the OWS
Context
document
purpose and/or
content

yes ''

last_change DATETIME timestamp of
last change to
content, in ISO
8601 format

no strftime('%Y-
%m-
%dT%H:%M:%fZ',
'now')

min_x DOUBLE Bounding box
minimum
easting or
longitude for
the users of the
context
document

yes

min_y DOUBLE Bounding box
minimum
northing or
latitude for the
users of the
context
document

yes

max_x DOUBLE Bounding box
maximum
easting or
longitude for
the users of the
context
document

yes

max_y DOUBLE Bounding box
maximum
northing or
latitude for the
users of the
context
document

yes

122

Column Name Column Type Column
Description

Null Allowed Default Key

srs_id INTEGER Spatial
Reference
System ID:
gpkg_spatial_r
ef_sys.srs_id
for the
geographic
extents

yes FK

author TEXT Identifier for
the author of
the document

yes

publisher TEXT Identifier for
the publisher
of the
document

yes

creator TEXT The
tool/applicatio
n used to
create the
context
document and
its properties

yes

rights TEXT Rights which
apply to the
context
document

yes

keywords TEXT Comma-
delimited list of
keywords
related to this
context
document

yes

metadata_id INTEGER id from
gpkg_metadata

yes

min_time DATETIME Beginning of
time interval,
in ISO 8601
format

yes

max_time DATETIME End of time
interval, in ISO
8601 format

yes

Table Values

123

Requirement VTE5
– gpkgext_contexts
srs reference

/req/owce/gpkgext_contexts/srs_table_ref

For each row in gpkgext_contexts with a non-null srs_id, there
SHALL be a corresponding row in gpkg_spatial_ref_sys with an id
matching the srs_id.

Requirement VTE6
– gpkgext_contexts
metadata reference

/req/owce/gpkgext_contexts/srs_table_ref

For each row in gpkgext_contexts with a non-null metadata_id,
there SHALL be a corresponding row in gpkg_metadata with an id
matching the metadata_id.

NOTE

The rights described apply to the Context Document itself and not to any of its
contents. The intent of the temporal and spatial extents is to indicate to a
GeoPackage client the expected view of the information in area in time, not to
describe the referenced resources themselves.

B.5.3. gpkgext_context_resources

Table Definition

Requirement
OWCE7 –
gpkgext_context_re
sources Table

/req/owce/gpkgext_context_resources/table

A GeoPackage that complies with this extension SHALL contain a
gpkgext_context_resources table as per OWS Context Resources
Table Definition and [gpkgext_context_resources_sql].

Table 15. OWS Context Resources Table Definition

Column Name Column Type Column
Description

Null Allowed Default Key

id INTEGER Autoincrement
primary key

no PK

context_id INTEGER id from
gpkgext_contex
ts

no FK

title TEXT A human-
readable title
for the OWS
Context
resource

no

124

Column Name Column Type Column
Description

Null Allowed Default Key

abstract TEXT A human-
readable
description of
the OWS
Context
document
purpose and/or
content

yes ''

author TEXT Identifier for
the author of
the document

yes

publisher TEXT Identifier for
the publisher
of the
document

yes

rights TEXT Rights which
apply to the
context
document

yes

min_x DOUBLE Bounding box
minimum
easting or
longitude for
the users of the
context
document

yes

min_y DOUBLE Bounding box
minimum
northing or
latitude for the
users of the
context
document

yes

max_x DOUBLE Bounding box
maximum
easting or
longitude for
the users of the
context
document

yes

max_y DOUBLE Bounding box
maximum
northing or
latitude for the
users of the
context
document

yes

125

Column Name Column Type Column
Description

Null Allowed Default Key

srs_id INTEGER Spatial
Reference
System ID:
gpkg_spatial_r
ef_sys.srs_id
for the
geographic
extents

yes FK

min_time DATETIME Beginning of
time interval,
in ISO 8601
format

yes

max_time DATETIME End of time
interval, in ISO
8601 format

yes

description TEXT A reference to
a description of
the Context
resource in
alternative
format

yes

active BOOLEAN This flag
indicates the
state of the
resource
within the
context
document. It
can be
interpreted by
the caller as
required (this
may be defined
in a profile or
in the specific
service
extensions)

yes TRUE

keywords TEXT Comma-
delimited list of
keywords
related to this
context
document

yes

min_scale_deno
minator

DOUBLE Minimum scale
for the display
of the layer

yes

126

Column Name Column Type Column
Description

Null Allowed Default Key

max_scale_deno
minator

DOUBLE Maximum
scale for the
display of the
layer

yes

order DOUBLE The ascending
order of the
resource

yes

requestURL TEXT Service
Request URL or
file URL

yes

code TEXT Code
identifying the
type of
resource

no

Table Values

Requirement
OWCE8 –
gpkgext_context_re
sources context
table reference

/req/owce/gpkgext_context_resources/contexts_table_ref

For each row in gpkgext_context_resources with a non-null
context_id, there SHALL be a corresponding row in
gpkgext_contexts with an id matching the context_id.

Requirement
OWCE9 –
gpkgext_context_re
sources srs
reference

/req/owce/gpkgext_context_resources/srs_table_ref

For each row in gpkgext_context_resources with a non-null srs_id,
there SHALL be a corresponding row in gpkg_spatial_ref_sys with
an id matching the srs_id.

B.5.4. gpkgext_context_offerings

Table Definition

Requirement
OWCE10 –
gpkgext_context_off
erings Table

/req/owce/gpkgext_context_offerings/table

A GeoPackage that complies with this extension SHALL contain a
gpkgext_context_offerings table as per OWS Context Offerings
Table Definition and [gpkgext_context_offerings_sql].

Table 16. OWS Context Offerings Table Definition

127

Column Name Column Type Column
Description

Null Allowed Default Key

id INTEGER Autoincrement
primary key

no PK

resource_id INTEGER id from
gpkgext_contex
t_resources

yes FK

code TEXT Code
identifying the
type of offering

no

stylesheet_id INTEGER id from
gpkgext_styles
heets

yes FK

method TEXT Name of
operation
method
request

no

type TEXT Media type
(formerly
known as
MIME-Type) of
the return
result

no

layer_name TEXT A single layer,
table, or view
name

yes

query TEXT The actual SQL
or HTTP query

yes

contents BLOB Actual data (for
inline data)

yes

Table Values

Requirement
OWCE11 –
gpkgext_context_off
erings resources
table reference

/req/owce/gpkgext_context_offerings/resources_table_ref

For each row in gpkgext_context_offerings with a non-null
resource_id, there SHALL be a corresponding row in
gpkgext_context_resources with an id matching the resource_id.

Requirement
OWCE12 –
gpkgext_context_off
erings stylesheets
table reference

/req/owce/gpkgext_context_offerings/stylesheets_table_ref

For each row in gpkgext_context_offerings with a non-null
stylesheet_id, there SHALL be a corresponding row in
gpkgext_stylesheets with an id matching the stylesheet_id.

128

Appendix C: The OpenAPI Styles API

C.1. Overview
This chapter describes API building blocks for managing and fetching styles via a Web API.

The design is based on the architecture of the draft WFS 3.0 Core standard and uses OpenAPI to
specify the building blocks.

The resources of the API are specified in the Conceptual Model.

The general intent is that style sheets may be applied to every feature representation, including
features partitioned in tiles, i.e., if the style sheet language supports it, a style may be applied to the
features or the feature tiles. In the VTPExt, the style sheets have only been used to style feature
tiles.

A style may be represented in multiple representations. The same style, e.g., "topographic", may be
provided in multiple styling languages, for example, Mapbox Style and SLD/SE. In the terminology
of the conceptual model, each representation is a style sheet of that style. The usual mechanisms
apply to select the desired style sheet from the server using the media type of the style sheets.

Currently, the Styles API does not support multiple stylable layer sets. There is currently one
(implicit) layer set which consists of all collections in the dataset. Of course, one can still define
styles that include styling rules for just a subset of all layers in the dataset.

The approach taken is consistent with the architecture for feature resources in WFS 3.0 (i.e.
/collection/{collectionId}/items or /items and sub-resources) and for tile resources (i.e.
/collection/{collectionId}/tiles or /tiles and sub-resources).

The fundamental facts implemented are:

• A dataset has 1..n collections/layers.

• A dataset has 0..n styles.

• Each style is applicable to 1..n collections/layers of the dataset.

• A style is represented by 1..n style sheets.

Table 2 provides an overview of the resources for which this extension defines requirements:

Table 17. Overview of resources, applicable HTTP methods and links to the document sections

Resource Path HTTP
method

Comment

Landing page / GET Updated to add link to the style
set

Conformance classes /conformance GET Updated to add conformance
declaration for the Styles API

129

Resource Path HTTP
method

Comment

Feature collection metadata /collections/{collecti
onId}

GET Updated to add links to the
styles applicable for the
features in the collection

Style set /styles GET,
POST

Fetch the style set or create
new styles

Style /styles/{styleId} GET,
PUT,
DELETE

Fetch a style sheet for a style or
create/update/delete a style

There are open issues that require future work. They are discussed in the last section of this
chapter.

C.2. API definition

C.2.1. Encoding

In the VTPExt, only a JSON representation of the resources was considered, with the exception of
style sheets which use SLD, an XML encoding.

The description of the implementation by interactive instruments includes a discussion on how to
use the style resources in the HTML representation. However, no formal requirements for an
HTML representation were discussed during the VTPExt.

C.2.2. Landing page

Path: /

Supported methods: GET

Requirement 1 /req/styles/landing-page

The landing page of the dataset SHALL include a link to the style
set resource with rel=styles.

130

Example 1. Link to style set in the landing page response document

...
{
 "rel": "styles",
 "type": "application/json",
 "title": "the set of available styles",
 "href": "https://services.interactive-instruments.de/vtp/daraa/styles?f=json"
}
...

C.2.3. Style set

Path: /styles

Methods: GET, POST

Describe the styles that are available.

Requirement 2 /req/styles/styles-get

The server SHALL support the HTTP GET method at the path
/styles.

Requirement 3 /req/styles/styles-response

A successful execution of the GET method SHALL be reported as a
response with a HTTP status code 200.

The content of that response SHALL be based upon the OpenAPI
3.0 schema styleset.yaml.

styleset.yaml: Schema for style set

 type: object
 required:
 - styles
 properties:
 styles:
 type: array
 items:
 $ref: style.yaml
 default:
 type: string

131

style.yaml: Schema for a style description

 type: object
 required:
 - id
 - links
 properties:
 id:
 type: string
 description:
 type: string
 links:
 type: array
 items:
 $ref: link.yaml

NOTE
The schema uses id as the member name. In other places of the API, identifier has
been used. Moving forward, one of the two should be used consistently throughout
the API.

Requirement 4 /req/styles/styles-ids

Each style in the style set SHALL have a unique id.

Requirement 5 /req/styles/styles-links

Each style in the style set SHALL have a link to each style sheet
available for that style with rel=style.

Requirement 6 /req/styles/styles-default

If a value for default is provided, it SHALL be the id of a style in
the style set.

132

Example 2. Style set response document with three styles, only available as Mapbox Style style sheets

{
 "styles": [
 { "id": "topographic",
 "links": [
 {
 "rel": "style",
 "type": "application/json",
 "href": "https://services.interactive-
instruments.de/vtp/daraa/collections/argiculturesrf/styles/topographic?f=json"
 }
]
 },
 { "id": "satellite-overlay",
 "links": [
 {
 "rel": "style",
 "type": "application/json",
 "href": "https://services.interactive-
instruments.de/vtp/daraa/collections/argiculturesrf/styles/satellite-
overlay?f=json"
 }
]
 },
 { "id": "night",
 "links": [
 {
 "rel": "style",
 "type": "application/json",
 "href": "https://services.interactive-
instruments.de/vtp/daraa/collections/argiculturesrf/styles/night?f=json"
 }
]
 }
],
 "default": "topographic"
}

There are currently no registered media types for SLD or Mapbox style documents. Therefore, the
example uses the generic XML and JSON media types. This is sufficient for VTPExt, but it would no
longer work once another style language that uses XML or JSON needs to be supported, too.

NOTE

Some SLD implementations use media types like application/vnd.ogc.sld+xml.
However, the media type has not been registered in the IANA register nor is it
specified in the standards "Styled Layer Descriptor profile of the Web Map Service"
or "Symbology Encoding".

133

Requirement 7 /req/styles/styles-post

The server SHALL support the HTTP POST method at the path
/styles.

Requirement 8 /req/styles/styles-new-style

A successful execution of the POST method where the content of
the request is a style sheet of a supported media type SHALL
result in the creation of a new style resource and be reported as a
response with a HTTP status code 201 with a link to the new style
resource.

Recommendation 1 /rec/styles/styles-new-style-name

The server SHOULD inspect the style sheet in order to assign a
meaningful identifier.

Requirement 9 /req/styles/styles-new-default

A successful execution of the POST method where the content of
the request is a object with a member default SHALL change the
default style to the value of the member, if it is a valid style id.
The result SHALL be reported as a response with a HTTP status
code 204.

C.2.4. Style

Path: /styles/{styleId}

Methods: GET, PUT, DELETE

Get a style sheet of a style. Update or delete a style.

GET will return the style, if a media type is available, that is acceptable to the client as expressed by
the Accept header or the URI - using a f parameter or a file extension).

DELETE will delete the style.

PUT will update the style. Or if the style does not yet exist, the style will be created.

Requirement 10 /req/styles/style-get

The server SHALL support the HTTP GET method at the path
/styles/{styleId}, if styleId is a style in the style set.

134

Requirement 11 /req/styles/style-get-response

A successful execution of the GET method SHALL be reported as a
response with a HTTP status code 200.

The content of that response SHALL be a style sheet in a
requested media type.

Requirement 12 /req/styles/style-delete

The server SHALL support the HTTP DELETE method at the path
/styles/{styleId}, if styleId is a style in the style set.

Requirement 13 /req/styles/style-delete-response

A successful execution of the DELETE method SHALL be reported
as a response with a HTTP status code 204.

Requirement 14 /req/styles/style-put

The server SHALL support the HTTP PUT method at the path
/styles/{styleId}.

Requirement 15 /req/styles/style-put-response-existing

If styleId is an existing style in the style set and the content of the
request is a style sheet of a supported media type, the previous
style definition SHALL be replaced and the successful execution
of the PUT method SHALL be reported as a response with a HTTP
status code 204.

Requirement 16 /req/styles/style-put-response-new

If styleId is not an existing style in the style set and the content of
the request is a style sheet of a supported media type, the result
SHALL be the creation of a new style resource and be reported as
a response with a HTTP status code 201 with a link to the new
style resource.

C.2.5. Collection metadata

Path: /collections/{collectionId}

Supported methods: GET

135

Add links to the styles that are applicable for the features of each collection.

Recommendation 2 /rec/styles/collection

The collection object SHOULD include a link with rel=style to
each style sheet that includes styling rules for features in the
collection.

For style sheets in languages that explicitly identify the data that is styled, like Mapbox Style, this
information is redundant and can be derived from the style definition. For other style sheets it can
be essential to enable clients to determine how to apply style sheets to the feature data.

Example 3. Links to 'topographic' and 'night' styles in Mapbox and SLD format

...
{
 "rel": "style",
 "type": "application/json",
 "title": "topographic (Mapbox)",
 "href": "https://services.interactive-
instruments.de/vtp/daraa/styles/topographic?f=json"
},
{
 "rel": "style",
 "type": "application/xml",
 "title": "topographic (SLD)",
 "href": "https://services.interactive-
instruments.de/vtp/daraa/styles/topographic?f=sld"
},
{
 "rel": "style",
 "type": "application/json",
 "title": "night (Mapbox)",
 "href": "https://services.interactive-
instruments.de/vtp/daraa/styles/night?f=json"
},
{
 "rel": "style",
 "type": "application/xml",
 "title": "night (SLD)",
 "href": "https://services.interactive-
instruments.de/vtp/daraa/styles/night?f=sld"
}
...

In the future, the POST method could be supported, too, to add or remove links for each collection.

136

C.2.6. Conformance declaration

Path: /conformance

Supported methods: GET

NOTE
This is a placeholder. Eventually a URI for the conformance class needs to be
specified and servers declaring conformance to the Styles API would include the
URI in the conformsTo array.

C.3. Open issues and future work
The Styles API was implemented and tested during VTPExt. However, a number of open issues and
future work items have been identified that need more investigation, discussion and testing.

A key issue is the differences between the concepts that are implemented in the different styling
languages and tiled feature data encodings. These differences have an impact on API
implementations that have not yet been fully analyzed.

Examples are:

• The Feature Tiles API design supports both fetching tiles with a single layer
(/collection/{collectionId}/tiles) as well as tiles with multiple layers (/tiles). While a
Mapbox Vector Tile (MVT) can contain multiple layers, a GeoJSON document contains features
from a single feature collection. The /tiles path, therefore, only returns MVT, but not GeoJSON.

• A Mapbox style document specifies a single style for multiple layers. This is different in SLD
(and the WM(T)S interfaces), where styles are layer-specific.

• How many styles can be expressed in a style sheet? One in Mapbox Style, multiple in SLD.

• Are styling rules explicitly bound to a data source / layer? Yes in Mapbox Style, no in SLD.

This has three consequences:

1. In practice, dependencies exist between the representations used for a style sheet and the
feature or feature tile encoding. Not every combination will work. The conceptual model is
therefore essentially including a good understanding of how the different mapping languages
and feature (tile) encodings implement, profile, and extend that model.

2. There will be limitations for converting the original style sheet of a style that has been used to
create or update the style to the server to another styling language. Due to the different
concepts, conversions will in general not be lossless, not be bi-directional and sometimes not be
feasible at all. One approach to address this could be to allow or require that style producers
PUT the different style sheets for a style separately, one PUT request for each styling language.

3. In VTPExt, Mapbox Style has been the primary styling language. This is reflected in the API
design, which is closer to the Mapbox model than the SLD model. A geospatial engineer can
convert a Mapbox style to an SLD by using a single feature type style with the same name for
each layer. This puts constraints on the SLD that could be used in VTPExt.

There are some other specific topics that are related to this and that need further investigation in

137

order to improve the API and verify that the Styles API design is sound, but still straightforward to
implement and use:

• Authoring styling rules for a collection (layer) requires knowledge about the properties that are
available so that the styling rules can select the relevant features for which a particular styling
rule applies. Currently, no mechanism exists in the WFS 3.0 Core architecture to determine the
queryable properties for a collection. Such a mechanism is required and should provide
property information for both feature access in the items path and for tiled feature data access
in the tiles path. In OGC Testbed-14, a proposal was made to support an additional resource to
list the queryable properties of a collection. This would not only support authoring feature
queries, which was the background for the proposal in Testbed-14, but also the authoring of
styles. The Complex Feature Handling Engineering Report (18-021) states in section 7.3.3:

"In order to support clients to construct queries, the feature properties that
may be queried should be enumerated for each feature type. This could be
included in the feature collection metadata or, which is probably
preferable, it could be made available in an additional resource listing all
queryable properties. For example at
/collections/{collectionId}/queryables. The result could be a JSON object
with a member for each property of the feature. The value of the member
could be used to identify the data type. If the property value is a related
object in the dataset, the queryables resource of that collection could be
referenced. For nested objects, the compound attribute values could be
used explicitly."

Note that this is separate from providing a complete schema for features. A schema provides a
complete syntactic definition of a feature encoding in a representation like XML or JSON,
typically for validation purposes. Schema languages will be much richer and will support more
complex syntactic rules, but are also more complex to parse.

• Names of feature types / collections and of properties may differ between feature
representations (for example, names in an XML/GML representation include a namespace, in
GeoJSON or MVT this is not the case). That is, an SLD/SE representation may include
namespaces in the references to feature types an properties since it typically is based on the
GML application schema for the data, but when applying it to GeoJSON, a geospatial engineer
would have to ignore the namespaces.

• Different representations may have different names for other reasons, too. For example, one
participant may use different property names in GeoJSON than in GML or the property name in
a Shapefile may be different because of length restrictions, etc.

• In general, style representations differ in their capabilities, in particular for styling rules, so the
result of applying SLD/SE or Mapbox style sheets to a feature will result in different results in
non-trivial cases.

• Both Mapbox Style and SLD/SE reference external resources (sprites, glyphs, symbols), but each
is used in different ways in the styling languages. As these resources are essential parts of a
style, they should probably be resources in the API, too.

138

• Mapbox Style is more a "Map Definition API" than just a styling language as it includes other
information such as which background map to use.

• Validation of content that is POSTed or PUT to the server has not been considered yet, but would
be important to avoid interoperability issues, especially if clients use style sheets provided by a
server.

• Security and access control aspects have not been considered in VTPExt, but in general, server
administrators will want to restrict who can manage styles; so at least the POST/PUT/DELETE
operations will often be secured. This was not relevant in the pilot, but in general it will be.

• Additional style metadata was out-of-scope for VTPExt, but in practice it will be important to be
able to manage additional metadata for the styles, so that users can have better information to
find and select styles for their intended use. One option could be another resource
/styles/{styleId}/metadata that could be created using POST to /styles/{styleId} with a
metadata object or be managed using GET/PUT/DELETE directly.

• Currently, the Styles API is written so that each dataset has its own style set. This was sufficient
for VTPExt, but in general the same style sheet is applicable to multiple datasets (at least for all
datasets using a common application schema). This raises the question of whether the Styles API
should be decoupled from the API for publishing datasets.

• The lack of registered media type registrations for all styling languages has already been
discussed earlier in the chapter. In VTPExt, application/json has been used as the media type of
the Mapbox style documents. More appropriate would be something like
application/vnd.mapbox-style that OGC or Mapbox should register with IANA, if it would be
used beyond the pilot. A similar registration would be needed for SLD/SE.

139

Appendix D: WMTS 1.0 Styles API Profile
Specification

NOTE
This has been submitted as OGC change request #566 [http://ogc.standardstracker.org/

show_request.cgi?id=566].

D.1. Introduction
This WMTS 1.0 profile defines a set of RESTful endpoints that provide a client with the ability to
GET, PUT, and DELETE style definitions, and a KVP GetStyle operation.

D.2. Declaration Of Profile
A WMTS server that provides these RESTful endpoints and/or KVP operations must declare the
profile URI [TBD] in its capabilities document.

D.3. Style URL Templates (RESTful)
The RESTful endpoints that provide a client with the ability to GET, PUT, and DELETE style
definitions are declared on a per-layer basis through URL templates with a resourceType of "style".
These templates must contain exactly one template variable: {style}. The following is an example:

Example 4. Style URL Template

<ResourceURL format="application/vnd.ogc.sld+xml" resourceType="style"
 template="https://example.com/wmts/1.0.0/layers/MyLayer/{style}.sld"/>

A layer should declare a style URL template for each style encoding (format) that it supports, and
must not declare any style URL templates if it is unable to provide or accept style definitions for the
layer.

If an endpoint is accessed with an HTTP method that it doesn’t support, the server must return an
HTTP 405 "Method Not Allowed" exception. If the user simply doesn’t have the proper authorization
to access the endpoint with that method, the server may instead return an HTTP 401
"Unauthorized" exception with the appropriate WWW-Authenticate header.

The following HTTP methods are defined for these endpoints:

D.3.1. GET

Returns the definition of the style with the identifier specified by {style} in the encoding declared
by the URL template. If the encoding is SLD, an optional sld_version parameter may be used to
indicate the desired SLD version. If this parameter is not present, or if the WMTS server does not
support the parameter, or if the WMTS server does not support the desired SLD version, then the

140

http://ogc.standardstracker.org/show_request.cgi?id=566

server should return SLD version 1.1.0.

If the encoding is SLD, the returned SLD must contain exactly one NamedLayer element, which
must have the same identifier as the layer that declared the URL template. That NamedLayer
element must contain exactly one UserStyle element, which must represent the requested style.

D.3.2. PUT

Sets the definition of the style with the identifier specified by {style} in the encoding declared by
the URL template. If the layer already has a style with that identifier, then the style’s definition is
replaced with the newly-supplied one. Otherwise, a style with that identifier is created for the layer.

If the value of an HTTP Content-Type request header is not equivalent to the encoding (format)
declared by the URL template, the server must either throw an HTTP 415 (Unsupported Media
Type) exception or accept it anyways (if it supports that content type).

If the encoding is SLD, the request body must be an SLD containing exactly one NamedLayer
element which must have the same identifier as the layer that declared the URL template. That
NamedLayer element must contain exactly one UserStyle element. NamedStyle elements are not
supported because they do not provide style definitions. The style must refer to valid feature sets
and feature-set properties. If any of these requirements are violated, the server should throw an
HTTP 400 (Bad Request) exception. The mechanism for determining the available pool of feature
sets and their schemas is currently beyond the scope of the WMTS interface. However, the
Limitations And Future Work section below explores two possible approaches.

It may be the case that a server has particular requirements for syntax or structure of its style
identifiers. For example, there may be a restriction on the number of characters, or certain
characters may be illegal. The server should return an HTTP 400 (Bad Request) exception if an
attempt is made to create a style with an invalid identifier. In such a situation, the response body
should contain an explanation of why the identifier is invalid.

On success, an HTTP 200 (OK) or HTTP 204 (No Content) status code should be returned.

D.3.3. DELETE

Deletes the style with the identifier specified by {style}. On success, an HTTP 200 (OK) or HTTP 204
(No Content) status code should be returned. If no such style existed, the server may instead choose
to return a 404 (Not Found) status code.

The WMTS specification requires all layers to have at least one style. This profile does not dictate
the behavior when an attempt is made to delete the last style of a layer. Two possibilities are: a) the
request is rejected with an HTTP 400 (Bad Request) exception, or b) the layer ceases to be exposed
through the WMTS interface.

D.3.4. OPTIONS

Requests which HTTP methods are available for the endpoint. As per standard HTTP practice, the
response must include an "Allow" header whose value is a comma-separated list of allows HTTP
methods for the endpoint.

141

Example 5. An "Allow" Response Header

Allow: GET,PUT,DELETE,HEAD,OPTIONS

A client may use this method to determine which HTTP methods are available for an endpoint.
Alternatively, it is acceptable for the client to try the request and accept the possibility of an HTTP
405 "Method Not Allowed" response.

D.4. GetStyle Operation (KVP)
In addition to the above RESTful endpoints, this profile defines the following KVP operation.

operation name: GetStyle

parameters:

• layer (required)

• style (required)

• format (optional; defaults to "application/vnd.ogc.sld+xml")

• sld_version (optional; relevant only if format is an SLD format; defaults to "1.1.0")

This operation returns the definition of the specified style of the specified layer in the specified
encoding (format).

If the WMTS server supports this operation, it must be declared in the OperationsMetadata section
of the capabilities document.

If an SLD encoding is requested, the optional sld_version parameter may be used to indicate the
desired SLD version. If this parameter is not present, or if the WMTS server does not support the
parameter, or if the WMTS server does not support the desired SLD version, then the server should
return SLD version 1.1.0.

If an SLD encoding is requested, the returned SLD must contain exactly one NamedLayer element,
which must have the same identifier as the layer that declared the URL template. That NamedLayer
element must contain exactly one UserStyle element, which must represent the requested style.

Vendor-specific extensions to this operation (such as making the style parameter optional to allow
the client to request an SLD representing all of the styles of a layer) are allowed.

This profile does not define a PutStyle or DeleteStyle operation, since such operations cannot
adequately be implemented as traditional KVP requests.

D.5. Security Considerations
The HTTP PUT and DELETE methods should be privileged methods that only certain users are
granted the ability to invoke. It may also be the case that the ability to invoke these methods varies

142

from layer to layer, or even from encoding to encoding. That is, a user may have the authorization
to define and adjust the styles for some layers but not others. The means to define such access-
control rules is server-specific and beyond the scope of the WMTS specification.

D.6. Limitations And Future Work
In order to create new styles or to modify existing styles, it is often necessary for the client to know
what feature sets are available and what their schemas are. A client can determine some of this
information by examining existing styles. However, there does not yet exist a mechanism for
determining the full set of available feature sets and their schemas.

A few possible approaches were explored during the OGC VT-Pilot Extension project, but none of
them thoroughly enough to provide a basis for a formal proposal. Two promising approaches are:

1. Make use of the GetAssociations operation proposed by the Web Integration Service
Engineering Report [https://portal.opengeospatial.org/files/?artifact_id=71525&version=1] in OGC Testbed
12. This provides a bridge between a WMTS service and one or more companion WFS and/or
WCS services, allowing the client to query the WFS service(s) for the list of available feature sets
and their schemas. It also provides other advantages such as alleviating the need to define a
transactional WMTS service, since any manipulation of the feature set(s) rendered by a WMTS
layer could be performed through the appropriate WFS or WCS service.

2. Define a new WMTS endpoint that returns a list of the feature sets that are available (regardless
of whether or not they’re actually rendered by any of the existing styles of any of the currently-
defined layers), and provide an endpoint for each of those feature sets that returns that feature
set’s schema. This is a more direct approach, but adds redundancy between the WMTS and the
WFS that could be avoided by making better use of the associations between services.

143

https://portal.opengeospatial.org/files/?artifact_id=71525&version=1
https://portal.opengeospatial.org/files/?artifact_id=71525&version=1

Appendix E: Revision History
Table 18. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

December 22,
2018

J. Yutzler .1 all Preliminary ER

February 15,
2019

J. Yutzler .1 all Draft Final ER

March 15, 2019 J. St-Louis .1 appendixes Added
GeoPackage
prefix to section
titles of
GeoPackage
extensions

144

Appendix F: Bibliography
1. Meek, S.: OGC Vector Tiles Pilot: Summary Engineering Report. OGC 18-086,Open Geospatial

Consortium, https://docs.opengeospatial.org/per/18-086r1.html (2019).

2. Ingensand, J., Maia, K.: OGC Vector Tiles Pilot: Tiled Feature Data Conceptual Model Engineering
Report. OGC 18-076,Open Geospatial Consortium, https://docs.opengeospatial.org/per/18-
076.html (2019).

3. Bocher, E., Ertz, O.: OGC Symbology Conceptual Model: Core part. OGC 18-067,Open Geospatial
Consortium, https://portal.opengeospatial.org/files/80686 (2018).

4. Vretanos, P.A.: OGC Vector Tiles Pilot: WFS 3.0 Vector Tiles Extension Engineering Report. OGC
18-078,Open Geospatial Consortium, https://docs.opengeospatial.org/per/18-078.html (2019).

5. Vretanos, P.A.: OGC Vector Tiles Pilot: WMTS Vector Tiles Extension Engineering Report. OGC 18-
083,Open Geospatial Consortium, https://docs.opengeospatial.org/per/18-083.html (2019).

6. Yutzler, J.: Vector Tiles Pilot Extension Engineering Report. OGC 18-101,Open Geospatial
Consortium, https://portal.opengeospatial.org/files/?artifact_id=79181&version=1 (2019).

145

https://docs.opengeospatial.org/per/18-086r1.html
https://docs.opengeospatial.org/per/18-076.html
https://docs.opengeospatial.org/per/18-076.html
https://portal.opengeospatial.org/files/80686
https://docs.opengeospatial.org/per/18-078.html
https://docs.opengeospatial.org/per/18-083.html
https://portal.opengeospatial.org/files/?artifact_id=79181&version=1

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements & Research Motivation
	1.2. Findings and Challenges encountered
	1.3. Prior-After Comparison
	1.4. Recommendations for Future Work
	1.5. Document contributor contact points
	1.6. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. Concept of Operations
	5.1. Data Preparation
	5.2. Web Services / Web APIs
	5.3. GeoPackage Provisioning
	5.4. Integrated Clients

	Chapter 6. Meeting the Challenge
	6.1. Pilot Architecture
	6.2. Conceptual Model
	6.2.1. Conceptual Model Challenges
	6.2.2. SLD Model Versus Mapbox Styles Model

	6.3. Technology Integration Experiments

	Chapter 7. Implementation Approaches
	7.1. Data Preparation
	7.1.1. Producing Tiled Feature Data
	7.1.2. Producing Stylesheets

	7.2. Web Service Implementations
	7.2.1. Web Feature Service
	7.2.2. Web Map Tile Service (Mapping 1)
	7.2.3. Web Map Tile Service (Mapping 2)

	7.3. GeoPackage Provisioning
	7.3.1. Producing GeoPackages
	7.3.2. Supporting Attributes in GeoPackage
	7.3.3. Supporting Style Sheets in GeoPackage
	7.3.4. Deploying GeoPackages

	7.4. Integrated Clients
	7.4.1. Binding to a WMTS, WFS and/or GeoPackage
	7.4.2. Requesting Tiled Feature Data from a WMTS
	7.4.3. Requesting Tiled Feature Data from a WFS
	7.4.4. Modifying Style Sheets
	7.4.5. Displaying Tiled Feature Data
	7.4.6. Querying Tiled Feature Data

	Chapter 8. Discussion
	8.1. Differences between WMTS and Mapbox Layers
	8.2. Differences Between SLD and Mapbox Styles
	8.3. Using Offerings to Correlate Tiled Feature Data Layers to Style Sheets
	8.3.1. Analysis

	8.4. Using OWS Contexts to Describe Map Views
	8.4.1. Analysis

	Appendix A: GeoPackage Tiled Feature Data Extensions (Informative)
	A.1. Tiled Feature Data Extension
	A.1.1. Extension Title
	A.1.2. Introduction
	A.1.3. Extension Author
	A.1.4. Extension Name or Template
	A.1.5. Extension Type
	A.1.6. Applicability
	A.1.7. Scope
	A.1.8. Specification

	A.2. GeoPackage Mapbox Vector Tiles Extension
	A.2.1. Extension Title
	A.2.2. Introduction
	A.2.3. Extension Author
	A.2.4. Extension Name or Template
	A.2.5. Extension Type
	A.2.6. Applicability
	A.2.7. Scope
	A.2.8. Specification

	A.3. GeoPackage GeoJSON Vector Tiles Extension
	A.3.1. Extension Title
	A.3.2. Introduction
	A.3.3. Extension Author
	A.3.4. Extension Name or Template
	A.3.5. Extension Type
	A.3.6. Applicability
	A.3.7. Scope
	A.3.8. Specification

	A.4. GeoPackage Styles Extension
	A.4.1. Extension Title
	A.4.2. Introduction
	A.4.3. Extension Author
	A.4.4. Extension Name or Template
	A.4.5. Extension Type
	A.4.6. Applicability
	A.4.7. Scope
	A.4.8. Specification

	A.5. GeoPackage OWS Context Extension
	A.5.1. Extension Title
	A.5.2. Introduction
	A.5.3. Extension Author
	A.5.4. Extension Name or Template
	A.5.5. Extension Type
	A.5.6. Applicability
	A.5.7. Scope
	A.5.8. Specification

	Appendix B: GeoPackage Extensions Requirements (Normative)
	B.1. GeoPackage Tiled Feature Data Extension
	B.1.1. gpkg_contents
	B.1.2. gpkg_extensions
	B.1.3. gpkgext_tfd_layers
	B.1.4. gpkgext_tfd_fields

	B.2. GeoPackage Mapbox Vector Tiles Extension
	B.2.1. gpkg_extensions
	B.2.2. User Defined Tiles Tables

	B.3. GeoPackage GeoJSON Vector Tiles Extension
	B.3.1. gpkg_extensions
	B.3.2. User Defined Tiles Tables

	B.4. GeoPackage Styles Extension
	B.4.1. gpkg_extensions
	B.4.2. gpkgext_stylesheets
	B.4.3. gpkgext_stylesheets

	B.5. GeoPackage OWS Context Extension
	B.5.1. gpkg_extensions
	B.5.2. gpkgext_contexts
	B.5.3. gpkgext_context_resources
	B.5.4. gpkgext_context_offerings

	Appendix C: The OpenAPI Styles API
	C.1. Overview
	C.2. API definition
	C.2.1. Encoding
	C.2.2. Landing page
	C.2.3. Style set
	C.2.4. Style
	C.2.5. Collection metadata
	C.2.6. Conformance declaration

	C.3. Open issues and future work

	Appendix D: WMTS 1.0 Styles API Profile Specification
	D.1. Introduction
	D.2. Declaration Of Profile
	D.3. Style URL Templates (RESTful)
	D.3.1. GET
	D.3.2. PUT
	D.3.3. DELETE
	D.3.4. OPTIONS

	D.4. GetStyle Operation (KVP)
	D.5. Security Considerations
	D.6. Limitations And Future Work

	Appendix E: Revision History
	Appendix F: Bibliography

