
OGC Indoor Mapping and Navigation
Pilot Engineering Report

Table of Contents
1. Executive Summary. 4

1.1. Document contributor contact points . 7

1.2. Foreword . 7

2. References . 8

3. Terms and definitions . 9

3.1. Abbreviated terms . 9

4. Overview . 11

4.1. Enterprise Viewpoint. 11

4.2. Information Viewpoint . 11

4.3. Computational Viewpoint. 12

4.4. Engineering Viewpoint . 14

4.5. Technology Viewpoint . 16

5. Data Sources . 18

5.1. Types of Data . 18

5.1.1. Point Cloud Data . 18

5.1.2. CityGML Data . 18

5.1.3. IndoorGML Data . 19

5.2. Participant Provided Data . 19

5.2.1. Point Cloud - Korea University Central Plaza. 19

5.2.2. CityGML - Victoria Airport . 20

5.2.3. CityGML - Korea University Central Plaza . 21

5.2.4. CityGML - Korea University Central Plaza with Public Safety ADE . 22

5.2.5. IndoorGML - Korea University Central Plaza. 22

5.2.6. Data Cleansing . 23

5.2.7. Public Safety Data . 26

5.3. Sponsor Provided Data . 27

5.3.1. Conversion to IFC . 28

5.3.2. IFC Conversion to CityGML with Public Safety ADE. 29

5.3.3. CityGML Converted to IndoorGML with Public Safety Extension. 30

5.3.4. IndoorGML Navigation Network with Public Safety Extension . 31

6. Building Modeler Service . 32

6.1. Faramoon Building Modeler Service . 32

6.1.1. Process Flow. 32

6.1.2. Lessons Learned . 34

6.2. GIS FCU Building Modeler Service . 35

6.2.1. Process Flow. 35

6.2.2. Lessons Learned . 37

7. Navigation Modeler Service. 39

7.1. Pusan National University Navigation Modeler . 39

7.1.1. Conversion from Point Cloud data into IndoorGML . 39

7.1.2. Conversion from IndoorGML into CityGML . 49

7.1.3. IndoorGML Network Sub-Spacing . 51

7.2. Safe Software Navigation Modeler. 55

7.2.1. Considerations . 59

7.2.2. Lessons Learned . 60

7.3. Skymantics Navigation Modeler . 61

7.3.1. Lessons Learned . 62

8. Building Model Repository. 65

8.1. Compusult Building Model Repository . 65

8.1.1. CSW Transactions . 67

8.1.2. Lessons Learned . 67

9. Indoor Navigation Service . 69

9.1. Skymantics Indoor Navigation Service . 69

9.1.1. Lessons Learned . 70

9.2. Compusult Indoor Navigation Service. 70

9.2.1. Lessons Learned . 72

10. Pre-planning Tool Client. 74

10.1. Compusult Pre-planning Tool Client . 74

10.1.1. Workflow . 75

10.1.2. Lessons Learned . 76

10.2. EcoDomus Pre-planning Tool Client . 77

10.2.1. Workflow . 78

10.2.2. Lessons Learned . 80

11. Public Safety Scenario (Demonstration). 81

11.1. Point Cloud to CityGML Data Conversion . 83

11.2. CityGML to Indoor GML Data Conversion . 87

11.3. Visualizing Indoor Mapping for Pre-Planning Events. 89

11.4. Conclusions . 91

11.4.1. Summary of Lessons Learned . 91

11.4.2. Recommendations for Future Work . 93

Appendix A: Building Repository Examples . 96

A.1. CSW Insert Transaction POST Request Example . 96

A.2. CSW Insert Transaction Response Example . 98

A.3. CSW Update Transaction Request Example . 98

A.4. CSW Update Transaction Response Example . 99

A.5. CSW Delete Transaction Request Example . 100

A.6. CSW Delete Transaction Response Example . 100

A.7. CSW GetRecords Request Example . 101

A.8. CSW GetRecords Response Example . 102

A.9. CSW GetRecordByID GET Request Example . 108

A.10. CSW GetRecordByID POST Request Example . 108

A.11. CSW GetRecordByID Response Example . 108

Appendix B: Skymantics Indoor Navigation Service Examples . 111

B.1. Indoor Navigation WPS Request Example. 111

B.2. Indoor Navigation WPS Response Example . 111

B.3. SpaceLayerType Example . 116

Appendix C: Compusult Indoor Navigation Service Examples . 118

C.1. Indoor Navigation WPS DescribeProcess Request Example . 118

C.2. Indoor Navigation WPS DescribeProcess Response Example . 118

C.3. Indoor Navigation WPS GetNavigationRoutes Request Example. 119

C.4. Indoor Navigation WPS GetNavigationRoutes Response Example . 120

Appendix D: Revision History . 122

Publication Date: 2019-10-23

Approval Date: 2019-09-13

Submission Date: 2019-08-16

Reference number of this document: OGC 18-089

Reference URL for this document: http://www.opengis.net/doc/PER/IndoorPilotER

Category: OGC Public Engineering Report

Editor: Charles Chen (Skymantics, LLC)

Title: OGC Indoor Mapping and Navigation Pilot Engineering Report

OGC Public Engineering Report

COPYRIGHT

Copyright © 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/IndoorPilotER
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Executive Summary
The OGC Indoor Mapping and Navigation Pilot Initiative was sponsored by the National Institute of
Standards and Technology (NIST) Public Safety Communications Research (PSCR) Division. This
initiative addressed key challenges related to indoor mapping and navigation for the purpose of
supporting first responders in fields such as fire-fighting. The focus of this initiative was on
developing the capabilities and workflows required for pre-planning operations. This included
scanning each building to produce a point cloud dataset and converting this source data into
various intermediate forms to support the generation of indoor navigation routes. This Engineering
Report (ER) describes the work conducted in this initiative, the lessons learned captured by
participants, and future recommendations to support the public safety efforts and interoperability
of the standards. It is expected that future OGC initiatives will address the real-time, event-driven
aspects of indoor mapping and navigation for first response situations.

First responders typically survey high-risk facilities in their jurisdiction at least once per year as
part of a pre-planning process. Pre-planning outputs are often in the form of reports, and first
responders may generate their own hand-drawn maps during the process or annotate available
floor plans (e.g., from computer-aided design models). Pre-planning is time-consuming, inefficient,
and inherently complex considering the information and level of detail that should or could be
captured, the lack of automation, and the difficulty identifying notable changes to facilities and
infrastructure during successive pre-planning surveys.

Mobile three-dimensional (3D) Light Detection and Ranging (LiDAR) has been identified as a
potentially transformational technology for first responders. Using LiDAR and 360-degree camera
imagery, coupled with advanced software processing, first responders could efficiently capture 3D
point clouds and a wealth of other information, both observed and derived, while walking through
buildings as part of routine pre-planning operations. The use of 3D LiDAR and imagery has many
potential upsides beyond just creating point clouds for visualization and mapping (e.g., use in
localization, object classification, integration with virtual/augmented reality solutions, change
detection, etc.).

Requirements and Research Motivation

The primary motivation for addressing the topic of indoor-mapping is based on a real-world
scenario where public-safety first-responders such as firefighters are attempting to navigate a
building to rescue a civilian or fellow downed firefighter. The scenario is focused on operational
pre-planning using LiDAR based point cloud scans of buildings which may be used to map
navigational routes around hazards and risks. To accelerate research and development for this
public-safety-driven scenario, the requirements of this initiative were to conduct the following
prototyping and demonstration activities:

• Create and convert 3D indoor LiDAR point cloud models and associated imagery to functional
building and navigation models.

• Generate, store, and serve point cloud, building, and navigation models for visualization and
navigation.

• Derive dynamic turn-by-turn indoor navigation instructions based on the navigation model.

• View and annotate point cloud data, imagery, and building models, along with navigation routes

4

and instructions into, through, and out of buildings.

• Capture and annotation of Public Safety features through buildings based on scans or images
and including the public safety features as part of a Public Safety Extension.

Further, this initiative supported the improved interoperability of location-based technologies for
indoor mapping and navigation through the use of OGC web services and OGC standards such as
City Geography Markup Language (CityGML) and IndoorGML. The benefits from this initiative
include the following:

Derived Benefits

• Benefits to end users

◦ First responders benefit from new tools and applications for improved awareness

◦ Emergency evacuation processes can be expedited through better tools

◦ Demonstration videos provide better community outreach for educational purposes

• Benefits to SWG/DWG

◦ Working groups may learn about the nuances in the use of point cloud data and associated
standard data models

◦ New insights into existing gaps in IndoorGML and CityGML for interoperability and real-
world applications

◦ Development of new algorithms or applications for IndoorGML navigation applications

• Benefits to Developers

◦ Ensure standards are truly interoperable for future standards and releases

◦ Discovery of possible improvements to OGC standards and lessons learned

◦ Lessons learned can assist with future research and reduce the learning curve

Key Findings

This pilot was successful in demonstrating 1) transformations of Point Clouds to CityGML with
Public Safety Application Domain Extension (ADE), 2) transformations of CityGML into IndoorGML
with Public Safety Extension, and 3) visualizations of the Public Safety data in a Pre-planning Tool
Client using open standards and basic navigation capabilities. The participants met several
challenges regarding data quality in the provided point cloud data, different interpretations of
standards which caused errors and anomalies, and limited toolsets for manipulating CityGML and
IndoorGML data. Many of these challenges are described within the individual ER sections and also
in the final conclusions of the demonstration (see Chapter 11, Public Safety Scenario
(Demonstration)).

Through the efforts of this pilot initiative, the following key findings have been determined:

• Scanning was just the first step. It is critical that point cloud data scans are conducted
thoroughly. Every effort should be made to ensure every unlocked door is opened and every
locked door is annotated, and the resulting point cloud should be generated with Red-Green-
Blue (RGB) data, not just grayscale, to ensure the best results from automation tools. Additional
data cleansing of the point cloud data will still be required due to inherent building physics

5

such as reflective surfaces and transparent glass. Automated conversions from one data form to
another rarely produced a 100% complete result. A substantial amount of manual effort was
required to repair the resulting output and fill gaps such as missing walls and doors. Once data
has been cleansed and transformed to CityGML, manual annotation of public safety features is
necessary. It is anticipated that future improvements in tools and software algorithms can begin
to reliably automate some of these tasks.

• CityGML Public Safety ADE was created as an ontology for first-responders. IndoorGML Core
did not provide all requirements for Public Safety applications, so the IndoorGML Public Safety
Extension was created to support the Public Safety contextual items.

• If possible, all data should be georeferenced. If not, the data needs to be checked and manually
repositioned to ensure the resulting data models are overlaid correctly. Misalignment due to
improper georeference can result in improper subspacing due to rotation, incorrect network
grid modeling, and navigation routing anomalies (e.g., zigzag lines).

• Current editing tools for CityGML and IndoorGML are not sufficient enough to support editing
functionality, and so use of other tools such as Revit (an IFC Editor) or TICA (an open source
CityGML editor), to process point cloud data was necessary. It was found that conversion from
point cloud to IFC first, then to CityGML simplified the process due to the better editing tools.

• It remains an open question regarding how to best present navigation options to the end user.
Higher density indoor subspacing network models allow for more precise navigation but clutter
up the user’s view. Two methods are documented in this ER regarding room space calculations
using centroid of rooms or grid-based subspacing. The goal is to achieve turn-by-turn directions,
but the best result depends on the building and some combination of methods.

• Some differences in GML 3.1.1 used by CityGML and GML 3.2.1 used by IndoorGML caused some
issues. Future versions should consider harmonization of the standards.

Recommendations for Future Work

Future work items are documented in Section 11.4.2, “Recommendations for Future Work”. In
summary, the recommendations for future work are as follows:

• In terms of public safety, consideration should be made for both Indoor and Outdoor mapping
as well as utilizing road and water networks and other accessibility

• The National Alliance for Public Safety GIS Foundation (NAPSG) provides the public safety
symbology, but CityGML and IndoorGML are semantic models that are not well-suited for
symbology. The Styled Layer Descriptor (SLD) and Symbology Encoding (SE) standards could be
improved beyond 2D into 3D to support this use case.

• A large extent of this initiative involved data conversions into data models. For navigation,
modeling must be extremely clean, whereas validation checks and business rules should be
created to ensure the data is properly converted and suitable for use in calculating navigable
routes.

• Closer coordination between CityGML and IndoorGML is needed to ensure interoperability. This
includes the GML difference, harmonized public safety ADE/Extension, and use of common
building/space/room IDs.

• Development of web and mobile clients could support public safety user applications as well as
consideration for JSON, GeoJSON, and OpenAPIs.

6

• Augmented Reality could provide significant benefits to public safety use cases, and use of 3D
models used in this initiative can support these efforts.

1.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Charles Chen Skymantics Editor

Dean Hintz Safe Software Contributor

Ki-Joune Li Pusan National
University

Contributor

Jason MacDonald Compusult Contributor

Ken Geange Compusult Contributor

Mohsen Kalantari Faramoon Contributor

Mike Cross Skymantics Contributor

Abdoulaye Diakite University of New South
Wales

Contributor

Chih-Wei Kuan (Will) Feng Chia University Contributor

1.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

7

Chapter 2. References
The following normative documents are referenced in this document.

• OGC: OGC 12-019, OGC® City Geography Markup Language (CityGML) Encoding Standard,
Version 2.0 [https://portal.opengeospatial.org/files/?artifact_id=47842]

• OGC: OGC 14-005r5, OGC® IndoorGML Implementation Specification, Version 1.0.3
[http://docs.opengeospatial.org/is/14-005r5/14-005r5.html]

• [OGC: OGC 19-032, CityGML Public Safety ADE Engineering Report]

• OGC: OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2]

• OGC: OGC 14-065, OGC® WPS 2.0 Interface Standard [http://docs.opengeospatial.org/is/14-065/14-

065.html]

• OGC: OGC 08-062r7, OGC® Reference Model, Version 2.1 [http://rap.opengeospatial.org/orm.php]

• OGC: Indoor Mapping and Navigation CFP, Version 1.2 [https://portal.opengeospatial.org/files/?

artifact_id=79833/]

• OGC: 09-025r2, OGC® Web Feature Service 2.0 Interface Standard – With Corrigendum
[http://docs.opengeospatial.org/is/09-025r2/09-025r2.html]

• Cloud Compare [https://www.danielgm.net/cc/]

• Safe Software: Scenario: Victoria Airport Esri Geodatabase to IMDF [https://knowledge.safe.com/

articles/76176/scenario-victoria-airport-esri-geodatabase-to-imdf.html]

• wetransform: hale:studio software [https://www.wetransform.to/products/halestudio/]

• STEMLab: Spatio-Temporal Databases Laboratory (STEMLab) IndoorGML Tools [https://github.com/

stemlab]

• National Alliance for Public Safety GIS (NAPSG) Public Safety library of features
[https://www.napsgfoundation.org]

• NIST: NIST Public Safety Innovation Accelerator Program Point Cloud City Program
[https://www.nist.gov/news-events/news/2018/10/pscr-awards-over-750k-psiap-point-cloud-city]

• Hancock County Point Cloud City [https://www.nist.gov/ctl/pscr/hancock-county-point-cloud-city]

• PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, April 10, 2017
[https://arxiv.org/pdf/1612.00593]

• StemLab: IndoorGML to CityGML with PSExtension [https://github.com/STEMLab/

IndoorGML2CityGML_PSExtension]

• UNSW: IndoorGML as a Linear Cell Complex (LCC) class of CGAL, University of New South Wales
[https://github.com/grid-unsw/IndoorGML2LCC]

• Safe Software: OGC Indoor GML Pilot [https://knowledge.safe.com/articles/96851/ogc-indoor-gml-

pilot.html]

• 52North: JavaPS [https://github.com/52North/javaPS]

8

https://portal.opengeospatial.org/files/?artifact_id=47842
https://portal.opengeospatial.org/files/?artifact_id=47842
http://docs.opengeospatial.org/is/14-005r5/14-005r5.html
https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
http://docs.opengeospatial.org/is/14-065/14-065.html
http://rap.opengeospatial.org/orm.php
https://portal.opengeospatial.org/files/?artifact_id=79833/
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html
https://www.danielgm.net/cc/
https://knowledge.safe.com/articles/76176/scenario-victoria-airport-esri-geodatabase-to-imdf.html
https://www.wetransform.to/products/halestudio/
https://github.com/stemlab
https://www.napsgfoundation.org
https://www.nist.gov/news-events/news/2018/10/pscr-awards-over-750k-psiap-point-cloud-city
https://www.nist.gov/ctl/pscr/hancock-county-point-cloud-city
https://arxiv.org/pdf/1612.00593
https://github.com/STEMLab/IndoorGML2CityGML_PSExtension
https://github.com/grid-unsw/IndoorGML2LCC
https://knowledge.safe.com/articles/96851/ogc-indoor-gml-pilot.html
https://github.com/52North/javaPS

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

• Light Detection and Ranging (LiDAR) is a surveying method that uses laser light to illuminate an
object or space and measure reflected light with a sensor. The variations in laser reflection and
wavelengths is then used to generate a 3-dimensional representation of the target.

3.1. Abbreviated terms
• 3D 3-Dimensional

• 3DPS Three-Dimensional Portrayal Service

• ADE Application Domain Extension

• AEC Architecture, Engineering, and Construction

• AR Augmented Reality

• BIM Building Information Modeling

• CFP Call for Participation

• CGAL Computational Geometry Algorithm Library

• CLI Command Line Interface

• CSW Catalog Service for Web

• CSW-T Transactional Catalog Service for Web

• DDIL Denied, Degraded, Intermittent, or Limited

• DWG Domain Working Group

• EPSG European Petroleum Survey Group

• ER Engineering Report

• ETL Extract Transform Load

• FME Feature Manipulation Engine (Safe Software)

• FTP File Transfer Protocol

• GML Geography Markup Language

• IFC Industry Foundation Class

• ISO International Organization for Standardization

• IMDF Indoor Mapping Data Format (Apple Inc.)

• LAZ LiDAR data file extension (.laz)

• LCC Linear Cell Complex

• LiDAR Light Detection and Ranging

9

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• MBB Minimum Bounding Box

• NAPSG National Alliance for Public Safety GIS

• NIST National Institute of Standards and Technology

• NRG Node Relation Graph

• OGC Open Geospatial Consortium

• ORM OGC Reference Model

• OWS OGC Web Services

• PC Point Cloud

• PCD Point Cloud Data

• PS Public Safety

• PSCR (NIST) Public Safety Communications Research Division

• PSX Public Safety Extension

• RGB Red Green Blue

• RM-ODP Reference Model for Open Distributed Processing

• SWG Standards Working Group

• WFS-T Transactional Web Feature Service

• WGS84 World Geodetic System 1984

• WPS Web Processing Service

• WG Working Group (SWG or DWG)

10

Chapter 4. Overview
The Indoor Mapping and Navigation Pilot is an OGC Innovation Program initiative that addresses
key challenges related to indoor mapping and navigation for first responders. The focus is on
developing capabilities and workflows required to support pre-planning operations. These first
responders periodically survey high-risk facilities as part of a pre-planning process and formulate
reports which require floor plans and maps. Considerations are made to simplify this process to
improve the efficiency, reduce complexity, and capture the necessary details through use of
automation and tools.

This overview provides the following viewpoints according to the OGC Reference Model (ORM)
which provides an architecture framework for the ongoing work of the OGC. The structure of the
ORM is based on the Reference Model for Open Distributed Processing (RM-ODP).

4.1. Enterprise Viewpoint
The concept in this initiative is to take advantage of currently available LiDAR technology and
camera imagery to capture a building as a set of 3D point cloud data during routing pre-planning
operations, and then transform the data into usable formats for visualization and mapping. These
tools already exist for the architecture, engineering, and construction (AEC) community, and it is
expected that future investments will significantly lower the costs of tools such that it will become a
cost-effective approach for public safety, building managers, and other industries.

In order to demonstrate this public-safety driven scenario, the following activities were conducted
in this initiative:

• Create and convert 3D indoor LiDAR point cloud models and associated imagery into functional
building and navigation models.

• Store and serve point cloud, building, and navigation models for visualization and navigation.

• Derive dynamic indoor routes instructions based on the navigation model.

• Enrich and annotate building models and navigation models, along with navigation routes with
public safety features to help guide first responders in pre-planning activities.

4.2. Information Viewpoint
The Information Viewpoint considers the information models and encodings that will make up the
content of the services and exchanges to be extended or developed to support this initiative. The
following technical service components, data exchanges, and data model extension were developed
by the initiative participants and demonstrated in this initiative:

• Building Data - The building data consists of captured 3D point cloud data of buildings

• Public Safety Features CityGML Application Domain Extension (ADE) - An XML extension of
the CityGML standard to annotate features with public safety specific metadata and
descriptions.

• Building Modeler Service I (2 instances) - A web processing service that converts point cloud

11

data into CityGML format.

• Navigation Modeler Service I (3 instances) - A web processing service (WPS) that converts
CityGML format data into IndoorGML format.

• Building Model Repositories (3 variations) - A data storage and access service (Catalog) that
provides the capability to store and retrieve data.

• Indoor Navigation Service I (2 instances) - A web processing service that calculated an indoor
navigable route using the IndoorGML data.

• Pre-planning Tool Client I (2 instances) - A user interface client to interact with the various
services and data components in a public safety scenario.

Figure 1 below shows a tiered technical viewpoint of the components in this pilot. Each tier is
comprised of various components which access each other through open standards and interfaces
to demonstrate interoperability. The Access Tier represents those components which include the
data and the component services required to store and access the data. The Business Process Tier
represents the components which provide data conversion into other data formats. The Client Tier
represents the pre-planning clients which provide a user interface to interact with the components.

Figure 1. Component Architecture

4.3. Computational Viewpoint
The Computational Viewpoint is concerned with the functional decomposition of the system into a
set of objects that interact at interfaces – enabling system distribution. The interface architecture
for the Indoor Mapping and Navigation Pilot initiative is derived from the functional architecture
provided in the CFP with some key changes. The architecture, as described by the Indoor Mapping
and Navigation CFP [https://portal.opengeospatial.org/files/?artifact_id=79833/], places a focus on the use of

12

https://portal.opengeospatial.org/files/?artifact_id=79833/
https://portal.opengeospatial.org/files/?artifact_id=79833/

OGC web services for implementation of the modeler services as seen in Figure 2.

Figure 2. CFP Component Architecture

During the kick-off discussions, it was determined that the initial viewpoint of the Building Modeler
and Navigation Modeler fit well in the paradigm for WPS 2.0. However, it was determined that the
interactions between the Pre-planning Tool Client and the Indoor Navigation Service is is better
implemented using WPS instead of WFS. Additionally, the WFS-T originally envisioned for the
Building Model Repository was replaced with a CSW-T interface. All components interface directly
with the Building Model Repository via the CSW-T interface, retrieving necessary data and storing
the resulting transformed data. The clients access the CSW-T to retrieve each data set to display in
the client user interface and generate indoor routes for navigation. Figure 3 shows the updated
component architecture after discussion at the Indoor Pilot Kick-off meeting.

Figure 3. Updated Component Architecture

13

It should be noted that the Navigation Modeler service was implemented in two different ways: 1)
converting the CityGML output of the Building Modeler into IndoorGML, and 2) reversely,
converting point cloud data directly into IndoorGML and then back into CityGML. The reason for
this is due to the fact that one participant focused on the indoor spatial mapping from point cloud
data rather than from a top-down building geometry to indoor space workflow. More details can be
found in Chapter 7, Navigation Modeler Service.

4.4. Engineering Viewpoint
The Engineering Viewpoint is concerned with the infrastructure required to support system
distribution. It focuses on the mechanisms and functions required to support distributed
interaction between objects in the system, and hides the complexities of those interactions. It
exposes the distributed nature of the system, describing the infrastructure, mechanisms and
functions for object distribution, distribution transparency and constraints, bindings and
interactions.

The following sequence diagram describes the conceptual flow for the Pilot architecture.

14

Figure 4. Indoor Mapping & Navigation Pilot - Conceptual Flow

15

4.5. Technology Viewpoint
Each of the following chapters in this ER describe the individual Technology Viewpoint of the
various components, how they are developed, the software tools utilized, and the distribution of
components needed to achieve the result of the Technology Integration Experiments (TIEs)
conducted in this initiative.

Chapter 5, Data Sources describes the various data sets provided in this pilot. The datasets include
point clouds, CityGML, and IndoorGML data. This chapter also catalogs the provided sample data,
the official demonstration data, data derived and converted from the original formats, and details
the data cleansing and enrichment. Some data is enriched with Public Safety Features CityGML
ADE, which is documented in a separate ER. For more information, refer to the OGC 19-032 CityGML
Public Safety ADE Engineering Report.

Chapter 6, Building Modeler Service describes the Building Modeler Service which converts point
cloud data into CityGML data. This task was to create a building modeler application that can
convert point cloud models and associated images (such as those generated by the Building Data)
into semantic 3D building models compliant with the most recent or stable version of CityGML (2.0).
Models generated by this component are notated with Public Safety Features from the CityGML
ADE. The building modeler may be developed as a web processing service (WPS) compliant with the
OGC WPS 2.0 Interface Standard (OGC14-065), although this was not a strict requirement.

Chapter 7, Navigation Modeler Service describes the Navigation Modeler Service which converts
CityGML data into IndoorGML data. This task was to create a navigation modeler application that
can convert output from the Building Modeler Service to IndoorGML usable for indoor navigation.
The Navigation Modeler also generated navigation network information to support route
calculations by the Indoor Navigation Service. The navigation modeler may be developed as a WPS
compliant service, although this was not a strict requirement.

Chapter 8, Building Model Repository describes the Building Model Repository which stores the
various datasets and makes them available to other services and end users. This task was to create
a building model repository to store and serve point cloud, building, and navigation models (see
Building Data, Building Modeler Service, and Navigation Modeler Service). The repository exposes a
model catalog and provides authenticated access. The repository is interoperable with application
clients.

Chapter 9, Indoor Navigation Service describes the Indoor Navigation Service which consumes the
IndoorGML data to produce a navigation route based on parametric inputs. This task involved
creating an indoor navigation service that can derive ‘turn-by-turn’ instructions between any two
points in a building, including exits, based on network models created by the Navigation Modeler
Service and stored in the IndoorGML. The service used navigation algorithms, not necessarily
developed in this Initiative, which were optimized for specific criteria (e.g. routes optimized based
on time, distance, or risk) requested by the Pre-planning Tool Client.

Chapter 10, Pre-planning Tool Client describes the Pre-planning Tool Client for end user access to
the services and dataset renderings for mapping and navigation display. This task was to create a
visualization client application for users to request and view point cloud data and building models
from the Building Model Repository, as well as navigation instructions and routes from the Indoor
Navigation Service. The client is a graphical user interface that enables public safety personnel to

16

view and annotate models captured during pre-planning. The client should seamlessly transition
between 2D and 3D views and should allow users to visualize hypothetical routes into, through, and
out of buildings along with the appropriate metrics (e.g. estimated time, distance, risk, etc.) based
on additional input parameters considered by the navigation service. The client should use the OGC
WFS Interface Standard and OGC 3DPS to request and receive models, scenes, and services.

17

Chapter 5. Data Sources
This chapter describes the point cloud source data provided by the sponsor (Section 5.3, “Sponsor
Provided Data”) and participants (Section 5.2, “Participant Provided Data”). It also describes the
data derived from these sources into the CityGML, IndoorGML, and public safety extensions.

5.1. Types of Data
This Pilot uses several data sources for testing and experimentation including Point Cloud data,
CityGML data, and IndoorGML data. CityGML is an open standardized data model and exchange
format to store digital 3D models of cities and landscapes. The data files are hosted by the OGC in a
secure File Transfer Protocol (FTP) server accessible to participants. Enriched data includes
cleansed data which is then enriched with an Application Domain Extension (ADE), a built-in
mechanism of CityGML to augment its data model with additional concepts required by particular
use cases. The ADE is a mechanism for enriching the data model with new feature classes and
attributes, while preserving the semantic structure of CityGML. IndoorGML is an OGC standard for
an open data model and XML schema for indoor spatial information. IndoorGML does not officially
have an extension mechanism, but one was needed to carry the Public Safety features that were
forwarded from the CityGML Public Safety ADE.

5.1.1. Point Cloud Data

The point cloud data used in this pilot is generated through LiDAR scans of various buildings.
Another concurrent project was developing LiDAR building scans, and as a result the data
contribution (Section 5.3, “Sponsor Provided Data”) was delayed until later in the pilot. Therefore,
sample data (Section 5.2, “Participant Provided Data”) provided by the participants was used for the
beginning of the development phase. Test data provided by Pusan National University (PNU) was
used for initial development and testing. Later, efforts transitioned to official data provided by the
sponsor.

5.1.2. CityGML Data

CityGML 2.0 was used to represent the building geometries including walls, floors, ceilings, doors,
windows, furniture, etc. In order to begin development and testing earlier in the pilot, CityGML was
generated from Victoria Airport’s publicly available sample dataset in Apple IMDF using FME from
Safe Software. The data was later enriched with Public Safety ADE. Pusan National University
generated IndoorGML from point cloud data using a partial manual process with an open source
software application, and then converted IndoorGML to CityGML. Other participants’ early
attempts to generate CityGML datasets from point clouds resulted in CityGML with a few large
mesh features that lacked structure and were not readily convertible to IndoorGML.

One workflow that proved productive was to do automated conversion of point cloud to IFC data,
and then use an editing tool (Revit) to structure and enrich the data for use in IndoorGML. A key
part of this process was room generation. FME was used to convert and simplify the IFC to CityGML
in a mostly automated process with some minor configurations to account for dataset variations.

18

5.1.3. IndoorGML Data

IndoorGML data describes the indoor spaces of a building. Spaces are divided into navigable and
non-navigable spaces. The navigable spaces are linked to generate a navigational network, which
can then be traversed to generate navigable routes. IndoorGML does not officially have an
extension mechanism, but the participants collaborated to develop an IndoorGML Public Safety
Extension to carry the public safety features that were forwarded from the CityGML Public Safety
ADE. This functionally is being proposed to the OGC IndoorGML SWG for consideration and is
planned to be used for the new upcoming IndoorGML 2.0 work.

5.2. Participant Provided Data
The following sample data was provided by the participants for testing and evaluation as
components were being developed. This was done to ensure parallel development to achieve the
TIEs later in the project while participants were waiting on the demonstration data.

5.2.1. Point Cloud - Korea University Central Plaza

This data contains a LiDAR point cloud scan of Korea University’s Central Plaza, an underground
plaza at the Anam Science Field Campus. The author, TeeLabs Co., is a collaborative work partner
with Pusan National University and supplied the following point cloud data for use in this pilot
initiative. The data contains a large point cloud with more than 100 million points and contains
images with camera pose data. Most of the noise in the data has been cleansed, and each object is
individually separated. The data was cleansed using Cloud Compare [https://www.danielgm.net/cc/], an
open source point cloud viewer.

1. Name: KU-Central-Plaza

2. Source: 3D LiDAR x 2EA, 360 Camera, IMU

3. Editing: Cleansing (PCD Noise Removal) using a semi-automatic process

4. Author: TeeLabs, Co. LTD.

19

https://www.danielgm.net/cc/

Figure 5. Korea University, Central Plaza Point Cloud

5.2.2. CityGML - Victoria Airport

Safe Software provided a sample data set for Victoria Airport in CityGML format derived from an
Apple IMDF data set. This data was used for initial development and testing of participants'
individual components prior to the TIEs. This data was modified by Safe Software to include the
Public Safety ADE. It includes PublicSafetyRooms, PublicSafetyDoors and Hatch features.

The overall workflow for the Indoor Pilot depended on generating good quality CityGML data
outputs from point cloud data. Because it took a couple of months to accomplish this, having an
interim dataset in CityGML to work with effectively saved those teams developing downstream
components - that depended on CityGML as input - from waiting a couple of months to start
development. Having a dataset to apply the draft ADE also helped with PS ADE design and vetting.

Some features contained in Victoria Airport data resulted in interesting anomalies such as the
circular room in the center with pedestrian walkways around the perimeter. This proved
challenging to calculate routing because it was difficult to automate the navigable spaces of
nonplanar geometries. Since there was no floor in the open center, it was also difficult to cut the
room into spaces. This attempt demonstrates that more advanced work could be done to improve
identification of interior sub-spacing which is not always separated by floors, walls, and ceilings.

For more information on the Victoria Airport dataset, or to access the source IMDF, see:
https://knowledge.safe.com/articles/76176/scenario-victoria-airport-esri-geodatabase-to-imdf.html

20

https://knowledge.safe.com/articles/76176/scenario-victoria-airport-esri-geodatabase-to-imdf.html

Figure 6. Victoria Airport CityGML with Public Safety ADE in FME Data Inspector (Safe Software)

5.2.3. CityGML - Korea University Central Plaza

This CityGML data was provided by Pusan National University through conversion of the original
manually cleansed point cloud into IndoorGML and then into CityGML. While the data may be lossy
compared to the original data set, it provided a basis for early attempts for participants to develop
the components.

Figure 7. Korea University, Central Plaza CityGML

1. Name: KU-Central-Plaza (Central Plaza, Korea University)

2. Source: Converted from IndoorGML Public Safety Extension to CityGML by Hale, a GML based

21

open source conversion tool: https://www.wetransform.to/products/halestudio/)

3. Editing: None

4. Author: Pusan National University

5.2.4. CityGML - Korea University Central Plaza with Public Safety ADE

This data is the same as the previous CityGML with additional Public Safety ADE enriched in the
data. The data is shown in Figure 8 displayed using FME. Note the 'ps_' namespace prefix for the
public safety related properties and attributes. Also note the public safety feature types - in this
case: PublicSafetyDoor and PublicSafetyRoom.

Figure 8. KU Central Plaza CityGML with PS ADE as displayed by FME showing public safety (ps_) feature
types and attribution.

1. Name: KU-Central-Plaza-CityGML-ADE-PS.gml

2. Source: Pusan National University, Rendered by FME Data Inspector

3. Editing: None

4. Author: Pusan National University

5.2.5. IndoorGML - Korea University Central Plaza

This data is the intermediate data converted by Pusan National University from the point cloud
data.

22

https://www.wetransform.to/products/halestudio/

Figure 9. Korea University, Central Plaza IndoorGML

1. Name: KU-Central-Plaza (Central Square, Korea University)

2. Source:

1. Converted to Mesh from Point Cloud

2. Surface Extraction by TM2IN

3. Cleaning and Editing for missing part by TICA and export to IndoorGML (TM2IN and TICA
are developed by PNU and available at https://github.com/stemlab)

3. Editing: Editing missing sections (e.g., doors) and occluded rooms

4. Author: Pusan National University

5.2.6. Data Cleansing

During point cloud collection, it was discovered that many undesired artifacts appear in the point
cloud data due to noise from LiDAR scans. LiDAR is a powerful tool for building scanning, but it has
issues with transparent glass surfaces such as windows and doors. The laser beams pass through
the glass surfaces, and the point cloud captures outdoor features through the glass such as trees.
Reflective surfaces such as mirrors and marble flooring create additional artifacts in the point
cloud. Also, during a LiDAR scan, moving features such as pedestrians and vehicles will create
artifacts in the point cloud. These artifacts can often interfere with the calculation of indoor spaces
and the location of walls and doors. Therefore, data cleansing is a necessary step to ensure reliable
data for navigation.

The point cloud is composed of two categories; architectural components such as walls, ceilings,
and floors, and non-architectural components such as chairs, tables, and other types of furniture in
indoor space as shown by Figure 10.

23

https://github.com/stemlab

Figure 10. Overview of the point cloud data for Central Plaza at Korea University

The point cloud for architectural components is converted to CityGML and IndoorGML data at later
steps, while the point cloud for non-architectural components is converted into non-navigable
spaces of IndoorGML. Non-navigable spaces are practically obstacles to pedestrians and simplified
into MBBs (Minimum Bounding Box). Together with navigable spaces, they are very useful in
deriving indoor navigation networks. Examples of non-navigable spaces are shown in Figure 11 in
red.

Figure 11. Non-Navigable Spaces of Central Plaza at Korea University

During the generation of point cloud data, the team encountered several issues. First, point clouds
created where there is transparent glass leads to noisy data. For example, point clouds of outdoor
spaces also contain objects detected through transparent windows (see Figure 12). There is a
similar issue due to reflective material such as marble floors (see Figure 13).

24

Figure 12. Example of Noisy Point Cloud Data due to Transparent Glasses

Figure 13. Example of Noisy Point Cloud Data due to Reflective Materials

Secondly, it is also difficult to produce accurately geo-referenced images of oblique objects such as
oblique pillars. Thirdly, the coverage of point cloud data is rather incomplete due to occlusive areas.
For example, we could not acquire the point cloud data in the rooms where the doors were locked.

Some automated processes can be used for partial data cleansing, but additional manual cleansing
is still needed. For example, Cloud Compare is an automation tool that can be used to remove
outlier points from a point cloud. Any remaining outlier points within the point cloud which were
not caught by Cloud Compare must still be manually cleansed. Non-architectural objects such as
furniture create obstacles within the indoor space that also interfere with indoor space
calculations. One automation method is to calculate the vertical alignment of geometry such as
walls to floors and ceilings, and then remove any objects or artifacts which are not part of the
vertical or horizontal planes. This method may not be usable in some cases such as curved walls or
dome-shaped ceilings, etc. In the sample data for Hana Square, there were some objects such as

25

pillars which were not exactly vertical (see Figure 14). Since this architecture does not fit the
assumptions of the automation method, the software was unable to distinguish the architectural
from non-architectural components.

Figure 14. Korea University, Hana Square Architecture

An observation was made regarding how point cloud data is collected. In one data set, a
Simultaneous Localization and Mapping (SLAM) robot was used to collect point clouds with a fixed
height sensor. Upon inspection of the point cloud data, it was discovered that during the LiDAR
scan, any data collected near the same level as the fixed position of the LiDAR sensor of the robot
(i.e., the result is near the same linear level as the "eye" of the LiDAR sensor) results in a reduced
output. This can result in poor data quality of certain features such as stairs near the same height of
the sensor. One way to avoid this issue is to use a handheld SLAM sensor which can be varied in
height during collection to ensure the best coverage of different angles of the environment.

5.2.7. Public Safety Data

The Public Safety enrichment process extends CityGML with the Application Domain Extension
(ADE): Public Safety ADE schema version 3.1.2. At the time of this report this is published as ADE-
PublicSafety.xsd. The development of the Public Safety ADE schema is the focus of the Public Safety
ADE Engineering Report (OGC 19-032). Public Safety features are taken from the NAPSG Public
Safety library of features. (https://www.napsgfoundation.org). The result was a new CityGML Public
Safety ADE that adds five new feature types or elements to support public safety applications,
namely: PublicSafetyDoor, PublicSafetyWindow, PublicSafetyHatch,

26

https://www.napsgfoundation.org

PublicSafetyIntBuildingInstallation, and PublicSafetyRoom. The ADE also defines a set of
attributes or properties for each new feature type, along with supporting code lists to predefine
lists of acceptable values for certain fields such as door type, opening type etc.

Considerable effort was required to test and validate the new application schemas as they evolved
and ensure that the extension of CityGML was properly aligned with the CityGML specification,
UML and schemas, and ensure that they supported the public safety applications as needed. One
key part of this process was enriching actual CityGML datasets with new PS ADE elements and
validating the results against the ADE schemas. As mentioned in Section 5.1.3, “IndoorGML Data”,
the Public Safety Extension was created to support the transference of the Public Safety ADE from
CityGML to IndoorGML.

5.3. Sponsor Provided Data
The data provided by the sponsor was from a concurrent project, which created an external
dependency for this Pilot. The source of this point cloud data was the Hancock County, Mississippi
Emergency Management Agency ("Hancock County"), which received an award under the NIST
Public Safety Innovation Accelerator Program Point Cloud City program (https://www.nist.gov/
news-events/news/2018/10/pscr-awards-over-750k-psiap-point-cloud-city). Data was provided by
NVision Solutions Inc, which supplied geospatial software licenses and workstations needed to
analyze data and create work products (https://www.nist.gov/ctl/pscr/hancock-county-point-cloud-
city). The lessons-learned from the Section 5.2, “Participant Provided Data” were applied to the
Hancock data set including the enrichment of Public Safety ADE to the CityGML data and
conversion to Public Safety Extension in IndoorGML.

Figure 15. Hancock County, Mississippi Emergency Management Agency

1. Name: Hancock County, Mississippi Emergency Management Agency

27

https://www.nist.gov/news-events/news/2018/10/pscr-awards-over-750k-psiap-point-cloud-city
https://www.nist.gov/news-events/news/2018/10/pscr-awards-over-750k-psiap-point-cloud-city
https://www.nist.gov/ctl/pscr/hancock-county-point-cloud-city
https://www.nist.gov/ctl/pscr/hancock-county-point-cloud-city

2. Source: GeoSlam Reb Zevo RT and Standard unit

3. Editing: Processed the data with GeoSlam processing software (GeoSlam Hub). No cleansing of
the data.

4. Author: NVisions Solutions, Inc.

5.3.1. Conversion to IFC

Industry Foundation Class (IFC) data was generated during the conversion process from the
Hancock point cloud data. IFC data generated from the Hancock County point cloud was first
filtered and cleaned. A key part of the conversion process was computing surface normals and
using them to filter out unwanted geometric complexity using the FME Spatial Extract-Transform-
Load (ETL) tool. IFC complex solids were converted to CityGML and IndoorGML multi-surfaces and
Boundary Representation (BRep) solids. One of the key challenges was geometry simplification.
Walls, floors, and roofs in IFC are typically represented as volumes. For both CityGML and
IndoorGML, it is generally preferable to have walls and ceilings as surfaces from which to build
rooms. Typical manual approaches require an editor to identify which surfaces to keep (e.g., inner
walls, ceilings, etc.) and which surfaces to eliminate (e.g., all edges, outer ceilings, etc.). In this case,
Z surface normal values were used to filter surfaces such that -0.1 < surfaceZ < 0.1 produced
vertical wall faces, surfaceZ > 0.5 produced the top of floors, and surfaceZ < - 0.5 produced the
bottom of the roof or ceiling.

Further experimentation is needed to refine these and other approaches. However, initial results
suggest model-based approaches such as these hold promise for reducing the amount of manual
effort required to take the raw surfaces produced from SLAM point clouds and refine them for use
in generating structured building models in the form of IFC, IndoorGML or CityGML.

Figure 16 shows the Hancock County data converted from Point Cloud into IFC and displayed using
FME.

Figure 16. IFC source data from Building Modeler for Hancock County

28

1. Name: IFC Dataset Hancock County

2. Source: IFC source data from Building Modeler for Hancock County

3. Editing: Edited to clean data categorize features and create rooms

4. Author: Faramoon

5.3.2. IFC Conversion to CityGML with Public Safety ADE

Figure 17 shows the IFC data converted into CityGML and displayed in FME.

Figure 17. CityGML data converted from IFC data with FME

1. Name: Hancock County CityGML Public Safety ADE

2. Source: Converted from IFC to CityGML and then enriched with Public Safety ADE information
using FME

3. Editing: Data Simplification, Geometry transformation, schema mapping, feature filtering,
business rule application to autogenerate Public Safety ADE information

4. Author: Safe Software using FME converted from IFC provided by Faramoon

29

Figure 18. Spatial ETL (FME) process to convert Hancock County data from IFC to CityGML

5.3.3. CityGML Converted to IndoorGML with Public Safety Extension

Figure 19. Hancock County IndoorGML

1. Name: Hancock County IndoorGML Public Safety Extension

2. Source: Hancock County CityGML Public Safety ADE

3. Editing: Schema mapping CityGML feature types and attributes to IndoorGML. ID and

30

relationship generation to associate feature types as per IndoorGML schema and UML
requirements. Navigation network generation (States and Transitions).

4. Author: Safe Software using FME to convert CityGML Public Safety ADE to IndoorGML Public
Safety Extension

5.3.4. IndoorGML Navigation Network with Public Safety Extension

Figure 20. IndoorGML for Hancock County with MultilayeredGraph, States, and Transitions representing
Navigation Network - 2D View

1. Name: Hancock County IndoorGML Public Safety Extension

2. Source: Hancock County CityGML Public Safety ADE

3. Editing: Schema mapping CityGML feature types and attributes to IndoorGML. ID and
relationship generation to associate feature types as per IndoorGML schema and UML
requirements. Navigation network generation (States and Transitions). Note that early network
generation was not aligned with Hancock corridors yielding a network that produced more
irregular paths.

4. Author: Safe Software using FME to convert CityGML Public Safety ADE to IndoorGML Public
Safety Extension

31

Chapter 6. Building Modeler Service
As described in Section 5.1.2, “CityGML Data”, the Building Modeler Service application converts
point cloud models and associated images into semantic 3D building models compliant with the
most recent or stable version of CityGML (2.0). Models generated by this component are annotated
with Public Safety Features from the CityGML PS ADE. The building modeler was developed as web
service that is compliant with the OGC WPS 2.0 Interface Standard (OGC14-065), although this was
not a strict requirement.

Figure 21. Retrieving and Converting Point Cloud Data

6.1. Faramoon Building Modeler Service
Faramoon has designed and developed an automated technology that takes point clouds of building
interiors and converts them into 3D models that conform to international standards without
requiring any manual input. There are four stages including 1) structuring a point cloud, 2) filtering
noises, 3) recognizing objects using deterministic and stochastic algorithms and methods, and 4)
modeling indoor features in 3D.

Faramoon initially implemented a process using this methodology to maximize the value of the
conversion process and increase productivity by removing the manual processes required to
generate the CityGML. The process is purely based on the geometry of the point cloud without the
use of the RGB data (i.e., images). The geometry is identified with attributes using semantics to
describe ceilings, floors, walls, etc. These geometries are identified based on surfaces and
perpendicularity to other surfaces to designate these spaces. Faramoon’s building modeler is
independent of the data format provided. The initial LAZ data is first converted into PCD format.
Following this, the PCD modeler executes the process flows described below.

6.1.1. Process Flow

Faramoon developed a WPS to convert point cloud files to CityGML files. A sequence diagram
shown in Figure 22 describes each step in the process.

32

Figure 22. Faramoon Building Modeler Sequence Diagram

1. The user accesses the Faramoon File Storage server (SFTP) and uploads a point cloud in PCD file
format.

2. The user makes an HTTP POST request to the WPS with the filename of the PCD file as the
parameter.

3. The Processing Server downloads the PCD file from the File Storage server.

4. The Processing Server processes the file into a CityGML file with Faramoon’s software.

a. If the file was successfully processed into a CityGML file, the user receives a response from
their HTTP POST request with a direct URL to the CityGML file. The processed CityGML file
was uploaded back to the File Storage server.

b. If the file was unsuccessfully processed into a CityGML file, the user receives a “Bad
Request” response from their HTTP POST request.

Due to many challenges described in Faramoon’s Section 6.1.2, “Lessons Learned”, the WPS could
not be fully utilized. Therefore, the resulting CityGML files were processed on a local computer.
Figure 23 shows steps taken to model the point cloud datasets.

33

Figure 23. Faramoon Point Cloud Modeling

1. Faramoon downloads LAZ files from OGC FTP server.

2. Faramoon manually cleans and converts LAZ files into PCD file format.

3. PCD files are processed into CityGML files with Faramoon Software.

4. CityGML files are converted into IFC file format with Faramoon Software.

5. IFC files are manually modified with Autodesk Revit.

6. Modified IFC files are exported from Autodesk Revit.

7. Modified IFC files are converted to resulting CityGML files with a workbench with FME.

8. The resulting CityGML file was uploaded to the OGC FTP server.

6.1.2. Lessons Learned

In developing Faramoon’s building modeler, the following challenges were identified:

• The provided point cloud data was in grayscale. This made it difficult to discern various entries
and exits as well as other features in the point cloud. This also makes it more difficult to identify
objects that could have been more easily distinguished using color (RGB) point clouds as
opposed to only geometry (e.g., signage).

• While not part of the scope of this project, Faramoon attempted to identify some public safety
features contained in point cloud data. Some of the public safety features (e.g., fire
extinguishers, alarms, etc.) are difficult to identify due to the complexity of shape and size.

• Initially, Faramoon attempted to automate the conversion of Hancock County point cloud data.
However, the point cloud data was very noisy, resulting in a data output with false walls,
missing doors, and incorrect geometries, etc. Therefore, it was determined that the output data
needed to be cleaned manually or enriched in order to be used for the demonstration. Initial
attempts to use TICA proved to be difficult due to immature developmental status and lack of

34

existing documentation for the software. The automation tool from Faramoon can output either
CityGML or IFC data (BIM standard). Since tools are limited for CityGML formats, Faramoon
used Revit, a 3D BIM tool, to manually cleanse the output data in IFC format.

• The Hancock dataset was provided in six different point cloud files. The resulting CityGML file
contained the processed results of all six point cloud files combined. This was challenging
because the point clouds overlapped but did not accurately fit together. With trial and error, the
modified IFC models were placed in several different combinations until an accurate
representation of the building appeared.

• Georeferencing issues were discovered in the point cloud data because data was not geolocated.
Therefore, to resolve this issue, a combination of Google Maps satellite imagery and QGIS was
used. This was done by finding the location of the real building and positioning it along the
corners of the Google Maps satellite imagery in QGIS, an open source GIS software, until the
resulting CityGML model matched the satellite imagery.

6.2. GIS FCU Building Modeler Service
GIS FCU’s building modeler service calls a WPS service to convert point cloud data into CityGML
data. The service relied on the use of Machine Learning techniques through the use of the open
source PointNet library. This software library uses recognition to identify and classify clusters of
point clouds as objects and separate the objects into individual geometries. The process flow is
shown in Figure 24.

6.2.1. Process Flow

35

Figure 24. GIS FCU Data Creation Sequence Diagram

1. The user calls the WPS service with a mail address and URL link to a LAS file

2. The WPS service creates a new job ID for this request

3. The WPS service returns the job ID to the user

4. The WPS service sends the requirements to a processing server with the mail address and URL

5. The download service downloads the LAS file using the associated URL

6. The convert service converts the LAS file to PCD format

7. The building service consists of 3 services, including a Recognition service, a Segmentation
service, and a Conversion service.

1. The Recognition service recognizes objects, walls, roof, floor and doors

2. The Segmentation service segments objects into several parts points group

3. The Conversion service converts the points group to a 3D surface which consists of objects of
polygon type

8. The convert service converts the 3D surfaces into CityGML

9. The processing server sends the resulting URL of CityGML by email, or the user can use a job ID
to query and retrieve the download URL

10. The user can query the job status by job ID during the processing time

11. The WPS service returns the status of this job. There are three types of statuses: Processing,
Failed, and Finished.

36

The Point Cloud data is converted to CityGML with no manual intervention:

1. The WPS service downloads the point cloud dataset via the URL

2. It converts the LAS file to PCD format because PCD format is easier to manipulate. Then the file
size is reduced by 100:1. This is a downsampling process which is considered lossy, but results
in the reduction of the overall error rate.

3. The PointNet library (PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation https://arxiv.org/pdf/1612.00593) is used to reconstruct surfaces. PointNet is a C-
based open source library which supports C++, Python, and Java with Deep Learning libraries to
identify and recognize 3D objects within the PCD. GIS FCU encodes this in Python, and the
libraries are listed below:

a. The Recognition Library is used to identify and group objects based on clusters of point
cloud points through a pattern recognition module. This includes 3D object recognition,
hypothesis verification for 3D object recognition, and implicit shape model for calculating
objects centers.

b. The Segmentation Library segments point cloud data based on various algorithms.

c. The Surface Library provides data smoothing and reconstructions using approximation
algorithms.

4. Convert PCD file to SHP file to build 3D surface file.

5. Convert SHP file to GML file.

6. Build CityGML file from GML file.

6.2.2. Lessons Learned

Currently, PointNet is able to recognize some objects, but attempts to recognize boundaries and
surfaces with straight polygons is very difficult.

Between the doors and the rooms, the spacing between the walls and the doors need to be
highlighted. Attempts to use raw data resulted in a lot of noisy data. Downsampling the data by 10:1
showed some improvement with some noise. 100:1 was better, but 1000:1 was too lossy. The
amount of reduction depends on the original raw data. Figure 25 shows the differences in the point
clouds at various downsampling levels.

37

https://arxiv.org/pdf/1612.00593

Figure 25. GIS FCU Hana Square data reduction by 10X, 100X, and 1000X

PointNet uses a deep learning neural network algorithm, and it needs many more examples of
polygon objects such as windows, doors, walls, etc. to teach the network algorithm to better
recognize these objects in point cloud. For example, with enough point clouds of trees, deep
learning can be used to filter out trees from indoor space recognition. Additional examples are
needed to improve the accuracy of the algorithm.

38

Chapter 7. Navigation Modeler Service
As described in Section 5.1.3, “IndoorGML Data”, the purpose of the Navigation Modeler Service is
to convert CityGML from the Building Modeling Service into IndoorGML for use by the Indoor
Navigation Service. This service queries the CSW for a given building ID, retrieves the building
data in CityGML via a URL, converts it to IndoorGML and then posts the results back to the CSW.
The following describes the sub-components, process steps, data format, and service interfaces for
this service component.

7.1. Pusan National University Navigation Modeler
The Pusan National University Navigation Modeler service operates differently than the prescribed
data conversion flow. The workflow for PNU’s navigation modeler is to convert from point cloud
data directly into IndoorGML, and then convert IndoorGML into CityGML. The conversion process
conducted by Pusan National University is documented step-by-step as follows:

7.1.1. Conversion from Point Cloud data into IndoorGML

The point cloud data is captured. Figure 26 shows the undesired artifacts from unclean point cloud
data.

Figure 26. Point Cloud Data before data cleansing

The data is cleansed following a data cleansing process.

39

Figure 27. Point Cloud Data after data cleansing

Figure 28. Reconstructed Mesh from Cleansed Point Cloud data

A reconstructed mesh is created from the cleansed point cloud data.

40

Figure 29. Simplified Polygon representation

A set of simplified polygons are defined based on the mesh

Figure 30. Conversion using TICA tool

The simplified polygons are converted using a tool called TM-based IndoorGML Cleaning &
Authoring (TICA) tool.

https://github.com/STEMLab/TICA

41

Figure 31. Cubemap Texturing applied using TICA

TICA is used to apply cubemap texturing.

Figure 32. Addition of missing walls

Missing walls are manually added.

42

Figure 33. Splitting a corridor and creating a wall

Large single spaces are not very useful for navigation. Splitting a large single space into several
smaller spaces is called sub-spacing. Partition of sub-spacing can be done using TICA for TM-based
pipelines to construct indoor space models (see Figure 33).

Figure 34. Polygon cleaning

The geometry is edited to add missing structures, merge surfaces, and remove "noisy" polygons.

43

Figure 35. Merging of coplanar surfaces

Coplanar surfaces that have splits or stitches are merged into a single planar surface.

Figure 36. Drawing floors manually for missing point cloud data

Missing floors are drawn for areas where the SLAM sensor could not capture point clouds.

44

Figure 37. Manual processing of aligning vertices and edges

Vertices and edges are aligned.

Figure 38. Creating room solids

Solids are created for each room.

45

Figure 39. Resulting geometry

The result is a clean 3D geometry of the indoor space.

Figure 40. Annotating Doors and Windows

Doors and windows must be annotated.

46

Figure 41. Annotated doors and windows

Figure 41 shows the result after doors and windows are annotated.

Figure 42. Multilayer graph of indoor navigable spaces

States and transitions are edited and interlayer connections are made.

47

Figure 43. Public Safety Features

Public Safety features are added.

Figure 44. Navigable and Non-navigable spaces

The states for corridor and states for non-navigable spaces are finalized.

48

Figure 45. InViewer Application display of final result

The final result can be depicted in the InViewer application.

7.1.2. Conversion from IndoorGML into CityGML

Figure 46 shows the use of point cloud data with cuboid images to create texture mappings in a 3-
dimensional representation using TICA.

Figure 46. KU, Central Plaza - CityGML Interior with Public Safety ADE and Texture Applied

Once the IndoorGML data set with public safety features and textures are prepared, it is converted
to CityGML using Hale, an open-source conversion tool.

49

Figure 47. KU,Central Plaza - CityGML with Public Safety ADE and Texture Applied

This process uses the Hale transformation rule. The Hale Mappings are provided at the following
URL:

https://github.com/STEMLab/IndoorGML2CityGML_PSExtension

Since IndoorGML and CityGML are modeled as complex schemas, we have to define the mapping
rules from the top level to lower ones.

• The mapping rules in the attached file aim at converting IndoorGML 3D objects to CityGML
Building features.

• For the mapping rules between IndoorGML and CityGML, start with PrimalSpaceFeatures as the
top level.

Hale provides several approaches, among which two are applied:

• ReType:toplevel

• Rename: mapping rules of lower levels of ReType (1:1, 1:n, n:1)

• Retype PrimalSpaceFeatures in IndoorGML to CityModel in CityGML.

• Define the mapping rules between feature types of the lower levels

◦ IndoorGML.cellSpaceMember–CityGML.FeatureMember

◦ IndoorGML.cellSpace–CityGML.Room

• Define the mapping rules for the attributes such as

◦ id

◦ geometry

50

When converting from CityGML to IndoorGML, GML.ID is

• not mandatory in GML3.1.1, which is the base standard for CityGML 2.0

• Mandatory in GML3.2.1, which is the base standard for IndoorGML

◦ generated using ‘Generate Unique Id” function

7.1.3. IndoorGML Network Sub-Spacing

The GRID team from University of New South Wales (UNSW) provides a tool, called
IndoorGML2LCC which allows to add a Node Relation Graph (NRG) to IndoorGML models. The tool,
available online (https://github.com/grid-unsw/IndoorGML2LCC), uses the Linear Cell Complex
(LCC) package from the Computational Geometry Algorithm Library (CGAL) as a data structure to
handle the geometric and topological information described in IndoorGML. It is provided as a
plugin that fits directly to the 3D LCC demo of CGAL. While the installation process of
IndoorGML2LCC is described in the Github page, its use is described below.

51

https://github.com/grid-unsw/IndoorGML2LCC

Figure 48. Importing files from the user interface of IndoorGML2LCC

The IndoorGML files loaded in the tool were expected to be missing topological information and
solely describe the spaces called CellSpace units. However, it is designed to preserve such data if
already available and add another graph layer on top of it.

Figure 49. Viewing the IndoorGML Model (Original View)

52

Figure 50. Viewing the IndoorGML Model

Once the IndoorGML model is loaded, the user interface (UI) allows several views of the model and
interaction options. Figure 49 illustrates the original view where every cell is represented with a
unique color, which stands as a basic ID in the LCC. That view can be changed into a wireframe to
see just the outline of the cells shown in Figure 50.

Figure 51. NRG operation on the IndoorGML model

53

From the loaded CellSpace units, each of them is represented as a 3-Cell in the LCC. From there, the
NRG can be automatically derived by running the “Add NRG Layer” operation (see Figure 51). It is
called “basic” because it is implementing the original Poincare Duality theory which consists in
abstracting every volume with a point (node) and every volume to volume adjacency with an edge,
forming together the NRG. The nodes are obtained based on the centroids of the CellSpaces (see
Figure 52) and their adjacency relationships are deduced from the faces that they share between
them.

Figure 52. Nodes of the CellSpaces and export process

While the graph visualization of IndoorGML2LCC is still under development, the exported model,
enriched with an NRG layer can be visualized using FME (see Figure 53) or InViewer.

54

Figure 53. Visualizing the generated NRG

7.2. Safe Software Navigation Modeler
Safe Software’s approach used the FME spatial ETL tool to read the CityGML 2.0 Public Safety ADE
data and transform it to IndoorGML v1.1 with the Public Safety Extension. Because FME uses a
model-based approach, the transformation rules are tied to the underlying CityGML and
IndoorGML schemas and are not dependent on particular datasets. This means that once the
transformation was defined for one dataset, it was possible to use the same CityGML-to-IndoorGML
model to transform other datasets. Some minor configurations were required, but these are mostly
limited to mitigating deficiencies in individual datasets, or introducing custom business rules to
auto-generate public safety content that was missing in a particular dataset.

The ETL tool provides a number of functions mapped out in a feature flow diagram so that no
coding is required. The primary transformation steps involved were: map schema from CityGML to
IndoorGML, generate IDs, parent IDs, and parent property types to satisfy IndoorGML schema /
UML requirements, and establish required nesting and parent child feature relationships. There
were also business rules added to generate default values required for each feature type. Some of
these are constants and some are based on feature context including public safety information.

Finally, a navigation network topology was generated and decomposed into nodes and linkages to
support navigation. The navigation network was auto-generated within the cell spaces of the
Indoor GML model using the state and transition feature types. The basic approach was to generate
a Triangulated Irregular Network (TIN) and then remove all the edges that crossed wall boundaries.
Doors were used to cut holes in the walls to allow the network to traverse the building. In some
datasets a few key doors were missing so a few transition features were added to better support
network connectivity. Finally, the output was validated against the IndoorGML Public Safety
Extension schemas to make sure that the results were consistent with the requirements of the
IndoorGML standard.

55

The main process steps for the Navigation Modeler (NM) Service are as follows:

1. Query the CSW for a given building (CSW GET GetRecordById).

2. Parse the CSW response metadata and retrieve the associated CityGML via resolving dataset
URL.

3. Convert CityGML 2.0 Public Safety ADE to OGC Indoor GML using data transformation model
developed in FME:

a. Map schema from CityGML to Indoor GML.

b. Set default values where none are available in source.

c. Merge indoor context information such as public safety data.

d. Generate nodes and linkages to support navigation.

e. Generate OGC IndoorGML v1.0. data in LLWGS84 (EPSG:4326) or Web Mercator (EPSG:3857)
using an IndoorGML Public Safety Extension to IndoorGML in order to capture information
related to the CityGML public safety ADE.

4. Perform validation and publish validated IndoorGML to publicly available file service end
point.

5. Generate metadata and publish metadata record with building ID and dataset link to CSW (CSW
POST Transaction Insert)

For more information including the FME workspace model used to transform from CityGML to
IndoorGML see: https://knowledge.safe.com/articles/96851/ogc-indoor-gml-pilot.html

Figure 54. FME Data Transformation Workspace / ETL model to Translate from CityGML Public Safety ADE
to IndoorGML Public Safety Extension for Hancock County Data

56

https://knowledge.safe.com/articles/96851/ogc-indoor-gml-pilot.html

Figure 55. CityGML-to-IndoorGML Runtime Parameters

Runtime parameters control specification of CityGML input path, IndoorGML output path,
navigation network grid size (vertical and horizontal tiles), rotation angle, and validation.

57

Figure 56. Navigation Modeler Service Network Output with Shortest Path Calculation

The core requirement for the Navigation Modeling Service is the ability to convert from CityGML
Public Safety ADE to IndoorGML. During the kickoff meeting it was agreed that the central
reference for all datasets would be an Indoor Pilot CSW. Each service that generates a new dataset
publishes it to the CSW. Any service that requires a dataset can request it from the CSW based on its
ID. The CSW also lists all available buildings by name and ID.

58

Figure 57. FME Workspace for interfacing with the CSW

Figure 57 shows the FME Workspace which was used to automate the posting of IndoorGML results
generated by NIST004 to the CSW.

The primary risk factors to implementing this service were:

• Development of the CityGML Public Safety ADE and IndoorGML Public Safety Extension. This
took a significant amount of collaborative effort and, naturally, changes to these schemas did
require significant adjustments and retooling of transformation algorithms.

• Quality and type of incoming CityGML was not known ahead of time. Some of the earlier point
cloud-to-CityGML sample datasets were composed of a few very large mesh features
representing large building elements. These were not relatable to individual rooms, walls, or
doors and, as such, were not usable for navigation.

• Availability of format and schema of data required by IndoorGML but not present in CityGML
not yet known (e.g., occupancy, room use, and public safety information were often not
available from the source CityGML, etc.)

• Basic validation for the output IndoorGML was conducted by validating the GML against the
IndoorGML application schemas and Public Safety Extension schemas. Beyond this, there were
few business rules provided to help qualify the quality of indoor data or assure accuracy of the
output relative to the input IFC or CityGML.

• Navigation service example requests and use cases that need to be answered by IndoorGML

7.2.1. Considerations

CityGML is a useful input format for the Navigation Modeler because it is a mature and widely
adopted standard, with many datasets available in CityGML format. CityGML is a good focal point
for building data because it can be created from IFC, IMDF, BIM, and other GIS formats. Safe

59

Software generated CityGML data from Apple IMDF in order to create test data to begin early
development and testing of the Indoor Navigation Modeler service.

IndoorGML is primarily an exchange format, not an application format. Examples of typical
application formats include Apple IMDF and Google KML. IndoorGML’s core purpose is to provide
information exchange to support indoor navigation. Domain application specific content should
remain in the extensions. For example, the public safety features developed for IndoorGML belong
as features defined in the schema of the Public Safety Extension, not in the core IndoorGML. While
CityGML data is a good source of building data since it is widely available, IndoorGML is ideally
suited for indoor mapping and navigation – the application for which it is designed.

The Navigation Modeler component converts from CityGML to IndoorGML from which navigation
routes are calculated. CityGML is potentially richer in 3D physical representation and also contains
more information than is typically needed for indoor applications. CityGML models are comprised
of 3D surface structures. The intent of IndoorGML is to model interior spaces and the relationship
between those spaces for the purposes of navigation. For example, interior furniture or
installations are multi-surface solids in CityGML, whereas in IndoorGML they are modeled as 3D
points. Point Clouds are converted into CityGML multi-surface objects to provide cleaner, discrete
physical representations of the spaces and objects being modeled. This is then converted into
IndoorGML, which is a simpler, logical representation of indoor spaces, connectivity, and points of
interest.

7.2.2. Lessons Learned

• CityGML doors: Correct door definition is critical to any indoor mapping model, but often
presents challenges when it comes to interpreting the type and state of the doors. Some doors
were miscategorized as rooms which broke the network. The workaround to this was to filter
these features out by their ids and correct their categorization.

• Depending on the coordinate transformations, some datasets had a north up layout while others
such as Hancock County are oriented at a significant angle away from north up. In the latter
case, we used a calibration factor to rotate the navigation network so that it aligned with the
building corridors to produce a navigation network in line with building corridors. In the
future, logic could be added to detect corridor orientation so that this rotation could be applied
automatically.

• There were a variety of approaches that proved useful in geometry simplification. In the case of
the Hancock County CityGML, the doors were complex multisurfaces. These were simplified
into vertical planar surfaces using a combination of FME and ETL functions including a
PlanarityFilter followed by a Tester set to filter out all faces except those whose Z surface
normal = 0. This proved to be a useful approach to filter out everything except vertical surfaces.

• CenterPointReplacer was used to convert building installation objects represented as solids or
multisurfaces in CityGML, into points of interest that were represented as a simple 3D point in
IndoorGML.

• In practical situations, first responders need to transition between buildings or across outdoor
spaces and in / out of buildings. To this end, focusing only on indoor spaces is not sufficient.
There needs to be connection points which link buildings with external / outside spaces so that
indoor / outdoor navigation can happen seamlessly.

60

• There is a need for a Quality Assurance process for data quality (e.g., Data Quality DWG). At the
moment validation of output is primarily against the IndoorGML schemas including the Public
Safety Extension. Other business rules need to be developed to validate the data content. Rooms
need doors. Rooms should cover the level. Doors and room walls should be coincident. Rooms
should be enclosed spaces. In FME, the Geometry Validator transformer was used for some of
these checks.

• For the purpose of this pilot, a published parameter for navigation grid resolution was provided
(horizontal and vertical tiles) to enable control of the granularity of navigation.

• The multi-layer graph generation from CityGML to IndoorGML may have varied results
depending on the algorithm and resolution applied. These non-uniform results, when processed
for navigation, could produce different navigation routes depending on the graph generated.
Different applications may require different types of navigation routes. Basic instructions to get
from room A to room B might only require room sequence information provided by a simple
center-point network. Routing to support a first responder and provide the shortest path from
point A to B across rooms of various sizes and with multiple entrances would likely require a
higher resolution navigation network that supports multiple possible routes across a given
room depending on obstacles, hazards, start and end points etc.

• Overall, once configured, spatial ETL transform models proved capable of automating most of
the process for converting indoor building data from one format to another, particularly when
the source and destination formats conformed to clearly defined open standards such as
CityGML, IndoorGML or IFC. The initial FME transform model was developed to convert
Victoria Airport CityGML to IndoorGML. Once this model was developed and tested, the same
model was employed to convert the PNU Central Plaza CityGML to IndoorGML. Some
modifications were required to manage anomalies in each dataset - such as misclassified doors.
Also, edits were made to accommodate changes to the Public Safety ADE and enhancements to
improve navigation network generation. However, by the time the Hancock dataset became
available, only minimal calibration changes were required to perform the conversion (e.g.
navigation network resolution and alignment calibration).

7.3. Skymantics Navigation Modeler
Skymantics was a relatively newer user of the CityGML and IndoorGML standards, enabling them
to provide a fresher perspective on the tasks of implementing these standards. Skymantics
developed the Navigation Modeler Service using WPS as the primary interface. The main process
steps for the Navigation Modeler (NM) Service are as follows:

61

Figure 58. Updated Component Architecture

1. Client Tool makes a request to the WPS to retrieve IndoorGML data based on CityGML data as
an input.

2. The WPS processes the request and submits a job to the Navigation Modeler service.

3. The Navigation modeler retrieves the information from the CSW based on the job inputs and
processes the CityGML-to-IndoorGML conversion.

4. The Navigation modeler reinserts the new IndoorGML converted data back into the CSW.

5. The Navigation modeler responds to the WPS to notify completion of the job.

6. The WPS provides the client with the URL of the converted IndoorGML data.

7. The client is able to retrieve the completed IndoorGML from the CSW.

The Indoor Navigation Modeler is responsible for CityGML retrieval and IndoorGML insertion
compliant with the OGC WPS 2.0 standard and its associated domain logic. The server consumes
GML data from the CSW and produces IndoorGML compliant with the requirements of Indoor
Navigation for the Pre-planning Tool Client. The front-facing WPS server is 52°North’s Java based
implementation of WPS 2.0, JavaPS. This WPS server is hosted on a Tomcat instance on a Docker-
based Debian GNU/Linux 8 distribution, hosted on a Microsoft Azure Cloud server. The backend
Processing Service is a Java-based implementation for transforming the relevant CityGML-to-
IndoorGML data, in part utilizing the open source library citygml4j. The WPS provides
asynchronous, scalable capability by containerizing these Processes using Docker.

7.3.1. Lessons Learned

CityGML appears to be a very large standard (i.e., over 270 pages). This standard covers various
Levels of Detail (LOD), which it was later discovered that only LOD4 pertained to the pilot. The
LOD4 describes the exterior and interior geometries of buildings, openings (e.g., doors, windows,
etc.), and interior objects such as furniture. These interior objects could include public safety
features such as fire extinguishers, shut off valves, etc. which apply to the public safety scenario of

62

this pilot.

The sponsor requirements mandated, however, that additional metadata was needed to describe
certain public safety specific features regarding interior objects such as the direction a door swings
inward/outward, symbology, and hazards such as oxygen tanks, etc. In order to incorporate this
data, the Public Safety ADE was developed and incorporated into CityGML. The Public Safety ADE
extends features within CityGML with additional properties such as whether a door is locked and
direction it opens.

Automatic generation of IndoorGML SpaceLayers was very challenging without utilizing existing
enterprise tools. Complex polygons, such as a horseshoe shaped room, are difficult to conduct using
fast and efficient algorithms. As such, transformations such as Delaunay Triangulations of CityGML
Geometry were required. Our approach was achieved using FME Workbench to generate a TIN of
the topographical space. Even a semi-manual process such as this may result in bugs or stranded
States. Additionally, it is highly difficult to utilize all IndoorGML specifications in an automated
fashion based purely on Geometry alone for converting CityGML to IndoorGML due to CityGML’s
more generalized and abstracted semantic definitions. An example of this is CityGML’s standard
Room definition. IndoorGML specifies subtype of Rooms, such as hallways or archways. Without
additional semantic information, it is very difficult for an automated process to differentiate
between a very long and narrow room and a hallway. Some manual definition of these spaces is
required in order to utilize some the respective IndoorGML definitions in the case of this pilot.

In order to convert CityGML to IndoorGML, the Java Architecture for XML Binding (JAXB) was used
for transformation of the XML data types. It was discovered that an open source bindings based on
XML-Java Binding (XJB) exist, specifically for CityGML to use with JAXB, called ogc-schemas. These
files are bindings that are required in order to transform CityGML markup into Java class
representations. Using the XJC command line interface (CLI) and the ogc-schemas bindings, the
CityGML java objects can be generated. Once the objects are generated, additional properties can be
annotated. Then the objects and be transformed into different representations such as IndoorGML.

Some challenges were encountered during development. Writing XJB bindings for such a large
schema such as CityGML is too complex due to the number of dependencies required considering
the scope and the development time allocated for the pilot. It was also discovered that there is a
mismatch of GML versions between CityGML and IndoorGML. CityGML is an application schema of
GML version 3.1.1 whereas IndoorGML targets GML version 3.2.1 which created issues. For
example, a solid property type in CityGML is different than a solid property type in IndoorGML. It
was learned that objects of type GML 3.1.1 could not be casted to objects of type GML 3.2.1. For
example, CityGMLSolid = new IndoorGMLSolid() would result in a Typecast compilation error.
Since IndoorGML and CityGML both inherit from GML types, manual generation of GML 3.2.1 was
required to transform the CityGML to IndoorGML.

NOTE
CityGML3 - the new version of CityGML – is currently being developed to support
GML 3.2.1 (https://github.com/opengeospatial/CityGML-3.0Encodings).

As both CityGML and IndoorGML geometric representations use GML, and GML did not change the
core representation of objects composed of primitive types such as character arrays, int, long, float
etc., a developmental workaround was able to be implemented. The workaround is shown in the
following Java listing.

63

https://github.com/opengeospatial/CityGML-3.0Encodings

private net.opengis.gml._3.SurfacePropertyType

CreateNewSurfaceMembers(List<Double> list){
 net.opengis.gml._3.DirectPositionListType outputPosList = new
net.opengis.gml._3.DirectPositionListType();
 outputPosList.getValue().addAll(list);
 net.opengis.gml._3.LinearRingType myring = new net.opengis.gml._3.LinearRingType();
 myring.setPosList(outputPosList);

JAXBElement<net.opengis.gml._3.LinearRingType> ring = objfac.createLinearRing(myring);
 net.opengis.gml._3.AbstractRingPropertyType absRing =
objfac.createAbstractRingPropertyType();
 absRing.setAbstractRing(ring);
 net.opengis.gml._3.PolygonType poly = objfac.createPolygonType();
 poly.setExterior(absRing);
 poly.setSrsDimension(BigInteger.valueOf(3));
 JAXBElement<net.opengis.gml._3.PolygonType> absSurface = objfac.createPolygon(poly);
 net.opengis.gml._3.SurfacePropertyType surfacePropertyType
=objfac.createSurfacePropertyType();
 surfacePropertyType.setAbstractSurface(absSurface);
 return surfacePropertyType;
}

First, the CityGML geometry primitives of GML type 3.1.1 were extracted. The geometry primitives
are posList, which is a collection of doubles that represent geometric coordinates. Then, a new
PosList of type GML 3.2.1 was created. JAXB object factories were used in this process to generate
compliant GML classes. The CityGML primitive collection of type GML 3.1.1 would then be copied
onto this newly generated 3.2.1 PosList. The geometric representation would then propagate up the
abstraction hierarchy such that PosLists are nested into AbstractRings into Polygons into Surface
Members. These surface members represent the walls, doors, and openings of a building space.
However, this approach is prone to error because new code must be generated to map the
appropriate version types for each mismatch, for example GML 3.1.1 to GML 3.2.1. This could
become a continued issue and should be carefully considered in a future version of IndoorGML and
the target application of the GML schema versions for interoperability.

64

Chapter 8. Building Model Repository

8.1. Compusult Building Model Repository
The Building Model Repository stores CityGML, IndoorGML, and Point Cloud URLs inside a Catalog
service using a Catalog Service for Web-Transactional (CSW-T) interface. A client can search for
information to discover the data and the available services. The CSW-T provides a response
containing links to the data and/or services. A WFS-T is not provided since CSW-T can provide the
necessary transactional requests to discover and access the services and data. For this pilot, the
data is stored in an FTP location, and the URL to the data is stored in the CSW.

Figure 59. Building the Model Repository

Figure 60. Requesting Data from the Repository

Compusult has a product called Web Enterprise Suite (WES) which provides the capability to
interface with the CSW to retrieve Point Cloud, CityGML, and IndoorGML data and convert them
into 3D Tiles and store them within a GeoPackage. Additionally, IndoorGML data is natively stored
in a GeoPackage Related Tables extension. The IndoorGML Route is used for navigation purposes.
In these formats, they are delivered via 3DPS to a Pre-planning Tool Client provided by the
Compusult GoMobile Client. This enables offline viewing and navigation routing of the content on a
mobile device in a disconnected environment, also known as Denied, Degraded, Intermittent, or
Limited (DDIL) Bandwidth environment.

The Building Model Repository provided by Compusult performs according to the following
sequence diagram.

65

Figure 61. Building Model Repository Sequence Diagram

a. Users authenticate with the CSW service

b. Authenticated users execute a CSW Insert, Update or Delete Transaction using an HTTP POST
request. The Insert transaction’s POST data contains the URLs to the raw Point Cloud data,
IndoorGML and/or the CityGML along with the Metadata. The Update transaction’s POST data
contains the filter criteria of the CSW record(s) to be updated to the Point Cloud URL,
IndoorGML URL and/or CityGML URL data along with the Metadata. The Delete transaction’s
POST data contains the filter criteria of the CSW record(s) to be deleted.

c. The CSW object classifications shall be of the following types:

◦ urn:ogc:def:ebRIM-ObjectType:OGC:Dataset:3DData:Lidar

◦ urn:ogc:def:ebRIM-ObjectType:OGC:Dataset:3DData:CityGML

◦ urn:ogc:def:ebRIM-ObjectType:OGC:Dataset:3DData:IndoorGML

◦ urn:ogc:def:ebRIM-ObjectType:OGC:Dataset:3DData:IndoorGMLRoute

d. Clients execute a GetRecords or GetRecordByID request to the CSW to find Indoor Mapping
Service records.

e. Clients extract the raw data URL to download the data files.

Interface Calls

• CSW INSERT, UPDATE and DELETE Transactions

66

◦ Input

▪ POST data with the URL(s) to the raw data files, CSW Classification Type, and associated
Metadata

◦ Output

▪ <csw:TransactionResponse>

• CSW GetRecords

◦ Input

▪ Spatial, Keyword, and Classification Type (see CSW Classification Types above)

◦ Output

▪ <csw:GetRecordsResponse>

• CSW GetRecordByID

◦ Input

▪ RecordID

◦ Output

▪ <csw:GetRecordByIdResponse>

8.1.1. CSW Transactions

Examples are shown in Annex A - Appendix A, Building Repository Examples.

CSW Insert Transaction

The CSW Insert Transaction Post request initiates the ingestion of metadata describing the data
with a link to the raw product. (see Section A.1, “CSW Insert Transaction POST Request Example”)

CSW Update Transaction

The CSW Update Transaction Post request updates the metadata and/or raw product link. (see
Section A.3, “CSW Update Transaction Request Example”)

CSW Delete Transaction

The CSW Delete Transaction Request deletes the records in the CSW matching the criteria
specified. (see Section A.5, “CSW Delete Transaction Request Example”)

CSW GetRecords Transaction

The GetRecords Request returns the records that meet the criteria specified. (see Section A.7, “CSW
GetRecords Request Example”)

CSW GetRecordByID Transaction

The GetRecordByID Request returns the record for the specified ID. (see Section A.11, “CSW
GetRecordByID Response Example”)

8.1.2. Lessons Learned

Compusult did not have access to a stable basic dataset to work with at the beginning of the pilot.

67

Most datasets that were initially provided by participants had issues (e.g., CRS not specified, missing
GML tags, etc.), which led to a series of iterations to try to determine the issues and work with the
corresponding participants to get the data cleaned up. In order to create a complete scenario with
building models, navigation routes, and public safety features, all datasets (point cloud, IndoorGML,
CityGML, and Public Safety) are required. Sometimes only a subset of these were available. Without
IndoorGML, the navigation routing cannot be provided. Without CityGML, the building model
cannot be represented. Without Public Safety feature point-of-interest, we cannot render things
such as fire extinguishers, gas shut off valves, etc.

Another challenge faced by Compusult was that participants did not always implement the CityGML
or IndoorGML standards in the same way, which caused inconsistencies in the data and resulted in
errors or unexpected outputs when new data was received. To avoid such pitfalls in the future,
validation tools could be developed for the datasets to ensure contributions follow the standards
specifications more closely.

Compusult worked with the other participants to identify the discrepancies and work through the
issues. The following issues were identified:

• Missing Coordinate Reference System (CRS)

• Use of different coordinate systems without specifying CRS

• Inconsistent use of namespaces

• Missing datasets (e.g., Point Cloud and CityGML existed but not the corresponding IndoorGML,
having CityGML and IndoorGML datasets but missing Point Cloud data (Victoria Airport), or
missing CityGML Public Safety ADE or IndoorGML PS Extension.)

68

Chapter 9. Indoor Navigation Service
The purpose of the Indoor Navigation Service is to provide the optimal route for a firefighter to
safely reach their target within the building. Conceptually, the IndoorGML data should already be
annotated with the PS extension and provide notable cues for guidance throughout the navigable
path. The indoor navigation service is intended to help first responders to navigate the interior
spaces of a building during an emergency. It creates a route between two points, a start and an end
point. The service is also intended to support navigation to public safety features along the way
such as fire extinguishers, shut-off valves, etc. or avoid hazards such as locked doors, rooms with
oxygen tanks, etc. The indoor navigation service takes IndoorGML as an input and parameters from
the pre-planning client to generate an IndoorGML route.

9.1. Skymantics Indoor Navigation Service
Skymantics' Indoor Navigation Service was developed using Java, specifically JDK 1.8. This includes
libraries such as the Apache Commons networking library to extend FTP and HTTP access, as well
as the JAXB XML processing libraries for the consumption and generation of XML data based on the
IndoorGML schema specifications. This domain logic was integrated into JavaPS [https://github.com/

52North/javaPS], an Open Source WPS implementation from 52North. The WPS was hosted on a
Tomcat 8.0 instance contained in Docker which was then deployed to an Azure Cloud server. An
FTP endpoint specified by the client is used to extract the relevant IndoorGML for a given
navigation area. The JAXB library is then used to create IndoorGML Java Objects from their
respective markup classes using .xjb binding files provided by the Open-Source ogc-schemas
repository.

The Navigation Service extracts the State-Transition Network from the IndoorGML topographical
SpaceLayer and proceeds to parse the graph, associating the various states to their respective
transitions, whilst also checking the semantic definition of States or transitions to delineate hazards
(e.g., locked doors). These public safety enhanced state / transitions are assigned specific weights if
none are provided. For example, the connected Transition of any public safety hazard has all its
inbound edges set to a weight of Infinity. Likewise, Transitions that represent locked doors also
have their weight set to Infinity. This guarantees that an inaccessible node will not be considered
during the Navigation process. An implementation of Dijkstra’s algorithm was used to navigate
interior spaces, utilizing IndoorGML’s SpaceLayer architecture to calculate the most eligible route
for a given Start and End point. Functionally, the Navigation Service takes two IndoorGML states
from the topographical SpaceLayer. These states are chosen by the end user in the pre-planning
client application. The Navigation Service then calculates the shortest, most viable path from the
Start state to the End state. The result of this process is an ordered set of Route objects. This list is
then deserialized using the relevant .xjb binding to produce schema-compliant IndoorGML that
represents a Route, with the relevant states as RouteNodes and transitions between them as
RouteSegments. This markup is then sent as a response to the requesting Client tool. The Indoor
Navigation Service provided by Skymantics performs according to Figure 62.

69

https://github.com/52North/javaPS

Figure 62. NIST006 Indoor Navigation Service

1. Client application sends selected Start and End StateId’s and accompanying Catalog GUID to the
WPS instance

2. WPS obtains the IndoorGML data associated with the GUID via the IndoorPilot FTP Server

3. WPS transforms this data via JAXB into an annotated Java Object

4. Domain Logic consumes this Java Object to extract the State-Transition network and transforms
it into a graph representation

5. The Start and End states are fed into a graph traversal function based on Dijkstra’s algorithm,
and the most optimal route is calculated using the Weight property of the Transition class

6. The series of States visited are inserted into a Stack, which is then unwound and transformed
into a Route object that mirrors IndoorGML Navigation modules Route schema

7. The WPS returns this Route Object in XML format back to the Client tool, adhering to the
schema put forth for the IndoorGML navigation module.

9.1.1. Lessons Learned

One recommendation to the IndoorGML SWG is to eliminate or refactor the Node and Edge
property of the SpaceLayer Class (see SpaceLayerType in Section B.3, “SpaceLayerType Example”).
Specifically, the unbounded maxOccurs property of both Edge and Node classes, in conjunction
with the minOccurs property of the Edge class, can result in IndoorGML markup in which States
are stranded with no Transition. It may also result in improperly formatted Markup, in which
connected states are erroneously logically separated into different Node collections. An expansion
of the IndoorGML schema document of the NodeType and EdgeType classes, and their precise
purpose, in regards to the schema, may eliminate some confusion associated with these particular
objects.

9.2. Compusult Indoor Navigation Service
The Indoor Navigation Service provided by Compusult has the following functionality:

70

Figure 63. Data flow among components

Process Flow

a. Users will initiate a navigation request by specifying a start point, an end point in the
GetNavigationRoutes request.

b. The Indoor Navigation Service will request IndoorGML data.

c. IndoorGML Data will be returned to the Indoor Navigation Service.

d. The Indoor Navigation Service will calculate the route.

e. The Route info (GML) will be passed back to the User for visualization in the Indoor Mapping
Client

Interface Calls

• WPS GetNavigationRoutes

◦ Input

▪ IndoorGML ID

▪ Start Point

▪ End Point

◦ Response

▪ GML Navigation Routes (including Metadata)

Examples of interface calls are provided in Appendix C, Compusult Indoor Navigation Service
Examples.

71

Figure 64. Indoor Navigation Route Displayed in Pre-Planning Client

9.2.1. Lessons Learned

It was found that the Coordinate Reference System (CRS) was specified inconsistently or sometimes
missing altogether in CityGML / IndoorGML. The following examples show different
representations of the srsName. In the future there may need to be a standardized way of
representing the srsName to increase the interoperability between various clients. Some examples
include the following [1: Implementors should refer to OGC Naming Authority polices
(https://www.opengeospatial.org/standards/na) for a description of the correct structure of URNs
and URIs that identify CRS.]:

• srsName="EPSG3850"

• srsName="EPSG:3850"

• srsName="EPSG::3850"

• srsName="urn:ogc:def:crs,crs:EPSG::25832,crs:EPSG::5783"

The pre-planning client has the capability to turn on and off the display of specific floors. Initially,
there was no specification of a floor / story so Compusult attempted a few approaches for the
representation of a floor (such as using the z-value). However, a good solution could not be
reached, so it was recommended to add a "Storey" attribute to IndoorGML which would represent
the floor level. This was initially implemented as text in the comment for the element which is a
suboptimal approach.

There was also some discussion about adding the Story as a parent element and grouping other
child elements inside the parent element. This also highlights an issue between the various worldly
spellings of some words. Storey is the British spelling and story is American English. [2: OGC
officially uses American English in its documents.]

72

https://www.opengeospatial.org/standards/na

The Storey attribute is required to identify the floor or story being represented in the building.
Knowing this would allow the client software to be able to turn on/off all the feature data for a
given floor. For example, if the user only wanted to see the navigation points and public safety
features for floor 4, this attribute would allow the software to identify the floors and disable all but
Storey 4.

When defining the start and end navigation points for a route, there were differences in
approaches to mapping the start and end points to elements in IndoorGML in an interoperable way.
Initially, Compusult’s implementation provided the start and end points as x, y, z values whereas
Skymantics provided the start and end points as named points. All points in the IndoorGML model
have a unique ID which is used to name the point. It was decided to change the implementation to
match the Skymantics implementation to facilitate interoperability between the routing services.
Both of these methods are viable, however, it was determined that using the named method was
cleaner because there was no additional work required to find the closest point to a user’s
selection.

The routing information is stored in IndoorGML so it was decided to store the IndoorGML in the
GeoPackage for offline routing in a Denied, Degraded, Intermittent, or Limited Bandwidth (DDIL)
environment. This was accomplished by using the GeoPackage Related Tables extension to store the
IndoorGML in its native format. This gave the additional benefit of being able to implement routing
in DDIL environments as we could read the GML directly from the GeoPackage without the need to
interface with the WPS service.

The Indoor Navigation Service was implemented as a WPS instead of the suggested WFS-T due to
flexibility required for the implementation. The WPS allowed for a simpler interface to pass the
start and end points as well as the IndoorGML to the navigation service and to return the route
information as IndoorGML. A Web Feature Service (WFS) would not work for this as it is simply a
query interface to return feature information. There was no clear way to pass the IndoorGML data
using a WFS.

73

Chapter 10. Pre-planning Tool Client
The pre-planning tool client is the user interface that a first responder or technician would interact
with during a pre-planning scenario. The client provides 3D and 2D views of the captured point
cloud, converted CityGML geometries, IndoorGML indoor spaces, and IndoorGML navigational
networks. Using the pre-planning client, a user can access the building repository to retrieve the
stored datasets, display and manipulate the viewing angles, and generate routes by specifying start
and end points. The routes are displayed within the client along with the public safety features. In
the future, turn-by-turn directions could be incorporated to provide the optimal route safely
throughout the building and avoid hazards.

10.1. Compusult Pre-planning Tool Client
Compusult extended their current desktop and mobile client offering called GoMobile to support
CityGML, IndoorGML, and Point Cloud datasets. The GoMobile Pre-planning Tool client can display
2D maps and images, Point Clouds, 3D maps (See Figure 65), and 3D Indoor data (See Figure 66).

Figure 65. GoMobile Pre-planning Tool Displaying Victoria Airport

74

Figure 66. GoMobile Pre-planning Tool Displaying 3D Indoor Data

10.1.1. Workflow

GoMobile has the ability to query, render and navigate indoor scenes according to the following
workflow:

75

Figure 67. Pre-planning Tool Client Sequence Diagram

1. GoMobile initiates a getData request to Compusult’s Web Enterprise Suite (WES) platform which
returns an ISO document with URLs to the map, point cloud, navigation resources

2. GoMobile calls the 3DPS to retrieve the 3D map or the point cloud data.

3. Users can use GoMobile to initiate a WPS navigation request by specifying a start point, an end
point in the WPS GetNavigationRoutes request.

4. The Route info (GML) is passed back to the user for visualization in GoMobile client application.

10.1.2. Lessons Learned

The first challenge was how to pick the start and end point in 3D space. Due to the nature of 3D
rendering, a user can rotate the model so that multiple points can be oriented behind each other.
This presented a challenge to determine which point the user meant to click on when they click in
3D viewer. It was assumed that the user meant to click the closest point, which is used for the route
start or end point.

The specification lacked guidance on how to represent the 3D model so it was implemented with
gray translucent walls, floors, and ceilings, gray non-public safety doors, and brownish red public
safety doors. This type of information could have been more clearly defined in the appearance
module of the CityGML. Without the appearance module definitions individual clients could render

76

the building differently. Additional guidance for public safety viewing.

There appears to be inconsistent use of the boundary surface thematic classes (e.g.,
<bldg:RoofSurface>, <bldg:CeilingSurface>, <bldg:FloorSurface>, etc.) as opposed to
LOD4MultiSurface. Therefore, the client could not reliably represent surfaces based on the element
class in some models. Use of the thematic classes would allow for finer detailed representation of
the building parts. For example, a client could render the floor a different color than the roof or
ceiling. It would also allow for parts of the building to be turned on/off in the display, giving the
user the ability to turn off the roof, for example.

Different uses of the standard CityGML namespaces (e.g., generic vs building vs bridge) presented
challenges for parsing CityGML data. Different datasets used different elements / namespaces. Use
of namespaces such as 'generic' instead of 'building' caused parsing errors when using the CityGML.

There is a lack of a specification on how to represent Public Safety features. It was decided to use a
lookup dictionary for mapping the icon to the Public Safety feature type. This means users of the
ADE have to parse the XML to get the type of the feature, then take the type and do a lookup to find
the URL to the icon, then download the icon for use. This limits certain types (e.g., fire extinguisher)
to a single icon. It would be simpler if the ADE XML itself contained the URL directly to the icon and
by-pass the lookup. However, there is the benefit that if the URL to the icon changes it only needs to
be updated in the lookup table and not in all places throughout the XML.

It was found that there were different versions of GML used between CityGML and IndoorGML.
CityGML used V3.1.1 whereas IndoorGML used v3.2.1 which led to parsing issues. Initially, it was
expected that the CityGML and IndoorGML needed to be consistent in versions. However, the issue
was overcome by adding support for both versions of GML.

Point Cloud data was received in three formats (PCD, LAS and LAZ). In order to process the various
formations, Compusult used a 3rd party tool to manually convert all Point Clouds to LAZ before
being converted into 3DTiles in .PNTS format which was used by the client for display. This
introduced a manual step in the process which is not desirable.

The Point Cloud datasets did not contain any information for georeferencing so a manual process
was introduced to georeference, scale, and rotate the point cloud so that it displayed corrected on
the maps in Compusult’s 3D mapping client. The specification does allow for georeferencing
information which, if provided, would allow rendering of the building in the correct location. In the
absence of a geo-location to draw the points our client would default to 0,0.

10.2. EcoDomus Pre-planning Tool Client
EcoDomus is the software platform to create Digital Twins of facilities and infrastructure objects.
The software tracks every object’s attributes (e.g., from a rooftop chiller to a receptacle) and allows
visualizing objects in 3D and 2D. For this research project, EcoDomus expanded its 3D Viewer
capabilities to support CityGML and IndoorGML.

EcoDomus Viewer is able to render CityGML geometry and show properties for the selected objects.
The software allows loading multiple CityGML files and aligning the objects (facilities) by moving
them within the 3D scene. An example below (See Figure 68) shows a campus 3D map using
CityGML (white buildings) alongside the BIM model (yellow-brown building, exported from Revit):

77

Figure 68. EcoDomus Viewer

CityGML-rendered facilities can also be merged within the 3D scene with point clouds as shown in
Figure 69 below.

Figure 69. EcoDomus Viewer Interior View

10.2.1. Workflow

EcoDomus Viewer operates in a standard browser (e.g., Google Chrome) via WebGL and does not

78

require special plugins. Asset data is stored in MS SQL server and can be edited by the authorized
users.

1. The authorized user logs into EcoDomus software and opens the Viewer.

2. The user enters some facility’s address into a textbox in the menu.

3. EcoDomus software accesses CSW hosted by another project participant and searches by a
keyword agreed upon (e.g., “Hancock County”).

4. EcoDomus software retrieves the CityGML file for the facility and loads it into the Viewer.

5. The user can navigate within the scene using standard controls (walk, orbit, pan, zoom, etc.),
select objects and see/edit its data. The user can hide selected objects, isolate objects making the
objects semi-transparent, etc.

EcoDomus Viewer operates in a standard browser (Chrome) via WebGL and does not require
special plugins. Asset data is stored in MS SQL server and can be edited by the authorized users. For
this project, EcoDomus added IndoorGML processor. An example of a project file is shown below:

Figure 70. EcoDomus Viewer IndoorGML Processor

Red objects show the nodes and blue lines show the suggested navigation between the nodes.

79

Figure 71. EcoDomus Viewer displaying Hancock CityGML

Figure 71 shows the resulting Hancock data in the Ecodomus Viewer.

10.2.2. Lessons Learned

• The different CityGML files have different coordinate reference systems. The Faramoon data
does not contain a CRS, and using a local cartesian reference worked fine. The Safe software
data does and opens correctly on first try. So, the CRS should be specified in the CityGML data to
avoid interoperability issues.

• Need standards for units of measure such as millimeters or meters.

• In order to properly view the navigational routes, they need to be overlaid on top of the
CityGML view.

80

Chapter 11. Public Safety Scenario
(Demonstration)
The NIST Public Safety Communications Research Division is the primary federal laboratory
conducting research, development, testing, and evaluation for public safety communications
technologies. This OGC Innovation Pilot initiative is focused on the research and development of
Indoor Mapping technologies and public safety extensions using CityGML and IndoorGML derived
from point clouds and other 3-dimensional data from automated scans. The goal is to incorporate
open standards to support the public safety objectives and increase adoption of these standards to
improve tooling and support from the geospatial community.

The scenario for this initiative is based on pre-planning for firefighting and emergency first-
responder operations. First responders typically survey high-risk facilities in their jurisdiction for
pre-incident planning, but they are often forced to create their own hand-drawn maps during the
process. LiDAR and image scans can be conducted periodically in large buildings to capture any
changes in the building construction, remodeling, expansion, and placement of public safety
features including fire extinguishers, fire exits, water pumps, etc. Using mobile mapping systems
(see Figure 72) equipped with LiDAR and a 360-degree camera, technicians can efficiently capture
3D point clouds (see Figure 73), transform them into vector formats (CityGML, IndoorGML), and
calculate and modify navigable indoor routes for incident response. The scenario demonstrates the
use of point cloud data to support firefighting and emergency operations pre-planning.

Figure 72. Mobile LiDAR Scanning Operation

81

Figure 73. 3D LiDAR Point Cloud

The process begins with the conversion of point cloud data into CityGML format (see Figure 74). The
resulting CityGML data can be enriched with Public Safety features captured from image scans,
point cloud object identification, or manual insertion. New Public Safety features are taken from
the NAPSG Public Safety library of features. (https://www.napsgfoundation.org). The Public Safety
ADE provides the CityGML schema extension for these features which are then converted to Public
Safety Extension in IndoorGML to provide navigational support for indoor routing.

Figure 74. OGC Indoor Mapping & Navigation Pilot Overview

Once the conversion process is complete, a planner can support training operations for emergency
response using a pre-planning client to view the information in a graphical user interface. Having
knowledge of public safety features and the best route through an interior space during an
emergency would help in firefighting situations and support emergency operations.

82

https://www.napsgfoundation.org

11.1. Point Cloud to CityGML Data Conversion
Initially, the initiative began testing with readily available point cloud data scans and textured
images of Korea University and CityGML data of Victoria International Airport. Later in the
initiative, official Hancock County data was provided which contained captured point cloud data
and image scans. In the beginning, the team attempted to automate the conversion of the point
cloud data. However, point cloud data tends to be very noisy, and the common result was a data
output with false walls, missing doors, and incorrect geometries, etc. Notice the noise at the bottom
and right sides of Figure 75 likely caused by LiDAR scans leaking through transparent door or
window glass (see Figure 76).

Figure 75. Hancock County Point Cloud Data Noise

The Hancock County point clouds came as separate files and had to be merged.

83

Figure 76. Hancock County Point Cloud Data Merge in Revit

The consensus is that current software tools and libraries are not yet mature enough to produce
clean geometries from point cloud data, and the data needed to be cleansed manually and enriched
in order to be used for the demonstration. Attempts to use open source tools proved to be difficult
due to immature developmental status and lack of existing documentation for the software. In
general, the team was able to use automation to output either CityGML or IFC data (BIM standard).
Since editing tools are limited for CityGML formats, the team had to manually cleanse the data and
output the data in IFC format (See Figure 77 and Figure 78). Once the data was output in IFC format
and georeferenced, it is considered clean enough to use for demonstration purposes.

Figure 77. Hancock County IFC Data Output

84

Figure 78. Hancock County IFC Floor Plan

The edited IFC data was then post-processed using FME for geometric processing to convert IFC into
CityGML. This process required experimentation to create the proper processing to convert into
CityGML. Once a satisfactory method was achieved, this processing step was mostly automated.
This process is shown in Figure 79 and Figure 80.

Figure 79. IFC source data from Building Modeler for Hancock County

85

Figure 80. Spatial ETL (FME) process to convert Hancock County data from IFC to CityGML

In IFC, indoor geometries are typically represented as solids. However, for CityGML, geometries
typically are represented as surfaces, and therefore need to be converted from solids into multi-
surface elements to properly represent the room boundaries. CityGML contains "walls" and
"rooms" whereas IndoorGML contains "Cell" or "GeneralSpace" which are mapped from CityGML
"rooms". In order to support this conversion to CityGML, a new feature called <ifcSpace> was
created which were then converted into CityGML "rooms". During this step, often too many
surfaces are generated. Extra surfaces were filtered and discarded in FME with a process using
surface normal generation and analysis. For more information see Section 5.3.1, “Conversion to
IFC”.

86

Figure 81. CityGML data converted from IFC data with FME

In another method, the team used a MatLab application called PolyFit to manually cleanse the point
cloud data and redraw 3D surfaces. The output of the PolyFit is a clean point cloud data file. Once
the data is cleaned and surfaces are reconstructed using PolyFit, it is processed using PointNet
functions to manually convert the data into mesh data file set.

Figure 82. Hancock County Data Cleansed and ReDrawn with PolyFit.

11.2. CityGML to Indoor GML Data Conversion
The team implemented a couple different methods to generate routing networks. One method was
to calculate the centroid of the segmented sub-spacing, the centroid of segmented subspaces within
the corridors, the door centroids, and generate network nodes and edges between these center

87

points. This is shown in Figure 83. This methodology is also described in more detail in Section
7.1.3, “IndoorGML Network Sub-Spacing”.

Figure 83. Simple Center Point Network of Points for Indoor Routing

The other more fine-grained method is to generate a dense network of points within each indoor
space and calculate the most efficient method of routing within each space. This can be seen in
Figure 84. This is done by overlaying a mesh over the space, and using walls and doors (non-
navigable objects) to cut the mesh, resulting in a navigable node and edge network. For this reason,
correct doors and walls are required to create an optimal network mesh and routes.

88

Figure 84. Fine-Grained Network of Points for Indoor Routing

11.3. Visualizing Indoor Mapping for Pre-Planning
Events
By defining a start and end point, an optimal route can be generated based on various algorithms
(e.g., A-Star algorithm). Once the Navigation Modeler has completed the navigational route
calculations, the route can be displayed in the pre-planning client in 3D to show the navigable path
for a first-responder.

89

Figure 85. Navigating the IndoorGML Route

Additionally, public safety features can be visualized as part of the pre-planning walkthrough as
seen in the example in Figure 86. These features include fire pumps, public safety doors and
windows, and gas shutoff valves, and can be placed throughout the building as required.

Figure 86. Visualizing Public Safety Feature Enriched in IndoorGML

90

11.4. Conclusions
From the perspective of the approach of this pilot, creating maps of indoor spaces is very
demanding, and one of the promising approaches is to use point clouds to create indoor maps.

The team demonstrated that it is possible to transform a point cloud to CityGML Public Safety ADE
and IndoorGML with a Public Safety Extension, and then visualize the public safety data in the Pre-
planning Tool using open standards and basic navigation capabilities. Open standards made the
process possible for data processing, modeling, exchange, and display. While some steps were
automated, some manual effort is still required to get from point cloud to building features. The
team had some success with semi-automated tools, and observed there is potential for automation
to be improved. IndoorGML is primarily focused on indoor navigation, but this cannot be
completely separated from the physical view of CityGML for the representation of the building.

Some integration of the two models would improve the use and capabilities of each. More work
needs to be done to improve the capability of point cloud feature extraction, editors, converters,
and develop quality, symbology and validation rules for indoor mapping and navigation data.
Potential gaps between indoor and outdoor maps and simplified data stream profiles for mobile
use should also be explored. Finally, enhancing client tools by integrating indoor maps with real-
time environmental information and augmented reality would significantly enrich the information
provided to first responders. Combined, these have the potential to significantly improve safety and
enhance effectiveness when responding to a wide array of potential emergencies.

11.4.1. Summary of Lessons Learned

• Calculating the centroid of a space for IndoorGML causes anomalies if the spaces are not
properly segmented. In the example shown in Figure 87, using only one centroid for a long
hallway with corners caused an anomaly with route generation in the center of the hallway and
caused all routes for that hallway to map to a single node. This can be solved by sub-spacing
such spaces.

91

Figure 87. Anomaly when generating a route network without proper space segmentation

• When generating a mesh of points for indoor spaces, it is important to rotate the overlaid graph
to ensure alignment with the georeferenced IndoorGML. The orientation of the IndoorGML
model affects the way in which the routing nodes are generated and requires some calibration
of the orientation angle in order to ensure points are aligned. This can be seen in Figure 88.
Early network generation in Hancock data was not aligned with the corridors yielding a
network that produced irregular paths.

Figure 88. Grid Misalignment Overlayed on a Map

92

• This pilot would have benefited from the use of clean reference data for developing standards.
The primary data still introduced issues that were unresolvable from automated data
conversion which impacted the overall project. From a public safety perspective, data capture
and structure are critical, particularly the RGB data of a point cloud. This affects how doors and
windows can be identified. Having an accurate representation of doors is critical to a public
safety scenario including which doors are closed and/or locked. Indoor navigation routing
requires these doors, but point cloud scans do not easily detect closed doors. During the
scanning process, the person executing the scan needs to make every effort to identify every
door (and open it if possible) and identify locked doors. Richer data leads to better results.

• Automatic conversion of point cloud data into CityGML resulted in significant levels of noise
including false walls and incorrect geometries. Reflective floors and transparent glass cause
artifacts in the point cloud data. Therefore, it was determined that the output data needed to be
cleansed manually in order to be used for the pilot demonstration. Automation tools and
processes are not yet mature enough yet to generate models for navigation purposes without
manual intervention and data cleansing.

• Existing CityGML tools did not provide the type of editing functionality required. The IFC
standard was easier to edit using REVIT. For this reason, Faramoon chose to convert first to IFC
for editing and cleaning, and then to CityGML. PNU also used an editing tool - in this case TICA -
to clean up their GML data. Some issues may have been created due to the conversion of PC data
into IFC data and then IFC into CityGML. These issues have to do with differences in the data
model formats. Potential issues may be mitigated by reducing the number of conversions. So,
there is a trade-off between editing tool functionality and the conversions required to make use
of that tool. Ideally it would be best to convert directly from PC to CityGML. However, the output
of both approaches proved to be usable for indoor navigation purposes. In the future, further
development of tools for this application is needed to improve the maturity, capability, and ease
of use. Also, quality control and validation methods can mitigate issues raised by data model
differences and conversion.

• IndoorGML Core does not provide all requirements for Public Safety applications, so this is why
the Public Safety Extension is needed.

• IndoorGML can be used for improving navigation instructions within a building. However, the
data model could be harmonized with other indoor formats from industry standards (e.g., Apple
IMDF, ESRI Indoor, etc.) to promote cross interoperability.

• Data conversions between data formats with established open geospatial standards such as
CityGML and IndoorGML proved to be relatively straightforward to apply to new datasets. Once
the transform processes or models were defined, developed and validated, the same conversion
processes could be applied to new datasets with significantly less reconfiguration or
development effort with some variations depending on tools or libraries employed. In short, the
use of open standards directly supported efforts towards increasing automation and scalability,
both of which are critical for any potential new system to move beyond prototype to
production.

11.4.2. Recommendations for Future Work

• This pilot focused on working with indoor data. For the purposes of public safety and other
mapping applications, the distinction between indoor and outdoor is somewhat arbitrary. Often
public safety incidents may involve multiple buildings and resources need to take into account

93

road and water networks and other accessibility considerations. Future work related to indoor
mapping should take into account how best to interface with outdoor mapping and utilizes data
sources such as CityGML which can model both.

• Rendering the symbology for Public Safety is not well defined in the context of IndoorGML and
CityGML. For the demonstration, some notations can be made in CityGML and IndoorGML for
symbology. The NAPSG symbology within the CityGML Public Safety ADE and the IndoorGML
Public Safety Extension could be encoded using Style Layer Descriptors (SLD). SLD currently
supports 2-dimensional rendering, but future support for 3-dimensional rendering could be
considered.

• Consideration could be made toward the development and improvement of tools (e.g., TICA)
that combine machine learning and manual processes with interactive guidance to intelligently
identify surfaces generated using ML or Deep Learning processes.

• The CityGML data output created from Point Cloud data may be valid, but not usable when
converted into IndoorGML. The spaces need to be properly segmented into subspaces with each
space defining a fully enclosed volume. For example, some of the early approaches yielded
building models composed of just a few large objects. From a CityGML perspective, this result
might look adequate in a visual representation, but not be usable for navigation purposes
because the individual rooms and doors are not defined. For use in a navigational model,
additional checks are needed to ensure connectivity and sub-spacing is adequate. Future work
should include investigation to formalize what business rules, checks, and validations are
needed to define a successful conversion from CityGML to IndoorGML.

• CityGML 3.0 has some enhancements that relate to indoor mapping and hold promise as an
intermediary format. Future work on IndoorGML should consider closer coordination with
CityGML 3.0 developments.

• Refine approaches for generating navigation routes in IndoorGML for turn-by-turn navigation
and for optimized routes. Optimization methods could be developed for calculating by distance,
by hazard avoidance, and potentially by taking into account breakable windows and walls.

• In this pilot, most enrichment related to Public Safety information was done manually as Public
Safety information was not readily available for the test areas. On the one hand, most indoor
applications require frequent updates in order to remain current and relevant. On the other
hand, geometry processing is typically expensive in terms of processing and effort. Thus,
typically the most efficient way of providing updates is via tables of attribute information
related to a common key such as room ID. Going forward, future applications should provide a
means of combining non-spatial room attribute table information with room spaces based on a
common ID. This would enable many updates to be performed autonomously.

• Due to the scope and early stage of this pilot, work was necessarily focused on data generation
and modeling. Future work would benefit from a greater focus on web and mobile clients.
IndoorGML is designed as an exchange format for indoor data, and is optimized for that. It is
not an ideal client for many end user applications, especially for mobile clients. Typically,
mobile clients are easier to support using lightweight data streams based on JSON. Future work
should look at integrating with the emerging OGC OpenAPIs and perhaps explore an Indoor
light data model deployable via GeoJSON over WFS3.

• Another area that will benefit from significant research and development is studying how
indoor maps and building models can be used to guide first responders during emergency
events. Integration with real-time position and situational information will be critical,

94

combined with methods of continually providing updates of the building structures,
accessibility, and environmental conditions. Methods for enriching awareness through the use
of Augmented Reality (AR) should also be explored as this would be very beneficial for first
responders working within a restricted visibility environment, as well as adding the ability to
see through barriers to assess possible hazards such as gas lines or hot spots. Ways of
combining multiple technologies could also be explored. With a comprehensive BIM-oriented
3D model as a frame of reference, point cloud updates combined with drone and robot derived
infrared imagery could be used to develop a dynamic model of a fire in progress which could
then inform AR systems guiding responders.

95

Appendix A: Building Repository Examples

A.1. CSW Insert Transaction POST Request Example

https://ogc-indoor-pilot.compusult.net/wes/serviceManagerCSW/cswt

<?xml version="1.0" encoding="UTF-8"?>
<csw:Transaction xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:dc=
"http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:gmd=
"http://www.isotc211.org/2005/gmd" xmlns:gml="http://www.opengis.net/gml" xmlns:ogc=
"http://www.opengis.net/ogc" xmlns:ows="http://www.opengis.net/ows" xmlns:rim=
"urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0" xmlns:wrs=
"http://www.opengis.net/cat/wrs/1.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" service="CSW"
 version="2.0.2" xmlns:xml="http://www.w3.org/XML/1998/namespace"
xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2
http://schemas.opengis.net/csw/2.0.2/CSW-discovery.xsd urn:oasis:names:tc:ebxml-
regrep:xsd:rim:3.0 http://docs.oasis-open.org/regrep/v3.0/schema/rim.xsd
http://www.opengis.net/cat/wrs/1.0
http://schemas.opengis.net/csw/2.0.2/profiles/ebrim/1.0/csw-ebrim.xsd">
 <csw:Insert>
 <wrs:ExtrinsicObject id="c7694e02-01b7-4267-8827-2eef63b84807" mimeType=
"text/xml" objectType="urn:ogc:def:ebRIM-ObjectType:OGC:Dataset:3DData:Lidar">
 <rim:Slot name="http://purl.org/dc/terms/modified" slotType=
"urn:oasis:names:tc:ebxml-regrep:DataType:DateTime">
 <rim:ValueList>
 <rim:Value>2019-01-17T13:01:11</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="http://purl.org/dc/terms/created" slotType=
"urn:oasis:names:tc:ebxml-regrep:DataType:DateTime">
 <rim:ValueList>
 <rim:Value>2019-01-17T13:01:11</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="http://purl.org/dc/elements/1.1/language" slotType=
"urn:oasis:names:tc:ebxml-regrep:DataType:String">
 <rim:ValueList>
 <rim:Value>en</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="http://purl.org/dc/terms/dateSubmitted" slotType=
"urn:oasis:names:tc:ebxml-regrep:DataType:DateTime">
 <rim:ValueList>
 <rim:Value>2019-01-17T01:01:11</rim:Value>
 </rim:ValueList>
 </rim:Slot>

96

 <rim:Slot name="http://purl.org/dc/terms/spatial" slotType=
"urn:ogc:def:dataType:ISO-19107:GM_Envelope">
 <wrs:ValueList>
 <wrs:AnyValue>
 <gml:Envelope srsName="EPSG:4326">
 <gml:lowerCorner>-180.0 -90.0</gml:lowerCorner>
 <gml:upperCorner>180.0 90.0</gml:upperCorner>
 </gml:Envelope>
 </wrs:AnyValue>
 </wrs:ValueList>
 </rim:Slot>
 <rim:Slot name="Editable" slotType="urn:oasis:names:tc:ebxml-
regrep:DataType:Boolean">
 <rim:ValueList>
 <rim:Value>true</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="Transfer Option Type" slotType=
"urn:oasis:names:tc:ebxml-regrep:DataType:String">
 <rim:ValueList>
 <rim:Value>FTP</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="Transfer Option Name" slotType=
"urn:oasis:names:tc:ebxml-regrep:DataType:String">
 <rim:ValueList>
 <rim:Value>Lidar data of Korean Mall</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="Transfer Option Description" slotType="urn:oasis:names:tc:ebxml-
regrep:DataType:String">
 <rim:ValueList>
 <rim:Value>Description of Lidar data of Korean Mall</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="Transfer Option URL" slotType="urn:oasis:names:tc:ebxml-
regrep:DataType:URI">
 <rim:ValueList>
 <rim:Value>
 ftp://user:password@ftp.somewhere.org/PointCloudData/filename.zip
 </rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Name>
 <rim:LocalizedString charset="UTF-8" xml:lang="en" value=
"Lidar data of Korean mall" />
 </rim:Name>
 <rim:Description>
 <rim:LocalizedString charset="UTF-8" xml:lang="en" value="Description for
Lidar data of Korean mall"/>
 </rim:Description>

97

 <wrs:repositoryItemRef xlink:href="http://ogc-indoor-
pilot.compusult.net/wes/serviceManagerCSW/csw" xlink:type="simple" />
 </wrs:ExtrinsicObject>
 <rim:Classification classificationNode="urn:ogc:def:ebRIM-
ObjectType:OGC:Dataset:3DData:Lidar" classificationScheme=
"urn:ogc:def:ObjectType:OtherResources" classifiedObject="c8694e02-01b7-
4267-8827-2eef63b84807" id="dd27a7b5-e8f9-c2a9-633c-d61afa453012" />
 </csw:Insert>
</csw:Transaction>

A.2. CSW Insert Transaction Response Example

<?xml version="1.0" encoding="UTF-8"?>
<csw:TransactionResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">
 <csw:TransactionSummary>
 <csw:totalInserted>1</csw:totalInserted>
 <csw:totalUpdated>0</csw:totalUpdated>
 <csw:totalDeleted>0</csw:totalDeleted>
 </csw:TransactionSummary>
</csw:TransactionResponse>

A.3. CSW Update Transaction Request Example

https://ogc-indoor-pilot.compusult.net/wes/serviceManagerCSW/cswt

98

<?xml version="1.0" encoding="UTF-8"?>
<csw:Transaction xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:dc=
"http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:gmd=
"http://www.isotc211.org/2005/gmd" xmlns:gml="http://www.opengis.net/gml" xmlns:ogc=
"http://www.opengis.net/ogc" xmlns:ows="http://www.opengis.net/ows" xmlns:rim=
"urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0" xmlns:wrs=
"http://www.opengis.net/cat/wrs/1.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" service="CSW" version="2.0.2"
xmlns:xml="http://www.w3.org/XML/1998/namespace" xsi:schemaLocation=
"http://www.opengis.net/cat/csw/2.0.2 http://schemas.opengis.net/csw/2.0.2/CSW-
discovery.xsd urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0 http://docs.oasis-
open.org/regrep/v3.0/schema/rim.xsd http://www.opengis.net/cat/wrs/1.0
http://schemas.opengis.net/csw/2.0.2/profiles/ebrim/1.0/csw-ebrim.xsd">
 <csw:Update>
 <wrs:ExtrinsicObject id="c8694e02-01b7-4267-8827-2eef63b84807" mimeType=
"text/xml" objectType="urn:ogc:def:ObjectType:OGC:GeoPackage">
 <rim:Name>
 <rim:LocalizedString charset="UTF-8" xml:lang="en" value=
"http://mark-UPDATED-dev.compusult.net/wes/serviceManagerCSW/csw" />
 </rim:Name>
 <rim:Description>
 <rim:LocalizedString charset="UTF-8" xml:lang="en" value=
"Uploaded file: http://mark-UPDATED-dev.compusult.net/wes/serviceManagerCSW/csw" />
 </rim:Description>
 </wrs:ExtrinsicObject>
 </csw:Update>
 <csw:Update>
 <wrs:ExtrinsicObject id="c9694e02-01b7-4267-8827-2eef63b84807" mimeType=
"text/xml" objectType="urn:ogc:def:ObjectType:OGC:GeoPackage">
 <rim:Name>
 <rim:LocalizedString charset="UTF-8" xml:lang="en" value=
"http://mark-UPDATED2-dev.compusult.net/wes/serviceManagerCSW/csw" />
 </rim:Name>
 <rim:Description>
 <rim:LocalizedString charset="UTF-8" xml:lang="en" value=
"Uploaded file: http://mark-UPDATED2-dev.compusult.net/wes/serviceManagerCSW/csw" />
 </rim:Description>
 </wrs:ExtrinsicObject>
 </csw:Update>
</csw:Transaction>

A.4. CSW Update Transaction Response Example

99

<?xml version="1.0" encoding="UTF-8"?>
<csw:TransactionResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">
 <csw:TransactionSummary>
 <csw:totalInserted>0</csw:totalInserted>
 <csw:totalUpdated>2</csw:totalUpdated>
 <csw:totalDeleted>0</csw:totalDeleted>
 </csw:TransactionSummary>
</csw:TransactionResponse>

A.5. CSW Delete Transaction Request Example

https://ogc-indoor-pilot.compusult.net/wes/serviceManagerCSW/cswt

<?xml version="1.0" encoding="UTF-8"?>
<csw:Transaction xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:dc=
"http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:gmd=
"http://www.isotc211.org/2005/gmd" xmlns:gml="http://www.opengis.net/gml" xmlns:ogc=
"http://www.opengis.net/ogc" xmlns:ows="http://www.opengis.net/ows" xmlns:rim=
"urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0" xmlns:wrs=
"http://www.opengis.net/cat/wrs/1.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" service="CSW" version="2.0.2"
xmlns:xml="http://www.w3.org/XML/1998/namespace" xsi:schemaLocation=
"http://www.opengis.net/cat/csw/2.0.2 http://schemas.opengis.net/csw/2.0.2/CSW-
discovery.xsd urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0 http://docs.oasis-
open.org/regrep/v3.0/schema/rim.xsd http://www.opengis.net/cat/wrs/1.0
http://schemas.opengis.net/csw/2.0.2/profiles/ebrim/1.0/csw-ebrim.xsd">
 <csw:Delete>
 <csw:Constraint version='1.0.0'>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>DOES NOT MATTER, USES ID</ogc:PropertyName>
 <ogc:Literal>c7694e02-01b7-4267-8827-2eef63b84807</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 </csw:Constraint>
 </csw:Delete>
</csw:Transaction>

A.6. CSW Delete Transaction Response Example

100

<?xml version="1.0" encoding="UTF-8"?>
<csw:TransactionResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">
 <csw:TransactionSummary>
 <csw:totalInserted>0</csw:totalInserted>
 <csw:totalUpdated>0</csw:totalUpdated>
 <csw:totalDeleted>1</csw:totalDeleted>
 </csw:TransactionSummary>
</csw:TransactionResponse>

A.7. CSW GetRecords Request Example

https://ogc-indoor-pilot.compusult.net/wes/serviceManagerCSW/csw

101

<?xml version="1.0" encoding="ISO-8859-1"?>
<csw:GetRecords xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/"
xmlns:gmd="http://www.isotc211.org/2005/gmd" xmlns:gml="http://www.opengis.net/gml"
xmlns:ogc="http://www.opengis.net/ogc" xmlns:ows="http://www.opengis.net/ows"
xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0" xmlns:wrs=
"http://www.opengis.net/cat/wrs/1.0"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
maxRecords="10" outputFormat="application/xml" outputSchema=
"http://www.isotc211.org/2005/gmd"
resultType="results" service="CSW" startPosition="1" version="2.0.2"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2
http://schemas.opengis.net/csw/2.0.2/CSW-discovery.xsd urn:oasis:names:tc:ebxml-
regrep:xsd:rim:3.0 http://docs.oasis-open.org/regrep/v3.0/schema/rim.xsd
http://www.opengis.net/cat/wrs/1.0
http://schemas.opengis.net/csw/2.0.2/profiles/ebrim/1.0/csw-ebrim.xsd">
 <csw:Query typeNames="csw:Record Classification_resourceTypes">
 <csw:ElementSetName typeNames="csw:Record">full</csw:ElementSetName>
 <csw:Constraint version="1.1.0">
 <ogc:Filter>
 <ogc:And>
 <ogc:Intersects>
 <ogc:PropertyName>ows:BoundingBox</ogc:PropertyName>
 <gml:Envelope>
 <gml:lowerCorner srsName="EPSG:4326">-180.0 -
90.0</gml:lowerCorner>
 <gml:upperCorner srsName="EPSG:4326">180.0
90.0</gml:upperCorner>
 </gml:Envelope>
 </ogc:Intersects>
 </ogc:And>
 </ogc:Filter>
 </csw:Constraint>
 </csw:Query>
</csw:GetRecords>

A.8. CSW GetRecords Response Example

<?xml version="1.0" encoding="UTF-8"?>
<csw:GetRecordsResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:dc=
"http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:gmd=
"http://www.isotc211.org/2005/gmd" xmlns:gml="http://www.opengis.net/gml" xmlns:ows=
"http://www.opengis.net/ows" xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
xmlns:wrs="http://www.opengis.net/cat/wrs/1.0" xmlns:xlink=
"http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xml="http://www.w3.org/XML/1998/namespace" xsi:schemaLocation=

102

"http://www.opengis.net/cat/csw/2.0.2 http://schemas.opengis.net/csw/2.0.2/CSW-
discovery.xsd">
 <csw:SearchStatus timestamp="2019-01-24T07:03:16"/>
 <csw:SearchResults elementSet="full" nextRecord="0" numberOfRecordsMatched="3"
numberOfRecordsReturned="3">
 <gmd:MD_Metadata xmlns:gco="http://www.isotc211.org/2005/gco" xmlns:gml=
"http://www.opengis.net/gml/3.2" xmlns:gmd="http://www.isotc211.org/2005/gmd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://www.isotc211.org/2005/gmd http://www.isotc211.org/2005/gmd/gmd.xsd
http://www.isotc211.org/2005/gmx http://www.isotc211.org/2005/gmx/gmx.xsd">
 <gmd:fileIdentifier>
 <gco:CharacterString>150ffeee-d3ec-47d2-97bf-
39df28c73be7</gco:CharacterString>
 </gmd:fileIdentifier>
 <gmd:language>
 <gmd:LanguageCode codeList="http://www.loc.gov/standards/iso639-2/"
codeListValue="eng"/>
 </gmd:language>
 <gmd:characterSet>
 <gmd:MD_CharacterSetCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_CharacterSetCode" codeListValue="utf8"/>
 </gmd:characterSet>
 <gmd:hierarchyLevel>
 <gmd:MD_ScopeCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_ScopeCode" codeListValue="dataset"/>
 </gmd:hierarchyLevel>
 <gmd:dateStamp>
 <gco:DateTime>2019-01-24T04:51:01</gco:DateTime>
 </gmd:dateStamp>
 <gmd:metadataStandardName>
 <gco:CharacterString>ISO 19119/2005</gco:CharacterString>
 </gmd:metadataStandardName>
 <gmd:metadataStandardVersion>
 <gco:CharacterString>1.0</gco:CharacterString>
 </gmd:metadataStandardVersion>
 <gmd:identificationInfo>
 <gmd:MD_DataIdentification>
 <gmd:citation>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>IndoorGML Sample
Data</gco:CharacterString>
 </gmd:title>
 <gmd:date>
 <gmd:CI_Date>
 <gmd:date>
 <gco:Date>2019-01-15</gco:Date>
 </gmd:date>
 <gmd:dateType>

103

 <gmd:CI_DateTypeCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#CI_DateTypeCode" codeListValue="creation"/>
 </gmd:dateType>
 </gmd:CI_Date>
 </gmd:date>
 <gmd:edition gco:nilReason="missing">
 <gco:CharacterString/>
 </gmd:edition>
 </gmd:CI_Citation>
 </gmd:citation>
 <gmd:abstract gco:nilReason="missing">
 <gco:CharacterString/>
 </gmd:abstract>
 <gmd:status>
 <gmd:MD_ProgressCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_ProgressCode" codeListValue="latestAvailable"/>
 </gmd:status>
 <gmd:resourceMaintenance>
 <gmd:MD_MaintenanceInformation>
 <gmd:maintenanceAndUpdateFrequency>
 <gmd:MD_MaintenanceFrequencyCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_MaintenanceFrequencyCode" codeListValue="unknown"/>
 </gmd:maintenanceAndUpdateFrequency>
 </gmd:MD_MaintenanceInformation>
 </gmd:resourceMaintenance>
 <gmd:graphicOverview>
 <gmd:MD_BrowseGraphic>
 <gmd:fileName>
 <gco:CharacterString>https://ogc-indoor-
pilot.compusult.net/wes/serviceManagerCSW/csw?request=GetRepositoryItem&service=CS
W&version=2.0.2&id=84e2ee01-ecd7-720e-27f2-21f4e41067b1</gco:CharacterString>
 </gmd:fileName>
 <gmd:fileDescription>
 <gco:CharacterString>Uploaded Browse
Graphic</gco:CharacterString>
 </gmd:fileDescription>
 <gmd:fileType>
 <gco:CharacterString>png</gco:CharacterString>
 </gmd:fileType>
 </gmd:MD_BrowseGraphic>
 </gmd:graphicOverview>
 <gmd:descriptiveKeywords>
 <gmd:MD_Keywords>
 <gmd:keyword>
 <gco:CharacterString>IMAGERY/BASE MAPS/EARTH
COVER</gco:CharacterString>
 </gmd:keyword>
 <gmd:keyword>

104

 <gco:CharacterString>STRUCTURE</gco:CharacterString>
 </gmd:keyword>
 <gmd:thesaurusName>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>ISO Topic
Category</gco:CharacterString>
 </gmd:title>
 <gmd:alternateTitle>
 <gco:CharacterString>ISO Topic
Category</gco:CharacterString>
 </gmd:alternateTitle>
 <gmd:date>
 <gmd:CI_Date>
 <gmd:date>
 <gco:DateTime>2019-01-
24T03:59:14</gco:DateTime>
 </gmd:date>
 <gmd:dateType>
 <gmd:CI_DateTypeCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#CI_DateTypeCode" codeListValue="date"/>
 </gmd:dateType>
 </gmd:CI_Date>
 </gmd:date>
 </gmd:CI_Citation>
 </gmd:thesaurusName>
 </gmd:MD_Keywords>
 </gmd:descriptiveKeywords>
 <gmd:descriptiveKeywords>
 <gmd:MD_Keywords>
 <gmd:keyword>
 <gco:CharacterString>OFF-LINE DIGITAL
DATA</gco:CharacterString>
 </gmd:keyword>
 <gmd:thesaurusName>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>Data
Resources</gco:CharacterString>
 </gmd:title>
 <gmd:alternateTitle>
 <gco:CharacterString>Data
Resources</gco:CharacterString>
 </gmd:alternateTitle>
 <gmd:date>
 <gmd:CI_Date>
 <gmd:date>
 <gco:DateTime>2019-01-
24T03:59:14</gco:DateTime>
 </gmd:date>

105

 <gmd:dateType>
 <gmd:CI_DateTypeCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#CI_DateTypeCode" codeListValue="date"/>
 </gmd:dateType>
 </gmd:CI_Date>
 </gmd:date>
 </gmd:CI_Citation>
 </gmd:thesaurusName>
 </gmd:MD_Keywords>
 </gmd:descriptiveKeywords>
 <gmd:language>
 <gmd:LanguageCode codeList=
"http://www.loc.gov/standards/iso639-2/" codeListValue="eng"/>
 </gmd:language>
 <gmd:characterSet>
 <gmd:MD_CharacterSetCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_CharacterSetCode" codeListValue="utf8"/>
 </gmd:characterSet>
 <gmd:topicCategory>
 <gmd:MD_TopicCategoryCode>
imageryBaseMapsEarthCover</gmd:MD_TopicCategoryCode>
 </gmd:topicCategory>
 <gmd:extent>
 <gmd:EX_Extent>
 <gmd:geographicElement>
 <gmd:EX_GeographicBoundingBox>
 <gmd:westBoundLongitude>
 <gco:Decimal>-180</gco:Decimal>
 </gmd:westBoundLongitude>
 <gmd:eastBoundLongitude>
 <gco:Decimal>180</gco:Decimal>
 </gmd:eastBoundLongitude>
 <gmd:southBoundLatitude>
 <gco:Decimal>-90</gco:Decimal>
 </gmd:southBoundLatitude>
 <gmd:northBoundLatitude>
 <gco:Decimal>90</gco:Decimal>
 </gmd:northBoundLatitude>
 </gmd:EX_GeographicBoundingBox>
 </gmd:geographicElement>
 </gmd:EX_Extent>
 </gmd:extent>
 </gmd:MD_DataIdentification>
 </gmd:identificationInfo>
 <gmd:distributionInfo>
 <gmd:MD_Distribution>
 <gmd:transferOptions>
 <gmd:MD_DigitalTransferOptions>
 <gmd:onLine>

106

 <gmd:CI_OnlineResource>
 <gmd:linkage>

<gmd:URL>ftp://user:password@ftp.somewhere.org/IndoorGML-Sample.gml</gmd:URL>
 </gmd:linkage>
 <gmd:protocol>
 <gco:CharacterString>FTP</gco:CharacterString>
 </gmd:protocol>
 <gmd:name>
 <gco:CharacterString>IndoorGML-Navi-Sample-
PNU201-2019-01-15.gml</gco:CharacterString>
 </gmd:name>
 <gmd:description>
 <gco:CharacterString>IndoorGML Sample
Data</gco:CharacterString>
 </gmd:description>
 <gmd:function>
 <gmd:CI_OnLineFunctionCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#CI_OnLineFunctionCode" codeListValue=""/>
 </gmd:function>
 </gmd:CI_OnlineResource>
 </gmd:onLine>
 <gmd:onLine>
 <gmd:CI_OnlineResource>
 <gmd:linkage>

<gmd:URL>ftp://user:password@ftp.somewhere.org/PointCloudFile.zip</gmd:URL>
 </gmd:linkage>
 <gmd:protocol>
 <gco:CharacterString>FTP</gco:CharacterString>
 </gmd:protocol>
 <gmd:name>
 <gco:CharacterString>Point Cloud
Data</gco:CharacterString>
 </gmd:name>
 <gmd:description>
 <gco:CharacterString>KU-HanaSquare-
v2</gco:CharacterString>
 </gmd:description>
 <gmd:function>
 <gmd:CI_OnLineFunctionCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#CI_OnLineFunctionCode" codeListValue=""/>
 </gmd:function>
 </gmd:CI_OnlineResource>
 </gmd:onLine>
 </gmd:MD_DigitalTransferOptions>
 </gmd:transferOptions>
 </gmd:MD_Distribution>
 </gmd:distributionInfo>

107

 <gmd:dataQualityInfo>
 <gmd:DQ_DataQuality>
 <gmd:scope>
 <gmd:DQ_Scope>
 <gmd:level>
 <gmd:MD_ScopeCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_ScopeCode" codeListValue="dataset"/>
 </gmd:level>
 </gmd:DQ_Scope>
 </gmd:scope>
 </gmd:DQ_DataQuality>
 </gmd:dataQualityInfo>
 </gmd:MD_Metadata>
 </csw:SearchResults>
</csw:GetRecordsResponse>

A.9. CSW GetRecordByID GET Request Example

https://ogc-indoor-
pilot.compusult.net/wes/serviceManagerCSW/csw?Service=CSW&Version=2.0.2&request=GetRec
ordByID&id=150ffeee-d3ec-47d2-97bf-
39df28c73be7&elementSetName=summary&outputSchema=http://www.isotc211.org/2005/gmd

A.10. CSW GetRecordByID POST Request Example

https://ogc-indoor-pilot.compusult.net/wes/serviceManagerCSW/csw

<csw:GetRecordById service="CSW" version="2.0.2" outputFormat="application/xml"
outputSchema="http://www.isotc211.org/2005/gmd" xmlns:csw=
"http://www.opengis.net/cat/csw/2.0.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2
http://schemas.opengis.net/csw/2.0.2/CSW-discovery.xsd">
 <csw:Id>150ffeee-d3ec-47d2-97bf-39df28c73be7</csw:Id>
 <csw:ElementSetName>summary</csw:ElementSetName>
</csw:GetRecordById>

A.11. CSW GetRecordByID Response Example

<?xml version="1.0" encoding="UTF-8"?>
<csw:GetRecordByIdResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:dc=
"http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:gmd=
"http://www.isotc211.org/2005/gmd" xmlns:gml="http://www.opengis.net/gml" xmlns:ows=
"http://www.opengis.net/ows" xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"

108

xmlns:wrs="http://www.opengis.net/cat/wrs/1.0" xmlns:xlink=
"http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xml="http://www.w3.org/XML/1998/namespace" xsi:schemaLocation=
"http://www.opengis.net/cat/csw/2.0.2 http://schemas.opengis.net/csw/2.0.2/CSW-
discovery.xsd">
 <gmd:MD_Metadata xmlns:gco="http://www.isotc211.org/2005/gco" xmlns:gml=
"http://www.opengis.net/gml/3.2" xmlns:gmd="http://www.isotc211.org/2005/gmd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <gmd:fileIdentifier>
 <gco:CharacterString>150ffeee-d3ec-47d2-97bf-39df28c73be7</gco:CharacterString>
 </gmd:fileIdentifier>
 <gmd:characterSet>
 <gmd:MD_CharacterSetCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_CharacterSetCode" codeListValue="utf8"/>
 </gmd:characterSet>
 <gmd:hierarchyLevel>
 <gmd:MD_ScopeCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_ScopeCode" codeListValue="dataset"/>
 </gmd:hierarchyLevel>
 <gmd:dateStamp>
 <gco:DateTime>2019-01-24T04:51:01</gco:DateTime>
 </gmd:dateStamp>
 <gmd:metadataStandardName>
 <gco:CharacterString>ISO 19119/2005</gco:CharacterString>
 </gmd:metadataStandardName>
 <gmd:metadataStandardVersion>
 <gco:CharacterString>1.0</gco:CharacterString>
 </gmd:metadataStandardVersion>
 <gmd:identificationInfo>
 <gmd:MD_DataIdentification xmlns:srv="http://www.isotc211.org/2005/srv">
 <gmd:citation>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>IndoorGML Sample Data</gco:CharacterString>
 </gmd:title>
 </gmd:CI_Citation>
 </gmd:citation>
 <gmd:graphicOverview>
 <gmd:MD_BrowseGraphic>
 <gmd:fileName>
 <gco:CharacterString>https://ogc-indoor-
pilot.compusult.net/wes/serviceManagerCSW/csw?request=GetRepositoryItem&service=CS
W&version=2.0.2&id=84e2ee01-ecd7-720e-27f2-21f4e41067b1</gco:CharacterString>
 </gmd:fileName>
 </gmd:MD_BrowseGraphic>
 </gmd:graphicOverview>
 <gmd:extent>
 <gmd:EX_Extent>
 <gmd:geographicElement>

109

 <gmd:EX_GeographicBoundingBox>
 <gmd:westBoundLongitude>
 <gco:Decimal>-180</gco:Decimal>
 </gmd:westBoundLongitude>
 <gmd:eastBoundLongitude>
 <gco:Decimal>180</gco:Decimal>
 </gmd:eastBoundLongitude>
 <gmd:southBoundLatitude>
 <gco:Decimal>-90</gco:Decimal>
 </gmd:southBoundLatitude>
 <gmd:northBoundLatitude>
 <gco:Decimal>90</gco:Decimal>
 </gmd:northBoundLatitude>
 </gmd:EX_GeographicBoundingBox>
 </gmd:geographicElement>
 </gmd:EX_Extent>
 </gmd:extent>
 <gmd:characterSet>
 <gmd:MD_CharacterSetCode codeList=
"http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/
codelist/ML_gmxCodelists.xml#MD_CharacterSetCode" codeListValue="utf8"/>
 </gmd:characterSet>
 <gmd:topicCategory>
 <gmd:MD_TopicCategoryCode>
imageryBaseMapsEarthCover</gmd:MD_TopicCategoryCode>
 </gmd:topicCategory>
 </gmd:MD_DataIdentification>
 </gmd:identificationInfo>
 <gmd:distributionInfo>
 <gmd:MD_Distribution xmlns:srv="http://www.isotc211.org/2005/srv">
 <gmd:transferOptions>
 <gmd:MD_DigitalTransferOptions>
 <gmd:onLine>
 <gmd:CI_OnlineResource>
 <gmd:linkage>
 <gmd:URL>
ftp://user:password@ftp.somewhere.org/filename.gml</gmd:URL>
 </gmd:linkage>
 <gmd:linkage>
 <gmd:URL>
ftp://user:password@ftp.somewhere.org/pointcloud.zip</gmd:URL>
 </gmd:linkage>
 </gmd:CI_OnlineResource>
 </gmd:onLine>
 </gmd:MD_DigitalTransferOptions>
 </gmd:transferOptions>
 </gmd:MD_Distribution>
 </gmd:distributionInfo>
 </gmd:MD_Metadata>
</csw:GetRecordByIdResponse>

110

Appendix B: Skymantics Indoor Navigation
Service Examples

B.1. Indoor Navigation WPS Request Example

<wps:Execute xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:ows="http://www.opengis.net/ows/2.0"
xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0 ../wps.xsd"
service="WPS"
 version="2.0.0" response="document" mode="sync">
<ows:Identifier>org.n52.javaps.service.NIST006Test</ows:Identifier>
 <wps:Input id="indoorGMLId">
 <wps:Data
mimeType="text/xml"><wps:LiteralValue>a989ea1c-360c-4e8d-a171-
b7f2dbccc828</wps:LiteralValue></wps:Data>
 </wps:Input>
 <wps:Input id="start">
 <wps:Data
mimeType="text/xml"><wps:LiteralValue>St_188</wps:LiteralValue></wps:Data>
 </wps:Input>
 <wps:Input id="end">
 <wps:Data
mimeType="text/xml"><wps:LiteralValue>St_229</wps:LiteralValue></wps:Data>
 </wps:Input>
 <wps:Output id="route" mimeType="application/xml" transmission="value"/>
</wps:Execute>

B.2. Indoor Navigation WPS Response Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns4:Route xmlns:ns1="http://www.opengis.net/gml/3.2" xmlns:ns2=
"http://www.w3.org/1999/xlink" xmlns:ns3="http://www.opengis.net/indoorgml/1.0/core"
xmlns:ns4="http://www.opengis.net/indoorgml/1.0/navigation">
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:nil="
true"/>
 <ns4:routeNodes>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:nil=
"true"/>
 <ns4:nodeMember>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P23">

111

 <ns1:pos>445538.526005699 5444902.33091888 3.44</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:nodeMember>
 <ns4:nodeMember>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P12">
 <ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:nodeMember>
 <ns4:nodeMember>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P23">
 <ns1:pos>445538.526005699 5444902.33091888 3.44</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:nodeMember>
 <ns4:nodeMember>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P12">
 <ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:nodeMember>
 <ns4:nodeMember>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P12">
 <ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:nodeMember>
 <ns4:nodeMember>
 <ns4:RouteNode>

112

 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P3">
 <ns1:pos>445538.543473167 5444902.27372664 -2.02</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:nodeMember>
 <ns4:nodeMember>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P3">
 <ns1:pos>445538.543473167 5444902.27372664 -2.02</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:nodeMember>
 <ns4:nodeMember>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P1">
 <ns1:pos>445536.499779417 5444906.24858758 -2.02</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:nodeMember>
 </ns4:routeNodes>
 <ns4:path>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:nil=
"true"/>
 <ns4:routeMember>
 <ns4:RouteSegment>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:weight>0.0</ns4:weight>
 <ns4:connects>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P23">
<ns1:pos>445538.526005699 5444902.33091888 3.44</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:connects>

113

 <ns4:connects>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P12">
<ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:connects>
 <ns4:geometry>
 <ns1:LineString ns1:id="LS24">
 <ns1:pos>445538.526005699 5444902.33091888 3.44</ns1:pos>
 <ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 </ns1:LineString>
 </ns4:geometry>
 </ns4:RouteSegment>
 </ns4:routeMember>
 <ns4:routeMember>
 <ns4:RouteSegment>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:weight>0.0</ns4:weight>
 <ns4:connects>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P23">
<ns1:pos>445538.526005699 5444902.33091888 3.44</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:connects>
 <ns4:connects>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P12">
<ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:connects>
 <ns4:geometry>
 <ns1:LineString ns1:id="LS24">
 <ns1:pos>445538.526005699 5444902.33091888 3.44</ns1:pos>
 <ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 </ns1:LineString>

114

 </ns4:geometry>
 </ns4:RouteSegment>
 </ns4:routeMember>
 <ns4:routeMember>
 <ns4:RouteSegment>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:weight>0.0</ns4:weight>
 <ns4:connects>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P12">
<ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:connects>
 <ns4:connects>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P3">
<ns1:pos>445538.543473167 5444902.27372664 -2.02</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:connects>
 <ns4:geometry>
 <ns1:LineString ns1:id="LS10">
 <ns1:pos>445538.526005699 5444902.30232276 0.66</ns1:pos>
 <ns1:pos>445538.543473167 5444902.27372664 -2.02</ns1:pos>
 </ns1:LineString>
 </ns4:geometry>
 </ns4:RouteSegment>
 </ns4:routeMember>
 <ns4:routeMember>
 <ns4:RouteSegment>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:nil="true"/>
 <ns4:weight>0.0</ns4:weight>
 <ns4:connects>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P3">
<ns1:pos>445538.543473167 5444902.27372664 -2.02</ns1:pos>
 </ns1:Point>

115

 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:connects>
 <ns4:connects>
 <ns4:RouteNode>
 <ns1:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
 <ns4:geometry>
 <ns1:Point ns1:id="P1">
<ns1:pos>445536.499779417 5444906.24858758 -2.02</ns1:pos>
 </ns1:Point>
 </ns4:geometry>
 </ns4:RouteNode>
 </ns4:connects>
 <ns4:geometry>
 <ns1:LineString ns1:id="LS1">
 <ns1:pos>445538.543473167 5444902.27372664 -2.02</ns1:pos>
 <ns1:pos>445537.914644321 5444904.59001251 -2.02</ns1:pos>
 <ns1:pos>445536.499779417 5444906.24858758 -2.02</ns1:pos>
 </ns1:LineString>
 </ns4:geometry>
 </ns4:RouteSegment>
 </ns4:routeMember>
 </ns4:path>
</ns4:Route>

B.3. SpaceLayerType Example

116

<xs:complexType name="SpaceLayerType">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="usage" type=
"gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="terminationDate"
type="xs:dateTime" minOccurs="0" maxOccurs="1"/>
 <xs:element name="function" type=
"gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="creationDate" type=
"xs:dateTime" minOccurs="0" maxOccurs="1"/>
 <xs:element name="class" type=
"SpaceLayerClassTypeType" minOccurs="0" maxOccurs="1"/>
 <xs:element name="nodes" type=
"NodesType" minOccurs="1" maxOccurs="unbounded"/>
 <xs:element name="edges" type=
"EdgesType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

117

Appendix C: Compusult Indoor Navigation
Service Examples

C.1. Indoor Navigation WPS DescribeProcess Request
Example

<?xml version="1.0" encoding="UTF-8"?>
<wps:DescribeProcess
 xmlns:ows="http://www.opengis.net/ows/2.0"
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0 ../wps.xsd"
 service="WPS"
 version="2.0.0">

 <ows:Identifier>GetNavigationRoutes</ows:Identifier>
</wps:DescribeProcess>

C.2. Indoor Navigation WPS DescribeProcess Response
Example
The DescribeProcess Request will return a description of the inputs and outputs of the
GetNavigationRoutes request.

<ProcessOfferings xmlns="http://www.opengis.net/wps/2.0" xmlns:ns=
"http://www.opengis.net/ows/2.0">
 <ProcessOffering jobControlOptions="sync-execute" outputTransmission="value">
 <Process>
 <ns:Title xml:lang="en">Get Navigation Routes</ns:Title>
 <ns:Abstract xml:lang="en">Get A list of Navaigation Routes based on
start/end points and a routing source.</ns:Abstract>
 <ns:Identifier>GetNavigationRoutes</ns:Identifier>
 <Input>
 <ns:Title xml:lang="en">Route Start Point</ns:Title>
 <ns:Abstract xml:lang="en">GML Representation Of Navigation Route
Start Point</ns:Abstract>
 <ns:Identifier>START_POINT</ns:Identifier>
 <ComplexData>
 <Format mimeType="application/gml+xml" encoding="UTF-8" schema=
"http://schemas.opengis.net/gml/" default="true"/>
 </ComplexData>
 </Input>
 <Input>
 <ns:Title xml:lang="en">Route End Point</ns:Title>

118

 <ns:Abstract xml:lang="en">GML Representation Of Navigation Route End
Point</ns:Abstract>
 <ns:Identifier>END_POINT</ns:Identifier>
 <ComplexData>
 <Format mimeType="application/gml+xml" encoding="UTF-8" schema=
"http://schemas.opengis.net/gml/" default="true"/>
 </ComplexData>
 </Input>
 <Input>
 <ns:Title xml:lang="en">IndoorGML ID</ns:Title>
 <ns:Abstract xml:lang="en">IndoorGML ID</ns:Abstract>
 <ns:Identifier>INDOOR_GML_ID</ns:Identifier>
 <ComplexData>
 <Format mimeType="application/string" encoding="UTF-8" schema=
"http://schemas.opengis.net/gml/" default="true"/>
 </ComplexData>
 </Input>
 <Output>
 <Output>
 <ns:Title xml:lang="en">Navigation Routes</ns:Title>
 <ns:Abstract xml:lang="en">Available Navigation Routes based on
Start/End Points</ns:Abstract>
 <ns:Identifier>NAVIGATION_ROUTES</ns:Identifier>
 <ComplexData>
 <Format mimeType="application/gml+xml" encoding="UTF-8"
schema="http://schemas.opengis.net/gml/" default="true"/>
 </ComplexData>
 </Output>
 </Output>
 </Process>
 </ProcessOffering>
</ProcessOfferings>

C.3. Indoor Navigation WPS GetNavigationRoutes
Request Example
The GetNavigationRoutes Request will return the navigable routes based on the criteria specified.

119

<wps:Execute ... service="WPS" version="2.0.0" response="raw" mode="sync">
 <ows:Identifier>GetNavigationRoutes</ows:Identifier>
 <wps:Input id="START_POINT">
 <wps:Data>
 <wps:ComplexData>
 <wps:Format mimeType="application/gml+xml" encoding="UTF-8" schema=
"http://schemas.opengis.net/gml/3.1.1/base/geometryBasic0d1d.xsd"/>
 <gml:Point srsName="EPSG:4326" srsDimension="3">
 <gml:description>The start point required to determine the navigation
routes</gml:description>
 <gml:identifier>START_POINT</gml:identifier>
 <gml:name>startPoint</gml:name>
 <gml:pos>1.0 1.0 1.0</gml:pos>
 </gml:Point>
 </wps:ComplexData>
 </wps:Data>
 </wps:Input>
 <wps:Input id="END_POINT">
 <wps:Data>
 <wps:ComplexData>
 <wps:Format mimeType="application/gml+xml" encoding="UTF-8" schema=
"http://schemas.opengis.net/gml/3.1.1/base/geometryBasic0d1d.xsd"/>
 <gml:Point srsName="EPSG:4326" srsDimension="3">
 <gml:description>The end point required to determine the navigation
routes</gml:description>
 <gml:identifier>END_POINT</gml:identifier>
 <gml:name>endPoint</gml:name>
 <gml:pos>1.0 2.0 1.0</gml:pos>
 </gml:Point>
 </wps:ComplexData>
 </wps:Data>
 </wps:Input>
 <wps:Input id="INDOOR_GML_ID">
 <wps:Data>hshshs-383838-ahahah</wps:Data>
 </wps:Input>
 <wps:Output id="NAVIGATION_ROUTES" mimeType="application/gml+xml" transmission=
"value"/>
</wps:Execute>

C.4. Indoor Navigation WPS GetNavigationRoutes
Response Example

120

<gml:MultiGeometry xmlns:gml="http://schemas.opengis.net/gml/3.2.1">
 <gml:metaDataProperty>
 <gml:GenericMetaData>Any text, intermingled with:
 <!--any element-->
 </gml:GenericMetaData>
 </gml:metaDataProperty>
 <gml:description>The available routes based on user start and end
points</gml:description>
 <gml:descriptionReference/>
 <gml:identifier>AvailableRoutes</gml:identifier>
 <gml:name>AvailableRoutes</gml:name>
 <gml:geometryMembers>
 <gml:LineString>
 <gml:posList>48.6406778 -123.4316012 0 48.640678199999996 -123.4316055 0
48.640678199999996 -123.4316055 0.00015 48.6406778 -123.4316012 0.00015 48.6406778
-123.4316012 0</gml:posList>
 </gml:LineString>
 <gml:LineString>
 <gml:posList>48.6406778 -123.4316012 0 48.640678199999996 -123.4316055 0
48.640678199999996 -123.4316055 0.00015 48.6406778 -123.4316012 0.00015 48.6406778
-123.4316012 0</gml:posList>
 </gml:LineString>
 </gml:geometryMembers>
</gml:MultiGeometry>

121

Appendix D: Revision History
Table 1. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

August 16, 2019 C. Chen 1.0 various DER for SWG
Review

122

	{title}
	Table of Contents
	Chapter 1. Executive Summary
	1.1. Document contributor contact points
	1.2. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	4.1. Enterprise Viewpoint
	4.2. Information Viewpoint
	4.3. Computational Viewpoint
	4.4. Engineering Viewpoint
	4.5. Technology Viewpoint

	Chapter 5. Data Sources
	5.1. Types of Data
	5.1.1. Point Cloud Data
	5.1.2. CityGML Data
	5.1.3. IndoorGML Data

	5.2. Participant Provided Data
	5.2.1. Point Cloud - Korea University Central Plaza
	5.2.2. CityGML - Victoria Airport
	5.2.3. CityGML - Korea University Central Plaza
	5.2.4. CityGML - Korea University Central Plaza with Public Safety ADE
	5.2.5. IndoorGML - Korea University Central Plaza
	5.2.6. Data Cleansing
	5.2.7. Public Safety Data

	5.3. Sponsor Provided Data
	5.3.1. Conversion to IFC
	5.3.2. IFC Conversion to CityGML with Public Safety ADE
	5.3.3. CityGML Converted to IndoorGML with Public Safety Extension
	5.3.4. IndoorGML Navigation Network with Public Safety Extension

	Chapter 6. Building Modeler Service
	6.1. Faramoon Building Modeler Service
	6.1.1. Process Flow
	6.1.2. Lessons Learned

	6.2. GIS FCU Building Modeler Service
	6.2.1. Process Flow
	6.2.2. Lessons Learned

	Chapter 7. Navigation Modeler Service
	7.1. Pusan National University Navigation Modeler
	7.1.1. Conversion from Point Cloud data into IndoorGML
	7.1.2. Conversion from IndoorGML into CityGML
	7.1.3. IndoorGML Network Sub-Spacing

	7.2. Safe Software Navigation Modeler
	7.2.1. Considerations
	7.2.2. Lessons Learned

	7.3. Skymantics Navigation Modeler
	7.3.1. Lessons Learned

	Chapter 8. Building Model Repository
	8.1. Compusult Building Model Repository
	8.1.1. CSW Transactions
	8.1.2. Lessons Learned

	Chapter 9. Indoor Navigation Service
	9.1. Skymantics Indoor Navigation Service
	9.1.1. Lessons Learned

	9.2. Compusult Indoor Navigation Service
	9.2.1. Lessons Learned

	Chapter 10. Pre-planning Tool Client
	10.1. Compusult Pre-planning Tool Client
	10.1.1. Workflow
	10.1.2. Lessons Learned

	10.2. EcoDomus Pre-planning Tool Client
	10.2.1. Workflow
	10.2.2. Lessons Learned

	Chapter 11. Public Safety Scenario (Demonstration)
	11.1. Point Cloud to CityGML Data Conversion
	11.2. CityGML to Indoor GML Data Conversion
	11.3. Visualizing Indoor Mapping for Pre-Planning Events
	11.4. Conclusions
	11.4.1. Summary of Lessons Learned
	11.4.2. Recommendations for Future Work

	Appendix A: Building Repository Examples
	A.1. CSW Insert Transaction POST Request Example
	A.2. CSW Insert Transaction Response Example
	A.3. CSW Update Transaction Request Example
	A.4. CSW Update Transaction Response Example
	A.5. CSW Delete Transaction Request Example
	A.6. CSW Delete Transaction Response Example
	A.7. CSW GetRecords Request Example
	A.8. CSW GetRecords Response Example
	A.9. CSW GetRecordByID GET Request Example
	A.10. CSW GetRecordByID POST Request Example
	A.11. CSW GetRecordByID Response Example

	Appendix B: Skymantics Indoor Navigation Service Examples
	B.1. Indoor Navigation WPS Request Example
	B.2. Indoor Navigation WPS Response Example
	B.3. SpaceLayerType Example

	Appendix C: Compusult Indoor Navigation Service Examples
	C.1. Indoor Navigation WPS DescribeProcess Request Example
	C.2. Indoor Navigation WPS DescribeProcess Response Example
	C.3. Indoor Navigation WPS GetNavigationRoutes Request Example
	C.4. Indoor Navigation WPS GetNavigationRoutes Response Example

	Appendix D: Revision History

