
OGC Testbed-14
BPMN Workflow Engineering Report

Table of Contents
1. Summary . 4

1.1. Requirements & Research Motivation . 4

1.2. Prior-After Comparison. 4

1.3. Recommendations for Future Work . 4

1.4. Document contributor contact points . 5

1.5. Foreword . 5

2. References . 6

3. Terms and definitions . 7

3.1. Abbreviated terms . 7

4. Overview . 9

5. Introduction. 10

6. Review of motivating work . 11

6.1. Testbed-13 . 11

6.1.1. OGC Testbed-13 Security ER . 11

6.1.2. OGC Testbed-13 Workflows ER . 12

6.2. Other documents . 18

6.3. Open questions from Testbed-13 . 19

6.3.1. Testing for workflow validity prior to execution . 19

6.3.2. Data modeling . 20

6.3.3. Helper class construction . 20

7. BPMN 2.0 discussion . 22

7.1. Activities . 22

7.1.1. Service tasks. 22

7.1.2. Send tasks . 23

7.1.3. Receive tasks . 23

7.1.4. Multiple task instances and looping. 23

7.2. Swim lanes and pools . 23

7.3. Events . 23

7.3.1. Messages and signals . 23

7.3.2. Error. 24

7.3.3. Compensation . 24

7.4. Data Modeling . 25

7.4.1. Data objects . 25

7.4.2. Data stores . 25

8. OGC Service Orchestration with BPMN 2.0 Best Practices . 27

8.1. Tasking and Activities . 27

8.2. Managing data. 27

8.2.1. Use of a data store. 28

8.2.2. Use of a data object. 28

8.2.3. Service Task Parameters . 29

9. Description of demonstrator implementation using jBPM . 30

9.1. Workflow engine Helper classes. 30

9.2. Security implications . 30

9.3. Component design . 31

9.4. Helper class design. 32

9.4.1. Security in the helper class. 33

9.5. Remote execution of BPMN documents . 34

9.5.1. Receiving the BPMN document and creating the Git repository. 35

9.5.2. Executing the workflow . 35

9.6. Architecture . 36

9.7. Scenario . 40

9.8. TIE Results . 43

9.9. Shortcomings of the approach . 45

10. Docker, Kubernetes and Cloud Foundry . 47

10.1. Introduction. 47

10.2. Motivating technologies . 47

10.2.1. Microservices. 47

10.2.2. Docker . 48

10.2.3. Kubernetes . 48

10.2.4. Cloud Foundry . 49

10.2.5. Implications of Cloud Foundry in the Geospatial Domain . 51

10.2.6. Discussion. 52

11. Conclusion . 54

Appendix A: XML Schema Documents . 55

Appendix B: Revision History . 65

Appendix C: Bibliography. 66

Publication Date: 2019-02-11

Approval Date: 2018-12-13

Submission Date: 2018-10-31

Reference number of this document: OGC 18-085

Reference URL for this document: http://www.opengis.net/doc/PER/t14-D026

Category: Public Engineering Report

Editor: Sam Meek

Title: OGC Testbed-14: BPMN Workflow Engineering Report

OGC Engineering Report

COPYRIGHT

Copyright (c) 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t14-D026
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary
This Engineering Report (ER) presents the results of the D146 Business Process Modeling Notation
(BPMN) Engine work item and provides a study covering technologies including Docker,
Kubernetes and Cloud Foundry for Developer Operations (DevOps) processes and deployment
orchestration. The document also provides the beginning of a best practices effort to assist
implementers wishing to orchestrate OGC services using BPMN workflow engines. As with previous
investigations into workflow engines, the implementation described within utilizes a helper class,
which is a bespoke implementation of some of the best practices. Work in future testbeds on
workflows should include a compelling use case to demonstrate the power of service orchestration.

1.1. Requirements & Research Motivation
Workflows have long been a topic of interest for the OGC and have a corresponding Workflows
DWG. Previous testbeds have focused on Business Process Execution Language (BPEL) that gained
some traction, but has a set of fundamental problems to wide-spread adoption. BPMN is a language
that addresses many of the issues associated with BPEL. The International Organization for
Standardization (ISO) has approved BPMN as ISO/IEC 19510:2013 standard. The Testbed-13
Workflows ER described a rudimentary implementation a BPMN engine that sought to enable
execution of remotely authored BPMN documents via a transactional web processing service. The
test was successful, however, it was noted that there is no best practices for orchestrating OGC
services using BPMN as the orchestration language. This ER provides a description of the BPMN
best practices and corresponding implementation including issues with the approach and identified
gaps for future research.

1.2. Prior-After Comparison
Prior to execution of this testbed, there were several areas for investigation for workflows based
activities within the OGC, this testbed has answered these questions as well as producing a set of
best practices for future workflows applications.

1.3. Recommendations for Future Work
Throughout this piece of work, several recommendations for future work have been identified.
Testbed-14 sought to, among other things, generate a set of best practices for orchestrating OGC
services using BPMN. However, there are several outstanding work items that need to be
addressed, potentially in future testbeds.

• Checking for likelihood of workflow completion success prior to execution. Currently,
workflows are executed blind, i.e. the user has no indication of whether the workflow will
successfully execute or fail at some point. This is particularly important for long running
processes, where the workflow could fail after several hours. The supporting documentation
outlined in the Testbed-13 workflows report is a suitable starting point for this endeavor and
potentially use a semantic registry.

• Managing the BPMN to Web Processing Service (WPS) process transformation. The BPMN
document for this Testbed was supplied to the client implementer as a template for population.

4

However, there is not currently a way within OGC to map WPS to BPMN. It maybe the case that
utilization of BPMN in WPS should be tightly coupled to the WPS 3.0 standard. As a start, the
related OGC Testbed-14: WPS-T Engineering Report (OGC 18-036) describes a transactional
extension for WPS 2.0 and recommendations for a process deployment profile for BPMN

• Explore more sophisticated security encoding options. In this testbed, security was handled
by inserting the OAuth2 token into the BPMN document, which is translated into the HTTP
header when WPS are executed. Future testbeds should explore access to different federations
using different security models as well as finding methods to obfuscate security tokens. Some of
the considerations are discussed in the related OGC Testbed-14: Federated Clouds Engineering
Report (OGC 18-090r1). Additionally, security tokens have an expiry time. If a process is long
running, then tokens may expire and cause the workflow to fail. A pre-testing or authentication
process could allow a session to be initiated and refreshed if necessary whilst the workflow is
running. A suggested solution to this problem is to use HTTP headers with multiple scopes.

• Understand how to enforce removal of secured resource access to unauthorized services.
It is currently possible to extract resources from a secured service and pass them on to an
unsecured service, methods for controlling this should be explored.

• Error catching in BPMN. The mechanisms of executing workflows are very complex by nature.
If an error is thrown by a service, then it can be difficult to trace the source and report the error
to a user in a recognizable fashion. Error catching and reporting specific to OGC services should
be passed through the workflow engine and reported to the user in a human readable fashion.

• Create a suitably complex, relevant and motivating use case for future Testbeds. In
Testbed-14 and with Testbed-13, the use cases for workflows are simplistic and have focused on
the mechanics of getting software up and running. Future testbeds should have a sufficient
number and range of services to orchestrate to utilize the BPMN language as well as an end goal
to take advantage of aspects such as parallel processing, swimlanes, decision gates and
compensation events.

1.4. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization

Sam Meek Helyx SIS

1.5. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

5

Chapter 2. References
The following normative documents are referenced in this document.

• OGC: OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2]

• OGC: OGC 17-021, OGC Testbed-13 Security Engineering Report [http://docs.opengeospatial.org/per/17-

021.html]

• OGC: OGC 17-029r1, OGC Testbed-13 Workflows Engineering Report [http://docs.opengeospatial.org/

per/17-029r1.html]

• OGC: OGC 14-065r2 OGC Web Processing Service 2.0 Corrigendum 2 [http://docs.opengeospatial.org/is/

14-065/14-065.html]

• ISO: ISO 19510:2013, Information technology - Object Management Group Business Process
Model and Notation [https://www.iso.org/standard/62652.html]

• ISO: ISO 12651-2:2014(en), Electronic document management - Vocabulary - Part 2: Workflow
management [https://www.iso.org/standard/42673.html]

6

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
http://docs.opengeospatial.org/per/17-021.html
http://docs.opengeospatial.org/per/17-029r1.html
http://docs.opengeospatial.org/is/14-065/14-065.html
https://www.iso.org/standard/62652.html
https://www.iso.org/standard/62652.html
https://www.iso.org/standard/42673.html
https://www.iso.org/standard/42673.html

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

• workflow

automation of a process, in whole or part, during which electronic documents,
information or tasks are passed from one participant to another for action,
according to a set of procedural rules (source: ISO 12651-2:2014(en)).

• workflow engine

software service or “engine” that provides the run time execution environment for a
process instance (source: ISO 12651-2:2014(en)).

3.1. Abbreviated terms
• BPEL

Business Process Execution Language

• BPMN

Business Process Modeling and Notation

• WCPS

Web Coverage Processing Service

• WFS

Web Feature Service

• WMS

Web Map Service

• WMTS

7

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Web Map Tile Service

• WPS

Web Processing Service

• WPS-T

Transactional Web Processing Service

8

Chapter 4. Overview
Section 5 introduces the ER and the corresponding component task within the NextGen Thread in
the OGC Testbed-14.

Section 6 provides a review of motivating work for producing this iteration of the BPMN workflow
engine and the rationale for the Docker, Kubernetes and Cloud Foundry study at the end of this
document.

Section 7 provides an overview and discussion of the BPMN 2.0 standard, the language used to
express workflows in the BPMN workflow engine component.

Section 8 outlines best practices for orchestrating OGC services using BPMN.

Section 9 describes the component implementation for the D148 BPMN Engine.

Section 10 consists of the Docker, Kubernetes and Cloud Foundry study required as part of this ER.

Section 11 concludes the document.

9

Chapter 5. Introduction
This OGC Engineering Report (ER) describes the work carried out in the Testbed-14 initiative for
utilizing BPMN workflows and provides the results of a study into technologies including Cloud
Foundry, Docker and Kubernetes. The foundational work for this document is the Testbed-13
Workflows ER, which describes many of the grounding concepts and the state-of-the-art in OGC
compliant workflows. This document is in turn based upon the practices outlined in [1], motivating
document for using Business Process Modeling and Notation 2 (BPMN2, styled as BPMN) within
OGC, and [2] that provides a preliminary implementation. Additionally, there are explorations of
workflows using technologies such as BPEL in OGC, notably from Testbed 8.

Testbed-13 provided many successes for the authors of the ER and design and implementation of
the system described within. The Testbed-13 Workflows concept demonstrator enabled execution of
workflows using BPMN and a Transactional Web Processing Service (WPS-T), however, the
demonstrator required a helper class, which is bespoke to the Camunda implementation of BPMN.
The workflows work in Testbed-14 proposes an OGC Best Practices methodology for executing
workflows and presents a demonstrator implementation of these best practices in the form of a
similar helper class. Due to the available services for this testbed, the best practices are presented
as implementation recommendations, not utilization of the BPMN language for orchestrating OGC
services, which should be explored with a suitable use case in future testbeds. Additionally, it is the
objective of this ER to identify solutions to some of the shortcomings of the Testbed-13 approach to
workflows and to describe solutions.

The main issues cited with the BPMN helper class in Camunda was the utilization of data inputs
and outputs, as each implementation handles this aspect differently. Additionally, BPMN provides
standardized methods for managing data both in flux and at rest that were not utilized within
Testbed-13 work. BPMN concepts such as Service Tasks also provide a mechanism to input data via
direct input or reference, however there is also the concept of data objects, which seek to model
data inputs and outputs in a formal way. This document aims to address ambiguity and
contradictions between the standard and available software whilst providing guidance to
implementers on OGC best practice. This document reports on a demonstrator implementation of
the stated draft OGC Best Practice and the results of a study on Cloud Foundry, Kubernetes and
Dockers with their applicability to the OGC and the wider geospatial domain.

10

Chapter 6. Review of motivating work
This section contains an overview of the existing OGC work in workflows. It is noted that work has
also been done outside the OGC that has either been reviewed in the publications addressed here,
or is deemed out of scope for this ER.

6.1. Testbed-13
There are two publications from OGC, notably Testbed-13, that are considered in scope for
motivating work for this ER:

• 17-021 OGC Testbed-13 Security ER [3].

• 17-029r1 OGC Testbed-13 Workflows ER [4].

6.1.1. OGC Testbed-13 Security ER

Security continues to play an important role in the development of OGC standards, practice and
doctrine. Implementation of security is also a requirement for all work done in the Next Generation
Services thread in Testbed-14. Therefore, encoding security into a workflow request is a
requirement for this work.

The three motivating use cases outlined in the Testbed-13 Security ER are:

1. Use Case 1: Dominating Privileges - the situation where the user has more privileges than the
computer system being used. Access attempted in this way will result in a security violation.

2. Use Case 2: Tunneling Proxies - passing of credentials is likely to be interrupted as a proxy
constitutes a new connection to the resources.

3. Use Case 3: Identity Mediation - mediation between different security models is required in a
chained workflow, as it is likely different services will use different authentication procedures
and providers.

This section briefly discusses the considerations from the ER that are relevant to the work
presented here.

OAuth-enabled Web Processing Service

As part of the Testbed-13 Security ER, an included work item was how to enable WPS to be
authenticated using OAuth tokens. Following on from this, Testbed-14 includes security to
authenticate workflows in all scenarios.

Figure 1 outlines the abstract OAuth flow including the resource owner, the authorization service,
and the resource server. In the flow, the client requests access to the resource via the resource
owner. The owner grants authorization to the client who then requests a token from the
authorization server using the grant from the resource owner. The authorization server then
provides the client with an access token that is sent to the resource server to gain access to the
resource.

11

Figure 1. High-Level Testbed-13 Abstract OAuth authorization flow

A key aspect from this ER is the Authorization Code Grant Flow, which is the complete flow
described in Figure 1. In this scenario, credentials are granted prior to resource access requests,
therefore removing the requirement to register the application. Authorization can be done using a
private authorization server or, in the case of Testbed-13, it is the Auth0 service (https://auth0.com).
One of the motivating requirements for this ER is to explore the use of code grant flow in workflows.
This requirement will be addressed later in the document.

6.1.2. OGC Testbed-13 Workflows ER

The Workflows ER provided an account of the work done in Testbed-13 workflows and included
information on workflow construction and execution, an overview of workflow engines,
transactional web processing services for accepting BPMN workflow documents, data quality
services, conflation services and clients for constructing an executing the workflows. The scenario
from Testbed-13 is shown in Figure 2 where the workflow client aspect stored existing workflows in
a Catalog Service for the Web (CSW) and submitted the workflow to the workflow engine for
execution. The workflow engine then orchestrated and executed the three WPS services to produce
a result. The Web Feature Service (WFS) is utilized as a data repository within the workflow, but not
formally by the workflow engine as the data is passed to the first WPS in the chain through
configuration of WPS parameters.

12

https://auth0.com

Figure 2. High-Level Testbed-14 Next Generation work items overview.

Data objects

The workflow engine has no knowledge of the concept of data objects, either in the formal BPMN
definition or informally as part of service tasks, as data endpoints are passed as string references
via a Service Task parameter. Although this method is acceptable in terms of the BPMN standard,
data objects should be modeled formally within a BPMN diagram where the implementation
supports it. This represents one of the challenges addressed in the ER, as BPMN has a well-defined
set of methods for handling data objects whether at rest or in flux. Understanding how to de-couple
data objects from processing capability so that they can be reused, if necessary, within a workflow
is also an objective of this ER and is discussed in detail later in the document. One of the issues
mentioned in Testbed-13 was the encoding and decoding of data being a hurdle to interoperability
as BPMN workflow engines tend to handle the encoding and decoding procedures differently. The
best practices outlined in this ER accept this as being part of an implementation standard and does
not seek to mandate any specific encoding or decoding procedure, but instead rely on the
capabilities of the orchestrated services to deal with data inputs and outputs. The workflow engine
should remain neutral in its data format requirements and be used to orchestrate existing
capability rather than introducing new processing capability. Alternatively, if orchestrated services
do not contain a common format, then the workflow engine may call upon a partner WPS to
perform the translation.

The Testbed-13 scenario and users

The scenario outlined in the Testbed-13 Workflows ER consists of two use cases and corresponding
user groups. These are:

• The expert/workflow configurator.

• The user/workflow executor.

13

These distinctions are not necessarily mutually exclusive, as it is envisaged that users will be able to
construct or at least tweak existing workflows to their requirements. Likewise, the expert may be
required to execute workflows that either they or another expert has created. In the scenario, the
expert creates and configures the workflow via querying a CSW for processes that fit their needs.
They then compose the workflow and configure all of the parameters including the variables and
end points. They then send the composed document to the WPS-T, which calls the workflow engine
for execution. The cataloged processes are protected by an OAuth Security Service. Once
authorization takes place, then the workflow engine WPS harvests the processes and data and the
workflow is constructed (Figure 3).

Figure 3. High-Level Testbed-13 Workflow Overview

A notable issue with this use case is that there is no workflow execution and no testing whether the
workflow is valid prior to making it available in the catalog. Therefore, the expert (or user for that
matter) does not know whether the workflow will execute in the given scenario, and also does not
know the scope that the workflow will operate within. For example, if the user (non-expert)
retrieves the workflow, executes and then receives an error, then this will likely prove problematic
for issue resolution. A method to address this is to use the getErrors() call within the WPS to return
any errors to the user. However, the mechanism for returning errors to the WPS is not yet
determined and will likely be represented by well-defined error catching mechanisms from within
the BPMN standard.

Decoupling error reporting and handling from the WPS is an approach that fully utilizes the BPMN
standard whilst ensuring an implementation is service agnostic for maximum flexibility.

The capabilities of the workflow engine have been somewhat enhanced in the Testbed-14 version of
the engine as it no longer requires the user to setup a workflow and then execute it with a set of
parameters. Instead the BPMN document can be submitted and executed by the workflow engine
regardless of whether the workflow engine has prior knowledge of what is to be executed. This
added functionality is due to the choice of base implementation used rather than anything to do
with the BPMN language. This has implications for security, as a completely unsecured workflow
engine service would in theory be susceptible to misuse; as it could be instructed to execute
anything a client sent it. This issue is resolved in the demonstrator by only allowing execution of a

14

single workflow type and variable passing within a well-defined scope.

Workflow engine configuration

The Testbed-13 workflow engine was based on Camunda fronted by a WPS-T to enable access to the
standardized OGC calls as well as a new insertProcess call that enables a process to be inserted into
the WPS using the HTTP POST operation. A diagram of the workflow component setup can be found
in Figure 4.

15

Figure 4. High-Level Testbed-13 Workflow Components

Fronting a workflow engine with a WPS enables standardized calls to be used to execute
workflows. However, it should be noted that it introduces a level of verbosity that is not found
when using the raw workflow engines, many of which are already fronted by a Representational

16

State Transfer (REST) Application Programming Interface (API). Additionally, the construction of a
helper class is required for workflow engines to understand the different data models and types
relevant to geoprocessing. In the Camunda example, the helper class parsed data by utilizing a
GeoTools internal construct called a FeatureCollection. This concept of a collection of features is
prevalent throughout geographic data endpoints for vector data, however, coverages are delivered
in a number of file formats that should be considered when defining best practices for OGC
workflows. The jBPM BPMN workflow engine uses a combination of the Git protocol and a REST API
to submit and execute workflows. The detail of this is discussed in a later section.

Response to recommendations from Testbed-13

There are several recommendations that were made at the culmination of the ER, many of which
have made it into requirements for the work described in this ER. Briefly, the relevant workflow
recommendations are described below with the responses to the recommendations including
actions taken:

• Investigate how client functionality to communicate with OGC web services can be made usable
by different workflow engines. This recommendation is the cornerstone to the efforts made in
this ER, understanding how BPMN as a language relates to OGC services with a focus on data
models will likely solve re-usability and verbosity issues in workflows whilst enabling
interoperability between workflow engines beyond demonstrators in Testbed-13 and 14. This is
initiated by returning to the language, making recommendations in the form of best practices
and then demonstrating these best practices in an implementation. The solution to this
requirement outlined here is to submit the BPMN document wholesale and then implement
functionality via the helper class to register work items and produce the result. Note that the
beginning of a BPMN language mapping exercise is started, but was not tested due to the
restricted WPS services made available.

• Investigate a common approach to handle inputs and outputs defined in BPMN. The data
modeling aspect of interoperability will help towards realizing the first recommendation in this
list. BPMN essentially has two data concepts, the first is a Data Object, which models data in
flux, and a Data Store, which models data at rest. OGC services have a subtle, but important
distinction in that data are supplied as services. Inputs to WPS and other services are provided
as parameters, rather than existing as standalone objects. In truth, BPMN allows for references
to data to be passed as a parameter. However, data objects should be utilized to model the flow
of data between services. Reconciliation between these two concepts is described later in the
document. It should be noted that OGC architectures do not really account for data objects as
such, instead it deals with services and more recently, resources. These concepts are covered by
the BPMN service task and data objects should not be used to refer to external resources, but
they can be used optionally to orchestrate processes internally.

• Investigate process discovery mechanisms. Process discovery in Testbed-13 was done in a
catalog, however the processes were presented to the client via an identifier, which is suitable
for a user who understands what all of the processes do (an extreme case of the expert user use
case in the Testbed-13 Workflows document), but potentially problematic for other users. It has
been suggested that the user is able to discover processes from the catalog using metadata,
however a profile for WPS processes has not been agreed upon. There are ISO standards that
are likely to fit the requirements including ISO 19119 - Geographic Information - Services,
however further discussion is required. Process discovery in Testbed-14 is done through the

17

CSW that stores the registered WPS processes, it is also populated with BPMN workflows
described as WPS processes. Therefore, discovery should be completed in the recognized OGC
way, through a CSW.

• Investigate OAuth Code Grant Flow for dynamic authorization. OAuth for authorization has
been gaining traction within the OGC, along with SAML and some other technologies. This
recommendation largely follows some of the work completed in the COBWEB project where the
concept of a session in terms of security was discussed [1: https://cordis.europa.eu/project/rcn/
105504/reporting/en]. Essentially, a session can exist at three different levels within a workflow:

1. The process level.

2. The workflow execution level.

3. The workflow composition level.

These three levels offer different security grains in ascending order. Security at the process level is
a useful model if processes require different levels of access to execute. In the Testbed-13 setup, it
was prudent to deny access at the workflow composition and orchestration phase, rather than upon
execution. The workflow execution level means that the user authenticates as soon as the workflow
is executed and the session exists for the duration of the workflow execution. This concept notably
lends itself to synchronous rather than asynchronous processes. The workflow composition level
means that the user authenticates in a federated fashion, i.e. once they are authenticated, then they
have access to everything. This scenario appears to be most suited to the motivating use cases for
this ER.

For Testbed-14, it was decided that the workflow engine would simply pass the security information
in the WPS execute requests generated during workflow execution. Although this is a simplified use
case, it shows the beginnings of truly secured workflows with options for resources sitting in
different federations that should be explored in a future Testbed. In terms of the levels of security,
this is an example of authentication at the process level.

• Investigate security encoding aspects in BPMN.

Encoding security in a BPMN document is likely to require a best practices approach, as the BPMN
standard does not mention security in any meaningful way beyond a normative reference.
However, the standard is flexible enough to be able to support security, even if it is carried as a
parameter in a service task. It is possible to extend the standard to enable further execution
semantics, however the support for extensions in implementations is unknown and a strategy for
implementing security in an extension is somewhat of an undertaking. In this ER, authorization
tokens are passed along with the http header information in an execute request generated by the
workflow engine. In this instance, the BPMN engine is acting as a pass through for security tokens
as authentication to processes and data will have been done prior to execution via request of a
token. A more thorough examination of security models will likely be the work of future Testbeds
and will span more than just a piece on workflows.

6.2. Other documents
Documents outside the Testbed initiative have acted as motivating work for this ER and ERs from
previous Testbeds. The two documents to be considered are:

18

https://cordis.europa.eu/project/rcn/105504/reporting/en
https://cordis.europa.eu/project/rcn/105504/reporting/en

• A BPMN solution for chaining OGC services to quality assure location-based crowdsourced data
[1]

• BPMN 2.0 for Orchestrating OGC Services Discussion Paper [5]

These two documents created the foundation for bringing BPMN into the OGC as a language for
expressing service orchestration. The use case for OGC service orchestration has always focused on
the data quality domain, this is potentially due to the requirement for configured, finely grained
services to establish data fitness for purpose. Although a suitable use case for orchestration, there
are several points highlighted in the documentation that are considered:

• Configuring processes is time consuming and complicated and generally only undertaken by an
expert.

• Workflow orchestration and execution rely on external services that the engine may not be able
to validate remotely, therefore errors within the workflow engine might be uncontrollable and
cause the workflow engine to fail.

• Security was not considered within these documents either in terms of the workflow engine
security beyond basic authentication or in terms of secured services.

• The output mainly consisted of metadata, which meant that the input data was not changed
during the workflow. Ramifications of altering the data during the workflow are discussed later
in this document.

Previous testbeds have attempted workflows using Business Process Execution Language (BPEL),
which provided some success, but suffered with the following fundamental issues:

• Lack of a standardized graphical interface.

• Issues with execution due to lack of correct WSDL bindings.

• Complexity and skills required to execute.

• A general lack of uptake.

Therefore, BPMN was put forward as an alternative as it addresses the stated issues and has full
interoperability with BPEL as conversion can be done losslessly. There have also been other
suggestions to enable orchestration of services within OGC, notably to return to the WPS standard
and make orchestration and chaining fundamental to the standard, rather than optional.

6.3. Open questions from Testbed-13
Testbed-13 made recommendations that have in turn been reiterated as requirements in Testbed-14,
however there are some notable omissions from this set that are discussed in this section. These
suggestions and observations are generated from a combination of prior experience from projects
such as Citizen Observatory Web (COBWEB) [http://cobwebproject.eu], LandSense [http://landsense.eu]
and the other noted documents in this space.

6.3.1. Testing for workflow validity prior to execution

When a user constructs a workflow for execution they currently do not know if the workflow will
run or fail. This problem is exacerbated when there are workflow processes with dependencies on

19

http://cobwebproject.eu
http://landsense.eu

inputs and outputs. There are in general two types of processes that should be considered here:

1. Processes that do not change the input data - unordered. These processes are likely to consist of
information gathering algorithms (for example, processes that generated metadata, as seen in
the data quality WPS in Testbeds-12 and 13). Here the input data does not change in the process,
and all processes following a process of this type do not need to consider the order that
processes are executed, i.e. the processes can be executed in any order to produce the same
result.

2. Processes that do change the input data - ordered. In this scenario, the order that processes are
executed in will likely provide differing results, null results or an error. For example, there are
two processes:

a. process 1 - filters a dataset according to input variables

b. process 2 - selects data within a distance of a set of input points

If a workflow were constructed where process 1 is followed by process 2, this could potentially
produce a resultant data set than if process 1 followed process 2. A likely occurrence is that if the
filtering or selection criteria are two strict then the first process in the chain would produce a null
result. This would then result in an error message and workflow failure.

Managing the ordering and production of results for processes is an on-going issue that is likely to
remain unsolved in this Testbed as it is out of scope. However, solutions should be considered to
mitigate, be it through sampling, some sort of semantic validity of workflows and/or suitable error
messaging to make the user aware of process failures and a reason for the failure. Construction of
some OGC specific error messaging should be considered in future Testbeds.

6.3.2. Data modeling

As mentioned previously, the data modeling aspects of this ER are key to the motivating
requirements and the best practices endeavor. BPMN has the concept of data objects and data
stores. The former is for modeling data in flux and the latter is for modeling data at rest. OGC
services and in particular; WPS take data as parameters either by reference or as a raw type. When
orchestrating OGC services, ideally this should be de-coupled and data objects passed by reference
as a BPMN data object or store; rather than as an input parameter to a WPS process. The data object
as a reference could then be mapped to a WPS process parameter therefore making the data object
reusable throughout the workflow. Additionally, this method of mapping data objects enables users
to graphically model data flows as well as process flows within the BPMN workflow diagram.
Generally, the BPMN constructs for data modeling are suited to internal orchestration of data and
references to data, rather than providing methods to access external data. BPMN also does not have
a formal method for querying internal process variables post process completion, i.e. workflows
are self-contained, therefore, getting data in and out of workflow is defined by the services that
form part of the orchestration effort.

6.3.3. Helper class construction

The implementation of demonstrators supporting the workflow engine work items have had to
implement a helper class. In this implementation, the helper class is simplified to act as a WPS
client, thus offloading the capabilities required for executing OGC services to resources that already

20

have it.

The issue with geospatial data structures is experienced when workflows are executed
synchronously, as the data are retrieved from an executed process and then passed to the next
process. This could potentially be mitigated through passing of links in an asynchronous fashion.
However, this would restrict the functionality of the system as it would make demands upon it that
are not OGC compliant. The data inputs and outputs point relates back to the concept of data
objects, which has been covered in previous sections. This helper class by default passes the results
as a reference from one process to another, thus removing the requirement for the workflow
engine to constantly be passing data back and forth from the engine to the next service in the chain.
This approach does have a drawback in that every service in the chain is acting as both a client and
a server. However, this is preferable to putting data load onto the workflow engine as it could easily
form a bottleneck for processing and data.

A consideration for future work in this area is to have a system that tests for data compatibility
within the workflow to make a decision on the approach to take, that is, passing by reference or
passing by value. This would ensure full data compatibility throughout the workflow while making
the most efficient use of computational resources.

21

Chapter 7. BPMN 2.0 discussion
BPMN 2.0 is an Object Management Group (OMG) standard ratified in 2011 and designed primarily
to model business processes through a graphical interface. In addition to graphical modeling, it is
also able to execute services and model human interjection into an automated process. It also
contains typical systems type operations such as error catching and messaging and multiple exit
paths from a system. Due to its flexibility and simple user interface, it can be utilized by both
novices and experts to communicate a workflow.

As BPMN is a normative standard, it builds upon rules to ensure harmonization across
implementations. This section does not recreate the normative documentation, it instead reviews
some of the aspects that are of consequence to providing an OGC best practices effort that can be
implemented across BPMN workflow engines via the aforementioned helper class.

7.1. Activities
BPMN contains the concept of Activities, these are essentially how the standard models work being
undertaken within the workflow either in an automated fashion, or by manual intervention by a
user. There are several Tasks within the Activities grouping that have relevance to orchestrating
OGC services, these are:

• Service tasks

• Send tasks

• Receive tasks

• Script tasks

7.1.1. Service tasks

BPMN describes Service Tasks as those done by software. Essentially the user configures a service
task with parameters required by the external service which is then executed as part of the
workflow on behalf of the user. A key aspect of a service task is that it is synchronous, therefore the
workflow will wait for a result before continuing. This can of course cause problems if a web
service times out or is non-responsive. This can be mitigated using an Event which is described in a
following section.

From an OGC perspective, Service tasks are best used for orchestrating OGC web services that are
synchronous, i.e. the workflow engine configures a process, executes the process and then passes
the result onto the next process. This requires the workflow engine to understand spatial data
structures and concepts, this is expressed in the helper class for the software package being used.

Service tasks should be used for processing rather than internal data management as these are best
described in data objects and data stores which are discussed later and used for internal workflow
data management. Therefore, OGC services such as WPS and Web Coverage Processing Service
(WCPS) are best represented using Service tasks. Note that service tasks are different from Script
tasks that execute a simple script upon execution. Script task could feasibly be used to interact with
OGC services. However, the script task is designed as more of a catch-all to execute a script within
the workflow rather than to interact with well-defined services.

22

7.1.2. Send tasks

Send tasks are used to send messages between processes and swim lanes. These are generally used
to initiate another part of the workflow via sending a message to do so. This type of task does not
have the ability to await a response from the service task and is completed as soon as the message
is sent. A typical use case for a send task is to initiate a branch of the workflow that is separate from
the primary swim lane. As with the data modeling aspects of BPMN, send tasks refer to internal
workflow orchestration rather than messaging external services that are orchestrated using the
service task.

7.1.3. Receive tasks

Receive tasks are the Send task counter-part and will await a message sent (usually from a send
task) before initiating. This task is usually used at the beginning of a swim lane to initiate tasks after
instantiation. The task is considered complete as soon as the message is received. As with send
tasks, these are designed for internal orchestration of workflows.

7.1.4. Multiple task instances and looping

BPMN has the ability to model multiple instances of a task in a workflow as well as using loops for
iterative execution of a task. These can be used as normal in OGC services, as the two examples are
simply executing instances of a process with a given pattern.

7.2. Swim lanes and pools
Swim lanes and Pools are ways of organizing a BPMN diagram to describe collaboration between
entities. In the case of OGC services, swim lanes can be used to model the location of different
processing entities. For example, should the workflow engine have access to different WPS
instances, then each of these instances could be represented by a Swim lane to model result passing
between the different services.

7.3. Events
There are several start events that can be used to orchestrate OGC services. Start events define how
a process is initiated. It might be via a manual process (i.e. someone calling the workflow from a
REST endpoint), or it might be via a message received from another process or third-party
application. For the most part, the standard BPMN guidance documentation is sufficient. However,
there are some specific aspects of BPMN where extra notation is necessary.

BPMN does not differentiate conceptually between events that can start and end a process. For
example, it is possible to both start and end a workflow using a message event or any other type of
event for that matter. In addition to start and end events, there are also intermediate events that
may or may not interrupt a workflow according to certain conditions.

7.3.1. Messages and signals

Message start events are those that initiate a workflow based upon some external event. A typical
example of this is that the workflow is called by an external process. This is in contrast to a

23

standard start event where the workflow is called by a client interacting with the API interface of
the workflow engine. Additionally, the Message event start does not discern between users or
calling systems, it simply executes having received the message. In contrast to this is the signal
event, where the workflow is awaiting a specific signal to initiate. This is likely to be a specific client
or execution pattern rather than the general one that messaging is suited to. Signal events also have
more flexibility for communicating aspects other than simple error messages, as is expected with
the Message event. Likewise, an end event will act in the same way by throwing either a signal or
message to a chosen service to end the workflow. Note that an end event is different than the email
event, which is specifically setup to email results to a configured account.

Intermediate events for messages and signals are triggered in much the same way as the start and
end events, however they are triggered before the workflow has completed.

Signaling functions are available from outside the workflow during execution and are often used to
hold the workflow until an external task has been completed. This has crossovers with the Human
Task aspect of BPMN, which relies on an external actor to provide information to allow the
workflow to continue.

7.3.2. Error

Error events capture and report on errors based upon a condition. For example, a workflow error
might be that a process has failed for some reason, be it a coding error or unexpected behavior
experienced due to the input parameters. Error messaging is a catch-all in terms of BPMN, but
should be used to communicate the errors from processes or data objects. Typical uses of an Error
event include; mis-configuration of processes, reporting a lack of authentication for services and
data type conflicts. Error catching should be used to report back to the workflow executor in
human readable language. An example of where this is useful is to watch for a null result from an
external process and report back accordingly, rather than simply throwing a language specific
error.

7.3.3. Compensation

It is difficult to predict how workflows will behave with different sets of input data and
parametrization of processes. For example, a workflow that executes for one set of data may fail for
another set. This could be due to an Error in the typical sense (i.e. there is something wrong with
one of the processes) or it could be that there is no error and the processes executed correctly but it
failed for another, data dependent reason.

Considering a workflow that has two dependent processes expressed as Service tasks, with the
second process configured to use the outputs from the first process. If the first process produces an
output that contains zero or a null result, then it is likely that the second process would fail.
Although the workflow may fail at this point, this should not be considered an error as everything
in the workflow acted exactly as it should. A compensation event tells the workflow how to behave
in this eventuality; it might execute a message to the user informing them of the reason for the
event being triggered, alternatively it may provide an alternative execution path for results that
conform to the compensation requirements.

Orchestrating services that include compensation is prudent when the workflow is complex with
many branches. It may also be considered an extension of the error event instead of reporting an

24

error, it activates an alternative path to compensate for the error.

7.4. Data Modeling
The data modeling aspect of BPMN is key to creating best practices as it is one of the aspects that
differ between implementations. As alluded to in the review sections of this document, providing a
suitable method of modeling data from OGC services will increase the interoperability of workflow
engines, remove verbosity from business processes, and enable re-usability of data end points
within workflows. BPMN has four ways of describing data with a workflow:

• Data objects

• Data inputs

• Data outputs

• Data stores

7.4.1. Data objects

Data objects describe data requirements for activities to be performed. The data object element can
represent a singular object or a collection of objects. The life-cycle of the data object is implicitly
tied to the containing process or sub-process. In fact, a data object in its raw form cannot exist
without a containing process or sub-process. Data object references are related to data objects in
that they enable reference to the same data object across a workflow. The advantage with data
object references is that they are state-aware across the diagram where as data objects do not have
a state and following the life cycle of the containing process. Data objects also have a class like
hierarchy of access, much like variable scope. A process containing sub-processes may all have data
objects and references. However, their accessibility is dependent on their location in the
process/sub-process hierarchy. Figure 5 and 6 show the BPMN representation for a data object and
data object collection.

Figure 5. High-Level BPMN Data Object

Figure 6. High-Level BPMN Data Object Collection

7.4.2. Data stores

A data store is used when data will persist beyond the life cycle of the containing process. Data
stores also have the concept of a reference. However, the reference to the data store is simply a

25

convenient way to access the data store without replicating the icon as the reference, for all intents
and purposes is the same as the store. It is not appropriate to represent OGC services as data stores,
as a data store refers to a traditional database. Data from OGC services is requested via a query to a
standardized interface, which may refer to a set of databases or indeed, other services behind the
scenes. It is more likely that access to data should be treated like any other service task in BPMN as
it is essentially performing the same operation.

26

Chapter 8. OGC Service Orchestration with
BPMN 2.0 Best Practices
This section outlines the draft best practices for orchestrating OGC services using BPMN. The main
focus of these best practices is:

• Representation of processes and tasking within BPMN.

• How to configure processes.

• Representation of workflow outputs.

• Security.

8.1. Tasking and Activities
BPMN contains several methods of representing processes and tasking in the form of Activity Tasks.
There are several options for tasking that enable the workflow to perform functions such as:

• Sending and receiving information.

• Tasking personnel.

• Running scripts.

• Implementing business rules.

• Executing services.

OGC processing tasks through services such as WPS and WCPS should therefore be represented as a
Service Task, as they are designed to represent executable processes.

8.2. Managing data
Understanding how to manage data objects across the OGC services suite and as part of a workflow
is a key requirement for this piece of work. As mentioned previously, there are two main types of
data objects that need to be represented:

• Data that persists beyond the life-cycle of a workflow.

• Data that exists in the life-cycle of a workflow only.

These different data objects map well to the BPMN concept of a data store and a data object.
However, there is a conceptual difference between the data object in BPMN and passing
parameters. The data object should only exist according to the life-cycle of a process. Therefore, a
process that includes an input from a previous process’s output should be modeled separately as
data outputs and then data inputs.

• Data that is to be utilized beyond the life-cycle of the workflow via exposure as global processes.

• Internal mapping of data should be represented by a data object where supported and mapped
where required.

27

• Where data formats are compatible within a workflow, data should be passed by reference.

• Where data formats are incompatible within a workflow, data should be passed by value and
encoded in an appropriate format.

8.2.1. Use of a data store

A data store is used for a persistent database, which is rarely the case in OGC services. Instead data
are posted and accessed through services as the data architecture behind the services is opaque.
Therefore, a data store should not be used to invoke an OGC service, as they are completely
different concepts but maybe used to represent a local or remote traditional database storage.

8.2.2. Use of a data object

The data object is used to graphically represent the data inputs and outputs from a single Task. The
BPMN specification describes usage of the data object be restricted to a single Task and as such, the
data object is destroyed with the completion of the Task. Data objects should be used in the
following circumstances:

• Describing relevant inputs and outputs of singular Tasks.

Additionally, data objects should be used to represent certain data types, notably, complex types
that include:

• Extensible Markup Language (XML)/ Geography Markup Language (GML).

• JavaScript Object Notation (JSON), GeoJSON, JSON for Linked Data (JSON-LD).

• Shapefiles.

• Any other complex type.

This is done to enable visualization of the data flow within a workflow and between Service Tasks.

Data object states

By convention, all data objects have states that are referenced after the name of the data object and
communicated via square braces ([]). Data objects in OGC do not require a specific state to be
accessed, as the data are all provided through interaction with service tasks. For example, there has
been no use case presented so far for workflows that simply requests data, as the objective of the
BPMN workflow is to provide processing orchestration with data request orchestration a bi-
product.

Data object collections

Collections of data objects are simple representations of one to many data objects within a single
state. Collections of data objects are not represented in a service or resource-based architecture as
the data objects are generally provided from a single WFS or WCS interface. What happens behind
the scenes in these queries is largely up to the implementer, therefore requesting data objects is
largely the work of a process. A related concept is passing multiple instances of an input to a WPS,
in this instance, data object collections may be used.

28

8.2.3. Service Task Parameters

In addition to input data, processes and service tasks also often contain parameters for configuring
each service. Unlike data objects, these parameters should be configured directly in the Service
Task and not represented by a data object. Simple types typically consist of the following:

• String

• Integer

• Double

• Float

• Boolean

The nature of OGC services is to utilize complex data inputs and therefore a helper class has to be
created for each implementation. This section does not describe in detail the implementation
practices for creating helper classes as it is envisaged that BPMN does not support external data
types natively, but instead uses a common internal method of dealing with data objects. Currently,
the data parsers are defined by the processing services, as it is likely that this is the entry point for
getting data. As mentioned previously, the BPMN engine has no processing capability of its own but
relies on the services that it is orchestrating for processing and data parsing power. Therefore, all
outputs from a WPS are represented as an Object type. This allows the output of a WPS, be it as a
FeatureCollection or reference, to be successfully handled by the workflow engine. It is possible to
define the input and output types as their actual types if required. The disadvantage of using Object
types is that no validation is done by the workflow engine on the content of an input or output
parameter.

Currently, all image types should be referred to via a reference since imagery is not supported
natively within BPMN or via the helper class. But as with vector data, services that can support
imagery should be used to process and parse that imagery.

Service Tasks for accessing processing services

Accessing a processing service via a service task is done by passing the variables required to
execute the process from the BPMN document to the execute document, irrespective of the specific
WPS. A WPS process generally requires the following to execute:

• WPS Uniform Resource Locator (URL) - the location of the WPS.

• Process description - the specific WPS process to execute.

• Authentication information (optional).

• Variables - the required variables to execute the process.

The variables required to execute the process are defined in the BPMN document.

29

Chapter 9. Description of demonstrator
implementation using jBPM
This section outlines the component design and implementation for the BPMN workflow engine
component. The design is based off of the overall architecture and the statement of work provided
by the sponsors. In general terms, the implementation is designed to reflect the best practices
described in this ER with respect to the scenario or set of use cases. The best practices however are
intended to be independent of the BPMN engine used.

9.1. Workflow engine Helper classes
The implemented workflow helper class is deployed in jBPM, a Java-based BPMN workflow engine.
The service utilizes the jBPM Workbench stack that provides a REST interface for remote execution.
This interface is sent a BPMN document by the WPS-T that was in turn orchestrated by the client.
The BPMN engine executes the document and then returns the result (an output or an error to the
WPS-T that passes it onto the client).

jBPM works with Custom Work Items to orchestrate services and these work items have definitions
that describe the inputs, outputs and data types. Once these are described, they are selectable
within the web application interface. Enabling the re-usability of work items in jBPM is not a
requirement for this piece of work. Therefore the helper class provides the BPMN engine with
knowledge of spatial data structures rather than performing functions such as setting up the user
interface.

The helper class essentially acts as a WPS client that creates the process request for each WPS from
the submitted BPMN document. It is then the job of the workflow engine to map the outputs from
one process to the input process that requires it. This is done through a simple local variable
definition or, if supported, via a data object.

9.2. Security implications
Throughout the Testbed process, there has been discussion as to the model of security that should
be used to enable differential access to services according to access credentials of a user. There
have been two main scenarios discussed to handle security in the workflow engine, these are as
follows:

1. Encoding the security information in the BPMN document.

2. Passing security information including tokens in the HTTP request header.

◦ Encoding the security information directly into the BPMN document. This offers the
advantage of differential access to services, potentially in separate federations. However, it
also creates several points of concern including:

▪ The aforementioned security concerns of the sponsor and others.

▪ The ability to extract data from a protected service and then insert it into an unprotected
service by way of result passing within the workflow engine.

30

▪ The increased complexity of modeling security in this way.

▪ The usage of different types of security. Putting an access token in the BPMN document
maybe suitable for OAuth2, but it is unclear how this transfers to other types of security.

▪ Exposing security information such as access tokens outside of the HTTP header may be
considered a security risk.

The implications of different concepts of security are described in Figure 7. There are three
concepts expressed within the diagram, the first is where the BPMN engine sits outside of the
security federation and requires credentials represented by the solid line. This scenario offers the
advantage of allowing access to the BPMN workflow engine by outside actors, but requires
credentials to access the federated, protected services. The approach adopted in Testbed-14 largely
conforms to this. A second scenario is described by the dashed line where the workflow engine is
inside the federation. This offers the advantage of not requiring credentials to be passed to the
workflow engine as the user is already authenticated and therefore has access to the services. A
disadvantage with this approach is that the workflow engine is potentially closed to users that are
not authenticated and therefore does not offer differential access to services. A third scenario is a
workflow that includes services that are both inside and outside the federation represented by the
WPS-3 object in the diagram. In this instance, it is possible for the BPMN engine to pass protected
data out of the federation to a service that is not authenticated to see that data, therefore posing a
potential security risk.

Figure 7. High-Level BPMN Engine security possibilities

Although these issues exist, in Testbed-14 it has been decided that the security token would be
passed as part of the BPMN document describing each service. This allows differential access to
security models and enables the workflow engine to deal with secured and unsecured services in
the same workflow.

9.3. Component design
The BPMN workflow engine component works in a similar manner to the workflow engine
component, that is, an open source implementation of a workflow engine coupled with a helper

31

class to enable the workflow engine to understand geographic data constructs. As the workflow
engine is used to request either data or processing capability, the workflow engine does not contain
any data parsing capabilities (beyond that implemented in the helper class), but instead relies on
the external services orchestrated to perform this functionality. Adopting this approach solves the
data encoding/decoding issues that arose in the Testbed-13 Workflows implementation and report.

Relying on external services to perform data encoding and decoding keeps the workflow engine
agnostic and it therefore does not make any demands on the services being orchestrated. However,
the workflow engine still requires an internal construct to be able to manage geographic
information internally, this is accomplished through the helper class, which is likely to require
some language specific components.

The open source BPMN engine used in this implementation is jBPM (https://www.jbpm.org/) created
and maintained as an open source product by Redhat. jBPM has several components including a
development suite and a web application that includes a visual front end for orchestrating services.
In terms of the OGC implementation, there are three aspects of the jBPM to consider:

1. The workflow engine and helper class.

2. The REST API for remote execution.

3. The User Interface (UI).

The objective of this work item is to produce a helper class for the workflow engine, therefore that
will be the focus of the implementation. Orchestrating OGC services using the jBPM user interface is
not in scope for this piece of work (although it is functional), the BPMN documents are created by
the client and then sent to the WPS-T, which is in turn handed off to the workflow engine to actually
to the service orchestration and execution. The workflow engine is fronted by a WPS which
provides a standards based interface for the WPS-T to call. The WPS contains a process called
ExecuteWorflow that accepts a BPMN document as a parameter.

The UI aspects of jBPM are mentioned here as they require customization and configuration within
the web application to be fully functional. That is, should the user wish to see their custom work
items appear in the UI, then they have to define them as part of the Work Item Definition (WID) file.
This can be accomplished remotely, but is deemed out of scope for this Testbed. A full explanation
of this can be found in the draft OGC 16-091 BPMN 2.0 for Orchestrating OGC Services Discussion
Paper.

9.4. Helper class design
As mentioned previously, the helper class is a simple implementation that is compiled and added to
the jBPM library priory to deploying the web application (WEB-INF/lib/<name of jar>.jar), this
enables the web application to have access to geospatial constructs. As jBPM is written in Java, the
geospatial library used is GeoTools (www.geotools.org), and the specific class used to hold and
manipulate geospatial information from within the workflow engine is FeatureCollection. There are
variants of the FeatureCollection such as SimpleFeatureCollection, which deals specifically with
simple features (i.e. flat data structures). However, these are not implemented as specific constructs
as the FeatureCollection can handle any variants or derivatives of this construct.

jBPM requires two types of class to execute WPS processes and by extension, WFS data. Workflows

32

https://www.jbpm.org/

will usually have a processing component to them, therefore parsing of data objects should be
handled by the processing services with the outputs from those processing service mapped to data
objects. This means that a workflow that only contains data inputs and outputs will not make use of
the helper class as a data object will likely only be passed as a reference between BPMN Activities.
The data are only parsed when it is necessary to do so as it needs to be processed. The two classes
that need to be implemented are as follows:

• WPS client - to create execute documents, send execute requests, and parse and transmit the
results of the execution. The WPS client is 2.0 compliant.

• Custom work item handler - this class acts as the interface between the WPS and the workflow
engine. To keep it generic, the work item handler for a WPS has the following variables:

◦ The WPS URL (for example http://localhost:8080/wps/)

◦ The WPS process description (for example echo.process)

◦ A hashmap defined as <String>, <Object> - this is a generic class for handling process
specific variables. The Object data type allows for casting in the WPS client.

◦ An OAuth Bearer token, optional overall but required if the process being called is secured.

These variables are then exposed in each of the workflow service tasks in the BPMN document for
population. If the workflow engine interface is being used for orchestration, then it is prudent to
configure the workflow engine to take default values for the WPS URL and the process description,
as these can be gathered from the WPS services exposed in the workflow. In Testbed-14, however,
the workflow documents are configured prior to submission and execution and therefore default
values are not required.

The helper class is designed to be generic as it is able to deal with any WPS with inputs.
Additionally, processes have to be registered with the workflow engine and maybe submitted in a
BPMN document without registration. This means that the workflow engine should act as a
receptacle of a BPMN workflow and not put any further burden on the user to register processes.

9.4.1. Security in the helper class

This implementation does security by first testing whether the capabilities of the service requires
security, it does this by getting the capabilities of a service and looking for <Constraint> tags within
the advertised operations.

It is assumed that if the constraint tags are missing or are empty, then there are no security
constraints on the service. If there are no security constraints, then the service execution happens
as normal without the inclusion of a bearer token in the request. However, if there are found to be
constraints, they are currently assumed to be OAuth2. The Bearer token is currently held in the
process variables for the BPMN workflow. Originally it was considered to have a single security
federation with the OAuth Bearer token inserted into the header of the request to the WPS that
fronts the BPMN workflow engine. However, it quickly became apparent that this was an over-
simplification of the requirements for even the simplest workflows due to:

• The lack of available services to produce a simple demonstrator workflow.

• The recognition that security is prevalent throughout many services, therefore a generic BPMN
workflow engine needs to be flexible enough to utilize multiple tokens.

33

http://localhost:8080/wps/

• The BPMN engine has its own security requirements, one of which is encoding the credentials
of the executor in the header of the REST calls to create the container that can execute the
workflow. Therefore, passing all credentials in the header becomes problematic.

The helper class then takes the security token as an input and inserts it into the HTTP header of the
execute request for the relevant WPS service. If the token is valid then the WPS executes as normal.

9.5. Remote execution of BPMN documents
jBPM acts as a Git repository, this is implementation specific, and simply a way of pushing a
remotely constructed BPMN document to a running instance of jBPM. Therefore, the workflow
engine has a WPS facade in front of it to:

• Receive the BPMN document.

• Create the Git repository on the jBPM instance.

• Execute the workflow.

These functions are performed using a combination of Git calls made in jGit (https://git-scm.com/)
and then calls to the jBPM REST API within the WPS process.

It is noted that other BPMN workflow engines perform this task in a different way, i.e. by directly
allowing access to the remote execution aspect of the workflow as seen in the Camunda
implementation in Testbed-13.

The WPS contains a single process to execute the workflow with a parameter to receive the BPMN
document. This approach replicates some of the work done in the WPS-T aspect of the architecture
for simplicity and to assist other implementers. The process description for the ExecuteWorkflow
WPS process is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:ows="http://www.opengis.net/ows/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd"
 service="WPS" version="2.0.0" response="document" mode="sync">
 <ows:Identifier>testbed14.workflows.ExecuteWorkflow</ows:Identifier>
 <wps:Input id="BPMNDocument">
 <wps:Reference mimeType="text/xml"
xlink:href="http://meekbaa1.miniserver.com/dl/testbed-14-gait-process.bpmn"/>
 </wps:Input>
 <wps:Output id="WorkflowResults" transmission="value"/>
</wps:Execute>

34

https://git-scm.com/

9.5.1. Receiving the BPMN document and creating the Git repository

The WPS is there as a simple way for a client to execute a workflow by executing a WPS process. As
mentioned, jBPM uses Git as a method of remotely updating projects within the web application.
Therefore, the WPS process simply commits the BPMN document to the relevant project within the
jBPM instance. In the testbed, the jBPM project is already setup and the change committed is the
workflow document received by the WPS. jBPM projects contain supporting files beyond the
workflow document such as project configuration that includes registration of service task work
items and deployment variables. Although these can be configured remotely via Git, they are not in
the Testbed due to the added complexity.

This highlights an issue where jBPM requires more than a BPMN document to perform executions
as there are several supporting files used in the registration process. Therefore in the testbed,
projects are updated with changes to the BPMN document and these usually include updates to
variable values for the WPS processes executed by the workflow engine.

9.5.2. Executing the workflow

jBPM offers a REST API as a method of executing workflows remotely, however this is a multi-step
process. The steps are as follows:

1. Check for container deployment of existing workflow project and if necessary undeploy the
container.

◦ Deploy the new container with the updated BPMN document.

◦ Create a new instance of the BPMN process using the deployed container - note that a
container has the ability to execute several workflows.

◦ Execute the instance of the workflow and get the workflow execution status - this does not
correspond to the results of the workflow. it is a set of messages that respond to whether the
workflow has executed correctly or not.

Executing jBPM remotely requires basic authentication, which is passed in the header information.
Additionally, content-type must also be set appropriately (all examples here are XML, but the
system has been tested using JSON).

All of this is managed through the REST API with the following example requests.

Remove existing container

Deleting an existing deployment is required to remove any existing container deployment of a
project. Note that containers need to be rebuilt when the underlying project is changed via Git and
example REST request using HTTP DELETE is as follows:

• http://localhost:8080/kie-server/services/rest/server/containers/Testbed_14_secured_1.0.0/

This process is called regardless of whether there is a running container or not. In an operational
system, it is likely that existing containers would have to be checked for running processes prior to
removal.

35

http://localhost:8080/kie-server/services/rest/server/containers/Testbed_14_secured_1.0.0/

Deploy new container

The new container is deployed with the updated project using HTTP PUT operation:

http://localhost:8080/kie-server/services/rest/server/containers/Testbed_14_secured_1.0.0/

<kie-container container-id="Testbed_14_secured_1.0.0">
 <release-id>
 <artifact-id>Testbed_14_secured</artifact-id>
 <group-id>com.myspace</group-id>
 <version>1.0.0</version>
 </release-id>
</kie-container>

This process simply rebuilds the project using the updated BPMN documents that have been
committed via Git.

Execute the process

Process execution via REST has the ability to take variables as arguments for execution. However,
all variables are described in the submitted BPMN document and execution without further
arguments is therefore sufficient. This endpoint is executed using an HTTP POST operation with a
blank body.

http://localhost:8080/kie-server/services/rest/server/containers/Testbed_14_secured_1.0.0/processes/
Testbed_14_secured_1.0.0.testbed-gait-process/instances

When called, this endpoint returns a process ID to the client for reference.

Retrieve the results

After the process has completed (in this case it is run synchronously), the results are made
available via the following HTTP GET call:

http://localhost:8080/kie-server/services/rest/server/queries/processes/instances/<processID>/
variables/instances

The results are then returned to the calling WPS and inserted as WPS output in the
WorkflowResults variable.

9.6. Architecture
The architecture has changed a little from the Statement of Requirement (SOR) as the main addition
is the WPS that sits in front of the workflow engine. It is felt that including a WPS on the workflow
engine side is simpler than attempting to write a WPS process for the WPS-T that is under the
control of another vendor. This way, a standard interface is provided for anyone to execute the
BPMN workflow engine beyond the WPS-T, therefore adhering to a loosely coupled architecture.
The crude revised architecture can be found in Figure 8.

36

http://localhost:8080/kie-server/services/rest/server/containers/Testbed_14_secured_1.0.0/
http://localhost:8080/kie-server/services/rest/server/containers/Testbed_14_secured_1.0.0/processes/Testbed_14_secured_1.0.0.testbed-gait-process/instances
http://localhost:8080/kie-server/services/rest/server/containers/Testbed_14_secured_1.0.0/processes/Testbed_14_secured_1.0.0.testbed-gait-process/instances
http://localhost:8080/kie-server/services/rest/server/queries/processes/instances/<processID>/variables/instances
http://localhost:8080/kie-server/services/rest/server/queries/processes/instances/<processID>/variables/instances

Figure 8. The revised architecture with the addition of a WPS in front of the workflow engine for simple
execution

The behavior of the system requires implementation of the use cases found in Figure 9. The Actors
on the system are the WPS-T and the generic client. The generic client is included to show that the
revised interfaces are standards based and therefore any client can interact with the WPS and
therefore the workflow engine. The use cases involve receiving and parsing a BPMN document to
orchestrate the processes. This is not a simple command as it involves treating the workflow web
application as a Git repository, this enables dependencies to be incorporated into a workflow
command (through Maven), but also requires aspects such as authentication.

37

Figure 9. A UML use case diagram for the BPMN Workflow Engine

The sequence of executions is much like that seen in Testbed-13. The sequence diagram for the
implementation is found in Figure 10. The system receives the BPMN diagram and executes the
workflow. Access to services is checked as the access token is simply passed in the header of a POST
request. The BPMN system is not doing any token authentication, it simply passes the token into the
execute document for the WPS services to initiate a session. If the user is not authenticated, then
the BPMN service receives an error that is passed onto the client. After the workflow has executed,
there are two possible outcomes, either the workflow executes all the way to the end, or it does not.
If it does, then a result is generated and passed to the client. If it does not then an error message is
passed to the client.

38

Figure 10. A UML sequence diagram for the BPMN Workflow Engine Execute Workflow use case

jBPM is an implementation of a BPMN workflow engine and has its own methods of committing
workflows to be executed, deploying containers, executing tasks and retrieving results. Figure 11
describes the jBPM specific sequence for receiving a BPMN document, committing the document to
the workflow engine and performing the execution. jBPM uses the Git protocol to create and update
projects. The specific REST calls used are described in the previous section. The local machine
contains a Git project that is changed according to a newly submitted BPMN document through the
WPS, the changes are then committed to the local Git repository and then the changes are pushed to
the remote Git repository, i.e. the jBPM web application. This requires authentication that is hard
coded into the WPS process as a temporary solution. After the project is committed, old versions of
the deployment have to be undeployed, this is done through a simple REST call. Then, a new
version is deployed and built, and the process is executed by a further REST call and assigned a task
number. This enables multiple instances of a process to be run sequentially or simultaneously. It is
possible to inject variables into the REST call, however, this is not required in this use case because
all of the variables updates are included in the submitted BPMN document. After the process is
completed, the results are made available by a further REST call with the previously assigned task
number used as the lookup.

39

Figure 11. A UML sequence diagram to show jBPM deployment and execution procedure.

9.7. Scenario
Unlike previous Testbed initiatives on workflows, this piece of work has no grounding scenario and
no services to execute as part of the CFP. Therefore, a use case for workflow execution has been
created in collaboration with the sponsors and thread partners. The BPMN engine will be
responsible for executing a data quality workflow using the National Geospatial Intelligence
Agency (NGA) Gait tools [2: https://github.com/ngageoint/Geospatial-Analysis-Integrity-Tool] fronted
by a WPS facade.

The workflow has been setup to include two processes:

1. NGA Gait Tools process:

40

https://github.com/ngageoint/Geospatial-Analysis-Integrity-Tool

<wps:ProcessOfferings
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ows="http://www.opengis.net/ows/2.0"
xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd">
 <wps:ProcessOffering processVersion="1.0.0" jobControlOptions="sync-execute async-
execute" outputTransmission="value reference">
 <wps:Process>
 <ows:Title>
A simple demonstrator process to execute a workflow
</ows:Title>
 <ows:Abstract>
Takes a BPMN document, executes the workflow and produces the result
</ows:Abstract>
 <ows:Identifier>testbed14.workflows.ExecuteWorkflow</ows:Identifier>
 <wps:Input minOccurs="1" maxOccurs="1">
 <ows:Title>
The BPMN Document to execute (this process only allows for workflows with known
handlers)
</ows:Title>
 <ows:Identifier>BPMNDocument</ows:Identifier>
 <wps:ComplexData
 xmlns:ns="http://www.opengis.net/wps/2.0">
 <ns:Format default="true" mimeType="text/xml"/>
 </wps:ComplexData>
 </wps:Input>
 <wps:Output>
 <ows:Title>The results from the workflow engine</ows:Title>
 <ows:Identifier>WorkflowResults</ows:Identifier>
 <wps:ComplexData
 xmlns:ns="http://www.opengis.net/wps/2.0">
 <ns:Format default="true" mimeType="text/xml"/>
 </wps:ComplexData>
 </wps:Output>
 </wps:Process>
 </wps:ProcessOffering>
</wps:ProcessOfferings>

1. A sample process that returns the data given to it, although it performs no processing on the
data, it demonstrates:

a. That processes can be chained.

b. That a workflow engine can work with both secured and unsecured processes.

c. The workflow engine working with data generated with different WPS.

41

<wps:ProcessOfferings
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ows="http://www.opengis.net/ows/2.0"
xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd">
 <wps:ProcessOffering processVersion="1.0.0" jobControlOptions="sync-execute async-
execute" outputTransmission="value reference">
 <wps:Process>
 <ows:Title>storage.geoserver.GetWFSData</ows:Title>
 <ows:Identifier>storage.geoserver.GetWFSData</ows:Identifier>
 <wps:Input minOccurs="1" maxOccurs="1">
 <ows:Title>Input WFS Data</ows:Title>
 <ows:Identifier>inputWFSUrl</ows:Identifier>
 <wps:ComplexData
 xmlns:ns="http://www.opengis.net/wps/2.0">
 <ns:Format default="true" mimeType="application/x-zipped-shp"/>
 <ns:Format mimeType="text/xml; subtype=gml/3.1.1"
schema="http://schemas.opengis.net/gml/3.1.1/base/feature.xsd"/>
 <ns:Format mimeType="text/xml; subtype=gml/3.1.0"
schema="http://schemas.opengis.net/gml/3.1.0/base/feature.xsd"/>
 <ns:Format mimeType="application/json"/>
 </wps:ComplexData>
 </wps:Input>
 <wps:Output>
 <ows:Title>Vector Data</ows:Title>
 <ows:Identifier>vectorData</ows:Identifier>
 <wps:ComplexData
 xmlns:ns="http://www.opengis.net/wps/2.0">
 <ns:Format default="true" mimeType="application/x-zipped-shp"/>
 <ns:Format mimeType="text/xml; subtype=gml/3.1.1"
schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
 <ns:Format mimeType="text/xml; subtype=gml/3.1.0"
schema="http://schemas.opengis.net/gml/3.1.0/base/feature.xsd"/>
 <ns:Format mimeType="application/json"/>
 </wps:ComplexData>
 </wps:Output>
 </wps:Process>
 </wps:ProcessOffering>
</wps:ProcessOfferings>

The BPMN document used in Testbed-14 chains the two processes above and is what was used in
the Technology Integration Experiment (TIE) testing aspects of the workflow. The BPMN document
was to demonstrate the security token parameter being changed to show transactional BPMN
document execution, it can be found in the annex.

jBPM has two different environments for orchestrating and executing processes, the development
environment based upon the Eclipse Integrated Development Environment (IDE), and the web
application which is a set of standalone modules running on JBOSS Wildfly 11. There are several

42

differences between the two and they are not particularly interoperable and both have been
included in this document to show the mapping of data objects. The web application does not
support data object icons, but the Eclipse IDE environment does. From a BPMN perspective, both
methods of mapping variables produce valid BPMN (both conceptually and via a validator), but the
formal mapping of objects is preferred.

Figure 12. The Testbed-14 workflow shown in the JBPM Console.

Figure 13. The Testbed-14 workflow shown in the Eclipse development environment.

9.8. TIE Results
The workflow engine WPS produces the following after a successful execution.

<?xml version="1.0" encoding="UTF-8"?>
<wps:Result
 xmlns:wps="http://www.opengis.net/wps/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd">
 <wps:JobID>cfcaccc5-2789-4eb3-b518-03d4c9c14d66</wps:JobID>
 <wps:Output id="WorkflowResults">
 <wps:Data mimeType="text/xml">
 <variable-instance-list>
 <variable-instance>

43

 <name>initiator</name>
 <old-value/>
 <value>admin</value>
 <process-instance-id>4</process-instance-id>
 <modification-date>2018-09-06T12:33:47.967Z</modification-date>
 </variable-instance>
 <variable-instance>
 <name>QACR</name>
 <old-value/>
 <value>https://testbed.dev.52north.org/tb14-d146-
secured/service/wps?request=GetOutput&version=2.0.0&service=WPS&id=d0634e5
4-4626-4481-b6db-aa0cc05694fcQACR_file.d1cd3458-67a3-45ab-9a35-14beb33bdaf2</value>
 <process-instance-id>4</process-instance-id>
 <modification-date>2018-09-06T12:33:55.679Z</modification-date>
 </variable-instance>
 <variable-instance>
 <name>AttError</name>
 <old-value/>
 <value>https://testbed.dev.52north.org/tb14-d146-
secured/service/wps?request=GetOutput&version=2.0.0&service=WPS&id=d0634e5
4-4626-4481-b6db-aa0cc05694fcattribution-errors.afd65f49-d63a-4cf5-aec9-
ee2ceb8e71a3</value>
 <process-instance-id>4</process-instance-id>
 <modification-date>2018-09-06T12:33:55.680Z</modification-date>
 </variable-instance>
 <variable-instance>
 <name>ConReport</name>
 <old-value/>
 <value>https://testbed.dev.52north.org/tb14-d146-
secured/service/wps?request=GetOutput&version=2.0.0&service=WPS&id=d0634e5
4-4626-4481-b6db-aa0cc05694fccondition-reports.d32eb836-978a-4bc6-bce8-
ef65b7375d1c</value>
 <process-instance-id>4</process-instance-id>
 <modification-date>2018-09-06T12:33:55.681Z</modification-date>
 </variable-instance>
 <variable-instance>
 <name>ConsolLN</name>
 <old-value/>
 <value>https://testbed.dev.52north.org/tb14-d146-
secured/service/wps?request=GetOutput&version=2.0.0&service=WPS&id=d0634e5
4-4626-4481-b6db-aa0cc05694fcconsolidated1LN.918dccf2-1849-41f1-abe7-
96cbe71f2a1e</value>
 <process-instance-id>4</process-instance-id>
 <modification-date>2018-09-06T12:33:55.681Z</modification-date>
 </variable-instance>
 <variable-instance>
 <name>ConsolPT</name>
 <old-value/>
 <value>https://testbed.dev.52north.org/tb14-d146-
secured/service/wps?request=GetOutput&version=2.0.0&service=WPS&id=d0634e5
4-4626-4481-b6db-aa0cc05694fcconsolidated1PT.5195483c-5f78-4ff7-a1ec-

44

83a0e23cfe43</value>
 <process-instance-id>4</process-instance-id>
 <modification-date>2018-09-06T12:33:55.681Z</modification-date>
 </variable-instance>
 <variable-instance>
 <name>Result</name>
 <old-value/>

<value>http://54.218.149.72:8000/wps/RetrieveResultServlet?id=16ef4f9d-8f8d-4e31-aedf-
efaace7afe7dvectorData.a08a2f7e-b5eb-48cd-90c3-7b5b584c35ad</value>
 <process-instance-id>4</process-instance-id>
 <modification-date>2018-09-06T12:33:57.138Z</modification-date>
 </variable-instance>
 </variable-instance-list>
 </wps:Data>
 </wps:Output>
</wps:Result>

Verification of the transactional approach is demonstrated through submission of the Bearer Token
taken from the Security Mediation Service developed elsewhere in the thread. The outputs of the
workflow are simply wrapped in a catch-all WPS output. Each of the individual results are WPS
references that can be parsed by any compliant OGC service.

9.9. Shortcomings of the approach
Although successful in demonstrating the approach to secured workflows, there are a few
shortcomings that will be described in this section.

• Managing security and tokens. Currently, the tokens are encoded in the BPMN document. This
enables differential, fine grained access to different services. However, there are several
problems:

◦ Security tokens are encoded as plain text in the BPMN document. This represents a security
risk as they can be easily read and reused if they are intercepted.

◦ Workflows can include secured and unsecured services. This means that results from a
secured service can be pushed to an unsecured service, this also represents a security risk.

• Allowing access to the workflow engine.

◦ The workflow engine in this Testbed is locked down to a specific set of processes, that is, the
process described can have its parameters changed, but submitting completely new
processes is currently not possible. This is because further implementation is required to
enable this, and it would be a security risk to have an open transactional offering.

◦ The workflow engine offers remote access via a REST API and requires basic authentication
in the header to execute anything. Currently, this access is hard coded into the WPS process
that fronts the workflow engine. In future iterations of the system, the user should be
authenticated with the workflow engine either prior to execution or via a secure method.

• Returning results to the client.

◦ The workflow engine returns variables that are exposed according to orchestration and

45

configuration. These can be called by external clients (currently, the workflow WPS) and
returned. However, the results are a dump of all available external variables from the
workflow engine and are not configurable in the current setup.

◦ For convenience, the workflow engine is fronted by a WPS (separate from the WPS-T work
item in the thread), which contains a single process (ExecuteWorkflow) that takes a single
parameter as an input (the BPMN document) and returns a single result (the workflow
output variable dump). This approach enables simple access to the workflow engine, but
requires any calling client to parse the dump to extract the individual workflow results. This
is a trivial task, but has the following conceptual issues:

▪ Different workflow engines may return results in a different way.

▪ Parsing out results on the server side will require a new WPS process to be created for
each new BPMN document submitted. This is potentially a job for the WPS-T.

46

Chapter 10. Docker, Kubernetes and Cloud
Foundry
This section provides the results of a short study looking at Cloud Foundry and including the
specific technologies of Kubernetes and Docker. It complements the Federated Clouds ER [6] in this
Testbed.

10.1. Introduction
Remit from the SOR

" Kubernetes, Docker and Cloud Foundry A discussion has recently arisen around geospatial
services (here "services" more in the sense of geospatial functions and processes, but not
necessarily as in "Web services") and their availability in modern distributed architectures. Cloud
platforms such as Cloud Foundry or OpenShift and container platforms such as Docker or
Kubernetes lose their distinct borders as they integrate and interweave, partly by adding services
such as e.g. Docker Swarm and Compose, partly by extending their functionality beyond their
original purpose. The Cloud Foundry Diego project integrates Docker into the Cloud Foundry PaaS.
Docker again can be integrated into various infrastructure tools such as Kubernetes, but plans
native support for Kubernetes itself. Remains the question what the geospatial community needs to
do in order to support those integrated solutions in the best way. The Workflow Engineering Report
(D026) shall contain a study on these aspects and answer questions such as:

• What functionality needs to be provided as a software service?

• What is a platform function that shall be provided?

• Where are the borders between these two?

The study shall serve as a starting point for future architecture discussions. It does not need to be
comprehensive in the sense that all tools or architectural aspects need to be analyzed."

10.2. Motivating technologies
The particular technologies of interest as mentioned previously are Docker and Kubernetes, this
section provides a short overview of what these technologies are and their relevance to the
geospatial domain in terms of OGC services. The section is organized according to a hierarchy with
finely grained microservices technology described in the first section to enterprise level
deployments on clouds in the final section with Cloud Foundry. This list can also be considered in
terms of the complexity of each of the tools as containers are generally self-contained with minimal
external dependencies whereas Cloud Foundry works with all of the technologies beneath it in the
hierarchy.

10.2.1. Microservices

Microservice architecture is a way of working that encourages development and deployment of
small pieces of functionality in a loosely coupled and finely grained architecture. Loose coupling
enables interoperability between components where small pieces of functionality can be developed

47

and replaced without compromising the functionality of the entire system. Loose coupling of
microservices also relies on lightweight protocols to perform communication between
microservices and clients. Developing microservices lends itself to small teams working in parallel
on different pieces of system functionality. This provides an efficient use of resources and enables
that no one module of a system becomes over-complicated and ultimately un-maintainable.

Another aspect of microservice development and delivery is the use of Agile methodologies and
continuous integration/delivery practices. Although not a focus of this study, continuous delivery is
a software engineering process (DevOps) that has sought to utilize microservices architecture by
developing capability though short cycles (sprints in Agile Scrum terminology) which means that
releases are performed regularly with minimum viable products.

10.2.2. Docker

Containerization and micro-services have become fashionable in modern architectures, or at least
are reported to have. Indeed, many large organizations still maintain legacy systems that do not
implement any sort of micro-services architecture at all, therefore, these technologies are still
pipeline considerations for many. Docker is a popular method of deploying capability using
container technology. Containers may be thought of as very stripped-down virtual machines (VM)
that generally run inside virtual machines in the loose sense. Containers package everything
required for the contained service to run within the container image, enables agility, simple
deployment of services and removes reliance on system wide libraries to be made available to
enable software to run. Some other advantages of containers are as follows:

• Firewalling of individual applications/services for enhanced security.

• Efficient use of system resources as multiple containers can be spun up onto a single VM
environment (Kernal sharing).

• Containers can be rapidly deployed and un-deployed at scale as system load requires.

• Containers can be orchestrated using technologies such as Kubernetes and Docker Swarm.

It should be noted that there is other container technology available including Singularity
(https://singularity.lbl.gov/) and Turbo (https://turbo.net). However, Docker appears to be the
technology of choice for many.

10.2.3. Kubernetes

Containerization and microservices architectures are designed to make efficient use of
computational resources whilst providing a stripped-down version of only the required
functionality. As mentioned previously, this is in contrast to previous methods of setting up entire
virtual machines for the purposes of deploying one or two applications whilst requiring only a
small subset of an application’s functionality. A drawback of this approach to deploying resources is
that microservice architectures can quickly become complex and unmanageable without a further
software solution to orchestrate and maintain containers. Kubernetes is one such open source
product that provides orchestration and management for containerized systems.

Kubernetes reports to act as a:

• Container platform.

48

https://singularity.lbl.gov/
https://turbo.net

• Microservices platform.

• Portable cloud platform.

Although Kubernetes does container orchestration, it is marketed as a service that removes the
need for container orchestration via removal of centralized control and utilization of pathways to
move an entire system from its current state to the desired state.

10.2.4. Cloud Foundry

Cloud Foundry (CF in this section) is a piece of software for managing infrastructure, services and
applications. It is designed to take the work out of managing infrastructure to enable the focus to be
shifted to application and service development. Essentially, CF sits at the top of the
Docker→Kubernetes→CF stack and is focused on the macro-management of systems, rather than
the detail of specific deployments. The software is designed to manage a system that is
infrastructure and approach agnostic, working with a combination of localized VMs as well as IaaS
providers such as AWS and Azure to remove the specifics of deploying applications and services on
those specific platforms. This allows developers to focus on development rather than deployment.

CF is designed to manage infrastructure in a way that allows for redundancy, outages and scaling. It
does this by installing applications on multiple running VMs that can be upscaled and downscaled
as required. Load balancing is accomplished at via three different routes:

1. BOSH - a tool designed to configure and run VMs directly onto physical infrastructure.

2. Cloud Controller - the software that runs applications and other processes on the VMs. This is
where traffic load balanced according to demand.

3. Router - this actually does the routing of the traffic from the outside world. This is accomplished
through a Bulletin Board System (BBS) that services advertise via and the Router periodically
queries to maintain an up-to-date list of what services are available where.

Diego

Diego is a new orchestration manager that distributes tasks and application processes and it is a
self-healing container management system. One of Diego’s advantages is that it attempts to
maintain the correct numbers of instances running in cells to avoid network failures. The correct
number of container instances is defined partially by the request for resources, but it is obviously
also constrained by the resources that are available. Diego utilizes Garden, which is an isolated,
containerization layer. One of Diego’s responsibilities in continuity, that is, if a resource becomes
overloaded or crashes, then Diego should self-heal, and make further resources available to
complete the Tasks at hand. In addition to these features, Diego also allows for SSH access to
running containers and therefore application instances. Within Diego, Garden extracts the
necessary metadata from a Docker image, mounts the image, builds the container and executes the
commands from a Task if required. Diego also has a concurrent process running to check the health
of the container at period times.

49

Figure 14. Diego Flow and Architecture Digaram

Cloud Foundry Process

CF utilizes Diego in the process of making resources available for a process. It is also used as an app
management system that sends a request to the BBS API, the public facing aspect of the service.
Clients send data to the BBS with a work description. Diego then makes decisions about distribution
and lifecycle enforcement of a job based upon the submitted characteristics. The BBS then contacts
the Auctioneer system to create an Auction based upon the resources requested by the job (usually
an LRP - Long Running Process). The Auctioneer polls the resource offerings for information
including state and available resources. The BBS then matches the available resources with the task
requests and takes corrective action on the resources if required.

The Rep is a piece of software that bids on tasks to be completed. It does this by accepting the
request from the Auction, creates a Garden Container (essentially an isolated containerized
environment) and executes the work described in the Task. Once the container has been created in
the local Garden, the Rep broadcasts cells to the rest of the system and instructs what containers
should be created on behalf of Cloud Foundry. The Converger periodically checks the state of the
BBS used by Diego executors and cleans as appropriate. During the execution process, Diego
streams real-time logs for Tasks and LRPs to the Loggerator. Additionally, each LRP instance is

50

registered with GoRouter (the router for a Cloud Foundry instance) for routing of external web
traffic to the task.

10.2.5. Implications of Cloud Foundry in the Geospatial Domain

Geospatial data has always required a processing overhead due to the nature of the complex
operations that can be performed using spatial techniques. However, with recent trends including
Volunteered Geographic Information (VGI), crowdsourcing and collection of three-dimensional (3D)
point clouds, data volumes have grown-significantly. Processing of these datasets is a challenge due
to their size and complexity. Up until recently, OGC architectures have assumed a one-to-one
relationship between server and interface, that is, one interface exposes resources on one server
instance. These new forms of big data require a different approach to resource management to
enable the most efficient usage.

Services or resources?

OGC services have been traditionally based upon a Service Oriented Architecture (SOA). For
example, WFS is a view on a database, that is, there is a database on a server and a WFS sits in front
of the database to provide access to the database contents in a standardized manner. Other OGC
data services such as WCS work in a similar manner although they may refer to a directory
structure, although still focused on a single server. Processing services within the OGC have worked
on a similar assumption that the service is running on a single machine, or more recently, a single
container. Although not explicitly stated, often an OGC service is tightly coupled to the server that it
is providing an interface for.

There has recently been a move within the OGC to OpenAPI (Swagger) and REST interfaces within
the OGC. This has been spearheaded by the WFS Standards Working Group (through work on WFS
3.0) who have chosen to revolutionize the standard by moving to an entirely different framework.
Although WFS 3.0 maintains the spirit of WFS, it has removed a lot of the calls that were part of
previous versions of the standard. There are no longer calls such as:

• GetCapabilities.

• GetFeature.

Instead the REST calls are based upon HTTP verbs:

• GET

• PUT

• POST

• HEAD

• PATCH

• DELETE

Additionally, resources are exposed via different endpoints, which in turn determine the function
of the API path, these endpoints are then called using one of the above http methods depending on
the capabilities of the endpoint.

51

Cloud Foundry in OGC architectures

Cloud Foundry is essentially a server-side application that contains the functions described in the
above paragraphs. The potential applicability of Cloud Foundry to OGC services is enabled by the
switch to this resource-based architecture. Whereas with service-based architectures, the
assumption is one server, one interface. With resource-based architectures, no such assumption is
asserted. Therefore it is feasible to have an API sitting in front of many servers or container-based
architecture and exposing the resources without the user necessarily understanding the
architecture behind the API. This approach is seen in Artificial Intelligence (AI), with services such
as Clarifai (https://clarifai.com/) and crowdsourced weather information
(https://www.wunderground.com/weather/api/), but rarely seen in OGC web services.

From an architectural perspective, Cloud Foundry could be used behind the scenes of an API such
as WFS 3.0 to manage resources required by the requesting client. OGC web services could scale
elastically according to demand and load could be balanced across resources.

Long Running Processes (LRPs) are an area that geographic information services have found
problematic to account for using current architectures. WPS 2.0 uses asynchronous processing to
create and manage LRPs. Although this solves problems such as client time-outs, it does not re-
address resourcing associated with long running processes and just deploys a process onto the
server in the same way that any other process is deployed. In contrast, Cloud Foundry has modules
and methods specifically devoted to registering and resourcing long running processes through its
bulletin board interface. This means that the correct resources can be allocated via Cloud Foundry
according to the long running process.

Docker Swarm

Docker Swarm provides many of the same functions as Kubernetes as it provides clustering and
scheduling for Docker containers. Container management is automated through Docker Compose,
which defines multicontainer applications and Swarm itself, which consolidates Docker hosts into a
cluster and enables container orchestration and cluster management. A difference between Swarm
and Kubernetes is the manner in which they orchestrate, Swarm has a focus on specific resources
such as services, whereas Kubernetes utilizes co-located groups of containers.

Docker Enterprise Edition

Docker EE is a platform that enables simultaneous running of both Docker Swarm and Kubernetes,
which enables developers and operations teams to use both interchangeably without committing to
one. Resources in Kubernetes and Swarm are presented as shared and interchangeably and worker
nodes can be set to work with Kubernetes only, Swarm only or in a mixed mode. Although useful
for development, mixing Kubernetes and Swarm in mixed mode is not recommended in the current
release.

10.2.6. Discussion

CF and technologies like it are built to cope with processing large quantities of data across elastic
architectures and resource management systems with resources spread across different cloud
providers, local machines, virtual machines and containers. From an OGC perspective, many of the
use cases put forward for testbeds do not require this level of behind-the-scenes resource

52

https://clarifai.com/
https://www.wunderground.com/weather/api/

management, as the use cases are for demonstrator deliverables. Utilization of CF and associated
technologies falls into the operational sphere, where timely result return is critical to mission
success. The movement to a resource-based architecture (at least in WFS 3.0) is a move that mirrors
the move to REST based architectures in many of the non-geospatial (and geospatial for that matter)
domains and is timely in terms of CF. The new resource-based architectures do not assert or
assume a one-to-one mapping between resources and interfaces, or indeed that resources are co-
located. Resource-based architectures provide an API to access the contained resources that may or
may not route through to local servers.

CF has potential in the geospatial domain as it enables scalable, elastic resource management using
a variety of providers. This coupled with the movement to resource-based architectures and APIs
offers the OGC the opportunity to create or revise a suite of standards that support more modern,
real-world operational practices.

53

Chapter 11. Conclusion
The implementation described in this ER has demonstrated several new possibilities for workflows
in the OGC. BPMN can be used to orchestrate OGC services, this has been shown through this
document and the Workflows ER from Testbed-13 using two different BPMN workflow
implementations. Some of the achievements include:

• Differential access to security within the workflow.

• A fully independent workflow engine loosely coupled to the rest of the federation.

• Best practices for developing BPMN helper classes.

• An informative study on emerging DevOps orchestration technologies for use in Geo.

54

Appendix A: XML Schema Documents
BPMN document used in TIE testing.

<bpmn2:definitions
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.omg.org/bpmn20"
 xmlns:bpmn2="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:bpsim="http://www.bpsim.org/schemas/1.0"
 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
 xmlns:drools="http://www.jboss.org/drools" id="_gY3O0KdlEeiaoq0Pfrgi7g"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd
http://www.jboss.org/drools drools.xsd http://www.bpsim.org/schemas/1.0 bpsim.xsd"
exporter="jBPM Process Modeler" exporterVersion="1.0"
targetNamespace="http://www.omg.org/bpmn20">
 <bpmn2:itemDefinition id="_AttErrorItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="_ConReportItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="_QACRItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="_ConsolLNItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="_ConsolPTItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="_ResultItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_TaskNameInputXItem" structureRef="String"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_bearerTokenInputXItem" structureRef="String"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_input-
featuresInputXItem" structureRef="String"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_processDescriptionInputXItem" structureRef="String"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_wpsURLInputXItem"
structureRef="String"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_QACR_fileOutputXItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_attribution-
errorsOutputXItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_condition-
reportsOutputXItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_consolidated1LNOutputXItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="__5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_consolidated1PTOutputXItem" structureRef="Object"/>
 <bpmn2:itemDefinition id="__118418A4-F190-4074-862F-
CC06149554B2_TaskNameInputXItem" structureRef="String"/>
 <bpmn2:itemDefinition id="__118418A4-F190-4074-862F-
CC06149554B2_inputWFSUrlInputXItem" structureRef="String"/>
 <bpmn2:itemDefinition id="__118418A4-F190-4074-862F-
CC06149554B2_processDescriptionInputXItem" structureRef="String"/>
 <bpmn2:itemDefinition id="__118418A4-F190-4074-862F-CC06149554B2_wpsURLInputXItem"

55

structureRef="String"/>
 <bpmn2:itemDefinition id="__118418A4-F190-4074-862F-
CC06149554B2_vectorDataOutputXItem" structureRef="Object"/>
 <bpmn2:process id="Testbed_14_secured.Testbed_14_Gait_Process"
drools:version="1.0" name="Testbed_14_Gait_Process" isExecutable="true">
 <bpmn2:property id="AttError" itemSubjectRef="_AttErrorItem"/>
 <bpmn2:property id="ConReport" itemSubjectRef="_ConReportItem"/>
 <bpmn2:property id="QACR" itemSubjectRef="_QACRItem"/>
 <bpmn2:property id="ConsolLN" itemSubjectRef="_ConsolLNItem"/>
 <bpmn2:property id="ConsolPT" itemSubjectRef="_ConsolPTItem"/>
 <bpmn2:property id="Result" itemSubjectRef="_ResultItem"/>
 <bpmn2:startEvent id="_8102727C-CD99-4284-825E-E76E956AFFAA" name="">
 <bpmn2:extensionElements>
 <drools:metaData name="elementname">
 <drools:metaValue>
 <![CDATA[]]>
 </drools:metaValue>
 </drools:metaData>
 </bpmn2:extensionElements>
 <bpmn2:outgoing>_794A0D3D-52B7-4F31-80AF-0471A38D2A3C</bpmn2:outgoing>
 </bpmn2:startEvent>
 <bpmn2:task id="_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0"
drools:taskName="TBGaitProcess" name="Secured Gait Process">
 <bpmn2:extensionElements>
 <drools:metaData name="elementname">
 <drools:metaValue>
 <![CDATA[Secured Gait Process]]>
 </drools:metaValue>
 </drools:metaData>
 </bpmn2:extensionElements>
 <bpmn2:incoming>_794A0D3D-52B7-4F31-80AF-0471A38D2A3C</bpmn2:incoming>
 <bpmn2:outgoing>_8CC002A6-4270-4A8D-9C3B-7E9CC2737380</bpmn2:outgoing>
 <bpmn2:ioSpecification id="_gY3O0adlEeiaoq0Pfrgi7g">
 <bpmn2:dataInput id="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_TaskNameInputX" drools:dtype="String" itemSubjectRef="__5BBD6BDD-0A50-
464F-9421-BDB1616DE6C0_TaskNameInputXItem" name="TaskName"/>
 <bpmn2:dataInput id="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_bearerTokenInputX" drools:dtype="String" itemSubjectRef="__5BBD6BDD-0A50-
464F-9421-BDB1616DE6C0_bearerTokenInputXItem" name="bearerToken"/>
 <bpmn2:dataInput id="_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_input-
featuresInputX" drools:dtype="String" itemSubjectRef="__5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_input-featuresInputXItem" name="input-features"/>
 <bpmn2:dataInput id="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_processDescriptionInputX" drools:dtype="String"
itemSubjectRef="__5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_processDescriptionInputXItem"
name="processDescription"/>
 <bpmn2:dataInput id="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_wpsURLInputX" drools:dtype="String" itemSubjectRef="__5BBD6BDD-0A50-464F-
9421-BDB1616DE6C0_wpsURLInputXItem" name="wpsURL"/>
 <bpmn2:dataOutput id="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_QACR_fileOutputX" drools:dtype="Object" itemSubjectRef="__5BBD6BDD-0A50-

56

464F-9421-BDB1616DE6C0_QACR_fileOutputXItem" name="QACR_file"/>
 <bpmn2:dataOutput id="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_attribution-errorsOutputX" drools:dtype="Object"
itemSubjectRef="__5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_attribution-errorsOutputXItem"
name="attribution-errors"/>
 <bpmn2:dataOutput id="_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_condition-
reportsOutputX" drools:dtype="Object" itemSubjectRef="__5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_condition-reportsOutputXItem" name="condition-reports"/>
 <bpmn2:dataOutput id="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_consolidated1LNOutputX" drools:dtype="Object" itemSubjectRef="__5BBD6BDD-
0A50-464F-9421-BDB1616DE6C0_consolidated1LNOutputXItem" name="consolidated1LN"/>
 <bpmn2:dataOutput id="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_consolidated1PTOutputX" drools:dtype="Object" itemSubjectRef="__5BBD6BDD-
0A50-464F-9421-BDB1616DE6C0_consolidated1PTOutputXItem" name="consolidated1PT"/>
 <bpmn2:inputSet id="_gY314KdlEeiaoq0Pfrgi7g">
 <bpmn2:dataInputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_bearerTokenInputX
</bpmn2:dataInputRefs>
 <bpmn2:dataInputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_input-featuresInputX
</bpmn2:dataInputRefs>
 <bpmn2:dataInputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_processDescriptionInputX
</bpmn2:dataInputRefs>
 <bpmn2:dataInputRefs>_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_wpsURLInputX</bpmn2:dataInputRefs>
 <bpmn2:dataInputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_TaskNameInputX
</bpmn2:dataInputRefs>
 </bpmn2:inputSet>
 <bpmn2:outputSet id="_gY314adlEeiaoq0Pfrgi7g">
 <bpmn2:dataOutputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_QACR_fileOutputX
</bpmn2:dataOutputRefs>
 <bpmn2:dataOutputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_attribution-errorsOutputX
</bpmn2:dataOutputRefs>
 <bpmn2:dataOutputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_condition-reportsOutputX
</bpmn2:dataOutputRefs>
 <bpmn2:dataOutputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_consolidated1LNOutputX
</bpmn2:dataOutputRefs>
 <bpmn2:dataOutputRefs>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_consolidated1PTOutputX
</bpmn2:dataOutputRefs>
 </bpmn2:outputSet>
 </bpmn2:ioSpecification>
 <bpmn2:dataInputAssociation id="_gY314qdlEeiaoq0Pfrgi7g">
 <bpmn2:targetRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_TaskNameInputX

57

</bpmn2:targetRef>
 <bpmn2:assignment id="_gY3146dlEeiaoq0Pfrgi7g">
 <bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="_gY315KdlEeiaoq0Pfrgi7g">TBGaitProcess</bpmn2:from>
 <bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="_gY315adlEeiaoq0Pfrgi7g">
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_TaskNameInputX
</bpmn2:to>
 </bpmn2:assignment>
 </bpmn2:dataInputAssociation>
 <bpmn2:dataInputAssociation id="_gY315qdlEeiaoq0Pfrgi7g">
 <bpmn2:targetRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_bearerTokenInputX
</bpmn2:targetRef>
 <bpmn2:assignment id="_gY3156dlEeiaoq0Pfrgi7g">
 <bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="_gY316KdlEeiaoq0Pfrgi7g">
 <![CDATA[ae4c4f88-9edd-49f3-a765-e00be886da48]]>
 </bpmn2:from>
 <bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="_gY316adlEeiaoq0Pfrgi7g">
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_bearerTokenInputX
</bpmn2:to>
 </bpmn2:assignment>
 </bpmn2:dataInputAssociation>
 <bpmn2:dataInputAssociation id="_gY316qdlEeiaoq0Pfrgi7g">
 <bpmn2:targetRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_input-featuresInputX
</bpmn2:targetRef>
 <bpmn2:assignment id="_gY3166dlEeiaoq0Pfrgi7g">
 <bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="_gY317KdlEeiaoq0Pfrgi7g">
 <![CDATA[
http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&request=Ge
tFeature&typeName=tb14:AgricultureSrf&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:CultureSrf&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:FacilitySrf&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:HydrographySrf&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:InformationPnt&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:RecreationSrf&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:SettlementSrf&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:StructurePnt&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:StructureSrf&outputFormat=SHAPE-

58

ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:TransportationGroundCrv&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:TransportationGroundSrf&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:UtilityInfrastructureSrf&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:o2s_A&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:o2s_L&outputFormat=SHAPE-
ZIP;http://testbed.dev.52north.org/geoserver/tb14/ows?service=WFS&version=1.0.0&reques
t=GetFeature&typeName=tb14:o2s_P&outputFormat=SHAPE-ZIP
]]>
 </bpmn2:from>
 <bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="_gY317adlEeiaoq0Pfrgi7g">
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_input-featuresInputX
</bpmn2:to>
 </bpmn2:assignment>
 </bpmn2:dataInputAssociation>
 <bpmn2:dataInputAssociation id="_gY317qdlEeiaoq0Pfrgi7g">
 <bpmn2:targetRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_processDescriptionInputX
</bpmn2:targetRef>
 <bpmn2:assignment id="_gY3176dlEeiaoq0Pfrgi7g">
 <bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="_gY318KdlEeiaoq0Pfrgi7g">
 <![CDATA[
org.n52.geoprocessing.project.testbed14.gait.GenericGaitToolAlgorithm
]]>
 </bpmn2:from>
 <bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="_gY318adlEeiaoq0Pfrgi7g">
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_processDescriptionInputX
</bpmn2:to>
 </bpmn2:assignment>
 </bpmn2:dataInputAssociation>
 <bpmn2:dataInputAssociation id="_gY318qdlEeiaoq0Pfrgi7g">
 <bpmn2:targetRef>_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_wpsURLInputX</bpmn2:targetRef>
 <bpmn2:assignment id="_gY3186dlEeiaoq0Pfrgi7g">
 <bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="_gY319KdlEeiaoq0Pfrgi7g">
 <![CDATA[
http://testbed.dev.52north.org/tb14-d146-secured/service/wps
]]>
 </bpmn2:from>
 <bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="_gY319adlEeiaoq0Pfrgi7g">_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0_wpsURLInputX</bpmn2:to>
 </bpmn2:assignment>

59

 </bpmn2:dataInputAssociation>
 <bpmn2:dataOutputAssociation id="_gY319qdlEeiaoq0Pfrgi7g">
 <bpmn2:sourceRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_QACR_fileOutputX
</bpmn2:sourceRef>
 <bpmn2:targetRef>QACR</bpmn2:targetRef>
 </bpmn2:dataOutputAssociation>
 <bpmn2:dataOutputAssociation id="_gY3196dlEeiaoq0Pfrgi7g">
 <bpmn2:sourceRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_attribution-errorsOutputX
</bpmn2:sourceRef>
 <bpmn2:targetRef>AttError</bpmn2:targetRef>
 </bpmn2:dataOutputAssociation>
 <bpmn2:dataOutputAssociation id="_gY31-KdlEeiaoq0Pfrgi7g">
 <bpmn2:sourceRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_condition-reportsOutputX
</bpmn2:sourceRef>
 <bpmn2:targetRef>ConReport</bpmn2:targetRef>
 </bpmn2:dataOutputAssociation>
 <bpmn2:dataOutputAssociation id="_gY31-adlEeiaoq0Pfrgi7g">
 <bpmn2:sourceRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_consolidated1LNOutputX
</bpmn2:sourceRef>
 <bpmn2:targetRef>ConsolLN</bpmn2:targetRef>
 </bpmn2:dataOutputAssociation>
 <bpmn2:dataOutputAssociation id="_gY31-qdlEeiaoq0Pfrgi7g">
 <bpmn2:sourceRef>
_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0_consolidated1PTOutputX
</bpmn2:sourceRef>
 <bpmn2:targetRef>ConsolPT</bpmn2:targetRef>
 </bpmn2:dataOutputAssociation>
 </bpmn2:task>
 <bpmn2:endEvent id="_4389A7BA-201F-4637-B755-FD541CB38E58" name="">
 <bpmn2:extensionElements>
 <drools:metaData name="elementname">
 <drools:metaValue>
 <![CDATA[]]>
 </drools:metaValue>
 </drools:metaData>
 </bpmn2:extensionElements>
 <bpmn2:incoming>_1C93B068-0C20-49DC-A41A-00F0698CA134</bpmn2:incoming>
 </bpmn2:endEvent>
 <bpmn2:task id="_118418A4-F190-4074-862F-CC06149554B2"
drools:taskName="GetDataFromWFS" name="Get data from WFS">
 <bpmn2:extensionElements>
 <drools:metaData name="elementname">
 <drools:metaValue>
 <![CDATA[Get data from WFS]]>
 </drools:metaValue>
 </drools:metaData>
 </bpmn2:extensionElements>

60

 <bpmn2:incoming>_8CC002A6-4270-4A8D-9C3B-7E9CC2737380</bpmn2:incoming>
 <bpmn2:outgoing>_1C93B068-0C20-49DC-A41A-00F0698CA134</bpmn2:outgoing>
 <bpmn2:ioSpecification id="_gY31-6dlEeiaoq0Pfrgi7g">
 <bpmn2:dataInput id="_118418A4-F190-4074-862F-
CC06149554B2_TaskNameInputX" drools:dtype="String" itemSubjectRef="__118418A4-F190-
4074-862F-CC06149554B2_TaskNameInputXItem" name="TaskName"/>
 <bpmn2:dataInput id="_118418A4-F190-4074-862F-
CC06149554B2_inputWFSUrlInputX" drools:dtype="String" itemSubjectRef="__118418A4-F190-
4074-862F-CC06149554B2_inputWFSUrlInputXItem" name="inputWFSUrl"/>
 <bpmn2:dataInput id="_118418A4-F190-4074-862F-
CC06149554B2_processDescriptionInputX" drools:dtype="String"
itemSubjectRef="__118418A4-F190-4074-862F-CC06149554B2_processDescriptionInputXItem"
name="processDescription"/>
 <bpmn2:dataInput id="_118418A4-F190-4074-862F-
CC06149554B2_wpsURLInputX" drools:dtype="String" itemSubjectRef="__118418A4-F190-4074-
862F-CC06149554B2_wpsURLInputXItem" name="wpsURL"/>
 <bpmn2:dataOutput id="_118418A4-F190-4074-862F-
CC06149554B2_vectorDataOutputX" drools:dtype="Object" itemSubjectRef="__118418A4-F190-
4074-862F-CC06149554B2_vectorDataOutputXItem" name="vectorData"/>
 <bpmn2:inputSet id="_gY31_KdlEeiaoq0Pfrgi7g">
 <bpmn2:dataInputRefs>
_118418A4-F190-4074-862F-CC06149554B2_inputWFSUrlInputX
</bpmn2:dataInputRefs>
 <bpmn2:dataInputRefs>
_118418A4-F190-4074-862F-CC06149554B2_processDescriptionInputX
</bpmn2:dataInputRefs>
 <bpmn2:dataInputRefs>_118418A4-F190-4074-862F-
CC06149554B2_wpsURLInputX</bpmn2:dataInputRefs>
 <bpmn2:dataInputRefs>
_118418A4-F190-4074-862F-CC06149554B2_TaskNameInputX
</bpmn2:dataInputRefs>
 </bpmn2:inputSet>
 <bpmn2:outputSet id="_gY31_adlEeiaoq0Pfrgi7g">
 <bpmn2:dataOutputRefs>
_118418A4-F190-4074-862F-CC06149554B2_vectorDataOutputX
</bpmn2:dataOutputRefs>
 </bpmn2:outputSet>
 </bpmn2:ioSpecification>
 <bpmn2:dataInputAssociation id="_gY31_qdlEeiaoq0Pfrgi7g">
 <bpmn2:targetRef>
_118418A4-F190-4074-862F-CC06149554B2_TaskNameInputX
</bpmn2:targetRef>
 <bpmn2:assignment id="_gY31_6dlEeiaoq0Pfrgi7g">
 <bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="_gY32AKdlEeiaoq0Pfrgi7g">GetDataFromWFS</bpmn2:from>
 <bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="_gY32AadlEeiaoq0Pfrgi7g">
_118418A4-F190-4074-862F-CC06149554B2_TaskNameInputX
</bpmn2:to>
 </bpmn2:assignment>
 </bpmn2:dataInputAssociation>

61

 <bpmn2:dataInputAssociation id="_gY32AqdlEeiaoq0Pfrgi7g">
 <bpmn2:sourceRef>ConsolPT</bpmn2:sourceRef>
 <bpmn2:targetRef>
_118418A4-F190-4074-862F-CC06149554B2_inputWFSUrlInputX
</bpmn2:targetRef>
 </bpmn2:dataInputAssociation>
 <bpmn2:dataInputAssociation id="_gY32A6dlEeiaoq0Pfrgi7g">
 <bpmn2:targetRef>
_118418A4-F190-4074-862F-CC06149554B2_processDescriptionInputX
</bpmn2:targetRef>
 <bpmn2:assignment id="_gY32BKdlEeiaoq0Pfrgi7g">
 <bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="_gY32BadlEeiaoq0Pfrgi7g">
 <![CDATA[storage.geoserver.GetWFSData]]>
 </bpmn2:from>
 <bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="_gY32BqdlEeiaoq0Pfrgi7g">
_118418A4-F190-4074-862F-CC06149554B2_processDescriptionInputX
</bpmn2:to>
 </bpmn2:assignment>
 </bpmn2:dataInputAssociation>
 <bpmn2:dataInputAssociation id="_gY32B6dlEeiaoq0Pfrgi7g">
 <bpmn2:targetRef>_118418A4-F190-4074-862F-
CC06149554B2_wpsURLInputX</bpmn2:targetRef>
 <bpmn2:assignment id="_gY32CKdlEeiaoq0Pfrgi7g">
 <bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="_gY32CadlEeiaoq0Pfrgi7g">
 <![CDATA[http://localhost:8000/wps/WebProcessingService]]>
 </bpmn2:from>
 <bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="_gY32CqdlEeiaoq0Pfrgi7g">_118418A4-F190-4074-862F-
CC06149554B2_wpsURLInputX</bpmn2:to>
 </bpmn2:assignment>
 </bpmn2:dataInputAssociation>
 <bpmn2:dataOutputAssociation id="_gY32C6dlEeiaoq0Pfrgi7g">
 <bpmn2:sourceRef>
_118418A4-F190-4074-862F-CC06149554B2_vectorDataOutputX
</bpmn2:sourceRef>
 <bpmn2:targetRef>Result</bpmn2:targetRef>
 </bpmn2:dataOutputAssociation>
 </bpmn2:task>
 <bpmn2:sequenceFlow id="_8CC002A6-4270-4A8D-9C3B-7E9CC2737380"
sourceRef="_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0" targetRef="_118418A4-F190-4074-862F-
CC06149554B2"/>
 <bpmn2:sequenceFlow id="_794A0D3D-52B7-4F31-80AF-0471A38D2A3C"
sourceRef="_8102727C-CD99-4284-825E-E76E956AFFAA" targetRef="_5BBD6BDD-0A50-464F-9421-
BDB1616DE6C0"/>
 <bpmn2:sequenceFlow id="_1C93B068-0C20-49DC-A41A-00F0698CA134"
sourceRef="_118418A4-F190-4074-862F-CC06149554B2" targetRef="_4389A7BA-201F-4637-B755-
FD541CB38E58"/>
 </bpmn2:process>

62

 <bpmndi:BPMNDiagram id="_gY4c8KdlEeiaoq0Pfrgi7g">
 <bpmndi:BPMNPlane id="_gY4c8adlEeiaoq0Pfrgi7g"
bpmnElement="Testbed_14_secured.Testbed_14_Gait_Process">
 <bpmndi:BPMNShape id="_gY4c8qdlEeiaoq0Pfrgi7g" bpmnElement="_8102727C-
CD99-4284-825E-E76E956AFFAA">
 <dc:Bounds height="56.0" width="56.0" x="143.0" y="198.0"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_gY4c86dlEeiaoq0Pfrgi7g" bpmnElement="_5BBD6BDD-
0A50-464F-9421-BDB1616DE6C0">
 <dc:Bounds height="102.0" width="154.0" x="342.0" y="175.0"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_gY4c9KdlEeiaoq0Pfrgi7g" bpmnElement="_4389A7BA-
201F-4637-B755-FD541CB38E58">
 <dc:Bounds height="56.0" width="56.0" x="834.0" y="198.0"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_gY4c9adlEeiaoq0Pfrgi7g" bpmnElement="_118418A4-
F190-4074-862F-CC06149554B2">
 <dc:Bounds height="102.0" width="154.0" x="565.0" y="175.0"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge id="_gY4c9qdlEeiaoq0Pfrgi7g" bpmnElement="_8CC002A6-4270-
4A8D-9C3B-7E9CC2737380" sourceElement="_gY4c86dlEeiaoq0Pfrgi7g"
targetElement="_gY4c9adlEeiaoq0Pfrgi7g">
 <di:waypoint xsi:type="dc:Point" x="419.0" y="226.0"/>
 <di:waypoint xsi:type="dc:Point" x="642.0" y="226.0"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_gY4c96dlEeiaoq0Pfrgi7g" bpmnElement="_794A0D3D-52B7-
4F31-80AF-0471A38D2A3C" sourceElement="_gY4c8qdlEeiaoq0Pfrgi7g"
targetElement="_gY4c86dlEeiaoq0Pfrgi7g">
 <di:waypoint xsi:type="dc:Point" x="171.0" y="226.0"/>
 <di:waypoint xsi:type="dc:Point" x="419.0" y="226.0"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_gY4c-KdlEeiaoq0Pfrgi7g" bpmnElement="_1C93B068-0C20-
49DC-A41A-00F0698CA134" sourceElement="_gY4c9adlEeiaoq0Pfrgi7g"
targetElement="_gY4c9KdlEeiaoq0Pfrgi7g">
 <di:waypoint xsi:type="dc:Point" x="642.0" y="226.0"/>
 <di:waypoint xsi:type="dc:Point" x="862.0" y="226.0"/>
 </bpmndi:BPMNEdge>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>
 <bpmn2:relationship id="_gY4c-adlEeiaoq0Pfrgi7g" type="BPSimData">
 <bpmn2:extensionElements>
 <bpsim:BPSimData>
 <bpsim:Scenario xsi:type="bpsim:Scenario" id="default"
name="Simulationscenario">
 <bpsim:ScenarioParameters xsi:type="bpsim:ScenarioParameters"/>
 <bpsim:ElementParameters xsi:type="bpsim:ElementParameters"
elementRef="_5BBD6BDD-0A50-464F-9421-BDB1616DE6C0" id="_gY4c-qdlEeiaoq0Pfrgi7g">
 <bpsim:TimeParameters xsi:type="bpsim:TimeParameters">
 <bpsim:ProcessingTime xsi:type="bpsim:Parameter">
 <bpsim:NormalDistribution mean="0.0"
standardDeviation="0.0"/>

63

 </bpsim:ProcessingTime>
 </bpsim:TimeParameters>
 <bpsim:CostParameters xsi:type="bpsim:CostParameters">
 <bpsim:UnitCost xsi:type="bpsim:Parameter">
 <bpsim:FloatingParameter value="0.0"/>
 </bpsim:UnitCost>
 </bpsim:CostParameters>
 </bpsim:ElementParameters>
 <bpsim:ElementParameters xsi:type="bpsim:ElementParameters"
elementRef="_118418A4-F190-4074-862F-CC06149554B2" id="_gY4c-6dlEeiaoq0Pfrgi7g">
 <bpsim:TimeParameters xsi:type="bpsim:TimeParameters">
 <bpsim:ProcessingTime xsi:type="bpsim:Parameter">
 <bpsim:NormalDistribution mean="0.0"
standardDeviation="0.0"/>
 </bpsim:ProcessingTime>
 </bpsim:TimeParameters>
 <bpsim:CostParameters xsi:type="bpsim:CostParameters">
 <bpsim:UnitCost xsi:type="bpsim:Parameter">
 <bpsim:FloatingParameter value="0.0"/>
 </bpsim:UnitCost>
 </bpsim:CostParameters>
 </bpsim:ElementParameters>
 <bpsim:ElementParameters xsi:type="bpsim:ElementParameters"
elementRef="_8102727C-CD99-4284-825E-E76E956AFFAA" id="_gY4c_KdlEeiaoq0Pfrgi7g">
 <bpsim:TimeParameters xsi:type="bpsim:TimeParameters">
 <bpsim:ProcessingTime xsi:type="bpsim:Parameter">
 <bpsim:NormalDistribution mean="0.0"
standardDeviation="0.0"/>
 </bpsim:ProcessingTime>
 </bpsim:TimeParameters>
 </bpsim:ElementParameters>
 </bpsim:Scenario>
 </bpsim:BPSimData>
 </bpmn2:extensionElements>
 <bpmn2:source>_gY3O0KdlEeiaoq0Pfrgi7g</bpmn2:source>
 <bpmn2:target>_gY3O0KdlEeiaoq0Pfrgi7g</bpmn2:target>
 </bpmn2:relationship>
</bpmn2:definitions>

64

Appendix B: Revision History
Table 1. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

June 15, 2016 I. Simonis .1 all initial version

July 22, 2016 I. Simonis .9 all comments
integrate

September 7,
2016

S. Simmons 1.0 various preparation for
publication

March 23, 2017 I. Simonis 2.0 all template
simplified

January 18, 2018 S. Serich 2.1 all additional
guidance to
Editors; clean up
headings in
appendices

September 30,
2018

S. Meek 2.2 all First draft
submitted

October 02, 2018 G. Hobona 2.2 all Review

October 31, 2018 S. Meek 2.2 all Post to pending

65

Appendix C: Bibliography
1. Meek, S.: BPMN 2.0 for Orchestrating OGC Services Discussion Paper(Draft).

2. Full meta objects for flexible geoprocessing workflows: profiling WPS or BPMN? 16–30 (2016).

3. Matheus, A.: OGC Testbed-13: Security Engineering Report. (2018).

4. Pross, B., Stasch, C.: OGC Testbed-13: Workflows Engineering Report. (2018).

5. S. Meek, D.L., M. Jackson: A BPMN solution for chaining OGC services to quality assure location-
based crowdsourced data. 87, 76–83 (2016).

6. Lee, C.A.: OGC Testbed-14 Federated Clouds Engineering Report. (2018).

66

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements & Research Motivation
	1.2. Prior-After Comparison
	1.3. Recommendations for Future Work
	1.4. Document contributor contact points
	1.5. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. Introduction
	Chapter 6. Review of motivating work
	6.1. Testbed-13
	6.1.1. OGC Testbed-13 Security ER
	6.1.2. OGC Testbed-13 Workflows ER

	6.2. Other documents
	6.3. Open questions from Testbed-13
	6.3.1. Testing for workflow validity prior to execution
	6.3.2. Data modeling
	6.3.3. Helper class construction

	Chapter 7. BPMN 2.0 discussion
	7.1. Activities
	7.1.1. Service tasks
	7.1.2. Send tasks
	7.1.3. Receive tasks
	7.1.4. Multiple task instances and looping

	7.2. Swim lanes and pools
	7.3. Events
	7.3.1. Messages and signals
	7.3.2. Error
	7.3.3. Compensation

	7.4. Data Modeling
	7.4.1. Data objects
	7.4.2. Data stores

	Chapter 8. OGC Service Orchestration with BPMN 2.0 Best Practices
	8.1. Tasking and Activities
	8.2. Managing data
	8.2.1. Use of a data store
	8.2.2. Use of a data object
	8.2.3. Service Task Parameters

	Chapter 9. Description of demonstrator implementation using jBPM
	9.1. Workflow engine Helper classes
	9.2. Security implications
	9.3. Component design
	9.4. Helper class design
	9.4.1. Security in the helper class

	9.5. Remote execution of BPMN documents
	9.5.1. Receiving the BPMN document and creating the Git repository
	9.5.2. Executing the workflow

	9.6. Architecture
	9.7. Scenario
	9.8. TIE Results
	9.9. Shortcomings of the approach

	Chapter 10. Docker, Kubernetes and Cloud Foundry
	10.1. Introduction
	10.2. Motivating technologies
	10.2.1. Microservices
	10.2.2. Docker
	10.2.3. Kubernetes
	10.2.4. Cloud Foundry
	10.2.5. Implications of Cloud Foundry in the Geospatial Domain
	10.2.6. Discussion

	Chapter 11. Conclusion
	Appendix A: XML Schema Documents
	Appendix B: Revision History
	Appendix C: Bibliography

