OGC Earth Observation Exploitation
Platform Hackathon 2018 Engineering
Report

Table of Contents

1. Summary
1.1. Requirements & Research Motivation
1.2. Prior-After Comparison
1.3. Recommendations for Future Work
1.4. Document contributor contact points
1.5. Cloud Providers
1.6. Foreword
2. Terms and definitions
2.1. Abbreviated terms
3. Introduction
3.1. The Challenge
3.2. Use Case
3.3. What was provided
3.4. Requested Solution
3.5. Possible Deviation
3.6. Hackathon Participants
4. Key Findings
4.1. Existing Architecture
4.1.1. WPS
4.1.2. Application Package
4.2. Alternative Solutions
4.2.1. Pre-Defined Product Execution
4.2.2. Microservice Approach
4.3. Further Observations
4.3.1. OpenSearch Based Catalogs

4.3.2. Networks, Firewalls, CORS, Security
4.3.3. Kubernetes, Fargate, EKS, Mesos, Docker, Marathon

5. Implementation Challenge
5.1. Use Case
5.2. Satellite and Terrain Data
5.3. Process
6. Solutions
6.1. 52°North
6.1.1. Motivation to Participate
6.1.2. Implemented Solution
6.1.3. Experiences with AP & ADES
6.1.4. Acknowledgement
6.2. CS

© © © 00 00 9 N oo oo u1 o uow;

W W W NN N N R s s s s s s s s s s s s s s s s
e T = T S S e O Vo B V= B Y= B Y= = M = M S TR BN B 5 B S 5 BN S JCRN JC RN U R NC R Sy o S Y

6.2.1. Motivation to Participate

6.2.2. Implemented Solution
6.3. Eurac Research

6.3.1. Motivation to Participate

6.3.2. Implemented Solution

6.3.3. Proposed Alternatives

6.3.4. Experiences with AP & ADES

6.3.5. Other Impressions & Recommendations
6.4. Solenix

6.4.1. Motivation to Participate

6.4.2. Starting Assets

6.4.3. Implemented Solution

6.4.4. Experiences with AP & ADES
6.5. Space Applications Services

6.5.1. Motivation to Participate

6.5.2. Implemented Solution

6.5.3. Experiences with AP & ADES

6.5.4. Other Impressions & Recommendations
6.6. West University of Timisoara and Institute eAustria Timisoara

6.6.1. Motivation to Participate

6.6.2. Implemented Solution

6.6.3. Experiences with AP & ADES

6.6.4. Other Impressions & Recommendations
6.7. VITO

6.7.1. Motivation to Participate

6.7.2. Implemented Solution

6.7.3. ADES implementation

6.7.4. Experiments

6.7.5. Proposed Alternatives

6.7.6. Experiences with AP & ADES

6.7.7. Other Impressions & Recommendations
6.8. Thales Alenia Space

6.8.1. Motivation to Participate

6.8.2. Implemented Solution

6.8.3. Proposed Alternatives

6.8.4. Experiences with AP & ADES

6.8.5. Other Impressions & Recommendations

Appendix A: Call for Participation

A.1. Corrigenda
A.2. Introduction

A.2.1. Benefits of Participation

31
31
36
36
36
43
44
44
44
44
44
45
46
52
52
52
58
59
39
60
60
61
62
62
62
62
64
66
69
69
69
69
69
70
72
73
73
75
75
75
76

A.2.2. Hackathon Policies and Procedures
A.2.3. Initiative Roles
A.3. Proposal Submission
A.4. Questions and Clarifications
A.5. Master Schedule
A.6. Sequence of Events, Phases, and Milestones
A.7. Technical Architecture
A.7.1. Introduction
A.7.2. Hackathon Implementation
A.7.3. Hackathon Trophy
A.7.4. Hackathon Baseline
A.8. Glossary
A.9. Clarifications
Appendix B: Revision History
Appendix C: Bibliography

76
77
77
77
77
78
78
78
80
81
81
82
83
85
86

Publication Date: 2018-12-20

Approval Date: 2018-07-10

Submission Date: 2018-06-12

Reference number of this document: OGC 18-046

Reference URL for this document: http://www.opengis.net/doc/PER/eoep-Hack2018
Category: Public Engineering Report

Editor: Ingo Simonis

Title: OGC Earth Observation Exploitation Platform Hackathon 2018 Engineering Report

OGC Engineering Report
COPYRIGHT

Copyright © 2018 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

http://www.opengis.net/doc/PER/eoep-Hack2018
http://www.opengeospatial.org/

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

Chapter 1. Summary

The Earth Observation Exploitation Platform Hackathon 2018 was conducted to evaluate the
standards based architecture for deploying and executing arbitrary applications close to the
physical location of the data in heterogeneous cloud environments. The Hackathon was very
successful in demonstrating both efficiency and sustainability of the architecture developed in
Testbed-13. Efficient, because it was possible to setup the full execution workflow of 128 Sentinel-1
images within the 1.5 days of the Hackathon in a multi-vendor environment. Sustainable, because
the architectural approach provides sufficient flexibility to cater for possible extensions and
exchange of cloud & container middleware.

The Hackathon produced a number of suggestions for future work items. These include new tools
to facilitate the process of Application Package generation to make it even simpler for scientists to
bring their applications to the market; a more detailed specification to further improve the level of
interoperability; and a best practice document with lots of examples that illustrate the necessary
steps to make applications available.

Hackathon participants highlighted that such a level of robustness, flexibility, and maturity of the
application-to-the-cloud architecture has been developed in nine months only during Testbed-13.
The participants recommend to continue interlacing major OGC Innovation Program activities,
such as testbeds, with short term rapid prototyping initiatives such as hackathons. Almost all
participants of the Hackathon had been new to the OGC Innovation Program. These participants
emphasized that the Hackathon provided an outstanding opportunity for newcomers to get quickly
familiar with the latest standardization efforts and helped tremendously in understanding
investments and new market opportunities for applications-in-the-cloud.

1.1. Requirements & Research Motivation

The Hackathon was conducted to stress-test results from Testbed-13 [http://www.opengeospatial.org/
projects/initiatives/testbed13] and to evaluate the benefit of having hackathons in between major OGC
Innovation Program initiatives such as testbeds. Further on, the goal was to attract organizations
that have not participated in the development of the applications-in-the-cloud architecture
developments of Testbed-13 for a critical review.

1.2. Prior-After Comparison

Organizationally, it turned out that having hackathons in between Testbeds is extremely valuable.
Hackathons attract new organizations, allow exploring alternatives very efficiently, and help
shaping upcoming initiatives with experiences and suggestions from the Hackathon discussions.

On the engineering side, Testbed-13 produced a number of alternative options without giving clear
guidance on the preferred approach. This was issue was addressed successfully in the Hackathon. It
turned out that the general architecture, interface design and Application Package model have been
confirmed during the Hackathon. This is an important achievement, as it allows to continue the
development of standardized approaches for application provision, ad-hoc deployment and
dynamic execution in cloud environments in future OGC Innovation Program initiatives.

http://www.opengeospatial.org/projects/initiatives/testbed13

Interesting alternatives have been developed that include a WPS instance as essential part of a
Docker Image. This approach (which can be considered a micro-service approach, as each instance
contains a full service interface) gives more flexibility to the application developer. All mappings
(e.g. the mounting of external data to internal paths) can be realized on the programmatic level.
This approach requires higher programming skills if no tools are available to configure the
embedded WPS service and to package the application on behalf of the developer.

1.3. Recommendations for Future Work

The results of this Engineering Report serve as direct input for the Earth Observation Clouds thread
in Testbed-14 [http://www.opengeospatial.org/projects/initiatives/testbed14]. It is recommended to address
the following aspects:

* More complex applications that involve data from multiple clouds,

* Fully secured environments,

* Develop tools that generate Application Packages or at least support scientists in this task,

* Develop best practices illustrating service setup and Application Package examples, and

* Provide more detailed specifications to enhance the level of interoperability.

1.4. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization
Ingo Simonis (editor) 0GC
Benjamin Pross 52°North
Matthes Rieke 52°North
Christoph Stasch 52°North
Vincent Gaudissart CS

Christophe Triquet CS

Armin Costa

Eurac Research

Alexander Jacob Eurac Research
Paulo Sacramento Solenix
Daniel Robinson Solenix

Bernard Valentin

Leslie Gale

Space Applications Services

Space Applications Services

Marian Neagul UVT
Teodora Selea UVT
Silviu Panica IeAT

http://www.opengeospatial.org/projects/initiatives/testbed14

Name Organization

Jeroen Dries VITO

David Pérez Thales Alenia Space
Alejandro Mousist Thales Alenia Space
Elisa Callejo Thales Alenia Space

1.5. Cloud Providers

A special thank you to our CloudSigma, CloudFerro and Amazon for making cloud resources
available to the Hackathon!

1.6. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply.

2.1. Abbreviated terms

ADES Application Deployment and Execution Service
AP Application Package

EMS Exploitation Platform Management Service
EO Earth Observation

EP Exploitation Platform

IAAS Infrastructure as a Service

MEP Mission Exploitation Platform

PAAS Platform as a Service

SOA Service Oriented Architecture

WPD Web Processing Service ProcessDescriptor
WPS Web Processing Service

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Chapter 3. Introduction

The Earth Observation Exploitation Platform Hackathon 2018 was organized by OGC at the
European Space Agency Operations Center in Darmstadt, Germany, on May 3rd and 4th. Sponsored
by ESA and NRCan, the goal of the Hackathon was to evaluate results from the recently
concluded Testbed-13 initiative. Testbed-13 produced three Engineering Reports to describe a
standards-based approach for deploying arbitrary applications on cloud platforms.

* OGC Testbed-13: Exploitation Platform Application Package (OGC 17-023)
[http://docs.opengeospatial.org/per/17-023.html] describes a container format that describes
applications packaged in a Docker container in sufficient detail to allow their automated
deployment and execution on cloud platform:s.

* OGC Testbed-13: Application Deployment and Execution Service (OGC 17-024)
[http://docs.opengeospatial.org/per/17-024.html] describes how applications that have been described
according to the Application Package specification are actually deployed and executed on cloud
platforms.

* OGC Testbed-13: Cloud (OGC 17-035) [http://docs.opengeospatial.org/per/17-035.html] provided further
background on EO applications and cloud platforms in general.

In particular the first two Engineering Reports state several alternatives and provide
recommendations on the preferred approach very carefully only. The full architecture is described
best in [1] Thus, the Hackathon was organized to experiment with the alternatives and to give room
for additional approaches suggested by Hackathon participants.

3.1. The Challenge

The challenge was rather straight forward: Take an arbitrary application, store this application in a
Docker container, describe this application with the necessary detail to allow standards-based
automated deployment and execution, and then register this application with a Web service that
allows executing the workflow publicly. Then, pretend to be another user, execute the application
in the cloud and access the results.

3.2. Use Case

The implemented use case is briefly outlined here and described in full detail in chapter
Implementation Challenge, section UseCase. The use case describes a burn scare mapping scenario
in Canada, where the extent of wild fires is analyzed based on radar data processing. The use case
required to process a collection of Sentinel-1 radar data for the Northwest Territories (NWT) at the
beginning and the end of the 2017 summer. Large wildfires occurred in 2013, 2014 and 2015 in this
region, and the application should allow spatially-extensive, timely and cost effective wildfire
mapping and monitoring to better assess post-fire burns and tracking of impacts of disturbances on
forestlands.

http://docs.opengeospatial.org/per/17-023.html
http://docs.opengeospatial.org/per/17-024.html
http://docs.opengeospatial.org/per/17-035.html

L
Northwest
Territories

Figure 1. The use case required to process radar data over Canada’s Northwest Territories, a land area of
approximately 1,144,000 km2 with a population of less than 50,000 people

Canada’s forests cover an area of 348 million hectares, which is 35% of Canada’s land area and 9%
of the world’s forested area. Because vast areas are inaccessible, researchers use satellites such as
Sentinel-1 to gain valuable insights into Canada’s forest ecosystem. The Hackathon evaluated the
extent of wild fires based on Sentinel-1 data for the summer of 2017 over the Northwest Territories,
Canada. In total, 128 Sentinel-1 IW images (832 GB) for the two coverages (beginning and end of
summer 2017) of the entire NWT had to be processed.

3.3. What was provided

Organizers provided the Sentinel Application Platform (SNAP) Software Toolbox together with a
pre-defined workflow packaged in a Docker container. Hackathon participants could use the
Docker container "as is", i.e., there was no need to modify the container or the application. Given
that the container included both SNAP and an executable SNAP graph, participants could on the
hand execute the application independently of the available Docker image to test alternatives to the
Testbed-13 solutions.

The SNAP workflow in the Docker container required two types of data: Digital Elevation Model
(DEM) data and Sentinel-1 data. Both have been made available to the participants as cloud
resources. Natural Resources Canada provided a Canadian Digital Elevation Model (CDEM) for
terrain correction due to lack of SRTM over 60° North, ESA provided 128 Sentinel-1 scenes.

3.4. Requested Solution

The requested solution is defined in full detail in chapter Implementation Challenge and only
briefly outlined here. The requested solution was based on the Testbed-13 results, which are
illustrated in the figure below and briefly described in the following paragraphs. There was no
exclusiveness, though. Participants could develop their own solution that deviated from the
Testbed-13 base.

10

Application
developer

Application
consumer

Figure 2. Testbed-13 Architecture

The application developer in the upper left corner packages the application together with all
required libraries into a Docker container (1) and describes it following the Application Package
specification (2). The Application Package will then be registered with the Application Deployment
and Execution Services, ADES (3). The ADES provides a WPS interface. The ADES registers the new
application and makes it available as a new WPS process. On request from an application consumer
(4), the ADES provides a description of all parameters required to be provided as part of an
execution request. On execution (6), the ADES deploys the application container on a cloud and
executes it. Once done, the application consumer is provided with instructions on how to access the
results. The discovery process of the new process (5) that allows the discovery of the new process in
a catalog service is ignored in the Hackathon.

3.5. Possible Deviation

Participants have been free to deviate from the architecture outlined above as long as the following
requirements are met:

» the application developer can make an application available in a container to the cloud
platform;

* the application can be executed with a simple WPS execute() request, i.e., mounts the input data
to the Docker mount points automatically, downloads necessary data, executes all processing
steps, stores the results persistently on the cloud, and informs the user upon completion of the
process; and

* any consumer can discover the application and request its deployment and execution in the
cloud.

11

3.6. Hackathon Participants

The following organizations participated in the Hackathon as sponsors, organizers, participants,
cloud providers, or observers.

Table 1. Participating organizations. Organizations marked with '* participated in the Testbed-13 Earth
Observation Cloud activities.

ESA* 52north West University of Timisoara
NRCan* Eurac Research VITO

0GC* Bind to service Institute e-Austria

Solenix Deutschland GmbH* CloudSigma Space Applications Services
C-S EUMETSAT Thales Alenia Space

12

Chapter 4. Key Findings

This chapter reviews architectural aspects that have been discussed at the Hackathon most
intensively. Some of them identify potential alternative approaches to the solutions developed in
Testbed-13, others help to answer open questions that had been identified at the end of Testbed-13.

4.1. Existing Architecture

The overall experience with the implementation based on Testbed-13 results are good.

4.1.1. WPS

It was generally agreed that it makes perfect sense to facade any type of application with a WPS.
Though, mixed opinions have been stated on the actual location of the WPS, which could be a
service offered by the ADES, a service that is available per MEP, or integral part of the Docker
container itself (see microservice based approach). The WPS-based solutions all worked well and
provided sufficient flexibility.

WPS RESTful

It was emphasized that all participants prefer an OpenAPI 3.0 RESTful interface rather than the
Service Oriented Architecture Remote Procedure Call approach described in the current standard
WPS 2.0 [http://docs.opengeospatial.org/is/14-065/14-065.html]. Participants said that it is much easier and
better supported by available tools to interact with a WPS instance that way.

WPS Interpretation of New Process Deployment

It turned out that the WPS mechanisms to deploy or register new processes have been perceived
differently by the participants. In principle, two options exist to add a new process to an WPS
instance: First, to use a dedicated operation, second, to use the Execute operation with specific
parameterization.

WPS operations are standard built-in functions supported at the service level (e.g., GetCapabilities,
DescribeProcess, or Execute). In a transactional WPS, these can be extended by additional
operations such as Deploy and Undeploy to allow registering new processes. WPS processes are
application specific functions only available in certain WPS instances (in their process offerings).
Additional processes can also be added by using the Execute operation. Then, the Execute(New
Process) operation gets specific parameters that indicate that this operation execution shall add a
new process to the WPS instance. Due to timing constraints, the latter approach was used in the
Hackathon, though the used approach has no influence on the actual interpretation problem.

As said, it turned out that the WPS Deploy() respectively Execute(NewProcess) operation was
perceived differently by the participants. The intention of these calls is to add a new process to a
WPS instance. The WPS advertises this new process as part of its capabilities (section
ProcessOfferings). Confusion was caused by different interpretations what the WPS is actually doing
in the background when adding a new process. In most cases, the WPS might just add this new
process to the list of available processes without any further actions. Only when the new process is
executed, then the WPS will run the necessary steps to deploy the process on the cloud and starts its

13

http://docs.opengeospatial.org/is/14-065/14-065.html
http://docs.opengeospatial.org/is/14-065/14-065.html

execution. Some participants interpreted the word deploy in the sense of actual deployment in the
cloud, which would cause a whole lot of additional overhead, such as instance control and
monitoring in the cloud. It is emphasized that the behavior of the WPS is totally opaque in that
sense. Any WPS instance can do with the new process whatever deemed necessary. It is only
required that the new process is offered to WPS users.

4.1.2. Application Package

The Application OWS Context Document (OWC) should have a clear, minimum set of mandatory
fields required for an application to be valid. This minimum set should than be validated and
accepted on all clusters.

Each process should have a unique process identifier. The process identifier is provided within the
Application Package (AP) in the <ows:Identifier> element, so it is not generated by the WPS instance
usually. It would be possible to generate unique identifiers on the AP production side by using e.g.,
the SHA-256 message digest of the OWC Application context document. This would help to have a
unique, traceable and interchangeable mapping between the OWC document and the process
identifier.

OWS-Context vs. WPD vs. QaDJSON
Testbed-13 discussed three options to encode an implementation package:

1. Using OWS-Context with embedded Web Processing Service ProcessDescriptor elements;

2. Using Web Processing Service ProcessDescriptor (WPD) elements exclusively, i.e. avoid OWS-
Context; and

3. Using a Quick and Dirty JSON (QaDJSON) representation, either based on some JSON Schema or
following conventions.

Then first approach uses OWS-Context to encode the AP. WPS ProcessDescriptor elements are
embedded. This approach has the advantage that:

 the developer can add any additional information to the AP that can be used by sophisticated
clients to visualize e.g., background maps as part of the graphical consumer interaction
interface;

* the developer can add specific mappings to the AP file which might be necessary in order to
work with different catalogs (that the application consumer can use to identify the data to be
processed). The mappings are necessary because many OpenSearch-based catalogs use different
terminology for both request and response parameter (see section OpenSearch Based Catalogs
for further details).

* We remain independent of WPS. If, for whatever reason, we need to remove WPS in the future
to replace it with some new technology, this can be easily done without breaking the overall
concept of APs and AP-handling services.

On the disadvantage side, one can argue that OWS-Context adds additional complexity to the AP
that is not absolutely necessary. It requires the AP developer to read and understand yet another
standard without gaining much. After some discussion, this aspect has been solved by agreeing on
two aspects. Either tools will be developed that guide the AP developer through the process. Think

14

of a kind of wizard that requests essential elements from the AP developer and produces the AP as
a result. In this case, the application developer never sees the actual AP code. Alternatively,
application developers will follow examples of existing APs and realize that the OWS-Context add
some elements, but do not cause any harm during AP development. In any case, we need to have a
feedback channel for AP developers to ensure that the additional flexibility gained with OWS-
Context comes at minimum costs for the AP developer.

4.2. Alternative Solutions

4.2.1. Pre-Defined Product Execution

An interesting alternative that was presented by defining a single Docker image loaded with major
image processing software like GDAL, OrfeoToolBox and SNAP, instead of providing a link to a
Docker image including a processing command. This image can then be reused for various
processes, as described here. The approach would lead to modifications in the Application Package
model and may lack from version incompatibilities of the used tools and dependent libraries, but is
certainly worth further experimentation.

4.2.2. Microservice Approach

The currently favored architectural approach uses Application Package for application description
and deployment; and WPS for process registration, deployment and execution. It has been
developed based on the target to minimize extra work for the application developer. All the
application developer needs to do is to run a simple command line command to package the
application in a Docker container, to upload this container to a Docker hub and to provide the
application package.

A very interesting alternative approach follows a different paradigm. In the microservice approach,
the developer is familiar with WPS and provides everything required to execute the application in
the cloud programmatically. Using IAAS/PAAS solutions such as Kubernetes or Amazon, the user
produces a Docker container with a single process WPS embedded. This solution allows the
application developer to take care of all data mountings and mappings following his own
preferences. The Docker container could then be deployed on cloud platforms.

The approach was developed by several participants, e.g., by VITO as described in more detail in
this chapter, or Space Applications. Potential disadvantages of that approach, including
parallelization and resource scheduling issues as well as versioning issues, have been identified by
Eurac.

4.3. Further Observations

4.3.1. OpenSearch Based Catalogs

It turned out that many OpenSearch based catalogs use different terminology for both request and
response parameters. As an example, some catalogs require the request parameter "start", where
others require it to be "startDate". The same applies to the responses, as illustrated in the following
examples.

15

The following queries are requesting the same data. Note the different parameter names: VITO:
http://www.vito-eodata.be/openSearch_all/findProducts?collection=urn:eop:VITO:CGS_S1_SLC_L1&
start=2018-01-01

CloudFerro: http://finder.eocloud.eu/resto/api/collections/Sentinell/search.atom?startDate=2018-01-
01&_pretty=true

This issue can be mitigated by using URL templates as provided in the OpenSearch Description
(OSD) documents. Given that only the name of the placeholders is standardized (such as
searchTerms, geo:box, time:start, time:end), not the rest of the URL (which is completely free,
including the base path and the name of the parameters), a link to an OSD document could be
provided together with the list of key/values pairs for substituting the search placeholders. This link
to would be provided instead of providing an OpenSearch request directly.

A major issue are inhomogeneous responses. It is currently impossible for a developer to produce a
response module that could process responses from arbitrary catalogs. The response structure is
always different, the response terminology is non-homogeneous, and the actual paths to the data
differ from one cloud platform to the other. OWS-Context provides some mitigation options, as at
least terminology mappings can be described, but standardization should address this issue in a
more robust way by either developing a set of conventions, or even better to include commonly
used terms in the specification directly. It cannot be expected that mediation and mapping
technologies coming from the Semantic Web can solve this issue within the foreseeable future.

4.3.2. Networks, Firewalls, CORS, Security

Network connectivity (firewalls, blocked ports) and CORS (Cross-Site Scripting protection) issues
took the first half day to be resolved. In particular CORS needs to be resolved on a general level, as
it affects all secured interactions between clients and servers and can be considered a general issue
of Spatial Data Infrastructures. It is not specific to the technology or setup used in the Hackathon.

In terms of general security (which was not in focus of the Hackathon), initial tests have shown that
it requires solid best practices to setup a new secure WPS instance as part of an application-in-the-
cloud-deployment scenario. Currently, security settings and requirements are very heterogeneous,
thus making it hard to implement secure solutions.

4.3.3. Kubernetes, Fargate, EKS, Mesos, Docker, Marathon

There is lots of dynamic in the cloud platform market at the moment. Tools that have been state of
the art just a little while ago a now superseded by tools that are even simpler to use, more user
friendly, better scalable, cheaper, more robust, or better integrated with other services. At the
Hackathon, several of these technologies have been discussed. The following table gives a brief
overview of these technologies. Discussing and comparing these technologies is not simple. There
are lots of articles or blog posts and an endless amount of social chatter available describing and
comparing these technologies. You find a lot of information, often infused with marketing jargon
and consultation offers, on what some call the fight-to-the death for container supremacy whereas
others claim that the various technologies often solve different things and are rooted in very
different contexts. If there is one thing to learn, then certainly to be very careful before building
any complex system that is strictly bound to one or a specific set of technologies, tools, or platforms.

16

http://www.vito-eodata.be/openSearch_all/findProducts?collection=urn:eop:VITO:CGS_S1_SLC_L1&start=2018-01-01
http://www.vito-eodata.be/openSearch_all/findProducts?collection=urn:eop:VITO:CGS_S1_SLC_L1&start=2018-01-01
http://finder.eocloud.eu/resto/api/collections/Sentinel1/search.atom?startDate=2018-01-01&_pretty=true
http://finder.eocloud.eu/resto/api/collections/Sentinel1/search.atom?startDate=2018-01-01&_pretty=true

Table 2. cloud technologies

Docker Docker groups some of the capabilities of Linux cgroups with

[https://www.docker.com/] namespaces into a single and easy to use package that allows
applications to run consistently on any infrastructure. The
package is called the Docker image, which allows to package
the application together with required libraries into a single
container.

EKS Amazon Elastic Container Service for Kubernetes (Amazon

[https://aws.amazon.com/eks/] EKS) is a managed Kubernetes service. It uses Amazon
Identity and Access Management (IAM) [https://aws.amazon.com/
iam/] for role based access control, PrivateLink
[https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-
aws-privatelink-for-aws-services/] to reach your masters, and
Amazon Virtual Private Cloud (VPC) for pod networking.

Fargate Fargate is an Amazon technology to run containers, either

[https://aws.amazon.com/ orchestrated by ECS or Kubernetes on EKS, without having to

fargate/] manage the underlying servers or clusters (i.e. EC2
instances.), which makes containers a first-class resource.

Kubernetes Kubernetes is a clustered container orchestration system that

[https://kubernetes.io/] automates the creation, replication, scaling and management
of Docker containers.

Marathon Marathon is a production-grade container orchestration

[https://mesosphere.github.io/ platform for Mesosphere’s Datacenter Operating System

marathon/] (DC/0S) and Apache Mesos.

Mesos Apache Mesos abstracts CPU, memory, storage, and other

[https://mesos.apache.org/] compute resources away from machines (physical or virtual),
enabling fault-tolerant and elastic distributed systems to
easily be built and run effectively.

When investigating favored technologies that are used in applied research projects or system
developments, it seems that Docker is the common denominator. Docker containers running in
production environments need to be orchestrated across multiple machines; and with the
orchestration engines things divert. One of the first orchestration engines was Marathon
[https://mesosphere.github.io/marathon/] on top of Apache Mesos [https:/mesos.apache.org/]. Now we do
have Nomad [https://www.nomadproject.io/], Kubernetes [http:/kubernetes.io/], or Docker Swarm
[https://docs.docker.com/engine/swarm/], which is now part of Docker Engine.

The container technology Docker (i.e., the file format and runtime engine) was quickly
complemented with additional technologies, such as Docker Hub, Docker Registry, Docker Cloud or
Docker Datacenter. Docker Hub allows public storage of Docker images whereas the Docker
Registry can be used for storing it on-premise. Docker Cloud is a managed service for building and
running containers and the Docker Datacenter is a commercial offering embodying many Docker
technologies. And quickly we are on the market. That’s where the jargon and market speak starts
and true believers espousing their faith are burning heretics who would dare to consider
alternatives.

Kubernetes is a technology introduced by Google. It allows to orchestrate Docker containers
without having to interact with the underlying infrastructure. It provides a standard deployment

17

https://www.docker.com/
https://aws.amazon.com/eks/
https://aws.amazon.com/iam/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-aws-privatelink-for-aws-services/
https://aws.amazon.com/fargate/
https://kubernetes.io/
https://mesosphere.github.io/marathon/
https://mesos.apache.org/
https://mesosphere.github.io/marathon/
https://mesos.apache.org/
https://www.nomadproject.io/
http://kubernetes.io/
https://docs.docker.com/engine/swarm/

interface and primitives for a consistent app deployment experience and APIs across clouds, which
can be very useful in our context of deploying and executing applications working on Earth
observation data stored on mission exploitation platforms. Kubernetes modular API allows to
integrate systems around the core Kubernetes technology. Experiences with Kubernetes, that is now
offered as a service by many vendors, show that it could be a viable solution for EO Exploitation
Platforms. It would free the application developer from the underlying infrastructure, though it is
not quite clear what effort would be required on the platform side to setup and run Kubernetes
deployments.

An alternative for infrastructure abstraction is Apache Mesos.

18

Chapter 5. Implementation Challenge

This chapter provides more background information on the implemented use case and the data and
SNAP graph provided to the participants.

5.1. Use Case

Canada’s forests cover an area of 348 million hectares, which is 35% of Canada’s land area and 9%
of the world’s forested area. Because vast areas are inaccessible, researchers use satellites such as
Sentinel-1 to gain valuable insights into Canada’s forest ecosystem. The Hackathon evaluated the
extent of wild fires based on Sentinel-1 data for the summer of 2017 over the Northwest Territories
(NWT), Canada. The NWT cover an area of more than 1,300,000 km2 (500,000 sq. mi), with 28
million hectares of largely inaccessible forestlands. There is a large climate variant from north to
south, with subarctic climate to polar climate, causing short and cool (mid-teens Celsius) summers
and long and harsh winters. Large wildfires occurred in the area in 2013, 2014 and 2015. Given the
enormous extent of that area and its inaccessibility, researchers depend on satellite data to assess
post-fire burns, which are an essential element in understanding the impacts and disturbances on
forestlands caused by fires.

5.2. Satellite and Terrain Data

Sentinel-1 provides an excellent opportunity to investigate C-band SAR information for mapping
wildfires in NWT. ESA provided 128 Sentinel-1 Interferometric Wide Swath images (832 GB) for two
coverages (beginning and end of summer 2017) of the entire NWT. The Interferometric Wide (IW)
swath mode is the main acquisition mode over land and satisfies the majority of service
requirements. It acquires data with a 250km swath at 5m by 20m spatial resolution (single look).

Natural Resources Canada provided a Canadian Digital Elevation Model (CDEM) for terrain
correction due to lack of SRTM over 60° North.

5.3. Process

NRCan provided a SNAP graph performing that executed 5 tasks in order to generate a GeoTIFF file
per satellite scene. Additional Digital Elevation Model data is used for terrain correction. Overall,
the process looked like illustrated in the figure below.

19

-]
/ ESA SeNtinel Application Platform (SNAP)

-

ot —&é-—ﬂ' P e

- an

Figure 3. SNAP Graph performing 5 tasks, using a single Sentinel-1 scene and DEM data for terrain
correction

The output is a GeoTiff file that allows the identification of burn scars. The necessary mosaicking,

i.e,, the merging of all 128 scenes into a single image was not part of the Hackathon. A sample
output file is illustrated below.

Figure 4. SNAP Graph performing 5 tasks, using a single Sentinel-1 scene and DEM data for terrain
correction

20

Chapter 6. Solutions

The following sub-chapters provide the participants' perspective and experiences.

6.1. 52°North

6.1.1. Motivation to Participate

52°North is involved in several projects dealing with processing of large amounts of Earth
Observation data. For example, the research project WaCoDis aims to implement a geo-information
infrastructure for river basin management monitoring tasks including water quality control, water
protection and protection of access to clean water. For this purpose, remote sensing data from the
Copernicus program, weather data and in-situ sensor data will be combined, merged and analyzed.
Another example is the RIESGOS research project, which aims to implement multi-risk assessment
from natural hazards by utilizing standardized service interfaces.

Furthermore, 52°North has long-time experience in defining and implementing Web-based
Geoprocessing tools and is actively contributing to standardizing geoprocessing. Benjamin Pross is
currently leading the Web Processing Service 2.0 SWG at OGC. The 52°North WPS implementation
fully supports WPS 1.0.0 and 2.0 and is widely used. It has also been used in Testbed-13 Earth
Observation Clouds thread.

Since 52°North provides a WPS implementation and is involved in different projects dealing with
Earth Observation data, 52°North has a high interest in the activities for standardizing the
processing of large amounts of Earth Observation data and wants to contribute with its experience
in developing Web-based Geoprocessing systems.

6.1.2. Implemented Solution

52°North has implemented an Application Deployment and Execution Service based on the
52°North javaPS framework. The framework fully supports the WPS 2.0 interface. The means to
deploy and undeploy processes were implemented as WPS process themselves. The process
descriptions were aligned to the ones specified in the OGC Testbed-13: Application Deployment and
Execution Service Engineering Report (OGC 17-024). Figure 5 shows the general sequence of
communication between client and server. The requests are described in the following.

21

% WPS 2.0/ ADES Choud infrastructune

p—
—

ent
| I
I
I
i

DesoribeProoess reguest I

I
I
I
ii=Dreploy Process) :
:ProcessDesoription |
e — — — — — — — — — P |
I
I
I
Create Application Packaze|(| I
L ; I
I
. I
Ewscute(id=DeployProosss,
input=Application Fackage) " :
Deploy Docker |
container()

o _ el
I
Creste new proosss(): proosssiD :
I
Mapl Ds|process| 0, container| D) :
:ProcessSummary, prooessiD I
o TTEETE |
=5 I
Ewecute(id=proceszI0, ; _!_ :
inputz=time, 30i) |
I
&et EC data(fime, a0i): I
L ; Input URNS :
| Emecwte SMAF on Docker container I

[container Dy, Input URNz)
‘Rezult URKNs
e — — — —— - — —— ——— = —
‘Result URNs
b — - - — - — — — — — —
L

———————

Figure 5. Sequence of interaction between client and 52°North WPS 2.0 with ADES-specific extension

22

DeployProcess description

<?xml version="1.0" encoding="UTF-8"7?><wps:ProcessOfferings xmlns:wps=
"http://www.opengis.net/wps/2.0" xmlns:ows="http://www.opengis.net/ows/2.0"
xmlns:xlink="http://www.w3.0rg/1999/xlink" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
“http://www.opengis.net/wps/2.0 http://schemas.opengis.net/wps/2.0/wps.xsd">
<wps:ProcessOffering jobControlOptions="async-execute dismiss sync-execute"
outputTransmission="value reference" processVersion="1.0.0" processModel="native">
<wps:Process xsi:schemalocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd">
<ows:Title>Deploy Process</ows:Title>
<ows:Abstract>This method will deploy an application encapsulated within a
Docker container as a process accessible through the WPS interface.</ows:Abstract>
<ows:Identifier>DeployProcess</ows:Identifier>
<wps:Input minOccurs="1" maxOccurs="1">
<ows:Title>Application Package</ows:Title>
<ows:Abstract>An application package, encoded as an ATOM-encoded OWS context
document, describing the details of the application.</ows:Abstract>
<ows:Identifier>applicationPackage</ows:Identifier>
<wps:ComplexData>
<wps:Format mimeType="application/atom+xml" default="true"/>
<wps:Format mimeType="application/atom+xml"/>
</wps:ComplexData>
</wps:Input>
<wps:Qutput>
<ows:Title>Deploy Result</ows:Title>
<ows:Abstract>The server's response to deploying a process. A successful
response will contain a summary of the deployed process.</ows:Abstract>
<ows:Identifier>deployResult</ows:Identifier>
<wps:ComplexData>
<wps:Format mimeType="text/xml" schema=
"https://raw.githubusercontent.com/bpross-52n/common-xml/project/eoep/52n-ogc-
schema/src/main/resources/META-INF/xml/wps/2.0/wpsDeployResult.xsd" default="true"/>
<wps:Format mimeType="text/xml" schema=
"https://raw.githubusercontent.com/bpross-52n/common-xml/project/eoep/52n-ogc-
schema/src/main/resources/META-INF/xml/wps/2.0/wpsDeployResult.xsd"/>
</wps:ComplexData>
</wps:Output>
</wps:Process>
</wps:ProcessOffering>
</wps:ProcessOfferings>

23

UndeployProcess description

<?xml version="1.0" encoding="UTF-8"7?><wps:ProcessOfferings xmlns:wps=
"http://www.opengis.net/wps/2.0" xmlns:ows="http://www.opengis.net/ows/2.0"
xmlns:xlink="http://www.w3.0rg/1999/xlink" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
“http://www.opengis.net/wps/2.0 http://schemas.opengis.net/wps/2.0/wps.xsd">
<wps:ProcessOffering jobControlOptions="async-execute dismiss sync-execute"
outputTransmission="value reference" processVersion="1.0.0" processModel="native">
<wps:Process xsi:schemalocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd">
<ows:Title>Undeploy Process</ows:Title>
<ows:Abstract>This method removes a previously deployed process from the
WPS.</ows:Abstract>
<ows:Identifier>UndeployProcess</ows:Identifier>
<wps:Input minOccurs="1" maxOccurs="1">
<ows:Title>Process Identifier</ows:Title>
<ows:Abstract>The identifier of the process to remove from the
WPS.</ows:Abstract>
<ows:Identifier>processIdentifier</ows:Identifier>
<wps:LiteralData>
<wps:Format mimeType="application/xml" default="true"/>
<wps:Format mimeType="text/xml"/>
<wps:Format mimeType="text/plain"/>
<wps:Format mimeType="text/plain" encoding="base64"/>
<LiteralDataDomain default="true">
<ows:AnyValue/>
<ows:DataType ows:reference="https://www.w3.0rg/2001/XMLSchema-
datatypes#istring">string</ows:DataType>
<ows:DefaultValue/>
</LiteralDataDomain>
</wps:LiteralData>
</wps:Input>
<wps:Output>
<ows:Title>Undeploy Result</ows:Title>
<ows:Abstract>This is the server's response when undeploying a process. A
successful response will contain the identifier of the undeployed
process.</ows:Abstract>
<ows:Identifier>undeployResult</ows:Identifier>
<wps:ComplexData>
<wps:Format mimeType="text/xml" schema=
"https://raw.githubusercontent.com/bpross-52n/common-xml/project/eoep/52n-ogc-
schema/src/main/resources/META-INF/xml/wps/2.0/wpsUndeployResult.xsd" default="true"/>
<wps:Format mimeType="text/xml" schema=
"https://raw.githubusercontent.com/bpross-52n/common-xml/project/eoep/52n-ogc-
schema/src/main/resources/META-INF/xml/wps/2.0/wpsUndeployResult.xsd"/>
</wps:ComplexData>
</wps:0utput>
</wps:Process>
</wps:ProcessOffering>
</wps:ProcessOfferings>

24

Based on the process descriptions, execute requests could be send to the ADES.

DeployProcess execute request

<wps200:Execute xmlns:atom="http://www.w3.0rg/2005/Atom" xmlns:dc=
"http://purl.org/dc/elements/1.1/" xmlns:georss="http://www.georss.org/georss"
xmlns:gml311="http://www.opengis.net/gml" xmlns:owc10="http://www.opengis.net/owc/1.0"
xmlns:ows200="http://www.opengis.net/ows/2.0" xmlns:wps200=
"http://www.opengis.net/wps/2.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
mode="sync" response="document" service="WPS" version="2.0.0" xsi:schemalocation=
"http://www.opengis.net/wps/2.0 http://schemas.opengis.net/wps/2.0/wps.xsd">
<ows200:Identifier>DeployProcess</ows200:Identifier>
<wps200:Input id="applicationPackage">
<wps200:Data mimeType="application/atom+xml">
<atom:feed xml:lang="en">
<atom:1link href="http://www.opengis.net/spec/owc-atom/1.0/req/core" rel=
"profile" title="This file is compliant with version 1.0 of 0GC Context" />
<atom:link href="http://www.opengis.net/tb13/eoc" rel="profile" title="This
file is compliant with Testbed-13 EOC Thread for Application Packing" />
<atom:id>eoeph18-detectburnedareastestingexceptionreport-1_f4511258-cac0-4955-
b952-db6944cf7d4d</atom:1d>
<atom:title>DetectBurnedAreas.testing.ExceptionReport</atom:title>
<atom:subtitle type="text" />
<atom:updated />
<atom:author>
<atom:email />
</atom:author>
<atom:rights>0GC EOEP Hackathon 2018</atom:rights>
<georss:where>
<gml1311:Polygon>
<gml311:exterior>
<gml311:LinearRing>
<gml311:posList>-90 -180 90 -180 90 180 -90 180 -90 -
180</gm1311:posList>
</gml311:LinearRing>
</gml311:exterior>
</gm1311:Polygon>
</georss:where>
<dc:date>2005-01-01T09:08:56.0000000Z/2020-01-23709:14:08.0000000Z</dc:date>
<atom:entry>
<atom:id>eoeph18-detectburnedareastestingexceptionreport-1_f4511258-cac0-
4955-b952-db6944cf7d4d</atom: id>
<atom:link href="http://www.opengis.net/tb13/eoc/application” rel="profile"
title="This entry contains an application as specified by Testbed-13 EOC Thread" />
<atom:title>DetectBurnedAreas.testing.ExceptionReport</atom:title>
<atom:content type="text">Process deployed through ASB
platform</atom:content>
<owc10:offering code="http://www.opengis.net/tb13/eoc/docker">
<owc10@:content type="text/plain">www.dockerhub.com/eoeph18-wildfires-
detector:latest</owc10:content>
</owc10:offering>

<owc10:offering code="http://www.opengis.net/tb13/eoc/wpsProcessOffering">
<owc1@:content type="application/xml">
<wps200:Process0fferings>
<wps200:ProcessOffering>
<wps200:Process>
<ows200:Title>
DetectBurnedAreas.testing.ExceptionReport</ows200:Title>
<ows200:Abstract>
DetectBurnedAreas.testing.ExceptionReport</ows200:Abstract>
<ows200:Identifier>eoeph18-detectburnedareastestingexceptionreport-
1_f4511258-cac0-4955-b952-db6944cf7d4d</ows200: Identifier>
<wps200:Input maxOccurs="1" minOccurs="1">
<ows200:Title>Area Of Interest</ows200:Title>
<ows200:Abstract />
<ows200:Identifier>AreaOfInterest</ows200:Identifier>
<wps200:LiteralData>
<wps200:Format default="true" encoding=

mimeType="text/plain"
schema="" />
</wps200:LiteralData>
</wps200:Input>
<wps200:Input maxOccurs="1" minOccurs="1">
<ows200:Title>Time Of Interest</ows200:Title>
<ows200:Abstract />
<ows200:Identifier>TimeOfInterest</ows200:Identifier>
<wps200:LiteralData>
<wps200:Format default="true" encoding="UTF-8" mimeType=
"text/plain" schema="" />
</wps200:LiteralData>
</wps200:Input>
<wps200:0utput>
<ows200:Title>Result URI</ows200:Title>
<ows200:Abstract>URI pointing to a web-accessible folder
containing the processed images.</ows200:Abstract>
<ows200:Identifier>resultURI</ows200:Identifier>
<wps200:LiteralData>
<wps200:Format default="true" encoding="UTF-8" mimeType=
"text/plain" schema="" />
</wps200:LiteralData>
</wps200:0utput>
</wps200:Process>
</wps200:ProcessOffering>
</wps200:ProcessOfferings>
</owc10:content>
</owc1@:offering>
<atom:category label="This app runs in Linux" scheme=
"http://www.opengis.net/tb13/eoc/0s" term="LINUX" />
</atom:entry>
</atom:feed>
</wps200:Data>
</wps200:Input>
</wps200:Execute>

26

UndeployProcess execute request

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute xmlns:wps="http://www.opengis.net/wps/2.0"
xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:x1link=
"http://www.w3.0rg/1999/x1ink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd"
service="WPS" version="2.0.0" response="document" mode="sync">
<ows:Identifier>UndeployProcess</ows:Identifier>
<wps:Input id="processIdentifier">
<wps:Data mimeType="text/xml">
<wps:LiteralValue>
http://www.opengis.net/eoephack2018/burnscar</wps:LiteralValue>
</wps:Data>
</wps:Input>
<wps:Qutput id="undeployResult" transmission="value"
mimeType="text/xml" schema="https://raw.githubusercontent.com/bpross-
52n/common-xml/project/eoep/52n-ogc-schema/src/main/resources/META-
INF/xml/wps/2.0/wpsUndeployResult.xsd"/>
</wps:Execute>

Based on the Application Package, that is send along as execute-input, a new process will be created
and made available in the capabilities. The process summary will be returned in the execute
response.

27

DeployProcess execute response

<?xml version="1.0" encoding="UTF-8"?>
<wps:Result xmlns:wps="http://www.opengis.net/wps/2.0" xmlns:ows=
"http://www.opengis.net/ows/2.0" xmlns:xlink="http://www.w3.0rg/1999/x1link" xmlns:xsi
="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
“http://www.opengis.net/wps/2.0 http://schemas.opengis.net/wps/2.0/wps.xsd">
<wps:JobID>fb410108-775e-4bdc-8138-1971bed428362</wps: JobID>
<wps:ExpirationDate>2018-05-15T12:33:35Z</wps:ExpirationDate>
<wps:Qutput id="deployResult">
<wps:Data mimeType="text/xml" encoding="UTF-8" schema=
"https://raw.githubusercontent.com/bpross-52n/common-xml/project/eoep/52n-ogc-
schema/src/main/resources/META-INF/xml/wps/2.0/wpsDeployResult.xsd">
<ns:DeployResult xmlns:ns="http://www.opengis.net/wps/2.0">
<DeploymentDone>true</DeploymentDone>
<ProcessSummary xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:wps=
"http://www.opengis.net/wps/2.0" xmlns:xlink="http://www.w3.0rg/1999/x1link" xmlns:xsi
="http://www.w3.0rg/2001/XMLSchema-instance" processModel="native" outputTransmission
="value reference" processVersion="1.0.0" jobControlOptions="async-execute dismiss
sync-execute">
<ows:Title>Detect burn scars</ows:Title>
<ows:Abstract>This process will detect burned areas within a
specified area of interest and during a specified time.</ows:Abstract>
<ows:Identifier>
http://www.opengis.net/eoephack2018/burnscar</ows:Identifier>
</ProcessSummary>
</ns:DeployResult>
</wps:Data>
</wps:QOutput>
</wps:Result>

The complete process description looks like the following:

Description of the newly deployed process

<?xml version="1.0" encoding="UTF-8"?><wps:ProcessOfferings xmlns:wps=
"http://www.opengis.net/wps/2.0" xmlns:ows="http://www.opengis.net/ows/2.0"
xmlns:xlink="http://www.w3.0rg/1999/xlink" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.opengis.net/wps/2.0 http://schemas.opengis.net/wps/2.0/wps.xsd">
<wps:ProcessOffering jobControlOptions="async-execute dismiss sync-execute"
outputTransmission="value reference" processVersion="1.0.0" processModel="native">
<wps:Process xsi:schemalocation="http://www.opengis.net/wps/2.0

http://schemas.opengis.net/wps/2.0/wps.xsd">

<ows:Title>Detect burn scars</ows:Title>

<ows:Abstract>This process will detect burned areas within a specified area of
interest and during a specified time.</ows:Abstract>

<ows:Identifier>http://www.opengis.net/eoephack2018/burnscar</ows:Identifier>

<wps:Input minOccurs="1" maxOccurs="1">

<ows:Title>Time window</ows:Title>

28

<ows:Abstract>The time window for the fire scar detection.</ows:Abstract>
<ows:Identifier>timeWindow</ows:Identifier>
<wps:LiteralData>
<wps:Format mimeType="application/xml" default="true"/>
<wps:Format mimeType="text/xml"/>
<wps:Format mimeType="text/plain"/>
<wps:Format mimeType="text/plain" encoding="base64"/>
<LiteralDataDomain default="true">
<ows:AnyValue/>
<ows:DataType ows:reference="https://www.w3.0rg/2001/XMLSchema-
datatypes#istring">string</ows:DataType>
<ows:DefaultValue/>
</LiteralDataDomain>
</wps:LiteralData>
</wps:Input>
<wps:Input minOccurs="1" maxOccurs="1">
<ows:Title>aoi</ows:Title>
<ows:Identifier>aoi</ows:Identifier>
<wps :BoundingBoxData>
<wps:Format mimeType="application/xml" default="true"/>
<wps:Format mimeType="text/xml"/>
<wps:SupportedCRS default="true">
http://www.opengis.net/def/crs/EPSG/0/4326</wps:SupportedCRS>
</wps:BoundingBoxData>
</wps:Input>
<wps:Qutput>
<ows:Title>Result URI</ows:Title>
<ows:Abstract>URI pointing to a web-accessible folder containing the processed
images.</ows:Abstract>
<ows:Identifier>resultURI</ows:Identifier>
<wps:LiteralData>
<wps:Format mimeType="application/xml" default="true"/>
<wps:Format mimeType="text/xml"/>
<wps:Format mimeType="text/plain"/>
<wps:Format mimeType="text/plain" encoding="baseb4"/>
<LiteralDataDomain default="true">
<ows:AnyValue/>
<ows:DataType ows:reference="https://www.w3.0rg/2001/XMLSchema-
datatypes#tanyURI">anyURI</ows:DataType>
</LiteralDataDomain>
</wps:LiteralData>
</wps:0utput>
</wps:Process>
</wps:ProcessOffering>
</wps:ProcessOfferings>

The process itself is a mockup, but sending an example execute request is possible:

29

Example execute request for the newly deployed process

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute xmlns:wps="http://www.opengis.net/wps/2.0"
xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:x1link=
"http://www.w3.0rg/1999/x1ink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd"
service="WPS" version="2.0.0" response="document" mode="sync">
<ows:Identifier>http://www.opengis.net/eoephack2018/burnscar</ows:Identifier>
<wps:Input id="timeWindow">
<wps:Data mimeType="text/plain">2017-06-17T/2017-06-28TZ</wps:Data>
</wps:Input>
<wps:Input id="aoi">
<wps:Data mimeType="text/xml">
<ows :BoundingBox crs=
"http://www.opengis.net/def/crs/EPSG/0/4326">
<ows:LowerCorner>59.913464 -
136.448354</ows: LowerCorner>
<ows:UpperCorner>78.794937 -
101.931600</ows :UpperCorner>
</ows:BoundingBox>
</wps:Data>
</wps:Input>
<wps:Output id="resultURI" transmission="value" mimeType="text/plain" />
</wps:Execute>

A single example output TIFF is returned by reference.

Example execute response for the newly deployed process

<?xml version="1.0" encoding="UTF-8"?>
<wps:Result xmlns:wps="http://www.opengis.net/wps/2.0" xmlns:ows=
"http://www.opengis.net/ows/2.0" xmlns:xlink="http://www.w3.0rg/1999/x1link" xmlns:xsi
="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
“http://www.opengis.net/wps/2.0 http://schemas.opengis.net/wps/2.0/wps.xsd">
<wps:JobID>df0d4be0d-b182-4d9c-93e1-158c74bf3215</wps: JobID>
<wps:ExpirationDate>2018-05-04T712:03:08Z</wps:ExpirationDate>
<wps:Qutput id="resultURI">
<wps:Data mimeType="text/plain" encoding="UTF-8">
<![CDATA[http://52north.org/delivery/eoep/STA_IW_SLC__1SDH_20170617.tif]]>
</wps:Data>
</wps:0utput>
</wps:Result>

6.1.3. Experiences with AP & ADES

The concept of the ADES works well with WPS and the 52°North WPS could be easily extended with

30

the necessary functionality. WPS 2.0 processes are a good means for deploying Application
Packages and creating new WPS processes. The input- and output-formats can be described in a
standardized way and generic clients are able to execute the Deploy- and UndeployProcess. The
52°North ADES was used for testing by several client developers during the Hackathon. It supports
the deployment and execution of new processes based on Application Packages. The back-end
implementation, i.e. deploying the Docker container specified in the Application Package required
more time than initially anticipated, so we had to create a mock-up for this functionality. In the OGC
Testbed-13: Application Deployment and Execution Service Engineering Report two approaches for
implementing an ADES are described. One approach is using WPS processes. This was implemented
during the EOEP Hackathon. An alternative approach used a transactional extension for WPS 2.0. In
the OGC Testbed-14 different approaches for enabling WPS with transactional functionality are
further explored. The Testbed-14 WPS-T ER will specify how transactional behavior can be
implemented for WPS using additional dedicated operations for deploying and undeploying
processes. Also REST-based approaches will be explored. Findings from the EOEP Hackathon will be
taken into account for discussing these different approaches and will be considered when
developing novel approaches for flexible Web-based processing of EO data in 52°North’s ongoing
research projects.

6.1.4. Acknowledgement

The contribution of 52°North was supported by the research project WaCoDis (co-funded by the
German Federal Ministry of Transport and Digital Infrastructure, program mFund, contract:
19F2038D) and by the research project RIESGOS (co-funded by the German Ministry of Research
and Education, program CLIENT-II, contract: 03G0876).

6.2. CS

6.2.1. Motivation to Participate

To meet the needs for storage, processing and distribution of products to customers, CS is
developing the GeoStorm platform. As part of a Pathfinder project developed for ESA for several
years, CS has already integrated some image processing. GeoStorm is developed in accordance with
good practices in particular regarding interoperability. We are therefore very attentive to the
respect of the OGC standards into our developments.

6.2.2. Implemented Solution

During this Hackathon, we have implemented both client and server. Our client is the GeoStorm
web application which provides rich interface to select processing parameters. Implemented WPS
1.0 services are DeployProcess, UndeployProcess and ExecuteProcess.

We didn’t choose the Kubernetes approach as we did on others similar projects because of our
preoccupation to deploy our solution on architectures like HPC. We therefore have chosen to
implement a docker like solution that is not requiring user’s privilege increase and allow the image
to be used for several tasks. We were interesting in verifying that this implementation meets the
requirements of the Application Package and can apply to both new cloud solutions and the
traditional ones.

31

Here is an example of the output mosaic with some processed tiles on the study area displayed into
GeoStorm platform:

Full screen Report problem Help & ciriquetcs

‘E Ens l‘nn“ Search for a place or add a map:

Geospatial Platform Q | e.g. 1 Brindejonc des Moulinais, 43.58 1.49, CS Tc

» Draw & Measure on map

» Marketstore

Advanced tools

Géocatalog Change topi

®0000

» Maps displayed

a Close menu

‘l | LS
1 (AN
@ Data:Les contributeurs OpenStreetMap
50 km WGS 84 (latlon) = C-5 Copyright & data protection Powered by) GeoStorm - =5
Application package

To meet our needs to deploy easily on HPC’s like architecture using Torque distributing computing
system, our implementation slightly differs from the OGC testbed architecture. Instead of providing
a link to a Docker image including a processing command, we deploy an unique image including
major image processing softwares like GDAL, OrfeoToolBox and SNAP. That image can then be used
for various processes. We therefore require to define in our Application Package the processing
command to execute. The "wps:Command" tag provides that command. To transfer execution
parameters, some placeholders are dynamically replaced at execution time. That solution seems
simpler than using environment variables.

<?xml version="1.0" encoding="UTF-8"7>
<feed
xmlns="http://www.w3.0rqg/2005/Atom"
xmlns:wps="http://www.opengis.net/wps/2.0"
xmlns:ows="http://www.opengis.net/ows/2.0"
xmlns:owc="http://www.opengis.net/owc/1.0" xml:lang="en">
<title>Forest Fire Application Package</title>
<subtitle type="text">ForestFire APP PKG</subtitle>
<updated>2018-05-01T12:10:00Z</updated>
<link rel="profile" href="http://www.opengis.net/spec/owc-atom/1.0/req/core"
title="This file is compliant with version 1.0 of 0GC Context"/>
<link rel="profile" href="http://www.opengis.net/tb13/eoc"
title="This file is compliant with Testbed-13 EOC Thread for Application
Packing"/>

32

<author>
<name>CS</name>
</author>
<entry>
<title>Forest Fire Application</title>
<updated>2018-05-01T12:10:00Z</updated>
<content type="text/plain">Some narrative describing the purpose of the
application.</content>
<!-- DOCKER IMAGE -->
<owc:offering code="http://www.opengis.net/tb13/eoc/docker">
<owc:content type="text/plain">docker-co.terradue.com/ows13-eoc/dcs-stemp-
18:1.0.3</owc:content>
</owc:offering>
<!-- THE WPS PROCESS DESCRIPTION -->
<owc:offering code="http://www.opengis.net/tb13/eoc/wpsProcessOffering">
<owc:content type="application/xml">
<wps:ProcessOffering
jobControlOptions="async-execute dismiss"
outputTransmission="value reference"
xmlns:wps="http://www.opengis.net/wps/2.0"
xmlns:ows="http://www.opengis.net/ows/2.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/wps/2.0
http://schemas.opengis.net/wps/2.0/wps.xsd">
<wps:Process>
<ows:Title>Forest Fire</ows:Title>
<ows:Abstract>Forest Fire is a method to detect forest
fires.</ows:Abstract>
<ows:Identifier>ForestFire</ows:Identifier>
<wps:Command>/opt/snap_all_6_0/bin/gpt {{inputDir}}/ForestFire.xml
-Pinputdata={{inputFile}} -Poutputdata={{outputFile}} -Pfilter={filter}
-PpixelRes={pixelRes}</wps:Command>
<wps:Input>
<ows:Title>file</ows:Title>
<ows:Abstract>The file from which the data product is
read.</ows:Abstract>
<ows:Identifier>inputdata</ows:Identifier>
<wps:ComplexData>
<wps:Format mimeType="application/octet-stream" default="
true"/>
</wps:ComplexData>
</wps:Input>
<wps:Input>
<ows:Title>Speckle Filter</ows:Title>
<ows:Abstract>Filter the speckles in the image.</ows:Abstract>
<ows:Identifier>filter</ows:Identifier>
<wps:LiteralData>
<wps:Format mimeType="text/plain" default="true"/>
<LiteralDataDomain>
<ows:ValuesReference ows:reference="http://...."/>
<ows:DataType

33

ows:reference="http://www.w3.0rg/2001/XMLSchema#string"
>String</ows:DataType>
</LiteralDataDomain>
</wps:LiteralData>
</wps:Input>
<wps:Input>
<ows:Title>Pixel Resolution</ows:Title>
<ows:Abstract>Resolution of the pixels</ows:Abstract>
<ows:Identifier>pixelRes</ows:Identifier>
<wps:LiteralData>
<wps:Format mimeType="text/plain" default="true"/>
<LiteralDataDomain>
<ows:ValuesReference ows:reference="http://...."/>
<ows:DataType
ows:reference="http://www.w3.0rg/2001/XMLSchema#string"
>float</ows:DataType>
</LiteralDataDomain>
</wps:LiteralData>
</wps:Input>
<wps:Output>
<ows:Title>Output response</ows:Title>
<ows:Identifier>response</ows:Identifier>
<wps:ComplexData>
<wps:Format mimeType="image/tiff" encoding="raw"
default="true"/>
</wps:ComplexData>
</wps:QOutput>
</wps:Process>
</wps:ProcessOffering>
</owc:content>
</owc:offering>
</entry>
</feed>

Further improvement

In that implementation, we assume that that the SNAP graph is already deployed on the execution
platform. An improvement can consist in including the graph file into the application package
constituting a package ready to deploy.

Deploy process

Here is the WPS service DeployProcess post content including the path to the application package:

34

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<wps:Execute service="WPS" version="1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xLlink="http://www.w3.0rg/1999/x1ink" xmlns:wps="
http://www.opengis.net/wps/1.0.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemalocation="http://www.opengis.net/wps/1.0.0
http://schemas.opengis.net/wps/1.0.0/wpsExecute_request.xsd">
<ows:Identifier>DeployProcess</ows:Identifier>
<wps:Datalnputs>
<wps:Input>
<ows:Identifier>applicationPackage</ows:Identifier>
<wps:Reference xlink:href="https://host/path_to/ForestFire_atom.xml" />
</wps:Input>
</wps:Datalnputs>
<wps:ResponseForm>
<wps:ResponseDocument status="true" storeExecuteResponse="true">
<wps:Output asReference="false">
<ows:Identifier>DeployResult</ows:Identifier>
</wps:Output>
</wps:ResponseDocument>
</wps:ResponseForm>
</wps:Execute>

In our imple