
OGC Testbed-14
WMS QoSE Engineering Report

Table of Contents
1. Summary . 4

1.1. Rationale . 4

1.2. Context . 4

1.3. Requirements & Research Motivation . 5

1.4. What does this ER mean for the QoSE DWG and OGC in general . 7

1.4.1. QoE specific problem statements from the DWG Charter. 7

1.5. Prior-After Comparison. 7

1.6. Recommendations for Future Work . 8

1.6.1. Recommended Future Tasks and Deliverables . 8

1.7. Document contributor contact points . 10

1.8. Foreword . 11

2. References . 12

3. Terms and definitions . 13

3.1. Abbreviated terms . 13

4. Overview . 14

5. Components and Component Scenario. 15

5.1. Component Overview Chart . 15

5.2. Quality of Service & Experience (QoSE) . 15

5.3. Client with QoSE Support . 16

5.3.1. WMS Metadata Elements . 17

5.3.2. Operations . 18

5.4. Test Suite for WMS Service Quality Assessment . 26

5.4.1. Methods. 27

5.4.2. Results . 28

5.5. WMS Stress Testing with JMeter . 31

5.5.1. On stress testing and benchmarking . 31

5.5.2. JMeter introduction . 32

5.5.3. Simulating concurrent users . 33

5.5.4. Separation from the tested infrastructure . 34

5.5.5. Impact of Network and other tools. 34

5.5.6. Synthetic requests versus real-world requests . 34

5.5.7. Randomization of requests parameters . 34

5.5.8. Putting together the results . 36

5.5.9. JMeter case study example . 36

5.5.10. Integration with other QoS tools. 39

5.6. GeoServer Extension for QoS. 39

5.6.1. GeoSolutions Methodological Approach on Monitoring QoS . 43

5.7. OGC Web Service Landing Pages . 45

5.8. TIE and Scenario for Demonstration . 47

5.8.1. TIE Component Implementation. 47

5.8.2. Scenario "Blueprint" for the Result Demonstration Video . 47

Appendix A: Revision History . 49

Publication Date: 2019-02-15

Approval Date: 2018-12-13

Submission Date: 2018-11-28

Reference number of this document: 18-028r2

Reference URL for this document: http://www.opengis.net/doc/PER/t14-D011

Category: Public Engineering Report

Editor: Guy Schumann (RSS)

Title: WMS Quality of Service & Experience

OGC Engineering Report

COPYRIGHT

Copyright (c) 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t14-D011
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary

1.1. Rationale
Quality of Service (QoS) and Quality of Experience (QoE) as they are intended and described at the
OGC are two related concepts which require very specific treatment and characterization. Citing
the definitions provided by the Domain Working Group (DWG) charter document:

• Quality of Service: Technical reliability and performance of a network service. Typically
measured using metrics like error rates, throughput, availability and delay or request response
time. This Engineering Report (ER) attempts to handle QoS aspects such as service availability,
scalability and speed.

• Quality of (User) Experience: A holistic, qualitative measure of the customers' experience of the
application or service. It encompasses both the user experience and the customer support
experience of the evaluated applications and/or services.

QoE focuses on the usability of the information that is conceived via OGC services to end users or
other client application and therefore is concerned more with qualitative aspects of such services
like presence of metadata, proper and descriptive namings, appropriate styling and so on (a more
thorough treatment is present in the QoE discussion paper OGC 17-049 entitled "Ensuring Quality of
User Experience with OGC Web Mapping Services" available at https://portal.opengeospatial.org/
files/?artifact_id=74403&version=1).

QoS focuses on providing reliable (i.e. quantitative) measures of spatial data service metrics which
can be used to characterize how a service (one or more specific datasets exposed by a certain
service) is performing both in near real-time as well as historically. It touches concepts like
availability, scalability (also known as capacity), absolute performance (i.e. speed) and can be used
to assess also perceived performance by final clients. As mentioned above, it is typically measured
using metrics like error rates, throughput, availability and delay or request response time.

Quite often the QoS and QoE aspects of spatial data services are underestimated if not simply
ignored due to lack of resources as well as lack of awareness, resulting in services which are
difficult to exploit (i.e. QoE very low) and/or unstable or very slow (i.e. QoS very low). The result is
that few users end up using them after the initial launch and this is especially true for services
targeting end users who are used to interact with services a-la Google Maps which delivers extreme
performance and scalability as well as bullet-proof usability.

1.2. Context
The ability to combine and visualize location-based data using a Web Map Service (WMS) is a key
value proposition of the Federal Geospatial Platform (FGP). The FGP is a collaborative online
environment where a collection of the government of Canada’s most relevant geospatial
information can be found easily and viewed on maps to support evidence-based decision-making,
foster innovation, and provide better service for Canadians. The FGP includes the capability of
selecting datasets with WMS to view individually or combined with other services in the FGP
viewer.

4

https://portal.opengeospatial.org/files/?artifact_id=74403&version=1
https://portal.opengeospatial.org/files/?artifact_id=74403&version=1

This functionality, as is the general case with a WMS, is provided to allow users to immediately
visualize and analyze geospatial data. Unfortunately, user feedback has proven that these
geospatial web services are not always easy or intuitive to navigate, combine or understand.
Because the FGP’s primary end users are government policy analysts who are not always highly
familiar with mapping and web mapping technologies, it is important to make WMS, and the
content they make available, as user-friendly as possible.

In 2016, to help alleviate this issue, the FGP developed a web service quality assessment
methodology that supported WMS, ran an assessment and developed recommendations and best
practices to support a user-friendly experience for all employees and citizens using WMS.
Assessments to date have shown that key considerations are often very simple, but very impactful
on QoE. The results of this study were used as the primary input into an OGC Discussion Paper
created by the Quality of Service Experience (QoSE) DWG. The OGC QoSE-DWG has developed a
discussion paper (OGC 17-049) entitled "Ensuring Quality of User Experience with OGC Web
Mapping Services" [https://portal.opengeospatial.org/files/17-049] that identifies and describes
issues often encountered by users of OGC WMS that affect the quality of their experience, and also
provides an assessment framework for identifying issues and measuring quality, along with
potential solutions and guidance to improve the usability of services.

The assessment framework for measuring QoE and the associated recommendations for improving
service quality are intended to benefit human end-users who need to rapidly assimilate and use
web mapping visualizations to answer questions or input into analysis. In other words, they need
to be able to make sense of the information an OGC WMS provides them.

In addition, Testbed-13 addressed QoS aspects in the aviation domain. Though specific to a
particular domain, The Testbed13: Data Quality Specification Engineering Report
[http://docs.opengeospatial.org/per/17-018.html] addressed a number of general aspects that apply
to this task nevertheless.

1.3. Requirements & Research Motivation
Testbed-14 has addressed the following WMS usability aspects:

1. Develop a revision of the OGC Discussion Paper 17-049: Develop a revision of the OGC
Discussion Paper 17-049 as per the review and assessment of the current OGC Discussion Paper 17-
049. This revision shall be performed in coordination with OGC QoSE DWG to address potential new
requirements such as QoS metadata (Capabilities Extensions) server implementation and
monitoring client implementations that allows improved service quality and measurement. The
revision is part of this ER.

2. Quality of Service Experience Assessment Framework: The fourteen assessment criteria
described in Discussion Paper 17-049 and summarized in Figure 1 are all aimed at assessing the
quality of a web service in terms of the degree to which it conveys clearly understood information
to the user. The user is assumed to be a non-expert in geospatial web services, but in most cases the
criteria are equally valid for all classes of users. A selected number of services in the Testbed will
be assessed against the QoSE assessment criteria, and retested once recommendations have been
applied. Comparison of results will help to validate the effectiveness of the assessment criteria and
the corresponding recommendations to improve usability, and allow for feedback, improvement or
correction. Services are provided as Testbed-14 deliverable D115 and, a dedicated client as D116.

5

https://portal.opengeospatial.org/files/17-049
http://docs.opengeospatial.org/per/17-018.html

Figure 1. The fourteen assessment criteria for WMS QoSE

3. Quality of Service Experience Practices to Alleviate Usability Issues: The fourteen
assessment criteria all have corresponding recommendations that describe practices that, once
implemented, should help to alleviate user confusion and improve the usability of WMS as a means
of visualizing and simple visual or query-based analysis of geospatial data. Once selected services
have been assessed against assessment criteria, all or as many QoSE recommendations will be
applied, then services will be subject to retesting.

4. Quality of Service Experience Implementing Best Practices: Man or Machine?: Analysis
required here on the making of a geospatial WMS and the opportunities of human operator or
programmatic response to make decisions that impact service quality of experience. Assessment of
which usability issues are determined/caused by human input or what determined/caused by
default via the programmatically generated aspects of the service (not due to direct human input or
decisions) via the standard specification implementation. Results are captured in this ER.

5. Quality of Service Experience Test Suite: Develop test suite to programmatically test and
validate that best practices have been successfully implemented. The test suite will automatically
assess the quality of service according to the assessment criteria and validate or flag services that
do not comply to best practices/recommendations. The results of the test suite (D117) are also
captured in this ER.

Figure 2 illustrates the QoSE work items as reflected by the OGC Testbed-14 thread.

Figure 2. Quality of Service & Experience (QoSE) work items

6

Note: The purpose of D122 is to provide a Client to meet requirements for QoSE and Portrayal as
well as measure statistics on response time, number of layers, number of features, error codes
generated, etc. within the client. Since subjective measurement criteria, focusing for example on
legibility, intuitiveness, consistency of symbology, may be more difficult to automate, participant
will gather QoSE statistics manually for those criteria or elements, and then propose
recommendations for an automated service for those assessment criteria.

1.4. What does this ER mean for the QoSE DWG and
OGC in general
The OGC QoSE DWG provides a forum for discussing issues related to QoS and QoE of spatial data
services and applications relying on these services for delivering timely and accurate spatial
information to the end-users. Key business goals of the Working Group include the following:

• Sharing implementation experience and ideas in evaluating and improving QoS and QoE of
spatial data services.

• Collect best practice, create and promote guidance on evaluating and self-assessing the QoE of
spatial data services, and practical means for improving the user experience of these services.

• Identify gaps in the existing standards and guidance related to QoS and QoE of spatial data
services, and as appropriate, suggest new standardization activities within OGC to fill those
gaps.

1.4.1. QoE specific problem statements from the DWG Charter

• Metadata, such as titles and keywords, is not always written in clear and understandable
language considering the end users. Further, metadata does not always describe the provided
services and data sets in necessary detail. This makes it more difficult for users to fully take
advantage of the provided service and its datasets. There should be better guidance and a
checklist to assist data and service providers to record human-readable metadata.

• The ancillary information, such as legends for WMS, is not always clear and human-readable.
Missing or ambiguous legend information may easily lead to misinterpretation of the presented
data. There should be better guidance for data providers on specifying good and readable
legends.

• There is a lack of methods and best practice on evaluating and improving user experience and
human interaction of processes involving discovery, initial evaluation of the fitness-for-purpose
of spatial data services, as well as access to change records during the services' lifetime.

• There is a need for more accurate understanding of how spatial data services are used and
perceived in the larger web service end-user community.

• Evaluating, comparing and improving the QoE of spatial data services is difficult without
commonly agreed and well-defined metrics for measuring the QoE.

1.5. Prior-After Comparison
The task described in this ER addressed the QoE assessment criteria laid out in the DWG Discussion

7

paper referred to earlier and also implemented a QoS performance assessment. Specifically, an
interactive user-friendly Graphical User Interface (GUI) was developed based on the QoE
assessment criteria defined by the DWG. This GUI also lists performance statistics from a WMS
server.

1.6. Recommendations for Future Work
A goal of this task and its analysis was also to suggest potential future activity where these results
could be investigated through new tasks in future testbeds.

1.6.1. Recommended Future Tasks and Deliverables

Item Related to QoSE Discussion Papers

As per OGC Policies and Procedures, the Discussion Papers are not versioned documents. The
option discussed in the QoSE DWG has been that a new document (e.g. perhaps a Best Practice)
would be produced based on the original Discussion Paper and the results of the Testbed-14.

Item Related to Future OGC Work

There should be a discussion on how QoS/QoE will fit into next generation OGC service interface
specifications (i.e. WFS3, CAT4) given the clean break and move to REST/JSON/etc.

Quality of Experience (QoE) Items

• Extend QoSE evaluation work to test other geospatial services

Although current QoSE indicators are specifically designed for the Web Map Service, some of them
could be directly used to measure the quality of other OGC web services (OWS). For example, the
title or similar elements in nearly all OWS types could be considered, resulting in the title
meaningfulness and related criteria being mapped to the elements. In addition, the feature-related
QoSE indicators could be used to evaluate the quality of the WFS. And most of them could be
directly used to measure the WMTS.

• Improve current QoSE indicators

The fifth QoSE criteria is named as Feature Attribution, but its description indicates that it is used to
measure the number and relevance of attributes provided for each feature. Besides, the attribution
is used to identify the source of the geospatial information. As a result, it might be worth
considering to change the Feature Attribution to measures of Feature Attribute.

The fourteen (14) QoSE criteria only aim at assessing the quality of a web service in terms of the
degree to which it conveys clearly understood information to the user. However, QoSE means
identifying the usability issues associated with use of OGC web services. Hence, additional
indicators beside the information understandability should be developed. For example, the service
performance also affects user experience.

In the QoSE discussion paper, the user is assumed to be a non-expert. However, some indicators are
difficult for them to understand. In my opinion, the evaluation on feature attribute needs some

8

expert knowledge, since it measures the number and relevance of attributes provided for each
feature.

Not all items in the QoSE recommendations could find a matching item in the QoSE criteria, such as
fees and access constraints, attribution, bounding box, and service interoperability. Thus, this needs
improving.

Some future work related to D117

Figure 3. Recommendations for future items related to D117

9

Quality of Service (QoS) Items

• Investigate further towards the concept of a status page to report information about availability
and status of OGC services endpoints;

• Investigate further, together with the QoSE DWG, the QoS extensions to GetCapabilities
operations for WMS and WFS in order to streamline them and propose them as profiles for the
respective OGC services;

• Better link the "E" (Experience) of QoSE with QoS since bad performance and/or availability
means bad experience for the end-user; meaning that OGC should try and draw a link between
checking the famous "14 rules" that are more towards naming and metadata, and that OGC
should check for decent performance and decent stability when assigning scores to layers
(ideally the score should become dynamic at this stage since performance and availability
should be monitored over time).

• Advance performance testing of WMS services by executing the load tests through the
containerized architectures: Load testing is crucial for WMS that have to serve many users in
real time. Load testing involves simulating similar actions, where computer-generated virtual
users mimic real users. In most cases, this kind of testing cannot be generated by a single server
due to limited hardware resources. Additionally, physically distributed servers are a must if
user behavior is desired from different regions of the world. For these large-scale load tests
containerized cloud services offer a good alternative. Cloud services that make use of
containerized architectures such as Kubernetes, rkt, etc, offer an alternative to standalone
machines, running full virtual machine instances for applications and are well-suited for
scaling of simulated clients;

• Extend performance tests by expanding to other geospatial services: There is a variety of open
geospatial standards to provide online access to geospatial data, for example, Web Coverage
Service (WCS), Web Map Service (WMS), Web Feature Service (WFS), and Web Map Tile Service
(WMTS). OGC Testbed-14 focused on performance tests for WMS, but WCS and WFS services are
more sensitive to data resolution. For WFS services, due to their verbose nature, transferring
large amounts of data might be problematic and lead to higher latencies and lower
performance. Extending performance tests to other geospatial services offering data from a
sponsor would provide a broader view of how well other geospatial services are provided.

1.7. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization

Guy Schumann Remote Sensing Solutions Inc.

Albert Kettner Consultant for Remote Sensing
Solutions Inc./INSTAAR, DFO, CU
Boulder

Simone Giannecchini GeoSolutions SAS

10

Name Organization

Zelong Yang School of Geographical Sciences and
Urban Planning, Arizona State
University

Keith Pomakis CubeWerx Inc.

1.8. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

11

Chapter 2. References
The following normative documents are referenced in this document.

• OGC: OGC 06-121r9, OGC® Web Services Common Standard: https://portal.opengeospatial.org/
files/?artifact_id=38867&version=2

• OGC: OGC 09-025r2, OGC® Web Feature Service 2.0 Interface Standard – With Corrigendum, July
2014

• OGC: OGC 06-042, OpenGIS Web Map Service (WMS) Implementation Specification, March 2006

12

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

• Quality

degree to which a set of inherent characteristics fulfills requirements [SOURCE:
ISO 9000:2005, 3.1.1, modified - Original Notes have been removed.]

• Usability

The degree to which something is able or fit to be used

3.1. Abbreviated terms
NOTE: The abbreviated terms clause gives a list of the abbreviated terms and the symbols necessary for
understanding this document.

• DWG Domain Working Group

• QoE Quality of Experience

• QoS Quality of Service

• QoSE Quality of Service and Experience

• WMS Web Map Service

13

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Chapter 4. Overview
This ER describes all the different components that were implemented to advance WMS QoSE.
Section 5 describes the following components in detail:

• GUI for WMS Service Quality Assessment

• Test Suite for WMS Service Quality Assessment

• WMS Stress Testing with JMeter

• GeoServer Extension for QoS

• OGC Web Service Landing Pages

• TIE and Scenario for Demonstration

14

Chapter 5. Components and Component
Scenario

5.1. Component Overview Chart
Figure 4 illustrates the connections and interoperability between the various component parts
discussed in this ER.

Figure 4. Component Overview Chart

5.2. Quality of Service & Experience (QoSE)
A discussion paper entitled "Ensuring Quality of User Experience with OGC Web Mapping Services"
provides an assessment framework for identifying issues and measuring quality, which can be
downloaded at public link [https://portal.opengeospatial.org/files/?artifact_id=74403&version=1]. It outlines
fourteen criteria to measure QoSE, and recommendations are given for each of them, which are
shown as components using a rectangle in Figure 5.

15

https://portal.opengeospatial.org/files/?artifact_id=74403&version=1

Figure 5. Relationships among QoSE Indicators and WMS Metadata Elements

5.3. Client with QoSE Support
D116 requires implementation of a client dedicated to testing the assessment criteria of WMS
instances. Therefore, a Graphical User Interface (GUI) was designed and is shown in Figure 6. It
consists of three basic components, including a WMS layer selector, metadata information viewer,
and QoSE assessment panel. Users can select a layer of interest from the WMS layer selector. Once a
layer is selected, its metadata is loaded and shown in the metadata information viewer, which is
located in the bottom-left. Finally, users can give their evaluation for each QoSE indicator based on
the layer metadata contents. At the same time, users can also leave feedback about the QoSE
framework or the client using the feedback panel.

16

Figure 6. The Client Graphical User Interface (GUI) (http://cici.lab.asu.edu:1080/qose/wms/evaluation.html)

5.3.1. WMS Metadata Elements

In Figure 5, this ER also explains and works out the necessary metadata elements for the QoSE
assessment. According to the WMS specifications, all metadata elements could be extracted as
shown in Figure 7.

17

http://cici.lab.asu.edu:1080/qose/wms/evaluation.html

Figure 7. WMS Metadata Elements Extraction

Metadata cache, through pre-parsing the metadata elements and storing them, could enhance the
user experience by reducing user wait time. Therefore, some metadata elements contained in the
capability documents are pre-parsed and stored in the local database. However, some metadata
elements are not suitable for this procedure. For example, the layer map may be configured with
different rendering strategies at different zoom levels, but it is difficult to know how many rules
exist. Also, the WMS only supports pixel-wise GetFeatureInfo operation, which makes it hard to
cache all feature information, and it is also a lot of effort to manage the vector information. For this,
the live request operation is provided which will be described in the sections below.

5.3.2. Operations

5.3.2.1. Layer Selection

In the WMS specification, the title element is described as more understandable for humans than
the layer name which is designed for computers to identify. Therefore, the layer title is adopted to
assist users in layer selection. But layers from different WMS services may share the same title. As a
result, our portal requires users to specify a WMS before the layer selection.

18

Figure 8. WMS Selection

Figure 9. Layer Selection

Users can also view the native WMS capability document (Figure 10) using the hyperlink shown in
Figure 9.

Figure 10. WMS Capability Document

5.3.2.2. Map Window

The map window consists of a background map from OpenStreetMap (OSM), the layer map, and the
layer legend. It supports some basic map operations including roam, zoom in/out. In addition, the
map click operation is valid for queryable layers with a crosshair cursor shape. If the layer is not
queryable, the click operation will be hidden, and the mouse cursor on the map will be changed to
a move shape. If it is too small for users to view or operate, a full screen operation is implemented
like that in Figure 11.

19

Figure 11. Full Screen Map with Legend

5.3.2.3. Feature Attributes

As described in the above sections, the feature information is loaded in real time instead of being
cached together with other layer metadata elements. Therefore, the feature information value is
left empty when users select a WMS layer (Figure 12). The feature information value is filled, once
users click a feature pixel in the map window, provided the layer is queryable. In this process, a
GetFeatureInfo request is constructed in real time, then the response of the request is shown as the
feature information value. If no feature information is returned or the user clicks on an empty
pixel, the feature information value is shown like that in Figure 13. At the same time, a purple cross
symbol will appear on the map, whose center means the location of the selected pixel (Figure 13,
Figure 14).

Figure 12. No Pixel Selected

20

Figure 13. A Feature Pixel Selected

Figure 14. An Empty Pixel Selected

5.3.2.4. Criteria Assessment

There are two types of QoSE indicators, criteria and recommendations. For the criteria, the items
are mutually exclusive. Therefore, a radio button group is adopted in our client (Figure 15). For
QoSE recommendations, users can suggest multiple items belonging to the same recommendation
(Figure 15). Once users give their assessments, the corresponding statistical graphs of past results
will change immediately.

21

Figure 15. QoSE Indicators Assessment and Presentation

Figure 16. Unselect

Figure 17. Select

There are some friendly prompt functions implemented to assist users’ operations. For example,
users can view the detailed description of each QoSE indicator and their items by moving the
mouse on the (?) symbols (Figure 18, Figure 19). If the operation is layer dependent, users should
first select a layer of interest, otherwise a prompt like Figure 20 will popup.

22

Figure 18. Indicator Prompt

Figure 19. Indicator Item Prompt

Figure 20. No Layer Selected Prompt

5.3.2.5. Assessment Report

If users or service providers want to get a complete QoSE report for a layer or a service, they can
send an email to us using the address listed in the bottom in the Figure 21.

23

Figure 21. Get the Assessment Report by Email

5.3.2.6. User Management

A user profile is sometimes important for analyzing the QoSE results. For example, an expert in
Geographic Information Systems (GIS) is usually more professional than a common user for a QoSE
assessment. Therefore, a user management module is developed, and the profile information list in
Figure 22 will be collected. In addition, the client also allows users to share their assessment as a
guest. Users can check their logged status in the location shown in Figure 24.

24

Figure 22. Sign Up

Figure 23. Sign In

25

Figure 24. Sign Status

5.3.2.7. Feedback Collector

If users want to share their opinions on the QoSE indicators or our client, the feedback menu tab
allows them to describe and submit them (Figure 25). Some friendly prompt functions are also
developed like those in Figure 27.

Figure 25. Feedback

Figure 26. No Feedback Content Prompt

Figure 27. Successful Feedback Prompt

5.4. Test Suite for WMS Service Quality Assessment
The test suite is implemented to programmatically test and validate whether best practices have
been successfully implemented, and it can automatically assess part of the quality of service

26

according to the assessment criteria and validate or flag services that do not comply to best
practices/recommendations.

5.4.1. Methods

There are tens of assessment criteria and recommendations for assessing the quality of service.
Some of them are easy to programmatically test, but some others are too difficult to automatically
test, even for people. This section describes which QoSE indicators have been implemented in the
current test suite and briefly describes how to test them programmatically. The other QoSE
indicators remain unsolved and reasons are summarized in the future research section.

5.4.1.1. Title

The WMS specifications allow WMS providers to edit layer titles as free text. This section removes
the special symbols first, and then conducts word segmentation to split the title into individual
words.

5.4.1.1.1. Title Length and Uniqueness

The title length could be easily calculated by counting words. Title uniqueness requires the title to
start with the most unique or important aspect of the data first. Because different WMS providers
organized their layers based on different indicators, the layer title uniqueness calculation on
service level is more reasonable than that across all WMS. In addition, it would be a 'big task' to
consider all WMS layer titles as more WMS come. To calculate the title uniqueness, the number of
each word occurrence is counted among all layer titles in the same WMS. Then a new title could be
generated by changing word sequences based on their occurrence time for each title. Finally, the
uniqueness is calculated by comparing the new title and the old one.

5.4.1.1.2. Title Readability & Meaningfulness

Title readability plays a key role in measuring the title meaningfulness, and a less readable title is
hard to be meaningful. In our test suite, the title readability is measured by the ratio of words in the
title, which could be found in the English and French dictionary. Then two thresholds on the ratio
are given to split the title as not meaningful, less meaningful and readable. To check whether the
title is meaningful, human involved assessment is required.

5.4.1.2. Feature

In WMS specifications, only queryable layers support the GetFeatureInfo operation. Therefore, the
queryable attribute value could be used to determine whether corresponding QoSE indicators are
applicable. It is hard to download all feature information, because the GetFeatureInfo operation
only allows users to request the feature information on one pixel at one time. Here, 100 feature
pixels are randomly selected to get their feature attributes in each queryable layer map. Then the
duplicated records will be removed. Finally, the feature information table will be used to evaluate
the corresponding QoSE indicators.

5.4.1.3. Metadata, Supporting Docs and Abstract

In our current test suite, it can test whether the metadata and supporting docs are available. As for
their understandability, it still needs human involvement.

27

5.4.1.4. Legend

Legend Necessity: An InceptionResnetV2 model is trained to check the legend necessity using
manually labeled maps.

5.4.1.5. Map

Map Scaling Consistency: It could be tested by checking whether the minimum and maximum scale
denominator exist.

5.4.1.6. Other

5.4.1.6.1. Fees, Access Constraints and Attribution

The recommendations related to the above metadata elements could be tested by comparing the
elements’ values with corresponding descriptions in recommendations.

5.4.1.6.2. Bounding Boxes

To test whether the spatial coverage of a layer map is global, a VGG19 model was trained using
some manually labeled maps. As for maps with non-global spatial coverage, it still needs humans to
determine.

5.4.2. Results

Because the test suite adopts the same QoSE indicators set as that in the client, the human
evaluation results from the client could be used to assess that from the test suite. Therefore, a test
suite results presentation module has been implemented, which is located below the statistical
graph (Figure). Users can open or close it by checking or unchecking the checkbox named D117
Result in the top-right.

28

Figure 28. Show Test Suite Results

Figure 29. Hide Test Suite Results

In group discussion, some QoSE indicators are too subjective or too hard for computers to
programmatically evaluate them. For example, the feature attribute criteria measure the number
and relevance of attributes provided for each feature. To assess it, an expert knowledge database is
in demand which should contain attributes’ requirements for each feature type in different

29

applications. In the test suite result presentation module, descriptions of difficulty for
programmatically assessing them are presented instead of test suite results.

Figure 30. An example of Test Suite Results on Feature Related Criteria

Figure 31. An Example of Test Suite Results on Feature Related Recommendations

Note that test results of the JMeter (see next section) component have been integrated into the
portal, under the tab “Performance Load Reports”. GeoSolutions' QoS monitor, outlined later, is also
integrated into the portal, under the tab “QoS Monitor”.

30

5.5. WMS Stress Testing with JMeter
Note that the decision to use JMeter as the tool for running the stress tests was not a requirement
by the sponsors, rather it was based on a QoSE Testbed-14 team discussion. Other software
alternatives, such as GeoHealthCheck (mentioned later in this report) and Spatineo Monitor, could
of course be used to accomplish the same or similar results. Apart from stress testing, these tools
can be used for monitoring the OGC Web Service availability and its changes over longer periods;
however, here integration with (these) other tools was not considered.

5.5.1. On stress testing and benchmarking

Stress testing is crucial to investigating the behavior of infrastructure or an application under
heavy load. It usually involves measuring the following:

• Scalability, as in the ability to keep performing under increasing loads

• Speed, as in the ability to respond with acceptable and stable response time to requests

Note: There needs to be a discussion or agreement on stress testing against operational services
with the server and service provider in order to avoid formal blocking of requests by the provider.

From an implementation/deployment standpoint the goal of stress testing is to gather concrete
numbers about the characteristics that can be used over time to check the effect of evolutions. It
can also be used to dimension hardware infrastructure and redundant deployments as well as to
impose QoS restrictions to protect production deployment (e.g. limit number of parallel requests to
a value that is closer but lower than the maximum throughput).

From a developer standpoint stress testing is also important in order to investigate software and
architectural bottlenecks. As a developer trying to assess scalability, performance and availability
of an infrastructure the goal is to hit the latter with a load that can force it to its limits (i.e.
maximum resource utilization) and then analyze the effect on the underlying resources, find the
bottleneck, fix it and then move to the next one. As an instance, bottlenecks can be identified in a
WMS implementation (e.g. unnecessary synchronizations or inefficient code of sort) by not being
able to fully exploit Central Processing Unit (CPU) and Memory under huge load. By experience, if at
increasing load the throughput falls and the response time significantly increases but CPUs and/or
memory are not fully utilized this is a clear indication that unless the implementation is being
affected by slow Input/Output (slow disk, slow DBMS), then the implementation has some
bottlenecks that need fixing.

Given what is written above, stress testing and benchmarking is an activity that should encompass
the entire lifecycle of an infrastructure; it should be done during development. To do a sanity check
on written code and chosen components, stress testing should also be done at deployment time to
ensure proper dimensioning, it should also be done periodically when in production to double
check and reconcile assumptions and expectation with reality. All this falls under the umbrella of
Application Performance Management (https://en.wikipedia.org/wiki/
Application_performance_management).

A useful case for stress testing is whenever server software, data sources or their configurations are
changed: stress testing before and after modifying the service would verify if everything is still
working as expected, or if the made changes had a real effect on service performance.

31

https://en.wikipedia.org/wiki/Application_performance_management
https://en.wikipedia.org/wiki/Application_performance_management

5.5.2. JMeter introduction

Apache JMeter (http://jmeter.apache.org/) is a popular open source tool used to load test (or stress
test) web applications. JMeter lets us send an arbitrary amount of custom tailored OGC WMS
requests to server applications to derive information about response time, throughput and
availability of the services against heavy load conditions. Some of JMeter points of strength are
mentioned below:

• Open source and free to use software

• It ships with an easy-to-use GUI;

• It allows to set up multiple thread groups, different parallelism and request count, to ramp up
the load;

• It can use Comma-Separated Value (CSV) files to generate semi-randomized requests (needed to
bypass server cache);

• It can execute parameterized tests;

• It reports results in simple tables and text files;

• It uses assertions for checking test results;

• It can be executed in headless mode (i.e. without the GUI) as part of a larger script.

• It is supported by a large active community. Multiple open source plugins have been developed
by its community that make the tool applicable for tests to many different websites.

Within JMeter, a web performance test can be built, executed and analyzed.

1. Building web performance test plan: Building a test plan in JMeter for a WMS is fairly
straightforward. First, define a set of variables that describe the specifics of the WMS and the
global parameters for the entire run (in the case of Testbed-14 the path to the tiled or untiled
variable domains, the throughput and the number of loops each ‘user’ should query the WMS.
Depending on the type of test, specify a set of ‘threads’ or concurrent users to simulate parallel
querying of the WMS. And finally define a number of reports and graphs to capture the results
of the test.

2. Executing your test: Once a test plan has been built, there are various ways to run the test. This
can be done either through the GUI or through the command line. The most preferable way is
using the command line but due to limited time Testbed-14 chose the GUI to run the
performance tests. The test environment can influence the performance test results (see below).
Setup the JMeter tests outside the WMS infrastructure to avoid the test influencing the behavior
of the WMS and if possible, a cloud service should be used simply as the load cannot be
generated by a single server to simulate a large number of real users due to limited hardware
resources of a single computer. Testbed-14 chose to use an Amazon Cloud service made
available by GeoSolutions to run the JMeter load tests.

3. Analyzing test results: Load test results can be saved as CSV files. Testbed-14 chose to analyze
how the ‘transaction throughput’ would behave with increasing the number of threads, and the
same for response time. For this test, the result reports created include the raw data as well as
graphs of: a) transaction throughput versus threads and, b) Response time versus threads. These
are created both for WMS tiled and untiled services of the same WMS.

32

http://jmeter.apache.org/

Figure 32 shows an example of a JMeter load test plan, showing the global variables, a set of
threads (1-100) and some result output options (summary reports and graphs).

Figure 32. Load test plan in JMeter

For a more thorough discussion on JMeter and its capabilities, the reader is referred back to the
official JMeter documentation as well as to the GeoSolutions training which contains a section on
how to stress test GeoServer using JMeter (https://geoserver.geo-solutions.it/edu/en/enterprise/
jmeter.html).

As mentioned above, performance tests have the objective of probing the swiftness and behavior of
a service under various load levels. Performance tests also reconstruct the throughput and average
response time curves under increasing concurrent load to simulate different real-world conditions.
In order to do so, JMeter test plans send an increasingly higher number of concurrent WMS
requests to test services performance under various load conditions.

Below the most important points to consider when setting up a stress test plan; this ER will then
discuss how one of these test plans is set up.

5.5.3. Simulating concurrent users

Generally speaking, software developers tend to associate a single user to a single thread in JMeter
to send requests. When it comes to WMS this is partially true since, if an end-user is interacting
with a WMS service via a web-based applications that uses map-tiling, a single user can send up to 6
requests in parallel (depending on the web browser of choice) and even more if tricks like setting
up multiple names for the same cluster under tests have been set up.

So the equivalent between threads in a JMeter ThreadGroup and end-users needs to be evaluated
on a case by case basis. However, when if doubt it is safe to assume that JMeter can simulate a
single user interaction with a single thread.

33

https://geoserver.geo-solutions.it/edu/en/enterprise/jmeter.html
https://geoserver.geo-solutions.it/edu/en/enterprise/jmeter.html

5.5.4. Separation from the tested infrastructure

JMeter uses multithreading to simulate concurrent users, by having multiple threads sending
requests in parallel and therefore when trying to simulate a huge load it can become quite heavy
on the underlying infrastructure. Rule of thumb is therefore to avoid adding extra load to the
infrastructure that is being stress tested by having JMeter run on a different one.

It is important to remark on the fact that a number of online services that can be used to generate a
huge load based on a JMeter plan. In the past GeoSolutions have used https://flood.io/ for testing a
large infrastructure, but there are other options like https://www.blazemeter.com/. In addition,
JMeter can be used to run distribute tests by exploiting multiple slave machines from a single
master as explained in the JMeter documentation (https://jmeter.apache.org/usermanual/
jmeter_distributed_testing_step_by_step.pdf).

5.5.5. Impact of Network and other tools

When planning and executing a stress test with JMeter, carefully evaluate the impact of all the tools
that sit between JMeter and the infrastructure that is being tested. This includes:

• Network capacity and eventual QoS configurations (firewall and so on). It is necessary to make
sure that the network bandwidth and network devices in between JMeter and the infrastructure
to test do not become bottlenecks and then generate results that are worse than could be
achieved. The typical examples are poor outbound bandwidth on the server-side or anti
Distributed Denial-of-Service (DDoS) protections at the firewall level which could impede huge
parallel loads on the infrastructure when testing.

• It is necessary to make sure that, while running the tests, no other component apart from those
that are being tested is generating load on the underlying hardware infrastructure. Failure to do
so could lead to false results. The opposite is also true, it is necessary to make sure that the tests
will not impact other critical parts of the overall infrastructure.

5.5.6. Synthetic requests versus real-world requests

It is obviously crucial that the requests used to generate the stress test load are as representative as
possible of real-world usage patterns. This is possible for systems that have already been launched
and made accessible to end-users (e.g. by collecting and curating access logs) but it is not always
possible for pre-flight stress tests; moreover it is always important to somehow randomize requests
(see also below) in order to discover bad behaviors that are not always obvious during normal
usage.

In general, so-called synthetic requests tend to be created starting from valid WMS requests and
then randomizing in a controlled manner some of the parameters like BBOX, width, height and so
on. Often, mixed stress tests tend to be used where some of the requests are real-world requests
and others are synthetic requests.

5.5.7. Randomization of requests parameters

Some of the parameters of each request (width, height, bounding box) are varied continuously to
avoid aggressive caching on the server-side, this is done using JMeter "CSV Data Set Config" element

34

https://flood.io/
https://www.blazemeter.com/
https://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by_step.pdf
https://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by_step.pdf

that allows us to fetch the above-mentioned parameters from pre-generated Comma-Separated
Value (CSV) files containing pseudo-random values for each of the parameters as described below.

A way to perform this randomization is given by using a feature within JMeter that allows use of an
external CSV file to override certain default parameters of a WMS request using the values taken
from the CSV file itself. An example is shown below(Figure 33). Web Map Services can be set up as
tiled and untiled services. For each an external CSV with chaning boundary boxes has to be
specified.

Figure 33. CSV Data Set Config element within JMeter

The config in the previous figure is responsible for fetching parameters from CSV files (file system
path set in the TILED_CSV_FILE variable). An example of an external CSV file is given in Figure 34.

Figure 34. Example of an external CSV file

Fields are separated by a semicolon, the first two represent the values for width and height, next is
the coordinates for the bounding box followed by the reference system for these coordinates.

35

A number of scripts exist already for the generation of the randomized parameters. GeoSolutions
has put together Python scripts that can be used to generate parameters for WMS requests (and also
for other services). These are available in a public GitHub repository (https://github.com/
geosolutions-it/scripts/tree/master/performance_tests/WMS.

5.5.8. Putting together the results

JMeter can produce the results in Hypertext Markup Language (HTML) outputs but this output is
somewhat cumbersome and requires some plugins and an installation hosted on a web server.
GeoSolutions typically uses spreadsheets to record the output of the JMeter plans (shown below in
Figure 35) using the number of threads as the independent variable and the throughput and
response time as the dependent variable. Below are some examples charts for throughput and
response time.

Figure 35. Output of the JMeter

5.5.9. JMeter case study example

To demonstrate the use of JMeter for this study we choose to do a load performance test on the
WMS that is made available through: https://open.canada.ca/data/en/dataset/be0a3350-f755-418e-
b04b-7ff9fd2ebeac. And choose a layer named “0”. This layer was selected using QGIS and
represents geospatial data of “Pelagic Seabird Atlas, West Coast of Canada - Average Grid Cell
Density, 2009” and has the following boundary box: -147.0,45.1666669999999968 :
-123.0833329999999961,56.0 (see Figure 36).

36

https://github.com/geosolutions-it/scripts/tree/master/performance_tests/WMS
https://github.com/geosolutions-it/scripts/tree/master/performance_tests/WMS
https://open.canada.ca/data/en/dataset/be0a3350-f755-418e-b04b-7ff9fd2ebeac
https://open.canada.ca/data/en/dataset/be0a3350-f755-418e-b04b-7ff9fd2ebeac

Figure 36. QGIS representatation of the WMS data that is used for the performance test

This maximum boundary box was used to generate tiled and untiled variable boundary boxes with
changing height and with running the script provided by GeoSolutions to a CSV file, similar as is
shown in Figure 34. Once the tiled and untiled CSV files are in place the load performance test plan
is built in JMeter (similar as shown in Figure 32). All in-place test runs should be conducted to make
sure that JMeter receives data about the WMS when querying for tiled and untiled services. Make
sure to log successful connections. These test runs can be done on a desktop in the JMeter GUI
environment, and if all works well should show a snapshot of the geospatial data each time JMeter
sends out a data request, see Figure 37.

Figure 37. JMeter representatation of successfully retrieved WMS data

37

Potentially, parameters need to be tweaked to be able to receive spatial data. Testbed-14
participants found that they could not create the variable boundary boxes captured by the CSV files
for all WMS instances provided by Natural Resources Canada. Especially for datasets that cover
only a very small spatial area these variable boundary boxes could not be generated and therefore
the WMS site could not be tested. Also, for some WMS the tiled option was not activated and
therefore this WMS capability could not be tested either.

Successful load performance tests are then moved and executed in the cloud. Running in the cloud,
a summary report informs (see Figure 38) the user of the state of the execution and a graphical
report (see Figure 39) provides a first indication of the performance of the WMS instance over time.

Figure 38. JMeter Summary report of a WMS instance, showing the number of loops for each thread it has
processed already

Figure 39. JMeter graphical representation of the performance of a WMS instance.

Two informative diagrams (Transaction Throughput and Response Time) are generated for each
WMS instance that a load performance test is created for in the cloud (Figure 40). The graph on the
left shows how transaction throughput time increases with increasing number of threads
(concurrent users) until it levels out. So basically, it shows the statistical maximum possible number
of transactions based on number of users accessing the WMS. Any more users that query the WMS

38

at the same time will not affect the transaction throughput time anymore. In this case that happens
after 35 to 40 users for the tiled service (orange line) and already at between 5 to 8 users for the
untiled service (blue line). The graph on the right shows 2 interesting things. First, the untiled
service (blue line) has significant slower responses with increasing threads (from 2 to 14 seconds).
Secondly, for the tiled WMS service, the response time does start to increase with increasing users
at around 30-35 threads but stays below 2 seconds, even with a 100 threads (users, each querying
the WMS with 50 requests).

Figure 40. Transaction Throughput and Response Time, both per increasing number of threads.

5.5.10. Integration with other QoS tools

JMeter stress tests are ran, over time, for a variety of WMS provided by Natural Resources Canada
(NRCan). NRCan is in the process of migrating some of their provided WMS to another platform,
and this provides a perfect opportunity to see if the hosted WMS will perform better when migrated
over. The stress tests reports will be made available online, such that they can be easily integrated
into the "GUI for WMS Service Quality Assessment" effort mentioned above.

5.6. GeoServer Extension for QoS
Over the past year, the OGC QoSE DWG has established a set of basic QoS indicators as
acknowledged key performance indicators of spatial data service instances or endpoints. The aim is
to improve the quality of the web services and Application Programming Interfaces (APIs),
including factors like availability, capacity and performance by using well-defined metrics in order
to provide comparable QoS measurements. The declared QoSE metadata will contribute to a
complete picture of the QoS of the entire Spatial Data Infrastructure (SDI), and more effectively
maintain high QoE for its end-users.

GeoSolutions has implemented an extension for WMS and Web Feature Service (WFS) functionality
in GeoServer that allows the administrator to declare several statements of the service such as:

• Operating Info - Video Tutorial [https://youtu.be/EQaeDAkLySc]

◦ Operational status (test/demo/beta/production etc.)

◦ Operating days & hours (default: 24/7)

39

https://youtu.be/EQaeDAkLySc

Figure 41. Operating Info

• QoS statements of the entire service - Video Tutorial [https://youtu.be/JpimmBmmxAU]

◦ Metrics & minimum values to be expected, performance, availability, capacity etc.

Figure 42. Metrics Statements Declaration

• Operation Anomaly Feed - Video Tutorial [https://youtu.be/6zFrfhz6cEM]

◦ Maintenance periods, downtimes

Figure 43. Operation Anomaly Feed

40

https://youtu.be/JpimmBmmxAU
https://youtu.be/6zFrfhz6cEM

• Representative operations - Video Tutorial [https://youtu.be/FS-h7wjf0TI]

◦ QoS statements for given operations & limited request parameters

◦ Auto-configuration for QoS monitoring tools

41

https://youtu.be/FS-h7wjf0TI

Figure 44. Representative operations

42

Documentation on how to install and configure the module can be found here
[http://docs.geoserver.org/latest/en/user/community/qose-module/index.html].

The latter statements declared by the user will be embedded in the Extensible Markup Language
(XML) GetCapabilities file of the WMS or the WFS service.

A few examples for extended GetCapabilities responses are provided below and more can be found
in the GitHub repository for the QoSE DWG [1: https://github.com/opengeospatial/QoSE-DWG/tree/
master/QoSMetadata].

Declaring operating hours for a WMS service

<qos-wms:QualityOfServiceMetadata>
 <qos:OperatingInfo>
 <qos:OperationalStatus xlink:href=
"http://def.opengeospatial.org/codelist/qos/status/1.0/operationalStatus.rdf#Operation
al" xlink:title="Operating Schedule - WMS"/>
 <qos:ByDaysOfWeek>
 <qos:On>Monday Tuesday Wednesday Thursday Friday</qos:On>
 <qos:StartTime>09:00:00+01:00</qos:StartTime>
 <qos:EndTime>18:00:00+01:00</qos:EndTime>
 </qos:ByDaysOfWeek>
 </qos:OperatingInfo>

Declaring expected Quality of Service metrics for a WMS service

<qos:QualityOfServiceStatement>
 <qos:Metric xlink:href=
"http://def.opengeospatial.org/codelist/qos/metrics/1.0/metrics.rdf#ContinuousAvailabi
lity" xlink:title="Continuous Availability"/>
 <qos:MoreThanOrEqual uom="%">99</qos:MoreThanOrEqual>
</qos:QualityOfServiceStatement>

Declaring a Live Monitoring Service

<qos:OperationAnomalyFeed xlink:href="http://monitoring.geo-
solutions.it/resource/71?lang=en">
 <ows:Abstract>Monitoring Summary for WMS in Cloudsdi</ows:Abstract>
 <ows:Format>html</ows:Format>
</qos:OperationAnomalyFeed>

NOTE

For Expert Users:

The same operations can be done via the GeoServer REST Interface. A video tutorial
can be found here [https://youtu.be/zNivPjSTRik].

5.6.1. GeoSolutions Methodological Approach on Monitoring QoS

It is very important to make the QoS service very reliable, credible and transparent in terms of

43

http://docs.geoserver.org/latest/en/user/community/qose-module/index.html
https://github.com/opengeospatial/QoSE-DWG/tree/master/QoSMetadata
https://github.com/opengeospatial/QoSE-DWG/tree/master/QoSMetadata
https://youtu.be/zNivPjSTRik

metadata declaration. Thus, GeoSolutions have built a Live Monitoring Service [http://monitoring.geo-

solutions.it/?lang=en] based on GeoHealthCheck [http://docs.geohealthcheck.org/en/latest/] that monitors the
health and the availability of the GeoServer services which will be declared in turn in the QoS
module of GeoServer and therefore in the GetCapabilities file of the service.

Figure 45. Monitoring Services and QoSE Module in Geoserver

The figure above shows a schema of how to explicitly monitor external services in the QoSE module
in GeoServer in order to offer a reliable service to the users.

The upper side of the diagram in Figure 45 represents an external monitoring service which
continuously sends GetCapabilities or GetMap requests to GeoServer on the entire workspace or on
single layers to control the endpoints of the WMS and WFS services of GeoServer.

Figure 46. WMS and WFS Live Monitoring with GeoHealthCheck

The lower side shows that the monitoring service can be declared in the QoSE module of GeoServer
linking it in the Operation Anomaly Feed section of the module to demonstrate the reliability of the
service to the users.

44

http://monitoring.geo-solutions.it/?lang=en
http://docs.geohealthcheck.org/en/latest/

Figure 47. Declaring the Monitoring Service in QoSE Module

Accordingly, once a user requests the WMS or WFS GetCapabilities of the server, the user will have
a way to directly check the monitoring service.

Monitoring Service Link in the GetCapabilities XML File

<qos:OperationAnomalyFeed xlink:href="http://monitoring.geo-
solutions.it/resource/71?lang=en">
 <ows:Abstract>Monitoring Summary for WMS in Cloudsdi</ows:Abstract>
 <ows:Format>html</ows:Format>
</qos:OperationAnomalyFeed>

5.7. OGC Web Service Landing Pages
It is difficult for an end-user to directly ascertain the quality of many of the existing OGC Web
Services due to the fact that the specifications for these services define only machine-oriented
operations. That is, they define the set of operations that a client application can use to discover and
interact with the various offerings of the server, but they do not specify any standard way for an
end-user to discover the offerings of the server directly using only a web browser. A sophisticated
end-user who is well versed in the specification(s) for the service can manually construct a
GetCapabilities request and browse the XML response. However, this is far from user friendly, and
is not a viable approach for all but the most sophisticated of end-users.

The 'base' Uniform Resource Locator (URL) of an OGC Web Service is typically a URL to which one
or more mandatory parameters must be added. Without such parameters, the service is required
by its specification to return an exception report. Use of such parameters is not user-friendly. One
such required parameter is the "SERVICE" parameter indicating the type of service being invoked.
This is typically not part of the base URL in order to allow a single base URL to support multiple
services. Another such required parameter is the "REQUEST" parameter indicating the operation
being invoked. The current OGC Web Service specifications (with the exception of WFS 3.0) simply
do not define any human-readable landing page for allowing an end-user to browse the offerings of
an OGC Web Service via a web browser.

The solution to this is pretty obvious. The OGC Web Service specifications should be augmented to
provide this functionality. To this end, this engineering report makes the following
recommendations.

1. All future OGC Web Service specifications should require the base URL of the service to be
sensitive to the HTTP "Accept" header. If this header indicates that text/html is preferred, then
the server should be required to return an HTML landing page presenting the offerings of the

45

server in a human-readable format, providing hyperlinks as necessary for navigation. This
landing page should provide as much metadata as it can about each offering, including (but not
limited to):

◦ Titles and abstracts, ideally in the language that is the closest match to the language
requested by the HTTP "Accept-Language" header.

◦ Spatial extents where applicable. Ideally these spatial extents should be displayed
graphically in a map.

◦ Source attribution, where applicable and available.

◦ Any other available measure(s) of data quality.

2. If the OGC Web Service specification defines a traditional machine-readable capabilities
document (like the classic OGC Web Services do), then the capabilities-document endpoint
(regardless of whether it is a RESTful or service-oriented endpoint) should be sensitive to the
HTTP "Accept" header and should be required to return the HTML landing page if the header
indicates that text/html is preferred. In general, the HTML landing page should provide roughly
the same information that is available through the capabilities document, as well as extra
measures of data quality where available.

3. If the OGC Web Service specification defines a set of service-oriented operations that indicate
the type of operation via SERVICE and REQUEST parameters (like the classic OGC Web Services
do), it should make the REQUEST parameter optional and require that the absence of the
REQUEST parameter be interpreted as a request for the HTML landing page. Perhaps it could be
sensitive to the HTTP "Accept" header and return either the HTML landing page or the machine-
readable capabilities document as appropriate (in which case the absence of a REQUEST
parameter becomes the equivalent of REQUEST=GetCapabilities).

4. If the OGC Web Service specification defines a GetCapabilities request with an AcceptFormats
parameter (like the classic OGC Web Services that are based on the OGC Web Services Common
Specifications do), then it should recognize an AcceptFormats value of text/html to indicate a
request for the HTML landing page.

Change requests have been submitted to augment the behaviors of the commonly-used existing
OGC Web Services specifications to include this functionality. Specifically, change requests have
been made against the following existing specifications:

• Request 559, for OGC Web Services Common Standard 2.0.0 (OGC 06-121r9). All OGC Web
Services that are based on this specification will therefore automatically inherit this augmented
behavior. These services include, but are not necessarily limited to, the WCS 2.0 Interface
Standard (OGC 09-11-r4, etc.) and the Web Integration Service (OGC 16-043). This change request
should make the SERVICE parameter optional in the situation where a Web Integration Service
is available. It should require that the absence of the SERVICE parameter in this situation be
interpreted as a request for the HTML landing page of the Web Integration Service. This, in
addition to making the REQUEST parameter optional, allows the raw base URL (i.e., without any
parameters) of an OGC Web Service to return an HTML landing page for the suite of services
that it provides.

• Request 560, for OGC Web Services Common Specification 1.1.0 (OGC 06-121r3). All OGC Web
Services that are based on this specification will therefore automatically inherit this augmented
behavior. These services include, but are not necessarily limited to, the Web Map Tile Service

46

(WMTS) Implementation Standard (OGC 07-057r7) and the OpenGIS Web Feature Service (WFS)
2.0 Interface Standard (OGC 09-025r1).

• Request 561, for Web Map Server Implementation Specification 1.3.0 (OGC 06-042).
Unfortunately, this latest WMS specification predates the OGC Web Services Common
specifications, so a separate change request had to be made specifically for it.

No change request needs to be made against the WFS 3.0 specification, since it already defines this
behavior.

A proof-of-concept implementation of these recommendations has been made available at
https://tb14.cubewerx.com/cubewerx/cubeserv for the duration of the OGC Testbed-14 initiative
(tb14guest credentials need to be provided to see the full suite of services available).

5.8. TIE and Scenario for Demonstration

5.8.1. TIE Component Implementation

The component overview graphic at the beginning of this section illustrates how the different
components described above fit together. The following scenario will be used to demonstrate this in
an example demo video.

Table 1. Testing and Integration Experiment (TIE)

Component Description Service Request Tested

D115: HTML Landing
Page

Additional quality
measures to the
capabilities document

WMS server Y: TIE on 07/04/18

D116/D117: GUI of 14
Assessment Criteria

Qualitative Experience
Evaluation: draft
implementation and
testing

WMS instances Y: TIE on 09/18/18

D116/D117: GUI of 14
Assessment Criteria

Qualitative Experience
Evaluation:
implementation of
NRCan
recommendations

WMS instances Y: TIE on 10/23/18

D121: WMTS Portrayal
with QoSE support

GeoServer Extension
for QoS, including
service performance,
operating capabilities
(for QoSE)

WMS server Y: TIE on 09/25/18

D122: Additional Client
Support

Service performance
testing (Quantitative;
JMeter)

WMS server(s) Y: TIE on 10/30/18

5.8.2. Scenario "Blueprint" for the Result Demonstration Video

After setting the story for the demonstration video including the material and short individual

47

https://tb14.cubewerx.com/cubewerx/cubeserv

recordings describing each component as outlined at the start of this chapter, the Technology
Integration Experiment (TIE) showcasing followed the steps below:

Step 1: Set up a couple of WMS instances that will be used to demonstrate the workflow.

Step 2: Introduce (briefly) a couple of WMS instances

Step 3: Use those instances to run through the Assessment GUI for user-based evaluation/rating

Step 4: Pull in the JMeter performance statistics of those WMS instances/services

Step 5: Showcase the GeoServer Extension for those WMS instances

Step 6: Illustrate the HTML Landing Page and its value to the community.

48

Appendix A: Revision History
Table 2. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

June 15, 2016 I. Simonis .1 all initial version

July 22, 2016 I. Simonis .9 all comments
integrate

September 7,
2016

S. Simmons 1.0 various preparation for
publication

March 23, 2017 I. Simonis 2.0 all template
simplified

January 18, 2018 S. Serich 2.1 all additional
guidance to
Editors; clean up
headings in
appendices

October 4, 2018 G. Hobona 2.1 all commemts to
Editors

October 16, 2018 G. Schumann 2.1 all implemtation of
commemts to
Editors

October 30, 2018 G. Schumann 2.1 all Completion of
Future Work
section

November 13,
2018

A. Kettner 2.1 all Completion/Revi
sion of JMeter
section

November 20,
2018

G. Schumann 2.1 all ER revision &
implemented
comments from
NRCan and the
QoSE DWG

November 22,
2018

Zelong 2.1 all Completed
description of
QoSE GUI

November 28,
2018

G. Schumann 2.1 all Second ER
revision

49

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Rationale
	1.2. Context
	1.3. Requirements & Research Motivation
	1.4. What does this ER mean for the QoSE DWG and OGC in general
	1.4.1. QoE specific problem statements from the DWG Charter

	1.5. Prior-After Comparison
	1.6. Recommendations for Future Work
	1.6.1. Recommended Future Tasks and Deliverables

	1.7. Document contributor contact points
	1.8. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. Components and Component Scenario
	5.1. Component Overview Chart
	5.2. Quality of Service & Experience (QoSE)
	5.3. Client with QoSE Support
	5.3.1. WMS Metadata Elements
	5.3.2. Operations

	5.4. Test Suite for WMS Service Quality Assessment
	5.4.1. Methods
	5.4.2. Results

	5.5. WMS Stress Testing with JMeter
	5.5.1. On stress testing and benchmarking
	5.5.2. JMeter introduction
	5.5.3. Simulating concurrent users
	5.5.4. Separation from the tested infrastructure
	5.5.5. Impact of Network and other tools
	5.5.6. Synthetic requests versus real-world requests
	5.5.7. Randomization of requests parameters
	5.5.8. Putting together the results
	5.5.9. JMeter case study example
	5.5.10. Integration with other QoS tools

	5.6. GeoServer Extension for QoS
	5.6.1. GeoSolutions Methodological Approach on Monitoring QoS

	5.7. OGC Web Service Landing Pages
	5.8. TIE and Scenario for Demonstration
	5.8.1. TIE Component Implementation
	5.8.2. Scenario "Blueprint" for the Result Demonstration Video

	Appendix A: Revision History

