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Chapter 1. Summary
This OGC Testbed-14 Engineering Report (ER) describes the results of the Augmented Reality (AR)
work performed in the Testbed-14 CityGML and Augmented Reality work package which was
part of the Next Generation Services thread.

By integrating information available from urban models within a view of the real world through a
mobile device, this testbed activity explored the possibilities offered by AR in a geospatial context.
The ER additionally discusses the approach used to bring in these urban models from various data
sources. The experiments also covered to some extent Virtual Reality (VR) where any city can be
explored freely from a computer display or potentially within a VR headset.

A continuation of these experiments would have looked at a combination of Augmented and Virtual
Reality (Mixed Reality). The portrayal of AR and three-dimensional (3D) content through extending
a common conceptual model to style classic geospatial features (as explored in the Testbed-14
Portrayal [https://portal.opengeospatial.org/files/77327#Portrayal] work) is also touched upon. The efficient
transmission of 3D content is also a subject of this document through the use of a simple 3D
transmission format developed during the initiative.

This ER provides many insights that showcase what is now made possible by the combination of
AR, VR and integrated urban models.

The testbed work shines light on the benefits of applying a common portrayal approach to AR,
bridging the gap between AR applications and traditional Geographic Information Systems and
services.

The ER introduces a new, simple approach and conceptual model for transmitting 3D geospatial
content which could be the basis to define simple profiles for the I3S [http://www.opengeospatial.org/

standards/i3s] and 3D Tiles [http://www.opengeospatial.org/pressroom/pressreleases/2829] community
standards. It could also inform enhancements to the 3D Portrayal Service
[http://www.opengeospatial.org/standards/3dp] (3DPS) and/or next generation services (e.g., WFS 3.0
[https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html]) for delivering 3D contents in a format
agnostic manner.

Finally, the ER covers methods to bring in different types of geospatial content from various sources
for integration into AR applications.

During Testbed-14, the participants demonstrated AR experiences with geospatial datasets
providing integrated views of urban spaces. Two clients and two services were shown to be
interoperable, streaming AR content through a simple 3D transmission format, leveraging either
GeoJSON or GNOSIS Map Tiles, as well as E3D 3D model specifications.

The feasibility of extending a classic portrayal conceptual model for AR was also shown. In order to
serve them to the clients in the supported transmission formats, geospatial data sets of various
types and in various formats were successfully imported for consumption by the services.
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1.1. Requirements & Research Motivation

Figure 1. Diagram of CityGML and AR initiative deliverables

1.1.1. Requirements

As stated in the Call for Participation [https://portal.opengeospatial.org/files/77327], the requirements for
the Testbed-14 CityGML and Augmented Reality work package were:

• To evaluate the possible methods for integrating AR content into CityGML content. The effort
shall include an analysis of whether Augmented Reality content should be integrated into the
CityGML data or whether the data content (features) should be linked for visualization
purposes.

• To demonstrate client-side support for visualization of streamed CityGML with AR content.
Bidders shall include suggestions for suitable AR data in their proposals and shall investigate
the role and applicability of OGC Augmented Reality Markup Language 2.0 (ARML 2.0)
[http://docs.opengeospatial.org/is/12-132r4/12-132r4.html], the Community Standard 3D Tiles
[https://github.com/AnalyticalGraphicsInc/3d-tiles/blob/master/README.md], and OGC Community
Standard I3S [http://docs.opengeospatial.org/cs/17-014r5/17-014r5.html].

The goal was to provide highly detailed visualization of fully integrated urban spaces, as modeled
in CityGML. This would notably be very valuable for urban warfighters or first responders, in the
planning and execution of modern missions.

This integrated view brings together:

• Geography

• Topography
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• Infrastructure & utilities

• Indoor spaces

• Detailed building models

The stakeholders clarified that the AR content will be a presentation of these elements, either as 3D
geometry, classic 2D geospatial features, or annotations sourced from the associated attribute
information.

Since the primary objective of this initiative was to highlight the possibilities of AR, the
requirement to stream contents specifically as 3D Tiles and/or I3S was relaxed to become optional.
This allowed the participants to more quickly focus efforts on the AR aspects.

Furthermore, because abundant amounts of relevant CityGML data were not readily available, and
because the AR clients did not deal directly with CityGML-encoded content, the stakeholders
decided that the services could additionally import other source data types to be served in the
transmission format directly through the best suited mechanism.

1.1.2. Objectives

Two primary objectives corresponding to different scenarios were identified: the first focused on
AR whereas the second is better described as VR. The experiments done with the clients and
services for these different scenarios are covered in different sections of this report. Additional
objectives pertained to the particularities of portraying geospatial features to augment reality, and
to efficient transmission of content.

The Augmented Reality Scenario

In the AR scenario, a real view of the surroundings from a mobile device camera is augmented with
geospatial data overlays. The real world is the foundation of the user experience, and the
integration of camera and sensors (gyroscope, magnetoscope, accelerometer) synchronize the
'augmented' elements with the real world. The 3D geometry data, such as originating from a
CityGML package, makes up the AR content. This scenario is tied to device location, and combined
with the difficulty of finding relevant data for an area where the participants were located, this
posed logistical challenges for the initiative.

In this scenario, a sub-set of the urban model or extra 3D elements were overlaid on top; some
potentially with translucency so as not to completely obscure the camera view of the real world.

The stakeholders decided that the focus would be on an outdoor scenario for a number of reasons:

• Outside scenarios benefit from easier geolocalization and synching with the real world on a
mobile device from GPS sensors and the cellular signal.

• Outside scenarios are likely to involve traveling a large distance and would benefit greatly from
streaming 3D contents as tiles.

• Emergency response has been cited as a potential application of such an outside scenario.

An indoor scenario, however, would have presented a different set of challenges:
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• It would have to rely on recognition of the environment (e.g. pattern recognition) from the
camera due to the smaller scale of features and limited GPS/cellular connectivity. The challenge
is an order of magnitude more difficult, which was not well suited for the scope of the initiative.

• CityGML is often used to represent large integrated environment, and would not have been the
best source of data for indoors information. However, some elements such as ADEs providing
BIM might still be relevant.

• InDoorGML is another standard which may provide more relevant data for such a scenario.

The Virtual Reality Scenario

Virtual Reality is the second scenario, where an integrated urban view can be freely explored
virtually. In this scenario, most of the 3D geometry makes up the base scene (i.e. the 'virtual'
reality). The 3D models cover an entire view, with no need for integration of the real-world camera
view. This scenario is not dependent on the physical location of the user (e.g., data from Taiwan
could be visualized in Washington, DC).

In this scenario, some of the 3D elements could have different styles applied to highlight these
features, and the visibility of the different elements could be toggled. Given more time, this could
have been demonstrated through a VR headset such as the Oculus Rift [https://www.oculus.com/rift/].

Mixed Reality

Another interesting experiment would be to combine AR and VR (Mixed Reality), where a VR
headset is used together with stereoscopic cameras such as the Ovrvision Pro [http://ovrvision.com/

entop/] or ZED Mini [https://www.stereolabs.com/zed-mini/] by Stereolabs.

A new generation of AR glasses with stereoscopic vision and binocular AR capabilities, such as the
ODG-R9 [https://www.osterhoutgroup.com/r-9-smartglasses] (although the availability of these AR glasses is
now doubtful given recent development [1]) or the MagicLeap [https://www.magicleap.com/] also offer a
glimpse of new Mixed Reality possibilities in the near future. The mixed reality devices market
however is still very volatile, as illustrated by the often overwhelming challenges faced by many
companies in the space despite large amounts of funding, as well as the limited availability of
stereoscopic AR glasses, particularly outside of the US market.

The OGC is currently executing the Mixed Reality to the Edge Concept Development Study
[http://www.opengeospatial.org/pressroom/pressreleases/2926]. Findings and recommendations from this
study could feed directly into a mixed reality scenario.

Portrayal of AR content

All of these scenarios were to feature annotations in the forms of labels, markers and other visual
elements (e.g. simple 2D and/or 3D primitives) tied to certain geographic locations / features. The
annotations source was from the non-geometry attributes of the source data (e.g. CityGML), and
transmitted to the client through a mechanism defined in the transmission format.

The stakeholders had to decide the best way to describe which additional elements to display (e.g.,
extra 3D geometry such as utility ADE vs. textual annotations), when to display them, where to
overlay them, and how to style them.
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How to 'link' this AR content to the base visual elements (either the camera feed, or the rendering of
a virtual 3D view of the integrated urban model represented by the CityGML) also had to be
determined.

Efficient transmission of AR content

An efficient transmission of AR content between clients and services had to be implemented. This is
covered in detail in Chapter 8.

1.2. Prior-After Comparison

1.2.1. A review of ARML capabilities for 3D visualization and AR

The OGC® Augmented Reality Markup Language 2.0 [http://www.opengeospatial.org/standards/arml]
(ARML 2.0) standard allows users to describe visual virtual objects in an augmented reality (AR)
scene with their appearances and anchors (a broader concept of a location) related to the real
world as depicted in visual camera input. ARML 2.0 also defined ECMAScript [https://www.ecma-

international.org/publications/standards/Ecma-262.htm] bindings to dynamically modify the AR scene
based on user behavior and input. Part of the motivation for ARML 2.0 [https://www.wikitude.com/arml-

20-standard-approved/] was to enable several AR Browser vendors, Layar [https://www.layar.com/], Metaio
[https://en.wikipedia.org/wiki/Metaio], and Wikitude [https://www.wikitude.com/] to create a common format
to enable better interoperability among their browsers at a time when the mainstream mobile
browser market was still immature. ARML 2.0 also used the Web IDL Specification [http://www.w3.org/

TR/WebIDL/].

There are significant differences in the approach to describe augmented reality contents used in
this initiative and that of ARML 2.0, both in assumed use case scenarios and in technical details. For
example, the latter contemplated browser-based clients using XML-based COLLADA
[https://www.khronos.org/collada/] files for 3D data exchange. By contrast, the approach used in this
testbed initiative was intended for native apps running on low-capacity clients operating in Denied,
Degraded, Intermittent, or Limited Bandwidth (DDIL) environments as might be found in urban
warfighting or emergency-response.

Another major difference is that while ARML combined both geospatial data and styling rules in a
single payload, the approach used in this initiative opted for the preferred approach of keeping
data and portrayal options separate. By using a styling conceptual model also applicable to typical
Geographic Information System (GIS) data sources, this approach helped bridge the gap between
Augmented Reality and GIS. The ability to readily integrate the vast amount of readily available
geospatial data in AR applications can help minimize application development costs while also
maximizing investments in geospatial data collection. Further, much of the data is already encoded
or transferred according to OGC standards.

Conversely, the concepts of portraying and labeling features in a 3D view are not specific to
Augmented Reality. They also apply to a regular 3D GIS application where views are purely virtual.
For this reason, it makes more sense that such capabilities (which were the ones this initiative was
mostly concerned with in its usage scenarios) be integrated in a way which applies to both classic
and 3D GIS applications, than with a language targeting Augmented Reality specifically.

To compare the capabilities offered by ARML with the work done in this testbed, the latter focused
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strictly on Geospatial Augmented Reality. Computer Vision-based augmented reality was not looked
into, being better suited for a smaller scale or indoor scenarios. For Geospatial AR, the core
concepts in ARML include Feature, Anchor and Visual Assets.

The Features from ARML, defined as the real world objects themselves, are closely related to the
geospatial data being defined in this tested. At various stages this data was defined in CDB,
Shapefiles, CityGML, OpenStreetMap data, GNOSIS Map Tiles, GeoJSON and E3D models formats. As
entire cities were covered, the geospatial data were very large. As such, a text-based format (e.g.
XML) is not well suited to represent these data sets in an AR environment. Furthermore, it was
desirable to only have a small subset of a much larger dataset relevant to a given view. For this
reason, partial requests and tiles were used.

ARML also defines the concept of an Anchor, which in the geospatial AR can simply be a single
geospatial point. For the testbed, the portrayal language could be thought of as what is anchoring
visual assets to specific point or feature sets. But the actual geospatial coordinates would be in the
data itself. In the case of lines or areas, labeling rules can control exactly where visual assets should
appear.

Then ARML has the concept of a Virtual Asset, either two-dimensional (2D) or 3D, which is to be
drawn into the scene thus "augmenting" the view. In the approach used for this testbed, this is also
the case and these virtual assets are defined or referenced using the portrayal language. This
approach allows referencing attributes associated with the geospatial data to display textual
information, or to control various visual properties such as colors. It could also reference
symbology, for example in the form of Portable Network Graphics (PNG) or Scalable Vector
Graphics (SVG), or even 3D models to be displayed at the anchored location.

Most of the efforts of the initiative however focused on superimposing virtual buildings 3D
geometry at their proper location in the view. In this case, the 3D building’s geometry could be
thought of as being a Feature, Anchor and Virtual Asset all at once.

1.2.2. ARML capabilities not yet covered to be considered for future work

In spite of the differences between ARML 2.0 and the approach to describe Augmented Reality
contents in this initiative, ARML can still be a source of inspiration for important capabilities to
consider re-integrating in styling extensions specific to augmented reality. A most obvious example
of such capabilities is the concept of a computer vision-based anchor (Trackable). This could be
considered for future work, tied more with computer vision and potentially better suited for indoor
localization challenges.

1.3. Intended audience
This ER provides findings and recommendations which may impact a number of OGC Working
Groups that deal with standards for working with 3D geospatial data.

• The 3D Information Management (3DIM) Domain Working Group(DWG)
[http://www.opengeospatial.org/projects/groups/3dimdwg] has been selected to review this ER, as its
defined scope of work best encompasses the scope of the experiments in this testbed activity.

• A future portrayal working group, which could be established separately from the Styled Layer
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Descriptor/Symbology Encoding (SLD/SE) Standards Working Group (SWG)
[https://www.opengeospatial.org/projects/groups/sldse1.2swg], would find recommendations relating to
portrayal relevant to their ongoing work.

• The CityGML SWG [http://www.opengeospatial.org/projects/groups/citygmlswg] will find the integration
of CityGML contents into AR applications informative.

• The CDB SWG [http://www.opengeospatial.org/projects/groups/cdbswg] will be interested in the
integration, efficient storage, delivery and use in AR applications of content originally sourced
from a CDB datastore.

• The Interoperable Simulation and Gaming DWG [http://www.opengeospatial.org/projects/groups/

isgdwg] might also have an interest in the applicability of this report’s findings to modeling,
simulation, and gaming.

• Other groups might also find these recommendations relevant for various aspects of OGC
standards work.

1.4. Recommendations for Future Work
• Conducting more Augmented and Mixed Reality initiatives would be highly beneficial. The work

done during this testbed barely scratched the surface of many different topics.

◦ A new initiative simply continuing the work done in relation to the scenario selected for this
Testbed would be very valuable. Such an initiative could:

▪ Perform more field tests;

▪ Ensure better registration between virtual objects and the real world;

▪ Aim to achieve better client performance;

▪ Support additional transfer formats and mechanisms (e.g. glTF, 3D Tiles, I3S);

▪ Test the efficiency of tiled content delivery while moving with the AR device over large
distances;

▪ Develop better batching of 3D data;

▪ Perform experiments with additional geospatial data sets;

▪ Integrate more annotations and interaction capabilities into applications;

▪ Experiment with more powerful devices such as those supporting Android’s ARCore and
6 Degrees of Freedom sensors or Apple’s ARKit;

▪ Investigate the use of hardware enabling Mixed Reality experiments.

◦ Ideally, requirements for any new AR/MR Innovation Program initiative should focus on
clear functional objectives of limited scope. The current initiative requirements specified
many 3D data standards that should be used for the experiments, but did not present a
detailed picture of what needed to be achieved. The initiative ended up dealing
simultaneously with multiple 3D data format conversions, transmitting 3D data between
services and clients, and rendering 3D objects and annotations as AR content.

◦ When describing AR applications and related initiatives, a distinction should be made
between different types of AR content such as text and symbol annotations, overlaid 3D
features (e.g. to compensate for poor visibility), anchored 3D models, etc.
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◦ In general, a requirement for using a specific data standard (e.g. CityGML) should ensure an
appropriate data set for such standard is readily available before the initiative begins. This
would avoid diverting efforts to generate an intermediate dataset for the sole purpose of
satisfying a potentially non-essential requirement, when a more direct path may be possible.

◦ For AR, data sets should be available covering the location where potential participants are
located to properly test AR functionality.

◦ One new initiative should look into the specifics of AR based on Computer Vision, such as
ways to anchor visual assets based on pattern recognition as was the case in ARML, or
recognizing geospatial features for increasing location accuracy to better support in-door
scenarios.

◦ A new initiative could leverage a highly detailed dataset of a small area, possibly from
IndoorGML, point clouds, or other source.

◦ Mixed Reality initiatives should consider the use of specialized hardware such VR headsets
equipped with stereoscopic cameras and/or new generation AR glasses such as the
MagicLeap (or the ODG-R9 if it ever becomes available).

• The WFS extensions for querying 3D models and textures, as well as the concept of harmonizing
services (so that these can be retrieved in addition to vector data, imagery, coverages from a
single service and end-point) should be considered as part of future initiatives and the ongoing
development of the next iteration of OGC services standards. This approach enabled the
efficient serving of full CDB datasets in this initiative. An overview of client/server data
exchange is presented in Chapter 8, and a full description of the services in Chapter 9.

• The E3D format (described in Appendix A), with its ability to represent 3D models in a very
compact manner and requiring very little processing before uploading to a GPU for hardware
accelerated rendering should be considered for inclusion as part of future Innovation Program
initiatives.

• Contributing support for loading and writing the E3D model format to the Open Asset Importer
Library [http://assimp.org/] would be beneficial, as it would result in that format being a lot more
interoperable due to the widespread use of that library in modeling and 3D visualization tools.

• GNOSIS Map Tiles (described in Appendix B), with their potential for describing compact tiled
vector data, imagery, coverages and now also referenced and embedded 3D models as well as
point clouds should be considered for inclusion as part of future Innovation Program initiatives
as well as a potential OGC standard.

• AR applications leveraging geospatial data should adopt a classic GIS styling conceptual model
which can scale to 3D views (such as described in Appendix C), with extensions specific to AR.
This approach allows linking source attributes with the presentation of different types of AR
content (e.g. annotations, styled 3D geometry). The conceptual model used in this initiative
leverages work done in the Testbed-14 Portrayal Task.

1.5. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts
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Name Organization

Jérôme Jacovella-St-Louis (editor) Ecere Corporation

振宇 Hao, Chen-Yu (How) GIS Research Center, Feng Chia
University

柏淳 Wen, Bo-Chun (Cherry) GIS Research Center, Feng Chia
University

Marcus Alzona Keys

Carl Reed Carl Reed & Associates

Scott Serich Open Geospatial Consortium

1.6. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.
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Chapter 2. References
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• OGC: OGC 18-053r2, OGC® 3D Tiles Specification 1.0 [http://docs.opengeospatial.org/cs/18-053r2/18-
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• OGC: OGC 12-132r4, OGC® Augmented Reality Markup Language 2.0 (ARML 2.0)
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• OGC: OGC 10-129r1, OGC® Geography Markup Language (GML) - Extended schemas and
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• OGC:OGC 17-014r5, OGC Indexed 3d Scene Layer (I3S) and Scene Layer Package Format
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• OGC: OGC 14-005r5, OGC® IndoorGML [http://docs.opengeospatial.org/is/14-005r5/14-005r5.html]

• OGC: OGC 05-078r4, OpenGIS Styled Layer Descriptor Profile of the Web Map Service
Implementation Specification [http://portal.opengeospatial.org/files/?artifact_id=22364]

• OGC: OGC 05-077r4, OpenGIS Symbology Encoding Implementation Specification
[http://portal.opengeospatial.org/files/?artifact_id=16700]

• OGC: OGC 09-025r2, OGC® Web Feature Service 2.0 [http://docs.opengeospatial.org/is/09-025r2/09-

025r2.html]

• OGC: OGC 07-057r7, OpenGIS Web Map Tile Service Implementation Standard
[http://portal.opengeospatial.org/files/?artifact_id=35326]

• OGC: OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2]
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Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

Augmented Reality (AR)

The integration of visual objects (e.g. labels, virtual 3D objects) with a viewer’s actual
surroundings.

Virtual Reality (VR)

Virtual environment experienced by a user in a system (e.g. head mounted display) integrating a
stereoscopic display and sensors allowing to re-orient the view with the head’s rotation (3DoF),
and optionally position as well (6DoF).

Mixed Reality (MR)

The combination of Augmented and Virtual Reality in a HMD or smart glasses combining a
stereoscopic display, motion sensors and (ideally stereoscopic) cameras.

3.1. Abbreviated terms

3DPS 3D Portrayal Service

ADE Application Domain Extension

API Application Programming Interface

AR Augmented Reality

ARML Augmented Reality Markup Language

ASSIMP Open Asset Import Library

CDB OGC CDB (a datastore standard for 3D
environments, formerly Common Database
standard)

CMSS (GNOSIS) Cartographic Map Style Sheets

COLLADA Collaborative Design Activity (3D interchange
data format)

CPU Central Processing Unit

CV Computer Vision

DAE Digital Asset Exchange (COLLADA)

DoF Degrees of Freedom

DWG Domain Working Group

E3D Ecere 3D Model Format

ER Engineering Report

ETC2 Ericsson Texture Compression, version 2

FoV Field of View
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glTF GL Transmission Format

GIS Geographic Information System

GIS-FCU GIS Research Center, Feng Chia University

GML Geography Markup Language

GMT GNOSIS Map Tiles

GPS Global Positioning System

GPU Graphical Processing Unit

HMD Head mounted display

HTTP Hypertext Transfer Protocol

IBO Index Buffer Object

ID Identifier

IFC Industry Foundation Classes

MR Mixed Reality

NDK Native Development Kit (Android)

OGC Open Geospatial Consortium

OSM OpenStreetMap

PBR Physically based rendering

SDK Software Development Kit

SE Symbology Encoding

SLD Styled Layer Descriptor

SWG Standard Working Group

UMS Unified Map Service

VBO Vertex Buffer Object

VR Virtual Reality

WFS Web Feature Service

WMTS Web Map Tile Service

XML eXtensible Markup Language

15



Chapter 4. Overview
Chapter 5 explores the possibilities of Augmented Reality in a geospatial context, as they apply to
the various features of interest for the experiments. It delves into the portrayal aspect of geospatial
data to augment reality, and the similarities and particularities of styling geospatial features for AR,
for 3D views and in general, proposing a common conceptual model. It describes how the
presentations can link annotations to attributes of the source data using classic GIS approaches. It
also skims over the challenges of in-door Augmented Reality.

Chapter 6 provides a description of the various sensors found in mobile devices making Augmented
Reality possible, and explains how they can be used to situate the position and orientation of the
viewer in the real world.

Chapter 7 describes the two mobile Augmented Reality clients that were developed in this testbed.
The first is an Android client, built by Ecere, using GNOSIS and OpenGL and accessing the Android
sensors and Camera 2 API directly. The second was built by GIS-FCU, using ARKit, and runs on iOS.

Chapter 8 details the challenges of transmitting large geospatial contents, including 3D contents,
efficiently from extended Web Feature Services. An overview of the extended WFS requests used
for exchanging data is presented. The rationale behind opting for the E3D model format to deliver
3D meshes to the AR clients in this initiative is explained. The topic of texture compression is briefly
covered. Because how 3D data is organized and transmitted by the server to the client, 3D
performance considerations are also discussed. Tiling and caching strategies as well as support for
clients working completely offline are explored. An attempt is made to describe a potential
relationship between the work of this initiative and the 3D Portrayal Service.

Chapter 9 describes the two geospatial services that were built to support these Augmented Reality
experiments, by Ecere and GIS-FCU.

Chapter 10 describes in details the datasets used for these experiments, their formats, as well as
how they were processed and consumed by the services before being served to the mobile AR
clients.

Appendix A details the specifications of the E3D model format used by the experiments.

Appendix B describes the latest specifications of the GNOSIS Map Tiles with support for referencing
or embedding 3D models.

Appendix C presents an overview of a conceptual model and GNOSIS Cascading Map Style Sheets
language for styling geospatial features, including describing AR annotations.
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Chapter 5. Augmented Reality
In order to provide a useful Augmented Reality experience, choosing the right type of data to
present, as well as how to present that content for the best AR experience is crucial. This initiative
focused on presenting geospatial data, and factors such as the limited availability of data and
specific pre-established requirements for the initiative (but no pre-identified data sets) posed some
challenges in identifying relevant data to present. Many aspects of AR work best with highly
detailed data, which is typically more difficult to obtain.

5.1. Augmenting reality with geospatial data
As the use of CityGML was an important objective of this initiative, attempts were made to identify
useable data sets, as well as CityGML Application Domain Extensions (ADEs) which may provide
information more particularly useful for Augmented Reality experiments. Existing CityGML ADEs
identified included:

• The GeoBIM ADE [http://www.citygmlwiki.org/index.php?title=CityGML_GeoBIM_ADE], based on Industry
Foundation Classes (IFC). [2]
(Also interesting is this open-source tool [https://github.com/tudelft3d/ifc2citygml] for automatically
converting IFC data to CityGML)

• The Energy ADE [http://www.citygmlwiki.org/index.php/CityGML_Energy_ADE] [3]

• The Utility Network ADE [http://www.citygmlwiki.org/index.php/CityGML_UtilityNetworkADE]

Also relevant are the open source BIM collective [4], Indoor Spatial Data Model Using CityGML ADE
[5], application of large 3D CityGML models on smartphones [6] and Augmented Reality Games with
CityGML [7].

However, as it was already difficult to find a basic usable CityGML data set in an area of interest, let
alone one defining any of these ADEs, no such data sets were identified.

Being able to see "hidden" features is a very useful aspect of AR, displaying underground utilities
such as pipelines, is a good use case scenario. A data set of a pipeline in Kaohsiung, Taiwan
available in the COLLADA format was used for some experiments in the Testbed. The location of the
content however, proved problematic as no testbed participant was normally located in Kaohsiung.

The Testbed sponsors originally specified requirements for supporting 3D Tiles and/or I3S. They
also hoped for a continuity of the work performed in Testbed-13 on 3D client performance. As a
result, the focus shifted on the presentation of 3D buildings in an AR application. One problem with
the presentation of 3D buildings in AR is that the actual buildings are normally directly visible,
without the need for augmentations. As such, a 3D model would simply obstruct a real, better view
of the actual building. However, having the 3D model could potentially be useful in an emergency
response scenario where thick fog or smoke could severely restrict visibility. Alternatively,
presenting the buildings with a reduced opacity setting may be useful to verify the accuracy of a
data set with the real world, and/or for mapping one’s surroundings. The vast majority of the
experiments performed in this initiative dealt with this 3D buildings scenario.

Unfortunately, the data sets used had little attribute information available. However, the approach
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implemented for transforming and transmitting buildings data kept into consideration the
capability for preserving attributes when better attributed data is available.

In order to experiment with the capacity to display actual annotations apart from 3D models,
separate and combined experiments were done using OpenStreetMap data for presenting street
maps, including buildings and streets names.

Although desktop experiments were done with terrain elevation and aerial imagery, the very
limited nature of mobile hardware, as well as the desire to not hide the majority of the camera feed
made it difficult to find a proper use case for these data in a mobile Augmented Reality scenario. In
one case however, information from the elevation model data was incorporated within the
buildings position information.

See Chapter 10 for a detailed description of the data sets used for all experiments, as well as how
they were processed and integrated for use by the services and Augmented Reality clients.

In this initiative, generic geospatial datasets, with no special consideration for Augmented Reality,
were used so that AR applications developers could readily make use of any geospatial datasets
such as those defined or transmitted using OGC standards. Similarly, current GIS applications
developers can leverage their existing tools, data and expertise to start deploying Augmented
Reality solutions.

5.2. Similarities and particularities of styling for 3D
views
Many of the same concepts for styling geospatial features apply whether dealing with a
cartographic or 3D view (whether doing Augmented Reality or not). As an example, any flat feature
can be simply draped on the ground, and the same stroke or fill symbolizers can be applied to the
feature(s). Labels and markers (annotations) typically still face the user as billboards, even if their
3D position serves as a basis for projecting to a screen position.

Some additional capabilities are possible however, such as defining styles specific to solid shapes /
volumes, or using 3D models as markers. There is also the concept of depth of objects, which is
sometimes useful to have objects sorted back to front with actual depth values.

With this in mind, rather than defining something entirely distinct, it makes sense to extend the
classic GIS styling model with 3D capabilities.

5.3. A common flexible geographic features styling
conceptual model
A great advantage of unifying styling representations is to be able to easily integrate any styled GIS
content within an AR application.

This is done through the same mechanism as specifying cartographic styling for vector features in a
typical cartographic 2D view, with a symbolizer concept associated with a feature described in a
generic manner which accommodates 3D views just as well as 2D views.
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As part of the ongoing next iteration of defining a standard conceptual model for styling
capabilities, these possibilities were also considered within the Testbed-14 portrayal thread
activities.

This conceptual model for styling features, as well as an encoding for it, is detailed in Appendix C.

5.4. Linking to attributes from source data in
annotations
By configuring how the Augmented Reality content is displayed on either the camera feed, or the
rendering of a virtual 3D view of the integrated urban model represented by the CityGML, entirely
on the client, a great level of flexibility is gained. This linking can be established by specifying
styling rules, and referencing available attributes associated with the geospatial data. In the
approach used in this Testbed, the description of annotations elements was not hardcoded in either
the source CityGML or the transmission format.

5.5. Extended capabilities applying specifically to AR
Capabilities very specific to Augmented Reality could be extensions to a conceptual model for
styling geospatial data. This would provide a mechanism by which to re-integrate ARML
capabilities within this conceptual model.

5.6. Indoor localization challenges: pattern matching,
computer vision
At a very close range, the GPS precision is not enough to accurately register the camera with the
surroundings. Indoor, the GPS signal is blocked, and devices cannot communicate with satellites.
Virtual sensors such as the Android fusion sensor providing 6 degrees of freedom integrating the
gyroscope, accelerometer, magnetometer in addition to input from the camera may solve some of
these challenges. However, potentially recognizing features from a pre-existing data set and/or
leveraging more advanced computer vision techniques on the camera feed could help solve some of
these challenges.

Access to detailed in-door data sets is key for looking at these challenges in the context of
Augmented Reality. Perhaps insights from the Indoor mapping and Navigation pilot
[https://www.opengeospatial.org/projects/initiatives/indoor-pilot] would prove useful. Additionally, hardware
with stereoscopic cameras might offer better ways to more accurately register the view. It is also
possible to apply pattern recognition, and place markers in the real world at specific locations
where augmentations should appear.

Finally, augmentation of reality at a smaller scale is generally more interesting and useful, making
it possible to display more relevant content which is part of the user’s immediate surroundings. The
heavy reliance on the complex topic of computer vision however implies more involved processes,
and for this reason this was reserved for a future initiative.
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Chapter 6. Situating reality in a geospatial
context
Augmented Reality applications leverage many embedded mobile device capabilities to merge the
user’s real surroundings together with virtual elements (augmentations). These include the camera,
the Global Positioning System (GPS) chip, as well as sensors such as the gyroscope, accelerometer,
magnetometer and even the barometer (as an altimeter).

In the context of a geospatial Augmented Reality application, the user’s location is also related to an
absolute global frame of reference, typically through the location information provided by GPS
coordinates.

This chapter provides an overview of these capabilities and how they each play their role in
making AR possible on a mobile device. This chapter is written from the perspective of the Ecere
Android client making direct use of the camera and sensors, but the same fundamental concepts
are utilized by toolkits such as ARKit on iOS.

6.1. The camera
The (rear-facing) camera of the mobile device provides a live feed of the user’s surroundings. It
supplies an application with the backdrop in which augmentations can be integrated so that the
user feels as though these are part of their actual surroundings. In computer vision-based
Augmented Reality, the camera feed is not merely a backdrop but is analyzed in real time to
identify anchoring patterns or to precisely locate features. Through the use of virtual fusion sensors
such as Android’s six degrees of freedom sensor (TYPE_POSE_6DOF [https://developer.android.com/

reference/android/hardware/Sensor.html#TYPE_POSE_6DOF]), the camera can also play an integral part in
maintaining accurate information about the position and orientation of the device.

The Ecere client directly accessed the Android camera using the Android Camera 2 API
[https://developer.android.com/reference/android/hardware/camera2/CameraDevice]. The Ecere client is built
using the native eC programming language [http://ec-lang.org] rather than Android’s Java
development language. Further the NDK API for the Camera 2 was only added in Android API Level
24 (corresponding to Android 7.0 — Nougat). As there was a desire to support devices with an
earlier version of Android, the Java Native Interface (JNI) had to be used. This decision required
writing extra code to make use of that Camera API, thus complicating the task of implementing
camera support. By using the Camera 2 API through JNI, it was possible to support Android devices
starting from API Level 21 (corresponding to Android 5.0 — Lollipop). This code will likely be
published under an open-source license as part of the Ecere SDK, and may be re-usable in other
projects (including in projects written in other native languages such as C or C++, with minor
modifications).

That camera code uses a capture session set up with repeating requests to continuously capture
images. Using a lower resolution than the camera is capable of capturing can provide smoother
performance. The performance of the current setup is still being investigated as it is believed that
performance can be further improved, potentially by taking a more direct path between the
captures and displaying the image on the device.
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6.2. The GPS (and other means of determining
locations)
Obtaining the GPS coordinates is the most accurate means for retrieving the device’s location.
However, using the on-board GPS chip only works outdoors, and requires significant power. The
network location mechanism can use the cell tower and Wi-Fi triangulation, but these computed
locations are fairly inaccurate. [1: By using cell tower triangulation (3 towers), it is possible to
determine a phone location to within an area of about ¾ square mile. https://transition.fcc.gov/pshs/
911/Apps%20Wrkshp%202015/911_Help_SMS_WhitePaper0515.pdf]

Ideally for a geospatial AR application, the GPS unit should be used to provide coordinates. This
could prove a real challenge for indoor Augmented Reality applications (possibly the location could
first be obtained as close as possible from outside the building). Using the GPS provides the absolute
frame of reference for the device’s position in relation to the Earth.

Because the Android NDK does not provide an API for obtaining the GPS coordinates and location
updates, the JNI also had to be used to set up location updates and access the GPS chip in the Ecere
Android client, through the LocationManager [https://developer.android.com/reference/android/location/

LocationManager] class.

In addition to latitude and longitude, the on-board GPS chip can provide altitude information. The
altitude returned by Location.getAltitude() will be the altitude above the WGS84 reference ellipsoid,
not the mean sea level. The latter can be obtained by taking into account the difference between the
EGM96 geoid and the WGS84 reference ellipsoid, which varies between a difference of -100 and 80
meters).

This altitude information from the GPS has not yet been used in the Ecere client.

6.3. Motion sensors
A guide to the Android motion sensors can be found here [https://developer.android.com/guide/topics/

sensors/sensors_motion].

6.3.1. The magnetometer

A magnetometer senses the Earth’s magnetic field to establish the direction of magnetic north,
much like a classic compass. The magnetometer is the sensor most likely to suffer from distortion
errors, due to a failure to initially be calibrated properly, or to be de-calibrated by the presence of
magnetic materials nearby whose magnetic field could be much more significant than the Earth’s.
It is possible to re-calibrate the magnetometer by waving the device following a figure-8 pattern
over one’s head.

Remember that even when properly calibrated, the magnetometer indicates the magnetic North,
and not the Geographic north. The local angular difference between the two, the magnetic
declination, varies from one place to another on the globe, as well as over time as the magnetic pole
moves (due to magnetic changes in the Earth’s core). This may have partially contributed to the
difficulty of registering augmentations with the real world during the Testbed experimentation. For
example, the magnetic declination is only approximately 4 degrees in Taiwan, but around 13.5
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degrees in Eastern North America. Natural Resources Canada provides a convenient online
calculator [http://www.geomag.nrcan.gc.ca/calc/mdcal-en.php] for the magnetic declination based on a
given date, latitude and longitude.

The magnetometer, together with the gyroscope and accelerometer, allows establishing the 3D
orientation of the device.

6.3.2. The gyroscope

The gyroscope sensor reports angular velocity. Together with the magnetometer and the
accelerometer sensing the Earth’s gravity, which is used to establish the ground plane, an absolute
3D orientation can be calculated.

6.3.3. The accelerometer

An accelerometer senses linear acceleration as the device is moved. The sensor perceives the
acceleration due to gravity at the Earth’s surface (g, roughly 9.8 m/s^2), which must be accounted
for, but which also provides the horizontal frame of reference from which the conceptual
electronic compass will interpret the magnetometer input.

6.3.4. The barometer (as an altimeter)

Mobile devices featuring a barometer that measure atmospheric pressure can use this information
to establish a much more accurate altitude (at least in relative terms), based on a reference sea
level pressure. The challenge is to obtain an accurate reference sea level pressure in order to get an
accurate absolute altitude.

6.3.5. 3D orientation

By fusing the information measured by the magnetometer, gyroscope, and accelerometer, an
absolute 3D orientation of the device can be determined.

Because the 6 degrees of freedom pose sensor was not available on Android devices used for the
experiments, the TYPE_ROTATION_VECTOR [https://developer.android.com/reference/android/hardware/

Sensor.html#TYPE_ROTATION_VECTOR] was used. This Android sensor type fuses information from the
magnetometer, gyroscope and accelerometer to provide a rotation vector in the form of a
quaternion. [2: When used to represent rotation, unit quaternions are also called rotation
quaternions as they represent the 3D rotation group. When used to represent an orientation
(rotation relative to a reference coordinate system), they are called orientation quaternions or
attitude quaternions. (Wikipedia, 2019)] The 4th component (w) of the quaternion is optionally
provided on some devices (always provided from SDK Level 18 onwards), but it can otherwise be
implied from the other 3 components as the quaternion is normalized. During the experiments, it
was found that special care has to be given to remap the coordinate system based on the default
rotation of a device, to which the sensors information is relative. Most mobile devices have a
portrait default rotation, but some tablets (such as the Nexus 10) default to a landscape orientation.

In the Ecere client, further transformation had to be done to convert this orientation to the GNOSIS
coordinate system, requiring a 90 degrees pitch rotation, then a negation of the roll component of
the orientation. Finally, the magnetic declination has to be taken into account for the yaw
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component.

6.3.6. 3D position

By performing a first integration of linear acceleration, velocity can be determined, and by a second
integration, a position can be determined. Such a position would not be very useful in a geographic
context, as it would only be relative to the user’s original position. However, by relating this
position at the precise time where a location update from the GPS was received, the relative
movement provides the necessary intermediate position updates until the next location update is
received. More involved calculations can smooth these calculations over time based on past
discrepancies and previsions. A virtual fusion sensor could also leverage computer vision using a
device’s camera, such as an Android 6 degrees of freedom pose fusion sensor may do on recent
devices [8].

On Android devices, it would seem that this type of comprehensive fused position and orientation
information is only readily available through this particular sensor. As no device supporting it was
available for the experiments, and as performing these calculations manually is quite involved,
there was no time during the initiative to implement this intermediate position aspect for the Ecere
client (positions currently only get updated when location updates are received).

6.4. Size, weight and power usage considerations
The use of location updates, sensors and the camera capabilities is particularly costly in terms of
power. Turning off such capabilities when not required is essential to minimize this impact. This is
in addition to potentially heavy use of the Graphical Processing Unit (GPU) for rendering a large
number of items and/or 3D geometry. This makes Augmented Reality applications rather power
hungry, as they can quickly drain a device’s battery. Correspondingly, it also produces a lot of heat,
and the size of a device can be related to both its ability to dissipate this heat and the capacity of its
battery. As purely anecdotal information, the Testbed-14 participants saw two laptops and one
tablet perish during this initiative!

These are things to consider for field operations where devices would be required to be used for
long periods of time without the ability to charge the devices, especially if operations increasingly
rely on such Augmented Reality applications. It was beyond the scope of this testbed initiative to
perform an analysis of factors such as power usage, heat and battery duration of devices. The small
team was kept busy for the entire duration of the testbed by the already significant workload of the
primary objectives. These objectives included processing and serving relevant data sets, achieving
interoperability between the different services and clients, as well as displaying augmentation
properly registering with the real world. This could be investigated in future AR initiatives.
However, this would require strictly determining many variables and evaluation criteria so as to
produce useful results.
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Chapter 7. Augmented Reality Clients
Two mobile clients were built by Ecere and GIS-FCU during this Testbed-14 Augmented Reality
initiative.

See also Chapter 6 for more details about how the sensors were used to situate the view in the
clients, and Chapter 8 for information about how the 3D contents was streamed from services.

7.1. GNOSIS / Android mobile client by Ecere
Ecere built a client targeting Android mobile devices, leveraging their cross-platform Ecere and
GNOSIS SDKs and making use of OpenGL ES, the Android sensors, and the Android Camera 2 API
directly. The client would automatically connect to both services and request 3D contents data in a
tiled manner based on the current view position. It provided buttons to jump to fixed locations for
the datasets (Washington, D.C. and New York City), as well as to the last known GPS position, or to
constantly reposition the camera based on GPS location updates.

The client currently requires an Android 5.0+ device, as well as support for OpenGL ES 3.0. It will be
possible to lower this requirement to OpenGL ES 2.0 after some fallbacks are properly implemented
in the Ecere graphics engine. Application packages (APKs) were built for ARM CPUs, both 32-bit
(armeabi v7a) and 64-bit (arm64-v8a), and tested on multiple devices.

There are four buttons in the application:

• Follow: Toggling (it is off by default) automatically repositions the camera (latitude, longitude)
based on GPS updates. The altitude will also currently be maintained at 2 meters above sea
level.

• Here: Clicking this button repositions the camera at the last received GPS position

• NYC: Clicking this button moves the camera right above the Statue of Liberty

• DC: Clicking this button moves the camera inside the Capitol.

If Follow mode is not toggled on, the user can:

• Pinch the screen with two fingers to zoom in & out (changing altitude and position as well if not
looking straight down).

• Slide with one finger to move the camera around

• Double-click to smoothly transition the camera closer where the clicks were performed

Whether Follow is on or not, the user can simply rotate the device around freely to update the
camera view orientation (yaw/pitch/roll).

These experiments focused on rendering 3D buildings, as streamed by the services.
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Figure 2. View of Statue of Liberty, with Manhattan in the background, retrieved as E3D from Ecere service,
over camera (faking location)
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Figure 3. View of New York City theater, retrieved as E3D from Ecere service, over camera (faking location)
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Figure 4. View of New York City buildings, retrieved as E3D from Ecere service, over camera (faking
location)
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Figure 5. View of New York City buildings, retrieved as E3D from Ecere service, over camera (faking
location)
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Figure 6. View of New York City buildings, retrieved as E3D from Ecere service, over camera (faking
location)
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Figure 7. View of Washington, D.C. retrieved as E3D from GIS-FCU service over camera (faking location)

Other experiments were done with OpenStreetMap data, which featured more interesting
attributes for use as annotations. Portrayal rules were established using the GNOSIS Cascading Map
Style Sheets (described in Appendix C) to display labels for roads and buildings, as well as the roads
themselves. These rules also included extrusion of buildings footprints (polygon layers) to render
them as 3D buildings based on the OpenStreetMap Simple 3D Buildings [https://wiki.openstreetmap.org/

wiki/Simple_3D_buildings] attributes. [9]
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Figure 8. OpenStreetMap data (roads and extruded 3D buildings) around EPRI location
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Figure 9. OpenStreetMap data (roads and extruded 3D buildings) in Ottawa (fake location)
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Figure 10. OpenStreetMap data (roads and extruded 3D buildings) in Ottawa (fake location)

OpenStreetMap data from Washington, D.C, was also combined with 3D buildings data from a GIS-
FCU service to verify the correctness of the location.
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Figure 11. Accessing Washington, DC data from GIS-FCU service in GNOSIS client (together with OSM data)

Figure 12. Accessing Washington, DC data from GIS-FCU service in GNOSIS client (together with OSM data)

Some experiments were also done in a desktop version of the client, rendering the vast majority of
the New York City CDB data set content (buildings, trees, 3D terrain elevation, high-resolution
imagery). Support for CDB geotypical models, such as the trees, was added during this initiative.
Those were most notably missing from Central Park in Testbed-13 demonstration. Much effort was
also spent optimizing the GNOSIS graphics engine, and work is still on-going to further improve
performance.
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Figure 13. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(a)

Figure 14. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(b)

35



Figure 15. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(c)

Figure 16. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(d)
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Figure 17. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(e)

Figure 18. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(f)
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Figure 19. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(g)

Figure 20. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(h)
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Figure 21. Visualizing New York City CDB data (FlightSafety) converted to GNOSIS Map Tiles / E3D Models
(i)

7.2. ARKit / iOS mobile client by GIS-FCU
A mobile client targeting iOS, using ARKit, was built by GIS-FCU.

7.2.1. Using ARKit

Here is a brief description of how ARKit and SceneKit were configured within the application:

Figure 22. Diagram illustrating ARKit usage in GIS-FCU client

1. Set up the ARKit ARConfiguration to be "ARWorldTrackingConfiguration".
ARWorldTrackingConfiguration: Use the rear camera to track the direction and position of the
device and detect the configuration of the real world plane.

2. Activate an ARSession.(include AVCaptureSession and CMMotionManage)
AVCaptureSession: Start gathering odometry
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CMMotionManage: Start gathering inertial odometry

3. Use Core Location to obtain geographic position.

4. Instantiate the 3D virtual object as an SCNGeometry object having SCNMaterial, SCNLight,
SCNCamera.

5. Attach the SCNGeometry object (visible to user) as a child SCNNode of the ARAnchor.

6. Render the scene

7. ARKit will automatically move the 3D virtual objects as the camera moves.

7.2.2. Rendering 3D Models

The actual drawing of E3D models in the client was done as follows:

1. Open the phone application and initialize it

Figure 23. Diagram illustrating mobile device origin

2. Set the origin (0,0,0) as the reference point, and then get all vertex from each E3D building
model.
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Figure 24. Diagram illustrating building local coordinate system, as if it were positioned at mobile
device origin

3. Put all the nodes in SCNVector3 as an array.

Figure 25. Diagram illustrating an array of vertices

4. Set up the geometry module object according to SCNGeometry (Completed), and then drawing
triangles for all faces of the building.
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Figure 26. Diagram illustrating setting up building geometry as triangular faces

5. Use the reference point to put the entire building onto correct place of the user’s camera.

Figure 27. Diagram illustrating positioning building at proper location based on building reference
point and the user position (camera)

7.2.3. Client Demonstration

Taichung City Demo

Video:

https://drive.google.com/file/d/1CRtaSW44hzcS0BJMWTq-kCoMGu-8t5wi/view
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Service:

http://tm.gis.tw/wfs?SERVICE=WFS&REQUEST=GetFeature&
centerPosition=120.64981667547605,24.178336886020727&outputFormat=json&Distance=0.1

Figure 28. Screenshot of 3D buildings in GIS-FCU client accessing GIS-FCU service with data from in
Taichung City
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Figure 29. Picture of the building represented by the 3D geometry overlaid on next figure by itself

44



Figure 30. Screenshot of 3D buildings in GIS-FCU client accessing GIS-FCU service with data from in
Taichung City

New York City data set (Ecere Service)
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Figure 31. Visualizing data from Ecere Service (New York City)

Video: https://drive.google.com/open?id=1mG-CUeb0n514sjU3Luhqfq-a7JkZj8nC

Field tests in Washington DC (GIS-FCU Service)
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Figure 32. 3D axes and overlay information shown in GIS-FCU client during testing by Marcus Alzona
(Keys) in Washington, DC, in front of the Capitol
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Figure 33. 3D building geometry overlaid on top of camera near National Cathedral in GIS-FCU client
accessing GIS-FCU service, tested by Marcus Alzona (Keys) in Washington, DC (computed camera
orientation and/or position may be slightly off, possibly partially due to magnetic declination)
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Figure 34. 3D building geometry overlaid on top of camera in GIS-FCU client accessing GIS-FCU service,
tested by Marcus Alzona (Keys) in Washington, DC (computed camera orientation and/or position may be
slightly off, possibly partially due to magnetic declination)
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Chapter 8. Client-Server Communication
A simple approach to transmit 3D geospatial contents was developed during this initiative to
facilitate the rapid implementation and interoperability of both clients and services. Considerations
were given to a number of aspects contributing to the client performance and efficient use of
bandwidth.

Figure 35. Diagram summarizing Client-Server interaction for requesting and retrieving 3D data

8.1. Services overview
The services implemented were mainly based upon and extended the Web Feature Service. Both
GIS-FCU and Ecere provided a Key/Value Pair WFS service. The supported requests included:

• GetCapabilities (Ecere) To do the initial handshake with the service, and retrieve the list of
available layers.

• DescribeFeatureType (Ecere) To describe attributes for a given layer.

• GetFeature (Ecere, GIS-FCU) To retrieve the points referencing 3D models. For Ecere service, it
can also be used to retrieve other vector features, imagery or elevation data. The Ecere service
supported the regular WFS 'bbox' parameter (which can be used to cut out tiles for any tiling
scheme based on a WFS84 tiling scheme), as well as an alternate tile-oriented API similar to a
WMTS interface (tilingScheme, zoomLevel, tileRow, tileCol). GIS-FCU opted instead for
'centerPosition' (longitude, latitude) and 'distance' parameters (in kilometers).

• GetModel (Ecere, GIS-FCU) Retrieve a specific 3D model (a triangulated mesh, which could be
instantiated more than once). E3D was used as the output format for its compactness, and ease
of implementation by the participants (Ecere provided sample E3D loading & writing code). glTF
or OpenFlight would be good examples of alternative output formats that could eventually be
requested to the services. Considerations were also given to have the ability to request
attributes associated with sub-elements within a single 3D model (with partID and
propertyName parameters). This would have allowed to batch more objects together in a single
model without losing the attribution of these different entities. However the time for the
initiative was too limited to investigate batching approaches, and the datasets used had a very
limited set of useful attributes.

• GetTexture (Ecere) The Ecere service additionally implemented a GetTexture request.
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Additionally, the Ecere service provided a WFS3/Next Generation-style API. It could be used to
retrieve all elements of a CDB data set, including the terrain elevation models (a coverage) and
imagery, either tiled or not, showing how Next Generation OGC services could be harmonized as a
single service. A Unified Map Service interface (a service type developed during Testbed 13) was
also made available, although support for 3D models and textures was not completed.

Using a direct socket connection (e.g. direct socket or WebSockets) was considered, but there was no
time to include this in the experiments. Proper used of persistent HTTP connection and request
queueing might also offer similar advantages.

See also Chapter 9 for a detailed description of both services and their requests.

8.2. Transmission data formats
The formats used to transmit data during this initiative included:

• E3D (for 3D models) (described in details in Appendix A: E3D 3D Model Specifications)

• GeoJSON (for non-tiled reference points)

• GNOSIS Map Tiles (points referencing 3D models; terrain elevation; imagery; street maps;
buildings footprints)
(described in details in Appendix B: GNOSIS Map Tiles Specifications)

• JPG, PNG and ETC2 compressed textures

The participants opted for E3D for its simplicity, implementing both loaders and writers from the
ground up, as well as for the slight compactness advantage and readiness to load 3D model data
onto the GPU, without any required parsing. Although during these experiments E3D was used to
describe 3D models by both services and both clients, glTF could also be used with the same types
of requests as an alternative output format. OpenFlight or COLLADA, would also be valid
candidates for 3D models output formats, although the latter would be much heavier due to its XML
and textual nature.

8.2.1. 3D Tiles & I3S

From these two formats mentioned in the original requirements for the initiative, 3D Tiles was
agreed upon as being the easiest standard transmission format to support based on the participants
capabilities, proposal commitments & resources availability. During Testbed 13, Ecere had
developed a client supporting 3D Tiles encoded as batched geometry, using glTF 1. It was noted that
AssimpKit [https://assimpkit.readthedocs.io/en/latest/] can import many formats, including glTF 1 (the
guts of 3D Tiles) for use within SceneKit in conjunction with ARKit. Given more time, glTF support,
and then a transmission pathway as 3D Tiles would also have been implemented. However, the
stakeholders opted for focusing on the data transformation such as creating 3D meshes for
buildings (which would still have been required for 3D Tiles), and the augmented reality aspect.

For similar reason, there was no time to implement I3S support.
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8.2.2. Rationale behind decision to use E3D for this initiative

In order to validate interoperability between multiple client/server combination, and given the
limited resources and very short time frame for the Testbed, a single transmission format had to be
agreed upon (a requirement in the CFP: The service/client instance shall be tested with both
client/service applications.).

No existing 3D Tiles or I3S data sets was identified to be used for the experiments; rather the data
would be sourced from CityGML and served in a transmission format. Both 3D Tiles and I3S do
present the advantages of being such a transmission format for streaming detailed 3D models of a
large urban area (well suited especially for the Virtual Reality scenario) over CityGML.

The rationale for implementing a simple 3D transmission format was mainly to reduce the burden
of implementation for the clients and services (minimizing the efforts spent on producing and
consuming 3D data), so as to focus on the Augmented Reality aspect, given the short development
time frame and the existing capabilities of the participants involved. The technical value of 3D Tiles
and/or I3S was not being disputed.

None of the participants of these experiments are the initiators of 3D Tiles (or I3S), nor did they
plan to leverage the original clients/services for which these formats were initially designed. For
both services, and for the GIS-FCU client to run on iOS using AR Kit, however, there was no readily
available support for 3D Tiles or glTF production or consumption. ARKit natively supports
COLLADA (DAE) and OBJ/MTL (https://stackoverflow.com/questions/48190891/what-3d-model-
formats-are-supported-by-arkit).

In addition to these practical reasons, some advantages of the approach of using E3D (and in the
case of the Ecere client, GNOSIS Map Tiles to reference these E3D) are noted in relation to
minimizing bandwidth usage and processing:

• By using a simple fixed tiling scheme allowing the client to know exactly which tiles are needed,
they would not have to deal with the iterative client/server round-trip process of querying 3D
tiles tile sets and figuring out whether they must be refined based on the geometric errors of the
tiles.

• By avoiding having any parsing to do (3D Tiles and glTF, even in the binary 'glb' form, are still
made up of JSON text that must be parsed), data can be processed (and transmitted) more
efficiently.

Given the simplicity of E3D and the participants' familiarity with the solution, a minimal set of
options helped facilitate interoperability. 3D Tiles and glTF cover a very large set of capabilities,
which all components being implemented during the short span of the Testbed would not have
been able to cover entirely; and neither did the experiments have a need for most of them. There is
also a large variation of how things can be done within 3D Tiles / glTF (e.g. starting with glTF
version), which might have caused interoperability issues if the clients/services implement a
different subset of these capabilities, or if they end up being interpreted differently.

Finally, as an additional 3D data representation format kept simple but with performance in mind,
E3D might inspire a conceptual model to which both 3D Tiles (and/or glTF) and I3S could be
mapped, which could in turn facilitate interoperability between different 3D formats.
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8.2.3. ETC2 Texture Compression

Due to the very limited memory available to mobile applications (CPU and GPU memory is typically
shared on mobile devices, and e.g. the Android operating system itself can easily take up half of
total memory available), displaying a large textured urban environment is challenging. Texture
compression can offer welcomed significant gains in that regard, and a particularly appealing
compression is the version 2 of Ericsson Texture Compression [https://en.wikipedia.org/wiki/

Ericsson_Texture_Compression], because support for it is mandatory in both OpenGL ES 3.0 and OpenGL
4.3, which solves the complex problem of having to use different compression mechanisms for
different hardware. This problem was exacerbated by the fact that compressing textures on-the-fly
to load them on the GPU is impractical due to the high amount of CPU processing required, and so
compression should be done offline as preprocessing. Although two standard formats exist to store
and transmit ETC2 textures (KTX [https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/] and
PKM [https://github.com/Ericsson/ETCPACK/blob/master/source/etcpack.cxx#L9189]), due to very limited time, a
simplistic custom format was used in this initiative. It can be described as follows (in little-endian
byte order):

Table 1. Simple format encoding used for ETC2 texture data

Offset Type Size Name Description

0 uint 4 count Number of
mipmaps

count images follow (offset from start of each image)

0 uint 4 width Width of the
image

4 uint 4 height Height of the
image

8 uint 4 size Size of the
compressed data

12 byte[*] size data Compressed data
(to be loaded with
GL_COMPRESSED_
RGBA8_ETC2_EAC)

8.3. Performance considerations
Several factors affect the performance of displaying 3D contents, and some of these were
highlighted in Testbed 13 3D Performance Client ER [http://docs.opengeospatial.org/per/17-046.html]. [10]
Those aspects were also considered in this initiative to facilitate achieving good performance in the
clients. Ideally, 3D data sent to a mobile or web client is optimized through pre-processing so as to
minimize the size of a transmitted payload, and it is batched by materials so as to reduce rendering
overhead. However, only limited efforts could be spent implementing these optimizations and
batching due to the short duration of the Testbed and the focus on Augmented Reality experiments.

Nevertheless, the interface described herein would still be appropriate for services delivering an
optimized payload, and for clients to take full advantage of them. The E3D model format also has
special considerations to facilitate the batching of materials.
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A key goal of achieving good performance is to minimize the number of drawing calls and state
changes, and batching geometry by materials makes this possible. The E3D specifications also
introduce the concept of a Material Group, which conceptually can encompass multiple compatible
materials for which geometry could be rendered within the same drawing call, using the same
texture object. Ideally, all models within a single 3D data layer (e.g. 'Buildings' or 'Trees') use the
same material group, and potentially multiple layers could use the same material group as well,
allowing to render an entire scene with a single drawing call. This also implies using a single Vertex
Buffer Object for storing all of this batched geometry.

For textured environments, this also requires the use of either or both texture atlases and array
textures, which allow using a large quantity of texture data within a single texture object. While a
texture atlas can be used to regroup smaller textures within a single larger texture, array textures
allow to define multiple layers of large textures.

Since the batching of geometry follows visual properties, but not necessarily the logical structure of
the entities represented by the models (e.g. buildings), it is essential to maintain this original
organization so as to preserve selection and attribution capabilities. The E3D format allows this
with the concept of parts, establishing a relationship between faces and a part ID, which in turn can
be used with this service interface’s for querying parts attributes. This can be used, for example, to
transport original properties from a CityGML dataset.

Another important aspect, especially relevant to geotypical models, is the use of geometry
instancing. With instancing, an entire forest made of thousands of trees for example can be
rendered by lighter drawing commands with minimal position information for each tree which can
reference one of a few complex models e.g. for trees of different species.

More basic ways in which re-use helps gain performance include indexing the same vertices
through the use of indices to describe faces, as well as having multiple models sharing the same
textures.

8.3.1. Tiling and Caching

The use of tiles has several benefits as they allow to retrieve and display a specific area of interest,
and of a specific detail if implemented with multiple zoom levels.

Tiles also facilitate the implementation of a caching mechanism, as they identify discrete chunks of
data(of a limited size). The implementation of such a cache could help keep the information in GPU
memory, in CPU memory and/or on disk.

With 3D models data, finer zoom levels can either refine models with denser geometry (an
approach better suited to batching), or integrate additional smaller models (as done in CDB). When
denser geometry is available at finer zoom levels, 3D mesh simplification algorithms can be applied
to the lower zoom levels to produce lightened generalized tiles covering the larger extent. When
tiling a layer of 3D models, especially with a fixed tiling scheme as used within this Testbed, the
problem of handling models crossing tile boundaries arises.

Two tiling approaches were devised: one where models are actually cut clean on the tile
boundaries and embedded within the tile, and one where the models are allowed to spill onto the
neighboring tiles and referenced. Support for both of these approaches was incorporated as new
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capabilities of GNOSIS Map Tiles (see Appendix B).

For the clean-cut approach, the embedded3DModel (0xB0) type can be used, where each tile will
contain a single 3D model. This implies a geospecific model, and is best suited for large-scale
geospecific features (e.g. pipelines) or 3D terrain models (although the GMT specifications also
provides a coverage-based mechanism to store 3D terrain tiles). Such large features would also
benefit from describing vertices quantized to the model’s bounding box, e.g. using the quantized
vertices attribute block (verticesQ: 0x2018) of E3D specifications.

For the referenced/spilling models approach, the models3D (0xA0) or models3DGround (0xA1)
types can be used. The tile then describes a collection of points, each with a Model ID referencing an
external 3D model to be accessed separately. In the case of models3DGround, the origin of the
model is intended to be dropped to a separate elevation model, whereas for models3D each point
also includes an altitude value relative to the WGS84 ellipsoid. An orientation or scaling can also be
included for each point, as well as data attributes as for regular point features. In this case, models
can be either geospecific or geotypical. A given model instance is defined only in one tile of a
particular zoom level. In order to ensure drawing models of nearby tiles which may not have been
selected as visible (based on a layer-independent selection mechanism), additional information has
also been included in the tiles about the bounding box of all referenced models within, as well as
about neighboring tiles (of the same zoom level) and their models which are spilling onto the
current tile.

Because in a 3D view tiles of multiple zoom levels might be mixed (lower zoom levels for tiles
further away), some additional complexity is involved as refined tiles may contain a duplicate
model to a lower resolution neighboring tile. To handle these scenarios, the Model ID can contain a
'zoom level' portion in addition to the ID of the model itself. Models representing the same entity
would always have the same base ID, while the level is the coarsest zoom level at which this model
should be displayed: it can be the same as the one for a lower level tile if this finer tile does not
refine the model, or does so with additions.

In addition to GNOSIS Map Tiles, some experiments were also done with tiles of GeoJSON point
feature tiles carrying the same key information. In both cases, the GNOSIS Global Grid, defining
tiles approximating equal area for the entire globe, was used as the tiling scheme to define the tiles.
The GIS-FCU service also provided similar GeoJSON point feature data, however it was based on a
center position and a radius rather than pre-defined rectangular tiles.

Unfortunately, due to time constraints, only the reference/spilling models approach was
implemented. It was also not possible to complete the special handling of models defined in
neighboring tiles spilling onto selected tiles, and therefore in experiments buildings close to the
viewer would sometimes not appear when they should.

Another important aspect not covered in depth is the selection of different resolutions for textures.
A resolution parameter was considered for the GetTexture request, but the mechanism by which a
tile of a finer zoom level selects a higher resolution has not been adopted. This is a rather important
aspect, as in some cases the texture data may be even heavier than the geometry and have a great
impact on bandwidth, performance and GPU memory usage (especially limited in the case of
mobile devices).
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8.4. Disconnected environment and intermittent
connectivity
Some experiments were done entirely offline based on a local data store. The GNOSIS Data Store
was used to organize tiled layers (in GNOSIS Map Tiles pyramid format), with sub-folders for
models (in E3D format) and textures (in JPEG, PNG or ETC2 format). This demonstrated the
possibility to retrieve, store, publish, and directly visualize a partial or complete dataset of terrain
elevation, imagery and 3D model data based on the same principles as the client/server interaction
mechanism described herein. Furthermore, this embodiment of the dataset represented a
significant reduction in terms of storage size (e.g. 3D model and terrain data layers easily fit within
the OGC portal’s limited allowed file size) as well as count of files, as well as performance
improvements, compared to the original CDB.

8.5. Relationship with 3D Portrayal Service
During this initiative, questions and thoughts regarding the potential relationship with the 3D
Portrayal Service came up, but there was no time devoted specifically to consider what that
relationship could be. Therefore investigating any overlap or complimentary aspects, and
integrating any of the capabilities prototyped during this testbed activity within the 3D Portrayal
Service framework would be reserved for future work. Some suggestions included considering the
integration of the additional 3DPS capabilities within a general harmonized or unified next
generation map service, which we tried to demonstrate as something feasible with this interface.
Additionally, we feel one of the initial of the objective of the 3DPS which was to bridge the gap
between different model formats, allowing a service to offer multiple supported formats, is within
the grasp of this interface through a format parameter for the GetModel and/or GetTile request, e.g.
allowing to return an E3D or glTF file; or a GNOSIS Map Tile or 3D Tile. The E3D specifications, as
an alternative yet simple way of describing 3D models, may also inform the formulation of a
conceptual model and/or simple profile to which both glTF (the foundation of 3D Tiles) and I3S
could be related as well, and this may help achieve additional format interoperability.
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Chapter 9. Geospatial Services for
Augmented Reality
Two services were built as part of this initiative to serve primarily 3D buildings data.

Both services served 3D models following the E3D specifications (Appendix A), to be interoperable
with both clients.
See Chapter 8 for a high level overview of the services/client communication.

The data was loaded from various sources, including OpenStreetMap, Multipatch Shapefiles,
CityGML and CDB.
See Chapter 10 for a detailed description of data sources and how they were processed.

9.1. Ecere Service
The service provided by Ecere was based on the GNOSIS Map Server and implemented primarily a
Web Feature Service, with extensions for retrieving 3D models and textures. Both a classic
Key/Value pair WFS as well as a next generation REST-based (WFS3) interfaces were used in the
experiments. Additionally, an interface for the Unified Map Service (UMS), as prototyped for
Testbed-13 Vector Tiles work package was used in the experiments.

For all requests, an authKey parameter provides security authentication, giving access to specific
features. This authorization key is not included in requests herein, but is required for data derived
from the New York CDB, which was provided solely for the purpose of this Testbed-14 AR initiative.
As a result, many of the requests listed will result in a 404 - Resource Not Found error. The usage of
the data set is subject to a license agreement with FlightSafety. OGC can be contacted in case these
working resources would be useful and provide information on how to agree to this license and
obtain the necessary authorization key.

9.1.1. GetCapabilities

A GetCapabilities request lists all layers available from the WFS end point.

Example request:

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetCapabilities

9.1.2. DescribeFeatureType

A DescribeFeatureType request provides a schema of all attributes supported by the layer,
including special attributes for referencing and positioning 3D models (called
ums::feature::modelID, ums::feature::altitude and ums::feature::orientation, and
ums::feature::scale).

Example request:

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=DescribeFeatureType&
typeName=NewYork:NewYork_Buildings
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9.1.3. GetFeature

In addition to standard service and request parameters, the following parameters were used for the
GetFeature requests:

Table 2. GetFeature request parameters (Ecere WFS service)

Parameter Description

typeName Select a specific type name (layer, feature
collection) from which to retrieve data.

outputFormat Select a specific format according to which the
data to retrieve should be encoded.
Supported format currently includes GNOSIS
Map Tile (gmt), GeoJSON, Mapbox vector tiles,
GML and GeoECON.

bbox A bounding box describing the extent of the
geometry to be retrieved. Normally in a WFS
this returns the entire feature intersecting the
bounding box (without clipping). The Ecere
service currently performs clipping. Because
points are either in or out of the box, this is not
an issue with points layers such as those
referencing 3D models.

propertyName Provides a way to select specific data attributes
and/or geometry to retrieve.

tilingScheme Identifies a tiling scheme which zoomLevel,
tileRow and tileCol refers to. In these
experiments, the GNOSIS Global Grid was used
as the tiling scheme, but the service also
supports tiling schemes based on the WMTS
well-known scale sets (GoogleMapsCompatible,
GlobalCRS84Pixel, GlobalCRS84Quad,
GoogleCRS84Quad). If unspecified, the GNOSIS
Global Grid is assumed.

zoomLevel Identifies a zoom level for which to retrieve
data, based on the selected tiling scheme. This
provides a mechanism to retrieve generalized
data for large areas. The service could provide a
different different set of points based on the
zoom level (e.g. smaller/less important 3D
models filtered out at lower zoom level and/or
using alternate lower resolution models).

tileRow Identifies a tile row for which to retrieve data,
based on the selected tiling scheme.

tileCol Identifies a tile column for which to retrieve
data, based on the selected tiling scheme.
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Parameter Description

authKey Provides basic security authentication, giving
access to specific features. The use of the
authorization key listed in the requests herein
associated with data derived from the New York
CDB, provided solely for the purpose of this
Testbed-14 AR initiative, is subject to a license
agreement from FlightSafety.

Some example requests retrieving features from various data layers:

Buildings

(tile-oriented)

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=15&
tileRow=47588&tileCol=38589&outputFormat=geo+json

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&
tileRow=5948&tileCol=4823&outputFormat=geo+json

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&
tileRow=5948&tileCol=4823&outputFormat=gmt

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&
tileRow=5948&tileCol=4823&outputFormat=mvt

(non-tile)

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Buildings&outputFormat=geo+json&propertyName=geometry

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Buildings&bbox=40,-75,41,-74&outputFormat=geo+json

Trees

(tile-oriented)

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=15&
tileRow=47588&tileCol=38589&outputFormat=geo+json

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&
tileRow=5948&tileCol=4823&outputFormat=geo+json
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http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=geo+json
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=mvt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=mvt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=mvt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&outputFormat=geo+json&propertyName=geometry
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&outputFormat=geo+json&propertyName=geometry
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&bbox=40,-75,41,-74&outputFormat=geo+json
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Buildings&bbox=40,-75,41,-74&outputFormat=geo+json
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=15&tileRow=47588&tileCol=38589&outputFormat=geo+json
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=15&tileRow=47588&tileCol=38589&outputFormat=geo+json
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=15&tileRow=47588&tileCol=38589&outputFormat=geo+json
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=geo+json
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=geo+json
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=geo+json


http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_T
rees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&
outputFormat=gmt

(non-tile)

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Trees&outputFormat=geo+json&propertyName=geometry

(omitting the extra original CDB attributes)

Imagery

(tile-oriented)

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Imagery&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&
tileRow=5948&tileCol=4823&outputFormat=png

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Imagery&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&
tileRow=5948&tileCol=4823&outputFormat=gmt

(non-tile)

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Imagery&outputFormat=png

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=7

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=9&bbox=40.47336645,-
74.277405,40.92364737,-73.68470065

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=11&bbox=40.47336645,-
74.277405,40.92364737,-73.68470065

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=12&bbox=40.68735853,-
74.04963142,40.73704513,-73.97036899

NOTE
The highest resolution imagery from the CDB (level 17 rather than 12) was not made
available, as it was to be re-encoded in JPEG2000 first to use up less server space.

Elevation

(tile-oriented)

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
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http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&outputFormat=geo+json&propertyName=geometry
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Trees&outputFormat=geo+json&propertyName=geometry
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=7
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=7
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=9&bbox=40.47336645,-74.277405,40.92364737,-73.68470065
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=9&bbox=40.47336645,-74.277405,40.92364737,-73.68470065
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=9&bbox=40.47336645,-74.277405,40.92364737,-73.68470065
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=11&bbox=40.47336645,-74.277405,40.92364737,-73.68470065
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=11&bbox=40.47336645,-74.277405,40.92364737,-73.68470065
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=11&bbox=40.47336645,-74.277405,40.92364737,-73.68470065
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=12&bbox=40.68735853,-74.04963142,40.73704513,-73.97036899
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=12&bbox=40.68735853,-74.04963142,40.73704513,-73.97036899
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Imagery&outputFormat=png&zoomLevel=12&bbox=40.68735853,-74.04963142,40.73704513,-73.97036899
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=png


typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRo
w=5948&tileCol=4823&outputFormat=png

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&
tileRow=5948&tileCol=4823&outputFormat=gmt

(non-tile)

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_Elevation&outputFormat=png

Although there was no time to experiment with the embedded 3D model approach during the
initiative, a GetFeature request could have been used for this as well. In this case each tile would
contain a single 3D model, and the output format could either be GNOSIS Map Tiles each
embedding a single 3D model, or directly the model itself (as E3D, glTF, COLLADA…). The following
are would-be examples of a terrain mesh served this way:

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&
tileRow=6&tileCol=11&format=gmt

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&
tileRow=6&tileCol=11&format=e3d

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&
tileRow=6&tileCol=11&format=glb

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&
typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&
tileRow=6&tileCol=11&format=collada

9.1.4. GetModel

Table 3. GetModel request parameters (Ecere WFS service)

Parameter Description

typeName Select a specific type name (layer, feature
collection) from which to retrieve a 3D model.

modelID The ID identifying the 3D model to be retrieved.
This is a numeric ID, with the high 5 bits
corresponding to the model level, while the
lower 27 bits correspond to a model.
The model level is the coarsest zoom level at
which this model is used: it can be the same as
the one for referencing points data at a lower
zoom level tile if this finer level does not refine
the model, or does so with additions.
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http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&tilingScheme=GNOSISGlobalGrid&zoomLevel=12&tileRow=5948&tileCol=4823&outputFormat=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_Elevation&outputFormat=png
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=gmt
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=e3d
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=e3d
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=e3d
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=glb
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=glb
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=glb
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=collada
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=collada
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetFeature&typeName=NewYork:NewYork_TerrainMesh&tilingScheme=GNOSISGlobalGrid&zoomLevel=4&tileRow=6&tileCol=11&format=collada


Parameter Description

format The format in which to encode the 3D model
data (or the attributes when partID is used)
being retrieved.
Currently, only E3D is supported, but the output
for this could later be binary glTF (glb) or
COLLADA/DAE model.

partID Rather than retrieving the 3D model itself,
retrieve attributes asociated with specific part(s)
of the model (not yet implemented).

propertyName Specific sub-model attributes to retrieve (for use
together with partID, not yet implemented).

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&
typeName=NewYork:NewYork_Buildings&modelID=1476406989&format=e3d

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&
typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=e3d

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&
typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=glb

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&
typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=collada

Sub-model attribution example:

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&
typeName=NewYork:NewYork_Buildings&format=geo+json&modelID=1342193159&partID=4&
propertyName=name

9.1.5. GetTexture

The GetTexture request makes it possible to share textures between models of the same layer (as
opposed to only being able to embed textures within the 3D models).

Table 4. GetTexture request parameters (Ecere WFS service)

Parameter Description

typeName Select a specific type name (layer, feature
collection) from which to retrieve a texture.

textureID The (numeric) ID identifying the texture to be
retrieved.

format The format in which to encode the texture being
retrieved.
Currently, jpg, png and etc2 (a custom simple
encoding of Ericsson Texture Compression
version 2) are supported.

resolution Resolution at which to retrieve the texture.
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http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&modelID=1476406989&format=e3d
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&modelID=1476406989&format=e3d
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=e3d
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=e3d
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=glb
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=glb
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=collada
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&modelID=1342193159&format=collada
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&format=geo+json&modelID=1342193159&partID=4&propertyName=name
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&format=geo+json&modelID=1342193159&partID=4&propertyName=name
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetModel&typeName=NewYork:NewYork_Buildings&format=geo+json&modelID=1342193159&partID=4&propertyName=name


Parameter Description

propertyName Specific sub-model attributes to retrieve (for use
together with partID, not yet implemented).

Some example requests:

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&
typeName=NewYork:NewYork_Buildings&textureID=1

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&
typeName=NewYork:NewYork_Buildings&textureID=1&resolution=256

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&
typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=256

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&
typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=512

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&
typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=1024

http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&
typeName=NewYork:NewYork_Buildings&textureID=56&format=png&resolution=1024

9.1.6. WFS3 / Next Generation / Harmonized Map Service (REST API)

A WFS3 / Next Generation service interface is also provided. Some example requests follow.

NOTE OpenAPI description remains in progress.

Capabilities

http://maps.ecere.com/hms

List of layers (with support to drill into hierarchy of layers being served)

http://maps.ecere.com/hms/layers/NewYork/

Listing attributes for a layer (schema)

http://maps.ecere.com/hms/layers/NewYork/NewYork-Buildings/schema.xml

Listing and describing tiling schemes

http://maps.ecere.com/hms/tiles

http://maps.ecere.com/hms/tiles/GNOSISGlobalGrid

Retrieving features (tile-oriented)

http://maps.ecere.com/hms/layers/NewYork/NewYork-Buildings/tiles/GNOSISGlobalGrid/12/5946/
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http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=1
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=1
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=1&resolution=256
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=1&resolution=256
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=256
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=256
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=512
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=512
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=1024
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=56&format=jpg&resolution=1024
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=56&format=png&resolution=1024
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetTexture&typeName=NewYork:NewYork_Buildings&textureID=56&format=png&resolution=1024
http://maps.ecere.com/hms
http://maps.ecere.com/hms/layers/NewYork/
http://maps.ecere.com/hms/layers/NewYork/NewYork-Buildings/schema.xml
http://maps.ecere.com/hms/tiles
http://maps.ecere.com/hms/tiles/GNOSISGlobalGrid
http://maps.ecere.com/hms/layers/NewYork/NewYork-Buildings/tiles/GNOSISGlobalGrid/12/5946/4823.json


4823.json

Retrieving features (bounding box)

http://maps.ecere.com/hms/layers/NewYork/NewYork-Buildings/items.json?BBOX=40,-75,41,-74

Retrieving a 3D model

http://maps.ecere.com/hms/layers/NewYork/NewYork-Buildings/models/1342193159.e3d

Retrieving a texture

http://maps.ecere.com/hms/layers/NewYork/NewYork-Buildings/textures/56.jpg

9.1.7. Unified Map Service

A Unified Map Service (UMS, a service type developed during Testbed-13) interface is also provided.
Some example requests feature below.

Capabilities

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetCapabilities

List of layers (with option to specify collection to drill into hierarchy of layers being served)

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetLayersList&collection=NewYork

Listing attributes for a layer (schema)

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetAttributesList&layer=NewYork/NewYork-
Buildings

Describing a tiling scheme

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetTilingScheme&
tilingScheme=GNOSISGlobalGrid

Figuring out which tile a given point is part of (useful for testing)

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetTileAtPos&zoomLevel=12&
position={40.70579927,%20-74.00932322}

Retrieving features for a given tile

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetTile&layer=NewYork/NewYork-
Buildings&tilingScheme=GNOSISGlobalGrid&tileKey={15,47588,38589}&format=geo+json

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetTile&layer=NewYork/NewYork-
Buildings&tilingScheme=GNOSISGlobalGrid&tileKey={15,47588,38589}&format=gmt

Retrieving features (bounding box)

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetFeatures&layer=NewYork/NewYork-
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Buildings&extent={{40,-75},{41,-74}}&format=geo+json

Retrieving attributes

54199 [http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetAttributes&layer=NewYork/NewYork-Buildings&

features=]&on=gml

54199 [http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetAttributes&layer=NewYork/NewYork-Buildings&

features=]&attributes=[%22CNAM%22,%22FACC%22]&on=json

Support for retrieving 3D models and textures remains to be added to UMS, but they could take the
form of:

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetModel&layer=NewYork/NewYork-
Buildings&modelID=1342193159&format=E3D

http://maps.ecere.com/ums?SERVICE=UMS&REQUEST=GetTexture&layer=NewYork/NewYork-
Buildings&textureID=56&format=jpg

9.2. GIS-FCU Service
All E3D files are stored in a geospatial database (PostGIS) in the backend. The client can send a
RESTful request with latitude and longitude of an on-site user via the GetFeature method. The
service will retrieve the corresponding ID of the E3D and return a list of buildings to the client in
GeoJSON format. The client can send separate GetModel requests with each of these model IDs in
order to retrieve the E3D models.

Figure 36. Diagram illustrating interaction between AR client, GIS-FCU service and back-end PostGIS
database.

NOTE
Unlike a typical WFS, this GIS-FCU service is currently sensitive to case in parameter
names.

9.2.1. GetFeature

Table 5. GetFeature request parameters (GIS-FCU WFS service)

Parameter Description Remarks
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SERVICE An open API following style of
WFS

-

REQUEST GetFeature request -

centerPosition Reference point of an user. Longitude, then latitude
separated by comma (,)

outputFormat Output format Only support Geojson

Distance Querying area 0 to 5 KM(float)

Example request:

http://tm.gis.tw/wfs?SERVICE=WFS&REQUEST=GetFeature&centerPosition=-
76.97663465999995,38.86509976200006&outputFormat=json&Distance=0.1

9.2.2. GetModel

Table 6. GetModel request parameters (GIS-FCU WFS service)

Parameter Description Remarks

SERVICE An open API following style of
WFS

-

REQUEST GetModel request -

outputFormat Output format only support E3D

modelID model ID of E3D that a client
wants to retrieve.

-

Example requests:

http://tm.gis.tw/wfs?SERVICE=WFS&REQUEST=GetModel&outputFormat=e3d&modelID=DC0000001

http://tm.gis.tw/wfs?SERVICE=WFS&REQUEST=GetModel&outputFormat=e3d&
modelID=DC00047921
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Chapter 10. Geospatial data
Before 3D data could be served to the clients as Augmented Reality content by the services
developed for this initiative, data sets had to be pre-loaded. For both of the services, this involved
some pre-processing to convert the data into a format ready for efficient delivery through the
client/server interface described in Chapter 8. Because investigating the use and applicability of
CityGML to Augmented Reality was an essential requirement of this Testbed activity, CityGML was
used in one such conversion process as an intermediate format between Shapefiles (multipatch) [
11] and E3D models, even though a more direct conversion pathway could have otherwise been
adopted.

10.1. Original data sources (and their formats) used
for the experiments
The two main source data sets that were used for the experiments were:

• New York CDB data provided by FlightSafety (the same data set which was used in Testbed-13
for 3D Performance work package)

• 3D Buildings of Washington, D.C. provided as an ESRI multipatch shapefile by OpenData DC
[http://opendata.dc.gov] — 103,073 buildings; available from here [https://drive.google.com/a/dc.gov/file/d/

0B1Wt8FRXoFfJamhPUkEtdEh0TGs/view].

Figure 37. New York CDB dataset from FlightSafety, as visualized in Ecere’s 3D client.
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Figure 38. Washington, D.C. 3D buildings dataset from OpenData DC

Some experiments made use of OpenStreetMap data (extracts in Google Protocol Buffer encoding of
OpenStreetMap data model retrieved from Geofabrik [https://www.geofabrik.de/] and
extract.bbbike.org [https://extract.bbbike.org/]). As well, a COLLADA model of Kaohsiung pipelines was
also used in early experiments, converting the model to E3D format (available here
[https://portal.opengeospatial.org/files/?artifact_id=80066]).

Figure 39. An overview screenshot of the Kaohsiung pipelines, converted to E3D format and visualized in
E3D viewer
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Figure 40. A close-up screenshot of the Kaohsiung pipelines, converted to E3D format and visualized in E3D
viewer

Other data sources were identified as potentially useful for conducting additional experiments, but
were not experimented with due to time constraints:

• Imagery and Elevation data (from LiDAR survey) available on OpenData DC [
http://opendata.dc.gov]

• Textured CityGML data set of Berlin (available from businesslocationcenter.de
[https://www.businesslocationcenter.de/en/downloadportal])

• Geo-referenced detailed texture models available as KML / COLLADA models from 3D
Warehouse [http://3dwarehouse.sketchup.com]

10.2. Intermediate CityGML data model (GIS-FCU)
An intermediate CityGML data model was produced from Washington, D.C. 3D buildings multipatch
shapefiles by GIS-FCU, primarily using Safe Software’s FME data integration platform.

Because the original building IDs were not unique, which would cause problems with how these
were used later on in the conversion process, ESRI’s ArcGIS software was first used to associate a
unique ID to each building, prior to the conversion from multipatch shapefiles to CityGML.
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Figure 41. Washington, D.C. data set in FME

Previous research [12] from Technische Universität München (TUM) was instrumental in making
this possible, as they shared an FME configuration file specifically for the purpose of creating such
a building data model, which was used for setting up the conversion process.

Figure 42. Shapefile to CityGML conversion process

This FME configuration file can be downloaded from here [https://drive.google.com/file/d/19-

C5AekVC7QE7cfrdUOws3U2BNVmQO9R/view?usp=sharing].
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Figure 43. Sample data from resulting CityGML data set

The resulting CityGML data set is available here [https://drive.google.com/file/d/

1My5n8rycHlIXFjqjCNJtlUjdKObcpLoN/view?usp=sharing].

Figure 44. CityGML data set

The final CityGML data set can be previewed and visualized using FME’s CityGML inspector.
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Figure 45. FME CityGML preview

In the resulting CityGML data set, all of the 3D geometry is described using the following GML tags
(themselves within CityGML tags such as bldg:WallSurface):

gml:MultiSurface → gml:surfaceMember → gml:Polygon → gml:exterior/interior →
gml:LinearRing → gml:posList

The entire preprocessing of the Washington, D.C. 3D buildings data set, from multipatch shapefiles
to E3D models through CityGML, is summarized in the following figure:

Figure 46. Washington, D.C. processing steps (from Shapefiles to E3D, through CityGML)
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10.3. Conversion from CityGML to E3D models data set
(GIS-FCU)
To facilitate the conversion process from CityGML to E3D models, as well as the visualization of E3D
models in the GIS-FCU client, Ecere provided GIS-FCU with source code for reading and writing E3D
models. This source code, implementing the E3D 3D Model Specifications (Appendix A), will become
part of the open-source Ecere cross-platform SDK [http://ecere.org]. Additionally, support for E3D may
be contributed to the Open Asset Import Library [http://assimp.org/]. GIS-FCU opted for making use of
the Ecere E3D API in its native eC programming language [http://ec-lang.org] to implement the
transformation from CityGML to E3D (eC was designed by Ecere, who also maintain the open-
source compiler and tools for the language).

After parsing the CityGML to resolve the structure of each building, GIS-FCU implemented batch
processing for outputting separate E3D models for each building. These E3D models get stored in a
PostGIS database, while establishing reference positions for the buildings. A tool called 'm2S' tool
was developed to perform this processing (transforming one input CityGML file into several E3D
model files).

Figure 47. A PostGIS (PostgreSQL) database serves as the data store for the GIS-FCU service, storing the
E3D files and reference points

Figure 48. A summary of the approach used by GIS-FCU to generate E3D models for the entire CityGML data
set

Ecere also provided a 3D model viewer (e3dView) to visualize and validate the correctness of E3D
models and it was used for checking the result of the conversion from CityGML to E3D.
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Figure 49. A screenshot of e3dView displaying a single building

10.4. Conversion of CDB data set to GNOSIS data store
(Ecere)
The GNOSIS data store serves as input from which the Ecere service (based on the GNOSIS Map
Server) can directly serve geospatial data in a number of OGC services (e.g. WMTS, WFS) as well as
UMS. It can also be used directly for high performance visualization by applications built using
Ecere’s GNOSIS SDK, such as the mobile Augmented Reality client built for this initiative, or Ecere’s
GNOSIS Cartographer GIS tool.

The data store (described in detail in Testbed-13 Vector Tiles Engineering Report
[http://docs.opengeospatial.org/per/17-041.html] - Appendix D) [13] consists of a simple directory structure
with layers of tiled geospatial data in the GNOSIS Map Tiles format (Appendix B) organized by tile
pyramids so as to keep a small file count and reduce file system overhead, while providing fast
access to geometry without the overhead of a database. Data attributes are stored separately in an
SQLite database with spatial indexing. For referenced 3D models as used in this initiative, a models
subfolder contains separate E3D files, with a textures subfolder within for textured models. A
layerInfo.econ description file contains information such as geospatial data type, geospatial and
temporal extent. The data store can store any types of geospatial data supported by GNOSIS Map
Tiles, which currently include imagery, coverage, vector data, point clouds, as well as referenced or
embedded 3D models.

In order to produce a GNOSIS Map Tiles / E3D data set out of CDB, GNOSIS Cartographer was used.
The CDB data set is simply pointed to using the 'Add' button of the data sources library panel, and
then with the top-level node of the CDB data set, clicking on the Optimize button starts the
conversion process.

Within a CDB 1.1 data set, vector data is represented using shapefile tiles. This also applies to points
referencing 3D models. The 3D models themselves are stored separately as OpenFlight models,
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while their textures are stored using SGI RGB format. Imagery is stored using JPEG-2000 encoding,
while GeoTIFF is used for elevation data.

When processing the complete New York CDB data set (as seen in the screenshots on the clients
page), the following source layers were used:

• The imagery layers (2 resolutions: ~10 meters / pixel for a larger overview, and ~30 centimeters /
pixel for a smaller extent)

• The elevation data layer (~20 meters / pixel)

• The geospecific buildings layer (100_GSFeature / S001 - Man-made point features, along with
supporting 300_GSModelGeometry for the OpenFlight 3D models, and 301_GSModelTexture for
the RGB textures)

• The geotypical trees layer (101_GSFeature / S002 - Tree point features, along with supporting
500_GTModelGeometry for the OpenFlight 3D models, and 501_GTModelTexture for the RGB
textures)

In addition to these layers, the original CDB data set also contains vector roads and railroads layers,
but these were not used.

Figure 50. New York CDB data set loaded into GNOSIS Cartographer for conversion process

When converting the 3D models layers, the elevation information from the elevation layer was
incorporated into the referencing points of the GNOSIS Map Tiles.

The resulting data set in GNOSIS Map Tiles / E3D format is quite compact, compared with the
original source layers, and contains much fewer files:
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• Buildings [https://portal.opengeospatial.org/files/?artifact_id=80490] (166 mb)

• Trees [https://portal.opengeospatial.org/files/?artifact_id=80491] (12.51 mb)

• Elevation [https://portal.opengeospatial.org/files/?artifact_id=80492] (187 mb)

The imagery tiles were produced, but not yet using JPEG-2000 encoding within GNOSIS Map Tiles,
so they are considerably larger. For this reason, only the lower resolution imagery layer is
currently available from the Ecere service.

10.5. Importing OpenStreetMap data (Ecere)
Some experiments used OpenStreetMap data to compensate for two important problems of both
the main CDB and shapefiles/CityGML data sets:

• Neither had worldwide coverage where participants were located throughout this initiative (a
fundamental issue for Augmented Reality experiments)

• Neither had particularly useful information to display as annotations, not even so much as the
name of a building (another major issue for annotating reality)

Luckily, OpenStreetMap provides continuously updated and readily available data with worldwide
coverage and a vast amount of textual attributes.

Again, GNOSIS Cartographer was used to convert various OpenStreetMap data sets (retrieved as
extracts from the OSM database in OSM PBF format) of where participants happened to be during
the Testbed initiative to GNOSIS Map Tiles (as regular vector data layers):

• Ottawa / Gatineau, Canada

• Washington, D.C.

• Stuttgart, Germany

• North Carolina

In addition to displaying roads and information such as building and street names, some
experiments used the OpenStreetMap building footprints together with their data attributes to
extrude these into 3D buildings. The OpenStreetMap Simple 3D Buildings
[https://wiki.openstreetmap.org/wiki/Simple_3D_buildings] schema allows to describe 3D geometry (up to a
certain amount of details) out of regular polygons. This however requires both mappers to invest
considerable time, as well as a lot of efforts from the client to fully and properly support all of the
possible attributes (e.g. special roof shapes).

In one experiment, the OpenStreetMap data was used together with 3D data from the GIS-FCU
service to add streets and building names.

In other experiments, the data was used on mobile devices for displaying information relevant to
the location, based on the device’s position and orientation.

The Washington, D.C. OpenStreetMap layers are being served from the Ecere service e.g. through its
WFS 3 / Next Generation service [http://maps.ecere.com/hms/collections/osmDC].

76

https://portal.opengeospatial.org/files/?artifact_id=80490
https://portal.opengeospatial.org/files/?artifact_id=80491
https://portal.opengeospatial.org/files/?artifact_id=80492
https://wiki.openstreetmap.org/wiki/Simple_3D_buildings
http://maps.ecere.com/hms/collections/osmDC


Appendix A: E3D 3D Model Specifications
NOTE The latest version of these specifications is maintained at http://ecere.com/E3D.pdf

A.1. Coordinate system
The coordinate system for E3D models is left-handed:

• x is positive to the right

• y is positive up

• z is positive going away into the distance

A.2. A simple cube example
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Figure 51. cube1.e3d (468 bytes)

Little-endian throughout (least significant bytes first)

Table 7. Example E3D encoding of a simple cube

Offset Block Type Block Length Contents Description

0 0x0001 (Version) 0x0000000C (12)
bytes [0..11]

E3DF 0x0100 (1, 0) E3D Version 1.0

12 0x1000 (Meshes) 0x000001B2 (434)
bytes [12..445]

sub-blocks: Mesh 1 mesh in this file
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Offset Block Type Block Length Contents Description

18 ► 0x1010 (Mesh) 0x000001AC (428)
bytes [18..445]

sub-blocks:
MeshID,
Attributes,
TriFaces16,
FacesMaterials

Mesh description

24 ►►0x1020
(MeshID)

0x0000000A (10)
bytes [24..33]

0x00000001 Mesh ID: 1

34 ►► 0x2000
(Attributes)

0x00000138 (312)
bytes [34..345]

0x00000018 (24)
sub-blocks:
Interleaved

24 vertices,
interleaved
attributes for each
vertex

44 ►►► 0x2800
(Interleaved)

0x0000012E (302)
bytes [44..345]

0x2010 (Vertices)
0x0000 (0) 0x0000
(0) 0x000C (12)
[…vertex data…]
(24 vertices)

The interleaved
attributes contain
only (x,y,z) 32-bit
floating-point
vertices at offset 0
(0 type ends list of
attribute types);
for a total of 12
bytes per vertex.
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Offset Block Type Block Length Contents Description

58 Vertex data (288 bytes) bytes
[58..402]

BF000000,BF00000
0,BF000000,
3F000000,BF00000
0,BF000000,
3F000000,3F00000
0,BF000000,
BF000000,3F00000
0,BF000000,
BF000000,BF00000
0,3F000000,
3F000000,BF00000
0,3F000000,
3F000000,3F00000
0,3F000000,
BF000000,3F00000
0,3F000000,

BF000000,BF00000
0,BF000000,
3F000000,BF00000
0,BF000000,
3F000000,3F00000
0,BF000000,
BF000000,3F00000
0,BF000000,
BF000000,BF00000
0,3F000000,
3F000000,BF00000
0,3F000000,
3F000000,3F00000
0,3F000000,
BF000000,3F00000
0,3F000000,

BF000000,BF00000
0,BF000000,
3F000000,BF00000
0,BF000000,
3F000000,3F00000
0,BF000000,
BF000000,3F00000
0,BF000000,
BF000000,BF00000
0,3F000000,
3F000000,BF00000
0,3F000000,
3F000000,3F00000
0,3F000000,
BF000000,3F00000
0, 3F000000,

{-0.5,-0.5,-0.5 },
{ 0.5,-0.5,-0.5 },
{ 0.5, 0.5,-0.5 },
{-0.5, 0.5,-0.5 },
{-0.5,-0.5, 0.5 },
{ 0.5,-0.5, 0.5 },
{ 0.5, 0.5, 0.5 },
{-0.5, 0.5, 0.5 },

{-0.5,-0.5,-0.5 },
{ 0.5,-0.5,-0.5 },
{ 0.5, 0.5,-0.5 },
{-0.5, 0.5,-0.5 },
{-0.5,-0.5, 0.5 },
{ 0.5,-0.5, 0.5 },
{ 0.5, 0.5, 0.5 },
{-0.5, 0.5, 0.5 },

{-0.5,-0.5,-0.5 },
{ 0.5,-0.5,-0.5 },
{ 0.5, 0.5,-0.5 },
{-0.5, 0.5,-0.5 },
{-0.5,-0.5, 0.5 },
{ 0.5,-0.5, 0.5 },
{ 0.5, 0.5, 0.5 },
{-0.5, 0.5, 0.5 }
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Offset Block Type Block Length Contents Description

Although a cube only has 8 vertices, this cube describes 24 vertices so as to be ready for adding
additional attributes such as normals, which will differ depending on which face it is being
referenced by (because a cube has faces at a square angle and the normals pointing away from the
faces are very different therefore not averaged at the shared vertices / corners).

346 ► 0x1030
(TriFaces16)

0x00000052 (82)
bytes [346..427]

0x0000000C (12)
[…16-bit tri
indices…]

Count of 12
triangle faces
described as
triplets of indices
into attributes
(12 faces, 36
indices)

356 Faces data (72 bytes)
bytes [356..427]

0x11, 0x15, 0x14,
0x11, 0x14, 0x10,
0x00, 0x03, 0x02,
0x00, 0x02, 0x01,
0x16, 0x12, 0x13,
0x16, 0x13, 0x17,
0x05, 0x06, 0x07,
0x05, 0x07, 0x04,
0x09, 0x0A, 0x0E,
0x09, 0x0E, 0x0D,
0x0C, 0x0F, 0x0B,
0x0C, 0x0B, 0x08

{ 17, 21, 20 }, {
17,20, 16 },
{ 0, 3, 2 }, { 0, 2, 1 },
{ 22, 18, 19 }, { 22,
19, 23 },
{ 5, 6, 7 }, { 5, 7, 4 },
{ 9, 10, 14 }, { 9, 14,
13 },
{ 12, 15, 11 }, { 12,
11, 8 }
(2 triangles per
cube square faces)

428 ► 0x1040
(Faces Materials)

0x00000012 (18)
bytes [428..445]

0x00000000 (0)
0x0000000C (12)
0x00000000 (0)

First face: 0
(indices: × 3)
Faces count: 0
(indices: × 3)
Material ID: 0
(none)

446 0x3000 (Nodes) 0x00000016 (22)
bytes [446..467]

sub-blocks:
MeshNode

1 node in this file
(instance of a
mesh)

452 ► 0x3010
(MeshNode)

0x00000010 (16)
bytes [452..467]

sub-blocks:
MeshID

This node
references a mesh
in the meshes list
by ID.
Because no
transformation is
specified, the
defaults apply:
(1,1,1) scaling;
(0,0,0) offset;
(w=1,0,0,0)
quaternion
orientation

458 ►► 0x1020
(MeshID)

0x0000000A (10) 0x00000001 (1) This references
mesh ID 1.
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Figure 52. cube1.e3d

A.3. Adding normals attributes
This version adds normals to the interleaved attributes (with x,y,z packed using 10 bits each).
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Figure 53. cube2.e3d (568 bytes) — A cube with normals

The floating-point normal values for the normals are (0 is implied for non-specified component
values):

{ z = -1.0 }, { z = -1.0 }, { z = -1.0 }, { z = -1.0 },

{ z = 1.0 }, { z = 1.0 }, { z = 1.0 }, { z = 1.0 },

{ x = -1.0 }, { x = 1.0 }, { x = 1.0 }, { x = -1.0 },

{ x = -1.0 }, { x = 1.0 }, { x = 1.0 }, { x = -1.0 },

{ y = -1.0 }, { y = -1.0 }, { y = 1.0 }, { y = 1.0 },

{ y = -1.0 }, { y = -1.0 }, { y = 1.0 }, { y = 1.0 }
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Figure 54. cube2.e3d & cube3.e3d

A.4. Compression
This version compresses the data using LZMA (any series of blocks, except the version header
block, can be compressed inside an LZMA block). Here the top blocks are compressed in one LZMA
block.

Figure 55. cube3.e3d (201 bytes) — compressed with LZMA.
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A.5. Detailed description of all block types
Table 8. Detailed description of all E3D block types

Block Type Value Description

version 0x0001 uint16: major (high), minor
(low)

lzma 0x0010 size: uint16, compressed data
Compression can be applied
done at any block-level.

meshes 0x1000 Section to describe meshes.

►mesh 0x1010 Describe a single mesh with a
unique set of attributes.

►►meshID 0x1020 (uint) Defines (within mesh) or
refers to (within meshNode) a
unique ID for the mesh.

►►meshBBox 0x1021 float: loX, loY, loZ, hiX, hiY, hiZ

►►attributes 0x2000 uint count (limit of 65,536
vertices, multiple meshes
should be used for more);
one interleaved and/or multiple
attributes sub-blocks.

►►►vertices 0x2010 3x (x,y,z) 32-bit floats

►►►verticesDbl 0x2011 3x (x,y,z) 64-bit doubles

►►►verticesQ 0x2018 3x (x,y,z) 16-bit signed integer
(quantized to meshBBox)

►►►normals 0x2020 3 components (x,y,z) stored as
signed 10_10_10_2
[https://www.khronos.org/registry/
OpenGL/extensions/ARB/
ARB_vertex_type_2_10_10_10_rev.txt]
format (10 bits per component:
-1..1 range mapped to -511..511)

►►►texCoords 0x2030 Texture coordinates — 2
components (u,v) as 32-bit
floats ranging from 0..1 for
covering the entire texture
(beyond that range for tiling)

►►►texCoords2 0x2031 Second set of texture
coordinates — 2 components
(u,v) as 32-bit floats ranging
from 0..1

►►►texCoords3 0x2032 Third set of texture
coordinates — 2 components
(u,v) as 32-bit floats ranging
from 0..1
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Block Type Value Description

►►►texCoords4 0x2033 Fourth set of texture
coordinates — 2 components
(u,v) as 32-bit floats ranging
from 0..1

►►►texCoords5 0x2034 Fifth set of texture
coordinates — 2 components
(u,v) as 32-bit floats ranging
from 0..1

►►►texCoords6 0x2035 Sixth set of texture
coordinates — 2 components
(u,v) as 32-bit floats ranging
from 0..1

►►►texCoords7 0x2036 Seventh set of texture
coordinates — 2 components
(u,v) as 32-bit floats ranging
from 0..1

►►►texCoords8 0x2037 Eighth set of texture
coordinates — 2 components
(u,v) as 32-bit floats ranging
from 0..1

►►►colors 0x2070 4 components (r,g,b,a) as 8-bit
integers (0..1 range mapped to
0..255)

►►►tangentsSign 0x2080 Tangents as 3 signed
components (x,y,z) in
10_10_10_2
[https://www.khronos.org/registry/
OpenGL/extensions/ARB/
ARB_vertex_type_2_10_10_10_rev.txt]
format (10 bits per component:
-1..1 range mapped to -511..511),
with the first extra bit used to
indicate sign for re-constructing
the co-tangent (orthogonal to
normal and tangent)

►►►tangentsBi 0x2081 Tangents and bi-tangents as 6
components 2x (x,y,z) signed
10_10_10_2
[https://www.khronos.org/registry/
OpenGL/extensions/ARB/
ARB_vertex_type_2_10_10_10_rev.txt]
format (10 bits per component:
-1..1 range mapped to -511..511)

►►►skin 0x2090 Reserved for defining skins
(bone IDs and weights)
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Block Type Value Description

►►►interleaved 0x2800 Define multiple attributes
interleaved
First a list of included attributes
as:
uint16 type, offset.
0 (uint16) is used to end the list,
followed by the total size of
attributes per vertex (also
uint16).

►►►custom 0x4000:0x5FFF Custom attributes definitions.

►►triFaces16 0x1030 Triangles (3 indices per
triangles — each unsigned, 16-
bit)

►►triFaces32 0x1031 Triangles (3 indices per
triangles — each unsigned, 32-
bit)

►►facesMaterials 0x1040 Start triangle (uint), count of
triangles (uint), material ID
(uint)
(this could be a reference to an
external materials table, e.g. if
description is omitted)

►►bones 0x1050 Reserved for bones definition

►►parts 0x1060 For each part:
(uint) Part ID; (uint) Start
triangle within triFaces list;
(uint) Count of triangles
For intra-model attribution.
Attributes stored/queried
separately in a database (or
embedded as special block
type).

nodes 0x3000 Section to define nodes
instancing meshes, cameras
and lights.

►meshNode 0x3010 A node to instance a mesh.

►►nodeID 0x3020 (uint) Defines or refers to a
node ID.

►►nodeName 0x3021 (String) Defines or refers to a
node name.

►►scaling 0x3030 Defines scaling transformation
for a node as
3x (x,y,z) 32-bit float scale
factors.
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Block Type Value Description

►►orientation 0x3031 Defines orientation
transformation for a node as
a quaternion 4x (w,x,y,z) 64-bit
doubles.

►►position 0x3032 Defines translation
transformation for a node as
3x (x,y,z) 64-bit doubles.

►cameraNode 0x3011 Reserved for defining a camera.

►lightNode 0x3012 Reserved for defining a light.

materials 0x8000 Section to define materials.

►material 0x8010 Describes the real-world
appearance of this material in
the scene.
Both classic Phong shading
model and Physically Based
Rendering (PBR) properties can
be specified.
All properties are optional,
defaulting to white non-
textured.

►►materialID 0x8011 (uint) Defines the ID for the
material
(referenced by FacesMaterials
bock).

►►materialName 0x8012 (String) Defines the name of the
material.

►►materialGroup 0x8013 (uint) An ID which can be used
to regroup compatible
materials where a given map
(e.g. phongDiffuseMap) is of
identical dimensions, allowing
to leverage array textures.
One material can then
correspond to a layer of the
array texture (e.g. the material
ID could be used as the layer
ID).
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Block Type Value Description

►►materialFlags 0x8020 bit 0: double-sided (default to
true) ;
bit 1: partly transparent (true if
textures not entirely opaque)
(default to false) 
bit 2: translucent flag (true if
textures contain siginificant
semi-opaque portions) (default
to false)
The distinction between partly
transparent and translucent will
suggest very different
approaches to handling
transparency.
bit 3: wrapU: tile texture
horizontally if set; clamp
otherwise (default to clamp) 
bit 4: wrapV: tile texture
vertically if set; clamp
otherwise (default to clamp)

►►opacity 0x8021 (float) 1 meaning fully opaque
(default); 0 fully transparent

►►refractionRelIndex 0x8022 (float) Relative refraction index
(Default to 1.0)
(refractive index / container
refractive index)
examples of refraction indices:
vacuum : 1.0, glass: 1.5; water:
1.333

►►reflectivity 0x8023 (float) Reflectivity (default to
0.0 — non-reflective)

►►phongShininess 0x8024 (float) Shininess (Phong Model
exponent: sharpness of
specular highlight)

►►diffuse 0x8030 3 floats (r,g,b) Diffuse (default to
white)

►►specular 0x8031 3 floats (r,g,b) Specular (default
to diffuse color or white)

►►emissive 0x8032 3 floats (r,g,b) Emissive (default
to black — non-emissive)

►►ambient 0x8034 3 floats (r,g,b) Ambient (default
to diffuse color or white)

►►emissiveMap 0x8100 Emissive map
(reference to a sharable texture
via a textureID sub-block)
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Block Type Value Description

►►normalMap 0x8101 Normal map
(reference to a sharable texture
via a textureID sub-block)

►►heightMap 0x8102 Height displacement map
(reference to a sharable texture
via a textureID sub-block)

►►ambientOcclusionMap 0x8103 Ambient occlusion map
(reference to a sharable texture
via a textureID sub-block)

►►phongDiffuseMap 0x8200 Diffuse & opacity map
(reference to a sharable texture
via a textureID sub-block)

►►phongSpecularMap 0x8201 Specular map
(reference to a sharable texture
via a textureID sub-block)

►►phongAmbientMap 0x8202 Ambient map
(reference to a sharable texture
via a textureID sub-block)

►►pbrRMAlbedo 0x8300 Albedo texture for
Roughness/Metalness PBR
model
(reference to a sharable texture
via a textureID sub-block)

►►pbrRMRoughnessMetalness 0x8301 Roughness/Metalness texture
for Roughness/Metalness PBR
model
(reference to a sharable texture
via a textureID sub-block)

►►pbrSpecDiffuseMap 0x8400 Diffuse Map for
Specular/Glossiness PBR model
(reference to a sharable texture
via a textureID sub-block)

►►pbrSpecSpecularGlossMap 0x8401 Specular/Glossiness Map for
Specular PBR model
(reference to a sharable texture
via a textureID sub-block)

textures 0x9000 Section to define textures.

►texture 0x9001 Definition of a single texture.

►►textureID 0x9002 Defines or refers to a sharable
texture using a unique ID.

►►textureName 0x9003 (String) Defines or refers to a
sharable texture by name.

►►texturePNG 0x9101 Embeds a PNG-encoded texture.

90



Block Type Value Description

►►textureJPG 0x9102 Embeds a JPEG-encoded
texture.

►►textureJPG2K 0x9103 Embeds a JPEG2000-encoded
texture.

animations 0xA000 Section reserved to define
animations.

A.6. Sample E3D models

Figure 56. sponza.e3d (14.9 mb – with all textures embedded) — Crytek Sponza Atrium from Morgan
McGuire’s Computer Graphics Archive [http://casual-effects.com/data/]
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Figure 57. sponza.e3d (14.9 mb – with all textures embedded) — Crytek Sponza Atrium from Morgan
McGuire’s Computer Graphics Archive [http://casual-effects.com/data/]

Figure 58. sponza.e3d (14.9 mb – with all textures embedded) — Crytek Sponza Atrium from Morgan
McGuire’s Computer Graphics Archive [http://casual-effects.com/data/]

NOTE
PBR (Physically Based Rendering) textures for Sponza Atrium available from
http://www.alexandre-pestana.com/pbr-textures-sponza/
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Figure 59. sibenik.e3d (880 kb) — Sibenik Cathedral from Morgan McGuire’s Computer Graphics Archive
[http://casual-effects.com/data/]

Figure 60. conference.e3d (1.61 mb) — Conference Room from Morgan McGuire’s Computer Graphics
Archive [http://casual-effects.com/data/]
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Figure 61. fireplace.e3d (2.44 mb) — Conference Room from Morgan McGuire’s Computer Graphics Archive
[http://casual-effects.com/data/]

Figure 62. bedroom.e3d (21.9 mb) — Bedroom from Morgan McGuire’s Computer Graphics Archive
[http://casual-effects.com/data/]
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Appendix B: GNOSIS Map Tiles
(with new ability to reference or embed 3D models, store point clouds)

Some of the experiments for this testbed initiative made use of GNOSIS Map Tiles to describe a
variety of tiled geospatial data. This included:

• Terrain elevation

• Imagery layers (which can be draped on terrain)

• Tiled vector data for street maps

• 3D buildings referenced from tiled points data

• 3D buildings extruded from 2D footprints polygons layers extruded based on attributes rules
(OpenStreetMap Simple 3D Buildings [https://wiki.openstreetmap.org/wiki/Simple_3D_buildings])

An earlier version of these specifications was originally described in Testbed 13 Vector Tiles ER. [13]
They can now also notably describe point clouds and tiles embedding a single 3D model.

NOTE The latest version of these specifications is maintained at http://ecere.com/gmt.pdf

These specifications allow for a binary representation of tiled geospatial data of different geospatial
data types:

• Tiled vector data

• Embedded and referenced 3D models

• Point clouds

• Imagery

• Coverages

Agnostic of CRS and Tiling Scheme

• Although only WGS84 and the GNOSIS Global Grid [http://docs.opengeospatial.org/per/17-041.pdf#

page=118] has been used so far in conjunction with these specifications (and some of the
terminology herein may assume this), nothing prevents the use of other CRS or tiling schemes.

NOTE

• Offsets and sizes are specified in decimal bytes.

• Despite MSB being network byte ordering, values are encoded as little-endian
(Least Significant Bit first) to avoid a very significant amount of byte swapping,
accommodating today’s most common architectures.

The tile data is prefixed by a 24 bytes header:
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B.1. GNOSIS Map Tile Header
Table 9. GNOSIS Map Tile Header

Offset Type Size Name

0 char 3 Signature: The 3
characters GMT

3 uint8 1 Major (Currently 1)

4 uint8 1 Minor (Currently 0)

5 uint8 1 Type (See Types table
below)

6 uint16 2 Flags (See Flags table
below)

8 uint64 8 Tile Key (tiling scheme
specific)
GNOSIS Global Grid
layout (from high to
low bits):
level (5 bits: 0..28),
latitude index (29 bits),
longitude index (30
bits)

16 uint32 4 Size of uncompressed
data excluding header

20 uint8 1 Encoding (See
Encodings table below)

21 uint 3 Compressed size (note:
3 bytes only)

24 Total size of header

If the tile is not flagged as empty or full, the actual tile data follows, based on geospatial data type.

B.1.1. Geospatial data types

The following Types are currently defined:

Table 10. Geospatial data types

Type Value Notes

Vector types

vectorPoints 0x10 Points vector type

vector3DPoints 0x11 This implies a 16-bit Z value per
point

vector3DPoints32 0x12 This implies a 32-bit Z value per
point

vectorLines 0x14 Lines vector type
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vector3DLine 0x15 This implies a 16-bit Z value per
point

vector3DLines32 0x16 This implies a 32-bit Z value per
point

vectorPolygons 0x18 Polygons are stored as a list of
triangles (CDT)

vector3DPolygons 0x19 This implies a 16-bit Z value per
point

vector3DPolygons32 0x1A This implies a 32-bit Z value per
point

vectorContours 0x1C Polygons are stored as contours

vector3DContours 0x1D This implies a 16-bit Z value per
point

vector3DContours32 0x1E This implies a 32-bit Z value per
point

vectorTopoContours 0x20 Polygons are stored as contours
with shared segments

vector3DTopoContours 0x21 This implies a 16-bit Z value per
point

vector3DTopoContours32 0x22 This implies a 32-bit Z value per
point

Imagery types

rasterARGB 0x30 Alpha, Red, Green, Blue (the
alpha in high order bit).
4 bytes per pixel (262,144 bytes
per 256x256 tile).

raster16Bit 0x31 signed 16-bit integer (131,072
bytes per 256x256 tile)

raster8Bit 0x32 1 unsigned byte per pixel
(65,536 per 256x256 tile)

Gridded coverage types

coverage8Bit 0x50 unsigned, 1 byte per pixel
(67,081 total)

coverage16Bit 0x51 signed, 2 bytes per pixel
(134,162 total)

coverageInt32 0x52 signed, 4 bytes per pixel
(268,324 total)

coverageFloat32 0x53 floating-point, 4 bytes per pixel
(536,648 total)

coverageDouble64 0x54 floating-point, 8 bytes per pixel
(1,073,296 total)
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coverageQuantized16 0x70 - 2x 64-bit double to specify
range (min, max) — Paeth filter,
image encoding e.g. PNG does
not apply to range
- signed 16-bit integer per pixel
(134,178 bytes per tile)
representing grid values
quantized to the min-max
range. 0 represents
(min+max)/2.

3D environment types

The geometry of pointCloud and models3D(Ground) is still technically vector/points:

pointCloud 0x90 For e.g. LAS files whereas ESRI
Shapefiles pointZ/S57 Sounding
Points will be vector3DPoints

models3D(Ground) reference or embed 3D models (e.g. E3D, glTF, COLLADA, FLT, 3DS, OBJ…)

models3D 0xA0 This references external 3D
models — 16-bit altitude per
point, 32-bit LevelModelID in
point data
Models can be geotypical or
geospecific.

models3DGround 0xA1 This references external 3D
models — dropped to ground
(no Z), 32-bit LevelModelID in
point data
Models can be geotypical or
geospecific.

embedded3DModel 0xB0 This embeds a single 3D model
and is purely 3D geometry
(treated similarly to
vector3DPolygons)
Model is geospecific.

B.1.2. Flags

The following Flags are currently defined:

Table 11. Flags

Flag Position (from lsb) Description

All types

full 0 The tile is full (finer zoom levels
within the pyramid need not be
defined).

empty 1 The tile is empty (finer zoom
levels within the pyramid need
not be defined).
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Flag Position (from lsb) Description

Points, Referenced 3D Models & Point Clouds

pointsDataId 2 Separate ID instead of elements
list (more efficient when most
points are individual).
Duplicates are allowed
(quantization can bring to same
point).

rgb 3 Color information

alpha 4 Opacity information

All vector types, Point Clouds (for intensity)

measure 5 Measurement information (e.g.
PointM)

measure32 6 Measurement information (32
bit)

3D Polygons and Embedded 3D Model

texCoords 8 Texture coordinates

normals 9 Normals information

tangents 10 Tangents information

Referenced 3D Models

yaw 8 Orientation information

yawPitchRoll 9 Separate yaw, pitch, roll
orientation information

scale 10 Scaling information

xyzScale 11 Separate x, y, z scaling
information

Point clouds (note: id is used for classification)

scanInfo 8 Scan information

The following Encodings are currently defined:

Table 12. Encodings

Encoding Value Description

uncompressed 0x00 The raw data without any
special encoding.

deflate 0x01 The data is compressed with
deflate (zlib) algorithm.

lzma 0x02 The data is compressed with
LZMA.

jpeg2000 0x80 The data is compressed as a
JPEG-2000 image.
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Encoding Value Description

png 0x81 The data is compressed as a
PNG image.

paethLZMA 0x82 A Paeth filter* is applied; then
the data is compresed with
LZMA.

B.2. Compact tiled vector data representation
For more details of how the compact tiled vector data works, see also its ECON textual representation
in the OGC Testbed-13: Vector Tiles Engineering Report [http://docs.opengeospatial.org/per/17-041.pdf] -
Appendix C [13].

B.2.1. Compact storage as localized vertices with accuracy proportional to
scale

• Coordinates are specified as two 16-bit signed integer per vertex, the first integer representing
the latitude, and the second the longitude — like ISO 6709:1983 [https://en.wikipedia.org/wiki/

ISO_6709]. The full range (-32,767..32,767) of these integers are linearly mapped to the geospatial
extent of the tile.

• Preserving proper topology with varying accuracy was a major challenge which has been
solved in the GNOSIS vector pipeline.

• All points used by the tile are specified in one single array.

B.2.2. Pre-triangulated for high performance GPU rendering and optimal
service-to-display processing

• Polygons are described as triangles since tesselation is a required step for hardware accelerated
rendering of polygons which are either concave or feature inner holes. The tesselation process
can add to the initial loading/processing time before incoming geometry can be visualized on
the screen, and therefore this delay is minimized.

• Constrained Delaunay Triangulation [https://en.wikipedia.org/wiki/Constrained_Delaunay_triangulation]
is performed to produce an optimal tesselation which maximizes the fill rate.

B.2.3. Enforced topologically correct representation (shared vertex indices)

• Lines and polygons provide a list of 16-bit indices into the array of vertices to be re-used by
multiple elements sharing the same edges, or by multiple pieces of the same element
connecting. This ensures proper topology as common edges and the spatial relationship
between different elements are preserved, and makes the representation suitable for both high
performance visualization as well as analysis.

• For lines, the indices of one single element make up a single line string

• For polygons, the indices of one single element make up a list of triangles (3 indices per
triangle).

• The polygon indices making up triangles are always specified in a counter-clockwise manner.
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B.2.4. Unique feature identifier

• Elements listing indices making up a given feature are uniquely identified by a 64-bit ID.

• Elements are specified by the ID, the start index (in the list of indices for lines and polygons; in
the list of points for points) and the count of indices/points used.

B.2.5. Center lines for curved area labels

• Since computing the center lines of curved polygons is better done in regard to the overall
shapes before tiling occurs, this information can optionally be included together with polygon
geometry.

• This is useful for example to render labels following the curve of those areas, such as typically
seen on lakes and large rivers.

Figure 63. Hexadecimal view of a sample GMT encoded vector tile with points geometry

B.3. Binary layout for Points, Point Clouds and
Positioned & Oriented 3D Models tiles
Table 13. Binary layout for Points, Point Clouds and Positioned & Oriented 3D Models tiles

Offset Type Size Name Description

0 int 4 numPoints The number of
vertices in the tile

Vertices (numPoints occurrences)

4+n*12 int64 8 id (If pointsDataId
flag is set)
ID identifying the
feature the
following point is
part of (in the data
store’s geometry
table).

pointsDataId flag
set:
4+n*12
pointsDataId flag
not set:
4+n*4

int16 2 latitude Latitude mapped
from the tile’s
latitude extent to
-32,767 to 32,767,
with the bottom
(south) edge being
at -32,767
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Offset Type Size Name Description

6+n*4 int16 2 longitude Longitude mapped
from the tile’s
longitude extent to
-32,767 to 32,767,
with the left (west)
edge being at
-32,767

(end of vertices data)

If points dataId flag is not set)*

4+numPoints*4 int 4 numElements The number of
elements in the
tile

Elements (numElements occurrences)

8+numPoints*4
+n*16

int64 8 id ID identifying the
feature the points
within this
element are part
of (in the data
store’s geometry
table).

16+numPoints*4
+n*16

int 4 start Index to the first
vertices for this
element

20+numPoints*4
+n*16

int 4 count Number of
consecutive
vertices making
up element

If altitude data is available

double 8 loAlt Minimum altitude
(relative to geoid).

double 8 hiAlt Maximum altitude
(relative to geoid).

int16 / int32 (2 or 4) *
numPoints

altitudes min..max as
-32767..32767
(32 bit if
vector3DPoints32)

If measurement data is available

double 8 loMeasure Minimum
measurement.

double 8 hiMeasure Maximum
measurement.
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Offset Type Size Name Description

int16 / int32 (2 or 4) *
numPoints

measures min..max as
-32767..32767
(32 bit if
measure32 flag
set)

If color and/or alpha information is available (repeats numPoints times)

byte 1 alpha Opacity value
(if alpha flag is set)

byte 3 r, g, b Red, Green and
Blue. (if color flag
is set)

If model flag is set, this points layer references 3D models

uint32 4 * numPoints modelIDs High 5 bits: model
level
Low 27 bits: model
The model level is
the coarsest zoom
level at which this
model is used: it
can be the same as
the one for a
lower level tile if
this finer tile does
not refine the
model, or does so
with additions.

If model flag is set and orientation information is available (repeats numPoints times)

uint16 2 yaw -32767 (-360°) ..
32767 (360°)
( North -→ East
rotation of a
compass,
clockwise when
looking down
towards the
surface of the
globe, counter-
clockwise when
looking up
towards the sky
(positive y axis) )
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Offset Type Size Name Description

uint16 2 pitch (if separate ypr
flags is set)
Counter-clockwise
when looking
towards the East
(positive x axis)
Rotation angles
are applied in the
yaw, pitch, roll
order.

uint16 2 roll (if separate ypr
flags is set)
Counter-clockwise
when looking
towards the North
(positive z axis)
Rotation angles
are applied in the
yaw, pitch, roll
order.

If model flag is set and scaling information is available (repeats numPoints times)

uint16 2 sx or scale (mul’ed by 256, e.g.
512=2x)

uint16 2 sy (if xyz scaling flag
is set)

uint16 2 sz (if xyz scaling flag
is set)

If model flag is set

double 8 * 6 extent Overall extent of
referenced models
(not including
models from other
tiles spilling into
this one)
loLat, loLon, loAlt,
hiLat, hiLon, hiAlt

int 4 numSpillTiles The number of
tiles whose models
extend over this
tile

For each tile (of same level) whose models spill onto this tile:
(they will only need to be considered if not already selected for display)

uint64 8 spillTileKey Identifier of tile
spilling onto this
one.
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Offset Type Size Name Description

* * spillData All information
for those points
whose models spill
onto this tile (i.e.
all fields fro
'numPoints' to
'extent'
inclusively).

If point cloud flag is set and scan information is available

uint16 2 * numPoints scanInfo (from lsb to msb)
returnNumber (3
bits)
numberOfReturns
(3 bits)
scanDirection (1
bit)
edgeOfFlight (1
bit)
angle (8 bit)

B.3.1. 3D Models

The following rules control how embedded or referenced 3D models are positioned relative to the
Earth, when the WGS84 CRS is in used.

• The units are assumed to be in meters.

• The up axis of the model aligns with going upwards from the ground.

• The right axis of the model aligns with the East.

• The axis going away into the distance aligns with the North.

• The East and North axis are understood to be tangent to the Earth (not following the curvature)
at the local origin of the mesh (0, 0, 0), where they are instantiated (the tile origin in the case of
embedded models, or the specified geospatial point if referenced)

• Unless animation is needed, embedded or referenced 3D models should consist of a single mesh
and not apply any transformations. Most importantly, the origin of the mesh data should be
relative to its geospatial position, not absolute in relation to the world.

Figure 64. Hexadecimal view of a sample GMT encoded vector tile with lines geometry
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B.4. Binary layout for Lines tiles
Table 14. Binary layout for Lines tiles

Offset Type Size Name Description

0 int 4 numPoints The number of
vertices in the tile

Vertices (numPoints occurrences)

4+n*4 int16 2 latitude Latitude mapped
from the tile’s
latitude extent to
-32,767 to 32,767,
with the bottom
(south) edge being
at -32,767

6+n*4 int16 2 longitude Longitude mapped
from the tile’s
longitude extent to
-32,767 to 32,767,
with the left (west)
edge being at
-32,767

(end of vertices data)

4+numPoints*4 uint8 (numPoints+7)/8 flags A compact bits
array of flags (1 bit
per vertex)
indicating
whether the
vertex is artificial
(i.e not present in
source data). The
least significant bit
represents the
first of the up to 8
vertices mapped
to each byte of
flags.

4+numPoints*4
+(numPoints+7)/8

int 4 numIndices The number of
indices in the tile

8+numPoints*4
+(numPoints+7)/8

uint16 numIndices * 2 indices 16-bit indices into
the vertex table to
be referenced by
elements

8+numPoints*4
+(numPoints+7)/8
+numIndices*2

int 4 numElements The number of
elements in the
tile

Elements (numElements occurrences)
Each element defines a line string as a series of indices.
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Offset Type Size Name Description

12+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int64 8 id ID identifying the
feature the lines
within this
element are part
of (in the data
store’s geometry
table).

20+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int 4 start Index to the first
index making up
the lines for this
element

24+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int 4 count Number of
consecutive
indices making up
the lines for this
element

28+numPoints*4
+(numPoints+7)/8
+numIndices*2
+numElements*16

Total Size

NOTE This table does not yet describe the layout for altitude and measurement values.

Figure 65. Hexadecimal view of a sample GMT encoded vector tile with polygons geometry

B.5. Binary layout for Polygons tiles
Table 15. Binary layout for Polygons tiles

Offset Type Size Name Description

0 int 4 numPoints The number of
vertices in the tile

Vertices (numPoints occurrences)
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Offset Type Size Name Description

4+n*4 int16 2 latitude Latitude mapped
from the tile’s
latitude extent to
-32,767 to 32,767,
with the bottom
(south) edge being
at -32,767

6+n*4 int16 2 longitude Longitude mapped
from the tile’s
longitude extent to
-32,767 to 32,767,
with the left (west)
edge being at
-32,767

(end of vertices data)

Polygon Vertex Flags (numPoints occurrences)
Each vertex has an associated flag indicating whether it lies on the tile boundary and whether
edges stemming from it were in the source data (see section below explaining vertex flags).

4+numPoints*4+n
(& 0x01)

bit single bit onBottomEdge Set if this vertex
lies on the bottom
tile boundary

4+numPoints*4+n
(& 0x02)

bit single bit onLeftEdge Set if this vertex
lies on the left tile
boundary

4+numPoints*4+n
(& 0x04)

bit single bit onTopEdge Set if this vertex
lies on the top tile
boundary

4+numPoints*4+n
(& 0x08)

bit single bit onRightEdge Set if this vertex
lies on the right
tile boundary

4+numPoints*4+n
(& 0x10)

bit single bit downIn Set if an edge from
this vertex going
down originates
from source data

4+numPoints*4+n
(& 0x20)

bit single bit leftIn Set if an edge from
this vertex going
left originates
from source data

4+numPoints*4+n
(& 0x40)

bit single bit upIn Set if an edge from
this vertex going
up originates from
source data

4+numPoints*4+n
(& 0x80)

bit single bit rightIn Set if an edge from
this vertex going
right originates
from source data
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Offset Type Size Name Description

(end of vertex flags)

4+numPoints*5 int 4 numIndices The number of
indices in the tile

8+numPoints*5 uint16 numIndices * 2 indices 16-bit indices into
the vertex table to
be referenced by
elements

8+numPoints*5
+numIndices*2

int 4 numElements The number of
elements in the
tile

Elements (numElements occurrences)
Each element defines polygons as a series of triplets of indices, each defining counter-clockwise
triangles.

12+numPoints*5
+numIndices*2
+n*16

int64 8 id ID identifying the
feature the
polygons within
this element are
part of (in the data
store’s geometry
table).

20+numPoints*5
+numIndices*2
+n*16

int 4 start Index to the first
index making up
the polygons for
this element

24+numPoints*5
+numIndices*2
+n*16

int 4 count Number of
consecutive
indices making up
the polygons for
this element

(end of elements data)

28+numPoints*5
+numIndices*2
+numElements*16

int 4 numCenterLines The number of
center lines
defined for the
tile. 0 if center
lines are not
defined.

Center Lines (numCenterLines occurrences)
Each center line defines a line string as a series of vertices and thickness for the polygon at each
vertex.
A center line of a single vertex is used if the centerline falls outside the tile, where the thickness
can be thought of as a radius from that point. In this case the normalized values of the vertex will
extend beyong -1.0..1.0.
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Offset Type Size Name Description

32+numPoints*5
+numIndices*2
+numElements*16
+n*16

int64 8 id ID identifying the
feature for which
a center line is
being defined (in
the data store’s
geometry table).

40+numPoints*5
+numIndices*2
+numElements*16
+n*16

int 4 count Number of
vertices making
up this centerline.
1 for a point +
radius.

44+numPoints*5
+numIndices*2
+numElements*16
+n*16

float 4 length Length of this
segment of the
center-line in
units relative to
the tile’s latitude
and longitude
extent:
sqrt ( (proportion
of tile’s latitude
delta)^2 +
(proportion of
tile’s longitude
delta)^2) )
0 for a point +
radius describing
a centerline
outside this tile.

Vertices for all centerlines (number of occurrences based on cummulative vertices count)

32+numPoints*5
+numIndices*2
+numElements*16
+numCenterlines*
16
+n*12

float 4 latitude Latitude mapped
from tile’s latitude
extent to the -1.0 ..
1.0 range, with the
bottom (south)
edge being at -1.0.
This value can be
outside the
-1.0..1.0 range
when describing a
centerline outside
of the tile, in
which case a
single point is
used.
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Offset Type Size Name Description

36+numPoints*5
+numIndices*2
+numElements*16
+n*12

float 4 longitude Longitude mapped
from tile’s
longitude extent to
the -1.0 .. 1.0
range, with the left
(west) edge being
at -1.0.
This value can be
outside the
-1.0..1.0 range
when describing a
centerline outside
of the tile, in
which case a
single point is
used.

40+numPoints*5
+numIndices*2
+numElements*16
+n*12

float 4 radius Distance to the
edges of the
polygon at this
point of the
centerline (half
thickness or
radius for a single
point).
Relative to the
tile’s latitude and
longitude extent:
sqrt ( (proportion
of tile’s latitude
delta)^2 +
(proportion of
tile’s longitude
delta)^2) )

32+numPoints*5
+numIndices*2
+numElements*16
+numCenterlines*
16
+totalCenterlineVe
rtices*12

Total Size

NOTE
This table does not yet describe the layout for altitude and measurement values.
Contours and Topological Contours representation remain to be defined as well.

B.5.1. Vertex flags for identifying tile boundaries and artificial edges

• In order to avoid rendering unwanted edges at the tile boundaries of polygons, flags are marked
at each vertex.
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• This feature is also used to avoid similar edges problems at the dateline with global datasets

• Each vertex actually has two sets of flags, represented in the Tiles API by the PolygonVertexFlags
class.

• The first set of flags indicates whether a vertex is on any of a tile’s 4 boundaries (top, left,
bottom, right). These flags are also useful for recombining tiles, by identifying vertices at a tile’s
border. If an edge links two vertices flagged as being on the same edge, it is deemed to be an
artificial edge, unless explicitly marked as being an actual edge by the second set of flags.

• The other direction flags as they are named in the Tiles API indicate whether there is actually a
real edge (i.e. a segment of a polygon contour not introduced by tiling or by wrapping around
the dateline) leaving from the flagged vertex going into each 4 directions (up, left, down, right).
These flags should only set or inspected in relation to the corresponding set of edge flags:

◦ For on the right edge and on the left edge flags, the up and/or down edge is not artificial flags
can be set.

◦ For on the top edge and on the bottom edge flags, the left and/or right edge is not artificial
flags can be set.

• The PolygonVertexFlags provides a simple draw() method to determine whether an edge from
one point to another should be drawn or not. The ordering of the vertices matter: the method
should be called with a point counter-clockwise to the object on which it is invoked. This is
because the flags mark whether an actual edge from the source data passed through each
vertex coming from a certain direction.

• The PolygonVertexFlags class is implemented as such:

public class PolygonVertexFlags : byte
{
public:
   EdgeFlags onEdge:4;
   DirFlags d:4;
   bool draw(PolygonVertexFlags b)
   {
      bool drawEdge = true;
      EdgeFlags cf = onEdge & b.onEdge;
      if(cf && (
         (cf.right  && (!d.upIn    && !b.d.downIn )) ||
         (cf.top    && (!d.leftIn  && !b.d.rightIn)) ||
         (cf.left   && (!d.downIn  && !b.d.upIn   )) ||
         (cf.bottom && (!d.rightIn && !b.d.leftIn ))))
         drawEdge = false;
      return drawEdge;
   }
};

• For line features, a single flag is used, set to true if the vertex was not in the original data. In the
binary representation, a single bit is used per vertex.
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NOTE

When encoded using an image compression format such as PNG or JPEG-2000,
which already defines a way to encode the image and dimensions, only the
geospatial mapping and geometry of the image is relevant from what is described
below.

B.6. Embedded 3D Models
The embedded3DModel (0xB0) data type can be used to describe geospecific features, such as 3D
terrain as pre-triangulated alternative to compressed coverage heightmaps, or other models
covering a large area (e.g. infrastructure) to be split in tiles.

• Texture coordinates can be optionally automatically computed from tile (e.g. imagery).

• The payload of the GNOSIS Map Tile is directly the mesh definition.

• The local origin (0, 0, 0) of the model is relative to the center of tile.

B.7. Binary layout for Imagery tiles
Table 16. Binary layout for Imagery tiles

Offset Type Size Name Description

0 uint16 2 width Width of the data
(typically 256)

2 uint16 2 height Height of the data
(typically 256)

4 (based on format) width * height *
sizeof(type)
(typically 262,144)

data The first pixel has
its upper-left
corner at the
upper-left (north-
west) corner of the
tile, and the next
pixels fill a
scanline to the
East.

The next scanline
is south of the first
one, and so on.
Each pixel
represents a color
for the entire pixel
sampled from the
center or average,
with the 256 x 256
squares to be
entirely within the
tiles
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B.8. Binary layout for gridded Coverage tiles
Table 17. Binary layout for gridded Coverage tiles

Offset Type Size Name Description

0 uint16 2 width Width of the data
(typically 259)

2 uint16 2 height Height of the data
(typically 259)
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4 (based on format) width * height *
sizeof(type)
(typically 67,081)

data The first value
reflects a sample
1/256th of the tile’s
latitude difference
(height) and
longitude
difference (width)
away towards the
north-west
direction from the
upper-left (north-
west) corner. The
next values fill a
scanline to the
East, going 1/256th
past the tile to the
East, for a total of
259 samples
across.

The next scanline
is south of the first
one, and so on for
a total of 259
scanlines, with the
last scanline
1/256th of the tile’s
latitude difference
south of the
bottom (south)
edge.

The value are
expected to be
sampled at exact
location (e.g. at the
corners of the
imagery 'pixels').
The values in
different cells for
the same
geospatial location
(e.g. on the tile
boundary, as well
as for the 1 value
buffer around
each tile) should
match exactly, and
facilitate dealing
with partial data
during
visualization or
analysis (e.g. to
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For coverages, NODATA values are encoded as -32,767.

B.9. Paeth filtering
Imagery and coverages can be filtered using a Paeth filter before being compressed with LZMA. For
16 bit rasters such as the coverageQuantized16 format used for encoding terrain elevation data, this
achieves significantly better compression than the Paeth filter within the PNG format because it
treats the 16 bit integers as a whole rather than as individual bytes. It also seems to compress ARGB
rasters better than PNG.

The following is an eC reference implementation for the Paeth filter encoding:

// a: left, b: above, c: upper left
static inline int paethPredictor(int a, int b, int c)
{
   int p = a + b - c;
   int pa = Abs(p - a);
   int pb = Abs(p - b);
   int pc = Abs(p - c);

   return pa <= pb && pa <= pc ? a : pb <= pc ? b : c;
}

static inline uint16 intToUint16(int x)
{
   x = (short)(uint16)(((uint) x) & 65535);
   return x < 0 ? ((-x-1)*2 + 1) & 65535 : (x * 2) & 65535;
}

static inline int uint16ToInt(uint16 x)
{
   return (x & 1) ? -((int)x-1)/2-1 : (int)x/2;
}

static inline byte intToByte(int x)
{
   return (byte)(((uint) x) & 255);
}

static inline int byteToInt(uint16 x)
{
   return (byte)(((uint) x) & 255);
}

static void encodePaeth(void * src, uint16 width, uint16 height, Format format)
{
   int x, y;

   if(format == raster16)
   {
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      short * in = src;
      uint16 * temp = new uint16[width * height];
      uint16 * out = temp;

      for(y = 0; y < height; y++)
      {
         short a = 0, c = 0;

         for(x = 0; x < width; x++, out++, in++)
         {
            short d = *in, b = (y > 0) ? in[-width] : 0;
            int r = (int)d - paethPredictor(a, b, c);

            *out = intToUint16(r);
            a = d, c = b;
         }
      }
      memcpy(src, temp, width*height*2);
      delete temp;
   }
   else if(format == rasterARGB)
   {
      char * in = src;
      byte * temp = new byte[width * height * 4];
      byte * out = temp;

      for(y = 0; y < height; y++)
      {
         byte a = 0, c = 0;
         for(x = 0; x < width*4; x++, out++, in++)
         {
            byte d = *in, b = (y > 0) ? in[-width*4] : 0;
            int r = (int)d - paethPredictor(a, b, c);

            *out = intToByte(r);
            // NOTE: These are the values for the next iteration
            if(x >= 3) { a = in[-3]; if(y > 0) c = in[-width*4-3]; }
         }
      }
      memcpy(src, temp, (int)width*height*4);
      delete temp;
   }
}

static void decodePaeth(void * src,  uint16 width, uint16 height, Format format)
{
   int x, y;

   if(format == raster16)
   {
      uint16 * in = src;
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      short * temp = new short[width * height];
      short * out = temp;

      for(y = 0; y < height; y++)
      {
         short a = 0, c = 0;

         for(x = 0; x < width; x++, out++, in++)
         {
            short b = (y > 0) ? out[-width] : 0;
            int r = (int)uint16ToInt(*in) + paethPredictor(a, b, c);
            short d = (short)r;

            *out = d;
            a = d, c = b;
         }
      }
      memcpy(src, temp, width*height*2);
      delete temp;
   }
   else if(format == rasterARGB)
   {
      byte * in = src;
      byte * temp = new byte[width * height * 4];
      byte * out = temp;

      for(y = 0; y < height; y++)
      {
         byte a = 0, c = 0;
         for(x = 0; x < width*4; x++, out++, in++)
         {
            byte b = (y > 0) ? out[-width*4] : 0;
            int r = (int)byteToInt(*in) + paethPredictor(a, b, c);
            byte d = (byte)(char)r;

            *out = d;
            // NOTE: These are the values for the next iteration
            if(x >= 3) { a = out[-3]; if(y > 0) c = out[-width*4-3]; }
         }
      }
      memcpy(src, temp, (int)width*height*4);
      delete temp;
   }
}
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Appendix C: Geospatial features styling with
support for 3D and AR

C.1. Conceptual Styling Model
This annex presents the conceptual model used for portraying Augmented Reality content in this
initiative, which is based on a classic approach to style GIS features, but also applies to portraying
geospatial data in 3D views. The usage scenarios covered during the testbed focused on geospatial
Augmented Reality rather than computer vision Augmented Reality, and thus did not require any
extensions beyond those capabilities. It was suggested that ARML could inspire future extensions
specific to AR to integrate to this portrayal conceptual model, covering other scenarios with
requirements specific to AR.

A similar conceptual model and the the GNOSIS Cartographic Map Style Sheets (CMSS) description
of styles was also used during Testbed-14 portrayal work package (See 18-029 OGC Testbed-14:
Symbology Engineering Report), as well as for the Vector Tiles Pilot. Objectives of the GNOSIS CMSS
encoding (which was improved upon during Testbed-13 and Testbed-14) include maximizing
expressiveness. A key concept in Testbed-14 work package is that styles described by the model
could be encoded in different ways (GNOSIS CMSS being just one example), and the conceptual
model exists to facilitate interoperability between multiple encodings, applications and rendering
engines.

Figure 66. UML diagram of Styling Model
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C.1.1. Portrayal Rules

Fundamentally, the conceptual model is a list of portrayal (styling) rules.

This list of rules can be made up of concatenated 'sheets' (each made up of a number of rules)
stacked in a specific order, with the sheets being applied last (on top of the stack) ending up at the
end of the list. This enables users to further customize the default styles from maps provided to
them with default styles (e.g. one default style sheet in a GeoPackage or from a WFS GetStyles
request, and a style sheet in the application).

The order of the rules in that list determines the order in which the styles are being applied, so that
if a same style (symbolizer) is applied again from a rule later in the list, the style is overridden by
the new value.

NOTE
Unlike e.g. SLD/SE, this order of rules is completely unrelated to the visual priority
or z-order, and repeating a rule with different styles do not result in different things
being rendered a second time

A rule is made up of a series of styles to be applied (see Styles), as well as an optional expression
defining a set of selectors (see expressions) which determine (by resolving to a boolean value)
whether the associated rule should be applied (if it does not have any selectors, or if the filtering
expression resolves to a TRUE value) or not (if the filter resolves to FALSE) to a given data layer and
data record (if applicable).

In addition to the possibility of listing rules in a flat layout, the model supports nested rules. By
nesting a rule, these sub-rules are only considered if the selectors for the parent rule has been
determined to match. These nested rules specify additional selectors, which if they also resolve to
TRUE will trigger additional styles to be applied. This tremendously facilitates organizing
cartographic style sheets and allows making them considerably more expressive. Furthermore, it
facilitates implementing an optimal rendering engine by completely ignoring these sub-rules if the
parent rules are ignored.

Conceptually, nested rules could be represented in a flat layout by repeating all selectors of the
parent rules for each dependent rules. To translate a flat layout back into a nested layout however
will result in a different organization based on the assumptions made. For example, one could
produce a nested layout based on the order in which the multiple selectors for a given rule are
listed; or one could prioritize certain types of selectors (e.g. layer identifier first, then scale, then
record values…). This may result in a nested layout less representative of the intent of the
cartographer; or less optimal for evaluation at run-time unless a preliminary analysis is done by
the engine. This is the rationale behind including rules nesting capability as part of this conceptual
model, to be capable of preserving this intent.

C.1.2. Rendering styles (a.k.a. symbolizers)

A rendering style defines a visual attribute whose value can be modified.

Multiple styles can be assigned within a single rule.

A given style applies to a determined set of feature classes.
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The value for a given style is of a specific expression type.

It should be possible to set only the style of a sub-element of an object type, e.g. line.color = red .

If the type of the value is a list, it should be possible to add to it, rather than only replace it entirely,
e.g. label.elements += Text { Name }.

Furthermore, adding to a null list should result in a list containing only that added element.

C.1.3. Markers, Labels, and GraphicalElements

Markers are typically used together with point features, and have precise positions where some
symbol (whether an image, or vector shapes) will be displayed.

Labels on the other hand have some flexibility and will be positioned by some label placement
algorithms, following certain rules (e.g. priority of importance, minimum and maximum distance
between them etc.). Different types of vector features (points, lines, polygons) will follow different
placement methodologies, which will offer different configuration parameters.

In this styling model, both markers and labels can be associated with a list of GraphicalElements
(visual assets) which can be text, an image, vector shapes or a hierarchy combination of any or all
these. These elements make up the visual representation of the marker or label at its position. For
3D views, 2D elements would typically always face the user, as a billboard. It could also be possible
to associate 3D elements such as 3D models or 3D shapes with these markers or labels. For all the
properties of these graphical elements, notably for textual content, expressions can be used which
can refer for example to data attributes associated with the feature being styled.

C.1.4. Expressions

Expressions are used both for selectors (filters determining whether a given rule applies) as well as
for styles values.

A selector is an expression which shall resolve to either TRUE or FALSE, and determines whether a
rule is to be applied or not.

CMSS Encoding examples

#Roads // Equivalent to [lyr.id='Roads']

[viz.sd>10M][FEATCODE=123]

When resolving to a boolean value an expression which is either:

• null (unset)

• a numeric 0 (whether integer or real)

• or an enumeration value assigned the integer value 0 (e.g. false)

evaluates to false;
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all other expressions evaluate to true.

Primary Expressions

Table 18. Primary Expressions

Kind of expression Description CMSS Encoding examples

identifier An identifier of a certain kind
resolving to a value
([l|L][l|L|d]*) (see Identifiers)

FEATCODE

text A fixed UTF-8 character string 'Parking'

integer An integral number (up to 64
bit)

10

real A real number
(IEEE floating-point, up to
double precision)

3.14159

object If some elements are omitted,
they inherit default values (0 or
null, but which can be
interpreted in a special way
based on the object class)

Objects classes can support
inheritance and the definition
of an object can include the
specification of a derived class
for this object

{ hour = 16, minutes = 30 }

Text { Name }

Circle { radius = 5, color = red }

list A list of expressions [1, 2, 3]

operation A number of operands
combined by an operator (see
Operators)

viz.sd > 10M

variable If variables are supported, the
encoding should define default
value for them which should
produce reasonable styling.

@colorScheme

Identifiers

Table 19. Identifiers

Kind of identifier Description CMSS Encoding examples

null An identifier representing an
unset value

[someValue!=null]

enumValue A valid value for expected for
an enumeration type

[true]

layer An object describing the layer
being styled

lyr
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Kind of identifier Description CMSS Encoding examples

identifier A unique identifier to reference
the layer

[lyr.id = Roads] (equivalent:
#Roads)

featureClass The type of geospatial data [lyr.fc = vector]

vectorType The type of vector data [lyr.vt = points]

geometry The geometry of the entire layer
(a VectorFeatureCollection)

lyr.geom

visualization An object describing the
current state of the
visualization

viz

scaleDenominator The denominator for a fraction
representing the scale /
resolution at which the data is
being looked at

[viz.sd > 10M]

time The current time of
visualization
(This contains the time
elements of both date as well as
timeOfDay)

[viz.time > { 2018, june, 30, 16,
30 }]

date The current date of
visualization

(year, month, day)

[viz.date > { 2018, june, 30 }]

timeOfDay The current time of
visualization

(hours, minutes, seconds)

[viz.timeOfDay > { 16, 29, 59 }]

record An object describing the
current record (vector data)

rec

id The unique ID identifying the
record

[rec.id = 1234]

geometry The actual geometry of the
record
(a single VectorFeature)

centroid(rec.geom)

(data attributes) Data attributes associated with
the record

FEATCODE
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Kind of identifier Description CMSS Encoding examples

records A list of all records in the layer [featcode = 'bay' &
iterate(or, records,
it.featcode = 'ocean' &
intersect(it, rec.geom))]

True if this is a bay intersecting
with an ocean in another
record

Operators

Table 20. Operators

Operator Operands Count Description CMSS Encoding SLD/SE

Logical

and 2 Logical
conjunction

& And

or 2 Logical
disjunction

| Or

not 1 Logical negation ! Not

Comparison

equal 2 Equality = PropertyIsEqualTo

notEqual 2 Non-equality != PropertyIsNotEqu
alTo

greater 2 Greater than > PropertyIsGreater
Than

lesser 2 Lesser than < PropertyIsSmaller
Than

greaterEqual 2 Greater or equal
to

>= PropertyIsGreater
ThanOrEqualTo

lesserEqual 2 Lesser or equal to <= PropertyIsLessTha
nOrEqualTo

Text-specific

stringContains 2 Contains the sub-
string

~

stringStartsWith 2 Starts with the
sub-string

^

stringEndsWith 2 Ends with the sub-
string

$

stringNotContains 2 Does not contain
the sub-string

!~
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Operator Operands Count Description CMSS Encoding SLD/SE

stringNotStartsWit
h

2 Starts with the
sub-string

!^

stringNotEndsWit
h

2 Does not end with
the sub-string

!$

Arithmetic

add 2 For numeric
values: addition
For text values:
concatenation

+ Add

sub 2 Subtraction - Sub

mul 2 Multiplication * Mul

div 2 Division / Div

intDiv 2 Integer division idiv

mod 2 Modulo
(remainder)

% Mod

Others

parentheses 1 Operation priority ( )

conditional 3 condition-then-
else expression

viz.sd>10M?1:3

in 2 True if the left
operand is within
the right operand
list

TYPE in [1,2,3]

functionCall fn,param* (See Functions) length(r.geom)

Functions

Examples of functions:

• Text Manipulation: e.g. format(), replace()

• Geometry Operation: area(), length(), centroid()

• Spatial Operations: intersects(), contains()

• Iteration: iterate() to iterate over a list to evaluate an expression (it representing the current
iterator)

C.2. GNOSIS Cascading Map Style Sheet encoding
example
An example of cascading portrayal rules used for styling OpenStreetMap roads, buildings and annotations
(labels) in the AR experiments

#buildings
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{
   visibility = false;
   zOrder = 8;
   [viz.sd <= 127000]
   {
      fill = { 0xe2d8d8 },
      stroke = { width = 0 },
      visibility = true
   }
   [viz.sd <= 16000]
   {
      stroke = { darkGray, width = 0.5 },
      visibility = true,
      label = { [
         Text { name, color = white, font = { 'Tahoma', size = 14, outline = { black,
size = 3 } } }
      ] }
   }
   // This rule enables 3D extrusion of buildings, with a default height of 1.75
meters,
   // but enabling the recognition of the OSM Simple Buildings attributes description
   // (e.g. building:height, building:levels, building:min_level, building:min_height)
   [viz.sd <= 4000]
   {
      visibility = true,
      fill = { 0xe2d8d8 },
      extrude = { height = 1.75, raiseWithTerrain = true, osmBuildings = true }
   }
}

#roads
{
   stroke = { lightGray, width = Meters { 3 }, casing = { black, width = 1.0 } };
   label = { [
      Text { name, color = white, font = { 'Tahoma', size = 14, outline = { black,
size = 3 } } }
   ] };

   [viz.sd > 100000] { visibility = false }
   [viz.sd <= 100000] { visibility = true }
   [highway in ('primary','primary_link')]
   {
      stroke.color = 0xffce5f, stroke.casing.color = 0xd18d1a;
      zOrder = 13;
   }
   [highway in ('secondary', 'secondary_link')]
   {
      stroke.color = 0xffee78, stroke.casing.color = 0xe9a432;
      zOrder = 12;
   }
   [highway in ('motorway', 'motorway_link')]
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   {
      stroke.color = 0xf35d63, stroke.casing.color = 0xc5262d;
      zOrder = 14;
   }
   [highway in ('tertiary', 'tertiary_link')]
   {
      stroke.color = paleVioletRed, stroke.casing.color = 0xfcfbe7;
      zOrder = 11;
   }
   [highway in ('trunk', 'trunk_link')]
   {
      stroke.color = 0xe9b798, stroke.casing.color = 0xc6262d;
      zOrder = 14;
   }
   [highway in('residential', 'unclassified', 'road', 'living_street', 'service',
'track', 'construction')]
   {
      stroke.casing.color = 0xb1b0a8;
      zOrder = 10;
   }
   [highway in ('path', 'cycleway', 'footway', 'pedestrian', 'steps', 'bridleway',
'rest_area')]
   {
      stroke.color = 0xfffbf4;
      zOrder = 9;
   }
}
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Appendix D: Revision History
Table 21. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

May 31, 2018 J. St-Louis .1 all initial version

128



Appendix E: Bibliography
1. Matney, L.: An AR glasses pioneer collapses, https://techcrunch.com/2019/01/10/an-ar-glasses-

pioneer-collapses/, (2019).

2. GeoBIM extension for CityGML and IFC BIM, https://vimeo.com/12462613.

3. Wendel, J., Núñez, J.M.S., Simons, A.: Urban Energy Modelling: Semantic 3D City Data as Virtual
and Augmented Reality. GIM International Magazine. (2017).

4. Collective, T.O.S.B.I.M.: Open Source BIM, https://github.com/opensourceBIM.

5. Kim, Y.-J., Kang, H.-Y., Lee, J.: Development of Indoor Spatial Data Model Using CityGML ADE.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. XL-2/W2, (2013).

6. Blut, C., Blut, T., Blankenbach, J.: CityGML goes mobile: application of large 3D CityGML models
on smartphones. International Journal of Digital Earth. 12, 25–42 (2019).

7. Zamyadi, A., Pouliot, J., Bédard, Y.: Enriching Augmented Reality Games with CityGML,
http://yvanbedard.scg.ulaval.ca/wp-content/documents/publications/635.pdf.

8. Basics of 6DoF and 9DoF sensor fusion, http://www.embedded-computing.com/embedded-
computing-design/basics-of-6dof-and-9dof-sensor-fusion.

9. OpenStreetMap: Simple 3D Buildings, https://wiki.openstreetmap.org/wiki/Simple_3D_buildings.

10. Coors, V.: OGC Testbed-13: 3D Tiles and I3S Interoperability and Performance Engineering
Report. OGC 17-046,Open Geospatial Consortium, http://docs.opengeospatial.org/per/17-046.html
(2018).

11. ESRI: ESRI Shapefile Technical Description, https://www.esri.com/library/whitepapers/pdfs/
shapefile.pdf.

12. Beil, C., Kolbe, T.: CityGML and the streets of New York - A proposal for detailed street space
modeling. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences.
IV-4/W5, 9–16 (2017).

13. Cavazzi, S.: OGC Testbed-13: Vector Tiles Engineering Report. OGC 17-041,Open Geospatial
Consortium, http://docs.opengeospatial.org/per/17-041.html (2018).

129

https://techcrunch.com/2019/01/10/an-ar-glasses-pioneer-collapses/
https://techcrunch.com/2019/01/10/an-ar-glasses-pioneer-collapses/
https://vimeo.com/12462613
https://github.com/opensourceBIM
http://yvanbedard.scg.ulaval.ca/wp-content/documents/publications/635.pdf
http://www.embedded-computing.com/embedded-computing-design/basics-of-6dof-and-9dof-sensor-fusion
http://www.embedded-computing.com/embedded-computing-design/basics-of-6dof-and-9dof-sensor-fusion
https://wiki.openstreetmap.org/wiki/Simple_3D_buildings
http://docs.opengeospatial.org/per/17-046.html
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://docs.opengeospatial.org/per/17-041.html

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements & Research Motivation
	1.1.1. Requirements
	1.1.2. Objectives

	1.2. Prior-After Comparison
	1.2.1. A review of ARML capabilities for 3D visualization and AR
	1.2.2. ARML capabilities not yet covered to be considered for future work

	1.3. Intended audience
	1.4. Recommendations for Future Work
	1.5. Document contributor contact points
	1.6. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. Augmented Reality
	5.1. Augmenting reality with geospatial data
	5.2. Similarities and particularities of styling for 3D views
	5.3. A common flexible geographic features styling conceptual model
	5.4. Linking to attributes from source data in annotations
	5.5. Extended capabilities applying specifically to AR
	5.6. Indoor localization challenges: pattern matching, computer vision

	Chapter 6. Situating reality in a geospatial context
	6.1. The camera
	6.2. The GPS (and other means of determining locations)
	6.3. Motion sensors
	6.3.1. The magnetometer
	6.3.2. The gyroscope
	6.3.3. The accelerometer
	6.3.4. The barometer (as an altimeter)
	6.3.5. 3D orientation
	6.3.6. 3D position

	6.4. Size, weight and power usage considerations

	Chapter 7. Augmented Reality Clients
	7.1. GNOSIS / Android mobile client by Ecere
	7.2. ARKit / iOS mobile client by GIS-FCU
	7.2.1. Using ARKit
	7.2.2. Rendering 3D Models
	7.2.3. Client Demonstration


	Chapter 8. Client-Server Communication
	8.1. Services overview
	8.2. Transmission data formats
	8.2.1. 3D Tiles & I3S
	8.2.2. Rationale behind decision to use E3D for this initiative
	8.2.3. ETC2 Texture Compression

	8.3. Performance considerations
	8.3.1. Tiling and Caching

	8.4. Disconnected environment and intermittent connectivity
	8.5. Relationship with 3D Portrayal Service

	Chapter 9. Geospatial Services for Augmented Reality
	9.1. Ecere Service
	9.1.1. GetCapabilities
	9.1.2. DescribeFeatureType
	9.1.3. GetFeature
	9.1.4. GetModel
	9.1.5. GetTexture
	9.1.6. WFS3 / Next Generation / Harmonized Map Service (REST API)
	9.1.7. Unified Map Service

	9.2. GIS-FCU Service
	9.2.1. GetFeature
	9.2.2. GetModel


	Chapter 10. Geospatial data
	10.1. Original data sources (and their formats) used for the experiments
	10.2. Intermediate CityGML data model (GIS-FCU)
	10.3. Conversion from CityGML to E3D models data set (GIS-FCU)
	10.4. Conversion of CDB data set to GNOSIS data store (Ecere)
	10.5. Importing OpenStreetMap data (Ecere)

	Appendix A: E3D 3D Model Specifications
	A.1. Coordinate system
	A.2. A simple cube example
	A.3. Adding normals attributes
	A.4. Compression
	A.5. Detailed description of all block types
	A.6. Sample E3D models

	Appendix B: GNOSIS Map Tiles
	B.1. GNOSIS Map Tile Header
	B.1.1. Geospatial data types
	B.1.2. Flags

	B.2. Compact tiled vector data representation
	B.2.1. Compact storage as localized vertices with accuracy proportional to scale
	B.2.2. Pre-triangulated for high performance GPU rendering and optimal service-to-display processing
	B.2.3. Enforced topologically correct representation (shared vertex indices)
	B.2.4. Unique feature identifier
	B.2.5. Center lines for curved area labels

	B.3. Binary layout for Points, Point Clouds and Positioned & Oriented 3D Models tiles
	B.3.1. 3D Models

	B.4. Binary layout for Lines tiles
	B.5. Binary layout for Polygons tiles
	B.5.1. Vertex flags for identifying tile boundaries and artificial edges

	B.6. Embedded 3D Models
	B.7. Binary layout for Imagery tiles
	B.8. Binary layout for gridded Coverage tiles
	B.9. Paeth filtering

	Appendix C: Geospatial features styling with support for 3D and AR
	C.1. Conceptual Styling Model
	C.1.1. Portrayal Rules
	C.1.2. Rendering styles (a.k.a. symbolizers)
	C.1.3. Markers, Labels, and GraphicalElements
	C.1.4. Expressions

	C.2. GNOSIS Cascading Map Style Sheet encoding example

	Appendix D: Revision History
	Appendix E: Bibliography

