
OGC Testbed-13
Executable Test Suites and Reference

Implementations for NSG WMTS 1.0 and WFS 2.0
Profiles with Extension

Table of Contents
1. Summary . 4

1.1. Requirements. 4

1.2. Key Findings and Prior-After Comparison . 4

1.3. What does this ER mean for the Working Group and OGC in General . 5

1.4. Document Contributor Contact Points. 5

1.5. Foreword . 5

2. References . 6

3. Terms and Definitions. 7

3.1. Abstract Test Suite (ATS) . 7

3.2. Conformance . 7

3.3. Compliance. 7

3.4. interoperability . 7

3.5. profile . 7

4. Abbreviated Terms . 8

5. Overview . 9

5.1. State of the Art. 9

5.2. Objectives . 10

6. NSG Profiles Critical Review . 11

6.1. Developing Profiles on Top of Other Profiles . 11

6.2. NSG WFS 2.0 Profile . 12

6.2.1. Random Pagination Access. 13

6.2.2. Features Versioning . 16

6.3. NSG WMTS 1.0 . 17

6.3.1. RESTful API. 18

7. Implementing NSG Profiles Using GeoServer . 19

7.1. Time Versioning . 19

7.2. Random Pagination . 20

7.3. WMTS RESTful API . 23

7.4. WFS Timeout . 27

8. Working With CITE Tests . 28

9. Conclusion . 30

9.1. Recommendations . 30

9.2. Best Practices . 31

Appendix A: Revision History . 32

Appendix B: Bibliography . 33

Publication Date: 2018-01-08

Approval Date: 2017-12-07

Posted Date: 2017-11-06

Reference number of this document: OGC 17-043

Reference URL for this document: http://www.opengis.net/doc/PER/t13-NG010

Category: Public Engineering Report

Editor: Nuno Oliveira

Title: OGC Testbed-13: Executable Test Suites and Reference Implementations for NSG WMTS 1.0
and WFS 2.0 Profiles with Extension

OGC Engineering Report

COPYRIGHT

Copyright © 2018 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t13-NG010
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary
This Engineering Report (ER) describes the development of the compliance tests and
implementation in GeoServer of the Web Feature Service (WFS) 2.0 and Web Map Tile Service
(WMTS) 1.0 National System for Geospatial Intelligence (NSG) profiles. The NSG of the United States
(US) National Geospatial Intelligence Agency (NGA) is the combination of technologies, policies,
capabilities, doctrine, activities, people, data and communities needed to produce geospatial
intelligence (GEOINT) in an integrated, multi-intelligence, multi-domain environment. The work
can be grouped into four main topics:

• critical review of the NSG profiles for WFS 2.0 and WMTS 1.0

• implementation of the profiles in GeoServer

• validation of the implementation using OGC Compliance tests and tools

• lessons learn during the implementation of these profiles and their validation

Both NSG profiles are Class 2 profiles. WMTS profiles OGC WMTS 1.0. WFS profiles the DGIWG
Profile of OGC WFS 2.0. The first topic provides a review of these profiles along with a description
of the main extensions and restrictions introduced by them.

The second topic covers the implementation of the NSG profiles in GeoServer. It describes the
software architecture and technical decisions, along with the deployment and configuration of the
server.

The third topic covers the validation process of the implementation using OGC validation
(sometimes referred to as CITE) tests and tools. It also covers how the tests can be run and how to
configure GeoServer for these tests.

The last topic contains an evaluation of the work, reached goals, lessons learned and the best
practices that can be applied in future work.

1.1. Requirements
The requirements addressed by this ER are the implementation of the NSG WFS 2.0 profile and NSG
WMTS 1.0 profiles in the latest GeoServer version, as of October 2017, and the validation of the
implementation with the corresponding CITE tests.

1.2. Key Findings and Prior-After Comparison
Before testbed 13 there were no implementations of NSG WFS 2.0 and NSG WMTS 1.0 profiles.
GeoServer compliance status regarding the base standards WFS 2.0 and WMTS 1.0 was unknown.
CITE tests for the NSG profiles didn’t exist and the existing tests for the base standards had to be
extended.

After Testbed 13 completion the profiles tests were completed and available in the OGC validation
web sites and GeoServer was compliant with the NSG profiles mandatory requirements, including
the base standards that the profiles were based on.

4

1.3. What does this ER mean for the Working Group
and OGC in General
The implementation of the NSG WFS 2.0 and NSG WMTS 1.0 profiles will help advance the
architecture of profiles and architecture of conformance classes of OGC standards. The lessons
learned on the development of the NSG profiles will help clarify aspects of new versions of WFS 2.0
and WMTS 1.0.

The NSG WFS profile is built on top of the DGIWG Web Feature Service 2.0 profile which is based on
the WFS 2.0 standard. In light of current OGC efforts leading to more modular specifications, the
ability to build composite compliance tests is a key capability. The experience with WFS will be
valuable information for the Architecture SWG in particular.

GeoServer is an open source project with a diverse and vibrant community that has been involved
in this work. The interaction with this community helped the development of this document and
should provide a positive outcome for the OGC involved standards.

At last, having CITE tests suites that allow to test the compliance of the involved OGC standards will
help other organizations in adopting them.

1.4. Document Contributor Contact Points
All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization

Nuno Oliveira GeoSolutions

Simone Giannecchini GeoSolutions

Luis Bermudez OGC

1.5. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

5

Chapter 2. References

NOTE
Only normative standards are referenced here, e.g. OGC, ISO or other SDO
standards. All other references are listed in the bibliography.

The following normative documents are referenced in this document.

• OGC 09-025r2, OpenGIS Web Feature Service 2.0 Interface Standard
[https://portal.opengeospatial.org/files/09-025r2]

• OGC 07-057r7, OpenGIS Web Map Tile Service Implementation Standard
[http://portal.opengeospatial.org/files/?artifact_id=35326]

• DGIWG 122, DGIWG – Web Feature Service 2.0 Profile, (November 16, 2015)
[https://portal.dgiwg.org/files/?artifact_id=11487&format=pdf]

• NGA.STND.0062_1.0_WFS, National System for Geospatial-Intelligence (NSG) Web Feature
Service 2.0 Implementation Profile (January 11, 2017) [https://nsgreg.nga.mil/NSGDOC/files/doc/

Document/NSG_Web_Feature_Service_2.0_Profile%2020170111.pdf]

• NGA.STND.0063_1.0_WMTS, National System for Geospatial-Intelligence (NSG) Web Map Tile
Service 1.0.0 Implementation Interoperability Profile (September 15, 2016) [https://nsgreg.nga.mil/

NSGDOC/files/doc/Document/NSG_WMTS_1%200_Implementation_Profile_v4_09142016.doc]

• OGC 09-025r2, OpenGIS Web Feature Service 2.0 Interface Standard
[https://portal.opengeospatial.org/files/09-025r2]

• OGC 07-036, OpenGIS Geography Markup Language (GML) Encoding Standard
[http://portal.opengeospatial.org/files/?artifact_id=20509]

• OGC 09-026r2, OGC Filter Encoding 2.0 Encoding Standard [https://portal.opengeospatial.org/files/09-

026r2]

• OGC 06-121r3, OpenGIS Web Service Common Implementation Specification
[http://portal.opengeospatial.org/files/?artifact_id=20040]

6

https://portal.opengeospatial.org/files/09-025r2
http://portal.opengeospatial.org/files/?artifact_id=35326
https://portal.dgiwg.org/files/?artifact_id=11487&format=pdf
https://nsgreg.nga.mil/NSGDOC/files/doc/Document/NSG_Web_Feature_Service_2.0_Profile%2020170111.pdf
https://nsgreg.nga.mil/NSGDOC/files/doc/Document/NSG_Web_Feature_Service_2.0_Profile%2020170111.pdf
https://nsgreg.nga.mil/NSGDOC/files/doc/Document/NSG_WMTS_1%200_Implementation_Profile_v4_09142016.doc
https://nsgreg.nga.mil/NSGDOC/files/doc/Document/NSG_WMTS_1%200_Implementation_Profile_v4_09142016.doc
https://portal.opengeospatial.org/files/09-025r2
http://portal.opengeospatial.org/files/?artifact_id=20509
https://portal.opengeospatial.org/files/09-026r2
http://portal.opengeospatial.org/files/?artifact_id=20040

Chapter 3. Terms and Definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply.

3.1. Abstract Test Suite (ATS)

a set of testable assertions about the functionality of a standard, which an
implementation must support in order to achieve compliance to the standard. ATS are
based on the conformance clauses defined in the standard. (source: OGC 08-134r10)

3.2. Conformance

a standard's "abstract conformance" to Standards Packages for that standard (see ISO
19105:2000 Geographic information - Conformance and Testing at
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26010
).

3.3. Compliance

a state of a specific software product, which implements an OGC Standard and has
passed the Compliance Testing Evaluation. (source: OGC 08-134r10)

3.4. interoperability

capability to communicate, execute programs, or transfer data among various functional
units in a manner that requires the user to have little or no knowledge of the unique
characteristics of those units (source: ISO 19119)

3.5. profile

specification or standard consisting of a set of references to one or more base
standards and/or other profiles, and the identification of any chosen conformance test
classes, conforming subsets, options and parameters of those base standards, or
profiles necessary to accomplish a particular function. (adapted from ISO/IEC TR
10000-1)

7

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Chapter 4. Abbreviated Terms
• API Application Programming Interface

• CITE Compliance and Interoperability Testing

• NGS National System for Geospatial-Intelligence

• WFS Web Feature Service

• WMTS Web Map Tile Service

• WMS Web Map Service

• WCS Web Coverage Service

• DGIWG Defence Geospatial Information Working Group

• CTL Compliance Test Language

• TEAM Test, Evaluation, and Measurement

• ABAC Attribute Based Access Control

• IC Intelligence Community

• DoD Department of Defense

8

Chapter 5. Overview
This Engineering Report (ER) describes the development of the compliance tests and
implementation in GeoServer of the WFS 2.0 and WMTS 1.0 National System for Geospatial
Intelligence (NSG) profiles.

A profile is a specification or standard consisting of a set of references to one or more base
standards and/or other profiles, and the identification of any chosen conformance test classes,
conforming subsets, options and parameters of those base standards, or profiles necessary to
accomplish a particular function.

It can, for example, make mandatory optional capabilities or define extensions where permitted by
the base standard. Standards are organized in conformance class, which are essentially containers
for a coherent set of requirements (tests). A profile is based on a core conformance class of a
standard and possibly other optional conformance class of the standard.

The NSG WFS 2.0 and NSG WMTS 2.0 profiles both extends and restricts the base specifications.
Being compliant with these profiles requires being compliant with all of the mandatory
requirements and any optional requirements which are restricted or extended by these profiles.
Therefore, a compliance test for a profile must first successfully pass the compliance test for the
conformance classes being profiled.

GeoServer passed the profiles tests. The process started first with making GeoServer compliant with
the base specifications mandatory requirements. Then it was enhanced to pass the tests for each
NSG profile.

The CITE tests suites for the NSG WFS 2.0 profile have a fairly good coverage. NSG WFS 2.0 profile
depends on DGIWG Web Feature Service 2.0 Profile. The DGIWG profile depends on the WFS 2.0
test.

5.1. State of the Art
GeoServer [1] is a free open source project designed for geospatial data interoperability and is an
implementation of a number of open standards such as WFS, Web Map Service (WMS) and Web
Coverage Service (WCS).

CITE tests suites are part of the GeoServer development process, relevant CITE tests suites are run
automatically each day against the supported series. If a test fails it is considered to be a release
blocker. This ensures that compliance with the different specifications is not broken.

This is the first time GeoServer compliance against WFS version 2.0 and WMTS versions 1.0 were
tested within OGC programs. In a preliminary analysis several issues were found, mainly related to
the WFS 2.0 specification, that needed to be addressed.

CITE tests suites relevant for these profiles are implemented in TestNG and CTL, TestNG is being
used for developing new tests suites. CITE tests are run using TEAM Engine Validator. OGC
Validation tools are free, open source and available from GitHub.

NSG WFS 2.0 CITE tests depend on WFS 2.0 CITE tests, running NSG WFS 2.0 CITE tests will also run

9

the WFS 2.0 CITE tests. NSG WMTS 1.0 CITE tests will only implement the requirements that come
directly from the NSG WMTS profile. WMTS 1.0 CITE tests will need to be run separately.

5.2. Objectives
The main objective of this work was to implement the NSG profiles in GeoServer and the necessary
CITE test suites to validate the implementation.

A secondary objective is to make GeoServer compliant with WFS 2.0 and WMTS 1.0 and to
introduce the correspondent CITE tests suites as part of the daily checks.

10

Chapter 6. NSG Profiles Critical Review
When standards reach a certain degree of complexity they tend to start classifying some of their
capabilities as mandatory, optional or recommended. This mechanism allows standards to
introduce advanced capabilities while at the same time keeping the standards viable to implement
and providing a clear definition of said features. New OGC standards organize the capabilities into
conformance classes that help implementers understand a set of group requirements that can be
implemented or not as a whole.

Several mechanisms exist to allow clients to understand which capabilities of a certain standard
are actually implemented by a specific software. A mechanism common to OGC standards is the
capabilities documents, which are documents that are generated by implementations that clearly
define which capabilities of the implemented standard are supported.

Certain organizations or communities have specific needs and might have to push the boundaries
of an existing specification with new capabilities. Instead of creating a fork of the original
standards, those organizations or communities can create a profile clearly defining their
expectations in terms of existing capabilities and new ones.

Profiles are a very powerful mechanism that gives the necessary flexibility and modularity to
extend and/or restrict existing profiles while promoting the reutilization of a common base
standard.

NSG WFS 2.0 and NSG WMTS 1.0 profiles are Class 2 profiles, which means that they extend by
introducing new capabilities and restrict the base specifications which are WFS 2.0 and WMTS 1.0
respectively. They also depend on other standards and profiles.

Profiles also have an impact on implementations, in particular generic servers such as GeoServer.
Generic servers need to develop modular support for the profiles. Usually, the core of the software
implements the base standard while the profiles are made available as plugins.

6.1. Developing Profiles on Top of Other Profiles
From the profile implementor point of view, profiles make a good job in making clear which
requirements from the sub profiles or standards are restricted or made mandatory. The summary
table of the NSG WMTS profile is a significant help during implementation.

Something that could be improved in the profiles is the connection between concepts, i.e. when two
concepts are connected or when a concept depends on another one. For example, the PageResults
operation descriptions would benefit in having an explicit link to the index result type description.
The same is valid for feature versioning and resource identifiers.

A profile always has one or more dependencies that must be heeded when developing an
implementation or a conformance test suite. For example, a test suite for any WMS profile will
include tests covering one or more conformance classes in the OGC WMS conformance test suite.
The DGIWG profile requires conformance at the "Queryable WMS" level. The associated test suite
also includes tests that cover the specific requirements of that profile.

A test suite for a profile generally selects one or more conformance classes (or levels) from the

11

relevant set of base specifications. These tests then implicitly become part of the dependent test
suite. The base tests are invoked in the course of running the profile-specific tests.

The source code can be included directly. The way in which the code is included depends on how a
test suite was implemented (TestNG or CTL). The type of the base test suite determines the type of
the profile test suite. If the base test suite is implemented in TestNG, the profile test suite must also
be implemented in TestNG. The same applies to CTL.

A test suite that covers the requirements of an application profile is accessed and executed just like
any other test suite. It appears in the listing of available suites, and it can be selected and run in the
same manner.

6.2. NSG WFS 2.0 Profile
The main goal of this profile is to promote interoperability within the GEOINT communities
(defense agencies, NATO, coalition partners, etc.) This profile is built on top of DGIWG Web Feature
Service 2.0 profile and its base specification is WFS 2.0. This profile has also a strong dependency
on these standards: GML 3.2.1 [OGC 07-036], Filter 2.0.2 [OGC 09-026r2] and WSC 1.1 [OGC 06-121r3].

As stated on the profile, the extensions and restrictions introduced are designed to achieve the
following:

• Maintain compatibility with OGC WFS 2.0 and Web Feature Service 2.0 profile

• Integrate with other Intelligence Community (IC) and Department of Defense (DoD) standards
for Discovery and Retrieval

• Support for the IC and DoD Attribute-Based Access Control (ABAC) infrastructure

• Support for time-based versioning of content

The following operations are supported in the profile:

• GetCapabilities

• GetPropertyValue

• GetFeature

• DescribeFeatureType

• ListStoredQueries

• DescribeStoredQueries

• LockFeature

• GetFeatureWithLock

• Transaction

• CreateStoredQuery

• DropStoredQuery

• PageResults

The mandatory service bindings for these operations are HTTP GET / POST, and SOAP is optional.

12

The only mandatory features encoding is GML 3.2. Service exception reports should use the defined
exception codes and correctly identify operations. The profile also introduces a mandatory
response timeout functionality, which will be extensively discussed in the implementation chapter.

Capabilities documents should clearly identify in the service identification metadata section which
profile is being used, the predefined statement should be used. Specific metadata related with
access constraints and service constraints need also to be added.

Feature versioning support is mandatory and must be based on date and time. It must also be
compatible with the filter encoding standard, allowing queries to filter the features based on their
version.

The new PageResults operation introduces a better support for pagination by allowing random
access of the paginated results. This operation depends on the new introduced index result type.

6.2.1. Random Pagination Access

NSG WFS profile (page 63 section 8.5) introduces a new operation for WFS 2.0.2 named PageResults.
This operation will allow clients to access paginated results using random positions, instead of
following next/previous links as the base WFS 2.0 specification suggests. To support this operation
the NSG profile (page 41 section 7.6.4) introduces also a new result type named index.

Current Pagination Support

The current WFS 2.0.2 OGC specification 2 defines a basic pagination support (page 29 section
7.7.4.4) that can be used to navigate through features responses results. Pagination is activated
when parameters count and startIndex are used in the query, for example:

http://<base_url>?service=WFS&version=2.0.0&request=GetFeature&typeNames
=topp:tasmania_roads&count=5&startIndex=0

In this case each page contains five features. The returned feature collection has the next and
previous attributes allowing clients to navigate through the results pages, i.e. previous page and
next page:

13

<wfs:FeatureCollection>
 previous="http://<base_url>?REQUEST=GetFeature&
 VERSION=2.0.0&
 TYPENAMES=topp:tasmania_roads&
 SERVICE=WFS&
 COUNT=2 &
 STARTINDEX=0"
 next="http://localhost:8080/geoserver/wfs?
 REQUEST=GetFeature&
 VERSION=2.0.0&
 TYPENAMES=topp:tasmania_roads&
 SERVICE=WFS&
 COUNT=2 &
 STARTINDEX=4"
 numberMatched="14"
 numberReturned="2"

The client cannot assume anything about the previous and next attributes URLs, each server is
free to implement its own pagination URL scheme. This implies a sequential navigation, if the client
is showing page two and the user wants to see page five, the client will have to:

1. request page three and use the provided next URL to retrieve page four

2. request page four and use the provided next URL to retrieve page five

This is far from an ideal solution to access random pages, which is quite a common action.
PageResults operation improves on this by allowing clients to request random pages directly.

Index Result Type

The WFS 2.0 resultType parameter (page 21 section 7.6.3.6) can be used with WFS GetFeature to
control the content returned to the client. The possible values in the WFS 2.0 core specification are:

• results

• hits

The results value makes the GetFeature operation return the features read from the underlying data
source. The hits value makes GetFeature operation only return the count of the features matched by
the query, this is the same behavior of an SQL count.

If the resultType parameter is omitted GetFeature defaults to results. Here is an example of a
GetFeature request that uses the resultType parameter:

http://<base_rul>?service=WFS&version=2.0.0&request=GetFeature
&typeNames=topp%3Atasmania_roads&resultType=hits

The response of the GetFeature request above looks as follows:

14

<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection
 numberMatched ="14"
 numberReturned ="0"
 timeStamp="2017-08-02T13:08:04.185Z"
 xmlns:wfs="http://www.opengis.net/wfs/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs/2.0/>

The index result type, introduced by the WFS NSG profile, extends the WFS hits result type by
adding an extra attribute named resultSetID to the response. The resultSetID attribute can then be
used by the PageResults operation to perform random access through the results.

A GetFeature request using the index result type looks as follows:

http://<base_url>?service=WFS&version=2.0.0&request=GetFeature
&typeNames=topp%3Atasmania_roads& resultType=index

The response of the GetFeature request above is:

<?xml version="1.0" encoding="UTF-8"?>
<nsg:FeatureCollection
 numberMatched="14"
 numberReturned="0"
 resultSetID ="ef352924-77a0-11e7-b5a5-be2e44b06b34"
 timeStamp="2017-08-02T13:08:04.185Z"
 xmlns:nsg="http://www.opengis.net/nsg/2.0"/>

The resultSetID is a unique identifier that identifies the result set produced by the original request.
Clients use the resultSetID with the PageResults operation to reference the original result set. This
implies that the server needs to keep track of the original result set in some way. For example, by
dumping the full result for later usage, or storing the original request in order to re-run it later.

Note that if pagination is used, the existing behavior is preserved, i.e. the previous and next
attributes should appear as needed:

15

<?xml version="1.0" encoding="UTF-8"?>
<nsg:FeatureCollection
 numberMatched="14"
 numberReturned="0"
 resultSetID ="ef352924-77a0-11e7-b5a5-be2e44b06b34"
 next ="http://<base_url>?REQUEST=GetFeature&RESULTTYPE=hits&
 VERSION=2.0.0&TYPENAMES=topp%3Atasmania_roads&SERVICE=WFS&
 COUNT=2&STARTINDEX=4"
 previous ="http://<base_url>?REQUEST=GetFeature&RESULTTYPE=hits&
 VERSION=2.0.0&TYPENAMES=topp%3Atasmania_roads&SERVICE=WFS&
 COUNT=2&STARTINDEX=0"
 xmlns:nsg="http://www.opengis.net/nsg/2.0">

PageResults Operation

The PageResults operation allows clients to query random positions of an existing result set
identified by a resultSetID that was previously created using the index result type. The available
parameters are these ones:

Table 2. PageResults operation parameters

Name Mandatory Default Value

service yes

version yes

request yes

resultSetID yes

startIndex no 0

count no 10

outputFormat no application/gml+xml;
version=3.2

resultType no results

timeout no 300

A typical PageResults request looks as follows:

http://<host>/geoserver/ows?service=WFS&version=2.0.2&request=PageResults&
resultSetID=ef352924-77a0-11e7-b5a5-be2e44b06b34&startIndex=5&count=10
&outputFormat=application/gml+xml;%20version=3.2&resultType=results

Note that this is a GetFeature request where the query expression has been replaced by the
resultSetID parameter.

6.2.2. Features Versioning

The NSG WFS profile restricts the notion of versioning to a time-based versioning approach. The

16

main use case is based on the interest of clients that are only interested in the changes that
happened since their last update.

This versioning mechanism assumes the stored vector data is being updated continuously without
any synchronization between the involved systems. Clients can update the data using WFS at any
time while others can ask for the data that has been updated since a given time stamp.

Feature versioning is strongly related with resource identifiers. Since the same feature may appear
multiple times with different versions, a way to uniquely identify each version of the feature is
needed.

The NSG WFS profile defines two types of resource identifiers:

• Instance Resource Identifier

• Entity Resource Identifier

The Instance Resource Identifier uniquely identifies each version of a certain feature. When a
feature is encoded in GML the instance identifier should be encoded in the identifier attribute of the
AbstractGML element. This is the identifier that should be used by the GetResourceByID operation.

The Entity Resource Identifier identifies the entity that is represented by the feature. Multiple
versions of an entity should have the same entity identifier. When a feature is encoded in GML the
entity identifier should be encoded in the name attribute of the AbstractGML element.

6.3. NSG WMTS 1.0
The base specification of this profile is WMTS 1.0 whose base operations are:

• GetCapabilities

• GetTile

• GetFeatureInfo

This profile requires that a REST interface must be exposed, HTTP GET /POST methods are also
mandatory and SOAP support is optional. Any possible order of the variables and values in the URL
template is valid but a specific order is recommended.

Coordinate systems CRS:84 WGS84 and EPSG:4326 WGS84 must be supported, as well as projections
EPSG:3395, EPSG:5041 and EPSG:5042. Scales for World Mercator EPSG:3395 defined in Annex B of
the profile must also be supported.

Regarding responses MIME types, image formats image/png, image/jpeg and image/gif must be
supported and GetFeatureInfo request must support text/xml, text/html and application/gml+xml;
version=3.2 as output formats.

Caching information (expiration data) for the data must be provided using HTTP control headers.

Some specific meta-data and keywords as defined in the profile must also to be provided through
the capabilities document.

17

6.3.1. RESTful API

WMTS RESTful API only supports the HTTP GET method, allowing clients to retrieve the following
resources:

• capabilities document

• tile

• feature info

Clients parse the capabilities document to discover how to invoke the RESTful API. The specification
doesn’t define any resource path or query parameters, each implementation is free to use the paths
and query parameters they want. For tile resources and feature info resources, the paths need to be
defined in the capabilities document using a template language with some mandatory terms.

This decoupling between the RESTful API definition and the actual implementation gives more
freedom to each WMTS implementation to choose its technology stack. For example, simple use
cases can be implemented using a basic HTTP server providing static content, taking full advantage
of specific operating system optimizations.

For more complex uses cases, for example supporting a generic number of dimensions for each
layer, or working against dynamic data, a dynamic implementation needs to be used.

18

Chapter 7. Implementing NSG Profiles Using
GeoServer
GeoServer [1] is a free open source project designed for geospatial data interoperability and is an
OGC compliant implementation of a number of standards such as WFS, WMS and WCS. GeoServer
is built on top of the GeoTools [2] library and integrates natively with GeoWebCache [3] providing a
flexible and easy to use tile cache mechanism. GeoWebCache implements several standards
including the WMTS service.

In GeoServer, modularity and flexibility are first class citizens, with the default package caring for
most common needs, and extension supporting a variety of other functionality. This includes the
most common data stores such as Shapefile, GeoPackage, PostgreSQL and GeoTIFF as well the most
common used OGC services as such as WFS, WMS and WMTS.

GeoServer offers a large amount of extension points allowing anyone to add new functionality in a
modular way. Some of those extensions are contributed back to GeoServer becoming official
GeoServer plug-ins: currently around 80 plug-ins are available for GeoServer. These plug-ins extend
GeoServer in a variety of ways: adding support for new data sources, adding new services or
extending existing ones, adding new security methods, and so on.

Plug-ins can be divided in two main categories: community-modules and extensions. Community
modules are generally considered experimental in nature and can be undergoing significant
development. Once a community module development is stable and has proven to be useful it can
be promoted to an extension. To become an extension a community module needs also an official
maintainer, pass the code quality requirements and have an official documentation. If an extension
is judged to be important enough or is commonly used, it can be promoted to a GeoServer core
module.

CITE tests suites are part of the GeoServer development process. Relevant CITE tests suites are run
automatically each day against GeoServer supported versions: a CITE test failure is considered a
release blocker. This ensures that compliance with the different specifications is not broken.

As discussed in the previous section NSG WFS and NSG WMTS profiles are built on top of other
profiles and WFS 2.0 and WMTS 1.0 standards, respectively. WFS is implemented by GeoServer as a
core service and WMTS is implemented by GeoWebCache as a core service. As already said,
GeoServer integrates natively in a transparent way with GeoWebCache.

All capabilities made mandatory by the NSG profiles that are defined in the base standards were
directly implemented in GeoServer and GeoWebCache. New capabilities or restrictions defined by
the profile are being implemented in two community modules: nsg-wfs-profile and nsg-wmts-profile.

7.1. Time Versioning
Versioning of data is a vast subject with a great number of techniques and algorithms. The NSG
WFS profile makes it easier by focusing only on time versioning and by providing a definition of a
resource identifier compatible with this versioning technique.

19

For each feature, the system should keep information about when the feature was first created and
for each subsequent modification. It should also be possible to identify each feature uniquely and
the entity represented by each feature. An entity may be represented by multiple features in
different versions.

In practice, this means that the server internally needs to associate each feature with a timestamp
and an entity identifier. An important question arises related to how that association should be
stored by the server: Should the data schema already support this information as two attributes
(e.g. columns in a relational database) or should they be stored separately?

The main drawback of storing that extra data separately is that it makes the system more complex,
requiring a join of the different elements at runtime and making the management of the data more
difficult. If a relational database is used as storage, the service implementation would need
permissions to create a new table or the database administrator would need to create it explicitly.

If the data schema already accounts for these two attributes, then the administrator has to specify
which attribute should be used for the timestamp and which one identifies the entity represented
by a certain feature. This approach was chosen in the GeoServer implementation, the choice of the
attributes is proposed on the administration UI during the layer configuration.

The WFS NSG profile versioning requirement is built on top of a very specific use case: a data set
can be continuously updated while clients retrieve the data that was updated since their last check.
The OGC WFS 2.0 standard is not explicit about the semantics of the create, update and delete
operations. The NSG profile already provides several details which are absent from the OGC WFS
2.0 standard, it may be worth also clarifying the semantics of these operations. Taking into account
the context of the requirement, the following semantics were assumed:

• a create operation should create a new feature with the associated timestamp

• an update operation should create a version of the target entity based on the most recent
version, unless no feature can be found for the targeted entity

• a delete operation should remove the targeted feature

By requesting the delta between the last check and the current time, the client will be able to
understand which features have been updated but not which ones have been deleted.

Detecting which features have been deleted since the last check can be done by performing two
requests with consequent time envelopes and then comparing the results to detect the deleted
features. This solution is impracticable with big data sets, because in practice the whole data set
will need to be requested each time we want to detect deleted features.

A sensible approach to this problem would be the possibility of the client to know which operation
(e.g. create, update or delete) led to the status of a particular feature or the ability to filter features
by the operation that changed their status (e.g. give me all the features that where created or
deleted in the last hour).

7.2. Random Pagination
Random pagination is the ability to perform a request to the server and index the result allowing

20

clients to request parts of that result in any order. A common doubt when implementing pagination
is how to deal with concurrent changes, i.e. changes to the data that occur after the initial
pagination request.

Consider the following data:

Table 3. Example data

Name Age

Thoma 16

John 17

James 20

Robert 22

Charles 23

Paul 26

Mark 28

A client makes a pagination request to the server asking for all the persons that are older than 18
years sorted by their age. Then the client starts viewing the results starting in index zero with a
pagination of two:

Table 4. First page

Name Age

James 20

Robert 22

Table 5. Second page

Name Age

Charles 23

Paul 26

Table 6. Third page

Name Age

Mark 28

Now consider that the user is currently viewing the first page and that in the meantime Robert is
removed from the dataset. Then the user wants to see page two, so the client requests that page.
Depending on the pagination algorithm the client can see these two different results:

Table 7. Second page, result 1

Name Age

Charles 23

Paul 26

21

Table 8. Second page, result 2

Name Age

Paul 26

Mark 28

The first result corresponds to algorithms that are capable of identifying the dataset elements that
remain unchanged since the initial pagination request hit the server. These types of algorithms are
quite complex and only possible to implement with the help of the data store and only work for
very specific use cases.

Implementing this type of algorithms for a generic dataset would require the capability of storing
the result set that corresponds to an initial pagination request and then iterate over that result set.
Pagination is only really needed when requests return long results. Storing those request results,
even in a compact format, means replicating significant portions of the original dataset in the
server. This will allow clients to take down a server with a few requests.

The second result corresponds to algorithms that don’t store the initial pagination request result set
but instead store the original pagination request. When a client requests a certain page starting at a
certain index, the server executes the pagination request using the provided limits, i.e. start index a
page size. The issue with this type of algorithms is that like in the example the user may miss some
elements, or get the same element twice.

It should also be considered that algorithms of the first type may show invalid results. Let’s assume
removing Charles instead of Robert. When the client requests the second page, depending on the
pagination algorithm the client receives one of the two different results:

Table 9. Second page, result 3

Name Age

Charles 23

Paul 26

Table 10. Second page, result 4

Name Age

Paul 26

Mark 28

Algorithms of the first type will still show Charles even if that user was already removed, but
algorithms of the second type will correctly not show that person.

Let’s say the perfect pagination algorithm is implemented, that would basically require a
versioning mechanism keeping track of all the data changes and be able to return the correct
portion of the data that corresponds to a certain page.

When missing a result is not that acceptable, there are several interesting approaches mixing
algorithms of the second type and user experience patterns.

A common and simple approach is to tell the user that the page he is viewing has been updated and

22

to update that page content, then the user will not miss an existing element or see outdated ones.
This approach is common in certain mail clients, for example. The simplest way for a client to
detect that the page content show to the user is outdated is to request the same page a check for
differences.

Independently of the followed approach, both store some content on the server (either the full
result set, or the definition of the original query and its timestamp). The profile doesn’t provide or
define any mechanism to discover when that content is not needed anymore and can be removed.
The implementation should implement a configurable mechanism cleaning any information
related with a paginated request that has not been used since a certain amount of time.

7.3. WMTS RESTful API
The WMTS service capabilities documents contains several XML elements allowing web clients to
invoke the WMTS RESTful API. Three types of resources can be retrieved using the RESTful API:

• The WMTS capabilities document

• Tiles

• Features information

The end-point that can be used to retrieve the capabilities document is static for each GeoServer
instance and looks as follows:

http://<base_url>/WMTSCapabilities[.xml]

The retrieved capabilities document needs to contain the top-level element (direct child of the root
element) <ServiceMetadataURL> that tells clients what is the WMTS capabilities document resource
URI, it shall look like this:

<ServiceMetadataURL xlink:href="<base_url>/WMTSCapabilities.xml"/>

Each WMTS published layer needs to have several <ResourceURL> elements that define the resources
associated to that layer that can be retrieved through the RESTful API. The available resources can
be divided into two categories: tiles (GetTile) and feature info (GetFeatureInfo).

The tile resources <ResourceURL> elements shall look as follows, note that the <ResourceURL> element
needs to be repeated for each supported image format of the layer:

<ResourceURL format="<imageformat>" resourceType="tile"
 template="<base_url>/<layer>/{style}/{TileMatrixSet}/{TileMatrix}/
 {TileRow}/{TileCol}?format=<imageFormat>&
 <firstDimensionName>={firstDimensionName}&
 <lastDimensionName>={lastDimensionName}">

The layer dimensions (time, elevation, etc.) support is a bit tricky, since it is not possible to predict

23

the dimensions a layer will have and which ones the client will like to use. So the resource template
should make available all the layers dimensions as query parameters and is up to the client to set
the values for the dimensions he wants to use.

Consider a layer named temperature. It has two dimensions: time and elevation. It supports PNG
and JPEG image formats. It has several styles and tile matrix sets. The <Layer> element
corresponding to the temperature layer in the capabilities document shall then contain these two
<ResourceURL> children:

<ResourceURL format="image/png" resourceType="tile"
 template="<base_url>/temperature/{style}/{TileMatrixSet}/{TileMatrix}/
 {TileRow}/{TileCol}?format=image/png&time={time}&elevation={elevation}">
<ResourceURL format="image/jpeg" resourceType="tile"
 template="<base_url>/temperature/{style}/{TileMatrixSet}/{TileMatrix}/
 {TileRow}/{TileCol}?format=image/jpeg&time={time}&elevation={elevation}">

The requests sent by clients may look as follows:

http://<base_url>/temperature/default/WholeWorld_CRS_84/30m/4/5?format=image/png&
time=2016-02-23T03:00:00.000Z&elevation=500

Note, that only the format query parameter is mandatory. The client may choose to not use the
dimensions query parameters.

The feature info resources <ResourceURL> element shall look like this, note that the <ResourceURL>
element shall be repeated for each supported feature info format of the layer:

<ResourceURL format="<featureInfoFormat>" resourceType="FeatureInfo"
 template="<base_url>/<layer>/{style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/

{TileCol}/{J}/{I}?format=<featureInfoFormat>&<firstDimensionName>={firstDimensionName}
 &<lastDimensionName>={lastDimensionName}">

Feature info <ResourceURL> elements are very similar to the tile resources ones. Layer dimensions
are handled in the same way dimensions are handled for tile resources.

Consider a layer named temperature. It has two dimensions: time and elevation. It supports HTML
and XML feature info formats. It has several styles and tile matrix sets. The <Layer> element
corresponding to the temperature layer in the capabilities document shall then contain these two
<ResourceURL> children:

24

<ResourceURL format="text/html" resourceType="FeatureInfo"
 template="<base_url>/temperature/{style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/
 {TileCol}/{J}/{I}?format=text/html&time={time}&elevation={elevation}">
<ResourceURL format="text/xml" resourceType="FeatureInfo"
template="<base_url>/temperature/{style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/
 {TileCol}/{J}/{I}?format=text/xml&time={time}&elevation={elevation}">

The requests sent by clients may look as follows:

http://<base_url>/temperature/default/WholeWorld_CRS_84/30m/4/5/23/35?format=text/html
&
time=2016-02-23T03:00:00.000Z&elevation=500

Note that, as similar as requesting tiles resources, only the format query parameter is mandatory,
the client may choose to not use the dimensions query parameters.

The NSG WMTS profile suggests to use the following order for template variables:

Any possible order of the variables and values in the URL template is valid. Nevertheless,
recommend the following order: style, firstDimension, …, lastDimension, TileMatrixSet,
TileMatrix, TileRow, TileCol, J and I.

The template variables order used by the implementation is different:

.../{style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/{TileCol}/{J}/{I}?format=text/html&
time={time}&elevation={elevation}

The implementation provides the format and dimensions as query parameters. GeoServer allows
users to associate a layer with a time dimension, elevation dimension or a custom dimension. It is
not possible to predict how each value of a dimension will be represented, hence encoding the
dimension values using the profile suggested order makes the handling difficult to implement on
the server side, and prone to interpretation errors in the URL.

Consider a layer having a time dimension. Instead of querying a specific time, GeoServer supports
the common use case of requesting a time range. Also, the data can have features that have an
interval of validity instead of a single point in it. An interval is expressed as follows:

2002-09/2002-12

If using the templates variables suggested order, the following requests would be valid for a layer
with an elevation and time dimensions:

25

http://<base_url>/default/2016-02-23T03:00:00.000Z/500/WholeWorld_CRS_84/30m/4/5/23/35
http://<base_url>/default/2002-09/2002-12/500/WholeWorld_CRS_84/30m/4/5/23/35

It will be very difficult to implement a URL matching pattern on the server side that would be
generic enough to handle all the possible time dimension request combinations. It will not cover all
the possible use cases. A human being looking at the URL would also be rather confused about the
meaning of the URL.

The WMTS standard is not clear if or when a client can ignore a template variable. The standard
only says that the client should substitute any template variable with the correct value. In some
situations, an empty value can be considered a correct value. A possible approach is to make
template variables that belong to the base path mandatory and query parameters optional.

As already discussed before, the RESTful API template mechanism allows a decoupling between the
implementation and the RESTful API definition which gives a welcomed flexibility to implementors.
The main drawback of this mechanism is that it adds an extra complexity to clients. Clients need to
parse the capabilities documents and build resources URI using the templates.

Another issue is that since the resource format is not a valid template variable, a new resource
element needs to be added to the capabilities document for each format supported by a certain
resource. For example, GeoServer supports several tile formats so for each layer the following XML
elements will be added:

<ResourceURL format="image/gif" resourceType="tile" template="
 <base_url>/rest/wmts/rastertestlayer/{style}/{TileMatrixSet}/
 {TileMatrix}/{TileRow}/{TileCol}?format=image/gif"/>
<ResourceURL format="image/jpeg" resourceType="tile" template="
 <base_url>/rest/wmts/rastertestlayer/{style}/{TileMatrixSet}/
 {TileMatrix}/{TileRow}/{TileCol}?format=image/jpeg"/>
<ResourceURL format="image/png" resourceType="tile" template="
 <base_url>/rest/wmts/rastertestlayer/{style}/{TileMatrixSet}/
 {TileMatrix}/{TileRow}/{TileCol}?format=image/png"/>
<ResourceURL format="image/png8" resourceType="tile" template="
 <base_url>/rest/wmts/rastertestlayer/{style}/{TileMatrixSet}/
 {TileMatrix}/{TileRow}/{TileCol}?format=image/png8"/>
<ResourceURL format="text/plain" resourceType="FeatureInfo" template="
 <base_url>/rest/wmts/rastertestlayer/{style}/{TileMatrixSet}/
 {TileMatrix}/{TileRow}/{TileCol}/{J}/{I}?format=text/plain"/>
<ResourceURL format="text/html" resourceType="FeatureInfo" template="
 <base_url>/rest/wmts/rastertestlayer/{style}/{TileMatrixSet}/
 {TileMatrix}/{TileRow}/{TileCol}/{J}/{I}?format=text/html"/>
<ResourceURL format="application/vnd.ogc.gml" resourceType="FeatureInfo" template="
 <base_url>/rest/wmts/rastertestlayer/{style}/{TileMatrixSet}/
 {TileMatrix}/{TileRow}/{TileCol}/{J}/{I}?format=application/vnd.ogc.gml"/>

Since the available formats are published in the capabilities document, the format could become a
template variable allowing to reduce the impact of the RESTful API in the capabilities document.

26

7.4. WFS Timeout
The NSG WFS profile introduces the timeout parameter that can be used to control the maximum
time spent by WFS to process a request. If the timeout period expires, the server should cancel the
request and send an exception report to the client with the appropriate code.

This implies that the timeout parameter only controls the time the server spends producing the
result but not the time the server spends sending the result to the client. Once the server starts
sending the results to the client it is not possible to cancel the request and send an exception report,
canceling at this stage would give the client an incomplete/corrupt document but no exception
code.

GeoServer typically follows a lazy approach when processing data. The data is only retrieved when
needed and if possible (when the output format allows it) the result is built and streamed to the
client in parallel. This gives a significant performance boost in terms of response time and
decreases the server resources usage. It is a common pattern in server implementations.

For example, let’s consider a client that executed a WFS GetFeature operation requesting as output
a GeoPackage file. GeoServer parses the WFS request, creates a SQLite database on the file system,
starts reading from the source and in parallel writes the elements in the GeoPackage. Once the
GeoPackage file is ready GeoServer sends it to the client. In this case the timeout parameter will
control a significant portion of the execution because the result is completely created on the server
side and then send to the client.

Let’s suppose a GML document was requested instead. In this case GeoServer starts reading from
the source and in parallel encode the elements in GML and stream them to the client. This means
that the execution of the query (in a relational database for example) and the streaming of the
result to the client happen in parallel. The consequence of this is that the timeout parameter only
controls a very small portion of the request execution.

The alternatives allowing cancellation for this last use case are:

• not use the "reading, encoding and streaming in parallel" optimization, adding significant extra
load on the server (not to mention potential server file system exhaustion)

• make the exception report optional and allow the server to cancel the streaming to the client

Another issue with the WFS timeout parameter is that there is no reliable way to test this capability,
i.e. the tests have no reliable way of forcing an operation to execute for longer than the configured
timeout.

27

Chapter 8. Working With CITE Tests
The CITE tests user guide [1] documents several ways of executing CITE tests. During the
implementation of these profiles GeoServer implementers followed two approaches:

• running the tests from the Web interface using a local installation of the TEAM Engine

• running the tests from the integrated development environment (IDE)

The tests were run from the Web interface by installing a local version of the TEAM Engine. Then
the CITE tests were installed and configured. The main advantage of this approach is that once the
tests have been executed the detailed report can be easily accessed. The following image shows a
report that was obtained during the implementation of the NSG WMTS profile. It is very easy to
understand and identify which requirements tests were passing and which ones were failing:

Figure 1. Partial print screen of a TEAM Engine test session execution report.

In Figure 1 we can see that several tests were skipped, this happens when the preconditions
necessary to run a certain test were not met. There are several types of preconditions, for example,
requiring that a certain test is successful or requiring a specific dataset to be configured in the
server.

Clicking on a failed test, will show the tests failure information:

Figure 2. Test failure reason as shown by the TEAM Engine test session execution report.

28

Figure 3. Test details as shown by the TEAM Engine test session execution report.

The second approach used involved running the tests from the IDE, in this experiment IntelliJ IDEA
community edition was used. It was useful when a test needed to be debugged or when one specific
requirement was being investigated and a quick test was required.

It is faster to run the tests from the IDE than going through the Web interface. The workflow
followed to debug a test involved starting the tests from the main tests controller (e.g.
WmtsNSGTestNGController) and then placing a debug point in the concerned test:

Figure 4. Partial print screen of a CITE test debug session in IntelliJ IDEA community edition.

The preferred way to communicate with the CITE tests development team was through GitHub
issues, the same applies for suggestions or doubts regarding the TEAM Engine.

29

Chapter 9. Conclusion
The implementation of NSG WFS and NSG WMTS profiles triggered several technical discussions
that have been documented in this ER for the benefit of future implementations and the concerned
standards.

Several approaches were proposed for the implementation of time versioning, random pagination
and request timeout capabilities. Each one of these approaches brings its own limitations and
benefits. These approaches have been discussed with the author of the NSG WFS profile. Lessons
learned through the implementation and testing of this profile will be used to provide more
complete documentation in the next version of the profile and possibly the related standards.

During the execution of CITE tests using GeoServer, some compliance issues were found. Those
issues were fixed and the fixes contributed to GeoServer. Some capabilities made mandatory by the
profiles were directly contributed to GeoServer vanilla, for example the WMTS RESTful API.

Advanced or specific NSG WFS and NSG WMTS profiles capabilities are being implemented in two
GeoServer plugins allowing anyone interested in these profiles to easily test them. To allow the
implementation of those capabilities as extensions several extension points were created in
GeoServer, increasing the flexibility and modularity capabilities of GeoServer.

CITE tests were produced for these two profiles allowing future implementations to easily test in a
reproducible way their compliance.

9.1. Recommendations
The implementation and testing of the profiles raised the following recommendations. The
implementation section provides a more detailed description of the recommendations:

• The NSG WFS profile should clarify the semantics associated with create, update and delete
operations in the context of time versioned data. It should also be clarified if a delete operation
could or not target a certain entity and consequently delete all is associated versions.

• The NSG profile specification of the PageResults could be improved with some examples and an
explicit link to the index output format.

• The NSG WFS profile could introduce a new operation used to release a resultset (created with a
GetFeature operation index output format). Right now there is no reliable way to know when a
resultset is not necessary anymore and can be safely removed.

• The NSG profile should clarify how the timeout parameter should be handled when the server
implements the read, encode and stream in parallel optimization.

• It should be discussed with WMTS related working groups the possibility of making the
resource format a template variable for the RESTful API definition. This would help reduce the
number of XML elements that need to be added to the capabilities document.

• The WMTS should also clarify when or if it is acceptable for a client to ignore a RESTful
resource template variable. A possible approach is to make template variables that belong to the
base path mandatory and query parameters optional.

30

9.2. Best Practices
Understanding standards and translating them to a concrete implementation is a challenging task.
Interpretation doubts and ambiguous definitions need to be discussed and analyzed with the
involved groups (e.g. editors of the standard, working groups, and test developers) as soon as
possible.

The implicit modularity of profiles should be matched by the implementation, allowing general
servers to add profile support via pluggable modules.

31

Appendix A: Revision History
Table 11. Revision History

Date Release Editor Primary
clauses
modified

Descriptions

June 30, 2017 0.1 Nuno Oliveira All Initial ER

September 30,
2017

0.2 Nuno Oliveira All Draft ER

October 05, 2017 0.3 Andrea Aime All Draft ER

October 30, 2017 0.4 Luis Bermudez All Draft ER

November 16,
2017

0.5 Nuno Oliveira All Draft ER

November 27,
2017

0.5 Nuno Oliveira All Draft ER

32

Appendix B: Bibliography
[1] GeoServer web site: http://geoserver.org

[2] GeoWebCache web site: http://www.geowebcache.org

[3] GeoTools web site: http://geotools.org

[4] CITE tests user guide: http://opengeospatial.github.io/teamengine/users.html

33

http://geoserver.org
http://www.geowebcache.org
http://geotools.org
http://opengeospatial.github.io/teamengine/users.html

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements
	1.2. Key Findings and Prior-After Comparison
	1.3. What does this ER mean for the Working Group and OGC in General
	1.4. Document Contributor Contact Points
	1.5. Foreword

	Chapter 2. References
	Chapter 3. Terms and Definitions
	3.1. Abstract Test Suite (ATS)
	3.2. Conformance
	3.3. Compliance
	3.4. interoperability
	3.5. profile

	Chapter 4. Abbreviated Terms
	Chapter 5. Overview
	5.1. State of the Art
	5.2. Objectives

	Chapter 6. NSG Profiles Critical Review
	6.1. Developing Profiles on Top of Other Profiles
	6.2. NSG WFS 2.0 Profile
	6.2.1. Random Pagination Access
	6.2.2. Features Versioning

	6.3. NSG WMTS 1.0
	6.3.1. RESTful API

	Chapter 7. Implementing NSG Profiles Using GeoServer
	7.1. Time Versioning
	7.2. Random Pagination
	7.3. WMTS RESTful API
	7.4. WFS Timeout

	Chapter 8. Working With CITE Tests
	Chapter 9. Conclusion
	9.1. Recommendations
	9.2. Best Practices

	Appendix A: Revision History
	Appendix B: Bibliography

