OGC Testbed-13

CDB Engineering Report

Table of Contents

1. Summary
1.1. Requirements
1.2. Key Findings and Prior-After Comparison
1.3. What Does This ER Mean for the Working Group and OGC in General
1.4. Document Contributor Contact Points

1.5. Future Work
1.6. Foreword

2. References

3. Terms and definitions
3.1. Application Schema
3.2. Client
3.3. Feature

3.4. Feature Data Dictionary

3.5. GeoServer

3.6. GSModel

3.7. GTModel

3.8. Interface

3.9. OpenFlight

3.10. Service

3.11. QGIS
4. Abbreviated terms
5. Overview

5.1. Outline

5.2. Sample Dataset

5.3. Demonstration Scenario

5.4. Technology Integration Experiments

5.4.1. TIE Components
5.4.2. TIE Results
6. OGC CDB 1.0 Background

6.1. CDB Conceptual Data Model
6.2. CDB File Folder Structure
7. Feasibility Study of the CDB Extended Feature Codes and Attribute Schema
7.1. OGC CDB Feature Codes
7.1.1. Extending Feature Codes
7.2. Attribution Schema and Vector Features
7.2.1. Extending Vector Feature Attributes
7.3. Supporting Application Schema
7.4. Limitation of the OGC CDB 1.0

© © © O ©W W 00 0 0 0 W 0 ~J o O O U1 U1 b= b

W NN DN NDNIDRNIDNER B B 1B B |l) s)
S © O U1 B NN R 9 9 U U U b WD N o

7.5. Extending CDB 1.0 Using NAS Profile in Testbed 13
7.6. Proposed Change Requests for the OGC CDB 2.0
8. CDB to NAS Mapping for Feature Codes and Attributes
8.1. NAS Urban Military Profile
8.2. Mapping of "3D Geotypical Model" Feature Codes
8.3. Mapping of "3D Geotypical Model" Attributes
9. CDB WFS
9.1. Architecture & Design
9.1.1. Organizing Tiled, Multi-Leveled Data in a WFS
9.1.2. Serving Vector Data
9.1.3. Serving 3D Model Data
9.2. Implementation
9.2.1. Functional Overview
9.2.2. Deployment Characteristics
10. CDB WCS
10.1. Development Plan and Architecture
10.2. WCS Component Design
10.2.1. CDB WCS Implementation for New York Dataset

10.2.2. CDB WCS Implementation for New York Dataset (Interactive 3D Preview)

10.2.3. Performance Test with Overviews
10.2.4. Performance Test with HTTP Caching
10.2.5. Performance Test with HTTP/2
10.2.6. Performance Test with WCS 2.0
10.2.7. Authentication Controls for WCS
11. CDB Client
11.1. Architecture & Design
11.1.1. Handling CDB Content through OGC Web Services
11.1.2. Converting FACC-based CDB data to the NAS Profile
11.2. Implementation
11.2.1. Functional Overview
11.2.2. Deployment Characteristics
11.2.3. New York CDB Data Integration Results
11.3. Key Findings and Recommendations
Appendix A: WFS GML Application Schema Documents
1.1. RoadNetwork GML Application Schema
1.2. 3D Vegetation GML Application Schema
Appendix B: Revision History
Appendix C: Bibliography

31
31
33
33
34
35
39
39
40
41
42
43
44
44
45
45
46
47
48
49
50
50
50
50
52
52
53
53
54
54
35
35
56
58
58
39
62
63

Publication Date: 2018-01-11

Approval Date: 2017-12-07

Posted Date: 2017-11-15

Reference number of this document: OGC 17-042

Reference URL for this document: http://www.opengis.net/doc/PER/t13-NG001
Category: Public Engineering Report

Editor: Sara Saeedi, other participants of the CDB thread

Title: OGC Testbed-13: CDB Engineering Report

OGC Engineering Report
COPYRIGHT

Copyright © 2018 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/t13-NG001
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

Chapter 1. Summary

The Open Geospatial Consortium (OGC) CDB Standard is an international standard that describes
rules, requirements, and best practices for structuring, modeling, and storing geospatial
information required in high performance modeling and simulation (M&S) applications. Previously
called the Common Data Base Specification the OGC members voted to officially change the name to
“CDB” in the OGC community and standard [4]. OGC CDB 1.0 defines the core conceptual models,
use cases, requirements, and specifications for employing geospatial data in 3D M&S. A persistent
and important concern about the OGC CDB is how to evolve beyond the current use of CDB feature
codes and incorporate the more recent NSG (National System for Geospatial-Intelligence)
Application Schema (NAS) and DGIWG (Digital Geographic Information Working Group) Feature
and Attribute encoding. The CDB Standard Working Group (SWG) has started examining the feature
codes and attribution schema as used in the CDB standard. This effort was expanded in Testbed 13
to develop CDB profiles for supporting interoperability of existing CDB with the NAS-based feature
codes and schemas by investigating how a specific profile, e.g. "Urban Military NAS Profile" can be
developed and used in CDB. For this purpose, a mapping between CDB and NAS feature codes and
schemas is expressed. This mapping has been applied by OGC Web Services such as Web Feature
Service (WFS) to publish a CDB feature with attributes and schemas from the NAS profile.

This Engineering Report (ER) summarizes the CDB sub-thread work in Testbed 13. The document is
structured in three phases and includes a feasibility study; the implementation of data models and
schemas mapping that are based on the feasibility study results; and a set of OGC web services that
implement the CDB in the form of WFS and WCS (Web Coverage Service) instances.

This Engineering Report describes:
* The conceptual model of an OGC CDB 1.0 datastore as a UML (Unified Modeling Language)

diagram to show different datasets (the 3D models, vector features and coverages) structure;

* How to process and use a NAS-based Profile as a CDB feature/attribute data model or a GML-SFO
application schema;

* How to access, navigate and visualize a CDB dataset using OGC web services (such as WFS and
WCS).

This work provides insights into:

* The in-depth study of the OGC CDB 1.0 feature data dictionary and attribution schema;

* The requirements and constraints for extending the CDB feature data dictionary (FDD) and
attribute schemas;

* The development and prototyping of the WFS and WCS access to the CDB datastore for a NAS
based urban military scenario.

1.1. Requirements

This Engineering Report addresses the following requirements:

* A NAS-based profile UML model to configure the feature data in a CDB dataset;

* Creation of the CDB configuration mapping files consistent with a NAS profile UML model;

* Implementation of a CDB dataset with all the requirements of a NAS-based Urban Military
profile.

1.2. Key Findings and Prior-After Comparison

The work and experiments completed in the OGC Testbed 13 CDB sub-thread are described in this
CDB ER document. This ER was reported to the CDB SWG on several occasions and the current key
findings of the CDB sub-thread are summarized here:

* Feasibility study for extending OGC CDB 1.0 feature codes and attributes reveals that the current
version (1.0) supports only a limited extension:

o The feature type codes which exist in the FDD.xml files are a fixed set, and the extension
needs hard coding of the newly added codes;

o CDB has an indexing structure (based on Feature and Attribute Coding Catalogue (FACC)
codes) to save feature types inside the folder hierarchy. This indexing is also a limitation for
defining the feature codes. If an arbitrary alphabetical feature code is used inside the CDB,
then the indexing mechanism will be broken. Another approach is to define a mapping
between the new alphabetical feature codes and old indexing;

- The attributes schema is defined for the tiled vector datasets inside the Shapefile database
file. However, the attribute schema can be extended in the current version of the CDB using
extended attributes.

* The OGC CDB 1.0 can be accessed by OGC web services that support a NAS profile in organizing
features and attributes and indexing vector features.

* Change Request proposals have been discussed for the OGC CDB 2.0 and will be submitted by
December 31, 2017.

o The recommendations for replacing FACC feature code and indexing structure to be
consistent with the application schemas (e.g. NAS data model) under discussion for the OGC
CDB 2.0;

o The recommendations for supporting application schemas in CDB (level of complexity: Esri
Geodatabase, GML-SFO0 application schema) are being discussed for the OGC CDB 2.0;

o The method to expand the supported encodings and formats for an OGC CDB compliant
datastore;

o Generating a coherent attribute schema for CDB 1.0 based on the "CDB_Attribute.xml" file.

1.3. What Does This ER Mean for the Working Group
and OGC in General

This ER is mainly of interest to the CDB SWG and the CDB implementation community. In
particular, any Change Request Proposals created as a result of the work will be discussed in the
SWG. The work documented in this ER is important for CDB SWG as it applies to the CDB 1.0
standard, expands its feature codes/attribution schema using NAS profile, and accesses the CDB
data store using OGC web services. Due to the strong link to 3D information streaming and NGA’s

NSG application schema, the work is also expected to be of interest to other OGC Domain Working
Groups (DWG) such as the 3D Information Management (3DIM) DWG, Defense & Intelligence DWG,
Distributed Simulation and Gaming DWG, OGC Web Services and profiling.

1.4. Document Contributor Contact Points

All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts
Name Organization

Sara Saeedi (editor and Contributor) University of Calgary

Steve Liang (Contributor) University of Calgary
Robin Houtmeyers (Contributor) Luciad Inc.
James Badger (Contributor) University of Calgary

1.5. Future Work

The following future work items are envisioned:

1. A performance analysis and evaluation for using CDB extended with the NAS profile in run-time
simulation;

2. Describe explicitly how the CDB model may or may not align with the rest of the OGC baseline,
including standards such as Sensor Observation Service (SOS) and the Discrete Global Grid
Systems (DGGS) standard;

3. Extend the supported encodings and formats for a CDB database to include the use of the OGC
GeoPackage, CityGML, LandInfra and IndoorGML standards as well as other broadly used
community encoding standards, such as COLLADA. This work may require performing OGC
interoperability experiments to understand the implications of these options better.

4. Consider replacement(s) for the feature data dictionary with application schemas (e.g., NAS)
that describe the features, attributes, associations and relationships of a different domain of
application.

1.6. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. References

The following normative standards are referenced in this document.

* ISO 19109:2005, Geographic information—Rules for application schema, June 2005
[https://www.iso.org/standard/39891.html]

» ISO/IEC 18025:2014, Information technology — Environmental Data Coding Specification (EDCS),
February 2014 [https://www.iso.org/standard/60505.html]

* OGC 15-112r2, OGC® CDB Core Standard: CDB Terms and Definitions, February 2017
[https://portal.opengeospatial.org/files/?artifact_id=72714]

* OGC 15-113r3, OGC® CDB Core Standard: Model and Physical Data Store Structure Standard,
February 2017 [https://portal.opengeospatial.org/files/?artifact_id=72712]

* OGC 16-007r3, OGC® CDB Core Standard Conceptual Model Standard, February 2017
[https://portal.opengeospatial.org/files/?artifact_id=72723]

* OGC 06-042, OpenGIS Web Map Service (WMS) Implementation Specification, March 2006
[http://portal.opengeospatial.org/files/?artifact_id=14416]

* OGC 09-110r4, OGC® WCS 2.0 Interface Standard - Core, version 2.0.1, July 2012
[https://portal.opengeospatial.org/files/09-110r4]

* OGC 09-025r2, OGC® Web Feature Service 2.0 Interface Standard — With Corrigendum, July 2014
[http://docs.opengeospatial.org/is/09-025r2/09-025r2.htmi]

* OGC 07-036, OpenGIS Geography Markup Language (GML) Encoding Standard, August 2007
[http://portal.opengeospatial.org/files/?artifact_id=20509]

Only normative standards are referenced here, e.g. OGC, ISO or other SDO

NOTE
standards and all other references are listed in the bibliography.

https://www.iso.org/standard/39891.html
https://www.iso.org/standard/60505.html
https://www.iso.org/standard/60505.html
https://portal.opengeospatial.org/files/?artifact_id=72714
https://portal.opengeospatial.org/files/?artifact_id=72712
https://portal.opengeospatial.org/files/?artifact_id=72712
https://portal.opengeospatial.org/files/?artifact_id=72723
http://portal.opengeospatial.org/files/?artifact_id=14416
https://portal.opengeospatial.org/files/09-110r4
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html
http://portal.opengeospatial.org/files/?artifact_id=20509

Chapter 3. Terms and definitions

For the purposes of this report, the definitions specified in the OGC® CDB Core Standard: CDB
Terms and Definitions (OGC 15-112r2 [https://portal.opengeospatial.org/files/?artifact_id=72714]) shall apply.
In addition, the following terms and definitions apply.

3.1. Application Schema

An application level conceptual schema for data required by one or more applications.
It includes feature type and model (code, attributes, units, etc.) along with any
constraints important for the integrity of the data.

3.2. Client

The software component that can invoke an operation from a service.

3.3. Feature

A fundamental unit of spatial data that represents a physical entity, e.g. a building,
a river, or a person. A feature may or may not have geometric aspects.

3.4. Feature Data Dictionary

A Feature data dictionary is a collection of descriptions of the Feature objects or
items in a Feature data model for the benefit of programmers and others who need to
refer to them.

3.5. GeoServer

An open source map server for sharing geospatial data designed for interoperability.

3.6. GSModel

A Geospecific model is instanced once and only once within a CDB. Geospecific models
usually correspond to unique (in either shape, size, texture, materials or
attribution), man-made, real world 3D features.

https://portal.opengeospatial.org/files/?artifact_id=72714

3.7. GTModel

A Geotypical model is instanced multiple times within a CDB data store. Geotypical
models correspond to representative (in shape, size, texture, materials and
attribution) models of real-world manmade or natural 3D features.

3.8. Interface

The named set of operations that characterize the behaviour of a service.

3.9. OpenFlight

OpenFlight (or .flt) is a 3D geometry model file format designed as a non-proprietary
format for use by real-time 3D visual simulation image generators.

3.10. Service

The distinct part of the functionality that is provided by an entity through
interfaces.

3.11. QGIS

A Free and Open Source Geographic Information System http://qqgis.org[QGIS Website]

Chapter 4. Abbreviated terms

10

3D Three Dimensional

3DIM 3D Information Management

API Application Program Interface

EA Enterprise Architect (UML modeling tool from Sparx Systems)
ER Engineering Report

Esri Environmental Systems Research Institute

ETag Entity tag

CDB Common Database (OGC standard)

CEAI CDB Extended Attribute Index

COLLADA COLLAbDborative Design Activity

COTS Commercial Off The Shelf

CRS Coordinate Reference System

DFDD DGIWG Feature Data Dictionary

DGIWG Defense Geographic Information Working Group
DIGEST The Digital Geographic Information Exchange Standard
DIS Distributed Interactive Simulations [IEEE Std 1278TM]
DWG Domain Working Group

EAC Environment Attribute Code

EAV Environment Attribute Value

FACC Feature and Attribute Coding Catalogue

FDD Feature Data Dictionary

FSC Feature Sub-Code

GEAI Geomatics Extended Attribute Index

gITF graphics library Transmission Format

GML Geography Markup Language (OGC/ISO standard)
GML-SF GML Simple Features Profile (OGC standard)
GML-SFO GML Simple Features Profile, Level 0

GPU Graphics Processing Unit

HLA High-Level Architecture Standard [IEEE Std 1516TM]
HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ISO International Standardisation Organisation

JPEG Joint Photographic Experts Group

KVP Key-Value Pair
LoD Level of Detail

LZW Lempel-Ziv-Welch method for image compression

M&S Modeling and Simulation

MModel Moving 3D models

NAS NSG Application Schema

NetCDF Network Common Data Form

NGA National Geospatial-Intelligence Agency
NSG National System for Geospatial-Intelligence
NYC New York City

OGC Open Geospatial Consortium, Inc.

TIE Technology Integration Experiment

TIFF Tagged Image File Format.

SGI Silicon Graphics Image

SWG Standard Working Group

UML Unified Modeling Language (OMG standard)
URL Uniform Resource Locator

VEAI Vendor Extended Attribute Index

WebGL Web Graphics Library

WCS Web Coverage Service (OGC standard)
WES Web Feature Service (OGC standard)
WGS-84 World Geodetic System 1984

WMS Web Map Service (OGC standard)

WMTS Web Map Tile Service

XML Extensible Markup Language (W3C standard)
XSD XML Schema Definition

11

Chapter 5. Overview

This Engineering Report (ER) discusses the conduct and results of the CDB extended future codes
and attribute schemas Feasibility Study, including all lessons learned from the experiments
completed during the CDB feature code transformation development and the web services
implementation. The purpose of this document is to summarize the project definition,
requirements, and evaluate proposed solutions in order to offer the optimum recommendations.
The CDB ER will explain the current CDB data model, attribute schema as well as the feasibility of
expanding the current schema. The web service and client-server architecture for the WFS, WCS,
and conversion client for accessing the CDB data store is presented in the ER. Then, the results of
the experiments for online performance are evaluated. Finally, the project recommendations are
presented.

5.1. Outline

The following figure (Figure 1) describes the CDB workflow executed in Testbed 13.

é A (A e N
Chapter 6: Chapter 7: Chapter 8,9,10:
Feasibility Study for CDB-NAS Profile Implementation in the form
extended feature codes and Mapping of OGC WFS, WFS 3D, WCS
attributes Implementaion and Client
(NG 101) (NG 106) (NG 102, 103, 104, 105)
- J N J N J

Engineering Report
(NG 001)

Submitting change
requests to the CDB SWG

Figure 1. CDB sub-thread ER Workflow Outline
This document contains the following chapters:

1. Preface: This section presents information on administrative and legal aspects of this ER.

2. Summary: This section presents information on scope, what this ER means for the OGC in
general and document contributor contact points.

3. References: This section presents information on documents that are referenced in this ER.
4. Terms: This section presents information on terms and abbreviations that are used in this ER.

5. Overview: In this section and overview of the CDB sub-thread work is presented and then, the
outline of CDB ER, New York City (NYC) sample dataset, demonstration scenarios and
Technology Integration Experiments is discussed.

12

6. Background: This ER includes an overview of the OGC CDB version 1.0 which defines a
conceptual model and file structure for the storage, access, and modification of a CDB data
store.

7. Feasibility Study: The CDB feature codes and attribution schema are introduced at the first
step. Also, the feasibility of extending the CDB feature data dictionary is investigated. Pros and
cons and limitations resulting from different approaches are documented in this section.

8. CDB-NAS profile Mapping: Next, the NAS-based Military Urban Profile is introduced and a
mapping between the CDB and NAS is implemented based on the look-up tables. The decision to
use a look-up table for transforming feature codes from the OGC CDB to NAS was made for
practical reasons, which was to ensure its compatibility with the implementations of OGC CDB
1.0 described in the feasibility study.

9. CDB WFS: This section presents information on the CDB WFS implementations, architecture
and the results conducted. The CDB WFS is used to access and visualize a sample CDB vector
and 3D model data store using a NAS profile feature code and attributes.

10. CDB WCS: This section presents information on the CDB WCS implementations, architecture
and the results conducted. The CDB WCS is used to access and visualize the tiled elevation and
imagery data of a sample CDB datastore.

11. CDB Client: This section presents information on the client implementations, architecture and
the results conducted.

12. Findings: This section summarizes the findings. It also provides forward-looking
recommendations.

5.2. Sample Dataset

The sample data set used in the CDB sub-thread is the NYC dataset created by FlightSafety
International Inc. solely for use by the National Geospatial-Intelligence Agency (NGA) in support of
OGC’s Testbed 13 effort. The CDB is physically arranged on disk into the following top level folders:

* Metadata: This is a directory structure that contains a set of XML metadata files and controlled
vocabularies that are global to the CDB.

* GTModel: This is a directory structure that contains Geotypical Models. Geotypical models are a
set of generic models that are defined once in the CDB and are intended to be rendered in
multiple places throughout the CDB.

* Tiles: This is a directory structure that contains the tiled datasets including vector, elevation,
imagery and Geospecific model.

The Coordinate Reference System (CRS) of this datastore is WGS 84 (World Geodetic System, 1984).
The New York data set contains two CDB Geocells: N40-W74 and N40-W75. The demonstration data
store has thirteen tiled data layers: Elevation, MinMaxElevation, MaxCulture, Imagery,
GeoSpecificFeatures, GeoTypicalFeatures, VectorMaterial, RoadNetwork, RailRoadNetwork,
GeoSpecificModelGeometry, GeoSpecificModelTexture, GeoSpecificModelDescriptorbuildings and
Hydro. The CDB sub-thread experiments make use of the Elevation, Imagery, Geotypical, and
Geospecific model data layers. Each data layer has its own LoDs (level of Details). A CDB-compliant
datastore currently uses ShapeFiles for the representation and attribution of vector feature
datasets. Aligned with the capabilities of the ShapeFile format, vector features consist of points,

13

lines and polygon features. The raster data layers such as Elevation and Imagery are in GeoTIFF
format. The format of the 3D models, the buildings and trees with geometry & textures, is
OpenFlight. OpenFlight is a format widely supported in the modeling and simulation community
for dynamic and static 3D models. The texture of those models can be described as .rgb format.

In the NYC CDB data version.xml file, it has been denoted that the dataset is compatible with the
CDB 3.2 specification. On the other hand, in the Specification_Version.xml file of the NYC CDB
datastore, it was mentioned that the CDB Database Version is 3.0 and released in September 2008.
After evaluating most of the datasets inside the CDB it was concluded that this sample data store in
Testbed 13 was generated based on CDB 3.0 specifications.

Regardless, there are some enhancements in the OGC CDB 1.0 compared CDB 3.2 specification such
as updating the terms and definition to be consistent with the ISO 19xxx (Geomatics) series of
standards, specifically ISO 19111 Spatial referencing by Coordinates and ISO 19017 Spatial Schema
which is published as the OGC CDB 1.0 Standard, Volume 3: OGC CDB Terms and Definitions
[https://portal.opengeospatial.org/files/?artifact_id=72714]. Also, the metadata files and folder updated (e.g.,
corrections to the Feature Data Dictionary, the addition of a Priority field to the Feature Data
Dictionary, additional Base Materials for building interiors, changes to the CDB Attributes, the
addition of new airliners and countries codes). Handling of Topological Networks, Model LoDs and
significant size and some of the datasets had minor changes as well. The list of these updates can be
found in the OGC CDB Wiki page [6]. From the CDB 3.0 to the CDB 3.2 specification, updates are
more significant and fully described in the OGC CDB Best Practices documents ([7] and [8]).

The sample NYC CDB datastore version is based on an older version (CDB 3.0) and is
different from OGC CDB 1.0. The updates and additions are in the form of new
datasets, new feature or model attributes, and new enumerations. They are listed
below:
» Addition of a CDB Attribute Extension Mechanism
* Changes to FDD entries and fields
NOTE * Changes to the CDB Attributes
* Metadata folder and the XML files changed
* Some datasets deprecated and some datasets added
* Model Levels-of-Detail is changed and simplified
* Imagery and Elevation datasets components changed

* Handling of Topological Networks is different

* Additional Base Materials for use with building interiors

5.3. Demonstration Scenario

The underlying use case for the work documented in this report is that:

* Organization A as a CDB provider:

o Wants to share the CDB dataset with other users without them having to download and
manually import the data;

14

https://portal.opengeospatial.org/files/?artifact_id=72714

- Should be able to set its CDB as a data source for either a WCS or WFS server application.
* Organization B as a CDB consumer:
o Wants to be able to access a CDB dataset using standardized OGC Web Services protocols;

- Is able to integrate the CDB data into existing local data analysis workflows using WCS and
WES without having to install or set up CDB-specific components;

- Wants to access a CDB dataset via a WFS interface with spatial querying capabilities;

o Wants a client that is capable of viewing CDB datasets either locally or via a WCS/WFS
interface;

o Wants the ability to convert a CDB dataset from CDB feature codes to NAS for a specific
purpose and vice versa.

5.4. Technology Integration Experiments

This section discusses the CDB-related Technology Integrated Experiments (TIEs) conducted in
Testbed 13.

5.4.1. TIE Components
The following table provides an overview of the components involved in the CDB TIEs.

Table 2. Involved TIE Components

Abbreviation Component Name and Deliverable
Description

CDB WCS Web Coverage Service to access NG103
elevation and imagery data

CDB WMS Web Map Service to access NG103
imagery data

CDB WES Web Feature Service to access NG104
vector data layers

CDB 3DWES 3D Web Feature Service to NG102
access 3D models

CDB Client Conversion Client to access both NG105
a local CDB and CDB web
services

The above components are available on the University of Calgary component page [https:/gsw-
app.gswlab.ca/] and the LUCIAD component page [http://demo.luciad.com:8080/0gcCdbServices/#/cdb].

5.4.2. TIE Results
The following table lists all the conducted TIEs.

Table 3. TIE Pairings

15

https://gsw-app.gswlab.ca/
http://demo.luciad.com:8080/OgcCdbServices/#/cdb

TIE between Use Case Success

CDB-client / CDB-WCS Show elevation and imagery Yes
data provided by the CDB WCS

CDB-client / CDB-WMS Show imagery data provided by Yes
the CDB WMS

CDB-client / CDB-WFS Show road network data Yes
provided by CDB WEFS

CDB-client / CDB-3DWFS Show 3D vegetation data Yes

provided by the CDB 3D WES
CDB-client /local CDB loading Show data from a local CDB Yes

datastore
CDB-client /local CDB NAS Convert local CDB data to the Yes
conversion NAS profile

The TIEs for the CDB client were all successful and the demonstration videos are uploaded on the
OGC portal (OGC Testbed 13*/Streaming and 3D Data/CDB) [https:/portal.opengeospatial.org/index.php?
m=projects&a=view&project_id=512&tab=2&artifact_id=75970].

16

https://portal.opengeospatial.org/index.php?m=projects&a=view&project_id=512&tab=2&artifact_id=75970

Chapter 6. OGC CDB 1.0 Background

The OGC CDB is an international standard for structuring, modeling, and storing geospatial
information required in high performance modeling and simulation applications. The CDB open
standard enables various application scenarios for visualization, planning, education, training,
emergency response and healthcare. CDB defines the core conceptual models, use cases,
requirements, and specifications for employing geospatial data in 3D M&S [4]. The main features of
the OGC CDB Standard are described as:

* Run-time performance;

Full plug-and-play interoperable geospatial data store;
* Ability to integrate proprietary and open-source data formats;

» Usefulness in 3D and dynamic simulation environments.

Furthermore, compatibility with the OGC standards baseline reduces the complexity of discovering,
transforming, and streaming geospatial data in the synthetic environment and makes them more
widely acceptable to major geospatial data/software producers.

6.1. CDB Conceptual Data Model

Conceptual modelling is a structural methodology for describing how the components of a CDB data
store will be implemented based on the modular specification design pattern. The OGC CDB
conceptual model presents the important components of the core standard (Figure 2). This model,
along with its requirements, extension, file-based structure, data formats, access, and the discovery
of services, can be used as the basis for the OGC CDB standard in a variety of application domains.
The conceptual model is comprised of concepts, schema, classes and categories, as well as their
relationships, which are used to understand, and/or represent an OGC CDB datastore. The following
figure (Figure 2) describes the CDB original conceptual model and consists of all the UML files
related to the CDB’s structure. The CDB conceptual model could be implemented in Oracle, PostGIS
or almost any other database software.

17

LOD

class OGC CDB Concsphual Model /

Cose CDE Dets Mossl I

[0+ Laer Camztg

El + Tle-Szzed Stuciue

|“ | + Lelel af DetallsSonema

A
|
|

Dat sat

+he@EEny
+LO0Ema-Coverage
+Rageniayer
g +Vesmrayer

ET—

- name: g6ng
daaType: Sning
fomnat

has

é + Tle-slze

om0

- LOOLOD

- Sunce: gring

|

+ FFD
=] + Snape
] +uvvmar

-

-

-

[FTIIF s
Dats Format |

t + 30 Madel
[+ Elevation
[+ Fealues
+ Imageny
= A

A
rﬂEll:lt

a-"'- . H"‘-
mpat impot impat
-

A e

§_5|+DTED |§+RGB

5] +OpenFiignt

/
- -
Ekvation 3D Moal

: + Geocell-exient
5 +Geaceliengn

| Imagary

E_I +GeaTIr
E—l +MNITF

Figure 2. OGC CDB core conceptual model and its related packages

The CDB datastore structure provides efficient access to its contents. The main properties of the

CDB datastore UML diagram are listed in the following Table.

Table 4. Description of the OGC CDB conceptual model (Please refer to Figure 2)

Name

Tile

LoD Hierarchy

Dataset

18

Definition Data Type & Value

Geographically divides Dataset type.
the world into geodetic

tiles (bound by

latitudes and

longitudes), each

containing at least a

dataset.

Each dataset layer has
a hierarchy of data
layers describing
different levels of
details.

Hierarchy of raster,
vector and 3D models.

It defines the basic
storage unit used in a
CDB datastore.

Layers of data.

Multiplicity & Use

One or more
(mandatory).

One or more
(mandatory).

One or more
(mandatory).

Name

3D Models

Imagery

Vector Features

Elevation

Metadata

Definition

It includes 3D
representations of
static or moving
features such as
buildings, pylons and
posts, aircraft and
other moving
platforms. 3D models
have various model
components.

There are various
imageries in a CDB
datastore such as
representations of geo-
referenced terrain,
elevation, and texture.

These include all the
vector feature datasets
in a CDB which are
defined by the feature
codes.

It is depicted by a grid
of elevation data
elements at regular
geographic intervals, or
a Triangulated
irregular network.

A number of CDB XML
files that include the
default hierarchies,
naming, and values to
be used by client
devices.

Data Type & Value

Model data formats
supported in the CDB
standard (e.g.
OpenFlight).

Image data formats
supported in the CDB
standard (e.g. GeoTIFF,
JPEG, etc.).

Vectors data formats
supported by the CDB
(e.g. Shapefile, etc.).

Grid of terrain
altimetry data.

XML association.

Multiplicity & Use

Zero or more
(optional).

Zero or more (optional)

Zero or more
(optional).

Zero or more
(optional).

Zero or more
(optional).

The OGC CDB Standard relies on three important means to organize the synthetic environmental
data: a) Tiles which organize the data into zones defined by its location with respect to a WGS84
reference system; b) Layers (or datasets) which organize different types of data in a tile; and c)
Levels of Detail (LoD) which organize the data in each layer of each tile by its detail. The UML
diagram in Figure 3 describes how the data is categorized into tiles, layers and LoDs. This is the
basis for the CDB geospatial data categorization. A CDB database can use existing common file
formats for storing data such as: TIFF/GeoTIFF (raster data), JPEG 2000 (imagery data), OpenFlight
(3D models), Shape (vector data and radar cross sections), RGB (textures), XML (Metadata) and ZIP

(file collection).

19

Figure 3. UML diagram of the CDB general data organization

This diagram shows the general data organization for the CDB. The main properties of the CDB

general data organization UML diagram are listed in the following table.

Table 5. Description of the OGC CDB data organization (Please refer to Figure 3)

Name

Raster Dataset

Vector Dataset

20

Definition

Data elements are
organized into an
evenly-positioned,
regular grid. Raster
Datasets always have
a fixed number of
elements
corresponding to
their LoD spec.

The point, line, and
area features are
organized into
several Vector
Datasets and LoDs.
For each LoD, the
maximum number
of points allowed per
Tile-LoD and the
resulting average
Feature Density is
defined.

Data Type Multiplicity
Raster data formats Zero or more
supported in CDB (optional).

Core Standard for
elevation, imageries,
texture and grid
data.

Zero or more
(optional).

Vector data,
RMDescriptor,
GSFeature,
GTFeature,
GeoPolitical,
VectorMateria,
RoadNetwork,
RailRoadNetwork,
PowerLineNetwork,
HydrographyNetwor
k.

Name Definition Data Type Multiplicity

3D Model Dataset This includes the 3D OpenFlight models, Zero or more
Geotypical, GSModelGeometry, (optional).
Geospecific, Moving GSModelTexture,
Model and 2D Model GSModelSignature,
or cultural features = GSModelDescriptor,

such as air GSModelMaterial,
platforms, buildings GSModellnteriorGeo
and pylons and metry,
posts. 3D models GSModellnteriorText
have various model ure,
components. GSModellnteriorDesc
riptor,
GSModellnteriorMat
erial, GSModelCMT,
T2DmodelGeometry.
Navigation Dataset = Navigation library is NavData. Zero or more
composed of a single (optional).
dataset.

6.2. CDB File Folder Structure

This section describes how the current version of a CDB conformant datastore uses the computer’s
native file system to store data in files and directories. An important feature of the CDB Standard is
that all CDB file names are unique and that the file name alone is sufficient to infer the path of the
file. This is an important performance factor for the simulator client to find the path of a specific
feature or dataset by its name. The CDB datastore is composed of several datasets that usually
reside in their own directory. However, some datasets share a common structure. The top-level
directory of the CDB datastore comprises of the following structures:

|CDB|: This is the root directory. It does not need to be named “\CDB\” but can be any valid path
name on any disk device or volume under the target file system it is stored on;

|CDB|Metadatal: This directory contains the XML metadata and controlled vocabulary files
which are global to the CDB;

|CDB|GTModel|: This is the entry directory that contains the Geotypical Models Datasets;

|CDB|MModel|: This is the entry directory that contains the Moving Models Datasets;

|CDBI|Tiles|: This is the entry directory that contains all the tiles within the CDB instance;

|CDB|Navigation|: This is the entry directory that contains the global Navigation datasets.

Most CDB datasets are organized in a tile structure and stored in the \CDB\Tiles\ directory. The tile
structure facilitates access to the information in real-time by any runtime client devices. However,
for some datasets that require minimal storage, such as, Moving Models or Geotypical Models, there
is no significant advantage to be added for such a tile structure. Such datasets are referred to as
global datasets and consist of data elements that are global to the earth.

21

Chapter 7. Feasibility Study of the CDB
Extended Feature Codes and Attribute
Schema

One of the persistent and important concerns with the OGC CDB 1.0 standard is how to evolve
beyond the current use of CDB feature codes and attributes. OGC CDB users and SWG members
have expressed an interest in a broader feature data dictionary (FDD) which embodies most (if not
all) of the feature codes encountered in the commonly used OGC standards and baselines and at a
minimum level, incorporate the much more recent NSG Application Schema (NAS). Therefore, the
main objectives of the CDB work package in Testbed 13 are focused on investigating how CDB could
support:

» Additional feature types and attributes than those specified in the OGC CDB 1.0 standard;

* Schemas (a specification of the feature types that may occur in a dataset along with their
attributes and additional information such as multiplicity and association).

This section explains the current CDB data model, feature coding, and attribution schema. Then, the
interoperability issues related to use of the NAS profile are described. Finally, the current solutions
for extending CDB feature codes and schema are evaluated and the proposed change requests are
presented.

7.1. OGC CDB Feature Codes

The OGC CDB 1.0 standard comes with a set of pre-defined feature types, which are listed in a
Feature Data Dictionary (FDD), in the form of an XML file and specified as part of the standard. The
list of feature types is defined in a Feature_Data_Dictionary.xml [1] file which is located at
/CDB/Metadata/Feature_Data_Dictionary.xml. The CDB feature dictionary currently does not support
a capability to express relationships between features.

The mostly used formats in CDB to encode feature data (vectors and 3D models) are
NOTE Shapefiles and OpenFlight files. The CDB feature codes have also been used for
indexing Geotypical and Geospecific 3D models.

The OGC CDB 1.0 standard uses a convenient categorization of features (based on FACC code which
is now called as "CDB feature code"). The first character in a 5-character CDB feature code (e.g.,
"CCnnn") represents a category of features, the second represents a subcategory of the current
category, and the last three characters represent a specific feature type in the subcategory. To
provide an even better classification of features, the CDB standard defines an additional attribute
called feature sub-code (FSC). By extending the feature code hierarchy structure in this manner, it is
possible to define a broader set of feature types. The sub-code value and its meaning depend on the
feature code and varies by feature type. The feature code structure and its data model are
presented in Figure 4.

22

Category Aero Info Extraction Aero_Dataset Tide_Current_Info Relisf Coastal
B Disposal Plant Inland_Water Control Point [Harbor
("A”-"2") e Proc._Industry Religion Misc_Inland Water Bkgd_Feature [NAVAID
Culture Power Gen Dev_Dataset Oceanographic Location Hazard
Sub-Category Demarcation | Fab_Industry Recreation Exposed_Material Landform Waterbody_Floor
Sl oy EDD ~Ind_Structure Administration Military_Science Cropland Depth_Info
(A"-"Z) EDD Commercial Air_Tmsp Air_Traffic_Serv Rangeland Misc
Institutional Aperture Toponymic_Dataset Woodland Industry
n Feature Type General Residential |Room Abstract_Object Wetland Infrastructure
r."Q] Hydrography | Agriculture Section Simulation_Dataset Topo Land_Trnsp
i (000'999) Hypsography Recreational Fixture Hydrographic_Trnsp ~ Aero Annotation
';’ Physiography Misc_Feature Floor Support_Structure Hydro Littoral
Ry Feature Sub Code . Storage Partition Hydrographic_Artefact Air_Route Survey
-8 $ — (000-999) Special_Use | Rajlroad Demarcation \Waterbody Surface Aerodrome |Magnetic Variation
O = Vegetation Road Tmsp Lighting_And_Visibility AMDB Bottom_Feature
@ 3 Associated Surface Terrain_Anal_Dataset Area Snow_or_lce
5 8 S Physiography Shelter Bkgd_Display_Dataset Ref_Point Transp_Dataset
‘6’ bl [Description Comm Hydrology Device_And_EquipmenSpecial_Char |Usage Region
E Airport Ice Device_And_EquipmenFDD Living_Organism
[20] . GSFeature Areal Railroad Network Lineal
o T Origin GSFeature Lineal Railroad Network Lineal Figure Pt
o GSFeature Point Road Network Lineal
GeoPolitical Boundary Areal Railroad Network Lineal Figure Pt, Road
Recommended GSFeature Point, Environmental Light Point Network Lineal Figure Pt
Dataset GeoPolitical Location Point Road Network Lineal Figure Pt
Road Network Lineal, Railroad Network Lineal Powerline Network Lineal
PowerLine Network Lineal Figure Pt Hydrography Network Lineal
Moving Model Location Road Network Lineal Figure Pt, Railroad

— Priority

GSFeature Point, GSFeature Areal Network Lineal Figure Pt

Figure 4. OGC CDB Feature code category and data model

The current CDB FDD is a consolidation of the DIGEST, DGIWG, SEDRIS, and UHRB dictionaries.
These standards are commonly used for the attribution of source vector data in a broad range of
simulation applications (Figure 5). These Feature Codes were supported by the DGIWG FDD and the
ISO/IEC 18025 data dictionaries.

The origin of CDB feature codes

UHRE
4.0%
D0O-272B (AMDE)

£
CDB3.2
6.5%

DIGEST 2.1

27 79

SEDRIS

a4.0%

DGIWG FDD

17.1%

Figure 5. Origin of CDB feature codes

Feature codes such as AL015 are an indexing mechanism for CDB compliant applications to access
and navigate to Geotypical models (GTModels) more efficiently. Geotypical datasets (directory,
geometry, and description) are likely to be referenced multiple times and are stored under a feature
code based hierarchy. Here is an example:

|CDB|GTModel|500_GTModelGeometry|A_Culture|L_Misc_Features|015_Building|D500_S001_T00
1_ALO015_050_Church-Gothic.flt

23

The indexing approach greatly simplifies the management of the model library since every model
has a pre-established location in the library. The feature codes are also used for naming the files in
the CDB folders. In GeoSpecific models, feature codes are used for the file naming in the following
data layers: 300_GSModelGeometry and 305_GSModelInteriorGeometry datasets. It looks like:

Geocell DSC_CS1_CS2_LOD_UREF_RREF FACC_FSC_MODL.ext

Moreover, feature codes (FACC and FSC) are two attributes for CDB vector features. They are used
for allocation of CDB Attributes to Vector Datasets which is called attribution schema.

The FDD.xml file allows an application to build the pathname where 3D
models associated with features are found. For instance, a feature whose
FACC code is AL0O15 can be represented by a model that is stored in a folder
whose name is A_Culture|L_Misc_Feature|015_Building. Without the XML file,
the application would have to hardcode the path. Therefore, the CDB feature
code is used to index and categorize features within a dataset.

IMPORTANT

To summarize, the only intent of the FDD file is to provide a programmatic way of building a
pathname from a FACC code. The other fields (Concept Definition, Recommended Dataset, and
Origin) are for information purposes only. These help applications and users understand the
meaning of FACC and FSC codes.

7.1.1. Extending Feature Codes

Although, the list of feature types is fixed and may not be extended in CDB 1.0, broader feature
codes can be defined by other OGC standards to be added to the next versions of the standard. For
example, since the initial release of the CDB specification and prior to submission to the OGC, 635
new feature codes have been added to the feature data dictionary. The new feature codes use the
same coding approach as used in the previous CDB versions, namely a 5-digit FACC supplemented
by a 3-digit FSC to be compatible with the other versions of CDB.

The FDD.xml has a fixed number of features for the OGC CDB 1.0. In the
current structure, the new features can be added by identifying them with a
5-digit FACC code. This identifier code will be used in referencing that
feature in the CDB datastore hierarchy.

IMPORTANT

When a new feature is added to the FDD.xml, it is good practice to denote the recommended dataset
property. While the wording is recommended, there is a run time determinism element to this
recommendation. If a client wants to find a particular set of features, it can look for all the features
in a dataset. Otherwise, it would need to load every data set and search, which defeats a major
purpose of CDB.

CDB 1.0 makes extensive use of XML to describe several parts of the standard. XML is used to
describe CDB metadata and controlled vocabularies, to store global datasets, to add attributes to
data models, to describe base and composite materials and textures, etc. Also, it is possible to use a
new version of the FDD in CDB using an XML Schema definition based on a service core and an
external feature reference instead of a feature data dictionary.

24

7.2. Attribution Schema and Vector Features

Each vector feature is characterized by a set of attributes that are defined in CDB Attributes [2]. For
example, a CDB uses Esri Shapefiles to represent vector data and attributes. As per the Esri
Shapefile Technical Description, the set of attributes are stored in dBase III+ files for each instance
of the vector feature.

Attribution Schemas are the method to handling these different types of attribution. CDB 1.0
supports three attribute schemas to represent attribution data:

* Instance-level attribute schema

¢ (Class-level attribute schema

¢ Extended-level attribute schema
Each of the schemas offers different trade-offs in the manner attribution data is accessed and
stored. Each of these schemas is largely motivated by storage size considerations and flexibility in

the manner attribution data can be assigned to individual features and to groups of features.
Attributes are either Mandatory, Optional, not permitted, or not used (Figure 6).

Dataset “.shp File Dataset Instance-level *.dbf Dataset Class-level *.dbf
=] = |BI15 I8 |l=1= 1= = = 5] == 1=
A = il - | =4 =]
s |3| & [EIE|E|3(3|5|5 |8 = ez |8 [2[8|8|2
o = “E2la|lo|d |2 |9 |> (] I @ i Lo o>
record 1 T—* House —522 Se—-A—-0—8 » House T 152m ALD1S 016
record 2 * Highway 2800171 = - - = —» Street & - APO30 | 001
record 3 T Highway 335E5-rr——D804% = = @ Highway E: - APO31 | 002

record 4 T* Strest —T18883 W™ T
T—* Highway

Figure 6. An example of Instance-level and Class-level attribution schema in vector Shapefiles [9]

As the following figure (Figure 7) shows, feature codes (FACC and FSC) are two mandatory
attributes for CDB vector features.

Table 5-27: Allocation of CDB Attributes to Datasets

= I3 alelelz|e —
w|=|2 FHEEEEEE HERBE clzlele ezl
5 =(ele

HEE HEEHEEEE AEEEE AEEEEEE
Feature Instancelevel PlPIP PIPIPIPIPIPIP P{P[P[P|P P(PIPIPIPIPIP
Feature Class-level Y Y YIYY Y{Y]Y] VY [Y[Y[Y YUY [YIY Y (Y |Y
Feature Extended-level YIv YV IvIY[WIv[Y AEAKAKAN] YIYIYINIY Y]
Man Made Paint [o[r]o] [T [Immfofolof T T ol T I Jof Jo P | [Imofolofo] | [r[rRJO] []0O]
I_ManMadeLinsa\ lo[10] 11 Im[m|ofolr Q M MO o] OR
Ian Made Areal Tol™Tol RIRTTTTIMIMIOTOTR [s] M [8] ol IrRTO

L] L] *
Constraint Lineal Q 8] M| M 8] 0|00 8] M Om
Constrairt Areal [s] Q b M o] 0] Q Q M Q
Mandaiory [R [Recommended [D [Deprecated Attributicn Schema Elpre'eméd Aftribuion Schema /7Nt pernitied
o |optional [D |pependent on cther attribute | v | Atowed Attibution Schema | [Matused

Figure 7. Allocation of CDB attributes to datasets [9]

25

As the above figure shows, the intention and preference in CDB 1.0 are to promote
storing all CDB attributes with the instance-level and avoid writing the class-level
attributes. Although class attributes are common to several instances of a feature,
its optimization does not worth the cost of another read file I/O and it adds
complexity to the code. However, for compatibility, class-level attributes are still
supported.

NOTE

CDB consumers have two choices when dealing with class-level attributes:

1. Start by reading the Shapefile of the instance and if a record has a value for the CNAM (class
Name) attribute, then read the Shapefile of the class; or

2. Systematically reading both instance- and class level .dbf and dealing with the absence of the
class file when none is present.

The same reasoning applies to reading the Shapefile containing extended attributes. The user may
decide to wait for the presence of values in the CEAI (CDB Extended Attribute Index), GEAI
(Geomatics Extended Attribute Index), or VEAI (Vendor Extended Attribute Index) attributes before
reading the Shapefile of the extended attributes; or, the user may attempt reading it before parsing
the instance or class files in case there are extended attributes referenced by a particular feature.
The CDB attribution schema limits the applicability of each of the CDB attributes to specific vector
datasets, value ranges and units. This approach helps to reduce the size of the database file of the
instance and class-level attribution. This CDB attribute data model is used for the representation of
many features using the modeler in real-time simulation.

7.2.1. Extending Vector Feature Attributes

In addition to instance and class level attributes, the standard also promotes using the "Extended-
level" attributes which support "Geomatics Attributes" and "Vendor Attributes". The attributes in
CDB are categorized into three types:

* CDB Attributes: CDB attributes are attributes whose semantics, data type, length, format, range,
usage, units, compatibility, and schema are entirely governed by the CDB standard. Most of
these attributes are unique to the CDB standard, i.e., these attributes are not found in source
data that conforms to various (US) governmental standards and specifications. As a result, this
attribution data must be derived via CDB tool automation or provided directly by the user.

* Geomatics Attributes: Geomatics attributes are attributes whose semantics, data type, length,
format, range, usage, and units, are governed by various governmental/industrial specifications
and standards. Such attributes are generally found in source data that conforms to such
standards and specifications. While the CDB standard does not define and govern the usage of
these attributes, it nonetheless accommodates their storage within the repository structure of
the CDB.

» Vendor Attributes: Vendor attributes are attributes whose semantics, data type, length, format,
range, usage, and units are governed by one or more vendors. In general, such attributes cannot
be used by other vendors since they are often proprietary. Such attributes exclude the above
two types of attributes and are generally unique to each vendor. While the CDB standard does
not define and govern the usage of these attributes, it nonetheless accommodates their storage
within a CDB.

26

There are three XML files that define CDB, Geomatics, and Vendor Attributes. Only one is provided
with the CDB distribution package. This one file is "/CDB/Metadata/CDB_Attributes.xml". The other
two are necessary only if Geomatics or Vendor attributes are used to create Extended Attributes
(see 5.7.1.2.7.3 of Volume 1). Geomatics Attributes.xml and Vendor Attributes.xml define the
attributes that are referenced in the EAC column of the Extended Attributes tables (see Figure 8).
The intent behind those XML Attribute files is to provide the data necessary to interpret EAC
(Environment Attribute Code) and EAV (Environment Attribute Value). For instance, if EAC = 1
(numeric) and EAV = “123.456” (text), the XML Attribute files will specify what is the name and type
of attribute 1 so that the character string “123.456” can be interpreted as a floating point number.

CEAl is the CDB
Extended

Attribute Index

EAV is the attribute
value string

Shapefile (*.shp) Instance-lLevel Attributes (*.dbf)
-
s (e] 2 [ee|§|3]3]s8]3
Shape 1 House 5.2° - - 89%|1.0 |1.0 [1.0 - -
Shape 2| |Highway - 82500m| 1 | 71%| - - - 4 - -
Shape 3| |Highway - 33565m| 1 |99%| - - - - = -
Shape 4| |Railroad - 154000m| 1 | 85%| - - - - - -
Shape 5| |Highway - 53565m| 1 |99%| - - - ! - - -
Class-Level Attributes (*.dbf)
Header g ﬁ g ﬁ E g E
_ l GEAIl and VEAI are
Record 1 |Container|15.2 m VX000 000 | |6 - - £ i
Record 2 [Railroad - ANo10 |oooll-—] 1 -1/ for Geomatic and
Record 3 | Highway - APO30— 002 || - -9/ Vendor attributes
Record 4 ,f/ A
Exte r;ded-Leyé Attr'ﬁ)utes (*.dbf)/
Header g /g g/ /§
S/
Record 1<f—7 DIGEST A |1
Record2 <’ _— 3 DIGEST 2 |6.4%5
Record3<€ 0O DIGEST 3 Ixvz. ..
Record 4 5 €65 —~ CYUL
Record5<| 8 cbe_~ 54 |06t EAC code refers to a
Record 6 /,'7 ‘DB 29 [1 YL et o
Record 7 <] [o] CDB 60 |84 . .
Record 84— o DB === define the attribute
Record 9«<—=-10 ABC Inc. 1 |1234567890ABCDEFR
Record 10<__ O ABC Inc. 1 |[GHIg

Figure 8. An example of extended-level attribution schema in vector Shapefiles [9]

The schema for all of the three XML files which define CDB, Geomatics, and Vendor Attributes can
be found in "\CDB\Metadata\Schema\Vector_Attributes.xsd". The file contents are presented as

follows:

27

<Vector_Attributes>
<Attributes>
<Attribute>...</Attributes>

<Attribute>...</Attributes>
</Attributes>
<Units>

<Unit>...</Unit>

<Unit>...</Unit>
</Units>
<Scalers>
<Scaler>...</Scaler>

<Scaler>...</Scaler>
</Scalers>
</Version>

The following example illustrates how to define an attribute:

28

<Vector Attributes>
<Attributes>
<Attribute code="2" symbol="A01">
<Name>Angle of Orientation</Name>
<Description>Angle of Orientation with greater than 1 degree resolution.
The anqular distance measured from true north (@ degree) clockwise to the
major (Y) axis of the feature. If the feature is square, the axis 0
through 89.999 degree shall be recorded. If the feature is circular, 360.000
deg shall be recorded.
</Description>
<Level>
<Instance>Preferred</Instance>
<Extended>Supported</Extended>
</Level>
<Value>
<Type>Numeric</Type>
<Format>Floating-point</Format>
<Precision>3.3</Precision>
<Range interval="Right-Open">
<Min>0</Min>
<Max>360</Max>
</Range>
<Unit>2</Unit>
</Value>
</Attribute>
</Attributes>
<Units>
<Unit code="2" symbol="deg">
<Name>degree</Name>
<Description>To measure an angle</Description>
</Unit>
</Units>
<Scalers>
<Scaler code="2" symbol="k">
<Name>kilo</Name>
<Description>A multiplier: thousand</Description>
<Multiplier>1000</Multiplier>
</Scaler>
</Scalers>
</Vector_Attributes>

7.3. Supporting Application Schema

An application schema includes feature type and model definitions (code, attributes, units, etc.)
along with any constraints important for the integrity of the data. Currently, CDB only defines a
simple attribute schema for vector features which at the implementation level can be stored in the
Shapefile .dbf files. When considering adding support for application schemas in CDB, several
aspects need consideration. This is extensively studied in Testbed 13 NAS Profiling ER [3]. These
concerns are related to the following topics:

29

1. Schema Encoding: The CDB 1.0 encoding of the application schema can be implemented using
the Shapefiles. The current CDB 1.0 attribute schema is also implemented using Shapefiles. The
NAS specifies encodings for GML and Esri Geodatabases. Since no NAS data was used in CDB in
Testbed-13, no recommendations about future encodings were discussed in Testbed-13. In
future, other encodings such as GML, Esri Geodatabases, and GeoPackage may be used.

2. Schema description: The CDB 1.0 schema description is implemented using three tables (.dbf
files) to store the attribute schema. The columns which describe the CDB and extended
attributes are linked to the corresponding .xml to describe them. In Testbed 13, the NAS profile
was expressed as a GML application schema to support simple schemas (GML Simple Feature
Level 0 profile) for CDB. Although this simplified version has some limitation in using the
complex content of the data model, the decision was made for practical reasons: to be
compatible with the complexity supported by Shapefiles and, therefore, implementations of
OGC CDB 1.0.

If a CDB data store is to be able to support application schemas, the standard needs to clarify if the
feature dictionary and attribute schema are still required and what is their role. The CDB feature
data dictionary is currently used in CDB for indexing and accessing the features.

7.4. Limitation of the OGC CDB 1.0

CDB is a file-based data store designed to access and visualize data at different levels of abstraction.
It has an internal/physical schema for the indexing of folders and file names for random access.
This system is useful for fast access which affects performance, but not semantics. Due to the fixed
rules for file naming and file path definition, rapid implementation of new features and changing
the indexing structures is difficult to define and implement. However, useful routines can be
hardcoded or represented in xml to deal with the issue of physical representation.

Designing a method for supporting additional feature codes and schema should also maintain
backwards compatibility as best as possible. Data does nothing in the absence of an interpreter
(such as a database generation tool or a client device). As a result, the notion of compatibility
should apply not only to CDB itself, but also to the simulation and modeling software that
implement the CDB standard. There are actually two types of compatibility that should be
considered:

* Backward compatibility: refers to the ability of an interpreter implemented to version n of the
standard to accept a CDB compliant to version (n-1) of the standard. Logically, if version (n-1) is
also backward compatible with version (n-2), which in turn is backward compatible with
version (n-3), then version n is backward compatible with the oldest version that is not
backward compatible with its predecessor.

» Forward compatibility: refers to the ability of a CDB datastore to accept input intended for a
later version of itself and pick out the "known" part of the data. Forward compatibility is harder
to achieve than backward compatibility because software needs to cope smoothly with an
unknown future data format or requests for unknown future features.

The other important factor with the CDB standard is the performance issue associated with the
extended attributes or additional feature data dictionary. Since all the data sources in a CDB data
store need to use extended feature attributes, there will be a performance bottleneck in run-time

30

implementations. Therefore, addressing a method for extended feature attributes should address
this issue.

Designing a method to support extended feature codes/attributes and schemas in
NOTE the OGC CDB 1.0 should address the run-time performance and backward/forward
compatibility as much as possible.

7.5. Extending CDB 1.0 Using NAS Profile in Testbed 13

The compatibility of the CDB standard with newer versions of feature codes (such as NAS) makes
them widely acceptable to major geospatial data/software vendors and stakeholders. Furthermore,
this provides a tool for extending the CDB feature codes/attributes and reduces the complexity of
discovering, transforming, and streaming geospatial data from the Internet to the simulation
environment.

Since the CDB feature codes (based on FACC codes) are ingrained into the structure and naming
scheme of the CDB 1.0, the proposed approach in Testbed 13 is based on keeping the current codes
as is. In the Testbed 13 CDB sub-thread, another method was applied to convert CDB feature codes
and attributes to the NAS profile for accessing and visualizing the New York City CDB sample data.
For this purpose, three mapping tables are considered for three feature data sources: tiled vector,
Geospecific and Geotypical model dataset. Using these look-up tables, the client device can find the
corresponding feature in the NAS profile for each feature instance in CDB vector, Geospecific or
Geotypical model datasets. The details of this approach are described in chapter 8 of this ER.

One possible approach for adding NAS attributes to CDB 1.0 is to insert them as the extended-level
attributes into the feature attributes. For example, a new attribute can be added to the extended
level attribute column of the .dbf files and described by a generated GeomaticAttribute.xml file from
NAS profile. This method is carefully investigated in [3].

7.6. Proposed Change Requests for the OGC CDB 2.0

A practical short-term solution was applied in Testbed 13 to extend the current OGC CDB 1.0
features and attributes (please see the above section). This ER recommends that additional work is
required for the replacing of CDB feature codes and attributes. The following future work and
changes are expected to be proposed for future CDB versions.

One important change to CDB 1.0 is replacing the feature codes for CDB and updating them with the
current technology for complex data modeling, associations and semantics. For example, one
solution is to replace the feature data dictionary with Application Schemas (e.g., NAS [3]) that
describe the features and attributes in different domains of application with their associations and
relationships. To extend the current simple schema of the CDB using NAS (SF0), the NAS feature
types are converted into a simple format which is accepted and encoded for the OGC CDB 1.0. Then,
these NAS attributes can be added to the feature as an extended attribute.

The critical challenge here is that the indexing technique encoded in CDB (for example the
Geotypical model indexing) is based on the FACC codes. Preferably this constraint should be
removed. Tis recommendation is based on the discussions in Testbed 13. Another compatible
approach may use a mapping to look-up the deprecated FACC codes for each feature type in the

31

CDB.

Change Proposal 1:

How to support application schemas in CDB by replacing FACC codes with a general
feature code?

If future versions of CDB standard are intended to support the NAS (or any other application
schemas), defining a more general feature code is necessary to support the feature types used
by the application schema. This feature code should be able to support:

» A more flexible grouping of feature types (1 .. n category levels) instead of two Category
and Sub-Category levels. Although it is similar to NAS two-level grouping, this will not be
the case for other application schemas.

» Optional Subcode for the features as it does not have a corresponding concept in the
General Feature Model, which underpins ISO 19109 application schemas like the NAS.

* Changing some of the properties of the FDD (e.g., description, recommended DB), as the
description field is equal to the definition in NAS and the recommended DB is only useful
for high-performance simulations.

» Performance testing to see if different FDD can be supported in real time.

In Testbed 13, encoding of the application schema can be implemented using the Shapefiles .dbf
files for vector features. Moreover, for the 3D visualization performance, one of the difficulties was
reading the 3D OpenFlight models. In the NYC CDB datastore, OpenFlight is used for the
representation of 3-dimensional geometric representation of all models. Therefore, the following
change request is proposed for CDB 1.0 by participants in all of the S3D performance sub-threads.

Change Proposal 2:
How to use open formats in the CDB for vectors and 3D models?

» Support acceptance of the frequently used format "OpenFlight" as an OGC community
standard.

* How to use CityGML in OGC CDB?

* How to use CDB with GeoPackage?

The above changes may require performing OGC interoperability experiments to better understand
the implications of these decisions better. Making these enhancements will allow for the use and
implementation of a CDB structured datastore and the extension of its scope to include more 3D
simulation and modeling application.

32

Chapter 8. CDB to NAS Mapping for Feature
Codes and Attributes

The proposed method used in Testbed 13 for interoperability between CDB and NAS was to find a
mapping and look-up table for the features to access NAS-based data in the CDB data store or save
CDB-encoded attributes to a CDB NAS profile format. This section describes some examples of the
mapping between CDB features (vector and 3D models) and the NAS profile. For this purpose, three
types of features in a CDB data store need to be mapped to the NAS profile: Geotypical 3D models,
Geospecific 3D models, and vector features (points, lines and polygons). In Testbed 13, a NYC CDB
data store has been used which has 3D models (building and trees) in the Openflight format and
vectors (road, railway network, rivers, lakes, hydrology, and etc.) in the Shapefile format. In this
section only one example of "Tree" 3D model feature is described. For more details on the mapping
lookup tables please see "CDB to NAS Mapping for Feature Codes and Attributes", document 17-082
[5].

TP How to obtain the NAS profile formatted feature code and attributes from a feature
instance inside a CDB?

To answer the above question, the user first needs to find out if that feature is a Geospecific,
Geotypical 3D model or Tiled vector feature. After that, the considered feature type can be found in
the corresponding detailed mapping table. For example, if a "maple tree feature" instance is
considered, it is a Geotypical feature that can be a point or area feature. Then the "maple tree"
feature code (FACC code) is extracted from its filename or from the CDB 1.0 FDD.xml file. Based on
the height of the feature, there is a Geotypical model associated with it which encoded the feature
code in its naming convention. The maple tree feature instance is mapped to its equivalent NAS
profile formatted feature using that feature code. The OGC Testbed 13 NAS profile workbook keeps
the deprecated FACC codes that are used as feature codes in a CDB data store.

8.1. NAS Urban Military Profile

The National System for Geospatial Intelligence (NSG) Application Schema (NAS)
[https:/nsgreg.nga.mil/nas/] specifies a platform independent model for geospatial data and their
geospatial semantics specified by the NSG Entity Catalog (NEC) and NSG Feature Data Dictionary
(NFDD). The NAS conforms to ISO 19109:2005 Rules for Application Schema, as well as, conceptual
schemas specified by other ISO 19100-series standards. NAS includes entity modeling for modeling
features, events, names and coverages (e.g., grid, raster, and TIN).

As the NAS specifies an NSG-wide model for geospatial data that supports a wide variety of domains
and applications, it is advantageous to define subsets of the NAS that meet specific requirements.

In order to extend CDB using NAS in Testbed 13, an "Urban Military Profile" of the NAS was used as
a starting point. This profile defines the vector content requirements for urban-centric profiles.
This profile is intended to be used to define the data model requirements for an Urban Military
CDB. The S-UTDS subset of the TDS v6.0 Entity Catalog [https:/nsgreg.nga.mil/doc/view?i=82116]
(topographic-profile of an older version of the NAS) has been used as the starting point for the
"Urban" Military Profile of the NAS for the purposes of this testbed [3]. NAS has been used as an

33

https://nsgreg.nga.mil/nas/
https://nsgreg.nga.mil/doc/view?i=82116

example of the recent feature data models which includes geospatial data semantics; supports net-
centric geospatial services; and is capable of achieving geospatial data interoperability [3].

8.2. Mapping of "3D Geotypical Model" Feature Codes

The 3D model of trees is located in the NYC CDB datastore as a Geotypical model. The Geotypical
model is composed of a set of datasets representing its geometry (ModelGeometry and
ModelDescriptor) and its textures (ModelTexture, ModelMaterial, and ModelCMT). Similarly, the
interior of a model is divided into geometry (ModellnteriorGeometry and ModellnteriorDescriptor)
and textures (ModellnteriorTexture, ModellnteriorMaterial, and ModelInteriorCMT) datasets. Here
is the path of the Geotypical models of the NYS dataset which are stored in:
CDB_NewYork|GTModel|500_GTModelGeometry|E_Vegetation|C_Woodland|030_Trees

In Geotypical model, the indexing approach greatly simplifies the management of the model library
since every model has a pre-established location in the library. The following table describes the
CDB-NAS feature code mapping for the 3D model of maple trees.

Table 6. Mapping between CDB and NAS feature codes for 3D Geotypical model of maple trees

NAS Profile CDB Feature CDB Feature CDB Path and File Name

(deprecated Code Sub-Code (CDB_NewYork\GTModel\500 GTModelGeome

Feature ID) try\E_Vegetation\C_Woodland\030_Trees)

EC005 EC030 000 D500_S001_T001_EC030_000_central_park_maple
1t

EC005 EC030 000 D500_S001_T002_EC030_000_central_park_maple
flt

EC005 EC030 000 D500_S001_T003_EC030_000_central_park_maple
1t

EC005 EC030 000 D500_S001_T001_EC030_000_maple_medium_40f
t.flt

EC005 EC030 000 D500_S001_T001_EC030_000_maple_medium_45f
t.flt

EC005 EC030 000 D500_S001_T001_EC030_000_maple_medium_50f
t.flt

EC005 EC030 000 D500_S001_T001_EC030_000_maple_medium_60f
t.flt

EC005 EC030 000 D500_S001_T001_EC030_000_maple_medium_70f
t.flt

EC005 EC030 000 D500_S001_T001_EC030_000_maple_medium_80f
t.flt

As is presented in table 5, maple trees have different 3D models for different height values. With a
closer look into the CDB feature data dictionary file (FDD.xml), the following feature codes are
associated with maple trees.

Table 7. OGC CDB 1.0. feature codes and related information for maple tree features in the FDD.xml file

34

CDB CDB Labels Concept Definition Recom Origin

Feature Feature mended
Code Sub- dataset
Codes
EC030 000 Vegetation- A tract of trees whose canopy isnot GSFeatu DIGEST
Woodland-Tree- closed (allows sunlight to reach the re Areal 2.1
Trees_Generic ground) and often includes
undergrowth. (See also EA040, EB020
and EC015)
EC030 033 Vegetation- A tract covered by a non-empty set of GSFeatu DIGEST
Woodland-Tree- Maple trees; a treed tract. re Areal 2.1
Maple
EC005 000 Vegetation- An individual woody perennial plant, GSFeatu DIGEST

Woodland-Tree- typically having a single stem or trunk re Point 2.1
Tree_Generic growing to a considerable height and
bearing lateral branches at some
distance from the ground.

EC005 033 Vegetation- A individual tree of kind Maple. GSFeatu CDB 3.2
Woodland-Tree- re Point
Maple

The above table shows that in the OGC CDB 1.0 which inherited the CDB 3.2 specification, the trees
are extended to include EC005 which is a point feature instead of the EC030, which is a polygon
feature.

The Testbed 13 NYC dataset is based on the CDB 3.0 specification and
IMPORTANT .
denoted the "maple trees" only with the EC030.
The following table shows the feature codes in NSG application schema. There are two fields for
defining the features: Definition and Description. The field Definition from the NAS profile is related
to the field Concept Definition in CDB. Various types of trees can be defined in the Tree attributes.

Table 8. Feature definition in NSG application schema

AlphaCode Name Definition Description
Tree Tree An individual woody May be distinguished by its
perennial plant, typically relative isolation from other
having a single stem or features, thus serving as a
trunk growing to a landmark.

considerable height and
bearing lateral branches at
some distance from the
ground.

8.3. Mapping of "3D Geotypical Model" Attributes

Another critical discussion for the CDB to NAS mapping is the attribute schema. When the
equivalent features in the CDB and NAS are found, the attributes of these features can be very
different. NAS has more information about the attributes, association, geometry and their

35

relationships.

For example, the following table shows the properties of the Tree feature in the NAS profile. This is
generated based on the Testbed 13 NAS profile.

Table 9. Flattened NAS Profile feature entity code, attributes, enumeration of tree feature

Property Name Property Code Type Enumeration Association
Information &
Unit

Place Tree. place *geospatial 1.* Point Position
Information
(Z1007)

Foliage Type EC005_TRE attribute 0..1

Height Above EC005_HGT attribute 0.1 Unit: metre

Surface Level

Highest Elevation EC005_ZVH attribute 0.1 Unit: metre

Navigation EC005_LMC attribute 0.1 Domain members:

Landmark False, True

Subclass-of ECO005_subclassOf attribute Feature Entity
{Abstract} (Z1028)

For more descriptions about NAS attributes, please see [5].

From the CDB attribution schema (Attributes.xml), it can be seen what are the definitions for
attributes and which attributes are deprecated (D), supported (S), not supported (NS) or preferred
P).

Table 10. Attribute schema for "maple tree" from “CDB_Attributes.xml” file (S: Supported, P: Preferred, N S:
Not-Supported)

Attribute Level Value Type
Full Symbol Code Instance Class Extende Range and Unit
Name d
Absolute AHGT 2 S Boolean
Height
Flag
Angle of AO1 3 p NS S Numeric Floating-Point, Range
Orientati [0, 360], Unit(deg)
on
Bounding BBH 6 NS P S Numeric Floating-Point, Range
Box [0, 100000], Unit(m)
Height
Bounding BBW 7 NS p S Numeric Floating-Point, Range
Box [0, 100000], Unit(m)
Width

36

Attribute Level Value Type

Bounding BBL 8 NS P S Numeric Floating-Point, Range
Box [0, 100000], Unit(m)
Length

Bounding BSR 10 P Numeric Floating-Point, Range
Sphere [0, 100000], Unit(m)
Radius

Composit CMIX 13 S P Numeric Integer, Range [0,

e 999999]

Material

Index

Class CNAM 14 S S Text (32 char)

Name

Feature = FACC 23 S Text (5 char)
Attribute

Classificat

ion Code

FACC Sub FSC 24 S Numeric Integer, Range[0, 999]
Code

Height HGT 27 S

Above

Surface

Level

Model MODL 40 S Text (32 char)

Name

Model MODT 41 S Text (1 char): Geotypical or
Type Geospecific

Relative RTAI 53 S Numeric, Integer, Range[0, 100],
Tactical Unit(%)

Importan

ce

Scaling X- SCALX 55 S P Numeric Floating-Point,
Axis Range[0, 1000]

Scaling Y- SCALy 56 S P Numeric Floating-Point,
Axis Range[0, 1000]

Scaling Z- SCALz 57 S P Numeric Floating-Point,
Axis Range[0, 1000]

For more descriptions about CDB attributes, please see [5].

In the above table, these abbreviations used for determining when an attribute is required for
instant/class/extended level: S=Supported, P=Preferred, N S=Not Supported.

37

As the above tables show, the intention and preference of the OGC CDB 1.0 is to
promote storing all CDB attributes with the instance-level and avoid writing the
class-level attributes. Although class attributes are common to several instances of a
feature, its optimization does not worth the cost of another read file I/O and it adds
complexity to the code. However, for compatibility, class-level attributes are still
supported.

NOTE

For a tree’s Geotypical models, the following tables show some examples of the CDB attributes in
class level and instant level.
Table 11. An example of OGC CDB 1.0. class level attributes for maple tree features

Class Name (CNAM) Scale in x Scaleiny Scale in z Angle of Relative
(SCALX) (SCALYy) (SCALz) Orientation Tactical

(AO1) Importance
(RTAD
N40W074L00UO0OOR0O00O~ 1.19218 1.19218 1.19218 129.170 0

EC030~0000005

Table 12. An example of OGC CDB 1.0. instance level attributes for maple tree features

Class Model FACC FSC BSR BBH BBW BBL HGT CMIX AHGT
Name(CNAM)
N40W074L00U maple_ EC030 O 21.119 24.386 24.386 24.386 24.39 1 F

000R000~ mediu
EC030~0000005 m_80ft

38

Chapter 9. CDB WEFS

The Web Feature Service (WES) [http://www.opengeospatial.org/standards/wfs] is an OGC standard defined
as a web service interface for the exchange of geospatial vector data. The vector data is organized
into "feature types", each having a set of similar vector features. The default data exchange format
is a GML [http://www.opengeospatial.org/standards/gml] application schema. In order to interact with a
WES instance (endpoint) and consume data, a WES client can perform the following operations:

* The GetCapabilities operation is a request to a WFS server to obtain a list of operations and
feature types offered by that server;

» The DescribeFeatureType operation returns the GML application schema for a selected feature
type. The returned XML Schema can be used by a WES client to determine the structure of the
data (properties, value types, etc.) and to support data parsing;

» The GetFeature operation returns the selected feature type encoded using a GML application
schema. Clients can optionally filter the requested feature type by supplying an OGC Filter
[http://www.opengeospatial.org/standards/filter], which can contain filters based on property values,
geospatial coverage, temporal extent or a combination of them.

Additional operations can be defined by the WFS standard to support more advanced capabilities
such as stored query management and transactions.

The CDB WFS in Testbed 13 focuses on delivering vector and 3D data from CDB-related data
sources. The following sections discuss in more detail the architecture, design and implementation
of the CDB WEFS.

9.1. Architecture & Design

This section describes the architecture of the CDB (3D) WFS and the design decisions taken to
support the envisioned use case. Figure 9 shows the high-level architecture of the WFS. The CDB
standard relies on common data formats for its various data types. In case of vector and 3D data,
this respectively includes Shapefile and OpenFlight (geometry) and SGI (texture). The contributed
CDB (3D) WES is able to read and serve this data directly from a CDB datastore without any
preprocessing. A WES client should be able to access and visualize the data and align it with the
WES standard without any loss of information residing in the CDB datastore.

39

http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/filter

Vector:
Shapefile

3D:
OpenFlight / SGI

Luciad CDB WFS (3D)

Figure 9. CDB (3D) WFS system architecture

Most CDB datasets are organized in a tile structure, following the CDB tiling scheme described in
the OGC CDB Core Standard [https:/portal.opengeospatial.org/files/?artifact_id=72712] (Volume 1 -
document #15-113r3, Section 3.1 and 3.6). Within a tile, data is organized into separate datasets,
each including one or more levels of detail. Within OGC Testbed 13, the focus is on offering access
to tiled (3D) vector data via the WFS. Although other CDB data types, such as moving models and
navigation data were not considered, this is not expected to introduce additional complexity, given
the fact that similar data formats were used to represent the data in CDB.

9.1.1. Organizing Tiled, Multi-Leveled Data in a WFS

By definition, a WFS instance has the ability to organize data into feature types, but this does not
include the notion of tiles or multiple levels of detail. By using an OGC Filter, a WFS client can
spatially filter the desired data, but this is unrelated to a tiling scheme: in the simplest form, the
coordinates of an area of interest are supplied by the WES client and used by the WFS server to
filter the requested feature type data. Examples of more advanced spatial filtering cases include the
ability to test based on topological relationships, and to filter out data that is located within a
distance of a given feature.

Based on the above, a logical approach to organize and offer CDB tiled data via a WEFS is to map CDB
datasets onto WES feature types (e.g. RoadNetwork). In this case, each WFS feature type groups all
available data of that CDB dataset for a predefined level of detail. Figure 10 shows a schematic
overview of this approach.

CDB Tile Vector dataset

Level of detail
tiled dataset (e.g. N40 W074) (e.g. 201_RoadNetwork)

(e.g. LOO)

maps onto

covers all covers 1

tilfas WES level qf detail

feature type

Figure 10. Organization of CDB tiled vector data into WFS feature types

40

https://portal.opengeospatial.org/files/?artifact_id=72712

Although the CDB tiling scheme is no longer available as all tiles for a single level of detail are
merged WFS clients can use the OGC Filter to spatially filter the desired dataset into desired tiles.

To enable access to multiple levels of detail for a dataset, multiple approaches are possible:

* Model the levels of detail as separate feature types. The feature type’s name can reflect this by
combining the name of the vector dataset and the covered level of detail. Although this
approach is simple to model from the server-side, it does require a client to be knowledgeable
about the intended scale ranges of each feature type. This could be mitigated by documenting
intended scale ranges into the feature type’s metadata in the WFS capabilities document.
However, there is no dedicated metadata element available for this in WFS 1.x or 2.0. For WFS
clients supporting OGC’s styling language Symbology Encoding (SE) [http://www.opengeospatial.org/
standards/se], a more convenient solution could be to define an SE that embeds the intended scale
ranges into styling rules;

* Merge levels of detail into one feature type and enrich the data with an additional level of detail
attribute. This approach is similar to the previous one, except that it shifts the level of detail
aspect to the data itself. In this case, a WFS client will need to use an OGC Filter to filter the data
according to the desired level of detail;

* Merge levels of detail into one feature type and include server-side heuristics to determine the
right level of detail. For example, a server could rely on the geographical extent of the spatial
filter to determine a suitable level of detail. If a WFS client sends a request covering 180 degrees
by 90 degrees, the likelihood is that the lowest level of detail is necessary. Conversely, if the
request includes a filter covering an area of 10 square miles, a high level of detail is likely to be
needed. A benefit of this approach is the simplicity for the client, who only needs to request a
single feature type to access a desired vector dataset. However, the heuristics might not always
work. An example is the case in which a client requests data according to a client-side grid
pattern, in which case, a spatial filter, etc. is not provided.

The first approach was chosen in the Testbed 13 CDB WFS implementation to serve multiple levels
of RoadNetwork and HydrographyNetwork data from a CDB datastore.

An additional option to explicitly support CDB’s tiling schemes and multiple levels of detail is to
extend the WFS protocol with additional parameters. For example, a _GetFeature operation could
be overloaded with a tile identification number and a level of detail. However, to maintain WFS
client/server interoperability, it is recommended to examine this at the standardization level before
putting this into practice.

9.1.2. Serving Vector Data

A CDB-compliant datastore currently uses ShapeFiles for the representation and attribution of
vector feature datasets. Aligned with the capabilities of the ShapeFile format, vector features
consist of points, lines and polygon features. A few examples of CDB vector datasets include road
network_s, _railroad networks, powerline networks and hydrography networks.

In a WFS environment, the ShapeFile data gets encoded according to a GML application schema
that represents the structure of the data, which includes its properties and geometry. The
appendices include an example of a GML application schema for a RoadNetwork dataset.

41

http://www.opengeospatial.org/standards/se

9.1.3. Serving 3D Model Data

To represent 3D models, CDB uses the OpenFlight and SGI Formats to represent the 3D geometries
and textures respectively. In addition, the ShapeFile format is used to specify locations of the 3D
models.

The OpenFlight and SGI formats are binary data formats and consequently are not compatible with
a regular XML-based GML Application Schema used in a WFS environment. A few approaches can
be identified to integrate the 3D data in a WFS environment:

* Embed the binary data in XML using Base64 encoding. A precedent in OGC standards can be
found in the SE standard, which defines the use of this approach to embed binary bitmap data
using icon styling rules. A drawback of this approach is the increased size of the data, given the
fact that the ratio of output bytes to input bytes is 4:3 (33% overhead);

* Link to the original binary data using an additional property in the XML data. With this
approach, the OpenFlight and SGI formatted data becomes accessible through a HTTP link
encoded in a property of the data;

* Use a custom exchange format tailored to the use case. Although the WFS advocates the use of
GML as an exchange format, it is possible to use other formats: the WFS capabilities include a
list of supported output formats for each feature type, which can be used as a parameter by the
WES client in a GetFeature operation. Examples of candidate formats include, georeferenced
COLLADA or gITF data, which are ideally suited for streaming of large amounts of 3D content
and integrate well in web-based environments.

The second approach was chosen in the Testbed 13 CDB 3D WFS implementation to serve 3D
vegetation data from a CDB datastore. A WFS feature type contains point features that specify the
location and attributes of the vegetation data. The CDB 3D WES adds one extra attribute to each
feature, specifying an HTTP link to an OpenFlight 3D geometry model, which in turn links to SGI
texture data relative to the OpenFlight data location. By downloading the OpenFlight 3D geometry
model and the linked texture data, a WFS client is able to style the point features with 3D models of
the vegetation.

The XML snippet below shows an example of one vegetation feature served by the Testbed 13 CDB
3D WFS. The property 'GTModel' is introduced by the 3D WFS to link the feature to an OpenFlight
3D geometry model. The appendices include the corresponding GML application schema.

<?xml version="1.0" encoding="UTF-8'?>
<wfs:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs/2.0"
xmlns="http://www.opengis.net/gml"
xmlns:cdb="vegetation/gml/3.2"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
timeStamp="2017-09-25T719:14:18.9737">
<wfs:boundedBy>
<gml:boundedBy>
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
<gml:lowerCorner>40.74056050300004 -73.97796738499994</gml:lowerCorner>
<gml:upperCorner>40.74056050300004 -73.97796738499994</gml:upperCorner>

42

</gml:Envelope>

</gml:boundedBy>

</wfs:boundedBy>
<wfs:member>

<cdb:vegetation gml:id="HC_1975342088">

<cdb:geometry>
<gml:Point gml:id="HC_1975342088_1">
<gml:pos>40.74056050300004 -73.97796738499994</gml:pos>
</gml:Point>

</cdb:geometry>
<cdb:id>0</cdb:id>
<cdb:latitude>N40</cdb:Latitude>
<cdb:Longitude>W@74</cdb:Longitude>
<cdb:LOD>L0OB</cdb:LOD>
<cdb:Up>UB</cdb:Up>
<cdb:Right>R0</cdb:Right>
<cdb:CNAM>N40W@74L00U00OR00OO~ECA30~0000005</cdb: CNAM>
<cdb:SCALx>1.19218</cdb: SCALx>
<cdb:SCALy>1.19218</cdb: SCALy>
<cdb:SCALZz>1.19218</cdb:SCALz>
<cdb:A01>129.17</cdb:A0T>
<cdb:RTAI>0.0</cdb:RTAI>
<cdb:MODL>maple_medium_80ft</cdb:MODL>
<cdb:FACC>EC@30</cdb:FACC>
<cdb:FSC>0.0</cdb:FSC>
<cdb:BSR>21.119</cdb:BSR>
<cdb:BBH>24.386</cdb:BBH>
<cdb:BBW>24.386</cdb:BBW>
<cdb:BBL>24.386</cdb:BBL>
<cdb:HGT>24.39</cdb:HGT>
<cdb:CMIX>1.0</cdb:CMIX>
<cdb:AHGT>F</cdb:AHGT>
<cdb:GTModel>

http://demo.luciad.com:8080/CDB/NewYork\GTModel1\500_GTModelGeometry\E_Vegetation\C_Woo
d1and\030_Trees/D500_S001_T001_EC030_000_maple_medium_80ft.flt
</cdb:GTModel>
</cdb:vegetation>
</wfs:member>
</wfs:FeatureCollection>

9.2. Implementation

The CDB (3D) WFS was implemented and contributed by Luciad. The implementation builds on
Luciad’s COTS software product LuciadFusion, which offers standards-based software components
designed for geospatial server development. The following sections discuss the service’s functional
and deployment characteristics.

43

9.2.1. Functional Overview
The Luciad CDB WFS provided the following functionality to support the CDB work in Testbed 13:

e Interface characteristics:

o OGC-compliant WFS 1.1 & 2.0 service interface with support for the following requests:
GetCapabilities, DescribeFeatureType and GetFeature. Supported request encodings are HTTP
GET and POST;

o Support for OGC Filter Encoding 1.1.0 & 2.0;
- Use of GML as exchange format.
» Capabilities related to CDB:

o Aggregation and delivery of CDB vector (Shapefile) data according to the following WFS
feature type organization:

= Multiple Levels of Detail (LoD) are mapped to separate feature types.
= Each feature type consolidates all vector data available on the related LoD.

o Data is served directly from the CDB source. Data throughput is optimized by streaming CDB
vector data on a feature-by-feature basis. Additionally, caching is used to reduce the
response time.

9.2.2. Deployment Characteristics

The Luciad CDB (3D) WFS implementation is based on Java Servlet technology. To run, the WFS
requires a Java servlet container or application server compatible with Java Servlet 3.0 or higher.
Apache Tomcat 8 was used by Luciad during Testbed 13. Other than being capable of running a
Java Virtual Machine 1.8 (or higher) and an appropriate servlet container/application server, no
other requirements are required of the underlying hardware or operating system.

44

Chapter 10. CDB WCS

The Web Coverage Service (WCS) [http:/www.opengeospatial.org/standards/wes] is an OGC standard
interface for offering and accessing raster geospatial images as coverages. A coverage is geospatial
information representing space-varying phenomena. Examples of coverages are satellite/aerial
images, land cover data, digital elevation models and precipitation maps. Conceptually WCS is very
similar to Web Map Service (WMS) [http://www.opengeospatial.org/standards/wms] which returns image
formats. However, a WCS instance can return the actual coverage data such as metadata. The
content can be returned to the requester using a multi-dimensional format such as NetCDF
(Network Common Data Form). Therefore, WCS clients can extract a portion of the coverage that
they need and run complex modeling and analysis in comparison to a WMS instance. A WCS
instance can perform the following operations:

» The GetCapabilities operation is a request to a WCS server for a list of operations and services
(“capabilities”) offered by that server;

* The DescribeCoverage request returns additional information about the coverage such as its
metadata, CRS, domain, range and formats. A client will generally need to issue a
DescribeCoverage request to ensure it can make the proper GetCoverage request;

» The GetCoverage request retrieves the geospatial image data source as subsets of coverages or a
reference to the coverage. The most powerful thing about a GetCoverage request is its ability to
subset domains (height and time) and ranges. It can also do resampling, encode using different
data formats, and return the resulting file in different ways.

The OGC WCS prototype for supporting CDB access offers multi-dimensional coverage data for
access by a client request. This section discusses the current results and progress, and provides
some background about the main components, the architecture, and examples of the interface
along with explanations of the main client functions.

10.1. Development Plan and Architecture

The proposed cloud-based architecture for storing and manipulating CDB datastore is described
below. In the following figure, a Java-based CDB API is designed and developed to read CDB
datastores from cloud hosting and providers, and generate raster mosaics based on the CDB raster
layers. After generation, the raster mosaics are published with WCS using a map-server (e.g.
GeoServer). Map server WCS will access and publish each CDB coverage or raster data layer for
consumption by WCS compatible clients. The proposed architecture for accessing the CDB using
WCS is shown in Figure 11.

45

http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wms

Web Coverage
Service (WCS)

)
o
o
=
=
(on
i
o)
=
B
Q
-
m

CDB Open Source Read and
Transformation Script

Core CDB Data
Model

Imagery

o . e |
| Tile-Based Structure CDB Flevatiii

| Level of Details Datastore vyector Features

| Layers (Datasets) * 3D Models

Figure 11. WCS CDB system architecture

10.2. WCS Component Design

WCS provides access to the raster datasets available in a CDB data store. The server can deliver data
in the client’s preferred format. The WCS components are described in Figure 12.

46

Start Tool/Plugin ?

Verify CDB
Directory

[Invalid]

[Valid]

Select all
Datasets,
group by
Dataset ID

Collect all
coverage files
in all UREFs, in
highest LOD

>© Exit with Error Message

Create new GeoServer Coverage
(Layer) for each Dataset

Configure each Coverage for
GeoServer WCS

)

{ Create new GeoServer

Raster Coverage Store
for each Dataset

[}

Create new GeoServer
Workspace

Use GDAL Add
Overview tool to
generate multiple

raster overview
previews for each
Dataset VRT File

[All Dataset Groups
Processed]

for each
Dataset

— ¥

Separate \

coverage files
into groups by
their
Component
Selector

Use GDAL Use GDAL Use GDAL
Build VRT tool Build VRT tool Build VRT tool
to combine to combine to combine
RREFs from UREFs from GeoCells from
same same same
Component Component Component

Selector Group Selector Group Selector Group

Figure 12. Component design and activity diagram of WCS process for CDB

10.2.1. CDB WCS Implementation for New York Dataset

/
@

Finish with Coverages available
via WCS

[Process next Dataset Group]
[Process next Component Selector Group]

[All Component
Selector Groups
Processed]

\/_I

For testing the WCS component, a NYC CDB sample dataset is provided for the Testbed 13
experiment. The University of Calgary’s WCS server is online and accessible through the WCS 2.0.1

service as follows:

URL: https://gsw-app.gswlab.ca:8443/geoserver/wcs

username: tester

password: G45-DLB-Dcd-JaU

GeoServer supports WCS 1.0, 1.1.0, 1.1.1, and 2.0.1 and WCS should load in QGIS 2 or any other
clients that support WCS. In QGIS, this layer can be added in the Browser panel under WCS by right-
clicking on WCS and selecting "New Connection". Set any name and enter the above URL, username

and password.

In the following figure (Figure 13), a snapshot of the CDB WCS is captured using the above URL and

QGIS client.

47

W oW oW New York CDB
Dataset

For OGC Testbed 13

2017-09-05

Rendered with QGIS from GeoServer WCS
EPSG:4326 Projection

Scale of 1:700 000

Source Data from OGC Testbed

Overview Data from Natural Earth Data

Legend

004_Imagery-S001-T001
001_Elevation-S001-T001
[ne_10m_land

1:10 000 000 Overview

7

m

Figure 13. CDB WCS Preview NY Dataset

10.2.2. CDB WCS Implementation for New York Dataset (Interactive 3D
Preview)

For testing the WCS component, the same Testbed 13 dataset is accessible through Cesium.js with a
WCS elevation provider library. The client uses WebGL (Web Graphics Library) to render elevation
and imagery data on a 3D globe in the web browser. Cesium.js only supports elevation data from
WCS using a 3rd-party plugin, and Cesium.js does not support loading imagery data provided by a
WCS instance at all. To address this shortcoming, the map server was configured to make the CDB
imagery dataset available using WMS and WMTS instances, which are supported by Cesium.js. The
Cesium.js demo can be viewed at:

URL: https://gsw-app.gswlab.ca/
username: tester
password: G45-DLB-Dcd-JaU

Note that a computer with a discrete GPU (Graphics Processing Unit) or a computer with an
integrated high-performance GPU is recommended for smooth viewing performance. Also, a client
certificate (available on the URL page [https://gsw-app.gswlab.ca/]) needs to be installed on the web
browser to properly load authenticated data from WCS and WMTS.

In the following figure (Figure 14), a screenshot of the CDB WCS is captured using Cesium.js in the
web browser.

48

https://gsw-app.gswlab.ca/

o000 CDB Demo 3‘\\+

| ('/ @ @ | https://gsw-app.gswlab.ca/nyc-dataset.html e Q search ﬁ | E G ﬁ 0 =
e

Cesium Inspector
- General
@ Show Frustums
@ Show Frustum Planes
¥ Performance Display
16.74 MS
Cached shaders: 12
@ Show globe depth

@ Show pick depth
Frustum:1 of 1 - +

+ Primitives

+ Terrain

35 3
i
TS

=

1x
Sep 27 2017
21:35:16 UTC @cesium

4 I I » - Sep 28 2017 00:00:00 .UTC

Figure 14. CDB WCS Cesium Preview

10.2.3. Performance Test with Overviews

When serving CDB raster data using WCS endpoints, the map server software may generate low
resolution overviews on-the-fly if none are present in the source data. As CDB stores lower
resolution tiles in separate directories (LoDs), the map server software must be configured to use
LoDs for sending lower resolution overviews to the client. Such functionality will require custom
plugins for the map server software to “understand” the CDB directory layout. However, no such
plugin exists as yet for GeoServer. Due to this issue, GeoServer will create overviews on-the-fly
resulting in slower performance for clients as they must wait for the server to generate overviews.

As an interim solution until a full CDB plugin is developed, GeoServer may use the GDAL plugin to
read overviews embedded in raster files (or external overviews in separate files). With the Virtual
Files (VRT) that point to high resolution CDB raster tiles, the GDAL Add Overview tool can be used to
generate external overview files for each CDB Dataset VRT. The tool will not use lower resolution
LoDs from CDB, it will instead read the high resolution tiles and generate multiple overview levels
internally. Once these external overviews are available in the same directory as the VRTSs,
GeoServer with the GDAL plugin will automatically read the overviews and use them for the WCS
and WMS requests.

The time taken to generate overviews using GDAL is dependent on the size of the dataset, with
imagery spanning two geo-cells taking tens of minutes to generate overviews, and elevation data
covering the same region taking a few minutes. This is a process that only needs to be run once

49

whenever the dataset is updated, and the cost in time to generate and disk space is acceptable
compared to the time saved for client download and rendering.

10.2.4. Performance Test with HTTP Caching

WCS requests are carried over HTTP and can take advantage of some of the caching features built
into the protocol. Enabling server-side compression of text resources, especially XML documents
such as Capability Documents, can significantly reduce the download time for clients that support
compression encoding. Compression can be enabled by the application server so that the map
server does not need to know about it, simplifying the map server configuration.

Other caching features such as ETags (Entity tag) or Modified-Since require information about the
dataset and would have to be generated by the map server. GeoServer does not currently generate
these for WCS requests, although it does for Web Map Tiles Service (WMTS) requests. These
features will also require client support to avoid re-downloading assets.

10.2.5. Performance Test with HTTP/2

HTTP/2 is a successor to HTTP/1.1 that adds multiple features to reduce resource latency. Some of
these features are compressing assets, request pipelining, multiplexing requests, and server push.
HTTP/2 can be offered simultaneously with HTTP/1.1, so that clients that do not support the newer
protocol can still access the HTTP server. For this project, the application server (Tomcat) is
modified to enable HTTP/2 support for clients to access the OGC Web Services.

For testing with web browser clients such as Cesium.js, HTTP/2 was activated for demo assets and
WCS requests. The loading performance for WCS tiles was improved as the browser did not have to
wait for existing TCP connections to be freed to be able to download more tiles. The client, however,
did not take advantage of HTTP caching, and would thus not re-use previously downloaded WCS
tiles. This caused the client to delay loading the WCS as the data had to be re-downloaded every
time.

10.2.6. Performance Test with WCS 2.0

OGC WCS 2.0 supports coverage encoding profiles which may improve loading performance for
compatible clients. One of these profiles is for GeoTIFF, which allows for compression to be enabled
in the GeoTIFF response body. During testing, coverages were downloaded using WCS 2.0.1 KVP
(key-value pair) and then, the "&compression=DEFLATE" pair was added, as well as, compression
schemes "PackBits" and "LZW". In the tests, compression reduced GeoTIFF request sizes by up to
75%. However the Cesium.js WCS library failed to parse the elevation data in the compressed files
and would not load any elevation onto the demonstration. This is a client limitation.

10.2.7. Authentication Controls for WCS

HTTP Basic authentication was enabled on the map server to restrict access to CDB datasets to only
individuals who have the username and password. These users are granted read-only access to the
datasets. SSL is enabled for the application server to encrypt communications between the WCS
and clients, otherwise the username and password would be sent in plain text over the network.

There is also X.509 client certificate authentication enabled on the application server and map

50

server, but on a separate port from the HTTP Basic authentication setup. This was done to ensure
that clients that do not support client certificates would still be able to access the WCS. Client
certificate authentication was enabled as web clients may not be able to properly handle HTTP
Basic for loading assets through image tags (e.g. Cesium.js). SSL is also enabled for client certificate
users. There is currently only one read-only user certificate available, and can be downloaded from
the Cesium.js demonstration website.

51

Chapter 11. CDB Client

The CDB client in Testbed 13 focused on two tasks:

* Interaction with the CDB web services - including an OGC WFS and OGC WCS - and visualizing
the provided data.

e Transformation of CDB data to the NAS-based CDB Profile.

11.1. Architecture & Design

This section describes the architecture of the CDB client and the design decisions taken to support
the envisioned use case. Figure 15 shows the high-level architecture of the client.

Client
Luciad CDB WFS
(vector + 3D)

Visual Analytics
Geospatial Engine

CDB

(FACC) Connector Connector (imagery, elevation)

File system

CDB Datastore OGC Web Services ‘ Calgary CDB WCS

CcDB CDB FACC/NAS

(NAS profile) Converter Calgary CDB WMS

(imagery)

Figure 15. CDB client architecture

To support the loading of CDB data, the client can connect to two types of data sources:

* OGC web services, including:
> An OGC WFS serving features types with vector & 3D data from a CDB datastore;
> An OGC WCS serving coverages with imagery & elevation data from a CDB data store;
o An OGC WMS serving layers with imagery from a CDB data store.

» Local CDB datastores accessible via the file system.

Additionally, the CDB client offers support to transform local CDB data to the NAS-based CDB
Profile.

52

11.1.1. Handling CDB Content through OGC Web Services

The OGC CDB web services defined in Testbed 13 focus on interoperability with existing OGC web
service clients, by adopting the default data exchange formats - GeoTIFF for WCS, a GML
application schema for WFS, JPEG / PNG for WMS - and by avoiding any vendor-specific extensions
on top of the web service protocols. Consequently, it is easy for a general-purpose OGC web service
client to interact with the CDB web services and consume the majority of the CDB content.

The only remaining difficulty is in accessing the 3D model data. This requires additional support
from the client to visualize the data as expected. As discussed in the CDB WFS Chapter, the 3D
model data is represented by a WFS feature type per data set and level of detail, in which each
feature contains the attributes and location of the corresponding 3D model. Aligned with the CDB
format, the actual 3D model is an OpenFlight geometry model that links to textures in the SGI
format. This 3D model is made accessible via an HTTP link inside one of the WFS feature’s
attributes. Consequently, a WFS client needs to support the OpenFlight and SGI formats and resolve
the HTTP link to load the corresponding OpenFlight / SGI data and to render the data as expected.

To ease the process of finding the right attribute, an OGC SE styling file could be defined that
defines a point symbolizer for the data with an external graphic that links to the attribute
containing the OpenFlight / SGI data link. The following XML snippet contains an example of an
OGC SE point symbolizer for the 3D vegetation data offered by the CDB WFS. The location of the
icon - ie. the OnlineResource href attribute - relies on the GTModel feature attribute, which
contains the HTTP link to the 3D model.

<?xml version='1.0"' encoding="UTF-8'?>
<PointSymbolizer>
<Graphic>
<ExternalGraphic>
<OnlineResource xlink:href="${GTModel}"/>
<Format>application/vnd.openflight</Format>
</ExternalGraphic>
</Graphic>
</PointSymbolizer>

11.1.2. Converting FACC-based CDB data to the NAS Profile

Next to consuming CDB data, the CDB client in Testbed 13 is also able to convert a local CDB
datastore to the NAS Profile. This includes the mapping of FACC to NAS codes to identify the data
inside a CDB datastore - for instance, the FACC code for vegetation is EC030 while the NAS code is
EC005. This mapping affects the resources of a CDB datastore that can include a FACC code,
including:

o .dbf files: .dbf files exposing FACC information include a FACC column with the corresponding
code;

« .xml metadata files: the .xml metadata files include a <Feature_Attribute_Catalog Code>
metadata entry exposing the FACC code;

* directory names: the FACC code can be used to orgainze the data in the CDB directory structure.

53

An example for trees is E_Vegetation\C_Woodland\030_Trees inside a GTModel.

In the above resources, the conversion logic can simply replace the code with the NAS equivalent -
this is the implementation approach used by the CDB client in Testbed 13. Alternatively, the
semantics of any involved property might also be changed to emphasize the adoption NAS profile:
in the above resources, this could mean the addition of a NAS column to the .dbf files and the
integration of a <NAS> metadata entry in the .xml metadata files.

11.2. Implementation

The CDB client was implemented and contributed by Luciad. The implementation builds on top of
Luciad’s COTS software product Luciad Lightspeed, which offers standards-based software
components designed for geospatial application development. The following sections discuss the
client’s functional and deployment characteristics and include a few screenshots to illustrate the
client’s HMI and integration with the New York CDB data source.

11.2.1. Functional Overview

The Luciad CDB client provides the following functionality to support the CDB work in Testbed 13:
* Map-centric 2D & 3D display with an intuitive user interface giving access to various actions,
including:
o Connecting to and loading of data sources (files, databases, web services ...)
o Map interactions (data layer control, zoom, pan, selection, feature information access)
o Map controllers to manipulate the map (zoom, pan, ...)
- Geocoding functionality to quickly search for & navigate to places
* Client interface to OGC web services:
o WFS-T 1.0, 1.1 & 2.0, including support for Filter Encoding 1.0, 1.1 and 2.0
o FPS/WMS 1.1.1 & 1.3.0, including support for SLD 1.0/ 1.1.
WCS 1.0 & 1.1.

o

WMTS 1.0.

o

o WPS 1.0 & 2.0.
o CSW 2.0 & 3.0.

* Wide range of data format support, including (non-exhaustive):
> OGCCDB 1.0

o 3D format support (CityGML, OBJ], OpenFlight ...) for data such as 3D terrain and 3D
buildings.

- Imagery formats: GeoTIFF, TIFF, JPEG, JPEG 2000, PNG, GIF, ECW, MrSID, CADRG / ADRG /
USRP, NITF, ERDAS Imagine.

o

Weather / gridded data formats: WXXM 1.1 /2.0, GRIB 1 & 2, NetCDF 1.0.
o Terrain data formats: DMED / DTED, USGS DEM, Swiss DHM, GeoTIFF.

54

o Vector formats: ESRI Shape, MapInfo MIF/MAP, NVG, GML 2/3.1.1/3.2.1, GeoJSON.
o Other: OGC KML 2.2, OGC GeoPackage 1.0, GeoPDF.
e Transformation of CDB data to the NAS-based CDB Profile.

11.2.2. Deployment Characteristics

All development was done in Java, using the Java Development Kit (JDK) 1.8 and Luciad’s COTS
product Luciad Lightspeed. The software runs on any operating system for which a Java Virtual
Machine 1.8 or higher exists. For the 3D visualization, a graphics card with 512MB RAM and
support for OpenGL 2.0 or higher is required.

11.2.3. New York CDB Data Integration Results

The following screenshots show the CDB client interacting with the CDB dataset for New York. This
includes the visualization of imagery, elevation, vector and 3D data available in the CDB dataset.

1o W

Figure 16. Luciad CDB client showing imagery, roads and rails around New York.

55

Ml oy -Pomened by lucad 11 T —e B

LuciaD -*

Figure 17. Luciad CDB client showing imagery, elevation, roads and 3D trees around New York.

I Lucy - Powered by Luciad - [] Ty —————— i S — —

(=}

DATA~ EDIT~ VIEW~ PROJECTION~ A} @————— v Q LUCIAD

4

Figure 18. Luciad CDB client showing imagery, roads and 3D buildings around New York.

11.3. Key Findings and Recommendations

The work and experiments that were done in the OGC Testbed-13 CDB sub-thread are described in
this CDB ER document. This ER was reported to the CDB SWG on several occasions and the current
key findings of the CDB sub-thread are summarized here:

* The feasibility study for extending OGC CDB 1.0 feature codes and attributes reveals that the
current version (1.0) supports only a limited extension:

o The feature type codes which existed in the FDD.xml files are a fixed set, and the extension

56

needs hard coding of the newly added codes;

> CDB has an indexing structure (based on FACC codes) to save feature types inside the folder
hierarchy. This indexing is also a limitation for defining the feature codes. If an arbitrary
alphabetical feature code is used inside the CDB; then, the indexing mechanism will be
broken. Another approach is to define a mapping between the new alphabetical feature
codes and old indexing;

o The attributes schema is defined for the tiled vectors inside the Shapefile database file.
However, it can be extended in the current version of the CDB using extended attributes.

* The OGC CDB 1.0 can be accessed by OGC web services which support a NAS profile in
organizing features and attributes and indexing vector features

* Change Requests have been discussed for CDB 2.0 and will be submitted:

o The recommendations for replacing FACC feature code and indexing structure to be
consistent with the application schemas (e.g. NAS data model) under discussion in CDB 2.0;

o The recommendations for supporting application schemas in CDB (level of complexity: Esri
Geodatabase, GML-SF0 application schema) are being discussed for CDB 2.0.

> The method to expand the supported encodings and formats for the CDB datastore
o Generating a coherent attribute schema for CDB 1.0 based on the "CDB_Attribute.xml" file

The following recommendations are envisioned for future research to improve upon results of this
ER:

1. A performance analysis and evaluation for using CDB extended with NAS profile in run-time
simulations;

2. Describe explicitly how the CDB model may or may not align with the other OGC baseline and
standards (e.g, SOS, DGGS standard);

3. Extend the supported encodings and formats for a CDB database to include the use of the OGC
GeoPackage, CityGML, LandInfra and IndoorGML standards as well as other broadly used
community encoding standards, such as COLLADA. This work may require performing OGC
interoperability experiments to understand the implications of these options better.

4. Consider replacement(s) for the feature data dictionary with the application schemas (e.g., NAS)
which described the features and attributes in the different domain of application with their
associations and relationships.

57

Appendix A: WFS GML Application
Schema Documents

This appendix includes two examples of WFS GML Application Schema documents that have been
used in the OGC Testbed 13 to serve vector features and 3D data via a WFS.

1.1. RoadNetwork GML Application Schema

<?xml version="1.0" encoding="UTF-8'?>
<xsd:schema xmlns:tns="DataModel_201_RoadNetwork/gml/3.2" xmlns:xsd=
"http://www.w3.0rg/2001/XMLSchema" xmlns:gml="http://www.opengis.net/gml/3.2"
targetNamespace="DataModel_201_RoadNetwork/gml/3.2" elementFormDefault="qualified"
version="1.0">
<xsd:import namespace="http://www.opengis.net/gml/3.2" schemalocation=
"http://demo.luciad.com:8080/0gcCdbServices/schemas/gml/3.2.1/gml.xsd"/>
<xsd:element name="FeatureCollection" type="tns:FeatureCollectionType"
substitutionGroup="gml:AbstractGML"/>
<xsd:element name="DataModel_201_RoadNetwork_Data" type=
"tns:DataModel_201_RoadNetwork_DataType" substitutionGroup="gml:AbstractFeature"/>
<xsd:complexType name="FeatureCollectionType">
<xsd:complexContent>
<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>
<xsd:element name="featureMember" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="gml:AbstractFeatureMemberType">
<xsd:sequence>
<xsd:element ref="gml:AbstractFeature"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="DataModel_201_RoadNetwork_DataPropertyType">
<xsd:sequence>
<xsd:element ref="tns:DataModel 201 RoadNetwork Data" minOccurs="0"/>
</xsd:sequence>
<xsd:attributeGroup ref="gml:AssociationAttributeGroup"/>
<xsd:attributeGroup ref="gml:OwnershipAttributeGroup"/>
</xsd:complexType>
<xsd:complexType name="DataModel_201_RoadNetwork_DataType">
<xsd:complexContent>

58

<xsd:extension base="gml:AbstractFeatureType">

<xsd:sequence>
<xsd:element name="id" minOccurs="0" type="xsd:long"/>
<xsd:element name="Latitude" minOccurs="0" type="xsd:string"/>
<xsd:element name="Longitude" minOccurs="0" type="xsd:string"/>
<xsd:element name="LOD" minOccurs="0" type="xsd:string"/>
<xsd:element name="Up" minOccurs="0" type="xsd:string"/>
<xsd:element name="Right" minOccurs="0" type="xsd:string"/>
<xsd:element name="DataModel_201_RoadNetwork_Geometry" minOccurs="0" type=

"gml:MultiGeometryPropertyType"/>

<xsd:element name="CNAM" minOccurs="0" type="xsd:string"/>
<xsd:element name="FACC" minOccurs="0" type="xsd:string"/>
<xsd:element name="FSC" minOccurs="0" type="xsd:double"/>
<xsd:element name="CMIX" minOccurs="0" type="xsd:double"/>
<xsd:element name="TRF" minOccurs="0" type="xsd:double"/>
<xsd:element name="LTN" minOccurs="0" type="xsd:double"/>
<xsd:element name="HGT" minOccurs="0" type="xsd:double"/>
<xsd:element name="DIR" minOccurs="0" type="xsd:double"/>
<xsd:element name="AHGT" minOccurs="0" type="xsd:string"/>
<xsd:element name="LENL" minOccurs="0" type="xsd:double"/>
<xsd:element name="WGP" minOccurs="0" type="xsd:double"/>
<xsd:element name="RTAI" minOccurs="0" type="xsd:double"/>
<xsd:element name="SJID" minOccurs="0" type="xsd:string"/>
<xsd:element name="EJID" minOccurs="0" type="xsd:string"/>

</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:schema>

1.2. 3D Vegetation GML Application Schema

<?xml version='1.0" encoding="UTF-8'?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="
vegetation/gml/3.2" xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace=
"vegetation/gml/3.2" elementFormDefault="qualified" version="1.0">
<xsd:import namespace="http://www.opengis.net/gml/3.2" schemalocation=
"http://demo.luciad.com:8080/0gcCdbServices/schemas/gml/3.2.1/gml.xsd"/>
<xsd:element name="FeatureCollection" type="tns:FeatureCollectionType"
substitutionGroup="gml:AbstractGML"/>
<xsd:element name="vegetation" type="tns:vegetationType" substitutionGroup=
"tns:AbstractFeature"/>
<xsd:element name="AbstractFeature" type="tns:AbstractFeatureType"
substitutionGroup="gml:AbstractFeature"/>
<xsd:complexType name="FeatureCollectionType">
<xsd:complexContent>
<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>
<xsd:element name="featureMember" minOccurs="0" maxOccurs="unbounded">

60

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="gml:AbstractFeatureMemberType">

<xsd:

sequence>

<xsd:element ref="gml:AbstractFeature"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="vegetationPropertyType">
<xsd:sequence>
<xsd:element ref="tns:vegetation" minOccurs="0"/>
</xsd:sequence>
<xsd:attributeGroup ref="gml:AssociationAttributeGroup"/>
<xsd:attributeGroup ref="gml:OwnershipAttributeGroup"/>
</xsd:complexType>
<xsd:complexType name="AbstractFeatureType" abstract="true">
<xsd:complexContent>
<xsd:extension base="gml:AbstractFeatureType"/>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="vegetationType">
<xsd:complexContent>
<xsd:extension base="tns:AbstractFeatureType">
<xsd:sequence>

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

element
element
element
element
element
element
element
element
element
element
element
element
element
element
element
element
element
element
element
element
element

name="geometry" minOccurs="0" type="gml:PointPropertyType"/>
name="1id" minOccurs="0" type="xsd:int"/>
name="Latitude" minOccurs="0" type="xsd:string"/>
name="Longitude" minOccurs="0" type="xsd:string"/>
name="L0OD" minOccurs="0" type="xsd:string"/>
name="Up" minOccurs="0" type="xsd:string"/>
name="Right" minOccurs="0" type="xsd:string"/>
name="CNAM" minOccurs="0" type="xsd:string"/>
name="SCALx" minOccurs="0" type="xsd:double"/>
name="SCALy" minOccurs="0" type="xsd:double"/>
name="SCALz" minOccurs="0" type="xsd:double"/>
name="A01" minOccurs="0" type="xsd:double"/>
name="RTAI" minOccurs="0" type="xsd:double"/>
name="MODL" minOccurs="0" type="xsd:string"/>
name="FACC" minOccurs="0" type="xsd:string"/>
name="FSC" minOccurs="0" type="xsd:double"/>
name="BSR" minOccurs="0" type="xsd:double"/>
name="BBH" minOccurs="0" type="xsd:double"/>
name="BBW" minOccurs="0" type="xsd:double"/>
name="BBL" minOccurs="0" type="xsd:double"/>
name="HGT" minOccurs="0" type="xsd:double"/>

<xsd:element name="CMIX" minOccurs="0" type="xsd:double"/>
<xsd:element name="AHGT" minOccurs="0" type="xsd:string"/>
<xsd:element name="GTModel" minOccurs="0" type="xsd:string"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="AbstractFeaturePropertyType">
<xsd:sequence>
<xsd:element ref="tns:AbstractFeature" minOccurs="0"/>
</xsd:sequence>
<xsd:attributeGroup ref="gml:AssociationAttributeGroup"/>
<xsd:attributeGroup ref="gml:OwnershipAttributeGroup"/>
</xsd:complexType>
</xsd:schema>

61

Appendix B: Revision History

Table 13. Revision History

Date Release

June 30, 2017 0.1

July 31,2017 0.9

September 1.0
30,2017

October 16, 1.1
2017

October 30, 1.2
2017

November 1, 1.3
2017

November 15, 2
2017

62

Editor

Sara Saeedi

Sara Saeedi

Sara Saeedi

Sara Saeedi

Terry Idol

Sara Saeedi

Sara Saeedi

Primary
clauses
modified
all

all

all

all

all

all

all

Descriptions

CDB Initial Engineering
Reports (IER)

Comments, scenario,
architecture and content
integrated

CDB Draft Engineering
Reports (DER)

Adding the comments from
CDB sub-thread review

Editing and revising the CDB
DER

Final edits before submitting
the CDB DER to the pending
document

First round of edits from the
CDB SWG

Appendix C: Bibliography

[1] NN: OGC CDB Core Standard, Feature Data Dictionary, Version 1.0, http://schemas.opengis.net/
cdb/1.0/Metadata/Feature_Data_Dictionary.xml

[2] NN: OGC CDB Core Standard, CDB Attributes, Version 1.0, http://schemas.opengis.net/cdb/1.0/
Metadata/CDB_Attributes.xml

[3] Echterhoff, J. and Portele, C. (Editors): OGC Testbed-13: NAS Profiling Engineering Report, Work
in progress, https://portal.opengeospatial.org/wiki/pub/Testbed13/ConvertDocsT130utput/T13/
NGO003-NASProfiling.html, to be published at http://docs.opengeospatial.org/per/17-???.html

[4] Saeedi, S.; Liang, S.; Graham, D.; Lokuta, M. F. and Mostafavi, M.A.: Overview of the OGC CDB
Standard for 3D Synthetic Environment Simulation & Modeling. ISPRS International Journal of Geo-
Information. 6(10), 306 (2017)

[5] Saeedi, S. (Editor): CDB to NAS Mapping for Feature Codes and Attributes, Work in progress,
https://docs.google.com/document/d/1PduilxjxVFrue8aJ-urCn931idtZhYLDAccsV{Cx-UU/edit?
usp=sharing; and, will be published as an OGC document 17-082.

[6] Common Database (CDB) Specification, Release Notes Version 3.2, Update 1, 22 February 2016,
http://external.opengeospatial.org/twiki_public/pub/CDBswg/WebHome/CDB_Specification_-
_Release_Notes.pdf

[7] Graham, D. (Editor): OGC Common DataBase Volume 1 Main Body, OGC Best Practice Document,
(2015) https://portal.opengeospatial.org/files/?artifact_id=61935

[8] Graham, D. (Editor): OGC Common DataBase Volume 2 Appendices, OGC Best Practice Document,
(2015) https://portal.opengeospatial.org/files/?artifact_id=61936

[9] Reed, C. (Editor): Volume 1: OGC CDB Core Standard: Model and Physical Data Store Structure,
Version 1.0, http://www.opengeospatial.org/standards/cdb

[10] Saeedi, S. (Editor): Volume 11: OGC CDB Core Standard Conceptual Model, Version 1.0,
http://www.opengeospatial.org/standards/cdb

63

http://schemas.opengis.net/cdb/1.0/Metadata/Feature_Data_Dictionary.xml
http://schemas.opengis.net/cdb/1.0/Metadata/Feature_Data_Dictionary.xml
http://schemas.opengis.net/cdb/1.0/Metadata/CDB_Attributes.xml
http://schemas.opengis.net/cdb/1.0/Metadata/CDB_Attributes.xml
https://portal.opengeospatial.org/wiki/pub/Testbed13/ConvertDocsT13Output/T13/NG003-NASProfiling.html
https://portal.opengeospatial.org/wiki/pub/Testbed13/ConvertDocsT13Output/T13/NG003-NASProfiling.html
http://docs.opengeospatial.org/per/17-???.html
https://docs.google.com/document/d/1PduilxjxVFrue8aJ-urCn931idtZhYLDAccsVfCx-UU/edit?usp=sharing
https://docs.google.com/document/d/1PduilxjxVFrue8aJ-urCn931idtZhYLDAccsVfCx-UU/edit?usp=sharing
http://external.opengeospatial.org/twiki_public/pub/CDBswg/WebHome/CDB_Specification_-_Release_Notes.pdf
http://external.opengeospatial.org/twiki_public/pub/CDBswg/WebHome/CDB_Specification_-_Release_Notes.pdf
https://portal.opengeospatial.org/files/?artifact_id=61935
https://portal.opengeospatial.org/files/?artifact_id=61936
http://www.opengeospatial.org/standards/cdb
http://www.opengeospatial.org/standards/cdb

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements
	1.2. Key Findings and Prior-After Comparison
	1.3. What Does This ER Mean for the Working Group and OGC in General
	1.4. Document Contributor Contact Points
	1.5. Future Work
	1.6. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Application Schema
	3.2. Client
	3.3. Feature
	3.4. Feature Data Dictionary
	3.5. GeoServer
	3.6. GSModel
	3.7. GTModel
	3.8. Interface
	3.9. OpenFlight
	3.10. Service
	3.11. QGIS

	Chapter 4. Abbreviated terms
	Chapter 5. Overview
	5.1. Outline
	5.2. Sample Dataset
	5.3. Demonstration Scenario
	5.4. Technology Integration Experiments
	5.4.1. TIE Components
	5.4.2. TIE Results

	Chapter 6. OGC CDB 1.0 Background
	6.1. CDB Conceptual Data Model
	6.2. CDB File Folder Structure

	Chapter 7. Feasibility Study of the CDB Extended Feature Codes and Attribute Schema
	7.1. OGC CDB Feature Codes
	7.1.1. Extending Feature Codes

	7.2. Attribution Schema and Vector Features
	7.2.1. Extending Vector Feature Attributes

	7.3. Supporting Application Schema
	7.4. Limitation of the OGC CDB 1.0
	7.5. Extending CDB 1.0 Using NAS Profile in Testbed 13
	7.6. Proposed Change Requests for the OGC CDB 2.0

	Chapter 8. CDB to NAS Mapping for Feature Codes and Attributes
	8.1. NAS Urban Military Profile
	8.2. Mapping of "3D Geotypical Model" Feature Codes
	8.3. Mapping of "3D Geotypical Model" Attributes

	Chapter 9. CDB WFS
	9.1. Architecture & Design
	9.1.1. Organizing Tiled, Multi-Leveled Data in a WFS
	9.1.2. Serving Vector Data
	9.1.3. Serving 3D Model Data

	9.2. Implementation
	9.2.1. Functional Overview
	9.2.2. Deployment Characteristics

	Chapter 10. CDB WCS
	10.1. Development Plan and Architecture
	10.2. WCS Component Design
	10.2.1. CDB WCS Implementation for New York Dataset
	10.2.2. CDB WCS Implementation for New York Dataset (Interactive 3D Preview)
	10.2.3. Performance Test with Overviews
	10.2.4. Performance Test with HTTP Caching
	10.2.5. Performance Test with HTTP/2
	10.2.6. Performance Test with WCS 2.0
	10.2.7. Authentication Controls for WCS

	Chapter 11. CDB Client
	11.1. Architecture & Design
	11.1.1. Handling CDB Content through OGC Web Services
	11.1.2. Converting FACC-based CDB data to the NAS Profile

	11.2. Implementation
	11.2.1. Functional Overview
	11.2.2. Deployment Characteristics
	11.2.3. New York CDB Data Integration Results

	11.3. Key Findings and Recommendations

	Appendix A: WFS GML Application Schema Documents
	1.1. RoadNetwork GML Application Schema
	1.2. 3D Vegetation GML Application Schema

	Appendix B: Revision History
	Appendix C: Bibliography

