
OGC Testbed-13
MapML ER

Table of Contents
1. Summary . 4

1.1. Requirements. 4

1.2. Prior-After Comparison. 5

1.3. What does this ER mean for the Working Group and OGC in general . 5

1.4. Document contributor contact points . 5

1.5. Future Work. 5

1.6. Foreword . 5

1.7. Use of notes in this document . 6

2. References . 7

3. Terms and definitions . 8

3.1. coordinate system. 8

3.2. extent . 8

3.3. map. 8

3.4. tile. 8

3.5. tile coordinates . 8

3.6. tile matrix . 8

3.7. tile matrix coordinates . 9

3.8. tile matrix set . 9

4. Abbreviated terms . 10

5. Overview . 11

5.1. MapML use cases . 11

5.1.1. Embedding a map in a web page . 12

5.1.2. Story maps and story telling . 12

5.2. MapML data model . 14

5.3. MapML in practice . 15

5.3.1. Including a MapML in a HTML page . 16

5.3.2. A MapML file example. 16

5.4. MapML and HATEOAS . 20

6. MapML encoding . 22

6.1. Properties of a MapML document . 23

6.2. meta content document properties . 24

6.3. Map content licensing . 24

6.4. Legends . 25

6.5. Styles . 26

6.6. Map content metadata. 26

6.7. Extent. 28

6.7.1. Extent element encoding assimilated to GeoOpeoSearch. 28

6.7.2. Extent as it is today with small modifications . 30

6.7.3. Time and animation. 32

6.7.4. Tile templates. 34

6.8. Other forms . 35

6.8.1. Query by location . 36

6.8.2. Text search . 36

6.8.3. Tooltips . 37

6.8.4. Target of a MapML form . 37

6.8.5. Directions . 38

6.9. Tile encoding . 38

6.10. Feature encoding . 38

6.10.1. Feature encoding based on MicroXML . 38

6.10.2. Feature encoding alternative 1: schema.org . 40

6.10.3. Why current version of schema.org is not enough . 43

7. MapML versus other formats . 44

7.1. OWS Context . 44

7.2. KML . 45

8. MapML services and navigation modes . 46

8.1. Determining the center of the map to start with . 46

8.2. MapML package . 47

8.3. MapML links . 48

8.4. MapML service . 49

8.4.1. WMS to serve MapML . 50

8.4.2. WMTS to serve MapML . 54

8.4.3. Integration with other OGC services. 57

8.5. Map search. 58

8.5.1. Integration with OGC standards . 59

9. TileMatrixSet specification . 61

Appendix A: Change Requests to MapML. 63

Appendix B: Revision History . 64

Appendix C: Bibliography. 65

Publication Date: 2018-01-11

Approval Date: 2017-12-07

Posted Date: 2017-11-14

Reference number of this document: OGC 17-019

Reference URL for this document: http://www.opengis.net/doc/PER/t13-NR002

Category: Public Engineering Report

Editor: Joan Maso

Title: OGC Testbed-13: MapML ER

OGC Engineering Report

COPYRIGHT

Copyright © 2018 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t13-NR002
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary
This Engineering Report discusses the approach of Map Markup Language (MapML) and Map for
HyperText Markup Language (Map4HTML) described in: https://github.com/Maps4HTML and
supported by the community in https://www.w3.org/community/maps4html/. The objective of
MapML is to define a hypermedia type for geospatial maps on the web that can be embedded in
HyperText Markup Language (HTML) pages. MapML is needed because while Web browsers
implement HTML and Scalable Vector Graphics (SVG), including the <map> element, those
implementations do not meet the requirements of the broader Web mapping community. The
semantics of the HTML map element are incomplete or insufficient relative to modern Web maps
and mapping in general. Currently, robust web maps are implemented by a variety of non-standard
technologies. Web maps do not work without script support, making their creation a job beyond the
realm of beginners' skill sets. In order to improve collaboration and integration of the mapping and
Web communities, it is desirable to enhance or augment the functionality of the <map> element in
HTML to include the accessible user interface functions of modern web maps (e.g. panning,
zooming, searching for, and zooming to, styling, identifying features’ properties, etc.), while
maintaining a simple, declarative, accessible interface for HTML authors.

The objective of this Engineering Report is to explore how MapML can be harmonized with the OGC
standards mainstream and contribute to the progress of the specification avoiding unnecessary
duplication. In particular, the ER proposes Web Map Service (WMS) or Web Map Tile Service
(WMTS) as services that can be used to deliver MapML documents with small modifications.

Another consideration on the ER is the inclusion of the time dimension and directions operation in
MapML.

1.1. Requirements
The following requirements are being addressed by the MapML Engineering Report:

• Specify how the media type "text/mapml" (pending Internet Assigned Numbers Authority, IANA,
registration) can interoperate and encapsulate the semantics of maps to support the stateless
client-server requirements of Web browsers. Specific configurations wrapping existing OGC
services (WMS, Web Feature Service (WFS), WMTS, etc)

• Collect OGC community feedback about:

◦ TileMatrixSet (also called in the CFP Tiled Coordinate Reference System (TCRS)) definitions

◦ Image georeferencing markup

◦ TCRS/projection negotiation

◦ Language negotiation

◦ Security considerations

◦ Hyperlinking within and between map services

◦ Accessibility considerations for map feature markup

◦ Microdata / microformat semantic markup recommendations

◦ Caching discussion

4

https://github.com/Maps4HTML
https://www.w3.org/community/maps4html/

◦ Feature styling with Cascading Style Sheets

1.2. Prior-After Comparison
OGC has not explored an approach like this before. This could bring the maps closer to the W3C
community.

1.3. What does this ER mean for the Working Group
and OGC in general
This work is relevant to the OWS Context standards Working Group. Both OWS Context and MapML
share the objective of being able to distribute collections of geospatial resources mainly in the web.
An OWS Context file could be the seed for a HTML page that contains a map representing the
information in an OWS Context document in the form of MapML documents.

1.4. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization

Joan Masó UAB-CREAF

1.5. Future Work
This document contains several recommendations for future testbeds, OGC standards and MapML.
A future version of the MapML language needs to be harmonized with OGC language and should
use the OGC concepts extracted from WMTS. A future version of MapML should consider changing
the encoding for features into a pure HTML encoding complemented by schema.org semantics. The
WMTS standard needs to be divided into two documents, one more abstract describing the tiled
reference systems, and another one describing the WMTS service. A future WMS or a WMTS
extension with a new operation that is able to produce MapML documents could also be produced.

1.6. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

5

1.7. Use of notes in this document
The use of notes in this document is used to emphasize some paragraphs targeting different kind of
readers. It follows the following criteria bellow:

CAUTION
This is a note indicating that there is a problem with the aspect discussed that
needs attention. E.g. a part of the MapML current document that has not been
implemented and that can be deprecated in the next version.

NOTE
A note. If the note starts with Recommendation to new testbeds: this means that
Testbed 14 sponsors (or other Interoperability experiments) can find aspects of
MapML that can be part of a more careful examination and experimentation.

IMPORTANT
An important aspect to be considered in a standards. It will start with the
text Recommendation to xxxx: where xxxx is the name of the standard
affected.

6

Chapter 2. References
The following normative documents are referenced in this document.

• MicroXML [https://dvcs.w3.org/hg/microxml/raw-file/tip/spec/microxml.html]

• The <web-map> HTML Element proposal [https://maps4html.github.io/HTML-Map-Element/spec/]

• Map Markup Language [https://maps4html.github.io/MapML/spec/]

• IETF RFC 3875, The Common Gateway Interface (CGI) Version 1.1 [https://tools.ietf.org/html/rfc3875]

• W3C HTML 4.01 Specification 17 Forms [http://www.w3.org/TR/html401/interact/forms.html]

• OGC 17-083, OGC Tile Matrix Set Standard (draft) [https://portal.opengeospatial.org/files/?

artifact_id=75348] (at requires membership (observer is enough) to WMS.SWG to get access to the
document)

7

https://dvcs.w3.org/hg/microxml/raw-file/tip/spec/microxml.html
https://maps4html.github.io/HTML-Map-Element/spec/
https://maps4html.github.io/MapML/spec/
https://tools.ietf.org/html/rfc3875
http://www.w3.org/TR/html401/interact/forms.html
https://portal.opengeospatial.org/files/?artifact_id=75348

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
and the future OGC 17-083 shall apply. In addition, the following terms and definitions apply.

3.1. coordinate system

set of mathematical rules for specifying how coordinates are to be assigned to points
(WMTS 1.0)

3.2. extent

the bounding box of the view in the screen

3.3. map

portrayal of geographic information as a digital image file suitable for display on a
computer screen (OGC 06-042: WMS 1.3)

3.4. tile

a rectangular pictorial representation of geographic data, often part of a set of such
elements, covering a spatially contiguous extent and sharing similar information
content and graphical styling covering a cell of the grid defined by a tile matrix on
top of a denser raster grid.

3.5. tile coordinates

a discrete coordinate system where a position is uniquely defined by a pair of integer
indices for the column and row in the tile matrix, a pair of integer indices inside
the tile, a long with an identifier for the tile matrix.

3.6. tile matrix

a regular grid defined on top of a more detailed raster regular grid that groups
matrices of cells into tiles. Also, all tiles corresponding to a fixed scale.

8

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

3.7. tile matrix coordinates

a discrete coordinate system where a position is uniquely defined by a pair of integer
indices in the denser raster grid where the tile matrix is defined (starting in the
top left corner) a long with an identifier for the tile matrix.

3.8. tile matrix set

a collection of tile matrices defined at different scales

9

Chapter 4. Abbreviated terms
• API Application Programming Interface

• ER Engineering Report

• HTML HyperText Markup Language

• HTTP HyperText Transport Protocol

• KVP Key and Value Pair

• Map4HTML Map for HyperText Markup Language

• MapML Map Markup Language

• OWS OGC Web Services

• SVG Scalable Vector Graphics

• TCRS Tiled Coordinate Reference System

• WFS Web Feature Service

• WMS Web Map Service

• WMTS Web Map Tile Service

• XML Extendable Markup Language

10

Chapter 5. Overview
We can classify the standards depending on the level of complexity the developer needs to face. In
the modern era of Internet distributed applications, developers tend to prefer standards that hide
the complexities of the protocols involved that allow them to concentrate on user interaction. This
results in a proliferation of Application Programming Interfaces. But there is still another level of
simplification where you can concentrate in describing and tagging the content and assume a
default user interaction. This has been the strategy and the success of HTML. In summary,
depending on the level of complexity they expose, we can separate standards in three groups:

• OGC Web Services

◦ They describe how clients and services exchange messages (and information) based on a
distributed architecture and a protocol.

◦ e.g. Web Map Tile Service

• Application Programming Interface (API)

◦ Describes a set of operations or functions that allow encoding functionality on top of a
programming language and programming libraries. APIs hide the protocol and focus on
facilitating tools for encoding user interfaces.

◦ e.g. Google Maps API

• Document standards

◦ Describe a data encoding including raw information and some clues about the preferred
styling for presentation. Presenting the information to the user implies that there should be
an engine that is able to parse the document and take specific and appropriate actions to
build the user interface. The developer can concentrate on the content and assume default
behaviors of common user interfaces.

◦ e.g. KML, MapML

Traditionally, the OGC has concentrated its efforts on standards that deal with OGC Web services
(1st level) and on document standards (3rd level), while companies are offering API solutions (2nd
level) that, at the moment, are mainly not interoperable. This Engineering Report focuses on the
document level (3rd level) for map visualization. Its objective is to examine the MapML approach as
a new MIME type to distribute maps over the Internet that can be embedded in web pages without
any immediate need for JavaScript code, provided that web browsers implement support for this
document type. It should be mentioned that elimination of JavaScript from mapping is a non-
objective. In the short to medium term, JavaScript will be necessary to 'simulate' native support for
extended map semantics, through the Custom Elements candidate standard.

5.1. MapML use cases
Hyperlinks between and within services: MapML should allow service-level links such that
service providers can link together / federate to provide apparently seamless spatial coverage.

Feature identification: If a MapML document includes features, the MapML author should be able
to markup any or all of those features in a way which lends itself to feature identification and

11

property display.

Attribution: MapML documents encode citation information on a per-request basis, making it
available as markup in the response.

The following usage scenarios illustrate some of the ways in which Map Markup Language might be
used for various applications.

5.1.1. Embedding a map in a web page

A map can currently be embedded in a web page by means of the HTML <map> element. However,
such a map is essentially static: it allows the HTML author to draw hyperlinks over shapes on a
static image. Maps should allow us to interact with map content in a way that is more interesting.
To be able to do this, a new child element is introduced to the <map> element in the form of the
<layer> element. A <layer> element allows to point to a MapML document describing content of a
map layer. Multiple layers can be included in a single map, each by means of its own URL. A similar
construct is used for the HTML <video> element, which can have one or more source files included
as child <source> elements. (Of course, with a video, the most appropriate source file is chosen
from the child <source> elements. In contrast, a <map> element’s child <layer> elements are
stacked and overlayed together as a group.)

5.1.2. Story maps and story telling

MapML could be used as a story maps mechanism where the user navigates progressively through
the content and learns by reading a combination of text and map scenes. In story maps the
narrative flow is linear but the user can play with the maps presented and verify the textual
description that accompanies the map. Commonly, the story is presented as a single page that can
be scrolled up and down with maps that are controlled by the text shown or text fragments each
one accompanied by its respective map. To make story telling possible, more than one map needs to
be supported in a single page.

An example of story maps can be shown here: https://grid-arendal.maps.arcgis.com/apps/Cascade/
index.html?appid=54b862ef079445d9a99b8f6249249e4d

12

https://grid-arendal.maps.arcgis.com/apps/Cascade/index.html?appid=54b862ef079445d9a99b8f6249249e4d
https://grid-arendal.maps.arcgis.com/apps/Cascade/index.html?appid=54b862ef079445d9a99b8f6249249e4d

Figure 1. Scene 1 of the ECOPotential Protecting Marine Mammals in Crowded Waters Storymap

Figure 2. Scene 2 of the ECOPotential Protecting Marine Mammals in Crowded Waters Storymap

13

Figure 3. Scene 3 of the ECOPotential Protecting Marine Mammals in Crowded Waters Storymap

5.2. MapML data model
A MapML document is similar to an HTML document in that it consists of 2 main blocks: the <head>
and <body> elements. Within the <body>, there are four spatial content types: the extent form, tiles
or images, and features.

• Extent defines the area the MapML layer shows and the area it eventually can cover. It also
contains a mechanism to describe the action needed to send to the server to get a new MapML
in response to a user action.

• Tile describes the tiles (rendered raster fragments) necessary to cover the area that extent
defines.

• Image describes the location and orientation of the upper left corner of a geo-referenced image.

• Feature describes a collection of features (vector) that cover the area that extent defines.

The following UML diagram describes the structure of a MapML document in the left-hand side.
The right-hand side describes how to include a MapML document in an HTML file, and will be
explained below.

14

Figure 4. HTML and MapML data model UML class diagram

In order for a map to be 'dynamic', it requires a server that creates MapML documents in response
to the user actions such as panning, zooming or textual searches. This MapML server is typically
implemented as a facade to OGC and non-OGC services (see MapML services and navigation modes
in this document for more details). This way MapML hides the complexity of the underlying
implementations and translates their content to a set of elements that the web browser client can
easily draw and presents them to the user.

The next clause MapML encoding presents the details of the elements of MapML, how it is
composed, and discusses possible alternatives and improvements. MapML services and navigation
modes presents the particularities of MapML services. TileMatrixSet specification clause presents a
summary of a new standard candidate (OGC 17-083) that was extracted from WMTS 1.0. This
document describes TileMatrixSets and that can be used as the bases for other standards such as
GeoPackage, WMTS and MapML.

5.3. MapML in practice
MapML is a document type for HTML ingestion of maps. This means that a MapML document has to

15

be included in a HTML page in order to be visualized.

5.3.1. Including a MapML in a HTML page

This standard starts by proposing an extension to the old <map> element that represented a map
browser that starts in a lat,lon position in a projection (that is actually a tiled CRS: a tile matrix set)
at a given zoom level. Apart from the old area elements for descended compatibility to old
browsers, it has a new element type that is called layer that references one or more MapML files.

<!DOCTYPE html>
 <head>
 <title>Web Map Template - default style</title>
 <script src=
"http://geogratis.gc.ca/mapml/client/bower_components/webcomponentsjs/webcomponents-
lite.min.js"></script>
 <link rel="import" href=
"http://geogratis.gc.ca/mapml/client/bower_components/web-map/web-map.html">
 </head>
 <body>
 <map is="web-map" projection="OSMTILE" zoom="3" lat="60.5005254" lon="
-98.2617190" width="900" height="400" controls>
 <layer- label="Canada Base Map - Transportation (CBMT)" src=
"http://geogratis.gc.ca/mapml/en/osmtile/cbmt/" checked />
 </map>
 </body>
</html>

The source of the example can be found here: http://geogratis.gc.ca/mapml/en/osmtile/cbmt/

This is all you have to do as a web designer to include a map in your web page.

5.3.2. A MapML file example

Behind an easy to do link "http://geogratis.gc.ca/mapml/en/osmtile/cbmt/" in the previous example
there is the hidden complexity of the MapML implementation.

Let us start to say that in the previous layer section there is a src link to the http://geogratis.gc.ca/
mapml/en/osmtile/cbmt/ URL that is actually a MapML MIME type (text/mapml) that looks like this:

16

http://geogratis.gc.ca/mapml/en/osmtile/cbmt/
http://geogratis.gc.ca/mapml/en/osmtile/cbmt/
http://geogratis.gc.ca/mapml/en/osmtile/cbmt/

<?xml version="1.0" encoding="UTF-8"?>
<mapml>
 <head>
 <title>Canada Base Map - Transportation (CBMT)</title>
 <base href="/mapml/en/osmtile/cbmt/"/>
 <link href="https://www.nrcan.gc.ca/earth-sciences/geography/topographic-
information/free-data-geogratis/licence/17285" rel="license" title="Canada Base Map -
Natural Resources Canada"/>
 </head>
 <body>
 <extent action="/mapml/en/osmtile/cbmt/" enctype="application/x-www-form-
urlencoded" method="get" units="OSMTILE">
 <input max="256.0" min="0.0" name="xmin" type="xmin"/>
 <input max="256.0" min="0.0" name="ymin" type="ymin"/>
 <input max="256.0" min="0.0" name="xmax" type="xmax"/>
 <input max="256.0" min="0.0" name="ymax" type="ymax"/>
 <input max="15" min="0" name="zoom" type="zoom" value="0"/>
 <input name="projection" type="projection" value="OSMTILE"/>
 </extent>
 </body>
</mapml>

Once the MapML engine gets a file, it determines the properties of the extent of the layer and the
minimum, maximum zoom and the CRS projection. Then it goes back to the <map> section in the
HTML page to calculate the real extent (xmin, xmax, ymin, ymax) that corresponds to the zoom="3"
lat="60.5005254" lon="-98.2617190" that covers the width="900" and height="400". The result of this
calculation is not done in CRS coordinates but in the tilematrix zoom 3 pixel coordinates (the so
called "tilematrix" coordinates) that starts at the origin of the time matrix (Top-left corner). It
virtually inputs it in the xmin, xmax, ymin, ymax and zoom values and submits the extent in the
same way that a form is submitted. Since the method is GET and the enctype is x-www-form-
urlencoded, the engine builds a URL with the form element name and values pairs and sends it to
the server. In this case the request is: http://geogratis.gc.ca/mapml/en/osmtile/cbmt/?xmin=-104&
ymin=389&xmax=1034&ymax=789&zoom=3&projection=OSMTILE

Please note that coordinates provided in the URL and in the responding MapML are also in tile
matrix coordinates.

The return of this request contains a list of the URLs of all tiles that need to be requested to
compose the map visualization area:

17

http://geogratis.gc.ca/mapml/en/osmtile/cbmt/?xmin=-104&ymin=389&xmax=1034&ymax=789&zoom=3&projection=OSMTILE
http://geogratis.gc.ca/mapml/en/osmtile/cbmt/?xmin=-104&ymin=389&xmax=1034&ymax=789&zoom=3&projection=OSMTILE

<?xml version="1.0" encoding="UTF-8"?>
<mapml>
 <head>
 <title>Canada Base Map - Transportation (CBMT)</title>
 <base href="/mapml/en/osmtile/cbmt/"/>
 <link href="https://www.nrcan.gc.ca/earth-sciences/geography/topographic-
information/free-data-geogratis/licence/17285" rel="license" title="Canada Base Map
Â© Natural Resources Canada"/>
 </head>
 <body>
 <extent action="/mapml/en/osmtile/cbmt/" enctype="application/x-www-form-
urlencoded" method="get" units="OSMTILE">
 <input max="2048.0" min="0.0" name="xmin" type="xmin" value="-104.0"/>
 <input max="2048.0" min="0.0" name="ymin" type="ymin" value="389.0"/>
 <input max="2048.0" min="0.0" name="xmax" type="xmax" value="1034.0"/>
 <input max="2048.0" min="0.0" name="ymax" type="ymax" value="789.0"/>
 <input max="15" min="0" name="zoom" type="zoom" value="3"/>
 <input name="projection" type="projection" value="OSMTILE"/>
 </extent>
 <tile col="1" row="2" src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapSe
rver/tile/3/2/1?m4h=t"/>
 <tile col="2" row="2" src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapSe
rver/tile/3/2/2?m4h=t"/>
 <tile col="1" row="1" src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapSe
rver/tile/3/1/1?m4h=t"/>
...
 <tile col="4" row="1" src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_TXT_3857/MapServer/t
ile/3/1/4?m4h=t"/>
 <tile col="4" row="3" src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_TXT_3857/MapServer/t
ile/3/3/4?m4h=t"/>
 </body>
</mapml>

18

Figure 5. Visual result of the HTML page with the map

On the server side, there is an application that is producing these MapML responses. The
application identifies the CBMT layer and knows about the ArcGIS web tile service that is able to
provide the needed tiles. In this case we discover that the layer is actually associated with two
datasets in an ArcGIS rest service: CBMT_TXT_3857 and CBMT_CBCT_GEOM_3857 so that, they will
be presented as overlayer datasets in the map browser. Two URL examples are:
https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapServer/
tile/3/2/2?m4h=t and https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_TXT_3857/
MapServer/tile/3/2/2?m4h=t

Figure 6. One of the tiles corresponding to the CBMT_CBCT_GEOM_3857 dataset:

19

https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapServer/tile/3/2/2?m4h=t
https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapServer/tile/3/2/2?m4h=t
https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_TXT_3857/MapServer/tile/3/2/2?m4h=t
https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_TXT_3857/MapServer/tile/3/2/2?m4h=t

Figure 7. The same tile indices but corresponding to the CBMT_TXT_3857 dataset:

Next time the user makes an action on the map, a new Key-Value Pair (KVP) request will be sent to
the server with the new bounding box coordinates. For example a pan of only a few kilometers to
the left hand side will result in the following request: http://geogratis.gc.ca/mapml/en/osmtile/cbmt/
?xmin=-310&ymin=389&xmax=828&ymax=789&zoom=3&projection=OSMTILE that results in a very
similar MapML response that is different for the previous on in the extent section and in the list of
tiles URL it contains.

 <extent action="/mapml/en/osmtile/cbmt/" enctype="application/x-www-form-
urlencoded" method="get" units="OSMTILE">
 <input max="2048.0" min="0.0" name="xmin" type="xmin" value="-310.0"/>
 <input max="2048.0" min="0.0" name="ymin" type="ymin" value="389.0"/>
 <input max="2048.0" min="0.0" name="xmax" type="xmax" value="828.0"/>
 <input max="2048.0" min="0.0" name="ymax" type="ymax" value="789.0"/>
 <input max="15" min="0" name="zoom" type="zoom" value="3"/>
 <input name="projection" type="projection" value="OSMTILE"/>
 </extent>

Since the references to the tiles (not reproduced in the last source code sample) correspond to the
same URLs, the map browser takes advantage of the cache and does not request any additional tile.
The map browser only portrays the same tiles in a different position in the screen.

The presented example only contains tile references but it could eventually contain features
encoded in an XML encoding that has the same restrictions and capabilities that GeoJSON has. This
capacity is defined in the MapML current specification but its implementation is very limited.

5.4. MapML and HATEOAS
The key aspect to understand how MapML works is to realize that MapML is designed to exchange
the state of the map browser application. In that sense it respects the HTTP design and implements
the Hypermedia as the Engine of Application State (HATEOAS) for maps. MapML transports the
initial status and uses the HTML KVP <form> mechanism to exchange the status of the map window
(consisting in layer name, bounding box, zoom level and projection) to a service that returns the
status back to the client with the additional information to update the map. MapML becomes the

20

http://geogratis.gc.ca/mapml/en/osmtile/cbmt/?xmin=-310&ymin=389&xmax=828&ymax=789&zoom=3&projection=OSMTILE
http://geogratis.gc.ca/mapml/en/osmtile/cbmt/?xmin=-310&ymin=389&xmax=828&ymax=789&zoom=3&projection=OSMTILE

Hypermedia for maps.

In the next section we will discuss about the MapML format in more detail and we will formulate
some suggestions. After that, we will present some details on the MapML services and its relation
with OGC services.

21

Chapter 6. MapML encoding
For the moment, and if we take a look at the current MapML specification, there are four big classes
that are specified:

• The meta section: provides static metadata

• The extent section: controls the view

• The tiles section: provides a mechanism for raster or rendered data to be delivered

• The features section: provides a mechanism for vector data or annotations to be delivered

The current specification provides a solution for encoding all of them, even if only the first three
have been fully tested in real implementations so far (including the activities in Testbed-13). In
other words, at this point, to propose a complete redefinition of the extent and tiles sections would
not be well received by the MapML community due to the number of implemented instances
already existing. There is still room for proposing radical alternatives for the features section.

All positions in a MapML file are provided in tile matrix coordinates and refer to a single tile matrix
(zoom level) specified in the extent section.

22

Figure 8. MapML data model UML class diagram

6.1. Properties of a MapML document
The <head> element of a MapML document is used to communicate properties of the document to
the client. As such, it is important to include the required <title> element with a meaningful value
describing the map resource in hand. As well, it is possible and desirable to include certain <meta>
element values which describe the intended scope of usage of the content of the document, for
example the zoom range in which the representation should be displayed, or the geographic extent
in which the content exists. The user agent can then decide what the appropriate user interface
clues are that may be communicated to the user (for example, disabling the layer representation in
the layer control is one such possible clue).

23

6.2. meta content document properties
The model of the <meta> element in MapML is borrowed from HTML; it should have meta@name
or meta@http-equiv and meta@content attributes containing the name of the document property,
and the value of that property, respectively. The HTML <meta> element specifies extensive
functionality that is not currently considered in-scope for MapML. What follows here is
recommended or required usage of the MapML <meta> element.

The meta@http-equiv=content-type value identifies the meta@content value of the document,
which is proposed to be text/mapml, pending IANA registration. As such, optional media type
parameters "projection" and "zoom" may be specified to better describe the content of the
document, for example: <meta http-equiv="Content-Type"
content="text/mapml;projection=CBMTILE;zoom=2"/>.

The meta@name=projection property identifies the MapML projection (tile matrix set) of the
current document. A MapML document can have zero or one instances of such a meta property,
and the set of possible meta@content values is given by the MapML specification. When the
document has content, but does not carry a meta[@name=projection] element or otherwise identify
the projection, the default meta[@name=projection]/@content value is "OSMTILE".

The meta@name=zoom property identifies the range of zoom levels at which the document should
be displayed. Typically, when a document is generated by a service, the
meta[@name=zoom]/@content value will be a single integer value of 0 or greater, within the range
defined by the MapML projection. When the document is static or otherwise applicable across a
range of zoom levels, the meta[@name=zoom]/@content value can contain a range of values in the
form of a pair of comma-separated term of the form "min=n,max=m" where -1<n<m and n and m
are within the range of zooms specified by the MapML specification for the document’s projection
property.

The meta@name=extent property identifies the bounding box within which the document content
should or can be displayed. When interacting with a MapML service over a datastore, typically the
service will emit an explicit <extent> form element in the body of the document, which specifies the
nominal bounding box of the document via input@type=xmin|ymin|xmax|ymax values. In such a
case it is recommended that no meta@name=extent element is included in the document. However,
where the document is a static resource, it is recommended to include a
meta[@name=extent]/@content=xmin=number,ymin=number,xmax=number,ymax=number
bounding box so that the user agent can decide what the bounding box of the content should be
without having to compute it.

6.3. Map content licensing
Perhaps the key strength of the Web is the hyperlink. To this end, MapML documents are
recommended to contain <link> elements in the <head> content, with specific @rel attribute values.

Most importantly for publicly consumable map content is the link@rel=license as explained in the
section 4.2.1.1.2.4 of the current version of MapML. It is recommended that the user agent dedicates
a specific and reliable user interface for such links, such as the "Attribution control" in the bottom
right-hand corner of the map. It is also recommended that such a control be present in all maps,

24

such that it cannot be turned off by the HTML author (i.e. is presented regardless of the
map@controls state).

Figure 9. <map> element attribution control

If the MapML content is provided in conjunction with a WMS, it can contain the tag "Attribution"
for this layer in the GetCapabilities document.

Do not get confused by the HTML4MAP <layer label=""> element that it actually used to populate
the text in the "layer control" panel of the map combination.

6.4. Legends
A map layer can have one or more possible legend representations. It is recommended that a
MapML document include one or more links to legends for the information contained in the map.
Such links should be represented by link elements with the link@rel=legend link relation. Such
links can be afforded by the client in a variety of ways. It is recommended that the user agent
provide a default mechanism such as hyperlink anchors from the standard layer control.

25

Figure 10. <map> element layer control legend hyperlinks

If the MapML is provided in conjunction with a WMS, it can contain:

• the tag "LegendURL" for this layer in the GetCapabilities document

• the dynamic link to a GetLegendGraphics operation provided by the SLD extension of WMS.

6.5. Styles
A map representation can have different styles associated to it. It is recommended that a MapML
document for which such alternative representations exist contain a link element for each such
representation, with the link@rel=style link relation.

<link rel="style" title="RADARURPREFLECTR" href="../RADARURPREFLECTR" type="text/mapml"/>

6.6. Map content metadata
It is recommended that MapML documents be able to communicate full and appropriate content
metadata. As such, the link element could be used to accomplish this task in the same manner as is
used for other document metadata: using the link@rel=via to link to ISO 19115-1 compliant
metadata. Such links should carry advisory link@type attributes with appropriate MIME media
type values (for ISO 19115-1 metadata in xml, application/xml is recommended). It is recommended
that at least one such have the value link@type=text/html, so that human users of the map may
read such descriptive metadata and understand the use constraints of the map content, as
communicated by the map content author. Once again, it would be up to the user agent as to how

26

best to provide access or present such links. One possibility would be as a right-click submenu
choice in the standard layer control.

NOTE
The use of rel="via" follows the same recommendation as the OGC 12-084r2 OWS
Context Atom Encoding Standard

Table 2. ISO 19115-1 metadata for discovery

Metadata name Metadata element

Metadata reference information MD_Metadata.metadataIdentifier

Resource title MD_Metadata.identificationInfo >
MD_DataIdentification.citation > CI_Citation.title

Resource reference date MD_Metadata.idenitificationInfo >
MD_DataIdentification.citation >
CI_Citation.date)

Resource identifier MD_Metadata.identificationInfo>MD_DataIdenti
fication.citation >
CI_Citation.identifier>MD_Identifier

Resource point of contact MD_Metadata.identificationInfo >
MD_DataIdentification.pointOfContact >
CI_Responsibility

Geographic location MD_Metadata.identificationInfo >
MD_DataIdentification.extent >
EX_Extent.geographicElement >
EX_GeographicExtent >
EX_GeographicBoundingBox or
EX_GeographicDescription

Resource language MD_Metadata.identificationInfo>
MD_DataIdentification.defaultLocale >
PT_Locale

Resource topic category MD_Metadata.identificationInfo >
MD_DataIdentification.topicCategory >
MD_TopicCategoryCode

Spatial resolution MD_Metadata.identificationInfo >
MD_Identification.spatialResolution >
MD_Resolution.equivalentScale
MD_Resolution.distance, MD_Resolution.vertical,
or MD_Resolution.angularDistance, or
MD_Resolution.levelOfDetail

Resource type MD_Metadata.metadataScope
>MD_Scope.resourceScope

Resource abstract MD_Metadata.identificationInfo >
MD_DataIdentification.abstract

Temporal or vertical extent information MD_Metadata.identificationInfo >
MD_Identification.extent > EX_Extent >
EX_TemporalExtent or EX_VerticalExtent

Resource lineage MD_Metadata >resourceLineage> LI_Lineage

27

Metadata name Metadata element

Resource on-line Link MD_Metadata.identificationInfo
>MD_DataIdentification.citation>CI_Citation.onli
neResource>CI_OnlineResource)

Keywords MD_Metadata.identificationInfo >
MD_DataIdentification> descriptiveKeywords
>MD_Keywords

Constraints on resource access and use MD_Metadata.identificationInfo >
MD_DataIdentification >
MD_Constraints.useLimitations and/or
MD_LegalConstraints and/or
MD_SecurityConstraints

Metadata date stamp MD_Metadata.dateInfo

Metadata point of contact MD_Metadata.contact > CI_Responsibility

IMPORTANT
Recommendation to MapML: Specify the link@rel=via to link to external
metadata documents.

6.7. Extent
Extent has two main purposes. When a MapML document is received, it is used by the map browser
to know the extent of the data that the MapML document is describing (in the form of tile, image
and/or feature elements), as well as to communicate the global (server) extent where data exists for
this layer. At the same time, and since the extent element is defined as an actionable part that can
be processed for submission to the server as a HTTP request, it is a search mechanism that is
submitted to the web server each time new data is needed (i.e. more tiles or features are needed).

If we assimilate extent to a search mechanism, we should compare this with what we already have
in OGC: OpenSearch Geo and Filter encoding.

6.7.1. Extent element encoding assimilated to GeoOpeoSearch

OpenSearch-Geo provides a mechanism to search for data. It incorporates a way to communicate a
bounding box, a time window and a search by keyword. The parallelism with the current
mechanism of MapML is apparent. But there are a couple of fundamentals differences that could
justify two encodings: OpenSearch-Geo does not define an HTML form but a URL template based on
KVP (that is almost the same as what enctype x-www-form-urlencoded intents to do) and the
expected response of an action of submitting the form is an atom file, instead of a MapML
document. Assuming that the two presented obstacles can be relaxed, it is worth continuing to
explore the commonalities between both encodings and consider completely replacing the current
extent section with an OpenSearch-Geo compatible one.

Let us compare the names of the parameters between the two standards in a tabular form:

Table 3. Comparision of OpenSearch parameters and MapML

28

Description OpenSearch Geo
(Table 3)

MapML limitations or
differences

bounding box geo:box xmin, xmax, ymin,
ymax

OpenSearch asks
for coordinates of
longitude, latitude,
in a EPSG:4326
decimal degrees
while MapML uses
tilematrix
coordinates in
pixels

time window time:start,
time:end

-

point query geo:lat, geo:lon,
geo:radius

- Latitude and
longitude in
decimal degrees in
EPSG:4326

place name geo:name or
searchTerms

search {searchTerms}
comes from
OpenSearch while
{geo:name} is
proposed by
OpenSearch Geo
and it is only a
geocoded name.

The OpenSearch Geo section "9.2.1 Search request parameters" mentions, which refers to a
bounding box (bbox):

Note that for the given key-value pairs, the key can be an arbitrary string, specified
by one given instance of an OpenSearch repository. For example, one Description may
provide a URL template asking for box={geo:box}, another specifying bbox={geo:box}.

This means that in order to use this mechanism, MapML should define a URL template that will fix
the names in the extent form. For example the current MapML request template:
xmin={mapml:xmin}&xmax={mapml:xmax}&ymin={mapml:ymin}&ymax={mapml:ymax}&zoom={
mapml:zoom}&projection={mapml:projection}&search={mapml:search} could be assimilated to
something like
bbox={geo:box}&zoom={mapml:zoom}&projection={mapml:projection}&q={searchTerms}

IMPORTANT
Recommendation to MapML: consider to include a temporal extent, as a part
of the extent definition to be able to request information in a time window.
We recommend to use the OpenSearch Geo approach and notation to it.

29

IMPORTANT

Recommendation to MapML: describe the search field as OpenSearch
{searchTerms} or to OpenSearch Geo {geo:name} depending on the exact
aim of the textural search term. If it corresponds to a place name can be
parsed and geocoded use the {geo:name} concept. We recommend to use the
OpenSearch Geo approach and notation to it.

6.7.2. Extent as it is today with small modifications

Assuming that we keep the general mechanism as proposed, there are a couple of modifications
that we can suggest.

Input types

HTML5 defines several types of inputs. In HTML, input@type conveys the semantics of the control
and its representation on screen. For example, input@type=date implies that the value that is input
should conform to a date data type. Often, it is possible for the user agent to represent such an
input with a calendar-like representation that simplifies entering a valid value for the input.

In MapML, the bounds of the map on screen represent a viewport onto a potentially large amount
of data at a range of scales. Typically, in modern Web maps, the user will use a pointing device to
drag or otherwise interact with a map. When this happens, it is necessary to coordinate what
happens to the map with the gestures made by the user. In principle, this is similar to how users
interact with regular HTML Web documents, except in the case of maps, the expectation for what
should happen is different, and specific to maps. The calculated edges of the viewport before,
during and after the user interaction event can be used by the user agent to request server content
based on information already received in the form of <input> elements. In order to semantically
group and operate these input elements similar to how an HTML <form> works, we create a parent
<extent> element. The extent element identifies its edges using four child
input[@type=xmin|ymin|xmax|ymax] elements, which allows the variables corresponding to
those edges to be independently calculated and transmitted to the server without regard to variable
ordering (in contrast to for example, a single bbox={xmin},{ymin},{xmax},{ymax} with its
anonymous parameters and required ordering).

In order to avoid forcing servers to implement specific variable names, MapML creates the
input[@type=xmin|ymin|xmax|ymax] values, and allows the server to specify what the
corresponding query parameter name should be via the input@name value. In this way, the server
and the user agent share the semantic meaning of input[@type=xmin|ymin|xmax|ymax] by virtue
of both 'understanding' (implementing) the MapML specification, while leaving the server’s
namespace completely up to the server.

List of available projections.

The current MapML specification has an input[@type=projection] with the projection name. The
map browser could prefer to change projection to another value but there is no information on the
extent section about the possible projection values. If a number of possible choices of projection
were available for a particular resource, it might be reasonable to offer a menu of such choices so
that the user agent could 'negotiate' what projection it needed for a particular map layer. Given that
any input[@type=xmin,ymin,xmax,ymax] attributes present would necessarily contain coordinate

30

values in the units of the MapML projection identified by the input[@type=projection]/@value
string that was returned or selected by the server for the resource being represented, it is
reasonable to note that the extent@units value describes the units of such
input[@type=xmin,ymin,xmax,ymax] property values and so is not necessarily redundant or non-
'DRY'; the user agent should be careful that when submitting such an extent, should it select an
alternative projection value from the list of values, it SHOULD NOT submit corresponding
input[@type=xmin,ymin,xmax,ymax] query parameters since their units would not correspond to
that projection selected.

HTML5 offers the datalist element as a mechanism to enumerate suggested options, for an input,
that we also can apply here. This is the proposed change:

 <extent action="/mapml/cbmt/" enctype="application/x-www-form-urlencoded" method=
"get">
 <input name="projection" type="projection" list="projection" value="CBMTILE"/>
 <datalist id="projection">
 <option value="OSMTILE"/>
 <option value="CBMTILE"/>
 <option value="APSTILE"/>
 </datalist>
 </extent>

NOTE
Recommendation to new Testbeds: Enumerate the possible projections supported
by the server resource in a datalist element with an id that is linked to an input list
attribute.

IMPORTANT

Recommendation to MapML: Remove the erroneous enctype="application/x-
www-form-urlencoded" value when the method="GET", since there is no
entity body being transmitted. When it becomes possible or necessary to
allow method="POST" or method="PUT" or method="PATCH", it will be
necessary to include an appropriate extent@enctype value for MIME media
type of the entity body being transmitted.

Projection names need to be substituted by tile matrix set identifiers

The tile matrix set standard candidate (OGC 17-083) defines a list of tile matrix sets with a
predefined identifier. It should be good that the next version of MapML refers to this list and
removes the current list of internally defined "projections".

IMPORTANT
Recommendation to MapML: replace the list of internally defined projections
by a reference to the near future tile matrix set standard candidate OGC 17-
083.

Tile matrix names instead of zoom levels

In OGC 17-083 a tile matrix set has a list of tile matrices available that has associated an identifier
and a scale denominator but not a number. It is still possible to refer to the tile matrix by a number

31

(considering the order in which they have been defined) and call this zoom level but this is not a
practice recommended by OGC 17-083.

If we replace the zoom level by a tile matrix identifier, zoom is no longer a range of numbers. To
mitigate this, we recommend to use the same datalist solution that was suggested for extending
projection

 <extent action="/mapml/en/osmtile/cbmt/" enctype="application/x-www-form-
urlencoded" method="get">
 <input name="zoom" list="zoom" type="zoom" value="0">
 <datalist id="zoom">
 <option value="0"/>
 <option value="1"/>
 <option value="2"/>
 </datalist>
 </extent>

IMPORTANT
Recommendation to MapML: replace the zoom level number by a tile matrix
identifier (text). Include a datalist enumerating the possible values of zoom

Projection and zoom

The word projection is an unfortunate election for the concept relevant in MapML. The projection is
only a part of the coordinate reference system definition that is also a part of the tile matrix set
definition. The use of the word "projection" is misleading and not conformant with the OGC abstract
specification.

The word zoom is commonly used in the map browsers using tiles. Unfortunately, this is not the
name selected by the WMTS specification and it could be appropriate to change it accordingly.

IMPORTANT
Recommendation to MapML: consider to change projection and zoom by
tilematrixset and tilematrix for consistency with OGC 17-083.

6.7.3. Time and animation

In the new era of Big Data, there are many sources of datasets that are systematically being
automatically acquired. It is important to know the time of the actual phenomena measured and to
be able to filter by the time the user is interested in. In this document, we propose three
alternatives to deal with time.

Alternative 1: A MapML has a single static time

The MapML document represents a single snapshot of an extent at a moment in time. A <meta>
element could indicate what time the tiles, images and features represent. The HTML author is able
to add layers that represent individual snapshots to allow the user to select among them using the
standard user interface layer control, or to allow the map browser to animate them.

A meta element for such a MapML document could be like <meta name="time" content="<ISO 8601

32

value>"/>

Alternative 2: MapML has control the time of the snapshot

The MapML represents a single snapshot but offers a range of possible times and the actual time in
the <extent> control. The HTML composer adds a single layer and offers the user to select among
the possible times. The tiles and features in the MapML represents a single time.

This approach can be implemented with a syntax like this:

<extent action=" https://example.org/mapml/layer/" ...>

 <input type=time name="t" min="some time value" max="a time value greater than min"
value="a value between max and min">
</extent>

The <extent> action will add a "t" key like

https://example.org/mapml/layer/?t={value}

which would imply a map at time={value}

In such a scenario, in addition to displaying the layer in the layer control, each layer could
represent the time parameter as a "time control" (e.g. a time slider +/- date picker) so that the user
could control the time (t) value transmitted in the request(s). A simplified approach could be to
have a single time control for the map and assume that all layers in the html map are represented
synchronized.

Alternative 3: A MapML service can represent an interval of times

The MapML document represents an interval of times. The map browser might offer a one or two
time-sliders to the user to control the queries issued as the user pans or zooms, and potentially the
response could be animated using Cascading Style Sheets (CSS) processing emitted by the server.

<extent action=" https://example.org/mapml/layer/" ...>
 ...
 <input type=tmin name="tmn" min="2017-01-01T00:00:00Z" max="2017-12-31T23:59:59Z"
value="2017-10-01T00:00:00Z">
 <input type=tmax name="tmx" min="2017-01-01T00:00:00Z" max="2017-12-31T23:59:59Z"
value="2017-10-31T23:59:59Z">
</extent>

https://example.org/mapml/layer/?tmn={tmin-value}&tmx={tmax-value}

which would imply a map over a time range. In the response to the above query, <feature>
elements in the response might have a time property:

33

<feature>
 <properties>
 <name>Thing1</name>
 <time>2017-10-20T13:15:08Z</time>
 </properties>
 <geometry>
 <Point>
 <coordinates>-75.6749127 45.3840208</coordinates>
 </Point>
 </geometry>
</feature>

NOTE

Recommendation to new Testbeds: Experiment with linking one or two user
interface controls (sliders) for time to <input> parameters in the <extent> to allow
query of MapML services by time interval. Determine if indeed
input@type=tmin|tmax are required or if a single input@type=time with multiple
instances (different input@name values), linked to user interface controls would
suffice. Verify what a "map of a time interval" response would look like and how it
might behave. For example, a MapML response could include a <layers> element
with a set of child <layer> elements, each with its own layer@src value. Such a
response could include CSS code to animate the display of the child layers/layer
elements so that the overall response would represent a map of a time interval.

6.7.4. Tile templates

Some tile service implementations follow a pattern in the tile URL naming, making a tile URL
predicable if the pattern is known by the client. TileCache uses the pattern {base_url}/{z}/{y}/{x}.
OGC WMTS REST interface also defines URL patterns that are not fixed but declared in the service
metadata. These patterns are declared using the URI templates specification (actually, the
specification does not cite the approved version or RFC6570 https://tools.ietf.org/html/rfc6570
explicitly, but a draft of it, because the approved one was not available at the time WMTS standard
was approved). In addition, the WMTS KVP syntax can also be expressed as a URI template like this:
{base_url}?service=WMTS&request=GetTile&version=1.0.0&layer=etopo2&style=default&format=im
age/png&TileMatrixSet=WholeWorld_CRS_84&TileMatrix={TileMatrix}&TileRow={TileRow}&TileCol
={TileCol}.

If a URI template describing the URL of all possible tiles is available, it could be included in a
MapML file. In this case, the client could retrieve any tile if it needs to react to the actions of the
user that changes the view bounding box (e.g. pan or zoom), without any need to request a new
MapML file that contains the tiles URLs of the affected new bounding box. Instead, the client can
transform the URL template into as many tile requests as it needs directly.

This approach introduces more programming requirements on the client side, since the client
needs to transform a bbox in a series of tile requests, while, in the current approach, the server
provides MapML files that include them. In contrast, this approach reduces the number of server
interactions, in particular if the MapML only contains tiles (and not features).

34

https://tools.ietf.org/html/rfc6570

We propose to extend the <extent> element to include an element called <template> that includes
an attribute "type" (for the moment with a value fixed to "tile") and an attribute "uri" that will
contain the URI template. The element <template> can be repeated more than once if the MapML
includes tiles following more than one URI template (for example, if it includes tiles of two layers
overlapped). The following example shows how the current MapML standard is extended to include
the new characteristic in the extent element.

 <extent units="CBMTILE">
 <input type="xmin" min="768.0" max="1024.0"/>
 <input type="ymin" min="768.0" max="1280.0"/>
 <input type="xmax" min="768.0" max="1024.0"/>
 <input type="ymax" min="768.0" max="1280.0"/>
 <input type="zoom" min="0" max="17" name="z"/>
 <input type="location" position="absolute" property="y" units="tile" name="row
"/>
 <input type="location" position="absolute" property="x" units="tile" name="col
"/>
 <input type="projection" value="CBMTILE"/>
 <template type="tile" uri=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT3978/MapServer/tile/{
TileMatrix}/{TileRow}/{TileCol}">
 </extent>

6.8. Other forms
Apart from the extent form, a MapML document could contain other forms dedicated to deal with
specific actions of the user not related to filling the viewport (i.e. not zoom or pan), such as queries
or searches. Since a map browser does not have buttons for common map operations, there is need
to associate each form to events triggered by the user. A key question would be how to visually or
otherwise associate the ability to query a map layer with a user interface expression of that ability.
In HTML, there is the <input type="submit"> input type, which is rendered as a button. Such an
input type could be used in a map <form> element with a different default expression, for example
the pointer could change from its default "hand" display to something more typically associated
with visual query, such as a crosshair or other form. The key idea would be to associate a click or
touch on the form (which would naturally have a spatial extent due to its presence in a MapML
document). Child input elements, as well as form@action properties would have to be configurable
so that click/touch coordinate information could be transmitted from the client to the server
according to query parameter names identified by the form child input elements. The response
from the server could be a MapML or HTML document that would be "geolocated" by the click
event.

Our proposal is to introduce forms for use in MapML documents that will be processed and
submitted automatically on selected user events, such as click or touch, when an appropriate
input@type=submit is present:

35

<form action="http://www.ccc.org/mapml">
<input type="submit">
</form>

6.8.1. Query by location

One of the most common actions in a map is clicking on it hoping to get more information about
some represented features, such as can be obtained with a WMS GetFeatureInfo request. On a map
browser, we can create a form that carries appropriate input@type children which will transmit
event specific variables as query parameters (or other potentially also other templated request
parts).

<form action="http://www.ccc.org/mapml">
<input type="location" name="i" value="location.x">
<input type="location" name="j" value="location.y">
<input type="zoom" name="z">
<input type="submit">
</form>

As a result of the click event submitting the above form, the server should return a MapML or
HTML document describing the features at the event location that will show in a popup/map
balloon (tooltip) or other browsing context. In examining the above (hypothetical) markup, a
number of questions naturally arise. For example, in what units are the coordinates of the
input@location? Should the units of the location be controlled by other input attributes? Should the
input@type=location have a visual expression or should it be hidden by default?

6.8.2. Text search

Textual search is an important characteristic of maps. It is proposed here that such search be
implemented by the HTML map element as an aggregating control; if the HTML author enables
search for at least one layer that they include on their map, and if the map document for that layer
includes a form element(s) configured for search via a child input@type=search element, a search
text input control could be presented to the end user in a default manner by the user agent (for
example at the top left of the map, as is common in today’s map browsers). Since there could be
more than one layer on a map which is searchable, the map’s search text input would have to
aggregate such searches, and convey result sets or search hints appropriately. In general, the user
action of selecting from a result set list obtained through search should display the location of the
result on the map in a natural manner. The challenge of designing the markup for the map
documents is to identify what can be standardized versus what should be left to the provider of the
MapML document and again, what should be the responsibility of the user agent. This brings up
many questions, including whether a MapML document needs to be consumed by an HTML <map>
element, i.e. what if the MapML document is the direct target of the browsing context. What would
the map look and behave like?

36

<form action="http://www.ccc.org/mapml">
<input type="search" name="q">
<input type="zoom" name="z">
<input type="submit">
</form>

IMPORTANT
Recommendation to HTMLMap: consider the inclusion of a boolean "search"
attribute to the layer element, to allow for activating of deactivating the
search functionality at the map level.

IMPORTANT

Recommendation to MapML: It is unclear if the search need to be limited to
the current bbox. The authors of this document consider that it is better not
to do that. Perhaps it is possible to give the spatial constraint ability to the
map document author by allowing the map author to identify search bounds
through input@type=xmin|ymin|xmax|ymax inclusion in the form.

IMPORTANT
Recommendation to MapML: It this recommendations are adopted, the
search mechanisms that the current version of mapml included in the
<extent> needs to be removed.

6.8.3. Tooltips

A tooltip is a floating window (commonly with a yellow or orange background) that contains short
information about the features in the map and that follows the mouse pointer. The information on
the tooltip changes when the mouse changes position without any need for clicking it (hover). This
characteristic is losing popularity since mobile phones and tables are not equipped with a mouse
but it could reemerge in virtual reality glasses. We propose to define a form that has an input
element with a name = event and a value defined as onHover that could replicate this functionally.
The map browser would trigger this event when the mouse moves over the map.

<form action="http://www.ccc.org/mapml">
<input type="hidden" name="event" value="onHover">
<input type="location" name="i" value="location.x">
<input type="location" name="j" value="location.y">
</form>

6.8.4. Target of a MapML form

In MapML there are two kinds of forms: <extent> and <form> (the second one is not yet included in
the MapML current draft specification). Like HTML5 forms, MapML forms have an action attribute
that specifies where to submit the form inputs, but there is no actual submit button for the user to
press. In the case of the <extent> element, it is expected that the user agent submits the form each
time the map needs more map content. Common situations where new information is required are
when the user performs a pan or a zoom action, or the window is resized or re-oriented. In the case
of the <form> element, this report recommends that when the user clicks the map to know more

37

about a feature (per the above discussion), the assumed default target of the action is a map
balloon. Depending on the target attribute of the form, the map author might direct what to do with
the response to form submission. It is assumed that in the case of a default target, the submission
will result in a MapML or HTML document that will display in a map balloon browsing context. If
there was a target, the response could be redirected to another window or frame with that name
and the map view will not be changed in the client.

CAUTION "target=" has not been specified in the current stable version of MapML.

IMPORTANT
Recommendation to MapML: consider the inclusion of target attribute in the
definition of extend of the current version of MapML.

6.8.5. Directions

Another important functionality in a map browser is to be able to provide directions to go from one
place to the next. Again, the way the map element is implemented, we expect that search text
input(s) should be provided at the map browser level and not at the layer level. Nevertheless a layer
in the map browser should be able to provide this functionality, so a form (or some additional
elements in the extent form) could be required to allow that. Two input elements of type "from" and
"to" is the minimum set required but other attributes (such as the type of transport the user has
access to) could be necessary.

NOTE
Recommendation to future Testbeds: Investigate searching for directions on a map
layer.

6.9. Tile encoding
Recently, there have been some mass market map browser implementations that use vector tiles. It
could be good that MapML is able to support them.

IMPORTANT Recommendation to MapML: consider allowing vector tiles in MapML.

6.10. Feature encoding
Note the discussion of the 4 formats: GeoRSS, GeoJSON, KML and Schema.org https://www.w3.org/
wiki/WebSchemas/GeoShapeExamples

In addition, Well-Known Text (WKT) could be an alternative for the Geometry.

• Feature encoding

• Compare GeoShape with simple features and fix the current issues.

• Symbology (CSS) to segments of lines and links to pieces of geometries.

6.10.1. Feature encoding based on MicroXML

MapML currently proposes an encoding for features that resembles GeoJSON in the sense that it

38

https://www.w3.org/wiki/WebSchemas/GeoShapeExamples
https://www.w3.org/wiki/WebSchemas/GeoShapeExamples

describes a feature as formed by geometry and properties. Properties are not specified and can
have a free list of property elements and values. The geometry is expressed by a set of coordinates.
A MapML file can have a list of features but they are not grouped in feature collections.

 <feature class="_1240012" id="b71b3e963c7a4792b63e92cd7b54589f">
 <properties>
 <code>1240012</code>
 <accuracy>23</accuracy>
 <valdate>20010428</valdate>
 <id>b71b3e963c7a4792b63e92cd7b54589f</id>
 <theme>VE</theme>
 <type>222</type>
 </properties>
 <geometry>
 <Polygon>
 <coordinates>-75.6003064 45.3998946 -75.6003898 45.4000408 -75.6004666
45.4002181 -75.6005368 45.4004264 -75.6006005 45.4006658 -75.6006576 45.4009362
-75.6007082 45.4012377 -75.60012 45.4013165 -75.5997066 45.4013325 -75.5994679
45.4012857 -75.599404 45.401176 -75.5994095 45.4010429 -75.5993792 45.4009256
-75.5993129 45.4008241 -75.5990932 45.4006444 -75.5989812 45.400518 -75.5988746
45.4003591 -75.5987735 45.4001677 -75.6003064 45.3998946</coordinates>
 </Polygon>
 </geometry>
 </feature>
 <feature class="_1240012" id="e7ccaa32978942518004cf4c06152817">
 <properties>
 <code>1240012</code>
 <accuracy>23</accuracy>
 <valdate>20010428</valdate>
 <id>e7ccaa32978942518004cf4c06152817</id>
 <theme>VE</theme>
 <type>232</type>
 </properties>
 <geometry>
 <Polygon>
 <coordinates>-75.5999067 45.3988121 -75.59997 45.3990799 -75.6000417
45.3993221 -75.6001216 45.3995386 -75.6002099 45.3997294 -75.6003064 45.3998946
-75.5987735 45.4001677 -75.5985081 45.3997915 -75.5983765 45.3995832 -75.5983819
45.3995191 -75.598544 45.3994562 -75.5988659 45.3993708 -75.5992103 45.399268
-75.5994399 45.3991532 -75.5995733 45.3990294 -75.5997227 45.3989147 -75.5999067
45.3988121</coordinates>
 </Polygon>
 </geometry>
 </feature>

The authors of this Engineering Report believe that features are an essential part of OGC semantics.
As such, the encoding of feature information as currently implemented by MapML may be a
starting point for more human-friendly encoding and display of geographic features. What follows
are some alternatives or extensions to the current feature model that may make integration of

39

geographic information more natural on the human web.

6.10.2. Feature encoding alternative 1: schema.org

This encoding explores how to use schema.org to semantically tag html text and provide the
necessary information that describes a feature.

There are several entities in schema.org that can be mapped to features depending of their
meaning. If none of them apply, we can always use "Place" (http://schema.org/Place) or we can
extend schema.org to our purposes. In this example, we are mapping each feature to "Place" and we
use a few of the common properties of Place to tag our information fields (identifier, url and
alternateName). Other existing properties can be useful in many cases (logo, photo, review,
description, sameAs, potentialAction) In case none of the properties of Place apply, we can add
uncommon properties using the PropertyValue mechanism which allows us to include in
additionalProperty that define and use properties using name & value pairs.

For the geometry property, the standard OGC model could be used, structured into standard
element names, with the additional consideration that the coordinates of a feature on a map are
analogous to human-readable text in a traditional HTML document. As such, the coordinates
content should be subject to further, though possibly constrained markup, such as , <a> and
possibly other phrasing content markup [https://www.w3.org/TR/html5/dom.html#phrasing-content-1]
(further prototyping/analysis required).

The possibility of using HTML+schema.org for the geometry property has been analyzed but the
elements GeoShape and GeoCoordinate do not fit with the requirements needed in terms of
coordinate reference system and polygon composed of multiple rings (both possibilities are not
supported by schema.org).

 <feature>
 <properties>
 <div itemscope="itemscope" itemtype="http://schema.org/Place" class="_1240012" >
 <h3>Code: 1240012</h3>
 Id:b71b3e963c7a4792b63e92cd7b54589f

 Id:b71b3e963c7a4792b63e92cd7b54589f
 <div itemprop="additionalProperty" itemscope="itemscope" itemtype=
"http://schema.org/PropertyValue">

 Accuracy: 22
 </div>
 <div itemprop="additionalProperty" itemscope="itemscope" itemtype=
"http://schema.org/PropertyValue">

 Validation date: 20010428
 </div>
 <div itemprop="additionalProperty" itemscope="itemscope" itemtype=
"http://schema.org/PropertyValue">

 Theme: VE

40

http://schema.org/Place
https://www.w3.org/TR/html5/dom.html#phrasing-content-1

 </div>
 <div itemprop="additionalProperty" itemscope="itemscope" itemtype=
"http://schema.org/PropertyValue">

 Type: 222
 </div>
 </properties>
 <geometry>
 <Polygon>
 <coordinates>
 -75.7371421 45.4251194 -75.7372231 45.4250821
-75.7374238 45.4250815 -75.7376529 45.4251037 -75.7378188 45.425135 -75.7379875
45.4252532 -75.7382589 45.4255763 -75.7385533 45.4259813 -75.7386907 45.4261917
-75.7386682 45.426238 -75.7384977 45.4262523 <a id="something" href=
"https://example.org/something">-75.7382147 45.4262377 -75.7379863 45.4261611
-75.7378242 45.426027 -75.7376472 45.4259032 -75.7374442 45.4257981 -75.737286
45.4256386 -75.7371939 45.4254063 -75.7371486 45.4252161 -75.7371421 45.4251194
 </coordinates>
 </Polygon>
 </geometry>
 </feature>
 <feature class="_1240012">
 <properties>
 <div itemscope="itemscope" itemtype="http://schema.org/Place" class="_1240012"
>
 <h3>Code: 1240013</h3>
 Id:
e7ccaa32978942518004cf4c06152817
 <div itemprop="additionalProperty" itemscope="itemscope" itemtype=
"http://schema.org/PropertyValue">

 Accuracy: 23
 </div>
 <div itemprop="additionalProperty" itemscope="itemscope" itemtype=
"http://schema.org/PropertyValue">

 Validation date: 20010428
 </div>
 <div itemprop="additionalProperty" itemscope="itemscope" itemtype=
"http://schema.org/PropertyValue">

 Theme: VE
 </div>
 <div itemprop="additionalProperty" itemscope="itemscope" itemtype=
"http://schema.org/PropertyValue">

 Type: 232
 </div>
 </div>
 </properties>
 <geometry>

41

 <Polygon>
 <coordinates>
 -75.5999067 45.3988121 -75.59997 45.3990799 -75.6000417 45.3993221
-75.6001216 45.3995386 -75.6002099 45.3997294 -75.6003064 45.3998946 -75.5987735
45.4001677 -75.5985081 45.3997915 -75.5983765 45.3995832 -75.5983819 45.3995191
-75.598544 45.3994562 -75.5988659 45.3993708 -75.5992103 45.399268 -75.5994399
45.3991532 -75.5995733 45.3990294 -75.5997227 45.3989147 -75.5999067 45.3988121
 </coordinates>
 </Polygon>
 </geometry>
 </feature>

Figure 11. HTML interpretation of the features fragment of a MapML example.

This example was validated by the Google Structured Data Testing tool (https://search.google.com/
structured-data/testing-tool) resulting in no warnings or errors.

42

https://search.google.com/structured-data/testing-tool
https://search.google.com/structured-data/testing-tool

Figure 12. Result of the test of the example in the Google Structured Data Testing tool

6.10.3. Why current version of schema.org is not enough

• GeoCoordinates only allow for a point in lat/long wgs84. (https://github.com/schemaorg/
schemaorg/issues/802)

• GeoShape does not specify the CRS and does NOT allow for a point.

• It is not clear how to do a multipolygon. Can we assume that the repetition of a coordinate is the
end of a ring? a negative area ring a hole in a polygon?

• Can we do geometry collections?

• Do we need a bbox?

The editors of this document are now members of the discussion list and can submit a question on
the best way to extend schema.org. OGC should review http://schema.org/docs/extension.html.

In fact, Schema.org is not very consistent in its own definitions. For example they are proposing a
http://pending.schema.org/GeospatialGeometry that is actually talking about topology. It mentions
an informal collaboration with the W3C Spatial Data on the Web Working Group.
(http://schema.org/docs/releases.html)

43

https://github.com/schemaorg/schemaorg/issues/802
https://github.com/schemaorg/schemaorg/issues/802
http://schema.org/docs/extension.html
http://pending.schema.org/GeospatialGeometry
http://schema.org/docs/releases.html

Chapter 7. MapML versus other formats
This section compares MapML with OWS Context and KML.

7.1. OWS Context
MapML shares some similarities with OWS Context [http://www.opengeospatial.org/standards/owc]. The
most obvious is that OWS Context can transport references to WMS, WMTS services and embedded
content in the form of features and MapML also does that.

In fact, a OWS Context document can be assimilated to a <map> section that uses the HTML4MAP
extension. OWS Context document contains a list of resources (called entries in the Atom encoding)
while a <map> section contains a list of <layer>s (that are actually a list of MapML document links).
Each entry in a OWS Content can contain one or more offerings with references to tiles, embedded
features or other content, while a MapML document is able to transport also references to tiles and
embedded features. Technically, the parallelism of both encodings is apparent. Nevertheless, there
are some significant differences:

• OWS Context can include other kinds of OGC services (e.g. WPS) and other kind of embedded
content (e.g. GML) that MapML does not support.

• OWS Context does not enumerate the URLs to resources but, for each service, provides only a
URL "example" for getting resources (e.g. for a WMTS, a URL to a tile that usually does not cover
the entire view port) and assumes that the client would be able to understand the logic behind
the OGC service and will be able to generate the necessary requests (e.g in the case of WMTS,
the URLs for all needed tiles to cover the view port). In contrast, MapML does not require that
the client has any knowledge on how to build OGC web service requests and provide the exact
requests need for each situation.

• The current OWS Context standard includes a set of extensions that define how to reference a
limited set of OGC standards and formats in the offerings sections. For tiles, only a OGC WMTS
service extension is provided, leaving the possibility of using non OGC tile services undefined.
In contrast, MapML can support non OGC tile services as far as it is possible to point to tiles
using URLs.

• OWS Context can also transport symbology that is associated with features to provide default
presentation. MapML is not doing this at this moment and should rely on a separated css
document. This document will be included in the web page where the MapML document is also
included.

Perhaps the most significant aspect is that among the use cases that OWS Context considers, there is
the capacity to save and share the status of a map browser but it is not intended to be a media type
to exchange the status of a map between a map browser and a map server. We could say that OWS
Context was not designed to cover the same use cases that MapML does. The OWS Context use case
assumes that the map browser is intelligent enough to dialog directly with a variety of OGC services
without the need to exchange the status of the map browser to a OWS Context service when a user
event occurs.

We have started discussions with the OWS Context SWG to see if the use cases covered by MapML

44

http://www.opengeospatial.org/standards/owc

could be covered by OWS Context and MapML could be considered a encoding extension for OWS
Context.

IMPORTANT

Recommendation to OWS Context.SWG: Consider including the use cases
covered by MapML in the list of OWS Context use cases and the combination
of HTML4MAP and MapML as an HTML encoding extension for OWS
Context.

7.2. KML
MapML shares some similarities with KML [http://www.opengeospatial.org/standards/kml]. KML was
designed as a format for exchanging geospatial data and symbology among virtual globes. Even if it
has characteristics that are specific to 3D virtual globes (e.g. point of view), it can also be used in 2D
map browsers. It has both the capacity to exchange features in KML format and tiles.

KML was designed to share vector or images at once when it is loaded and does not communicate
the status to a server for incremental data. Actually, the KML superoverlays allow for some degree
of incremental load of information but in a very different that MapML does.

45

http://www.opengeospatial.org/standards/kml

Chapter 8. MapML services and navigation
modes
In practice, MapML can be implemented in four possible modes of navigation. These modes are
complementary and some or all of them can be made available in an implementation of a MapML
engine. The four navigation modes are:

• Map package: A MapML document contains a large amount of information (tiles, features and
image) in a way that allows the user to navigate through the map view without exiting a pre-
defined limits. In other words, the MapML file contains much more information than the one
needed for the current view and includes adjacent areas and information valid at different
resolutions.

• Map links: The MapML document contains detailed information in the <meta> section about
how to move from one zoom to the next and to the current view to lateral views using the
<link> element. The client offers these limited possibilities more prominently to the user.

• Map service: A MapML document contains only the requested extent bbox and will submit a
new extent form each time the user makes an action and waits for the next MapML file to be
returned.

• Map search: An alphanumeric string can be sent to the server that will look for places that
corresponds to the searched string (place names, geoparsing etc).

8.1. Determining the center of the map to start with
The MapML <extent> section defines the zoom level that a MapML engine should use to start the
visualization in the <input type=zoom> key. In the usage of MapML, there is some ambiguity in the
definition of the exact area that will be presented to the user as starting point, because the
bounding box in the <extent> might not be compatible with the width and height of the screen
defined in the HTML <map> and because a <map> could include MapML files (<layer>s) with
different <extent>s . This section describes how the MapML engine will determine the center of the
map and the initial zoom level.

Initially the MapML engine needs to determine the projection and zoom level it wants to work with.
That can be selected among the list of MapML files included in a map in several ways. We suggest to
adopt the combination of CRS and tile matrices that is mentioned more times and initially ignore
the MapML documents that do not use this combination. From the selected extents, compute the
minimum bounding box that includes all the individual bounding boxes and determine the central
point of it. Then, using the width and height of the <map> section, and the selected tile matrix zoom
level calculate the actual initial bounding box that will be shown in the map window. The following
figure shows a UML sequence diagram representing this sequence of decisions.

46

Figure 13. MapML interaction UML sequence diagram

8.2. MapML package
This is one of the possible navigation modes. A MapML document has no a priori limitation in the
number of tiles and features it can include. It is perfectly possible to generate a single MapML file
that contains all the necessary information that is needed for the initial user interactions. The
<extent> section is used as an indication of the bbox and zoom level that should be presented to the
user, but the MapML file could have links to tiles and feature representations that goes far beyond
that bbox. This way, the user will be able to interact with the map but the client will not need to
request any additional information to the server.

If changes in the zoom level of the map are required, this approach cannot be fully implemented in
the current version of MapML due to an explicit limitation in the specification that forces all tiles
(actually all data) in the MapML to be of the same the zoom level. This is also a consequence of the
decision of having all MapML coordinates as tilematrix coordinates. A clarification in the <tile>
section of the specification confirms this diagnostic:

47

The "zoom" value is a global integer property of a MapML document whose coordinate
system is defined by this specification. All MapML documents have a defined zoom
value. The "zoom" value is equal to the "zoom/@value" child of the "extent" element.
Hence the zoom value is not a direct attribute of the "tile" element.

CAUTION
For big datasets this approach can result in very large files an could be
impractical. The next sections describe more flexible approaches to client-
server dialog for MapML exchange that limits the size of a MapML file.

IMPORTANT

Recommendation to MapML: consider relaxing the limitation that all tiles
needs to be in the same zoom level stated in the sub section 4.2.1.1.6 of the
current version of the MapML allowing other zoom levels to be described in
a single MapML.

A partial alternative to this approach (only applicable for tiles) could be based on URI templates for
tiles and the new element <template> introduced in <extent> the previous section.

8.3. MapML links
In this navigation mode, the MapML contains detailed information about how to request a new
MapML that moves from one zoom to the next and to the current view to lateral views. This was
proposed to allow for implementations that does not require to be spatially aware and should rely
on the HATEOAS constraint of the REST application architecture (sometimes referred as "follow the
links!"). MapML files can be pre-calculated on the server side and delivered to the client as files. To
do that, <link> elements are included in the <meta> section. The current MapML version defines a
set of 'rel' values that inform the map browser on how to navigate from one MapML to the next.

• west Indicates a resource that may be used to the west of the maximum extent of the current
resource, at the current zoom level.

• southwest Indicates a resource that may be used to the southwest of the maximum extent of the
current resource, at the current zoom level.

• south Indicates a resource that may be used to the south of the maximum extent of the current
resource, at the current zoom level.

• southeast Indicates a resource that may be used to the southeast of the maximum extent of the
current resource, at the current zoom level.

• east Indicates a resource that may be used to the east of the maximum extent of the current
resource, at the current zoom level.

• northeast Indicates a resource that may be used to the northeast of the maximum extent of the
current resource, at the current zoom level.

• north Indicates a resource that may be used to the north of the maximum extent of the current
resource, at the current zoom level.

• northwest Indicates a resource that may be used to the northwest of the maximum extent of the
current resource, at the current zoom level.

48

• zoomin Indicates a resource that may be used to the zoom at the current zoom level plus 1.

• zoomout Indicates a resource that may be used to the zoom at the current zoom level minus 1.

CAUTION

For the moment, this approach has not been implemented and it is unclear if it
is longer necessary. The next section describes a more flexible approach to
client-server dialog for MapML exchange that is, in some sense, redundant with
this one.

We propose to add two next 'rel' values to include the time dimension in the considerations.

• before Indicates a resource that may be used to present a scene that represents a moment
immediately before the current one.

• after Indicates a resource that may be used to present a scene that represents a moment
immediately after the current one.

IMPORTANT
Recommendation to MapML: consider the inclusion of before and after in
the section 4.2.1.1.2.4 of the current version of MapML.

NOTE
Recommendation to new testbeds: The HATEOAS approach to MapML based on
<link> could be experimented in a next Testbed.

8.4. MapML service
In this navigation mode, there is a service implementation that is able to dynamically generate a
MapML file that responds to each action of the user. The action of the user is translated to changes
in the <input> elements of the <extent> element of the MapML and this acts as an HTML form,
submitting the new values to the service that will generate a new MapML in response containing
the relevant information to regenerate the user map view.

This clause describes how to generate a MapML file for a service. Let us review the concept of
"tilematrix coordinates". Tilematrix coordinates are the pixel based coordinates that result from
defining a grid that has a top-left corner in some far place and a size of the "scale denominator"
(zoom level). They are long integer values. They are similar to "screen coordinates" (sometimes
referenced a CRS0 or CRS1) (they share the pixel size) with the origin far away from the scene.

This subsection analyzes how WMS and WMTS can serve MapML. The authors of this document
prefer the first alternative but in Testbed-13 a WMTS extension was implemented and
demonstrated by CubeWerx into practice. WMS can perfectly respond with a MapML file with
features and tiles as a response of a GetMap request. WMS could respond with a MapML file that
includes features and tiles as a response to a GetMap (or a GetMapML) request; WMTS can do this
only with tiles but it works. Both, WMS and WMTS services have the concept of 'scale'. WMTS has
the scale denominator directly in the tilematrix definition while WMS uses it implicitly in the
GetMap request by providing BBOX, WIDTH and HEIGHT (scale will be WIDTH/xmax-
xmin*0.28/1000). In other words, WMS and WMTS are dealing with two CRSs at the same time and
are able to translate between map coordinates (in a system commonly identified by a EPSG CRS)
and screen coordinates (commonly known as CRS0 or CRS1) by applying scale and displacement.
WMS can be easily modified or extended to replace screen coordinates by tilematrix coordinates

49

and use them in the BBOX and in the returned extent, tiles and features of a MapML file. WMS is
supposed to serve a format that you can render on the screen and MapML is a format that is
designed to be rendered in a HTML equivalent of the screen. On the contrary, WMTS has the
tilematrix concept already in place but it was designed to serve a single tile while WMS is designed
receive a BBOX and provide a format that includes the elements to render, and MapML could be an
alternative for this. WMTS has the advantage that it is already aware of a tilematrixset structure
while it has to be part of the extension in WMS.

In the end, the solution should be found in a middle ground between WMS and WMTS. We can
extend WMS and WMTS to use tilematrix coordinates instead of pure screen coordinates.
Conceptually, this could be a big change but will not be difficult to change in implementations.
Actually, the fact that MapML is served with a WMS or with a WMTS extension should really be
considered an implementation detail, since MapML users and client applications will not consider
that and they will simply implement the extent action in the way MapML specifies and will see the
MapML layer sources as opaque endpoint URLs. In both cases, the extent action implementation
should correctly handle type=hidden inputs and add them to the KVP URL as HTML forms already
do. This is consistent with the implementation of forms in HTML4 http://www.w3.org/TR/html401/
interact/forms.html: "hidden: controlsAuthors may create controls that are not rendered but whose
values are submitted with a form. Authors generally use this control type to store information
between client/server exchanges that would otherwise be lost due to the stateless nature of HTTP.
The INPUT element is used to create a hidden control.". This behavior is part of the HATEOAS
(Hypermedia as the Engine of Application State) where servers and clients are exchanging the
application state.

IMPORTANT

Recommendation to MapML: consider the inclusion of a sentence in the
<extent> section saying that all types of input values (including hidden)
should be submitted to the "action" following what HTML4 form
recommends. In addition any MapML document resulting from the
submission of an "action" in an "extent" should include the non identified
keys as hidden elements of the extent to guarantee that a future "action"
submission will still be able to add them.

8.4.1. WMS to serve MapML

The concept of a map in MapML shares a similarity with the definition WMS: "portrayal of
geographic information as a digital image file suitable for display on a computer screen" (From
WMS 1.3 Section 4.7: map). This section proposes an extension of WMS to support the direct
creation of MapML from a WMS service. In addition, the details of the request derived from
submitting an <extent> form to the server (that generates a KVP request concatenated to the action
url) is conceptually very similar to the act of submitting GetMap request in KVP. Both request are
aiming at getting a map back. Commonly, a WMS GetMap request returns a static image like a png
or a jpeg but nothing prevents the server from returning other content formats, including some
sort of markup language or JSON file. The only condition is that the returned format should be easy
to render on the client screen. In practice, this means that the server should simplify the data to fit
with the screen resolution and that the data can easy be represented as a vertical 2D view (bird
view) of the scene. MapML fits perfectly with these requirements (in particular the decision of
using 2D tilematrix coordinates in the vector coordinates and in the bbox). In the following table,
we compare the parameters of the GetMap request with the MapML extent elements. The main

50

http://www.w3.org/TR/html401/interact/forms.html
http://www.w3.org/TR/html401/interact/forms.html

conclusion is that a GetMap request has many more parameters but they will have fixed values
during the MapML interactions and that the common parameters can be assimilated to the ones in
WMS but they are not directly compatible.

Table 4. Comparision of WMS GetMap parameters and MapML

WMS GetMap MapML extent

Service=WMS N/A

Request=GetMap N/A

Version=1.3 N/A

Layer N/A

Style N/A

Format N/A

BBOX xmin, ymin, xmax, xmax

width, height zoom

CRS projection

Trasparent N/A

BgColor N/A

Time N/A

Elevation N/A

To avoid radical changes in the MapML standard candidate, we propose to extend WMS with a new
request GetMapML and to extend MapML "extent" allowing specific hidden parameters in the
section.

Conceptually, a WMS GetMapML request needs the same as GetMap but substituting the bbox
parameter with the parameter list xmin, ymin, xmax, xmax (that are in tilematrix coordinates and
not in the CRS coordinate as bbox is); width, height is substituted with the zoom parameter (that is
related to the actually a tile matrix identifier that allow to matematically calculate the width and
height) and CRS is substituted by projection (even if it actually represents a tile matrix set name). In
this case WMS GetMapML will not support Trasparent and BgColor favoring transparency by
default whenever possible.

The GetMapML request will, in addition, incorporate the following extra parameters:

Table 5. MapML proposed hidden parameter names and values

Name Value

Service "WMS"

Request "GetMapML"

Version "2.0"

Layer a layer name (or coma separated
names) in the GetCapabilities of the
WMS

51

Name Value

Style a style name supported by the layer(s)
in the GetCapabilities of the WMS or
blank if it is the default style

Format "text/mapml"

In addition to them, two additional parameters could be added: Time and Elevation for extra
support to this two variables.

In response of a successful GetMapML request, the WMS service will produce a MapML that will
have an extent section with the content similar to the illustration in this example:

 <extent action="/mapml/en/osmtile/cbmt?" enctype="application/x-www-form-
urlencoded" method="get" units="OSMTILE">
 <input max="8388608" min="0" name="xmin" type="xmin" value="8000"/>
 <input max="8388608" min="0.0" name="ymin" type="ymin" value="8000"/>
 <input max="8388608" min="0.0" name="xmax" type="xmax" value="9024"/>
 <input max="8388608.0" min="0.0" name="ymax" type="ymax" value="9024"/>
 <input max="15" min="0" name="zoom" type="zoom" value="15"/>
 <input name="projection" type="projection" value="OSMTILE"/>
 <input name="Service" type="hidden" value="WMS">
 <input name="Request" type="hidden" value="GetMapML">
 <input name="Version" type="hidden" value="2.0">
 <input name="Layer" type="hidden" value="layer_name">
 <input name="Style" type="hidden" value="">
 <input name="Format type="hidden" value="text/mapml"
 </extent>

In addition, the MapML document can contain all references to obtain the relevant tiles present in
the extent bounding box in <tile> elements. These tile elements can be references to WMTS
services, another kind of tile services, or full KVP WMS GetMap requests to get maps that will have
equivalent characteristics in terms of bbox, width, height and format of the expected tiles. Secondly,
the MapML can contain also features in <feature> elements that are visualized in the map as vector
features.

If this proposal is accepted by the MapML community as a service that generates MapML files, it
will be necessary to consider what concrete changes are needed to be done in the GetCapabilities
response to expose the possibility of having GetMapML requests. The minimum changes in the
ServiceMetadata document are:

• Expose the support for the new operation and describe it.

• List the names of the tilematrixsets each layer supports.

• Describe the tilematrixsets in the ServiceMetadata document (this should not be necessary if the
tilematrixset are global and described in another standard or in a catalogue).

• Publish the tilematrissetlimits for each layer.

In addition to this, the MapML work done in this testbed and documented in this document to allow

52

simple queries for more information in a point of a map, should be aligned with the
GetFeatureInfo.

The following UML diagram summarizes the approach suggested and gives emphasis to the two
internal functionalities that need to be implemented to transform WMS into a MapML service. The
most apparent difference is the existence of the GetMapML operation. The "BBOX to WMSC tile
URLs" is aware of the tile matrix set concept and is able to transform the BBOX and the zoom level
into a sequence of WMS requests that can populate the bounding box, but perfectly fits the
requirements of a tile in terms of width and height. To be able to provide the features in the tile
matrix coordinates, a "CRS to tile matrix coordinates (internal)" functionality is required. Based on
the zoom level, transforms the WFS coordinates into a tile matrix coordinates and transforms a
GML file into the right format for the MapML.

Figure 14. MapML interaction UML sequence diagram based on the adaptation of a WMTS that works with
a WFS to provide the feature part.

NOTE

Recommendation to new testbeds: The use of WMS to provide MapML files on
demand could be investigated in a next Textbed. The use of WMTS was investigated
in this testbed but it is limited to provide tiles (and not features) while WMS will not
have this limitation.

53

8.4.2. WMTS to serve MapML

To satisfy the NR103 deliverable for OGC Testbed-13, CubeWerx implemented a MapML server
compliant to the "Map Markup Language" current draft specification at
"http://maps4html.github.io/MapML/spec/[http://maps4html.github.io/MapML/spec/]", and
compatible with the "<web-map> HTML Element proposal" at "http://maps4html.github.io/HTML-
Map-Element/spec/[http://maps4html.github.io/HTML-Map-Element/spec/]".

The implementation was made as an unofficial extension to the WMTS 1.0.0 specification (OGC 07-
057r7) by introducing a "GetMapML" operation to the demo WMTS server at:
https://tb13.cubewerx.com/cubewerx/cubeserv/default [https://tb13.cubewerx.com/cubewerx/cubeserv/

default]

Since GetMapML is not officially a WMTS operation, the WMTS capabilities document is typically
bypassed (even though, as a matter of completeness, it does list GetMapML as one of its supported
operations). In MapML, each layer has its own endpoint. For this particular server, the endpoint of
each layer is (RESTful URL):

https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/<layerName
[https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/%3ClayerName]>

An alternative longer form for the endpoints using SOA KVP encoding is:
https://tb13.cubewerx.com/cubewerx/cubeserv/default?SERVICE=WMTS&VERSION=1.0.0&REQUEST
=GetMapML&LAYER=<layerName [https://tb13.cubewerx.com/cubewerx/cubeserv/default?SERVICE=WMTS&

VERSION=1.0.0&REQUEST=GetMapML&LAYER=<layerName]>

This implementation provides three layers:

• "gtopo30.gtopo30" - a low-resolution global elevation coverage

• "NAIP.NAIP" - some high-resolution satellite imagery in Texas and Mexico

• "Ice_Concentration_20150101.Ice_Concentration_20150101" - imagery of ice concentration in the
arctic circle

As such, the three MapML endpoints are:

• https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/gtopo30.gtopo30
[https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/gtopo30.gtopo30]

• https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP
[https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP]

• https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/Ice_Concentration_20
150101.Ice_Concentration_20150101 [https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/

mapML/Ice_Concentration_20150101.Ice_Concentration_20150101]

All three layers are available in the OSMTILE, CBMTILE and APSTILE projections as defined by the
"Map Markup Language" draft specification, with the exception of "NAIP.NAIP" which is not
available in APSTILE due to its southern geographic location.

To illustrate the implementation, CubeWerx have set up a fast demonstration map for each of the
three projections:

54

http://maps4html.github.io/MapML/spec/
http://maps4html.github.io/HTML-Map-Element/spec/
https://tb13.cubewerx.com/cubewerx/cubeserv/default
https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/%3ClayerName
https://tb13.cubewerx.com/cubewerx/cubeserv/default?SERVICE=WMTS&VERSION=1.0.0&REQUEST=GetMapML&LAYER=<layerName
https://tb13.cubewerx.com/cubewerx/cubeserv/default?SERVICE=WMTS&VERSION=1.0.0&REQUEST=GetMapML&LAYER=<layerName
https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/gtopo30.gtopo30
https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP
https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/Ice_Concentration_20150101.Ice_Concentration_20150101
https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/Ice_Concentration_20150101.Ice_Concentration_20150101

• https://tb13.cubewerx.com/mapmlDemo/osmtile.html [https://tb13.cubewerx.com/mapmlDemo/

osmtile.html]

• https://tb13.cubewerx.com/mapmlDemo/cbmtile.html [https://tb13.cubewerx.com/mapmlDemo/

cbmtile.html]

• https://tb13.cubewerx.com/mapmlDemo/apstile.html [https://tb13.cubewerx.com/mapmlDemo/

apstile.html]

As an example of the inner workings of MapML, one of the MapML accesses that is performed by
the CBMTILE demo is:

https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP?xmin=105767
&ymin=130523&xmax=107057&ymax=131123&zoom=9&projection=CBMTILE
[https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP?xmin=105767&ymin=130523&

xmax=107057&ymax=131123&zoom=9&projection=CBMTILE]

This particular URL returns the following document (with extra formatting added for readability):

55

https://tb13.cubewerx.com/mapmlDemo/osmtile.html
https://tb13.cubewerx.com/mapmlDemo/cbmtile.html
https://tb13.cubewerx.com/mapmlDemo/apstile.html
https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP?xmin=105767&ymin=130523&xmax=107057&ymax=131123&zoom=9&projection=CBMTILE
https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP?xmin=105767&ymin=130523&xmax=107057&ymax=131123&zoom=9&projection=CBMTILE

<mapml>
 <head>
 <title>NAIP</title>
 </head>

 <extent units="CBMTILE" action=
"https://tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP[https:
//tb13.cubewerx.com/cubewerx/cubeserv/default/wmts/1.0.0/mapML/NAIP.NAIP]" method="
get" enctype="application/x-www-form-urlencoded">
 </extent>
 <tile col="415" row="510" src=
"https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/default/CBMTILE/9/
510/415.jop%22/[https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/def
ault/CBMTILE/9/510/415.jop"/]>
 <tile col="416" row="510" src=
"https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/default/CBMTILE/9/
510/416.jop%22/[https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/def
ault/CBMTILE/9/510/416.jop"/]>
 <tile col="415" row="511" src=
"https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/default/CBMTILE/9/
511/415.jop%22/[https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/def
ault/CBMTILE/9/511/415.jop"/]>
 <tile col="416" row="511" src=
"https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/default/CBMTILE/9/
511/416.jop%22/[https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/def
ault/CBMTILE/9/511/416.jop"/]>
 <tile col="415" row="512" src=
"https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/default/CBMTILE/9/
512/415.jop%22/[https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/def
ault/CBMTILE/9/512/415.jop"/]>
 <tile col="416" row="512" src=
"https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/default/CBMTILE/9/
512/416.jop%22/[https://tb13.cubewerx.com/cubewerx/OpenImageMap/tilesets/NAIP/NAIP/def
ault/CBMTILE/9/512/416.jop"/]>
</mapml>

We found that implementing MapML as a WMTS extension was a natural fit, since it allowed us to
reuse the tiling infrastructure of our WMTS codebase and to deploy it more easily.

The following UML diagram summarizes the approach taken and gives emphasis to the two
internal functionalities that need to be implemented to transform WMTS into a MapML service. The
most apparent difference is the existence of the GetMapML operation that allows for a bounding
box input. To interpret this the "BBOX (CRS) to tile URLs (tilematrixset coordinates)" internal
functionality is required. It transforms the BBOX and the zoom level into a sequence of WMTS
requests that can populate the bounding box, considering the tile matrix that corresponds to the
right scale denominator. To be able to provide the features in the tile matrix coordinates, a "CRS to
tile matrix coordinates (internal)" functionality is required. Based on the zoom level, transforms the
WFS coordinates into a tile matrix coordinates and transforms a GML file into the right format for
the MapML.

56

Figure 15. MapML interaction UML sequence diagram based on the adaptation of a WMTS that works with
a WFS to provide the feature part.

8.4.3. Integration with other OGC services.

WMS and WMTS are services that are dealing with scale and are able to translate between map
coordinates (in a system commonly identified by a EPSG CRS) and screen coordinates (commonly
known as CRS0 or CRS1).

In contrast, WCS and WFS are not supposed to associate/translate map coordinates to screen
coordinates so they are conceptually different. You could argue that WCS and WFS are able to make
CRS transformations on the fly so they could also do map coordinate to tile matrix coordinates
transformations. This is true but this forces us to recognize tile matrix coordinates as true CRSs. We
could reuse some of WCS.SWG work on parametric CRS’s where parameters could "travel" in the
actual CRS URL (in our case the zoom level and eventually the top left corner). Parametric CRS are
not very popular in CRS because many believe that a URL would be opaque and by definition a
parametric URL is not opaque.

Alternatively, we propose to use a WMS or a WMTS as a facade or a broker that will serve the client
a dialog with a WCS or WFS for requesting data. This is not a new idea. At the time that SDL was
defined as an "extension" of WMS, there was the need to define the data morel behind the layer (it

57

was not necessary in a pure WMS). You needed the data model to encode the symbology rules. A
layer needed to be defined as "coming from feature types" or "coverage types". If you do that you
immediately recognize that a WMS can have a WFS at the backend (or as a data repository). This
means that when a WMS request comes to the service it translates it to a WFS request that is sent to
the backend. When the WFS responses, the WMS takes the features combines the with styles,
coordinates are transformed to CRS0/CRS1 rendered and served. The same for a WCS coverage. An
illustration of this possibility can be seen here http://slideplayer.com/slide/4632571/15/images/41/
Architecture+using+WMS,+WFS,+and+SLD.jpg in an slide of a presentation prepared by the George
Percivall talking about the OGC reference model http://slideplayer.com/slide/4632571 and
reproduced below for convenience. Actually the illustration also suggests another reason why this
architecture could be convenient: that capacity of WMS to incorporate styles using Symbology
Encoding rules that are applied to features that are provides "styleless" when coming directly for a
WFS. The same architecture can be proposed to serve a MapML if we substitute CRS0/CRS1 for
tilematrix coordinates and "render" by "encoding in MapML".

Figure 16. Architecture that uses a WMS as a front end of WFS data that is symbolized by a SLD service
(George Percivall)

8.5. Map search
A MapML service might want to allow service consumers to search within the contents of a service
for a place name or an address, over which the map is repositioned when a selection is made.
MapML should provide (markup) facilities to enable such searches without forcing the client to
download large amounts of geospatial data.

58

http://slideplayer.com/slide/4632571/15/images/41/Architecture+using+WMS,+WFS,+and+SLD.jpg
http://slideplayer.com/slide/4632571/15/images/41/Architecture+using+WMS,+WFS,+and+SLD.jpg
http://slideplayer.com/slide/4632571

We can consider this navigation mode a variant of the previously described "Map service" since it
will also depend on a service that is able to respond to an <extent> action. The presence of text in
an <input> of the search type will generate a location request. As a result, we expect from the server
a MapML document with features that match the text search and an extent that encompasses all of
them. This means that, most probably, the MapML file will not contain tiles but features. It is up to
the client to decide how to present this information to the user. Non-exclusive options are:

• Features will not replace the previously presented features (the previously present MapML
files) but will act as if a "results" layer has been added to the map view. In that sense, we expect
that the returned MapML includes a title that explains the fact that the content is the results of a
search.

• A new window or division can be presented with a list of textual representations of the features
that match the request. A click in one of them could move the map to zoom into the selected
feature.

8.5.1. Integration with OGC standards

Currently, there are three OGC standards that can specifically address this request: GeoOpenSearch,
CSW and WFS+Filter. Following the discussion about the MapML service above, that favors the use
of a modified WMS or WMTS to serve tiles, this functionally cannot be implemented by a WMS or a
WMTS without having to change the scope of the service in a way that moves it too far away for the
original scope. This is the reason why we consider that this functionally should be provided by
another service type that will act in tandem with the WMS or WMTS that is providing the main
service.

GeoOpenSearch

This standard is easy to use because it does not contemplate complicated queries, leaving some
degree of freedom to the server on how to handle the request. In essence, the server receives a
textual query and an Atom feed is returned with the results.

Since an OpenSearch request is based on providing a URL template, it seems possible to create this
template to describe the current way MapML formulates search requests. We are suggesting that a
MapML enabled OpenSearch service could serve Atom files or MapML files as a result of the query.
Consideration for OpenSearch geo and temporal extension could also be taken into account.

IMPORTANT
Recommendation: Next testbed could experiment with the use of
OpenSearch for textual search that returns a MapML file as a response of the
query.

Other OGC standards for search.

CSW is another alternative service that is able to support geospatial textual queries. It could be
good for receiving and processing the request, but normally, a CSW record contains a reference to a
dataset and not to a feature. For that reason, this alternative is discarded.

WFS with FILTER encoding seem another alternative for implementing the search functionality, at
least in the backend. A MapML search query can be easily converted into a WFS filter and the WFS

59

can return the necessary features that can be then encoded in the right format by a middleware.

60

Chapter 9. TileMatrixSet specification
The current MapML specification defined some projections with a set of numeric zoom levels.
These concepts are almost equivalent to the tilematrixset and tile matrix identifier in WMTS
respectively. It could be good that a future version of MapML could use the OGC WMTS naming for
these concepts as well as other useful tilematrixset definitions. To make that possible, during
Testbed 13 the OGC 17-083 Abstract Tile Matrix Set standard has been drafted and presented to the
WMS.SWG. It is foreseen that this candidate will start the standardization process in the near
future. It is expected that this future OGC standard can be referenced by future versions of
GeoPackage, WMTS, MapML and others.

The current draft version of the document has the following structure:

• 6. Tile Matrix Set concept

◦ 6.1 Tile Matrix

▪ 6.1.1 Tile matrix in a two dimensional space

◦ 6.2 Tile Matrix Set

◦ 6.3 Well-known scale sets

◦ 6.4 Tile based coordinates in a tile matrix set

◦ 6.5 Tile matrix set limits

• 7. TileMatrixSet 2D requirements class

• 8. TileMatrixSetLimits requirements class

• 9. XML encoding of a TileMatrixSet

• 10. XML encoding of a TileMatrixSetLimits

• 11. JSON encoding of a TileMatrixSet

• 12. JSON encoding of a TileMatrixSetLimits

• Annex A Conformance Class Abstract Test Suite (Normative)

• Annex B XML Schema Documents (Normative)

• Annex C Well-known scale sets (Informative)

• Annex D TileMatrixSet definitions (Informative)

◦ D.1 World Web Mercator Quad TileMatrixSet definition

◦ D.2 World Mercator WGS84 Quad TileMatrixSet definition

◦ D.3 World CRS84 Quad TileMatrixSet definition

◦ D.4 World Transverse Mercator WGS84 Quad family TileMatrixSet definition

◦ D.5 Arctic WGS 84 Polar Stereographic Quad TileMatrixSet definition

◦ D.6 Antarctic WGS84 Polar Stereographic Quad definition

◦ D.7 European ETRS89 LAEA Quad TileMatrixSet definition

◦ D.7 Canadian Lambert Conformal Conic TileMatrixSet definition

61

• Annex E Example XML documents (Informative)

The most recent document at the time of writing this document can be found here:
https://portal.opengeospatial.org/index.php?m=projects&a=view&project_id=274&tab=2&
artifact_id=75046

IMPORTANT

Recommendation to MapML: consider adopting the OGC 17-083 Tile Matrix
Set standard produced in WMS group as a result of this testbed activity.
Remove the description to projections definitions in the MapML document
and refer to the OGC 17-083 Tile Matrix Set standard.

62

https://portal.opengeospatial.org/index.php?m=projects&a=view&project_id=274&tab=2&artifact_id=75046
https://portal.opengeospatial.org/index.php?m=projects&a=view&project_id=274&tab=2&artifact_id=75046

Appendix A: Change Requests to
MapML
This annex describes some Change Requests(CR) that had been submitted to MapML. Other CR are
available throughout this document.

• Please use "Tile Matrix Set" instead of "tiled coordinate reference system" to align with the
WMTS specification. use the expression "tilematrix coordinates" instead of "tiled coordinates". If
you see new version of the tilematrixset specification I specifically introduced this concept in
opposition of "tile coordinates" that, to me, are the ones in WMTS GetFeature info: coordinates
inside a tile and not form the origin of the tile matrix, that is what the MapML wants to express.

• In the document there is still a place (describing the <coordinates>) that says: "for example in
the tile element, the attributes x and y are used" should say "for example in the tile element, the
attributes col and row are used".

• Please clarify the reference system of the <coordinates> element. I believe it is "tilematrix
coordinates" but there is no way to be sure with the current text. In addition, I saw one example
in WGS84 lat/long somewhere. Actually this is a very important aspect for interoperability with
other OGC standards.

• Please clarify the reference system of the <bbox> element. I believe it is "tilematrix coordinates"
but there is no way to be sure with the current text.

• Remove WGS84 from this sentence " For WGS84, the exterior should be counterclockwise and
holes should be clockwise." It creates uncertainty on the other projections.

• EPSG::4326 and axes order Longitude x, Latitude y in the same raw of the projection table
contradicts the EPSG database and will only create confusion. Please refer to the OGC CRS84 as
the GeoJSON specification does.

• State the mime type of a MapML document. If there is no common mime type it could be good to
know the generic one where it is encompassed

63

Appendix B: Revision History
Table 6. Revision History

Date Release Editor Primary
clauses
modified

Descriptions

May 21, 2017 J.Maso .1 all IER: initial
version with the
main structure
of the document

Oct 17, 2017 J.Maso .2 all DER: Draft
version for OGC
TC WMS.SWG
revision

64

Appendix C: Bibliography
OGC 12-080r2 OWS Context Conceptual Model v1.0 [https://portal.opengeospatial.org/files/?

artifact_id=55182]

OGC 12-084r2 OWS Context Atom Encoding v1.0 [https://portal.opengeospatial.org/files/?artifact_id=55183]

OGC 12-007r2 KML v 2.3 [http://docs.opengeospatial.org/is/12-007r2/12-007r2.html]

OGC 07-057r7 Web Map Tile Service Implementation Standard v 1.0 [http://portal.opengeospatial.org/

files/?artifact_id=35326]

OGC 06-042 Web Map Service (WMS) Implementation Specification v 1.3
[http://portal.opengeospatial.org/files/?artifact_id=14416]

RFC 6570. URI Template. Internet Engineering Task Force (IETF) Request for Comments
[https://tools.ietf.org/html/rfc6570]

65

https://portal.opengeospatial.org/files/?artifact_id=55182
https://portal.opengeospatial.org/files/?artifact_id=55183
http://docs.opengeospatial.org/is/12-007r2/12-007r2.html
http://portal.opengeospatial.org/files/?artifact_id=35326
http://portal.opengeospatial.org/files/?artifact_id=14416
https://tools.ietf.org/html/rfc6570

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements
	1.2. Prior-After Comparison
	1.3. What does this ER mean for the Working Group and OGC in general
	1.4. Document contributor contact points
	1.5. Future Work
	1.6. Foreword
	1.7. Use of notes in this document

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. coordinate system
	3.2. extent
	3.3. map
	3.4. tile
	3.5. tile coordinates
	3.6. tile matrix
	3.7. tile matrix coordinates
	3.8. tile matrix set

	Chapter 4. Abbreviated terms
	Chapter 5. Overview
	5.1. MapML use cases
	5.1.1. Embedding a map in a web page
	5.1.2. Story maps and story telling

	5.2. MapML data model
	5.3. MapML in practice
	5.3.1. Including a MapML in a HTML page
	5.3.2. A MapML file example

	5.4. MapML and HATEOAS

	Chapter 6. MapML encoding
	6.1. Properties of a MapML document
	6.2. meta content document properties
	6.3. Map content licensing
	6.4. Legends
	6.5. Styles
	6.6. Map content metadata
	6.7. Extent
	6.7.1. Extent element encoding assimilated to GeoOpeoSearch
	6.7.2. Extent as it is today with small modifications
	6.7.3. Time and animation
	6.7.4. Tile templates

	6.8. Other forms
	6.8.1. Query by location
	6.8.2. Text search
	6.8.3. Tooltips
	6.8.4. Target of a MapML form
	6.8.5. Directions

	6.9. Tile encoding
	6.10. Feature encoding
	6.10.1. Feature encoding based on MicroXML
	6.10.2. Feature encoding alternative 1: schema.org
	6.10.3. Why current version of schema.org is not enough

	Chapter 7. MapML versus other formats
	7.1. OWS Context
	7.2. KML

	Chapter 8. MapML services and navigation modes
	8.1. Determining the center of the map to start with
	8.2. MapML package
	8.3. MapML links
	8.4. MapML service
	8.4.1. WMS to serve MapML
	8.4.2. WMTS to serve MapML
	8.4.3. Integration with other OGC services.

	8.5. Map search
	8.5.1. Integration with OGC standards

	Chapter 9. TileMatrixSet specification
	Appendix A: Change Requests to MapML
	Appendix B: Revision History
	Appendix C: Bibliography

