
Future City Pilot 1 Engineering Report

Table of Contents
1. Introduction. 6

1.1. Scope . 6

1.2. Document contributor contact points . 7

1.3. Future Work. 7

1.4. Foreword . 7

2. References . 8

3. Terms and definitions . 9

3.1. Abbreviated terms . 9

4. Overview . 10

5. FCP1 scenarios and requirements . 11

5.1. Integrating sensors with semantic 3D city models. 11

5.2. Integrating time-dependent properties with semantic 3D city models. 12

6. Making city models dynamic. 13

6.1. Dynamizer - Introduction. 13

7. Development of the UML Class Diagram for the Dynamizer ADE . 15

7.1. Dynamizer - A new FeatureType . 16

7.2. Atomic Timeseries . 17

7.3. Composite Timeseries . 19

7.4. Sensors and observations. 20

8. Dynamizer ADE XML Schema . 22

9. FCP1 Demonstrations . 27

9.1. Components development . 27

9.1.1. Enterprise Architect . 27

9.1.2. ShapeChange . 27

9.1.3. Feature Manipulation Engine (FME) . 27

9.1.4. 3D City Database . 27

9.1.5. 3DCityDB Visualization Clients . 28

9.1.6. Solar Potential Analysis Tool . 28

9.1.7. 52° North Sensor Observation Service Implementation . 29

9.2. FCP1 Demonstrations . 30

9.2.1. Integrating sensors with semantic 3D city models . 30

9.2.2. Integrating time-dependent properties with semantic 3D city models 36

10. Conclusions and future work . 43

10.1. Conclusions . 43

10.2. Future Work . 43

10.2.1. CityGML 3.0 . 43

10.2.2. Supporting different time-dependent properties with Dynamizers 43

10.2.3. Dynamizer ADE support in databases . 44

10.2.4. Dynamizer support in visualization clients . 44

10.2.5. Other sensors and IoT standards . 44

Acknowledgements . 46

Appendix A: Flood Inundation Modeling with 3D city models . 47

Appendix B: Revision History . 54

Appendix C: Bibliography. 55

Publication Date: 2017-10-20

Approval Date: 2017-08-17

Posted Date: 2017-06-27

Reference number of this document: OGC 16-098

Reference URL for this document: http://www.opengis.net/doc/PER/FCP1-ER

Category: Public Engineering Report

Editors: Kanishk Chaturvedi, Thomas H. Kolbe

Title: FCP1 Engineering Report

OGC Engineering Report

COPYRIGHT

Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/FCP1-ER
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Abstract

The Future City Pilot Phase 1 (FCP1) is an OGC Interoperability Program initiative in collaboration
with buildingSMART International (bSI). The pilot aimed at demonstrating and enhancing the
ability of spatial data infrastructures to support quality of life, civic initiatives, and urban
resilience. During the pilot, multiple scenarios were set up based on real-world requirements and
were put forward by the pilot sponsors: Sant Cugat del Vallès (Barcelona, Spain), Ordnance Survey
Great Britain (UK), virtualcitySYSTEMS GmbH (Germany), and Institut National de l’Information
Géographique et Forestière - IGN (France). The scenarios were focused on (i) the interoperability
between the two international standards: Industry Foundation Classes (IFC) and CityGML; (ii) city
flood modeling; and (iii) supporting real-time sensor readings and other time-dependent properties
within semantic 3D city models. The solutions for the respective scenarios were developed by the
pilot participants: University of Melbourne (Australia), Remote Sensing Solutions, Inc. (U.S.A), and
Technical University of Munich (Germany). This Engineering Report (ER) focuses on the third
scenario requiring the support of real-time sensors and other time-dependent properties within
semantic 3D city models based on the CityGML standard. It highlights a new concept 'Dynamizer',
which allows representation of highly dynamic data in different and generic ways and providing a
method for injecting dynamic variations of city object properties into the static representations. It
also establishes explicit links between sensor/observation data and the respective properties of city
model objects that are measured by them. The Dynamizer concept has been implemented as an
Application Domain Extension (ADE) of the CityGML standard. This implementation allows to use
new dynamizer features with the current version of the CityGML standard (CityGML 2.0). The
advantage with this approach is that it allows for selected properties of city models to become
dynamic without changing the original CityGML data model. If an application does not support
dynamic data, it simply does not allow/include these special types of features. The details and
results of the pilot are mentioned in the following YouTube video: https://youtu.be/aSQFIPwf2oM

Business Value

The current generation semantic 3D city models are static in nature and do not support time-
dependent properties. However, in reality, there are different types of changes that take place in
cities over time. Some of these changes are slower in nature, e.g., (i) history or evolution of cities
such as construction or demolition of buildings and (ii) managing multiple versions of the city
models. Some of the changes may also represent high frequency or dynamic variations of object
properties, e.g., variations of (i) thematic attributes such as changes of physical quantities (energy
demands, temperature, solar irradiation levels); (ii) spatial properties such as change of a feature’s
geometry, with respect to shape and location (moving objects); and (iii) real-time sensor
observations. In this case, only some of the properties of otherwise static objects need to represent
such time-varying values. Dynamizer is a new concept supporting the latter types of changes and
allowing for enriching the city model by data from dynamic data feeds.

What does this ER mean for the Working Group and OGC in general

This ER summarizes the work performed during the FCP1 and provides an outlook on possible
future activities. It serves as a starting point for the OGC community in general, and the CityGML
Working Group in particular, to understand some of the latest discussions on supporting real-time
sensors and other time-dependent properties within the CityGML standard. It highlights a number
of references to more detailed materials to facilitate more in-depth research and analysis.

How does this ER relates to the work of the Working Group

4

https://youtu.be/aSQFIPwf2oM

The Dynamizer concept is already being discussed within the CityGML Standard Working Group
(SWG) and is intended to be included as a new module in the next major release of the CityGML
standard.

Keywords

ogcdocs, FCP1, CityGML, Dynamizer, Timeseries, Sensor Web Enablement

Proposed OGC Working Group for Review and Approval

CityGML SWG

5

Chapter 1. Introduction

1.1. Scope
This Engineering Report (ER) focuses on a scenario requiring the support of real-time sensors and
other time-dependent properties within semantic 3D city models based on the CityGML standard.
During FCP1, guidelines were developed for the following concepts with respect to the scenario.

• Developing prototype capabilities that associate sensor readings (e.g. air quality sensors,
weather information, electricity consumption) or other aggregated indicators (e.g. solar
potential power, energy performance indicators) to elements in the city models.

• Making sensor and dynamic data available through interoperable OGC web services.

• Extending static city models by supporting highly dynamic properties and real-time sensor
observations.

• Planning and conducting a final demonstration using the pilot scenarios.

6

1.2. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization

Kanishk Chaturvedi Technical University of Munich, Germany

Thomas H. Kolbe Technical University of Munich, Germany

Tatjana Kutzner Technical University of Munich, Germany

Andreas Donaubauer Technical University of Munich, Germany

Guy Schumann Remote Sensing Solutions Inc., U.S.A.

Eve Ross Remote Sensing Solutions Inc., U.S.A.

Mohsen Kalantari University of Melbourne, Australia

Bruno Willenborg Technical University of Munich, Germany

Maximilian Sindram Technical University of Munich, Germany

Claus Nagel virtualcitySYSTEMS GmbH, Germany

Emmanuel Devys Institut National de l’Information
Géographique et Forestière - IGN, France

1.3. Future Work
The work described by this document serves as a basis for the development of the next major
version of CityGML (CityGML 3.0). The Dynamizer ADE is intended to become a part of the CityGML
3.0.

This work may also be of importance to the TimeseriesML Standards Working Group for future
revisions to the TimeseriesML standard.

No future work is planned to this document, but a number of work items and recommendations
have been identified that shall be addressed in future initiatives, see Section 10.2.

1.4. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

7

Chapter 2. References
The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

• OGC: OGC 06-021r4, OGC® Sensor Web Enablement (SWE) Architecture, 2008

• OGC: OGC 10-004r3, OGC® Observations and Measurements, Version 2.0, 2013

• OGC: OGC 12-000, OGC® SensorML: Model and XML Encoding Standard, Version 2.0, 2014

• OGC: OGC 12-006, OGC® Sensor Observation Service Interface Standard, Version 2.0, 2012

• OGC: OGC 12-019, OGC® City Geography Markup Language (CityGML) Encoding Standard,
Version 2.0.0, 2012

• OGC: OGC 15-043r3, OGC® TimeseriesML 1.0 - Timeseries Profile of Observations and
Measurements, Version 1.0, 2016

• OGC: OGC 15-078r6, OGC SensorThings API Part 1: Sensing, Version 1.0, 2016

• OGC: OGC-16-097, FCP1: Recommendations on Mapping IFC/CityGML to 3DIM Engineering
Report, 2017

• OGC: OGC-16-099, FCP1: Urban planning rules checking using WPS to WPS SWG Engineering
Report, 2017

• OGC: OGC 16-130, The OGC CityGML EA UML Model – An ISO-compliant definition of the
CityGML 2.0 UML model using Enterprise Architect [Not yet published]

• ISO: ISO 19108:2002, Geographic Information – Temporal Schema, 2002

• ISO: ISO 19123:2005, Geographic information — Schema for coverage geometry and functions,
2005

8

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the CityGML Encoding
Standard [OGC 12-019] shall apply.

3.1. Abbreviated terms
• ADE - Application Domain Extension

• API - Application Programming Interface

• bSI - buildingSMART International

• CityGML - City Geography Markup Language

• Climate KIC - Knowledge & Innovation Community on Climate Change and Mitigation

• COLLADA - COLLAborative Design Activity

• EIT - European Institute of Innovation & Technology

• ER - Engineering Report

• FCP1 - Future City Pilot Phase 1

• glTF - GL Transmission Format

• GML - Geography Markup Language

• IFC - Industry Foundation Classes

• IoT - Internet of Things

• ISO - International Organization for Standardization

• KML - Keyhole Markup Language

• LoD - Level of Detail

• OCL - Object Constraint Language

• OGC - Open Geospatial Consortium

• O&M - Observations & Measurements

• SOS - Sensor Observation Service

• SRDBMS - Spatial Relational Database Management System

• SSD - Smart Sustainable Districts

• SWE - Sensor Web Enablement

• UML - Unified Modeling Language

• W3C - Web 3D Consortium

• WFS - Web Feature Service

• XML - Extensible Markup Language

• XPath - XML Path Language

9

Chapter 4. Overview
This ER is a starting point to understand the Dynamizer concept. The concept has been
implemented as an Application Domain Extension (ADE) of the CityGML standard. The ER describes
the overall development and implementation process of this concept in order to solve the real life
issues identified within the scope of the FCP1 scenarios.

The main document starts with a short overview of the FCP1, the scenarios put forward by the pilot
sponsors, and the respective solutions developed by the pilot participants. However, the details of
each solution are provided in the individual ERs prepared by the participants as mentioned in
Chapter 5. This ER focuses on the scenario requiring the support of real-time sensor observations
and other time-dependent properties within semantic 3D city models. Chapter 6 provides an
overview of the new concept 'Dynamizer' which has been conceptualized in order to extend
semantic 3D city models by representing highly dynamic data in different ways and providing a
method for injecting dynamic variations of city object properties into the static representation. The
Dynamizer concept has been implemented as an ADE of the CityGML standard. During the pilot, the
UML model of the Dynamizer ADE was developed. The details and explanations of each UML class
have been described in Chapter 7. Chapter 8 shows the XML schema definition files derived from
the UML model. The XML schema definition files were used for creation of the CityGML instance
documents used in the pilot. Chapter 9 lists the components and the software systems used within
the pilot, followed by the implementations which were used for the result demonstrations. In the
end, Chapter 10 provides an outlook on the achievements and future activities that require more
research to further increase the usability of dynamizers in different applications.

10

Chapter 5. FCP1 scenarios and requirements
This section provides a brief overview of different scenarios and objectives defined within the
FCP1. The objective of the OGC pilot project was to demonstrate how the use of the international
standards such as CityGML and IFC together can provide stakeholders with information, knowledge
and insight which enhances financial, environmental, and social outcomes for citizens living in
cities. During the pilot, three scenarios were set up based on the real-world requirements put
forward by the pilot sponsors and solutions were developed and demonstrated by the pilot
participants. A short overview of the FCP1 scenarios is provided below.

1. Interoperability between the standards CityGML and IFC: CityGML [OGC 12-019] is an
international standard for representing 3D city and landscape models. IFC [1] describes
building information. This scenario is focused on providing interoperability between the
CityGML and the IFC standards. During the pilot, the solutions were developed by University of
Melbourne to map the IFC file to the CityGML file, which can further be validated based on Web
Processing Service standard against a set of urban planning requirements. More details about
this scenario are documented in [OGC 16-097] and [OGC 16-099].

2. Inundation Modeling with 3D city models: This scenario highlights on inundation models
developed by Remote Sensing Solutions Inc. (U.S.A.) and collaborating partners that can
simulate real-time water flow characteristics over time and space at multiple resolutions (e.g.,
cm to km grid spacing). The solutions involved transformation from traditional inundation
display to an interoperable city model inundation layer in the CityGML standard. In this way,
detailed flooding scenarios can be developed, e.g., to determine which city objects such as
buildings are at risk of flooding. The details of this scenario are provided by by Remote Sensing
Solutions Inc. (U.S.A.) and can be found in Appendix A.

3. Making city models dynamic: This ER focuses on the results and findings of this scenario,
highlighting how dynamic city models can provide better services to the citizens as well as help
for performing better analysis. The solutions were provided using the Dynamizer ADE of the
CityGML standard, developed by the Chair of Geoinformatics, Technical University of Munich.
During the pilot, two use cases were identified, as described below.

5.1. Integrating sensors with semantic 3D city models
This use case was set up by Ordnance Survey Great Britain and was based on the Royal Borough of
Greenwich, London. The main objectives were (i) to provide better services to the citizens of the
Royal Borough of Greenwich; (ii) to enable departments within the Royal Borough of Greenwich to
share and coordinate data more effectively and to be recognized as an example of use of smarter
working practices; and (iii) to improve collaboration between London boroughs by creating more
interoperable data, content, and insight. The use of interoperable standards creates the opportunity
to develop a cross-department platform to collaborate and share data. Furthermore, the potential
integration with real-time sensor observations (e.g., monitoring humidity, temperature, etc.) within
council housing can lead to decisions for matching human needs to the right housing/resources.

During the pilot, the 3D building objects were developed according to the CityGML LoD1
specifications, which were enriched by various thematic properties such as building address,
details of the building residents, adult care, and housing stock information. The links to multiple

11

sensors were defined in the CityGML building objects using dynamizers. The implementation and
demonstration details can be found in Section 9.2.1.

5.2. Integrating time-dependent properties with
semantic 3D city models
This use case was set up by IGN and virtualcitySYSTEMS GmbH and was based in the commune of
Bruz, located 11 km southwest of Rennes in Brittany, France and is a part of Rennes Metropole. The
main objectives were to provide better services to the citizens and the energy planners by making
sophisticated solar potential analysis. The use case aimed at answering questions such as (i) How
many buildings have solar irradiation of more than a specific unit (e.g. 5000 MWh)?, (ii) Which
buildings are well suited for installing solar panels?, and (iii) How does the irradiation for a building
vary through the year?.

During the pilot, the buildings and their wall and roof surfaces were registered according to the
IGN REF3DNAT specification based on the CityGML LoD2 profile. The solar irradiation values for
the roofs and facades were calculated using the Solar Potential Analysis tool (c.f. section 9.1.6). The
simulation tool allows estimation of the solar power from direct, diffuse, and global sunlight
irradiation for individual months and years. Such time-dependent values can now be represented
within the CityGML datasets in standardized ways using dynamizers. The implementation details
are provided in Section 9.2.2.

12

Chapter 6. Making city models dynamic
The current generation semantic 3D city models are static in nature and do not support time-
dependent properties. Apart from the scenarios mentioned in Chapter 5, there are many other
application and simulation scenarios (e.g., environmental simulations, disaster management,
training simulators), where time plays an important role. It is also important to distinguish between
different types of changes that take place in cities over time. Some of these changes may be slower
in nature, e.g., (i) history or evolution of cities such as construction or demolition of buildings and
(ii) managing multiple versions of the city models. [2] propose an approach based on the CityGML
standard to manage versions and history within semantic 3D city models. Some of the changes may
also represent high frequency or dynamic variations of object properties, e.g., variations of (i)
thematic attributes such as changes of physical quantities (energy demands, temperature, solar
irradiation levels); (ii) spatial properties such as change of a feature’s geometry with respect to
shape and location (moving objects); and (iii) real-time sensor observations (e.g., air quality sensors,
weather stations, or smart meters). In this case, only some of the properties of otherwise static
objects need to represent such time-varying values. Dynamizer is a new concept supporting the
latter types of changes. Within the FCP1, the concept has been implemented to extend the CityGML
information model using the built-in mechanism of the Application Domain Extension (ADE) in
order to dynamize features and properties allowing for enriching the city model by data from
dynamic data feeds.

6.1. Dynamizer - Introduction
Dynamizer allows modeling and integrating dynamic properties within semantic 3D city models. As
shown in figure 1, the dynamizer serves three main purposes, as described below.

1. Dynamizer is a data structure to represent dynamic values in different and generic ways. Such
dynamic values may be given by tabulation of time/value pairs; patterns of time/value pairs; or
by referencing an external file. These values can be obtained from sensors, simulation specific
databases, and also external files such as CSV or Excel spreadsheets.

2. Dynamizer delivers a method to enhance static city models by dynamic property values. It
references a specific property (e.g. spatial, thematic, or appearance properties) of an object
within a 3D city model providing dynamic values overriding the static value of the referenced
object attribute.

3. Dynamizer objects establish explicit links between sensor/observation data and the respective
properties of city model objects that are measured by sensors. By making such explicit links
with city object properties, the semantics of sensor data become implicitly defined by the city
model.

In this way, dynamizers can be used to inject dynamic variations of city object properties into an
otherwise static representation. The advantage in using such an approach is that it allows only
selected properties of city models to be made dynamic. If an application does not support dynamic
data, it simply does not allow/include these special types of features. More details on this concept
can be found in peer-reviewed papers [3] and [4] .

13

Figure 1. Conceptual representation of Dynamizers allowing (i) the representation of time-variant values
from sensors, simulation specific databases, and external files and (ii) enhancing the properties of city
objects by overriding their static values. Image taken from [3].

14

Chapter 7. Development of the UML Class
Diagram for the Dynamizer ADE
Within the FCP1, dynamizers were implemented as an ADE for the CityGML standard. The ADE
mechanism allows for the systematic extension of each CityGML object type by additional attributes
as well as the introduction of new object types. This implementation allows dynamizers to be used
with the current version of the CityGML standard (version 2.0).

Figure 2 shows the complete UML model of the Dynamizer ADE. The color scheme paints classes in
different colors, depending on the UML package they belong to, and is defined as follows. A Class
painted in yellow belongs to a CityGML UML package. A Class painted in light blue belongs to the
GML package different to that associated with the yellow color. Classes painted in orange are newly
introduced classes implemented as an ADE of the CityGML standard. However, there are two new
classes which are not a part of [OGC 12-019] and belong to other OGC standards. Classes shown in
dark blue represent OGC TimeseriesML 1.0 [OGC 15-043r3] and classes in pink belong to OGC
Sensor Observation Service [OGC 12-006].

15

Figure 2. Complete UML model of the Dynamizer ADE.

The individual components of the Dynamizer ADE UML model are explained in the following sub-
sections.

7.1. Dynamizer - A new FeatureType
Dynamizer is a new feature type which is a sub-class of AbstractCityObject. In addition,
AbstractDynamizerCityObject extends the class AbstractCityObject by the additional association
dynamizers. This means that all the city objects such as buildings, roads, vegetation, etc. can now
include their Dynamizer features either inline or as links to their respective dynamizer features.
The class Dynamizer consists of three attributes: (i) attributeRef, (ii) startTime, and (iii) endTime.
attributeRef refers to a specific attribute of a city object by XPath [5]. XPath is a W3C
recommendation used to navigate through the elements and attributes within an XML document.
startTime and endTime are absolute time points denoting the time span for which the dynamizer
provides dynamic values. The time points are modeled as TM_Position defined by [ISO19108:2002],

16

and are referenced to a specific time reference system (e.g. Gregorian Calendar). In addition,
dynamizers contain dynamic data in the form of a timeseries. The dynamic data is modeled as
AbstractTimeseries, which allows representing time-variant or dynamic values in different and
generic ways. The timeseries may be modeled in two ways: (i) AtomicTimeseries and (ii)
CompositeTimeseries (see Figure 3).

Figure 3. Dynamizers modeled as a new FeatureType

7.2. Atomic Timeseries
Dynamizers can represent dynamic values in generic ways. The source of dynamic data may vary
for different applications. The values may be obtained from (i) external files (e.g., CSV files) or data
from external files included inline, (ii) external databases (e.g., tabulated values of simulation
specific data), or (iii) real-time sensor observations (e.g., air quality sensors and smart meters). The
dynamizers provide an explicit way to model such dynamic variations using AtomicTimeseries.
They utilize different encodings defined according to OGC TimeseriesML 1.0 [OGC 15-043r3].
Utilizing TimeseriesML, the timeseries can be represented as interleaved time/value pairs or by a
domain range encoding which is supported by dynamicdataTVP and dynamicDataDR (see figure 4).
Since the TimeseriesML domain range encoding is an implementation of the [ISO 19123:2005]
Discrete Coverages, it allows defining different data types for the specific time positions. Such data
types may be numeric values, categories, spatial coordinates, or links to external files. Dynamizers
also utilize TimeseriesML in defining interpolation and aggregation types for each point in the
timeseries, which helps in mapping missing values or multiple values to specific time points.

17

Figure 4. Representation of Atomic Timeseries, supporting different encodings from OGC TimeseriesML 1.0
as well as supporting sensor observations encoded in OGC O&M from a Sensor Observation Service
response.

Apart from TimeseriesML, AtomicTimeseries also allows for the inline representation of the
Observations and Measurements (O&M) data within a timeseries using observationData. O&M [OGC
10-004r3] is one of the core standards for the response models of the OGC Sensor Web Enablement
(SWE)-based standards such as Sensor Observation Service [OGC 12-006] and SensorThings API [15-
078r6]. In this way, dynamizers can represent real-time sensor observations. Please note that these
representations are mutually exclusive for each AtomicTimeseries object. This condition is formally
expressed using the Object Constraint Language (OCL) in the UML diagram. OCL is a declarative
language for describing rules that apply to UML models. The constraint is defined as:

context AtomicTimeseries inv :
 (self.dynamicDataDR->notEmpty() xor self.dynamicDataTVP->notEmpty() xor
self.observationData->notEmpty())
 and
 (not(self.dynamicDataDR->notEmpty() and self.dynamicDataTVP->notEmpty() and
self.observationData->notEmpty()))

According to the expression, this OCL constraint would result in true only when exactly one of the
properties has a value [6].

18

7.3. Composite Timeseries
Dynamizers support absolute start and end points referencing a specific time reference system. The
absolute time points can be mapped to the attribute values and can be represented as tabulation of
the measured data. One common example illustrating such scenario is mapping of the energy
consumption values of a building for every hour in a day. However, in many applications, it is not
sufficient just to provide a means for the tabulation of time-value pairs. The applications may
require patterns to represent dynamic variations of properties based on statistics and general rules.
In such scenarios, time cannot be described by absolute positions, but relative to the absolute
positions. In these cases, time may be defined for a non-specific year (e.g., averages over many
years), but still classified by relative time of an year. For example, January monthly summaries for
the energy consumption of a building might be described as ”all-Januaries 2001-2010”. Similarly, the
energy consumption values may reflect generic patterns for individual weekdays/weekends in a
week or a month. Another example scenario may also be determining patterns for specific seasons
(such as spring, summer, autumn, and winter) over ten years.

Figure 5. Representation of Composite Timeseries, allowing representing patterns of dynamic variations of
properties.

In order to support such patterns, dynamizers include the concept of composite timeseries as
shown in figure 5. CompositeTimeseries is modeled in such a way that it composes of an ordered list
of AbstractTimeseries. CompositeTimeseries includes a component called TimeseriesComponent,
which denotes the number of repetitions for a timeseries component. repetitions is an integer type
which determines how many times the nested timeseries should be iterated. For example, in order
to determine the pattern of a building’s electricity consumption for weekdays, a composite
timeseries may include five repetitions of atomic timeseries of a single weekday consumption. It
also contains an attribute additionalGap, which is a type TM_Duration. It allows defining
customized patterns by providing the gaps within the existing timeseries. For instance, for an entire
monthly timeseries of energy consumption for all days of a week, the gaps can be provided for the
weekends in order to define the patterns of energy consumption only for the weekdays.
Furthermore, this attribute also allows connecting nonoverlapping timeseries that have been
separately collected, in order to make a single timeseries. For example, if the latest two months of
timeseries data is transferred from one system to a major archive, the series must be connected in
order to make a full series over which the patterns can be determined (e.g., to determine yearly
patterns). However, for a composite timeseries, it is necessary to model the time positions
according to a relative time reference system. According to ISO 19108, they may be defined as

19

TM_OrdinalEras within TM_OrdinalReferenceSystems. The use of composite timeseries allows
defining local reference systems for the specific use cases. The demonstration of composite
timeseries has not been covered within the FCP1, however, its details and examples can be found in
[4].

7.4. Sensors and observations
Apart from different timeseries representations, dynamizers provide support for sensors and
sensor observations within them. Within the OGC SWE standards suite [OGC 06-021r4], sensor
descriptions are encoded in the SensorML format [OGC 12-000] and sensor observations in the O&M
format [OGC 10-004r3]. The web services such as Sensor Observation Service and SensorThings API
allow retrieval of the sensor descriptions and observations using different requests. Dynamizers
leverage such standards and allow integrating sensors with semantic 3D city models in two ways.

• By including sensor observations within dynamizers: The different standards such as SOS
and SensorThings API allow encoding sensor observations in the O&M format. Dynamizers
support inlining of the O&M data representing sensor observation values using
AtomicTimeseries [c.f. section 7.2], which, are then injected into the attributes of the specific
city objects. This approach is useful to exchange sensor readings for a past time period together
and consistently within the city model. However, in the case of very high frequent observations
(e.g., sensor readings at every 30 seconds), data management within the databases may lead to
storage related issues.

• By linking dynamizers with sensors: In order to avoid such storage related issues in the case
of high frequent observations, dynamizers support direct links to sensors and observations
utilizing different sensor based services such as SOS and SensorThings API. There are already
well-defined data models and implementations available for storing and managing large and
frequent sensor observations (see section 9.1.7). The sensor based services such as SOS include
different requests: e.g., DescribeSensor and GetObservation. With such requests, sensor
descriptions and observations are retrieved in standardized ways and their URL links can also
be defined within the city objects. A sensor connection is defined by a unique sensor ID, the
type of sensor service (e.g., OGC SOS and Sensor Things API), and URL links for the two different
requests named above. Applications consuming CityGML plus dynamizer data can utilize these
links to retrieve the sensor data for the referenced web services.

20

Figure 6. Representation of the data type SensorConnection, allowing to define the details of sensor based
services within the CityGML document.

As shown in figure 6, dynamizers provide links to external sensors with the help of the new
datatype SensorConnection. It contains four attributes: (i) sensorID - the unique identification of the
sensor within the referenced sensor service, (ii) serviceType - the type of sensor based service such
as SOS and SensorThings API, (iii) linkToObservation - URL link to the request for retrieving sensor
observations, and (iv) linkToSensorML - URL link to the request for retrieving the sensor
descriptions and metadata. OGC SOS involves different requests for retrieving the sensor
descriptions and observations. DescribeSensor is used to retrieve sensor descriptions and metadata
in the SensorML format. GetObservation is used to retrieve sensor observations encoded in the
O&M format. The request parameter also allows the specification of spatial and temporal filters.
The association sensorLocation allows specifying which city object this sensor belongs to. For
example, if a solar panel is installed on a building roof surface with a sensor estimating heat
demand of the building, the datatype SensorConnection would not only provide direct links to the
sensor description and observations but also specify the link to the roof surface of the CityGML
building object on which the solar panel is installed.

21

Chapter 8. Dynamizer ADE XML Schema
This section includes the XML schema definition for the Dynamizer ADE. For the conceptual
schema development, the model driven approach based on the ISO 19100 series of standards is
applied, which allows for automatically deriving the XML schema documents from the conceptual
schema. Upon development of the UML conceptual schema of the Dynamizer ADE, the XML schema
was derived using the tool ShapeChange (see section 9.1.2). The details of the automatic derivation
of the XML schema will be published in [OGC 16-130]. Based on the XML schema documents, valid
CityGML Dynamizer ADE instance documents were developed according to specified use cases and
used for the demonstrations as described in section 9.2.

Header of the Dynamizer ADE Schema definition file

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:dyn="http://www.citygml.org/ade/dynamizer_ade/1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.citygml.org/ade/dynamizer_ade/1.0"
 elementFormDefault="qualified"
 version="1.0"
 xmlns:tsml="http://www.opengis.net/tsml/1.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:core="http://www.opengis.net/citygml/2.0"
 xmlns:gen="http://www.opengis.net/citygml/generics/2.0"
 xmlns:gml="http://www.opengis.net/gml" >
 <xsd:import namespace="http://www.opengis.net/tsml/1.0"
 schemaLocation="http://schemas.opengis.net/tsml/1.0/timeseriesML.xsd"/>
 <xsd:import namespace="http://www.opengis.net/sos/2.0"
 schemaLocation="http://schemas.opengis.net/sos/2.0/sosGetObservation.xsd"/>
 <xsd:import namespace="http://www.opengis.net/citygml/2.0"
 schemaLocation="http://schemas.opengis.net/citygml/2.0/cityGMLBase.xsd"/>
 <xsd:import namespace="http://www.opengis.net/citygml/generics/2.0"
 schemaLocation="http://schemas.opengis.net/citygml/generics/2.0/generics.xsd"/>
 <xsd:import namespace="http://www.opengis.net/gml"
 schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
 <xsd:import namespace="http://www.opengis.net/om/2.0"
 schemaLocation="http://schemas.opengis.net/om/2.0/observation.xsd"/>
...
</xsd:schema>

22

DynamizerPropertyType

 <xsd:element name="dynamizers"
 substitutionGroup="core:_GenericApplicationPropertyOfCityObject"
 type="dyn:DynamizerPropertyType"/>
 <!-- === -->
 <xsd:complexType name="DynamizerPropertyType">
 <xsd:sequence minOccurs="0">
 <xsd:element ref="dyn:Dynamizer"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="gml:AssociationAttributeGroup"/>
 </xsd:complexType>

DynamizerType, Dynamizer

 <xsd:element name="Dynamizer" substitutionGroup="core:_CityObject"
 type="dyn:DynamizerType"/>
 <!-- === -->
 <xsd:complexType name="DynamizerType">
 <xsd:complexContent>
 <xsd:extension base="core:AbstractCityObjectType">
 <xsd:sequence>
 <xsd:element name="attributeRef" type="xsd:anyURI"/>
 <xsd:element name="startTime" type="gml:TimePositionType"/>
 <xsd:element name="endTime" type="gml:TimePositionType"/>
 <xsd:element minOccurs="0" name="dynamicData"
 type="dyn:AbstractTimeseriesPropertyType"/>
 <xsd:element minOccurs="0" name="linkToSensor"
 type="dyn:SensorConnectionPropertyType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

23

SensorConnectionType, SensorConnection

 <xsd:element name="SensorConnection" substitutionGroup="gml:_Object"
 type="dyn:SensorConnectionType"/>
 <!-- === -->
 <xsd:complexType name="SensorConnectionType">
 <xsd:sequence>
 <xsd:element name="sensorID" type="xsd:string"/>
 <xsd:element name="serviceType" type="xsd:string"/>
 <xsd:element minOccurs="0" name="linkToObservation" type="xsd:anyURI"/>
 <xsd:element minOccurs="0" name="linkToSensorML" type="xsd:anyURI"/>
 <xsd:element minOccurs="0" name="sensorLocation"
 type="core:AbstractCityObjectType"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- === -->
 <xsd:complexType name="SensorConnectionPropertyType">
 <xsd:sequence>
 <xsd:element ref="dyn:SensorConnection"/>
 </xsd:sequence>
 </xsd:complexType>

AbstractTimeseriesType, AbstractTimeseries

 <xsd:element abstract="true" name="AbstractTimeseries"
 substitutionGroup="gml:_Feature"
 type="dyn:AbstractTimeseriesType"/>
 <!-- === -->
 <xsd:complexType abstract="true" name="AbstractTimeseriesType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- === -->
 <xsd:complexType name="AbstractTimeseriesPropertyType">
 <xsd:sequence minOccurs="0">
 <xsd:element ref="dyn:AbstractTimeseries"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="gml:AssociationAttributeGroup"/>
 </xsd:complexType>

24

AtomicTimeseriesType, AtomicTimeseries

 <xsd:element name="AtomicTimeseries" substitutionGroup="dyn:AbstractTimeseries"
 type="dyn:AtomicTimeseriesType"/>
 <!-- === -->
 <xsd:complexType name="AtomicTimeseriesType">
 <xsd:complexContent>
 <xsd:extension base="dyn:AbstractTimeseriesType">
 <xsd:sequence>
 <xsd:element minOccurs="0" name="dynamicDataTVP"
 type="tsml:TimeseriesTVPPropertyType"/>
 <xsd:element minOccurs="0" name="dynamicDataDR"
 type="tsml:TimeseriesDomainRangePropertyType"/>
 <xsd:element minOccurs="0" name="observationData"
 type="sos:GetObservationResponsePropertyType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- === -->
 <xsd:complexType name="AtomicTimeseriesPropertyType">
 <xsd:sequence minOccurs="0">
 <xsd:element ref="dyn:AtomicTimeseries"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="gml:AssociationAttributeGroup"/>
 </xsd:complexType>

25

CompositeTimeseriesType, CompositeTimeseries

 <xsd:element name="CompositeTimeseries" substitutionGroup="dyn:AbstractTimeseries"
 type="dyn:CompositeTimeseriesType"/>
 <!-- === -->
 <xsd:complexType name="CompositeTimeseriesType">
 <xsd:complexContent>
 <xsd:extension base="dyn:AbstractTimeseriesType">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="component"
 type="dyn:TimeseriesComponentPropertyType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- === -->
 <xsd:complexType name="CompositeTimeseriesPropertyType">
 <xsd:sequence minOccurs="0">
 <xsd:element ref="dyn:CompositeTimeseries"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="gml:AssociationAttributeGroup"/>
 </xsd:complexType>

TimeseriesComponentType, TimeseriesComponent

 <xsd:element name="TimeseriesComponent" substitutionGroup="gml:_Feature"
 type="dyn:TimeseriesComponentType"/>
 <!-- === -->
 <xsd:complexType name="TimeseriesComponentType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="repetitions" type="xsd:positiveInteger"/>
 <xsd:element minOccurs="0" name="additionalGap" type="xsd:duration"/>
 <xsd:element name="timeseries" type="dyn:AbstractTimeseriesPropertyType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- === -->
 <xsd:complexType name="TimeseriesComponentPropertyType">
 <xsd:sequence minOccurs="0">
 <xsd:element ref="dyn:TimeseriesComponent"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="gml:AssociationAttributeGroup"/>
 </xsd:complexType>

26

Chapter 9. FCP1 Demonstrations
This section provides a brief overview of the components used and the solutions developed for
demonstrating the FCP1 scenarios.

9.1. Components development
In this section, the details of the software systems and components have been provided which were
used and also modified for the demonstrations of the FCP1 scenarios. The list of the components
used is as follows.

9.1.1. Enterprise Architect

Enterprise Architect (EA) [7] is a UML design tool. Since EA supports a model-driven approach for
defining geospatial data, the UML data models of the CityGML standard have already been
developed using EA. The new dynamizer ADE classes were developed using this software, which
were stored using the .eap file name extension.

9.1.2. ShapeChange

ShapeChange[8] is an open-source Java tool which can process the UML models for geographic
information and derives the GML application schemas (and other transfer formats) from these UML
models. The tool can directly read the UML models defined using EA via the EA Java API. The
guidelines and examples for how to derive the XML schemas from the EA file and for how to create
the ADEs and to derive the corresponding XML schema using ShapeChange will be documented in
[OGC 16-130].

9.1.3. Feature Manipulation Engine (FME)

FME [9] is a software developed by Safe Software and facilitates the transformation of spatial data
into a variety of formats, data models, and repositories for transmission to end users. This software
is widely used for reading and writing different geospatial data formats including CityGML and
CityGML ADEs. For creation of the CityGML instance documents including the Dynamizer ADE, the
FME transformer 'XMLTemplater' was used. This transformer takes an XML schema definition file
as input and creates sample XML instance documents. However, FME is a proprietary software and
requires an appropriate license. There is an open source Java API called 'citygml4j' [10] which can
also be used for creating instance CityGML documents along with their ADEs.

9.1.4. 3D City Database

In order to store and manage the CityGML datasets, an open-source geodatabase called '3DCityDB'
[11] is used. 3DCityDB stores, represents, and manages the large CityGML datasets on top of a
standard spatial relational database management systems (SRDBMS) such as Oracle Spatial and
PostgreSQL. It provides a Java front-end application named '3DCityDB Importer/Exporter', which
allows for high performance importing and exporting the CityGML datasets with arbitrary file
sizes. It also allows exporting the contents in the form of different visualization formats such as
KML, COLLADA, and glTF, allowing the 3D objects to be viewed and interactively explored in the

27

web applications. For integration into an OGC Web Service environment, the 3DCityDB contains a
Web Feature Service (WFS) interface, using which the CityGML features can be requested in
standardized ways. 3DCityDB also allows extending the functionalities in a modular way by the
installation of plugins, which add specific abilities to interact with the 3D city database. For
instance, by using the Spreadsheet Generator Plugin, arbitrary subsets of the city model data such
as generic attributes can be exported in tabular form having the selected attributes from 3D city
database instance whether as a CSV file or directly be uploaded as a Google Spreadsheet Document
or Google Fusion Table. Furthermore, 3DCityDB also provides a functionality to validate CityGML
documents.

9.1.5. 3DCityDB Visualization Clients

For high-performance 3D visualization and interactive exploration of arbitrarily large semantic 3D
city models based on the CityGML standard, there are different web-based visualization clients
available and used within the pilot. 3DCityDB-Web-Map-Client Pro ([12]) developed by the Chair of
Geoinformatics, Technical University of Munich, is a web-based front-end client of 3DCityDB, which
not only allows exploring and interacting with large semantic 3D city models, but also provides
thematic querying capabilities on the 3D objects. It supports linking the 3D visualization models
(KML/glTF) with the cloud-based Google Spreadsheet documents or Google Fusion Table allowing
for querying the thematic data of every 3D object. virtualcityMAP [13] is also a web based
visualization client developed by virtualcitySYSTEMS GmbH for working with large semantic 3D
city models. 3DCityDB-Web-Map-Client [14] is a free and open-source visualization client developed
by the Chair of Geoinformatics, Technical University of Munich in cooperation with
virtualcitySYSTEMS GmbH. This client provides rich 3D visualization and interactive exploration of
arbitrarily large semantic 3D city models based on the CityGML standard. However, it does not
support querying capabilities unlike other mentioned visualization clients.

All of the visualization clients use the Cesium [15] virtual globe as their visualization engines.
Cesium is an open source JavaScript package supporting the presentation of 3D contents within the
web browser where users can dynamically switch between 3D globe visualization and 2D map
projection. It utilizes HTML5 and WebGL to provide hardware acceleration and plugin
independence and provides cross-platform, cross-browser, and cross-device functionalities.

9.1.6. Solar Potential Analysis Tool

The Solar Potential Analysis Tool [16] is a simulation tool developed by the Chair of Geoinformatics,
Technical University of Munich for assessing and estimating solar energy production for the roofs
and facades of the 3D building objects in different ways. The simulation tool operates on the
semantic 3D city models defined according to the CityGML standard. By combining a transition
model, sun position calculation, and an approximation of the sky dome, the solar power from
direct, diffuse, and global sunlight irradiation are estimated for individual months and years. The
shadowing effects of the surrounding topographic features are considered by applying a ray tracing
approach. The Sky View Factor (SVF), a measure indicating the visible fraction of the sky
hemisphere, is determined for each surface.

As a result, each building surface is being enriched by its individual irradiation values. These are
also aggregated to the building level. Finally, a point cloud is generated from sampling points that
have been generated for each building surface for the simulation. Each point is parameterized with

28

the direct, diffuse, and global irradiation values over the different months and can thus, be
visualized in different colors according to the respective solar power as shown in figure 7.

Figure 7. Illustration of yearly global irradiation sum for the building facades. Image taken from ([16])

9.1.7. 52° North Sensor Observation Service Implementation

This is an open source software initiative developed by 52°North GmbH, Germany [17], which
allows enabling the realization of Sensor Web infrastructures. It is certified by the Open Geospatial
Consortium (OGC) for realization of their Sensor Web Enablement (SWE) suite. The software uses
an internal database for storing / managing sensor information on the relational database
PostgreSQL/PostGIS, and allows:

• Defining multiple ranges of sensors;

• setting up different sensor services (e.g., Sensor Observation Service); and

• providing extra sensor data upload capabilities, either by using the SOS web interface or by
using SOS importers supporting CSV/JSON feeds.

This implementation includes a relational data model, which implements the OGC O&M
information model. With the help of the data model, sensor data of different types and multiple
instances of sensors are stored, managed, and queried. The implementation also provides a
visualization client which not only shows different sensor stations on a map, but also lets the users
interact with and query timeseries graphs generated dynamically from the observation properties.

29

9.2. FCP1 Demonstrations

9.2.1. Integrating sensors with semantic 3D city models

This use case was set up by Ordnance Survey Great Britain and was based on the Royal Borough of
Greenwich, London. The main objectives were to (i) provide better services to the citizens of the
Royal Borough of Greenwich; (ii) enable departments within the Royal Borough of Greenwich to
share and coordinate data more effectively and to be recognized as an example of smarter working
practices; and (iii) improve collaboration between London boroughs by creating more
interoperable data, content, and insight. The use of interoperable standards creates the opportunity
to develop a cross-department platform to collaborate and share data. Furthermore, the potential
integration with real-time sensor data (e.g., monitoring humidity, temperature, etc.) within council
housing can lead to decisions for matching human needs to the right housing/resources.

Creation of the CityGML datasets

The 3D building objects were created by Ordnance Survey according to the CityGML LoD1
specification. The dataset includes 265,000 building objects, which were generated using the
Ordnance Survey MasterMap building footprints. The dataset was further enriched by various
thematic properties such as building address, details of the building residents, adult care, and
housing stock information. The CityGML documents were validated and stored in the database
using 3DCityDB.

Working with sensors

Because of the unavailability of access to the sensors in the Royal Borough of Greenwich, it was
discussed and agreed by the pilot sponsors and participants to use a stable sensor-based service in
order to demonstrate the capabilities of the dynamizers. For the demonstration purposes, the real-
time observations from different weather stations installed in the district Queen Elizabeth Olympic
Park, London were used. These weather stations have been set up and operated by 'Intel Labs
London' and are being used in the project called Smart Sustainable Districts (SSD) ([18]), which is a
Climate-KIC flagship project funded by European Institute of Innovation and Technology (EIT). The
weather stations are named after Intel Collaborative Research Institute (ICRI) as ICRI_0001,
ICRI_0002, and ICRI_0003 and measure 15 properties in the park including temperature, humidity,
wind speed, etc. The observations are recorded every minute. They are accessed from Intel’s
platform via a Hypercat registry and encoded using the SenML format. Hypercat and SenML are
industry IoT standards that are being developed independent of the OGC SWE standards.

In order to integrate the sensors with the 3D city model, SOS facades were developed for the
sensors for retrieving sensor observations and sensor descriptions in a unified interoperable way.
For setting up the SOS, the open-source implementation from 52° North (c.f. section 9.1.7) was used.

Integrating sensors with CityGML using the dynamizers

Within the pilot, the OGC Sensor Observation Service (SOS) has been used for linking the weather
stations with the CityGML data sets. The SOS supports different requests to retrieve sensor
metadata as well as observations, e.g., with the help of the DescribeSensor request, sensor metadata
(such as sensor names, coordinates, list of observable properties) can be retrieved according to the

30

SensorML standard. In a similar way using GetObservation request, the observations from different
properties can be retrieved according to the O&M standard. The direct links to the SOS requests can
explicitly be defined within the CityGML datasets using the new SensorConnection data type of the
Dynamizer ADE (as described in section 7.4). It allows defining the details of the sensor being used
such as its unique ID, the type of service, and URLs to retrieve the sensor metadata and
observations. Below is an example of a Dynamizer feature defined within a CityGML instance
document.

<?xml version="1.0" encoding="UTF-8"?>
<core:CityModel xmlns="http://www.citygml.org/citygml/profiles/base/2.0"
 xmlns:core="http://www.opengis.net/citygml/2.0"
 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"
 xmlns:gen="http://www.opengis.net/citygml/generics/2.0"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xAL="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"
 xmlns:dyn="http://www.citygml.org/ade/dynamizer_ade/1.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/citygml/2.0
http://schemas.opengis.net/citygml/2.0/cityGMLBase.xsd
 http://www.opengis.net/citygml/building/2.0
http://schemas.opengis.net/citygml/building/2.0/building.xsd
 http://www.opengis.net/citygml/generics/2.0
http://schemas.opengis.net/citygml/generics/2.0/generics.xsd
 http://www.citygml.org/ade/dynamizer_ade/1.0 CityGML-DynamizerADE.xsd">
<gml:name>Greenwich</gml:name>
<gml:boundedBy>
<gml:Envelope srsName="urn:ogc:def:crs,crs:EPSG:27700,crs:EPSG:5101" srsDimension="3">
<gml:lowerCorner>536741.080000142 170980.299999385 0</gml:lowerCorner>
<gml:upperCorner>548017.10000021 182541.829999454 205.6</gml:upperCorner>
</gml:Envelope>
</gml:boundedBy>
<core:cityObjectMember>
 <bldg:Building gml:id="osgb_7ea64278-a92f-459a-9bea-f905bbcb63e3">
 <gen:stringAttribute name="toid">
 <gen:value>osgb1000041344855</gen:value>
 </gen:stringAttribute>
 <gen:doubleAttribute name="TEMPERATURE">
 <gen:value>19.6</gen:value>
 </gen:doubleAttribute>
 <bldg:lod1Solid>
 ...
 </bldg:lod1Solid>
 </bldg:Building>
</core:cityObjectMember>
<core:cityObjectMember>
 <dyn:Dynamizer gml:id="osgb_7ea64278-a92f-459a-9bea-f905bbcb63e3_Dynamizer">
 <dyn:attributeRef>

31

 <!-- Single line XPath Expression -->
 //bldg:Building%5B%40gml:id ='osgb_7ea64278-a92f-459a-9bea-f905bbcb63e3'%5D
 /doubleAttribute%5B%40name = 'TEMPERATURE'%5D
 /gen:value
 </dyn:attributeRef>
 <dyn:startTime>2016-01-01T00:00:00Z</dyn:startTime>
 <dyn:endTime>2017-01-01T00:00:00Z</dyn:endTime>
 <dyn:linkToSensor>
 <dyn:SensorConnection>
 <dyn:sensorID>ICRI_QEOP_0001</dyn:sensorID>
 <dyn:serviceType>SOS 2.0.0</dyn:serviceType>
 <dyn:linkToObservation>
 http://129.187.38.201:8080/52n-sos-webapp-
qeop/service?service=SOS&version=2.0.0&request=GetObservation&featureOfInt
erest=ICRI_QEOP_0001_London&procedure=ICRI_QEOP_0001&observedProperty=Outside_
Temperature&temporalFilter=om:phenomenonTime,2016-07-02T09:00:00Z/2016-07-
02T09:30:00Z
 </dyn:linkToObservation>
 <dyn:linkToSensorML>
 http://129.187.38.201:8080/52n-sos-webapp-
qeop/service?REQUEST=DescribeSensor&SERVICE=SOS&VERSION=2.0.0&PROCEDURE=IC
RI_QEOP_0001&procedureDescriptionFormat=http://www.opengis.net/sensorML/1.0.1
 </dyn:linkToSensorML>
 <dyn:sensorLocation xlink:href="#osgb_7ea64278-a92f-459a-9bea-
f905bbcb63e3"></dyn:sensorLocation>
 </dyn:SensorConnection>
 </dyn:linkToSensor>
 </dyn:Dynamizer>
</core:cityObjectMember>

As mentioned in the above example, the building object has a generic attribute TEMPERATURE,
which is dynamic in nature and whose value should be retrieved and overridden by the values
retrieved according to the Sensor observation Service. The new Dynamizer feature type has been
defined for this building object to link real-time sensor observations. The attributeRef includes an
XPath Expression which refers to the generic attribute TEMPERATURE. The valid XPath expression
is:

//bldg:Building[@gml:id ='osgb_7ea64278-a92f-459a-9bea-f905bbcb63e3']
/doubleAttribute[@name = 'TEMPERATURE']
/gen:value

However, there are some characters which could cause the XML parser to misunderstand the
resulting data. Hence, it is necessary to escape such control characters so that the parser can
interpret them correctly as data, and not confuse them for markup. For this purpose, the following
escaped strings were used for special characters in the CityGML instance document.

32

Table 2. List of escaped characters

Character Escaped String

[%5B

] %5D

@ %40

& & amp;

Furthermore, startTime and endTime are absolute time points of one complete year denoting the
time span for which the dynamizer provides dynamic values. The details of the sensor connection
are specified using the data type SensorConnection. It includes the unique id of the sensor (named
as "ICRI_QEOP_0001"), type of the service (SOS version 2.0.0), and links to the sensor description
and observations. According to SOS 2.0.0, the sensor observations can be retrieved using the
GetObservation request. The request can be made using a URL with the specified parameters:

http://129.187.38.201:8080/52n-sos-webapp-qeop/service?
service=SOS&version=2.0.0&request=GetObservation&
featureOfInterest=ICRI_QEOP_0001_London&
procedure=ICRI_QEOP_0001&
observedProperty=Outside_Temperature&
temporalFilter=om:phenomenonTime,2016-07-02T09:00:00Z/2016-07-02T09:30:00Z

The above mentioned request will return the response of observations encoded according to the
OGC O&M standard for the specified parameters.

In the same way, the sensor description and its metadata can be retrieved using the DescribeSensor
request. The request can be made using a URL, which is as follows:

http://129.187.38.201:8080/52n-sos-webapp-qeop/service?
REQUEST=DescribeSensor&SERVICE=SOS&VERSION=2.0.0&
PROCEDURE=ICRI_QEOP_0001&
procedureDescriptionFormat=http://www.opengis.net/sensorML/1.0.1

The above mentioned request will return the response of sensor description in the OGC SensorML
standard.

Visualization of the scenario

For visualization of this scenario, the 3DCityDB Web-map-client Pro (c.f. section 9.1.5) was used.
This web client serves as a user interface to the end users to explore the 3D buildings of the Royal
Borough of Greenwich in interactive ways. The thematic information of each building can be
visualized simply by clicking on the building. The web client does require the users to log in by a
valid Google credential in order to retrieve the building attributes from Google Fusion Table [19].
The client also provides functionalities to query the attributes.

33

Screenshots

Following are the screenshots taken from the 3DCityDB Web-map-client Pro, which was set up for
demonstrating the scenario for integrating sensor data with CityGML data and interacting with
real-time sensor observations.

Figures 8 and 9 show different panels of the 3DCityDB Web-map-client Pro, allowing users to
visualize and interact with 3D building geometries as well as thematic attributes of the buildings.
As shown in figure 9, the GML ID is a unique ID of the building which is based on the TOID
provided by Ordnance Survey Mastermap. The sensor-related attributes have been defined based
on the dynamizer class. Sensor_ID is a unique ID for a specific sensor. ServiceType shows the type
of service being used by the sensor (SOS 2.0 in this case). Further, LinkToSensorML is the request
URL for the SOS DescribeSensor operation, which returns the sensor descriptions and metadata
encoded in the SensorML format. LinkToObservation is the request URL for the SOS GetObservation
operation, which returns the sensor observations encoded in the OGC O&M format.
LinkToSensorClient is the URL for the 52° North sensor visualization client, which shows the sensor
observations in the form of timeseries graphs as shown in figure 10.

Figure 8. Screenshot 1: Visualization of and interaction with 3D building geometries

34

Figure 9. Screenshot 2: Thematic attributes of the building including description and links for sensor based
services.

Figure 10. Screenshot 3: Timeseries graph visualization of real-time sensor observations (screenshot taken
from 52° North SOS Client). The graph shows the outside temperature and humidity retrieved from the
station ICRI_0001 on the 3rd of July 2016 overlain within the same view.

35

9.2.2. Integrating time-dependent properties with semantic 3D city models

This use case was set up by IGN and virtualcitySYSTEMS GmbH and was based in the commune of
Bruz, located 11 km southwest of Rennes in Brittany, France and a part of Rennes Metropole. The
main objectives were to provide better services to the citizens and the energy planners by
performing a sophisticated solar potential analysis. The use case aimed at answering questions,
such as (i) How many buildings have a solar irradiation of more than a specific value (e.g. 5000
MWh)?, (ii) Which buildings are well suited for installing solar panels?, and (iii) How does the
irradiation for a building varies through the year?.

Creation of the CityGML datasets

The buildings with wall and roof surfaces were created in accordance with the IGN REF3DNAT
specification based on the CityGML standard. The dataset includes approximately 5500 building
objects in the LoD2 specification. The LoD2 building objects have thematically-differentiated
boundary surfaces (roof and wall surfaces).

Performing the solar potential analysis

The CityGML dataset was further enriched by solar irradiation values computed by the Solar
Potential Analysis tool (c.f. section 9.1.6). The simulation tool estimates the solar power from direct,
diffuse, and global sunlight irradiation for individual months of the year. Below is a CityGML file
generated by the Solar Potential Analysis tool enriching the city objects with the solar irradiation
values.

36

<?xml version="1.0" encoding="UTF-8"?>
<core:CityModel xmlns="http://www.citygml.org/citygml/profiles/base/2.0"
 xmlns:core="http://www.opengis.net/citygml/2.0"
 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"
 xmlns:gen="http://www.opengis.net/citygml/generics/2.0"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xAL="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"
 xmlns:dyn="http://www.citygml.org/ade/dynamizer_ade/1.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/citygml/2.0
http://schemas.opengis.net/citygml/2.0/cityGMLBase.xsd
 http://www.opengis.net/citygml/building/2.0
http://schemas.opengis.net/citygml/building/2.0/building.xsd
 http://www.opengis.net/citygml/generics/2.0
http://schemas.opengis.net/citygml/generics/2.0/generics.xsd">
<gml:name>Bruz</gml:name>
<gml:boundedBy>
 <gml:Envelope srsDimension="3"
srsName="urn:ogc:def:crs,crs:EPSG:6.12:3948,crs:EPSG:6.12:5720">
 <gml:lowerCorner>1343348.875000 7208788.500000 12.183561</gml:lowerCorner>
 <gml:upperCorner>1348673.750000 7218523.000000 125.694313</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
<core:cityObjectMember>
 <bldg:Building gml:id="BU_66ac0df9-cba5-40ac-a935-742917fb4e98">
 ...
 <bldg:boundedBy>
 <bldg:WallSurface gml:id="UUID_23d7f89d-e222-4ebb-980e-affac4721f77">

 <gen:doubleAttribute name="directRadMonth_01">
 <gen:value>146.607727</gen:value>
 </gen:doubleAttribute>
 <gen:doubleAttribute name="directRadMonth_02">
 <gen:value>231.137695</gen:value>
 </gen:doubleAttribute>
 <gen:doubleAttribute name="directRadMonth_03">
 <gen:value>333.088562</gen:value>
 </gen:doubleAttribute>
 ...

 </bldg:WallSurface>
 </bldg:boundedBy>
 </bldg:Building>
 </core:cityObjectMember>
</core:CityModel>

As shown, the solar power from direct, diffuse, and global sunlight irradiation were estimated for

37

individual months and stored as individual generic attributes for the building surfaces. However,
these monthly solar irradiation values can now be represented within the CityGML documents
using the dynamizers, which can be used for visualizations and simulations. An example
illustration below shows the CityGML dynamizers representing these monthly solar irradiation
values according to the OGC TimeseriesML 1.0 standard.

<?xml version="1.0" encoding="UTF-8"?>
<core:CityModel xmlns="http://www.citygml.org/citygml/profiles/base/2.0"
 xmlns:core="http://www.opengis.net/citygml/2.0"
 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"
 xmlns:gen="http://www.opengis.net/citygml/generics/2.0"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xAL="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"
 xmlns:dyn="http://www.citygml.org/ade/dynamizer_ade/1.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/citygml/2.0
http://schemas.opengis.net/citygml/2.0/cityGMLBase.xsd
 http://www.opengis.net/citygml/building/2.0
http://schemas.opengis.net/citygml/building/2.0/building.xsd
 http://www.opengis.net/citygml/generics/2.0
http://schemas.opengis.net/citygml/generics/2.0/generics.xsd
 http://www.citygml.org/ade/dynamizer_ade/1.0 CityGML-DynamizerADE.xsd">
<gml:name>Bruz</gml:name>
<gml:boundedBy>
 <gml:Envelope srsDimension="3"
srsName="urn:ogc:def:crs,crs:EPSG:6.12:3948,crs:EPSG:6.12:5720">
 <gml:lowerCorner>1343348.875000 7208788.500000 12.183561</gml:lowerCorner>
 <gml:upperCorner>1348673.750000 7218523.000000 125.694313</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
<core:cityObjectMember>
 <bldg:Building gml:id="BU_66ac0df9-cba5-40ac-a935-742917fb4e98">
 ...
 <bldg:boundedBy>
 <bldg:WallSurface gml:id="UUID_23d7f89d-e222-4ebb-980e-affac4721f77">

 <gen:doubleAttribute name="directRadMonth">
 <gen:value>146.607727</gen:value>
 </gen:doubleAttribute>
 ...
 </bldg:WallSurface>
 </bldg:boundedBy>
 </bldg:Building>
 </core:cityObjectMember>
 <core:cityObjectMember>
 <dyn:Dynamizer gml:id="UUID_23d7f89d-e222-4ebb-980e-
affac4721f77_directRad_Dynamizer">

38

 <dyn:attributeRef>
 <!-- Single line XPath Expression -->
 //bldg:WallSurface%5B%40gml:id='UUID_33f88cd5-89cf-44ea-a6eb-
050524157035'%5D
 /doubleAttribute%5B%40name='directRadMonth'%5D
 /gen:value
 </dyn:attributeRef>
 <dyn:startTime frame="#ISO-8601">
 2015-01-01T00:00:00Z
 </dyn:startTime>
 <dyn:endTime frame="#ISO-8601">
 2016-01-01T00:00:00Z
 </dyn:endTime>
 <dyn:dynamicData>
 <dyn:AtomicTimeseries>
 <dyn:dynamicDataTVP>
 <tsml:TimeseriesTVP gml:id="TS1">
 <tsml:point>
 <tsml:MeasurementTVP>
 <tsml:time>2015-01</tsml:time>
 <tsml:value>146.607727</tsml:value>
 </tsml:MeasurementTVP>
 </tsml:point>
 <tsml:point>
 <tsml:MeasurementTVP>
 <tsml:time>2015-02</tsml:time>
 <tsml:value>231.137695</tsml:value>
 </tsml:MeasurementTVP>
 </tsml:point>
 <tsml:point>
 <tsml:MeasurementTVP>
 <tsml:time>2015-03</tsml:time>
 <tsml:value>333.088562</tsml:value>
 </tsml:MeasurementTVP>
 </tsml:point>

 </tsml:TimeseriesTVP>
 </dyn:dynamicDataTVP>
 </dyn:AtomicTimeseries>
 </dyn:dynamicData>
 </dyn:Dynamizer>
 </core:cityObjectMember>
</core:CityModel>

As shown in the above example, the wall surface of the CityGML building object contains only one
generic attribute directRadMonth for handling monthly direct irradiation values. This generic
attribute is referred by the Dynamizer feature using the XPath expression:

39

//bldg:WallSurface[@gml:id='UUID_33f88cd5-89cf-44ea-a6eb-050524157035']
/doubleAttribute[@name='directRadMonth']
/gen:value

Further, the Dynamizer contains the AtomicTimeseries, which represents the time/value pairs of
monthly direct irradiation values for the wall surface.

Visualization of the scenario

For visualization, a virtualcityMap based web application [20] was developed and set up by
virtualcitySYSTEMS GmbH and was used for the demonstrations. It allows exploring the 3D
buildings and solar irradiation values in interactive ways.

Screenshots

Following are the screenshots taken from the virtualcityMAP web application. Figures 11 and 12
show solar irradiation values of the building roof and wall surfaces defined according to specific
color ramps. For comparing the solar irradiation values, figure 11 shows the values from the month
February and figure 12 shows the values from the month August. Figure 13 illustrates all the values
of the solar potential results encoded in a single timeseries graph. Such timeseries graphs can be
retrieved and used for further simulations with the help of the dynamizers. Figure 14 shows the
point clouds in different colors which were generated from the sampling points for each building
surface for the simulation.

Figure 11. Screenshot 1: Solar irradiation values for the month February

40

Figure 12. Screenshot 2: Solar irradiation values for the month August

Figure 13. Screenshot 3: All the values of solar potential results encoded in a single timeseries graph

41

Figure 14. Screenshot 4: Point clouds visualization

42

Chapter 10. Conclusions and future work

10.1. Conclusions
The Future City Pilot Phase 1 successfully demonstrates how the use of international standards
such as CityGML and IFC together can provide stakeholders with information, knowledge, and
insight which enhances financial, environmental, and social outcomes for citizens living in cities.
During the pilot, three scenarios were set up based on real-world requirements put forward by the
pilot sponsors and their solutions were developed and demonstrated by the pilot participants.

This Engineering Report (ER) focuses on the scenario requiring the support of real-time sensor
observations and other time-dependent properties within the CityGML standard. It highlights the
conceptual and implementation details of a new concept 'Dynamizer', which has been modeled as
an Application Domain Extension (ADE) of the CityGML standard. Dynamizers allow extending
static 3D city models by supporting variations of individual feature properties and associations
over time. They provide a data structure to represent dynamic values in different and generic ways.
Such dynamic values may be given as tabulation of time/value pairs; patterns of time/value pairs;
by referencing an external file; or by retrieving observations from sensor services. In principle,
dynamizers inject dynamic variations of city object properties into the static representation. These
variations are supported for the thematic, geometry, and appearance properties of the city objects.

As a part of the pilot, Dynamizers were successfully modeled and implemented for scenarios which
allowed for the integration of sensors as well as other time-dependent properties within the
CityGML standard. This report explains the steps taken for implementing the Dynamizer ADE. The
conceptual UML model and its components were developed and explained in detail. The XML
Schema definition file was derived from the UML model. Based on the XML schema definition file,
the valid CityGML instance documents were created and used within the pilot and demonstrated
with the help of the visualization clients.

10.2. Future Work

10.2.1. CityGML 3.0

The dynamizer concept has been implemented as an ADE for the CityGML standard. The ADE
mechanism allows for the systematic extension of each CityGML object type by additional attributes
as well as the introduction of new object types. This implementation allows dynamizers to be used
with the current version of CityGML (version 2.0). However, this concept is intended to become a
part of the next version of CityGML (version 3.0). The dynamizer concept is general in the sense
that it could also be applied to other GML-based application schemas including the European
INSPIRE data themes and national standards for topography and cadasters like the UK Ordnance
Survey Mastermap or the German cadaster standard ALKIS.

10.2.2. Supporting different time-dependent properties with Dynamizers

As mentioned in Chapter 6, the dynamizers are capable of supporting time-dependent variations of
the spatial, thematic, as well as appearance properties of a city object. Within FCP1, the dynamizers
were successfully implemented to support variations in the thematic properties of the objects, such

43

as solar irradiation values of a roof of a building. However, in future, the dynamizers will be
implemented to support such variations in the spatial and appearance properties, for example,
variations in flood depth values of water bodies over a period of time, moving objects in case of
traffic simulations, and representation of changes in properties using different textures.

10.2.3. Dynamizer ADE support in databases

The 3D City Database (3DCityDB) is a powerful tool for storing, representing, and managing large
CityGML datasets on top of a standard spatial relational database such as Oracle Spatial and
PostgreSQL. However, the current version of the 3DCityDB does not support ADEs, due to which the
dynamizer ADE features could not be stored within the database in the FCP1.

There is ongoing work at the Chair of Geoinformatics, Technical University of Munich for providing
an automated way for dynamically extending the 3DCityDB to support storage and management of
the CityGML models with ADEs. The initial work has already been successfully implemented, tested,
and evaluated based on a number of different CityGML ADEs like Energy ADE, UtilityNetwork ADE,
and Dynamizer ADE [21]. However, currently the timeseries values (such as Atomic Timeseries) are
stored as Large Objects (CLOB) within the database, which is not suitable for further analysis. The
Dynamizer ADE allows representing timeseries data in standardized ways (e.g., according to OGC
TimeseriesML 1.0 and OGC O&M). It will be investigated how these time-dependent values can be
more efficiently managed and stored within the 3DCityDB.

10.2.4. Dynamizer support in visualization clients

Within the pilot, different visualization clients were used and modified to represent dynamic data.
For representing real-time sensor observations, the 52° North SOS Client was used (as demonstrated
in section 9.2.1). Similarly, as shown in section 9.2.2, the virtualcityMap was set up by
virtualcitySYSTEMS GmbH for assessing and visualizing the estimations of solar energy production
for the roofs and facades of buildings in different ways (e.g., visualization of solar irradiation
values using different color ramps on the facades of building surfaces as well as using timeseries
graphs).

There is an ongoing work at the Chair of Geoinformatcs, Technical University of Munich for
investigating how dynamizers can directly be interpreted by such visualization clients.

10.2.5. Other sensors and IoT standards

There are many different types of sensors and IoT devices, measuring different qualities/quantities.
They may belong to different stakeholders with different rights and interests. They may also belong
to different platforms, which can be open or proprietary. In order to integrate diverse sensors and
IoT devices with city information models within one operational framework, interoperability plays
an important role in ensuring different components from different vendors can work together. The
OGC already provides the SWE standard suite for realizing interoperable sensor web
infrastructures. Within the OGC SWE standards suite, sensor descriptions are encoded in the
SensorML format and sensor observations in the O&M format. The web services such as Sensor
Observation Service and SensorThings API allow retrieval of sensor descriptions and observations
using different requests.

Within the FCP1, the Sensor Observation Service was successfully set up, used, and integrated with

44

CityGML using dynamizers. In the future, it will be interesting to extend support to other sensor
and IoT based APIs like the OGC Sensor Things API[OGC 15-078r6] , OpenSensorHub [22], and
FIWARE [23].

45

Acknowledgements
The work has been partly funded by the OGC and the sponsors of the FCP1. We thank the OGC and
all the FCP1 sponsors for supporting this work. For the use cases, the CityGML datasets were
provided by Ordnance Survey Great Britain and Institut National de l’Information Géographique et
Forestière (IGN), France. We thank virtualcitySYSTEMS GmbH, Germany for setting up the
virtualcityMAP web application for one of the demonstrations. We also acknowledge the Climate-
KIC of the European Institute of Innovation and Technology (EIT). The real-time sensor
observations used in the FCP1 demonstration were retrieved from the project Smart Sustainable
Districts funded by the Climate-KIC.

46

Appendix A: Flood Inundation
Modeling with 3D city models
Human, natural, and physical systems interact in space and time and digital systems in cities will
become increasingly diverse and numerous, with many actors. Cities therefore need a neutral, open
platform, and standards for communicating spatial and temporal data. The Open Geospatial
Consortium (OGC®) Future Cities Pilot 1 (FCP1) shows how cities can begin to adapt. The goal of this
pilot project is to help cities around the world benefit from modern standards for geospatial
technologies. The European-based pilot demonstrates and enhances the ability of cities to use
different interoperable geospatial technologies to deliver better quality of life and civic initiatives
in order to improve the resilience of society.

With the theme of climate change, the resilience to the risks of flooding is becoming more and more
imminent. The management of the urban or peri-urban territory is characterized by complexity
and requires the collaboration of all the actors to make the right decisions when managing the risks
of flooding based on data of various origins created using different software. This risk management
requires setting up tools and methods for the proper coordination of the actions of the various
players. Flood mitigation and crisis management, as well as recovery, involve communities at
different levels. Collaboration between government departments, local authorities and public and
private actors (citizens, businesses, etc.) is therefore necessary to protect people and properties.

Cities need to take into account urban planning and management, the implementation of flood
levees and protection structures, and address the ecological functionality of rivers and urban
wetland areas. These efforts must be complemented by numerical model simulations of floods
across 2-D floodplains.

For a more advanced analysis and visualization of the numerical simulations as well as to support
the actors in the management of the risks of flooding and mitigation, we proposed a flood
inundation scenario for the cities of Rennes and Greenwich, in collaboration with flood experts at
Rennes Métropole and the University of Bristol, respectively. The purpose of the “inundation
scenario” of the FCP1 pilot project is to transform the mapping of the results of flood modeling into
CityGML format in order to add such simulations to existing 3D City Model databases (figure 15).
This will enable cities to manage urban and environmental data more efficiently, interoperably and
sustainably.

47

Figure 15. Workflow schematic of the FCP1 pilot demonstration of the “inundation scenario” .

For the demonstration of the Rennes flood scenario in CityGML, we used the TELEMAC-2D software
which solves the Saint-Venant equations in two dimensions [24]. Typically, results from this state-of-
the-art model are, at each point of the resolution mesh, the height of water and the mean velocity in
the vertical, and are commonly presented in a Geographic Information System (GIS) as points X, Y,
and Z. For Rennes, we used an existing simulation of a flood of a return time of 1:100 years
(provided by Artelia Engineering). The transformation from “traditional” flood model outputs to
CityGML was achieved by first creating a triangular irregular network (TIN) with the X, Y and Z
points to produce a high-resolution raster.

For the Greenwich “scenario”, we used an existing 1:200-year flood return period simulated by the
2-D LISFLOOD-FP flood model of the University of Bristol [25]. This model solves for the
hydrodynamic forcing terms of the full Saint-Venant equations, except for convection, on a regular
grid and decoupled on the computational faces of the water flux. For the Greenwich use case, this
model was employed to simulate an “undefended” flood scenario of the River Thames. Given that
for this regular-grid model, the typical outputs are provided in the form of an ASCII raster grid,
transformation to a TIN was not necessary.

However, since the CityGML format requires input data as a “feature,” the raster of flood heights
for both scenarios was first converted into a vector using the classification scheme as shown in
figure 16 and figure 17.

48

Figure 16. Flood depth classification of a “typical” GIS vector format (before transformation to CityGML)
for the Rennes scenario.

Figure 17. Flood depth classification of a “typical” GIS vector format (before transformation to CityGML)
for the Greenwich scenario.

Below are the specifications of a possible/suggested CityGML encoding for flood depths (provided

49

by TUM) and figure 18 shows the application of both the Rennes and Greenwich inundation
scenarios in the interactive 3D City Model of the TUM.

CityGML formatting for one polygon patch sample of the Rennes “flood scenario”

<?xml version="1.0" encoding="UTF-8"?>
<core:CityModel xmlns:app="http://www.opengis.net/citygml/appearance/2.0"
xmlns:luse="http://www.opengis.net/citygml/landuse/2.0"
xmlns:wtr="http://www.opengis.net/citygml/waterbody/2.0"
xmlns:xAL="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"
xmlns:core="http://www.opengis.net/citygml/2.0"
xmlns:smil20="http://www.w3.org/2001/SMIL20/"
xmlns:grp="http://www.opengis.net/citygml/cityobjectgroup/2.0"
xmlns:bldg="http://www.opengis.net/citygml/building/2.0"
xmlns:dem="http://www.opengis.net/citygml/relief/2.0"
xmlns:gen="http://www.opengis.net/citygml/generics/2.0"
xmlns:tex="http://www.opengis.net/citygml/texturedsurface/2.0"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:tun="http://www.opengis.net/citygml/tunnel/2.0"
xmlns:frn="http://www.opengis.net/citygml/cityfurniture/2.0"
xmlns:tran="http://www.opengis.net/citygml/transportation/2.0"
xmlns:gml="http://www.opengis.net/gml"
xmlns:bridge="http://www.opengis.net/citygml/bridge/2.0"
xmlns:pbase="http://www.opengis.net/citygml/profiles/base/2.0"
xmlns:smil20lang="http://www.w3.org/2001/SMIL20/Language"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:veg="http://www.opengis.net/citygml/vegetation/2.0"
xmlns:sch="http://www.ascc.net/xml/schematron">
 <gml:boundedBy>
 <gml:Envelope srsDimension="3"
srsName="urn:ogc:def:crs,crs:EPSG:6.12:3948,crs:EPSG:6.12:5720">
 <gml:lowerCorner>1344064.2188 7216529.4531 0.125</gml:lowerCorner>
 <gml:upperCorner>1357029.2188 7227149.4531 1.125</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <core:cityObjectMember>
 <wtr:WaterBody gml:id="DN_1">
 <gen:doubleAttribute name="Height">
 <gen:value>0.125</gen:value>
 </gen:doubleAttribute>
 <wtr:lod1MultiSurface>
 <gml:MultiSurface srsDimension="3">
 <gml:surfaceMember>
 <gml:Polygon>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList>1350664.2188 7223059.4531 0.125
1350699.2188 7223059.4531 0.125 1350699.2188 7223054.4531 0.125 1350724.2188
7223054.4531 0.125 1350724.2188 7223049.4531 0.125 1350734.2188 7223049.4531 0.125
1350734.2188 7223059.4531 0.125 1350739.2188 7223059.4531 0.125 1350739.2188

50

7223054.4531 0.125 1350744.2188 7223054.4531 0.125 1350744.2188 7223044.4531 0.125
1350749.2188 7223044.4531 0.125 1350749.2188 7223039.4531 0.125 1350744.2188
7223039.4531 0.125 1350734.2188 7223039.4531 0.125 1350734.2188 7223034.4531 0.125
1350729.2188 7223034.4531 0.125 1350714.2188 7223034.4531 0.125 1350714.2188
7223029.4531 0.125 1350709.2188 7223029.4531 0.125 1350694.2188 7223029.4531 0.125
1350694.2188 7223024.4531 0.125 1350689.2188 7223024.4531 0.125 1350679.2188
7223024.4531 0.125 1350679.2188 7223019.4531 0.125 1350674.2188 7223019.4531 0.125
1350669.2188 7223019.4531 0.125 1350669.2188 7223014.4531 0.125 1350664.2188
7223014.4531 0.125 1350664.2188 7223009.4531 0.125 1350659.2188 7223009.4531 0.125
1350654.2188 7223009.4531 0.125 1350654.2188 7223004.4531 0.125 1350649.2188
7223004.4531 0.125 1350649.2188 7222999.4531 0.125 1350644.2188 7222999.4531 0.125
1350639.2188 7222999.4531 0.125 1350639.2188 7222994.4531 0.125 1350634.2188
7222994.4531 0.125 1350634.2188 7222989.4531 0.125 1350629.2188 7222989.4531 0.125
1350629.2188 7222984.4531 0.125 1350624.2188 7222984.4531 0.125 1350624.2188
7222994.4531 0.125 1350629.2188 7222994.4531 0.125 1350629.2188 7222999.4531 0.125
1350624.2188 7222999.4531 0.125 1350624.2188 7223004.4531 0.125 1350629.2188
7223004.4531 0.125 1350634.2188 7223004.4531 0.125 1350634.2188 7223029.4531 0.125
1350639.2188 7223029.4531 0.125 1350639.2188 7223039.4531 0.125 1350644.2188
7223039.4531 0.125 1350644.2188 7223044.4531 0.125 1350649.2188 7223044.4531 0.125
1350649.2188 7223039.4531 0.125 1350654.2188 7223039.4531 0.125 1350654.2188
7223044.4531 0.125 1350659.2188 7223044.4531 0.125 1350659.2188 7223054.4531 0.125
1350664.2188 7223054.4531 0.125 1350664.2188 7223059.4531 0.125</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 <gml:interior>
 </gml:Polygon>
 </gml:surfaceMember>
 </gml:MultiSurface>
 </wtr:lod1MultiSurface>
 </wtr:WaterBody>
 </core:cityObjectMember>
</core:CityModel>

51

Figure 18. Illustration of CityGML-based flood depth simulations in a 3D City Model environment for
Greenwich (top) and Rennes (bottom).

Furthermore, in order to present and process simulations of the TELEMAC-2D in CityGML for the
Rennes project (as shown in figure 19), Rennes Métropole and IGN have made available several
types of geospatial data, including a high-resolution numerical terrain model, river bathymetric
data, details of 3-D infrastructures (flood levees, residential, industrial and commercial buildings),
and aerial photographs of the city. All of these geospatial data comply with OGC standards and
protocols, thus allowing more efficient interoperability.

52

Figure 19. Visualization of flooding in Rennes using the proposed CityGML encoding draped over 3D terrain
and building data (provided by Rennes Métropole/IGN).

Finally, figure 20 illustrates a possible wiring diagram scenario using OGC standards of how the
CityGML encoding within a 3D City Model could benefit society and more specifically flood disaster
response assistance, particularly in urban areas where most assets at risk of flooding are located.

Figure 20. OGC-based testbed wiring diagram of the usage of a possible “flood scenario” in CityGML. Note
that this example specifically aims to link FCP1 to Testbed-12 scenarios.

53

Appendix B: Revision History
Table 3. Revision History

Date Release Editor Primary
clauses
modified

Descriptions

June 8, 2016 0.1 K. Chaturvedi all initial version

August 23, 2016 0.2 K. Chaturvedi all draft
engineering
report

January 20, 2017 0.3 K. Chaturvedi all draft
engineering
report capturing
key results

March 20, 2017 0.4 K. Chaturvedi all Addition of
appendix to
cover flood
inundation
scenario,
additions in
Future Work
section

May 16, 2017 0.5 K. Chaturvedi all Improvements
suggested by the
reviewers

54

Appendix C: Bibliography
[1] IFC: Industry Foundation Classes (IFC) Overview Summary, http://www.buildingsmart-tech.org/
specifications/ifc-overview/ifc-overview-summary.

[2] Chaturvedi, K., Smyth, C.S., Gesquière, G., Kutzner, T., Kolbe, T.H.: Managing Versions and History
Within Semantic 3D City Models for the Next Generation of CityGML. In: Abdul-Rahman, A. (ed.)
Advances in 3D Geoinformation, pp. 191–206. Springer International Publishing, Cham (2017),
https://mediatum.ub.tum.de/node?id=1276238.

[3] Chaturvedi, K.,Kolbe, T.H.: Integrating Dynamic data and Sensors with Semantic 3D City Models
in the context of Smart Cities. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. IV-2-W1vol. , pp. 31–38. Copernicus GmbH (2016),
https://mediatum.ub.tum.de/node?id=1276240.

[4] Chaturvedi, K.,Kolbe, T.H.: Dynamizers - Modeling and Implementing Dynamic Properties for
Semantic 3D City Models. In: Filip Biljecki, Vincent Tourre (eds.) Eurographics Workshop on Urban
Data Modelling and Visualisation. The Eurographics Association (2015), https://diglib.eg.org/handle/
10.2312/udmv20151348.

[5] W3C Recommendation: XML Path Language (XPath) 2.0 (Second Edition), http://www.w3.org/TR/
xpath20.

[6] Kutzner, T.: Geospatial Data Modelling and Model-driven Transformation of Geospatial Data
based on UML Profiles, pp. 75-111, PhD Thesis, Ingenieurfakultät Bau Geo Umwelt, Technische
Universität München (2016), https://mediatum.ub.tum.de/node?id=1341432.

[7] EA: Enterprise Architect - UML Design Tools and UML CASE tools for software development,
http://www.sparxsystems.com/products/ea.

[8] ShapeChange: ShapeChange - Processing application schemas for geographic information,
http://shapechange.net.

[9] FME: Safe Software FME Integrate Data, Applications, Web Services, http://www.safe.com.

[10] citygml4j: citygml4j - The Open Source Java API for CityGML, https://github.com/citygml4j.

[11] 3DCityDB: 3D City Database (3DCityDB) Homepage, http://www.3dcitydb.org/3dcitydb/
3dcitydbhomepage.

[12] Chaturvedi, K., Yao, Z., Kolbe, T.H.: Web-based Exploration of and Interaction with Large and
Deeply Structured Semantic 3D City Models using HTML5 and WebGL. In: Kersten, T.P. (ed.)
Bridging Scales - Skalenübergreifende Nah- und Fernerkundungsmethoden, 35. Wissenschaftlich-
Technische Jahrestagung der DGPF, 24. Deutsche Gesellschaft für Photogrammetrie, Fernerkundung
und Geoinformation e.V, Köln (2015), https://mediatum.ub.tum.de/node?id=1245285.

[13] virtualcityMAP: virtualcityMAP, http://www.virtualcitysystems.de/en/products/virtualcitymap.

[14] 3DCityDB-Web-Map: Cesium-based 3D viewer and JavaScript API for the 3D City Database,
https://github.com/3dcitydb/3dcitydb-web-map.

55

http://www.buildingsmart-tech.org/specifications/ifc-overview/ifc-overview-summary
http://www.buildingsmart-tech.org/specifications/ifc-overview/ifc-overview-summary
https://mediatum.ub.tum.de/node?id=1276238
https://mediatum.ub.tum.de/node?id=1276240
https://diglib.eg.org/handle/10.2312/udmv20151348
https://diglib.eg.org/handle/10.2312/udmv20151348
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20
https://mediatum.ub.tum.de/node?id=1341432
http://www.sparxsystems.com/products/ea
http://shapechange.net
http://www.safe.com
https://github.com/citygml4j
http://www.3dcitydb.org/3dcitydb/3dcitydbhomepage
http://www.3dcitydb.org/3dcitydb/3dcitydbhomepage
https://mediatum.ub.tum.de/node?id=1245285
http://www.virtualcitysystems.de/en/products/virtualcitymap
https://github.com/3dcitydb/3dcitydb-web-map

[15] Cesium: Cesium - WebGL Virtual Globe and Map Engine, https://cesiumjs.org.

[16] Willenborg, B., Sindram, M., Kolbe, T. H.: Applications of 3D City Models for a better
understanding of the Built Environment: (accepted). In Martin Behnisch, Gotthard Meinel (Eds.):
Trends in Spatial Analysis and Modelling. Berlin, Heidelberg: Springer (Geotechnologies and the
Environment) (2017), https://mediatum.ub.tum.de/node?id=1348882.

[17] 52°North SWE: 52N Sensor Web Community - Sensor Observation Service, http://52north.org/
communities/sensorweb/sos.

[18] SSD: Smart Sustainable Districts, http://www.climate-kic.org/programmes/smart-sustainable-
districts.

[19] Fusion Tables: Google Fusion Tables Help, https://support.google.com/fusiontables.

[20] virtualcityMAP: virtualcityMAP, http://www.virtualcitysystems.de/en/products/virtualcitymap.

[21] Yao, Z., Kolbe, T.H.: Dynamically Extending Spatial Databases to support CityGML Application
Domain Extensions using Graph Transformations. In: Kersten, T.P. (Ed.), Kulturelles Erbe erfassen
und bewahren - Von der Dokumentation zum virtuellen Rundgang, 37. Wissenschaftlich-
Technische Jahrestagung der DGPF. Deutsche Gesellschaft für Photogrammetrie, Fernerkundung
und Geoinformation e.V, Würzburg, pp. 316–331 (2017), http://www.dgpf.de/src/tagung/jt2017/
proceedings/proceedings/papers/30_DGPF2017_Yao_Kolbe.pdf.

[22] OpenSensorHub: OpenSensorHub – Software for building smarter sensor networks,
https://opensensorhub.org.

[23] FIWARE: FIWARE, https://www.fiware.org.

[24] Ata, R., Goeury, C., Hervouet, J.M.: TELEMAC MODELLING SYSTEM: 2D hydrodynamics
TELEMAC-2D Software Release 7.0 User Manual. EDF-R&D, France (2014),
http://www.opentelemac.org/downloads/MANUALS/TELEMAC-2D/telemac-
2d_user_manual_en_v7p0.pdf

[25] Fewtrell, T.J., Bates, P.D., de Wit, A., Asselman, N., Sayers, P.B.: Comparison of varying
complexity numerical models for the prediction of flood inundation in Greenwich, UK. In:
FLOODrisk 2008, 30 September - 2 October 2008, Keble College, Oxford, UK (2008).

56

https://cesiumjs.org
https://mediatum.ub.tum.de/node?id=1348882
http://52north.org/communities/sensorweb/sos
http://52north.org/communities/sensorweb/sos
http://www.climate-kic.org/programmes/smart-sustainable-districts
http://www.climate-kic.org/programmes/smart-sustainable-districts
https://support.google.com/fusiontables
http://www.virtualcitysystems.de/en/products/virtualcitymap
http://www.dgpf.de/src/tagung/jt2017/proceedings/proceedings/papers/30_DGPF2017_Yao_Kolbe.pdf
http://www.dgpf.de/src/tagung/jt2017/proceedings/proceedings/papers/30_DGPF2017_Yao_Kolbe.pdf
https://opensensorhub.org
https://www.fiware.org
http://www.opentelemac.org/downloads/MANUALS/TELEMAC-2D/telemac-2d_user_manual_en_v7p0.pdf
http://www.opentelemac.org/downloads/MANUALS/TELEMAC-2D/telemac-2d_user_manual_en_v7p0.pdf

	Future City Pilot 1 Engineering Report
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope
	1.2. Document contributor contact points
	1.3. Future Work
	1.4. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. FCP1 scenarios and requirements
	5.1. Integrating sensors with semantic 3D city models
	5.2. Integrating time-dependent properties with semantic 3D city models

	Chapter 6. Making city models dynamic
	6.1. Dynamizer - Introduction

	Chapter 7. Development of the UML Class Diagram for the Dynamizer ADE
	7.1. Dynamizer - A new FeatureType
	7.2. Atomic Timeseries
	7.3. Composite Timeseries
	7.4. Sensors and observations

	Chapter 8. Dynamizer ADE XML Schema
	Chapter 9. FCP1 Demonstrations
	9.1. Components development
	9.1.1. Enterprise Architect
	9.1.2. ShapeChange
	9.1.3. Feature Manipulation Engine (FME)
	9.1.4. 3D City Database
	9.1.5. 3DCityDB Visualization Clients
	9.1.6. Solar Potential Analysis Tool
	9.1.7. 52° North Sensor Observation Service Implementation

	9.2. FCP1 Demonstrations
	9.2.1. Integrating sensors with semantic 3D city models
	9.2.2. Integrating time-dependent properties with semantic 3D city models

	Chapter 10. Conclusions and future work
	10.1. Conclusions
	10.2. Future Work
	10.2.1. CityGML 3.0
	10.2.2. Supporting different time-dependent properties with Dynamizers
	10.2.3. Dynamizer ADE support in databases
	10.2.4. Dynamizer support in visualization clients
	10.2.5. Other sensors and IoT standards

	Acknowledgements
	Appendix A: Flood Inundation Modeling with 3D city models
	Appendix B: Revision History
	Appendix C: Bibliography

