Testbed-12 Vector Tiling Engineering
Report

Table of Contents

I 6 L0 0T 16 [0 o) 4 L 7
I 00) 7
1.2. Document contributor contact POINtS.ottt i i 7
1.3 FUtUre WOTK .. e 7
I 0)) 0} PP 7

2 REIEIEIICES . . oottt e 8

3. Terms and definitionsS. e 9
3.1. vector tile |tiled vector|vectile 9
3.2 SHPPY IMAD .ottt 9

60 4 L74=3 11 10 0 P 10
4.1. Abbreviated termMSottt e 10

TR =3 a4 1= P 11

6. Status Quo & New Requirements Statement.ttt 12
6.1. STAtUS QUIO . .ottt ettt e e e e 12
6.2. Requirements StateMeNtttt e 12

7. SOLULIONS . .ottt et e e e e e 13
7.1. Targeted SOIULIONSttt 13
7.2. RecommMeNdatiOnsttt 13

8. Vector Tiling APProaches.t e 14
8L Challenges . ..ttt e 14
8.2 APPIOAChes ... e 15

8.2.1. Render-based tilingottt 15
8.2.2. Feature-based tiling oottt 16
8.3. Industry implementationso vttt e 16
8.3.1. Mapbox Vector Tile Specification...........ccooiiiiiiiiiiii e 16
8.3.2.CeSIUM 3D TileS . . .t 16
8.3.3. ESTL L3S e 16
8.314. OGC CD B ... e 17
8.3.5. Proprietary Implementationsuuuuuiiniin i 17

9.Data CONEIrenCeo i e e e 18

0. L. S LSS v vttt et ettt ettt e e e e 18
T 77 4= 18
9.1.2. GEOMELIY OPETATIONS . . o oottt ettt ettt ettt et ettt et ettt 20

0.2, APPTIOACRES ... e 20
9.2.1. Feature access on a data back-end /servero 20
9.2.2. Feature assembly informationccoo i 20
9.2.3. Alternative SOIULIONSottt e e 20

10. SIMPLFICAtION . . . e 21

10.1. Generalization Of LINES ..ttt et e e e et e e e e e e et 21

10.1.1. Preservation of TOPOIOZYottt e et 22
10.1.2. Shared Segment Generalizationooiuitiitiie ittt 22
10.2. Generalization Of AT@aSottt e 23
10.3. Generalization by Transformationo ittt it 23
10.4. Feature Filteringttt et e et e 23
10.5. Attribute FIlteringttt e e 23
11, TIHNE SCREIMES . . .ttt ettt e et e e et e e et e e i 24
11.1. WMTS raster tiling SChemesoo ottt e i e 24
11.1.1. GoogleMapsCompatible e e 24
11.1.2. GOOZIECRSBAQUAMottt e e 24
11.1.3. GIODAICRSBASCAlE e 24
R) o o LY (=) o 10) 24
11.1.5. WGS 84 GEOALLIC. .« v vt ettt ettt e e 24
11.2. Vector tiling SChemesot e i i e 24
11.2.1. Choice Of PrOjJeCHION\ vttt ittt et et e et e i e 25
11.2.2. Maximum level of detail. ... e 26
11.2.3. Alternate tiling SChemes ot e 26

12. Feature Tiling Strategiesttt e e e ettt 27
12.1. Geometry Handlingo oottt e 27
12.1.1. Coordinates Or PIXelS. ...ttt e e 27
12.1.2. Geometry types and tiling Strategiesttt it 28
12.01.3. ASSEIMIY ..ottt e 28
12.2. Attribute handlingo oot e 29
12.2.1. Associate attributes with tiles 29
12.2.2. Provide access to attributes through a database or service.......................... 29
12.2.3. Hybrid approach o i e 30

S] 12 1 4 PP 31
13.1. StYlING VECOT tIleS . . o ottt et e et e e 31
13.2. Feature filtering oottt e 31
13.3. Tiling and line renderingottt e et e 32
13.3.1. Feature assembly approach. e 33
13.3.2. Clipping bounds approach.t e e 33
13.4. Tiling and area renderingoutitint ettt it it 35
13.5. Tiling and 1abelingottt e e 35
14. Performance and MemMOTY USAZE ... vvvuun ettt et tttee et e tae e et iee e ine e 36
0 =3 0 0] g D VP 36
14.1.0. ANChOr TIles. . o oo e 36
14.2. Shared EAge DeteCtionvvuut ettt e et e e et 36
14.3. PeIrfOrINAIICE . . . oottt ettt et e e ettt e e e e e 36

14.3.1. Render-based Tiling.ottt e et e 36

14.3.2. Reference Transformation. ... o.vu vttt e e e e e et et e e e e

Appendix A: Revision History
Appendix B: Bibliography ...

Publication Date: 2017-06-16

Approval Date: 2017-02-20

Posted Date: 2016-12-29

Reference number of this document: OGC 16-068r4

Reference URL for this document: http://www.opengis.net/doc/PER/t12-A008
Category: Public Engineering Report

Editor: Daniel Balog, Robin Houtmeyers

Title: Testbed-12 Vector Tiling Engineering Report

OGC Engineering Report
COPYRIGHT

Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of
use, visit http://www.opengeospatial.org/

WARNING

This document is an OGC Public Engineering Report created as a deliverable of
an initiative from the OGC Innovation Program (formerly OGC Interoperability
Program). It is not an OGC standard and not an official position of the OGC
membership.It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard. Further, any
OGC Engineering Report should not be referenced as required or mandatory
technology in procurements. However, the discussions in this document could
very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/t12-A008
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"),
free of charge and subject to the terms set forth below, to any person obtaining a
copy of this Intellectual Property and any associated documentation, to deal in
the Intellectual Property without restriction (except as set forth below),
including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to
permit persons to whom the Intellectual Property is furnished to do so, provided
that all copyright notices on the intellectual property are retained intact and
that each person to whom the Intellectual Property is furnished agrees to the
terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual
Property must include, in addition to the above copyright notice, a notice that
the Intellectual Property includes modifications that have not been approved or
adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY
RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE
WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL
PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE.
ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL
PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER
LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by

destroying the Intellectual Property together with all copies in any form. The
license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the
operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be
likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the
Intellectual Property together with all copies in any form, whether held by you
or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder
of a copyright in all or part of the Intellectual Property shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such
copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other
special designations to indicate compliance with any LICENSOR standards or
specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts.
The application to this Agreement of the United Nations Convention on
Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be
a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may
be downloaded or otherwise exported or reexported in violation of U.S. export
laws and regulations. In addition, you are responsible for complying with any
local laws in your jurisdiction which may impact your right to import, export or
use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make
this license enforceable.

Abstract
This OGC Testbed 12 Engineering Report discusses the topic of vector tiling.

While tiling and the use of multiple levels of details are a proven technique for
raster data, it is relatively new for vector data. This is due to the increased
complexity for tiling vector data compared to raster tiling. Further, there is a
lack of standardization on the topic. Yet vector tiles can provide the same
benefits as for raster tiles:

» Services can easily cache tiles and return them upon request, without the
need for any additional pre/post processing (assuming no geometry
construction is needed in the server). Consequently, clients can request and
receive tiles quickly, ensuring better user experience.

* Due to tiled, multileveled data representations, clients can better access the
data most suitable for their current map location and scale. This avoids the
need to load too much data, which can cause both excessive memory usage
and network traffic resulting in reduced overall performance.

An example of vector tiling that illustrates the impact of these benefits is the
OpenStreetMap (OSM) data store, which includes over 30 GB of data with
worldwide coverage consisting of millions of vector features. Loading and
visualizing all the OSM data into an application would either result in a memory
shortage or unacceptable performance. By means of vector tiling and the
generation of multiple levels of detail, apps using OSM data can load such data
sets very efficiently into applications.

This Engineering Report (ER) focuses on the general aspects of vector tiling. One
of the main goals is to characterize what vector tiling is and how it can be
approached. Highlighted topics include tiling approaches and strategies, tiling
schemes, data coherence, simplification, scalability and styling. With respect to
tiling schemes, existing standards material related to raster tiling schemes is
incorporated to align both topics and to maximize interoperability. This includes
the Defence Geospatial Information Working Group (DGIWG) Web Map Tiling
Standard (WMTS) profile and the National System for Geospatial-Intelligence
(NSG) WMTS profile as defined by the U.S. National Geospatial-Intelligence
Agency (NGA).

The topic of implementing vector tiles using a tile encoding / storage format is
not covered. A study of implementing vector tiles in OGC GeoPackage is part of a
separate Engineering Report, OGC 16-067, that builds on the results of this ER.

Business Value

With an increasing focus on Big Data for geospatial analytics and visualization,
having interoperable solutions that are able to efficiently access large datasets
in applications is very important.

A proven technique for raster datasets is raster tiling and the use of multiple
levels of detail. OGC played an important role in creating and standardizing
interoperable formats and services that apply this technique, including OGC
WMTS and OGC GeoPackage.

For vector datasets, similar techniques also exist, yet implementation of vector
tiling is much less common. However, the OGC membership recently approved
CDB as an OGC standard. CDB defines a conceptual model and file system
implementation instance for a vector tile and LoD structured data store. CDB
has been in operational use for over 10 years. Standardizing this at the OGC
level could give a boost to the adoption of vector tiles, leading to interoperable
solutions capable of accessing large vector datasets.

What does this ER mean for the Working Group and the OGC?

As one of the leading organizations with respect to geospatial standardization,
OGC has successfully released a number of standards related to raster tiling:

* OGC WMTS, to exchange raster tiles in networked environments;
* OGC GeoPackage, to persist raster tiles;

* OGC CDB, to persist a tiled vector data store.

These standards have been embraced and widely adopted by the industry and
community. A logical next step is to define a general approach for the vector
tiling use case. By means of standardization, the OGC can play an important role
into increasing the adoption of vector tiling beyond the modeling and
simulation community and improve the interoperability between industry and
community solutions.

How does this ER relate to the work of the Working Group?

This ER relates to a number of Working Groups:

« WMS 1.4 SWG (includes WMTS): WMTS is OGC’s tiling web service for raster
data and will be looked at in the context of researching a consistent tiling
scheme for raster and vector data.

http://www.opengeospatial.org/pressroom/pressreleases/2488
http://www.opengeospatial.org/standards/cdb

GeoPackage SWG: The topics discussed in this ER define the foundation of the

Engineering Report on a vector tiling implementation in GeoPackage, OGC 16-
067.

* CDB SWG: The CDB SWG is focusing on the evolution and extension of the
CDB standard to meet requirements beyond its original focus on the DoD
modeling and simulation community.

 WFS/FES SWG: WFS is OGC’s web service for exchanging vector data. This ER
discusses the same topic but using a tiled approach.

Keywords
ogcdocs, testbed-12, vector, tiling, GeoPackage, WMTS, CDB

Proposed OGC Working Group for Review and Approval
GeoPackage SWG, WES SWG.

Chapter 1. Introduction

1.1. Scope

This OGC Testbed 12 Engineering Report discusses the topic of vector tiling. One of the main goals of
this report is to characterize what vector tiling is and how it can be approached. Highlighted topics
include tiling approaches and strategies, tiling schemes, data coherence, simplification, scalability
and styling. With respect to tiling schemes, existing material on the topic related to raster tiling
schemes is incorporated to align both topics and to maximize interoperability; this includes the
DGIWG WMTS profile and the NSG WMTS profile (developed by NGA).

The topic of implementing vector tiles using a tile encoding / storage format is not covered. A study
of implementing vector tiles in OGC GeoPackage is part of a separate ER, the OGC Testbed 12 Vector
Tiling Implementation Engineering Report, OGC 16-067, that builds on the results of this ER.

No Change Requests have been revealed or defined in the context of this document.

1.2. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization
Robin Houtmeyers Luciad
Daniel Balog Luciad
Frederic Houbie Luciad
Peter De Maeyer Luciad

1.3. Future Work

This Engineering Report provides a general overview on the topic of vector tiling. The authors
expect that the resulting information is incorporated in future vector tiling standardization work
within OGC, possibly in the context of an implementation in OGC GeoPackage.

1.4. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. References

The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

0OGC 06-121r9, OGC® Web Services Common Standard

NOTE: This OWS Common Standard contains a list of normative references that are also applicable
to this Implementation Standard.

OGC 15-113, Volume 1: OGC® CDB Core Standard: Model and Physical Data Store Structure
0OGC 16-070, Volume 4: OGC® CDB Best Practice use of Shapefiles for Vector Data Storage
OGC 07-057r7, OGC® Web Map Tile Service Implementation Standard

OGC 06-042, OGC® Web Map Service Implementation Standard

0OGC 09-025r2, OGC® Web Feature Service 2.0 Interface Standard

NGA Standardization Document NGA.IP.0O0 2016-02-24, National System for Geospatial-
Intelligence (NSG) Web Map Tile Service 1.x.x Implementation Interoperability Profile (2016-02-
24)

Mapbox Vector Tile Specification
Cesium 3D Tiles Specification
Esri Indexed 3d Scene Layer (I3S) specification

AIXM 5.1 - XML Schema (XSD)

https://github.com/mapbox/vector-tile-spec
https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/Esri/i3s-spec
http://www.aixm.aero/document/aixm-51-xml-schema-xsd

Chapter 3. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r9] shall apply. In addition, the following terms and
definitions apply.

3.1. vector tile|tiled vector | vectile

packet of geographic data, packaged into a pre-defined roughly-square shaped "tile" for transfer
over the web.

3.2. slippy map

term referring to modern web maps which let you smoothly zoom and pan around (the map slips
around when you drag the mouse)

Chapter 4. Conventions

4.1. Abbreviated terms

e COTSCommercial Off The Shelf

NSG(NGA’s) National System for Geospatial Intelligence

WFSWeb Feature Service

WMSWeb Map Service

WMTSWeb Map Tiling Service

10

Chapter 5. Overview

This Engineering Report discusses the general aspects of vector tiling, unrelated to a particular
implementation. A candidate vector tiling implementation is within the scope of the related Testbed
12 Vector Tiling Implementation Engineering Report OGC 16-067, which discusses an
implementation of vector tiles for the OGC GeoPackage.

Chapter 6 starts with a definition of the status quo and the requirements related to a general vector
tiling study. Chapters 7 and 8 continue with a high-level overview of the targeted solutions and
possible approaches to address vector tiling. The remainder of the document delves deeper into
specific aspects of vector tiling, such as data coherence (Chapter 9), geometry simplification
(Chapter 10), tiling schemes (Chapter 11), tiling strategies (Chapter 12), styling (Chapter 13) and
performance and memory guidelines (Chapter 14).

11

Chapter 6. Status Quo & New Requirements
Statement

6.1. Status Quo

Various tiling techniques have been applied to raster(ized) data for over a decade and have been
widely adopted by the geospatial world, both at a standardization and implementation level.
Examples within the OGC include the Web Map Tiling Service (WMTS) and GeoPackage standards.
More recently, the candidate I3S and 3d-tiles submissions are specifications for implementing
vector tiles for the streaming of 3d content for visualization engines.

Tiling applied to vector data is relatively new compared to raster data, but the topic has received
increasing attention over the past several years. Perhaps best known to GIS developers is the public
specification for vector tiles developed by Mapbox, with several implementations in both COTS and
open-source components.

6.2. Requirements Statement

When discussing raster tiling, it is fairly clear how this technique is approached. Essentially, the
gridded raster data values are subdivided into roughly square-like tiles and multiple levels of detail
are generated by means of sampling and interpolation. The main topics to be considered are the
tiling scheme and the format in which the tiles are stored.

For vector tiling, any technique is more complex. Compared to a raster data value, there is no single
way to associate a vector feature with a tile. Similarly, creating multiple levels of detail for a vector
feature is more complex compared to raster data sampling & interpolation.

Although vector tiling specification and implementation work is ongoing in the geospatial world,
there is no general overview of vector tiling aspects and approaches, independent from a storage
format. Therefore, the main requirement to be addressed by this ER is characterizing what vector
tiling is and how any solution can be approached.

12

https://github.com/mapbox/vector-tile-spec

Chapter 7. Solutions

7.1. Targeted Solutions

Multiple solutions can be defined to address vector tiling, each with its own characteristics,
advantages and disadvantages. Within this Engineering Report, we primarily focus on approaches
and solutions that are based on the use of vector tile pyramids, consisting of multiple levels of detail
and the use of tiles. Chapter 8 identifies the main envisioned approaches.

When dealing with a general study on the handling of large vector datasets, other solutions can be
identified in addition to vector tile pyramids, such as the use of spatial indexes (to accelerate access
to a vector dataset) and the use of multi-resolution vector features (i.e., providing a specific
geometry for a particular level of detail). These solutions are considered out of scope for the
Testbed 12 vector tiling study.

7.2. Recommendations

This Engineering Report documents that there is a wide range of aspects and possible approaches
related to implementing vector tiling. Clearly there is no single, one-size-fits-all solution. Instead,
any solution depends on the envisioned use case(s). Regardless of the implementation approach,
vector tiling provides the same benefits as raster tiling.

With an increased focus on handling large datasets and the need for interoperability, the authors
recommend further investigating a path of standardization for a possible OGC vector tiling model.
The Testbed 12 Vector Tiling Implementation Engineering Report, OGC 16-067 discusses an initial
implementation using OGC GeoPackage as data container. While vector tiling in a GeoPackage was
stated as Testbed 12 requirement, it is recommended that compatibility with any of the existing
OGC standards - OGC GeoPackage, OGC web services, OGC CDB, etc. - be taken into account. As such,
a standardized vector tiling model should not be tied to a single data container or service. The
GeoPackage-based implementation illustrates this goal by means of a successful integration attempt
using an OGC WMTS instance as a service to serve and connect to the same vector tiles stored in
OGC GeoPackage.

13

Chapter 8. Vector Tiling Approaches

For raster data, the tiling approach is pretty clear and consistent: the raster data values are split up
according to a tile grid pattern, and multiple levels of detail are generated by combining and
resampling detailed tiles into less detailed tiles. In case of vector data, the tiling approach is less
straightforward. This chapter starts with a section on challenges that can be identified when
discussing vector tiling. Although many solutions and variations can exist in practice to address
vector tiling, we identify two major approaches:

* Render-based tiling: focused on visualization of the vector features.

» Feature-based tiling: focused on maintaining integrity of vector features for storage and
analytics.

Both approaches are discussed in subsequent sections. This is followed by a high-level overview of
industry implementations.

Before continuing, it is important to highlight that this Engineering Report explicitly focuses on
turning vector features into tiles. In a broad sense, vector tiling could also be interpreted and
implemented as a spatial index, in which a tiled, multileveled structure (e.g., an R-tree) is used to
enhance rapid access to a vector feature dataset and/or data store. Although the topic of indexing
may be mentioned, it is not discussed in detail and considered to be part of a future, dedicated
spatial index study.

8.1. Challenges

Vector tiles share similarities with raster tiles. Consequently, it is useful to look at raster tiles when
addressing vector tiles, as a number of problems and solutions are applicable to both topics.
However, there are also a number of challenges unique to vector tiles:

* Data coherence: For some applications, there can be a need to assemble a feature that crosses
multiple tiles back into its original form. To support this use case, a tile should contain all
necessary information to assemble a feature. The need to assemble a feature depends on the
targeted use cases.

Chapter 9 further discusses the topic of data coherence.

* Defining multiple levels of detail: For raster data, multiple levels of details can be generated
by means of sampling and interpolation. Although various techniques and settings can be used
in practice, the process is fairly easy and it can be done automatically without any input from a
user. For vector data, the story is more challenging. In general, two techniques can be identified:

* Feature filtering: Leaving out features on lower levels of detail, based on feature
characteristics (e.g., local roads do not need to be present at a country level scale). The
process of leaving out features is fairly simple. The difficulty lies in determining the
business rules to decide when to filter. This information typically needs to be provided by a
user who knows the dataset (i.e., its use cases, properties, ...)

» Feature generalization: reducing the amount of detail needed to represent a feature’s
geometry, based on a map scale. Algorithms exist to support this, but a reoccurring difficulty

14

is preservation of the data’s topology.

Both topics are further discussed in Chapter 10.

* Tile sectioning: For raster data, a tile can be made by storing the raster data values contained
within the tile boundaries. For vector data, there is no single way to associate a feature with a
tile. As features inevitably cross tile boundaries, one needs to define an approach to associate
features with tiles. An easy solution could be to associate a feature with a single tile with which
it overlaps the most. However, this clearly reduces one of the primary benefits of tiling: to only
load data currently needed. A real tiling solution uses tile sectioning, i.e. the splitting of features
at tile boundaries. Multiple approaches can be defined for this, depending on targeted use cases
and the type of features.

Chapter 12 delves deeper into the topic of feature tiling strategies.

* Unique feature identification: During the tiling process, vector features might be split into
multiple pieces across tiles and generalized versions of the feature might be introduced. To
enable linking everything together, there is clearly a need to uniquely identify the source
feature. Preferably, the source dataset includes a unique identifier property for each feature,
but this might not always be the case.

8.2. Approaches

8.2.1. Render-based tiling

The render-based tiling approach is mainly focused on high-quality and high-performance
rendering of vector data. With this approach, tiles are generated starting from a render-ready
version of the vector features. This render-ready version can be seen as a tile with rendering
instructions, ready to be submitted to the client device’s rendering engine. For instance, a tile might
contain instructions to move to a pixel position (moveTo) or to render a line to another pixel
position (lineTo). This approach is somewhat similar to SVG geometry primitives. The data is
projected up front. Clients can read the tiles without the need to do any feature geometry assembly,
reprojections or other intensive operations.

Compared to rasterizing the vector data and then using raster tiles, the above approach avoids
rendering artifacts when rendering tiles at scales other than the available levels of detail.
Additionally, it gives users the flexibility to customize the styling of the data client-side. Although
the original geometry is no longer present, a tile can offer access to the feature’s properties. If a
unique ID is present, it could be used to retrieve a feature’s geometry from a separate service (e.g.,
an OGC Web Feature Service (WFES)).

From an OGC web services perspective, this best relates to OGC WMTS. This web service is focused
on serving tiles for rendering; each tile can be individually interpreted and rendered.

Typical use cases are rendering and slippy map.

The benefits are high-performance and high-quality.

15

https://wiki.openstreetmap.org/wiki/Slippy_Map

8.2.2. Feature-based tiling

A feature-based tiling approach is mainly focused on giving users efficient access to the source
geometry (coordinates) and feature properties in a vector data set, regardless of their physical size
and amount of detail. In this approach, features are split into component pieces based upon their
geometry and the tile grid pattern used. A resulting tile contains the geometry pieces of the feature
that are geographically contained in that tile. Apart from the geometry, the tile offers access to the
feature’s properties, similar to the render-based tiling approach (either as a link or embedded in
the tile). This will be discussed in the Performance and Memory Usage chapter. The tile also offers
access to information necessary to reconstruct the feature’s original complete geometry. If
required, the client has responsibility for reconstructing the features and displaying them in the
client’s map projection. The tiled geometries may be defined in the data’s native reference or
reprojected to another reference.

Typical use cases are rendering and analysis.

The benefits are high-quality and the fact that the original feature data are no longer needed.

8.3. Industry implementations

This section gives a high-level overview of public industry and community specifications that
support vector tiling. This section also briefly lists proprietary implementations used in the
industry.

8.3.1. Mapbox Vector Tile Specification

A popular and widely adopted vector tiling specification is the Mapbox Vector Tile Specification [5].
The approach followed by Mapbox' specification can be classified as render-based tiling.

8.3.2. Cesium 3D Tiles

Cesium 3D Tiles is a public specification to stream 3D content, including buildings, trees, point
clouds, and vector data to web applications [6]. Vector data tiles include WebGL calls, classifying the
approach as render-based tiling. At the time of writing this ER, the specification has been submitted
to the OGC as a candidate Community Standard [7].

8.3.3. Esri I3S

Indexed 3d Scene Layer (I3S) [8] originated from investigations into technologies for rapidly
streaming and distributing large volumes of 3D content across enterprise systems that may consist
of server components, cloud hosted components, and a variety of client software from desktop to
web and mobile applications. A single I3S data set, referred to as a Scene Layer, is a container for
arbitrarily large amounts of heterogeneously distributed 3D geographic data. A Scene Layer is
structured as a set of hierarchically structured nodes, which are analogous to tiles, and Levels of
Detail (LoD). A Scene Layer is characterized by a combination of layer type and profile to fully
describe the behavior of the layer. At the time of writing this ER, the I3S specification has been
submitted to the OGC as a candidate Community Standard [9].

16

8.3.4. OGC CDB

CDB is an OGC standard defining an open format and encoding for the storage, access and
modification of a representation of the natural and built environment for simulation applications
[10][11]. CDB makes use of several commercial and simulation data formats that are in widespread
use within the simulation industry. For vector data storage, the Esri Shapefile format is used as a
best practice [12]. One of the core CDB concepts is the use of a tiled representation of the Earth with
multiple levels of detail. Each tile can link to data, such as a Shapefile dataset consisting of vector
features. Consequently, CDB can be classified as a variant of feature-based tiling. CDB does not
define a stand-alone vector tile format but it does define the means to use tiling and multiple levels
of detail with existing vector formats that are unaware of these concepts.

8.3.5. Proprietary Implementations

Next to open specifications listed above, the industry also defined proprietary implementations on
the topic. The following is a non-exhaustive list identifying several representative implementations
and their classification with respect to the vector tiling approach:

* GenaMap: Developed in 1985, GenaMap’s technology is probably one of the earliest solutions
that implemented vector tiling. With support for the raw geometry, topology, and a strong focus
on maintaining precision and accuracy, the used approach can be classified as feature-based
tiling. The implementation used the concept of an "edge node" to identify where a feature
geometry split across adjacent tiles.

* Google Maps & Apple Maps: the well-known Google Maps & Apple Maps use vector tiles for a
few years to have high-quality graphics at arbitrary zoom levels. Their approaches can be
classified as render-based tiling.

* Luciad: Since 2011, Luciad has provided a vector tiling solution in its LuciadFusion product. The
solution uses a feature-based tiling approach, with support to automatically generate multiple
levels of detail - using techniques such as geometry simplification and feature filtering.

17

http://spatialnews.geocomm.com/whitepapers/gmap.pdf

Chapter 9. Data Coherence

Within a vector tiling context, data coherence refers to the ability to assemble and access a feature
when reading vector tiles, similar to how the feature was represented before tiling and the possible
generation of multiple levels of detail. To support this use case, a vector tile should contain the
necessary information to perform the assembly. The actual need to access an assembled feature
depends on the targeted use cases. This chapter gives an overview of use cases that benefit from
feature assembly. Additionally, it discusses approaches to implementing feature assembly.

9.1. Use cases

Use cases that benefit from data coherence mostly relate to (complex) styling and operations that
require the feature’s native geometry.

9.1.1. Styling

* On-path labeling of lines crossing tiles. An example is street name labeling following the
geometry of street features, as illustrated in the screenshot below.

Figure 1. On-Path Labeling

18

* Complex strokes and/or fills. The screenshot below shows an example of pattern-based strokes
commonly used by the military symbology standard MIL-STD 2525c.

Figure 2. Complex Stroking

* Consistent selection of a feature while panning / zooming. For instance, a selected feature
should remain selected when more detailed geometries are loaded for the feature while
zooming in; the screenshot below shows this by means of a selected road (orange line) at
multiple zoom levels.

Balmdale A

\ 2
SantalGlarita
* 140

Figure 3. Consistent Selection

19

9.1.2. Geometry operations

* Routing: Compute the shortest path between two locations in a network, such as a road dataset.
* Intersections: Compute intersections between the geometries of two features.

» Topological operations: Compute the topological relationship between two features (e.g.,
disjoint, contained in, etc.).

9.2. Approaches

Multiple approaches can be defined to support data coherence in combination with vector tiling.
The following sections briefly introduce a few of them.

9.2.1. Feature access on a data back-end / server

An easy approach to provide feature access is to store a link or id in the vector tile, which can be
used by an application to request the native feature from a data back-end / server. This approach is
ideally suited for a client/server environment in combination with render-based tiling: the render-
based tiles are sufficient for standard visualization purposes, while the link / id can still be used to
retrieve the underlying feature, if needed. From an OGC perspective, this corresponds to the goal of
the GetFeaturelnfo request available in the OGC WMS and WMTS standards: give the user the
ability to retrieve additional information about a selected location on a map / tile.

9.2.2. Feature assembly information

For the case of feature-based tiling, data coherence can be supported by storing the necessary
information in the tile to assemble the feature in an application. This also avoids the need for an
external connection to retrieve the feature. The information to be stored should enable an
application to differentiate between geometry natively available in the feature (possibly simplified)
and geometry introduced by the tiling.

9.2.3. Alternative solutions

While the approaches listed above provide a solution to achieve data coherence, they either require
accessing the feature on a server or the ability of an application to assemble a feature (which can
be computationally intensive for large datasets). If complex styling is the primary use case (on-path
labeling, complex stroking, etc.), an alternative solution consists of generating vector tiles with
bounds slightly larger than the tile bounds and rendering them with a clip on the tile bounds.
Chapter 13 discusses this approach in practice.

20

Chapter 10. Simplification

Vector tiling inherently includes the aspect of having multiple levels of detail - either physical or
logical, depending on how data are organized in the physical data store and what metadata is
available. Having multiple levels of detail makes sense in case of features that only need to be made
available at certain map scales and / or in case of features with very detailed geometries that are
too complex to be shown at small map scales. For example:

* A local road does not need to be visible at small map scales; apart from the risk of loading too
much data, it would also introduce visual clutter.

* A lake boundary with 100000 points does not need to be represented with that degree of detail
at small map scales. Transferring and attempting to use such complex features on a lightweight
client would cause excessive memory usage and a reduction of overall performance.

One easy approach to address this is to leave out a feature class (layer), such as leaving out local
roads at lower levels of detail. Another approach is generalization: i.e. the reduction of a feature’s
geometry by removing coordinates - for instance, by reducing the complexity of the geometry of the
lake boundary consisting of thousands of coordinates into a simple polygon consisting of only a few
tens of coordinates at lower levels of detail. Again, this is a reduction of data complexity and
volume based on some set of user specified rules.

The following sections further discuss generalization techniques and aspects.

10.1. Generalization of Lines

Line generalization is achieved by reducing the number of coordinates needed to represent a line
geometry. One of the most well-known algorithms to do this is the Ramer-Douglas-Peucker
algorithm. Its purpose is, given a curve composed of line segments, to find a similar curve with
fewer coordinates. The algorithm defines 'dissimilar' based on the maximum distance between the
original curve and the generalized curve (i.e., the Hausdorff distance between the curves). The
generalized curve consists of a subset of the points that defined the original curve.

Figure 4. RDP Algorithm

This principle is illustrated in the image above. The black dots represent the points of the original
line geometry. The blue line shows the result after applying the Ramer-Douglas-Peucker algorithm
with a relatively small Hausdorff distance. This distance is visualized by means of the red lines,
resulting in the removal of three points in this example (the 2nd, 4th and 6th counting from the
left).

When generating multiple levels of detail, line generalization algorithms such as Ramer-Douglas-
Peucker can be an effective way to reduce the geometry complexity at small map scales. By varying
the Hausdorff distance at each map scale, one can adjust the complexity to match the scale.

21

https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
https://en.wikipedia.org/wiki/Polygonal_chain
https://en.wikipedia.org/wiki/Hausdorff_distance

The following paragraphs discuss a few additional complexities that might arise during a line
generalization process.

10.1.1. Preservation of Topology

While generalizing the geometry of a line can be relatively easy for an isolated feature, special
attention needs to be paid to the topological relationship between geometries in case of multiple
features. Even within a single feature, topological relationships between the individual line
segments exist that can make the line generalization process more complex. The images below
illustrate this with an example.

Figure 5. Topology Image 1

Figure 6. Topology Image 2

The first image shows a variation of the previous feature, represented by a black line. The second
image shows a generalized version, represented by the blue line. The generalized version includes
an intersection between two line segments of the feature which was not present before, hence a
change in the topological relationship. The same can happen between segments that belong to
different features. A common real-world example is an island located close to a coast; regardless of
the generalization, both features should remain distinct at all scales.

Extensions to Ramer-Douglas-Peucker and alternative algorithms are available to also take into
account topological relationships between line segments within a single feature or across multiple
features.

10.1.2. Shared Segment Generalization

A special case of topology preservation is shared segment generalization. Consider two features
with adjacent line segments - for instance, two country border features. To make sure that the
adjacent line segments remain adjacent, they need to be generalized in the exact same way.
Although topology preserving line generalization techniques could be used to address this, another
approach is to represent the adjacent segments as a single set of segments. Apart from solving the
topology preservation issue, it also reduces the amount of data needed to represent a data set.

22

10.2. Generalization of Areas

The generalization of areas relies on the same techniques discussed for the generalization of lines.
Additionally, areas with holes can benefit from leaving out small holes at lower levels of detail, such
as a small lake that disappears at a country level map scale.

10.3. Generalization by Transformation

Next to line and area generalization, it is also possible to approach generalization by transforming a
geometry into a more simple geometry. One easy but effective example is the reduction of a line or
polygon geometry to a point. This can be useful when a feature’s presence still needs to be visible at
small map scales but when it is too small to be visualized with any detail.

10.4. Feature Filtering

While the generalization of geometries is an effective solution to keep a feature visible at lower
levels of detail with an appropriate amount of detail, it can also be appropriate to leave out features
entirely at a certain scale. A common example is omitting local roads at country level scales.
Chapter 13 further discusses this topic in the context of styling.

10.5. Attribute Filtering

For features with an extensive list of attributes, it can be worthwhile to filter out unnecessary
attributes - again possibly related to a scale range. An example from the aeronautical domain can
be found in AIXM, an aeronautical data exchange format. A feature in AIXM represents an
aeronautical entity, such as an airport, a runway, an airspace, etc. In addition to aviation domain-
specific attributes, an AIXM feature can also include an extensive set of metadata attributes
modeled using the ISO 19115 metadata standard, typically used to describe the data origin and
quality. Depending on the use case, having the ISO 19115 metadata in the resulting tiled feature
may not be required. Next to attribute filtering, there are also other techniques to optimize the
handling of the attributes of features. For more discussion on this topic, please refer to Chapter 12.

23

https://en.wikipedia.org/wiki/AIXM
http://www.aixm.aero/schema/5.1/AIXM_Features.xsd

Chapter 11. Tiling schemes

Essential to tiling is the choice of a tiling scheme. This topic has been thoroughly researched for
raster tiling, with many tiling schemes available in practice. Therefore, when investigating vector
tiling, consideration of raster tiling schemes and review of their applicability to vector tiling makes
sense. This chapter discusses a number of raster tiling schemes and alignment with vector tiling
schemes. From an OGC interoperability perspective, we focus on the OGC WMTS standard and a
number of standardized WMTS tiling schemes.

11.1. WMTS raster tiling schemes

11.1.1. GoogleMapsCompatible

Probably the most widely used and one of WMTS' well-known tiling schemes is the
GoogleMapsCompatible tiling scheme [13][14]. This approach specifies a Web Mercator map
projection (EPSG:3857), a square layout, a fixed tile size of 256 x 256 pixels and 18 zoom levels.

11.1.2. GoogleCRS84Quad

The GoogleCRS84Quad is defined by WMTS as a well-known tiling scheme. Apart from the
projection this approach is equivalent to the GoogleMapsCompatible tiling scheme. It uses a
geodetic reference instead of a Spherical Mercator projection.

11.1.3. GlobalCRS84Scale

The GlobalCRS84Scale tiling scheme is defined by WMTS as a well-known tiling scheme. This
approach specifies a geodetic tile pyramid (CRS:84), a square layout, a fixed tile size of 256 x 256
pixels and 21 zoom levels.

11.1.4. World Mercator

The World Mercator tiling scheme is defined by NGA’s NSG WMTS 1.0 Implementation Profile [15].
That profile specifies a Mercator map projection (EPSG:3395), a square layout, a fixed tile size of 256
X 256 pixels and 25 zoom levels.

11.1.5. WGS 84 Geodetic

The WGS 84 Geodetic tiling scheme is defined by NGA’s NSG WMTS 1.0 Implementation Profile. This
approach specifies a geodetic tile pyramid (EPSG:4326), an equirectangular layout, a fixed tile size
of 256 x 256 pixels and 24 zoom levels.

11.2. Vector tiling schemes

The raster tiling schemes listed in the previous section all use a quad-tree structure, in which each
tile is the parent of 4 other tiles.

24

Laval 1 Laval 2 Level 3

0 1 00 01 10 11 ooo0 001 010 011 100 101 110 | 111

2 | 372 03 .42 | 13 | | 002 003 042013402 103 112 113

...............

5 20 21 |80 3t 0200021 030 | 031 120 121 | 130 441
R "“""“~~~,h
x“---._x 22 23 | 32 | 33 022 023 032 033" 422, 123 | 132 133
) B

200 201 210 211 3000 301 310 311
202 | 203 212 213 302 303 312 | 313
220023y 23000331 320 | 321 330 | 331

222 | 223 | 232 | 233 | 322 | 323 | 332 | 333

Figure 7. Quad Tree

This is no coincidence, given its simplicity and ease to work with in applications. In general, the
same tiling structure can be used for vector tiling. The main difference is the format of the data
contained in a tile, which will no longer be a bitmap image as used in raster tiling schemes. The
following sections discuss a number of aspects that influence the decision for a vector tiling
scheme.

11.2.1. Choice of projection

The choice of a coordinate reference system (CRS) is an important question and is impacted by the
intended use of the vector tiles. If visualization in a fixed projection is the main use case, then
choosing a tiling scheme built around that projection makes sense. An example is the Mapbox
Vector Tile Specification which specifies the Web Mercator projection. In use cases where there is
no single projection specified and reprojection is needed, and/or if feature processing is required,
then choosing a tiling scheme built around a geodetic reference (in case of geodetic source data),
not specifically tied to a projection, would be preferred.

Relation to the tiling approach

The choice of CRS (projection), and more specifically the ability to reproject data afterwards, is also
related to the tiling approach. In case of render-based tiling, the features are turned into pixel-
based rendering instructions tied to a given projection, making it difficult to support or use a
different projection. This is in contrast to feature-based tiling, which keeps the feature’s
coordinates, and is therefore represented in the source CRS. Note that in case of feature-based
tiling, it can also be interesting to transform the data into another reference during the vector tile
production - not a view (pixel-based) reference but a geographical reference. For instance, if you
know upfront that your data will always be visualized using a Mercator projection, then
transformation to Mercator upfront would make sense.

25

11.2.2. Maximum level of detail

By definition, a tile pyramid has a set of levels or tile matrices, each representing a set of tiles at a
given scale. In case of raster data, the deepest level of detail typically corresponds to the scale
needed to be able to represent the original raster data. For example, in the case of raster data with
10 cm/pixel and NGA’s World Mercator projection, you need 22 levels to represent the detail down
to the original source. This is based on the quad-tree tiling scheme’s zoom level scale set table ([15],
Table 8). With less zoom levels, you will not reach a 10 cm/pixel resolution.

The choice for a maximum level of detail is different for vector data, as there is no concept of
resolution or pixel density. Additional levels of detail are mainly needed if something changes to
the state of a feature. Examples of changes:

* If a feature is added (e.g., local roads added at a high level of detail)

« If a feature’s representation is changed (e.g., country border gets more accurate at a high level
of detail)

If there are no further changes beyond a given level of detail, there is no enhanced value in adding
more levels of detail, since vector data can be rendered with infinite precision - in contrast with
raster data. An application can simply use the latest level of detail and use the associated features,
regardless whether the current map scale is at a higher level of detail.

11.2.3. Alternate tiling schemes

The tiling schemes discussed above are all built-around a similar quad-tree structure. Although a
quad-tree tiling scheme structure is the most common one in practice because of its efficiency and
simplicity, other tiling scheme structures exist that focus on specific use cases, such as:

* K-d trees: In a K-d tree, a tile has 2 children, typically not equal in size. The split axis can be
chosen based on data statistics (e.g., median). This structure focuses on non-uniformly
distributed data sets.

* Loose quadtrees: This is a variant of a quadtree, in which the 4 child tiles of a parent tile can
have overlap. This structure can be useful to avoid feature splitting for features with a
relatively small spatial extent, such as buildings.

* Irregular trees: Irregular trees step away from the quad-tree concepts of having square tiles and
a fixed relationship between parent and child tiles. Similar to K-d trees, this structure focuses
on non-uniformly distributed data sets.

* Octrees: In an octree, a tile has 8 children. While quadtrees are ideal for 2D data, octrees can be
useful for 3D data, such as 3D buildings.

As an example, the I3S specification supports the use of multiple indexing schemes. I3S is agnostic
with respect to the model used to index objects/features in 3D space. Both regular partitions of
space (e.g. “Quadtrees” and “Octrees”) as well as density dependent partitioning of space (e.g. R-
Trees) are supported by I3S.

26

Chapter 12. Feature Tiling Strategies

When a tiling scheme has been chosen, the next logical step is to define an approach to assign
features to tiles. In this chapter, we give an overview of possibilities and points of attention. In
general, a vector feature consists of two items:

* geometry

o attributes

The two sections below respectively discuss both topics in more detail.

12.1. Geometry Handling

The handling of a vector feature’s geometry is an important part of a vector tiling approach. The
approach used in an implementation should take into account all aspects of a solution:

» Targeted use case: Are the vector tiles primarily intended for visualization? Is reprojection
support needed? Do consumers need to be able to change the styling client-side? Is the geometry
needed to support analysis / computational tasks?

* Complexity for the producer: How difficult is it to produce vector tiles? Is feature assembly
information required?

* Complexity for the consumer: How difficult is it to consume vector tiles? Do clients need to
assemble features?

12.1.1. Coordinates or pixels

A major decision is the choice between tiling on a pixel level or at a coordinate level. This directly
relates to the two vector tiling approaches discussed at the beginning of this Engineering Report,
render-based tiling and feature-based tiling.

When tiling on a pixel level, vector features are rendered during the vector tile production process.
This is done to determine the instructions needed to render the data in an application. These
render instructions should be directly usable by a rendering engine in a consumer (client or
(rendering) service). Consequently, this is the easiest approach from a consumer’s point of view.

The SVG format is a good example of how such rendering instructions appear. The instructions are
typically in the form of moveTo pixel position A, lineTo pixel position B, etc. The resulting rendering
instructions are clipped according to the tile boundary and stored in a tile.

When tiling at the geometry and coordinate level, vector features are tiled using their original
geometry (transformations can be optionally used, as indicated in the previous chapter).
Consumers need to transform them to pixel coordinates, using a projection of choice. Consequently,
this increases the complexity in the consumer (client or (rendering) service), compared to pixel
level tiling. It does have the advantage of being projection-independent, which can be important for
certain use cases.

27

12.1.2. Geometry types and tiling strategies
Depending on the geometry type, multiple tiling strategies can be defined.

* Point: A point is the most trivial case, as it doesn’t need any geometry splitting and it can be
easily assigned to one tile. A special case is a point falling precisely on a tile boundary, requiring
a decision to assign the point to one of the adjacent tiles.

* Lines: A line can cross tile boundaries so all intersecting tiles need to know (at least) about the
contained part of the line.

* Areas: Very similar to lines, with the added complexity that tiles might not only intersect with
the area, they can also be completely contained in the area.

* Parametric curve-based shapes (circle, arc, ellipse, ...): Can be treated similar to areas, but
the tile sectioning can be done more efficiently: in general, a curve-based shape has a pretty
compact representation (e.g., a point and a radius for a circle), so it makes sense to keep the
geometry as a whole without any tile sectioning.

* Point clouds: A variation of the point case, without any additional complexity with respect to
tiling. Since a point cloud is 3D, an octree tiling schema could be of use.

* 3D objects: 3D objects can be handled atomically, in which they are assigned to one particular
tile, or as a mesh consisting of vertices (points), edges (lines) and faces (polygons), in which they
can also be split across tiles. For objects with a relatively small geographic extent (e.g., a
building), it will be easier for a consumer to use one tile. Similar to point clouds, an octree tiling
schema could be of use.

Topology Preservation

When performing tile sectioning, it is generally important to preserve a feature’s topology. For
instance, to ensure that an area-shaped feature converted to vector tiles and subsequently read by
a consumer remains an area-shaped feature - and not a feature composed of geometry pieces
introduced by the tile sectioning algorithm.

Points on the edge

Special cases can arise for geometries that completely overlap with a tile edge - e.g., for lines and
points. The chosen vector tiling approach should define how to handle such cases: store the
features across the adjacent tiles or assign the features to one single tile.

12.1.3. Assembly

For the render-based approach, assembly of features is generally not required. The targeted use
case is high-performance & high-quality visualization. To maximize the performance, consumers
should be able to directly read and visualize a tile’s contents.

For the feature-based approach, assembly of features may be required to support operations that
require the representation of the original feature - aligned with the targeted use cases of feature-
focused vector tiling. The ability to assemble a feature contained in multiple tiles does make it
considerably more complex for a producer and consumer:

28

* Producers need to store all necessary information in a tile to enable consumers to assemble a
feature

* Consumers need to read all tiles with which a feature overlaps and consequently assemble the

feature.

When visualization is the primary use case, special clipping techniques can be used by both the
raster and feature-based tiling approaches to avoid tile-related rendering artifacts with common
styling, without the need to have the full geometry. The Styling chapter will further discuss this.

12.2. Attribute handling

When dealing with vector features, one is inherently also dealing with vector features' attributes.
Depending on the targeted use case, multiple approaches can be defined to handle a feature’s
attributes in a vector tiling context.

12.2.1. Associate attributes with tiles

One solution is to include attributes in the vector feature tiles. This enables direct use of the
attributes in applications, to support a variety of use cases:

Attribute-based styling (e.g., fill color depending on an attribute value)

Labeling (e.g., street names)

* Filtering (e.g., filter airspace reservation data based on time)

Information consulting

An attention point for this approach is the amount of storage needed to store the attributes. A
simple but effective solution is the introduction of an anchor tile.

Anchor tile

An anchor tile represents a tile that can be used to store unique information related to a feature.
Each tile that intersects a feature contains a link to the anchor tile. This enables users to find it and
access its information. As such, the anchor tile can be used to store the attributes of a feature.
Although theoretically not required, an anchor tile is typically the tile with which the feature
overlaps the most. This ensures that the tile is typically already available for the user that is
visualizing the feature.

12.2.2. Provide access to attributes through a database or service

Depending on the vector feature’s data type, the number of attributes can be significant. For
instance, in case of the AIXM 5.1 aeronautical data format, a vast number of attributes can be
defined for a feature, including an entire ISO 19115 metadata description. Depending on the
targeted use case and available transfer bandwidth, there might be too much information to store
in a tile. A tile with too much information can reduce the performance benefits related to vector
tiling. An alternative solution is to keep the attributes in a separate data store and make them
available upon request - potentially through a web service. A tile (possibly only the anchor tile)
could include a link to this store, so that users can access it. Conceptually, this approach is

29

comparable to the OGC WMS GetFeatureInfo request, which enables users to request more
information for a given location on a map retrieved via the WMS.

12.2.3. Hybrid approach

Hybrid approaches can be defined that use a combination of attribute storage in the tile and on the
server. This enables users to make the most important attribute information readily available in
the tile, while less frequently used information can be requested from a server.

30

Chapter 13. Styling

Rendering vector data requires applying styling to the vector features' geometries: line strokes,
area strokes and fills, icons, labels, and so forth. In this chapter, we look at the relation between
styling and vector tiles: the possibilities to style vector tiles, the relation with filtering and the
impact of vector tiling on the styling process.

13.1. Styling vector tiles

In the context of vector tiling, styling can be coupled or decoupled from the vector tile data,
depending on the tiling approach.

With a render-based tiling approach, the styling description is an integral part of the vector tiles -
either in an embedded form or through a reference. The focus is on high-performance, high-quality
vector data rendering, so applications consuming the data need to be able to immediately render
vector data contained in a tile. Additionally, the approach gives data providers the possibility to
associate the preferred style with the data, thus ensuring consistent maps on different platforms
and applications.

With a feature-based tiling approach, styling can be completely decoupled from the vector tile. The
vector tile essentially consists of the feature’s geometry and its attributes (or a way to access them).
Although styling information can be included, it can equally be left out and replaced by a stand-
alone feature styling definition unaware of the vector tile structures. An example of the latter is an
OGC Symbology Encoding file.

13.2. Feature filtering

To optimize a vector tile’s content, filtering of vector features is preferably done during the tiling
production process. However, since the underlying tile pyramid has a discrete set of levels of detail,
data might be filtered at a slightly different scale than intended.

For instance, assume two levels of detail in a random quadtree tile pyramid, one at 1:50000 and the
other at 1:25000. If feature data needs be filtered out at a scale between both map scales, it will only
be effective at 1:50000. This is illustrated in the image below, in which a filter for local roads is
associated with scale 1:40000.

31

Filter levels Tile pyramid levels

1:100000: filter highways 1:100000

1:40000: filter local roads 1:50000

1:25000
== 1:12500

--- 1:6250

1:3125
Figure 8. Scale Filtering

This can be solved by applying the same filtering rule when consuming the vector tiles. Applied to
the example, the application will read the feature data at 1:50000 and additionally filter out
features based on the map scale defined by the filtering rule.

One way to implement this in a standardized way is to rely on OGC’s Symbology Encoding (SE)
specification. The following OGC SE snippet defines a styling rule to render local roads at or below
1:40000, corresponding to the previous example. During the vector tile production process, this
style definition could be used to filter out the data at the next scale in the tile pyramid, 1:50000.
When the data is accessed in the client, the client can use the style both to find the right stroke
width and color and to hide it between 1:50000 and 1:40000 (it will automatically be hidden above
1:50000, since it is no longer part of the data at or above that scale.)

<FeatureTypeStyle xmlns="http://www.opengis.net/se" version="1.1.0">

<Rule>
<Filter xmlns="http://www.opengis.net/ogc">
<PropertyIskqualTo>

<PropertyName>type</PropertyName>
<Literal>local</Literal>
</PropertyIsEqualTo>
</Filter>
<MaxScaleDenominator>40000</MaxScaleDenominator>
<LineSymbolizer>
<Stroke>
<SvgParameter name="stroke-width">0.5</SvgParameter>
<SvgParameter name="stroke">#809bc@</SvgParameter>
</Stroke>
</LineSymbolizer>
</Rule>
</FeatureTypeStyle>

13.3. Tiling and line rendering

Ideally, the styling of data is not impacted by tile boundaries. However, without any measures, tile
boundary artifacts will quickly show up.

32

As an example, assume a road feature dataset. To improve the visibility of the road on maps, a
common road styling rule includes two strokes, one for the interior and one for the boundary. The
figure below illustrates this styling for a single road feature. In practice, this is achieved by
rendering the feature twice, once with a thick stroke, representing the color for the road boundary,
and once with a thin stroke, representing the color for the road interior.

Figure 9. Road Style

When vector tiling is applied to this dataset, it can happen that the road is split into two or more
fragments, each representing the part of the road that overlaps with a given tile. When the twofold
styling is applied to the resulting tiled features, the result will include an unwanted line at the tile
boundary, as shown in the figure below.

Figure 10. Road Style - Tiled

There are a number of approaches to solve this:

13.3.1. Feature assembly approach

In case of the feature-based tiling approach, by reassembling the geometry pieces across the
different tiles, the feature’s original geometry can be reconstructed. By applying the style on the
resulting feature, there will be no impact anymore from the tile boundaries.

13.3.2. Clipping bounds approach

Another solution that works both with the feature-based and rendering-based tiling approaches is
to define the vector tiles with a boundary slightly larger than the bounds of the tile. When the data
gets rendered, the rendering engine needs to apply the tile bounds as clipping bounds, hence
avoiding the boundary rendering artifact.

The figure below illustrates this by showing the rendering of the feature’s segment that is located in
the left tile. The grey line represents the tile boundary. Without any clipping bounds the result
would look like the rendered road in this figure.

33

Figure 11. Road Style without Clipping Bounds

By applying the clipping bounds, the piece right from the grey line will not be rendered, as shown
in the figure below.

Figure 12. Road Style with Clipping Bounds (right)

By applying the same clipping technique to the other tile, as illustrated in the figures below, the end
result will be as in the initial figure, without any tile boundary lines.

Figure 13. Road Style without Clipping Bounds

Figure 14. Road Style with Clipping Bounds (left)

34

13.4. Tiling and area rendering

Compared to line rendering, area rendering adds the concept of a fill. Fill operations on a polygon
can result in similar rendering artifacts. In general, the same techniques for line rendering - feature
assembly and clipping bounds - can be applied to area rendering. Special care is however needed in
case the area fill is defined by a pattern (e.g., hatched style). By definition, the feature assembly
approach will work as if there were not tiles. In case of the clipping bounds approach, special
measures might be needed to make sure that the resulting, visually merged patterns are aligned
with each other.

13.5. Tiling and labeling

Labels can exist in many forms - single-line, multi-line, rotated, curved (e.g, street name within a
curved road feature) with an anchor point that defines its location. A potential issue in combination
with vector tiling is the effect of having multiple labels in the result. This can happen if the split
vector features are labeled separately. Although label decluttering techniques could mask this at
large map scales, cluttering and overlap of labels will eventually becoming visible when zooming in
and / or around tile boundaries.

Similar as with line and area rendering, the feature assembly approach solves the above issues
automatically, since each feature will only be labeled once. Other solutions specific to labeling are:

» Track labeled feature segments: If each feature’s segment has a unique feature id, it is possible
for a rendering engine to only label a feature once - e.g., the first encountered segment.
Although effective, it has as drawbacks (1) the requirement of having additional labeling logic
specific for vector tiling and (2) a potential unnatural label location, which could result in
seeing the tile boundaries throughout the label placement.

* Define label positions upfront: In case of render-based tiling, it can make sense to define label
positions upfront, embedded in the screen coordinates of a vector tile. With this approach, the
vector tile production process can make sure that features get a predefined label position,
which is then to be used by the rendering engine in the component that reads and renders the
vector tiles.

35

Chapter 14. Performance and memory usage

This chapter discusses a few aspects and design considerations related to the performance and
memory usage of vector tiles. Most concepts have been introduced in other chapters. This chapter
revisits them in the light of performance and memory usage.

14.1. Memory usage

14.1.1. Anchor Tiles

When the requirement is to store the attributes of features directly into the tile (for fast access by
an application), consider the concept of an anchor tile allowing the storage of the feature attributes
only once. In case of large datasets with many attributes, this can result in a significant reduction of
required memory, both in the application reading the tiles and in the data container storing the
tiles. In the application, this typically outweighs the cost of one extra request to get the anchor tile.

14.2. Shared Edge Detection

In case of vector data with shared edges (e.g., country borders), it can be interesting to detect these
shared edges and store their geometry only once. Besides a positive impact on memory
consumption, it also benefits simplification and the preservation of topology.

14.3. Performance

14.3.1. Render-based Tiling

With render-based tiling, a tile is optimized for high-performance visualization: an application
reading tile needs to apply the rendering instruction to have the tile contents displayed on the
screen. Performance-wise, this typically outperforms a feature-based tiling approach, since there
are no geometry assembly and/or reprojection steps involved.

14.3.2. Reference Transformation

In case of render-based tiling, a feature’s geometry is already projected to screen coordinates,
avoiding the cost of any additional projection logic. In case of feature-based tiling, this is not the
case. However, if there is a commonly used target reference, it does make sense to transform a
feature’s geometry to this reference. This avoids the need for an application to do the
transformation on-the-fly for each tile. For instance, in case of source data defined using one or
multiple references and an application that always uses Mercator, it is recommended performance-
wise to transform the data to Mercator during the vector tile production process.

36

Appendix A: Revision History

Table 2. Revision History

Date Release

April 14, 2016 A1

September 30, .8
2016

October 31, 2016 .9

Editor

R. Houtmeyers

R. Houtmeyers

R. Houtmeyers

Primary
clauses
modified

all

all

all

Descriptions

IER

draft ER

addressed
comments from
internal reviews

37

Appendix B: Bibliography

[1] Web: Robert Patrick Victor Nordan: An Investigation of Potential Methods for Topology
Preservation in Interactive Vector Tile Map Applications, http://www.diva-
portal.org/smash/get/diva2:566106/FULLTEXTO01.pdf

[2] OGC 07-057r7: OGC Web Map Tile Service Implementation Standard
[3] OGC 06-042: OGC Web Map Service Implementation Standard
[4] OGC 09-025r2: OGC Web Feature Service 2.0 Interface Standard

[5] Web: Vladimir Agafonkin, John Firebaugh, Eric Fischer, Konstantin Kéfer, Charlie Loyd, Tom
MacWright, Artem Pavlenko, Dane Springmeyer, Blake Thompson: Mapbox Vector Tile
Specification, https://github.com/mapbox/vector-tile-spec

[6] Web, Patrick Cozzi: Cesium 3D Tiles Specification, https://github.com/AnalyticalGraphicsinc/3d-
tiles

[71 Web: OGC press release announcing 3D Tiles for consideration as a Community Standard,
http://www.opengeospatial.org/pressroom/pressreleases/2466

[8] Web: Esri: Indexed 3d Scene Layer (I3S) specification, https://github.com/Esri/i3s-spec

[9] Web: OGC press release announcing I3S for consideration as a Community Standard,
http://www.opengeospatial.org/pressroom/pressreleases/2499

[10] Web: 0GC press release announcing 0GC CDB as 0OGC Standard,
http://www.opengeospatial.org/pressroom/pressreleases/2488

[11] OGC 15-113, Volume 1: OGC CDB Core Standard: Model and Physical Data Store Structure
[12] OGC 16-070, Volume 4: OGC CDB Best Practice use of Shapefiles for Vector Data Storage
[13] OGC 07-057r7 Web Map Tile Service Implementation Standard.

[14] Web: Joe Schwartz: Bing Maps Tile System, https://msdn.microsoft.com/en-
us/library/bb259689.aspx

[15] NGA Standardization Document: National System for Geospatial-Intelligence (NSG), Web Map
tile Service 1.x.x Implementation Interoperability Profile (2016-05-20)

38

http://www.diva-portal.org/smash/get/diva2:566106/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:566106/FULLTEXT01.pdf
https://github.com/mapbox/vector-tile-spec
https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/AnalyticalGraphicsInc/3d-tiles
http://www.opengeospatial.org/pressroom/pressreleases/2466
https://github.com/Esri/i3s-spec
http://www.opengeospatial.org/pressroom/pressreleases/2499
http://www.opengeospatial.org/pressroom/pressreleases/2488
https://msdn.microsoft.com/en-us/library/bb259689.aspx
https://msdn.microsoft.com/en-us/library/bb259689.aspx

	Testbed-12 Vector Tiling Engineering Report
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope
	1.2. Document contributor contact points
	1.3. Future Work
	1.4. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. vector tile|tiled vector|vectile
	3.2. slippy map

	Chapter 4. Conventions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Status Quo & New Requirements Statement
	6.1. Status Quo
	6.2. Requirements Statement

	Chapter 7. Solutions
	7.1. Targeted Solutions
	7.2. Recommendations

	Chapter 8. Vector Tiling Approaches
	8.1. Challenges
	8.2. Approaches
	8.2.1. Render-based tiling
	8.2.2. Feature-based tiling

	8.3. Industry implementations
	8.3.1. Mapbox Vector Tile Specification
	8.3.2. Cesium 3D Tiles
	8.3.3. Esri I3S
	8.3.4. OGC CDB
	8.3.5. Proprietary Implementations

	Chapter 9. Data Coherence
	9.1. Use cases
	9.1.1. Styling
	9.1.2. Geometry operations

	9.2. Approaches
	9.2.1. Feature access on a data back-end / server
	9.2.2. Feature assembly information
	9.2.3. Alternative solutions

	Chapter 10. Simplification
	10.1. Generalization of Lines
	10.1.1. Preservation of Topology
	10.1.2. Shared Segment Generalization

	10.2. Generalization of Areas
	10.3. Generalization by Transformation
	10.4. Feature Filtering
	10.5. Attribute Filtering

	Chapter 11. Tiling schemes
	11.1. WMTS raster tiling schemes
	11.1.1. GoogleMapsCompatible
	11.1.2. GoogleCRS84Quad
	11.1.3. GlobalCRS84Scale
	11.1.4. World Mercator
	11.1.5. WGS 84 Geodetic

	11.2. Vector tiling schemes
	11.2.1. Choice of projection
	11.2.2. Maximum level of detail
	11.2.3. Alternate tiling schemes

	Chapter 12. Feature Tiling Strategies
	12.1. Geometry Handling
	12.1.1. Coordinates or pixels
	12.1.2. Geometry types and tiling strategies
	12.1.3. Assembly

	12.2. Attribute handling
	12.2.1. Associate attributes with tiles
	12.2.2. Provide access to attributes through a database or service
	12.2.3. Hybrid approach

	Chapter 13. Styling
	13.1. Styling vector tiles
	13.2. Feature filtering
	13.3. Tiling and line rendering
	13.3.1. Feature assembly approach
	13.3.2. Clipping bounds approach

	13.4. Tiling and area rendering
	13.5. Tiling and labeling

	Chapter 14. Performance and memory usage
	14.1. Memory usage
	14.1.1. Anchor Tiles

	14.2. Shared Edge Detection
	14.3. Performance
	14.3.1. Render-based Tiling
	14.3.2. Reference Transformation

	Appendix A: Revision History
	Appendix B: Bibliography

