Testbed-12 REST Architecture
Engineering Report

Table of Contents

I 6 L0 0T 16 [0 o) 4 L 7
I 00) 7
1.2. Document contributor contact POINtS.ottt i i 7
1.3 FUtUre WOTK .. e 7
I 0)) 0} PP 7

2 REIEIEIICES . . oottt e 9

3. Terms and definitions.ottt 10
3.1. Application Programming Interface (APD) 10
3.2 HyPermedia.t e 10
3.3. Representational State Transfer (REST)ttt 10
3.4, RePreSentatiONSttt ettt ettt e 10
35 RO UL C . . oottt e e e 10

60 4 L74=3 11 10 0 P 11
4.1, ADDreviated teIINSottt ettt 11

TR =3 a4 1= P 12

6. General Considerationsottt 13
6.1. REST PriNCIPIeS. ...ttt e i aa 13

6.1.1. The Core Principle: Uniform Interface i 13
6.1.2. Additional Principles Of RESTttt et 14
6.2. RESTIUL APISt e e e 15
6.3. Richardson Maturity Model. oo e 15
6.4. Advantages and Disadvantages of using REST 16
6.5. From an Service-oriented to a RESTful OGC Architecture.............t 16
6.5.1. Identification 0Of RESOUICESottt e 18
6.5.2. Specification of the API. e 18
6.5.3. Hypermedia replacing the OGC SeIrVICEeS?ttt 20

7. WES REST SOV T . .ttt et et e et e et e e e et 22

7.1, BaCKGIOUNM . . .o vv it e 22
7 WS e e 22
TA2. NAS GML. . oo e 22
7.0.3. GEOJSON ..ot e 23

7.2 WS REST .. e e 24
7.2.1. Resources to be providedottt 24
7.2.2. OPerations OIL FESOUICES . . oottt vttt ettt ettt e e ettt ettt ettt 25

7.3. IMPIlementationttt e 26
7.3.1.Request GEOJSON i e e 26
7.3.2. NAS GML Attributes. . . oottt e e 28

7.3.3. Create GeoJSON FeatureTyPpeottt 29

T4, LeSSONS LeaINe . . oot ottt et e et e e e e e e e 31

8. WIS REST SEIVET ...ttt ittt ettt ettt ettt ettt et 32
8.1. Resources to be providedttt e 32
8.2. OPEratiONs ON FESOUTICTES . .ttt vte e et tttee ettt ee ettt ee et et eee e e tae e ianeeeennnns 32
8.3. IMPLemMEeNtationo ottt ettt et e e e e 32
8.4. LeSSONS Learned.ottt ittt e 35
8.5. Speculations on a RESTful API from WMS. oot e enn 37

8.5. 1. INtrOdUCHION. . ..ottt e e e e 37
8.5.2. LISt Of FESOUICES . . oottt ettt ettt e et e ettt e e et e e ittt eiiaaeas 37
8.5.3. QUETY PATAIMETIEYS . . . ettt ittt e et et et e e e e e ettt e et 38
SR T D) (o]0 1) o/ PP 38

9. WIMTS REST SOIVeT . ..ttt et e et et e e e e et e et et et 40

9.1. Resources to be providedttt e 40
9.1.1. OPEratiOns ON TESOUTCES . .« ¢ v vttt et ettt et e e e e e e e e e e e e ea e en e neeenns 41
9.1.2. ASSOCIAtiONS DEtWEEIN FESOUICES . . .« v vttt ettt ettt e et e e et iia e innneans 41

9.2. IMPLeMENtatioNo ottt ettt et et e e e e e 41

9.3. LeSSONS Learned. . . . oottt ettt ettt e e e e 42

9.4. Relationship of TileJSON to REST-WMS/WMTS.ttt 42

T0. WCS REST SeIVeT . . .ttt ettt ettt e et e e e e e e e e ettt et e e 44

10.1. WCS REST DINAINE . . . oo oottt ettt et eeean 44
10.1.1. Provided TESOUICESttt ittt ettt e et e e e et e e e e ie e e iiee e 44
10.1.2. OPErations ON FESOUTCES . .« ettt et ettt et et ee ettt tee e e et iae e e eiane e 45
10.1.3. ASSOCIatioNS DEIWEEI FESOUICES . . . vt vttt ettt et e e e ie et iiee e iianeens 45

10.2. IMPlemMentationottt e e 46

10.3. LeSSONS Learned.o ottt ettt e e e e 46

B T R SR < V= 48
11.1. Resources to be provided by WPS e 50
11.2. Operations 0N WPS FESOUICES.ttt ettt ettt et et et et ie e iee e ie e 51
11.3. Associations betiween WPS FeSOUICESo v vttt ettt et iee e iiae e iiae e 52
11.4. IMPlemMentationoou ettt ettt e e e 53
11.5. LeSSONS Learned.o ottt ettt e e e 61

12. OGC REST Components Outside Testbed 12ottt 63
12.1. WaterML REST API e e 63
12.2. Sensor Things API e e e et e 63

13. Commonalities and Differences between the different REST Servers 66
13.1. RMM Levels (Support of Hypermedia)ottt eennns 66
13.2. Complexity and Implementation Effortso i 66
13.3. Service Capabilitiesttt 66
13.4. JSON ENCOAINES . .o v ettt ettt ettt et e e e e e e e e e et e e i e e et iiae e 67
13,5, ASSOCIATIONIS .+« v vttt ettt ettt e e e e e e e 67

13.6. URL Templates vS. HATEOASttt et i et 68

13.7. Request Parameters & FIIteringttt et e 69

S TR T o1 28 PP 70
14. ReCOMMENAAtIONS oottt ettt ettt e e e e e 71
14.1. Suggested RMM LevVelt e e ettt e 71
14.2. Identification 0f RESOUICESottt e eean 71
14.3. Associations betWeen ReSOUICeSttt e eeean 71
14.4. Description of API & Discovery Of RESOUICESouuriniiiiie it 72
14.5.Usage Of HTTP VerbSottt e et e et et et 73
14.6. Usage of HTTP Status COOes.ttt ettt 73
14.7. Filter Parameters and Content Negotiation.ouuinriiin it 74
Appendix A: List of OGC documents dealing with REST........ 75
Appendix B: Revision HiStOryottt e et e 76

Appendix C: BIDLOgraphyt 77

Publication Date: 2017-05-12

Approval Date: 2016-12-07

Posted Date: 2016-10-28

Reference number of this document: OGC 16-035

Reference URL for this document: http://www.opengis.net/doc/PER/t12-A005-1
Category: Public Engineering Report

Editors: Christoph Stasch, Simon Jirka

Title: Testbed-12 REST Architecture Engineering Report

OGC Engineering Report
COPYRIGHT

Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of
use, visit http://www.opengeospatial.org/

WARNING

This document is an OGC Public Engineering Report created as a deliverable of
an initiative from the OGC Innovation Program (formerly OGC Interoperability
Program). It is not an OGC standard and not an official position of the OGC
membership.It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard. Further, any
OGC Engineering Report should not be referenced as required or mandatory
technology in procurements. However, the discussions in this document could
very well lead to the definition of an OGC Standard.

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"),
free of charge and subject to the terms set forth below, to any person obtaining a
copy of this Intellectual Property and any associated documentation, to deal in
the Intellectual Property without restriction (except as set forth below),
including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to
permit persons to whom the Intellectual Property is furnished to do so, provided

http://www.opengis.net/doc/PER/t12-A005-1
http://www.opengeospatial.org/

that all copyright notices on the intellectual property are retained intact and
that each person to whom the Intellectual Property is furnished agrees to the
terms of this Agreement.

If you modify the Intellectual Property, all copies of the modifiedthe Intellectual
Property, and to permit persons to whom the Intellectual Property is furnished
to do so, provided that all copyright notices on the intellectual property are
retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual
Property must include, in addition to the above copyright notice, a notice that
the Intellectual Property includes modifications that have not been approved or
adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY
RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE
WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED Intellectual Property must
include, in addition to the above copyright notice, a notice that the Intellectual
Property includes modifications that have not been approved or adopted by
LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY
RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE
WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL
PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE.
ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL
PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER

LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by
destroying the Intellectual Property together with all copies in any form. The
license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the
operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be
likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the
Intellectual Property together with all copies in any form, whether held by you
or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder
of a copyright in all or part of the Intellectual Property shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such
copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other
special designations to indicate compliance with any LICENSOR standards or
specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts.
The application to this Agreement of the United Nations Convention on
Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be
a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may
be downloaded or otherwise exported or reexported in violation of U.S. export
laws and regulations. In addition, you are responsible for complying with any

local laws in your jurisdiction which may impact your right to import, export or
use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make
this license enforceable.

Abstract

REST interfaces facilitate the application of OGC standards in many novel
application scenarios, e.g. implementing OGC clients on constrained devices, as
they ease the implementation of service requests and simplify the interaction
patterns. Thereby, REST serves as a complementary technology to the already
existing SOAP/POX provided by most of the current OGC standards. This
engineering report (ER) provides an overview on different REST service
implementations in the Testbed-12 and in related activities. As a result, this ER
can be used to develop recommendations on architecture guidelines for
providing REST interfaces in the geospatial domain.

Business Value

Utilizing the REST architectural style for the exchange of geospatial information
across the Web may ease development and deployment of both, clients and
servers, and may have the potential to provide a simple, scalable and resilient
way to exchange spatial information. Since REST principles are simple and rely
on common Web standards, this work may also link the OGC architecture to
existing common interfaces and components, easing the integration of
geospatial information with external (non-spatial) resources.

What does this ER mean for the Working Group and OGC in general

The REST Architecture ER describes the concepts for, implementations of, and
experiences with providing REST APIs for different OGC services including WFS,
WMS, WMTS, WCS and WPS. It also provides general considerations about REST
APIs in the beginning of the ER and summarizes the findings made when
conceptualizing and implementing the different REST APIs at the end of the ER
resulting in general recommendations for OGC standards. As the Architecture
DWG considers overarching architectural issues that are germane to multiple
OGC(r) standards, we think that the REST Architecture ER is highly relevant for
this group and that providing REST APIs and JSON encodings for geospatial
resources broadens the field of potential applications and eases the
implementation.

How does this ER relate to the work of the Working Group

The Architecture DWG considers overarching architectural issues that are
relevant for several OGC standards. The REST Architecture ER describes general
approaches for providing REST APIs for OGC services, which we consider being
a general issue for all OGC services. One of the core aims of the Architecture
DWG is also to provide encoding rules and best practices for (Geo-)JSON. We

consider this being closely related to the definition of REST APIs, as in most
cases, REST APIs provide JSON encodings for the resources offered by the APIL
We hence proposed that the Architecture DWG reviews the ER and comments on
it.

Keywords

testbed-12, Resource-oriented Architecture, OGC REST Bindings, REST,
engineering report, http

Proposed OGC Working Group for Review and Approval

This engineering report was submitted to the Architecture DWG for review and
comment.

Chapter 1. Introduction

1.1. Scope

This OGC Engineering Report (ER) is a deliverable (A005-1) in the Linked Data and Semantics (LDS)
thread of the OGC Testbed 12 activity. It describes the different REST services developed in this
thread as well as considerations and recommendations for a RESTful OGC architecture.

1.2. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization
Christoph Stasch (Editor) 52°North GmbH
Simon Jirka (Editor) 52°North GmbH
Benjamin Pross 52°North GmbH
Jeff Harrison The Carbon Project
Peter Vretanos CubeWerx

Alex Mircea Dumitru Jacobs University

1.3. Future Work

The following work items have been identified as future work items:

* Provide a common way for describing RESTful OGC services.

* Provide formal, machine-readable definitions of spatial associations (e.g. topological
relationships such as within, intersects, etc.) under supervision of the OGC naming authority
that can be utilized in resource-oriented architectures and linked data.

* Provide REST binding specifications for OGC Sensor Observation Service, OGC Web Processing
Service, and OGC Web Coverage Service as well as for the OGC Pub/Sub standards. The RESTful
services described in this document may serve as a basis for these standards.

* Provide a common way how to encode links in hypermedia (e.g. FeatureCollections) and non-
hypermedia responses (Tiles).

1.4. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any

relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. References

The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

* OGC 06-042, OpenGIS® Web Map Server Implementation Specification

* OGC 06-121r9, OGC® Web Services Common Standard

* OGC 07-057r7, OpenGIS® Web Map Tile Service Implementation Standard

* OGC 09-025r1, OGC® Web Feature Service 2.0 Interface Standard

* OGC 10-004r3, OGC Abstract Specification Geographic information — Observations and
measurements

* OGC 10-025r1, Observations and Measurements - XML Implementation

* OGC 12-000, OGC® SensorML: Model and XML Encoding Standard

* OGC 12-006, OGC® Sensor Observation Service Interface Standard

* OGC 15-018r2, OGC® WaterML2.0: Part 2 - Ratings, Gaugings and Sections
* OGC 15-033, OGC WaterML2.0 part 2 — RESTful API and JSON encoding

* OGC 14-065, OGC® WPS 2.0 Interface Standard

* OGC 15-052r1, OGC® Testbed 11 REST Interface Engineering Report

* OGC 15-078r6, OGC SensorThings API Part 1: Sensing

* OGC 15-100r1, OGC Observations and Measurements — JSON implementation

Chapter 3. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r9] shall apply. In addition, the following terms and
definitions apply.

3.1. Application Programming Interface (API)

An interface definition that permits invoking services from application programs without knowing
details of their internal implementation.

3.2. Hypermedia

Hypermedia is an extension of the term hypertext. In addition to the general media information,
e.g. graphics, audio, or video, hyperlinks are provided that enable browsing between different
information items.

3.3. Representational State Transfer (REST)

Representational State Transfer (REST) offers a clean, simple and easy-to-understand method of
discovering, accessing and updating geospatial information. There is no special software to install.
A web browser, a web application or a mobile app can be used to access the service directly - using
standard HTTP methods (e.g. GET, PUT, POST, DELETE).

3.4. Representations

Representations describe the current or intended state of a resource at a certain point in time. A
representation consists of a sequence of bytes and metadata to describe those bytes. As an example,
a geographic feature resource may be represented by a GeoJSON document describing the spatial
location and other feature properties or by a JPEG image providing a rendered representation of
the feature. The media type definition provides the metadata needed to encode or decode the
different representations.

3.5. Resource

Following Fielding [1], "any information that can be named can be a resource". Thereby, a resource
is considered as a conceptual mapping to a set of entities, not the entity that corresponds to the
mapping at a particular point in time. Examples of resources in the geospatial domain are map tiles
(served by a WMTY), features (served by a WES), feature types (served by WFS), or observations
(served by an SOS).

10

Chapter 4. Conventions

4.1. Abbreviated terms

» APIApplication Program Interface

* HTTP Hypertext Transfer Protocol

* IDLInterface Definition Language

* JSON JavaScript Object Notation

* OGC Open Geospatial Consortium

* REST Representational State Transfer
* RMM Richardson Maturity Model

» SOA Service-oriented Architecture

* ROA Resource-oriented Architecture
¢ UML Unified Modeling Language

* URI Uniform Resource Identifier

* URL Uniform Resource Locator

* WCS Web Coverage Service

* WFS Web Feature Service

* WMS Web Map Service

» WMTS Web Map Tile Service

» WPS Web Processing Service

* XML Extensible Markup Language

Chapter 5. Overview

This ER provides an overview on the different REST implementations of the OGC Testbed-12, as
shown in Figure 1. It also provides guidance and recommendations on which future specification
activities of OGC standards can rely on to ensure a consistent specification of REST interfaces
including common architecture guidelines for providing REST interfaces in the geospatial domain.

02 - REST

- common security layer

RESTWPS
A04T
52N
REST WMS @
A040
Carbon CubeWerx
RESTWFS -
A035
52N, Carbon Carbon

Figure 1. Overview on the REST deliverables in the Linked Data and Semantics (LDS) thread of Testbed
12

The ER is structured as follows: the first clause 6 provides a general introduction in the concept of
RESTful architectures and summarizes the advantages and disadvantages of using RESTful servers
instead of e.g. POX-based Web Services. It also briefly sketches how existing OGC services may be
mapped to RESTful APIs. The next five clauses describe the different REST server implementations
realized in Testbed-12 for WFS (clause 7), WMS (clause 8), WMTS (clause 9), WCS (clause 10) and
WPS (clause 11).

Afterwards, clause 13 summarizes the commonalities and differences of the different REST server
implementations, before final recommendations are given in clause 14.

12

Chapter 6. General Considerations

The OGC activities related to REST architectures go back to 2009 when the first Engineering Report
about REST and SOAP bindings for the Web Map Tile Server (WMTS) was published as result of an
OWS-6 testbed activity. Since then, several activities have been implemented within and beyond
OGC testbeds. Previous OGC documents that deal with REST are listed in Annex A.

Currently, the Web Map Tile Service (WMTS) specification (OGC 07-057r7) is the only OGC
implementation specification explicitly defining a REST binding for an existing OGC service.
Recently, the Sensor Things API (OGC 15-078r6) has been released as another official
implementation standard defining a REST API. However, though it is relying on some concepts of
the Sensor Observation Service, it has a different focus and there is no corresponding service
specification.

This clause hence aims to lay the foundation for a common understanding of REST principles and to
describe what needs to be done to build REST bindings for existing OGC Web Services. The open
issues and recommendations are given in Clause 14.

6.1. REST Principles.

Representational State Transfer (REST) has been defined as an architectural style for distributed
hypermedia systems by Roy Fielding in his doctoral dissertation [1]. The architectural style is
defined by a set of constraints, which are described below. The core idea is that components of a
REST-based architecture communicate primarily through the transfer of resource representations
and additional control data which defines the actions upon these resources. In other words, the
control data defines a set of pre-defined operations (usually HTTP verbs) to exchange and/or
manipulate these representations, resulting in a uniform interface.

6.1.1. The Core Principle: Uniform Interface

The uniform interface is the central feature that distinguishes REST architectures from others. It is
defined by four principles: identification of resources, manipulation of resources through
representations, self-descriptive messages and hypermedia as the engine of application state
(HATEOS). Before explaining these constraints, we briefly define resources, identifiers and
representations.

According to Fielding, a resource can be everything that can be named. Examples of resources in
the geospatial domain are map tiles (served by a WMTS), features (served by a WFES), feature types
(served by WFS), or observations (served by an SOS). Each resource needs to be identifiable by an
unique identifier, usually a Uniform Resource Identifier (URI).

A representation describes the current or intended state of a resource at a certain point in time. Its
encoding is defined by a media type. As an example, a geographic feature resource may be
represented by a GeoJSON document describing the spatial location and other feature properties or
by a JPEG image providing a rendered representation of the feature. The media type definition
provides the metadata needed to encode or decode the different representations. Using a resource
identifier and a media type, a client should be able to retrieve a representation of the resource.

13

The following principles apply now to the uniform interface:

 Identification of resources: Each resource should be identifiable by a URI and each REST

server should be located under an Unified Resource Locator (URL). Together, the URI and the
URL allow to uniquely identify a resource (comparable to a street name and a house number in
a post address)

* Manipulation of resources through representations: If a client holds a resource

representation, it has enough information to manipulate this representation by an additional
request to the server, given it has the rights for manipulation.

Self-descriptive messages: In a REST architecture, a message consists of control data, a
resource identifier and an optional representation. This is enough information to process the
request without additional information.

Hypermedia as the engine of application state (HATEOS): This constraint requires that the
client is simply following links in hypermedia, provided as URLs, to navigate from one system
state to another. In other words, the client interacts with the server completely through
hypermedia. The hypermedia may be dynamically changed by the server. In theory, no a-priori
knowledge about interacting with the server is needed besides general knowledge of
hypermedia.

6.1.2. Additional Principles of REST

In

addition to the principles regarding the uniform interface described above, there are additional

restrictions on the architecture. These are as follows:

14

Client-Server: The user interface concerns (client) are separated from the data storage
concerns (server).

Stateless: Communication between clients and servers should be stateless, i.e. each request
from client to server must contain all necessary information to understand the request and
should not rely upon previous requests.

Cache: Responses should be labeled as cacheable or non-cacheable and hence enable caching of
rather static resource representations.

Layered System: A REST architecture should define a layered system. Component providers
can hence just offer a single layer and hide other components of other layers.

Code-on-demand (optional): Servers may provide scripts within resource representations and
hence allow for more light weight clients, e.g. embedding JavaScript code in an HTML
representation.

As an architectural style that abstracts from the World Wide Web (WWW), REST
does not require a specific protocol or, more precisely, the HTTP protocol. However,

NOTE since the common protocol of the WWW is HTTP and most of the existing OGC Web
Service specifications rely on HTTP, the remainder of this ER is focusing HTTP as the
application protocol.

6.2. RESTful APIs

Web Service APIs complying to the REST constraints described above, are called RESTful APIs [3].
The vast majority of RESTful APIs available in the WWW are based on HTTP.

HTTP-based RESTful APIs are defined by:

* the base URL of the resources
* media type(s) used for the representation of the resources

* the HTTP methods that are applicable
Table 2 illustrates how HTTP methods are typically used in RESTful APISs.

Table 2. Usage of HTTP verbs for RESTful APIs (modified from [5])

Uniform GET PUT POST DELETE
Resource Locator

(URL)

Collection, such as Retrieve Replace entire Create new entry Delete entire
http://api.example. representation of collection in collection collection
com/resources/ collection

Single resource Retrieve Replace - Delete resource
representation, representation of representation

such as resource

http://api.example.

com/resources/res

ource_xy

HTTP GET is used for the retrieval of information. PUT can be used to update existing resource
representations or collections. POST is used to create new resource representations and DELETE is
used for deleting resources. In some cases, POST is used to create a new resource representation for
a specific URL. However, this requires, that the client is (i) allowed to specify the resource
identifiers and (ii) knows that no other resource is identified by the request URL.

Instead of specifying specific response codes, RESTful APIs utilize the common HTTP Status Codes
(e.g. 200 for OK, 400 for bad request, etc.).

6.3. Richardson Maturity Model

The REST APIs available in the Web are varying regarding the constraints that are supported. For
example, not all REST APIs are supporting hypermedia. The Richardson Maturity Model (RMM)
defines different levels indicating how strict a Web service is following the REST principles ranging
from level 0 (not strict) to level 3 (strict). The different levels are listed in Table 3.

Table 3. The levels of Richardson’s REST Maturity Model

15

http://api.example.com/resources/
http://api.example.com/resources/
http://api.example.com/resources/resource_xy
http://api.example.com/resources/resource_xy
http://api.example.com/resources/resource_xy
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Level Properties

0 * uses XML-RPC or SOAP * service is identified by single URI * uses single HTTP method
(often POST)

1 * uses different URIs and resources * uses single HTTP method (often POST)

2 * uses different URIs and resources * uses several HTTP methods

3 * supports HATEOAS and thus uses hypermedia for navigation * uses different URIs and

resources * uses several HTTP methods

6.4. Advantages and Disadvantages of using REST

The advantages and disadvantages of using REST are liste in Table 4.

Table 4. Advantages and Disadvantages of REST architectures

Advantages Disadvantages
* Simplicity * Reliability * Scalability * * Simplicity * Increased Network Traffic *
Performance * Caching * Visibility of custom APIs and clients

Communication * Portability

The probably most significant advantage of implementing REST APIs with hypermedia support is
simplicity due to the uniform interface constraint. As most REST APIs utilize the HTTP verbs and
JSON as hypermedia encoding, usual Web browsers supporting JSON formatting may provide a first
entry point. More sophisticated thin Web clients may easily be build, because JSON is the default
serialization format for JavaScript applications. However, keeping the interface specification quite
general may also result in a variety of different REST APIs for the same purpose and dedicated
clients for these APIs resulting in decreased interoperability. To address this issue, a set of
recommendations has been derived in Clause 14.

Being stateless, REST improves reliability, as requests resulting in errors may be simply re-sent, and
scalability, as no additional status information needs to be stored and managed. As a potential
drawback, network traffic may be increased due to additional requests.

Another advantage is the ability for clients to cache representations improving performance and
decreasing network traffic. However, if the representations are dynamically changing, this may
become a drawback since information on the client side may be outdated or the update of
representations may require additional client requests.

6.5. From an Service-oriented to a RESTful OGC
Architecture

The geospatial services specified by the OGC are following a Service-oriented Architecture (SOA).
The specifications thus describe the access and management of spatial data in terms of service
operations. Resource-oriented Architectures (ROA) are defined from a different viewpoint: Instead
of specifying service operations, a ROA focuses on the resources that should be managed by a
server. In order to retrieve, create, update or delete these resources, the general HTTP methods

16

(GET, POST, PUT, DELETE) are applied to these resources .

OGC REST - Services -> Resources -> Associations

Level 3 Build links between your o1
. - Start building
Hypermedia related geospatial .
Resources. For example, Associations...
a map leads to the o)
image or feature that it . © | X ILJ
comes from. ='$ X
Measuremen

Level 2 Don’t define

HTTP Verbs ‘operations’,
just build the
services using
HTTP Verbs.

Use HTTP Verbs (GET, POST,
PUT, DELETE) on Resources...

yogc.com/oge/2.5/Schema
'www.ogc.com/oge/2.5/AdminBoundary_1

Level 1 Query
Focus on Identify geospatial Feature
Resources Resources... Collections
Processes
Coverages
Level 0 o) ¥ FeatureTypes :, ﬂj
Focus on Services ‘ E o Maps Descriptions = @Yol

Figure 2. OGC REST - From Services to Resources

The transition from spatial data that is served by OGC Web Services towards resources offered in a
OGC REST architecture is illustrated in Figure 2. In a first step, the service interfaces need to be
translated to REST APIs, which includes the transition from Level 0 to Level 2 in Richardson
Maturity Model. This boils down to to the following steps:

1. Identifying resources and associations between them: What resources should be managed?
What kind of associations exist between these resources and how could they be represented?

2. Specification of the API: What (HTTP) operations are applicable on the resources? What is the
main service endpoint and how are the resources accessible from this endpoint?

Unfortunately, as we will see in the chapters below, the translation is not as straight-forward as it
may appear, since the OGC services have been specified from a service-oriented viewpoint focusing
on operations rather than on resources. Therefore, step 1 is essential and needs to be executed with
care. In order to illustrate the required steps, we use the OGC Sensor Observation Service (SOS; OGC
12-006), which provides access to sensor observations and sensor descriptions and transactional
operations on them, as an example. In case of a consequent usage of hypermedia, the services as
known in the SOA are no longer needed. This is explained in the last subsection of this chapter.

17

6.5.1. Identification of Resources

The SOS provides access to observations based on the OGC Observations & Measurements (O&M)
model and sensor descriptions based on the OGC Sensor Model Language. Therefore, the questions
regarding the resources and associations in step 1 may be answered by analyzing these underlying
data models. Figure 3 shows a strongly simplified version of the basic resource model underlying
the SOS.

class 505 Data Model /’

ObservationOffering

M

belongsTo

Sensor Observation Feature
{ observedBy featureOfinterest

Figure 3. Simplified resource model of the Sensor Observation Service

In a nutshell, an observation is made on a feature of interest and has been observed by a certain
sensor. An observation belongs to an ObservationCollection which aggregates single observations.

The supported media types may depend on the encodings that are specified for the data models. In
case of O&M, an XML binding has been specified (OGC 10-025r1) and a JSON encoding is currently
available as a discussion paper (OGC 15-100r1). For SensorML, only an XML encoding is currently
specified.

6.5.2. Specification of the API

Once the core resources that should be offered are identified, the RESTful API needs to be specified.
This involves identifying which HTTP methods can be applied to which resources and defining the
base URL of the endpoint of the API Let the endpoint of the a RESTful SOS API be as follows:

https://my.sos.url/rest-api

In order to ensure that the functionality offered by the original OGC service is available, it may be
useful to take a look on the operations that are specified for the OGC service interface. In case of
SOS they look as shown in Figure 4. For illustration purposes, we focus on the core and
transactional operations.

18

http://www.opengeospatial.org/standards/om
http://www.opengeospatial.org/standards/om
http://www.opengeospatial.org/standards/sensorml

class Class Model /J

| Core |

+ DesoibeSensor) SensorDesoiption
+ (GetCapabilities(): CapabilitesDocument
+ GetObservation{): ObservatiocnCollection

| Transactional |

+ InsertCbservation{); ObservationID
+ InsertSensor): SensocrlD

Figure 4. Operations of Core and Transactional profile of Sensor Observation Service

The SOS core profile defines the operations for observation and sensor description retrieval. The
Transactional profile specifies the operations for the insertion of new sensors and observations. In
order to provide this functionality in the REST API, we thus need to specify, which HTTP operations
need to be applied on which resources.

Table 5 illustrates how the DescribeSensor and GetObservation operations can be realized using
HTTP methods on observation and sensor resources and corresponding collections. Since the
operations only define the retrieval of resources, the only HTTP method used is HTTP GET.

Table 5. HTTP methods on resources for implementing a RESTful API for the SOS Core profile

HTTP Method resource endpoint parameters description

GET https://my.sos.url/rest- NA returns the Capabilities
api document

GET https://my.sos.url/rest- NA returns an observation
api/observations collection

GET https://my.sos.url/rest- NA returns a single
api/observations/obs_id observation
1 representation

GET https://my.sos.url/rest- NA returns a sensor
api/sensors collection

GET https://my.sos.url/rest- NA returns a single sensor
api/sensors/sensor_id_1 representation

How can the feature of interest now be retrieved? The XML encoding of O&M already allows for the
usage of XML links. Hence, the feature of interest is already referenced from an observation and
may be served by a Web Feature Service. As such, O&M XML may already be considered as
hypermedia.

The transactional operations of SOS enable the insertion of new sensors and observations. Thus the
HTTP method used is HTTP POST and should be applied on the sensor or observation collections.

Table 6. HTTP methods on resources for implementing a RESTful API for the SOS Transactional profile

19

https://my.sos.url/rest-api
https://my.sos.url/rest-api
https://my.sos.url/rest-api/observations
https://my.sos.url/rest-api/observations
https://my.sos.url/rest-api/observations/obs_id_1
https://my.sos.url/rest-api/observations/obs_id_1
https://my.sos.url/rest-api/observations/obs_id_1
https://my.sos.url/rest-api/sensors
https://my.sos.url/rest-api/sensors
https://my.sos.url/rest-api/sensors/sensor_id_1
https://my.sos.url/rest-api/sensors/sensor_id_1

HTTP Method

POST

POST

resource endpoint

https://my.sos.url/rest-
api/observations

https://my.sos.url/rest-
api/sensors

parameters

observation
representation

Sensor representation

description

inserts new
observation and
returns assigned URI
for new observation

inserts new sensor and
returns assigned URI

As can be seen in the following clauses, there are still open issues left for defining
REST bindings for the OGC services. For example, the Capabilities cannot be easily

NOTE

used to describe the REST APIs, as the operations metadata section was originally

designed for service operations and currently only HTTP GET and POST are
supported. The issues and recommendations are listed below in Clause 14.

6.5.3. Hypermedia replacing the OGC services?

If all geospatial resources would be provided as hypermedia in an OGC REST architecture, the
classical division in OGC services providing operations for different data types, i.e. WCS providing
operations on coverages, WMS on maps, WFS on features, and so forth, would no longer be needed.
Coming back to our example of the provision of observations, the observations may be linked to
other spatial resources as illustrated in Figure 5. In a traditional service-oriented OGC architecture,
the observations, observation collection and sensor metadata would be served by a SOS (grey
classes), the feature by a WEFS (blue class), the spatial coverage representing an interpolated field
from the observation collection would be served by a WCS (yellow class), and the observations may
be rendered with the feature of interest on a map served by a WMS (orange classes). Another map

would be rendered from the spatial coverage and the features of interest.

class 505 Data Model /’

ObservationCollection

interpolatedTo

SpatialCoverage

e

hasMember T

istMemberCf

Observation

[,
interpolatedFrom

featureOfinterest

Feature

observedBy

_hasPropertyValue
[

renderedin

‘ ‘ generates ., ‘

renderedin

renderedin

renderedin

Figure 5. Observations and linked spatial resources provided as hypermedia.

20

https://my.sos.url/rest-api/observations
https://my.sos.url/rest-api/observations
https://my.sos.url/rest-api/sensors
https://my.sos.url/rest-api/sensors

Now, if all resources would be served as hypermedia, a single entry point, e.g. to observations
would be sufficient to follow the links to the other resources provided which would implement the
HATEOAS constraint. For example, one would be able to navigate from the observation to the
collection it belongs to, from the collection to the spatial coverage and from the coverage to the map
to which the coverage is rendered to. The underlying data may be serialized in RDF or JSON-LD (see
also the JSON ER and User Guide provided in this testbed).

However, as we will see below, most of current OGC REST implementations are implementing RMM
Level 2, meaning that no hypermedia is provided. Hence, in the long term it may be possible to go
beyond the borders between services in future OGC REST architectures, we consider translating the
OGC services to REST APIs as a sensible intermediate step.

21

Chapter 7. WFS REST Server

This section presents Testbed 12 experience using open geospatial REST with WFS and JSON. The
resulting JSON WFS REST API (A035) was able to represent real world phenomena as open
geospatial features. The features were deployed as open geospatial Resources that can be accessed
and updated using the language of the World Wide Web.

This section consists of the following sub-sections:

* Background - WFS, NAS GML and GeoJSON
* GeoJSON WEFS REST

7.1. Background

Technology Integration Experiments in this segment of Testbed 12, participants brought together
three aspects of Testbed 12 -

* WFS

* NAS GML
* GeoJ]SON

7.1.1. WES

The OGC Web Feature Service (WFS) Implementation Specification allows a client to retrieve
geospatial data encoded in Geography Markup Language (GML) and other formats from multiple
Web Feature Services. The specification defines operations for data access and manipulation
operations on geographic features, using HTTP as the distributed computing platform. Via these
interfaces, a Web user or service can combine, use and manage geodata— the feature information
behind a map image. Relevant WFS operations for this segment of Testbed 12 include -

* Query operations allow features or values of feature properties to be retrieved from the
underlying data store based upon constraints, defined by the client, on feature properties.

» Transaction operations allow features to be created, changed, replaced and deleted from the
underlying data store.

7.1.2. NAS GML

NSG Application Schema (NAS) is a Platform Independent Model that defines the GEOINT exchange
semantics for the US National System for Geospatial-Intelligence (NSG). For Testbed 12, NAS GML
was provided to test the ability of interoperable components to support the model, in particular the
Entity portion of NAS -

22

Feature Entity

E nt ity ... representations of temporally persistent
{Abstract} i real-world phenomena, including their
geometric position and extent
| r
Actor Device . Information Relationship Temporal
3 - Enti . . .
Entity Entity ol ctt’i’on Fga:_‘"e Entity Entity Entity
{Abstract) {Abstract} {Ab';t:gt} {Abstract} {Abstract} {Abstract)
[| | | | | | I I | [|
Administrative 1 . . Mass . Populated Surface || Tank |[Test Underground
Boundary e | el | f (R Grave DL Place gee Bunker Trail Site L Bunker
I I I I I [
Drive-in || Industrial || Electric Power |[Tank || Wind .
[RE] Theatre Park Station Farm Farm IS

Figure 6. Portion of NAS GML Provided to Testbed 12

For Testbed 12 Administrative Boundary features in NAS GML were provided to participants for
testing.

7.1.3. GeoJSON

GeoJSON is a geospatial data interchange format based on JavaScript Object Notation (JSON). It
defines several types of JSON objects and the manner in which they are combined to represent data
about geographic features, their properties, and their spatial extents. GeoJSON uses a geographic
coordinate reference system, World Geodetic System 1984, and units of decimal degrees.

GeoJSON object may represent a region of space (a Geometry), a spatially-bounded entity (a
Feature), or a list of features (a Feature Collection). GeoJSON supports the following geometry types:
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection.
Features in GeoJSON contain a geometry object and additional properties, and a Feature Collection
that contains a list of features.

GeoJSON features are this combination of geometry and properties:

23

"type": "Feature",
"geometry": {

"type": "PO_intlll
"coordinates": [0, 0]

h

"properties": {
"name": "admin boundary"

The properties attached to a feature can be any kind of JSON object.

7.2. WES REST

7.2.1. Resources to be provided

The resources that are provided by a WFS REST server are listed in Table 7 below and include the
capabilities document of the server, features, queries, transactions and certain metadata.

Table 7. Resources provided by the WFES REST server

Resource Class Description Access Path

Capabilities The complete service metadata {WIfSRESTBaseURL}
document.

Schema The complete application {schema URL}

schema offered by the server.

Feature Type A feature type (i.e. a named {ftype schema URL}
collection of features with the
same schema)

Feature A feature (i.e. a member of a {feat URL}
feature type)

Property of a feature type A named property from the {ftype URL}/{prop} (See note 1)
schema of a feature type

Property of a feature A named property from the {feat URL}/{prop} (See note 1)
schema of a feature

Query A complex query resource /query

Transaction A complex transaction resource /transaction

24

Resource Class Description Access Path

Notations:

1. The property name is appended before any query parameters

2. {schema URL}: The URL to the application schemas that the service offers; this URL is specified
in the capabilities document of the service using an atom:link element with rel="describedBy"

3. {ftype schema URL}: The URL to a schema document declaring the schema of the specified
feature type; this URL is specified at the first nesting level within the wfs:FeatureType element in
the capabilities document using an atom:link element with rel="describeBy"

4. {ftype URL}: The URL to the collection of feature of this type; it is specified at the first nesting
level within the wfs:FeatureType element in the capabilities document using an atom:link element
with the rel="collection"

5. {feat URL}: The URL of a feature; it is specified in the response to a query within the feature
container element (i.e. wfs:member element for an XML encoded response) using an atom:link
element with rel="self"

6. {prop}: The name of a property of a feature or feature type; appended to the resource URL
before any query parameters.

7.2.2. Operations on resources

Table 8. Operations on resources provided by WFS REST server

HTTP Operation Access Path Equivalent WFS Operation

GET /?... {schema URL} {ftype GetCapabilities
schema URL} {ftype URL}?... DescribeFeatureType
{query URL}?... GetFeature GetFeature

POST {ftype URL}?... Transaction

PUT (feat URL}?... {feat Transaction Transaction
URL}/{prop}?...

DELETE {feat URL}?... {feat Transaction Transaction
URL}/{prop}?...

It is important to note that emerging WFS drafts define four REST conformance classes:

» Simple Query

» Simple Transaction

* Complex Query

* Complex Transaction

The "Simple" conformance classes handle single feature type operations where the resource is the
feature collection (i.e. the feature type) and the operations are GET, POST, PUT & DELETE.

All classes are optional so people who don’t need or want complex query and transaction handling
don’t have to implement those Resources ... but if you want to support joins and atomic
transactions you will need to.

25

7.3. Implementation

In Testbed 12 Open Geospatial REST, WFS, NAS GML and Geo]JSON were integrated by The Carbon
Project to deploy a GeoJSON WFS REST.

* GML
http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision

* JSON
http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision?outputFormat=json

Note: In most JSON WES deployments there may be only JSON output format and the request would
be directed to the Administrative Subdivision feature Resource. Simple query and transactions
were tested with a focus on an initial assessment of NAS GML as GeoJSON.

7.3.1. Request GeoJSON

Basic request

GET /featuretypes/AdministrativeSubdivision?outputFormat=json
HTTP/1.1

HTTP/1.1 200 OK
Content-Type:
application/vnd.geo+json
{ "type": "FeatureCollection", "features": [{"type":"Feature","_id":"1",,"qgeometry":{
"type": "Polygon", "coordinates": [[[-122.438548585768, 37.7527347148009], [-
122.438712218419, 37.7542478576584], [-122.437694850195, 37.75428723271], [-
122.437588133248, 37.7528134664936], [-122.438548585768, 37.7527347148009]] 1]
},"properties":{
"nas:uniqueEntityIdentifier": "UUID-1-132904",
"nas:place": {
"nas:FeaturePlaceInfo": {
"nas:uniqueEntityIdentifier": "UUID-1-132904",
"nas:place": {}
}
¥
"nas:restriction”: {
"nas:RestrictionInfo": {
"nas:uniqueEntityIdentifier": "UUID-1-here",
"nas:commercialCopyrightNotice": {
"nas:TextLexUnconMeta": {
"nas:valueOrReason": "Copyright National Geospatial-Intelligence Agency"
}
b

"nas:securityAccessGroup": {

26

http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision
http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision?outputFormat=json

"nas:RestrictionInfoSecurityAttributesGroupMeta”: {
"nas:valueOrReason": {
"attributes": [

{

"jcism:classification": "U"
b
{

"icism:ownerProducer™: "USA"
}

]

alue": null

}
}
I
"nas:area": {
"nas:RealNonNegMeta": {
"nas:restriction": {

"nas:RestrictionInfo": {
"nas:uniqueEntityIdentifier": "UUID-1-here",
"nas:commercialCopyrightNotice": {

"nas:TextLexUnconMeta": {
"nas:valueOrReason": "Copyright National Geospatial-Intelligence Agency"
}
I

"nas:securityAttributesGroup": {
"nas:RestrictionInfoSecurityAttributesGroupMeta”: {
"nas:valueOrReason": {
"attributes": [

{
"icism:classification": "U"
I,
{
"icism:ownerProducer™: "USA"
}
1

"value": null

“nas:bgnAdminLevel": {
"nas:AdministrativeSubdivisionBgnAdminLevelCodeMeta": {
"nas:valueOrReason":
"http://api.nsgreg.nga.mil/codelist/BgnAdminLevel/firstOrder"
}
b

"nas:designation”: {

"nas:AdminSubdivisionDesig": {
"nas:uniqueEntityIdentifier": "UUID-1-132904",
"nas:gencPreferredName": {

"nas:TextLexUnconMeta": {
"nas:valueOrReason": "California"
}
}

as:gencShortUrnBasedIdentifier": {
"nas:GencShortUrnBasedIdentifierTextMeta": {
"nas:valueOrReason": "ge:GENC:3:3-3:US-CA"
}
}
}
J
"nas:principalSubdivision0f": {
"nas:GeopoliticalEntity": {
"nas:uniqueEntityIdentifier": "ge:GENC:3:3-3:USA",
"nas:boundary": null,
"nas:designation”: {
"nas:GeopoliticalEntityDesig": {
"nas:uniqueEntityIdentifier": "UUID-1-132904",
"nas:gencShortUrnBasedIdentifier": {
"nas:GencShortUrnBasedIdentifierTextMeta": {
"nas:valueOrReason": "ge:GENC:3:3-3:US-CA"

3}

In the example above, the response is a combination of geometry and properties, with the geometry
type of Polygon.

Since this is GeoJSON only EPSG code 4326 should be returned.

7.3.2. NAS GML Attributes

There is currently no guidance for representing attributes in a GeoJSON WFS so they were handled
in the following manner:

28

"nas:valueOrReason": {
"attributes": [

{

"icism:classification": "U"
I
{

"icism:ownerProducer": "USA"
}
1,

"value": null

}

7.3.3. Create Geo]JSON FeatureType

POST /featuretypes/AdministrativeSubdivision?outputFormat=json
HTTP/1.1

Content-Type:

application/vnd.geo+json

{
"type":"Feature",
"geometry":{
"type":"Polygon",
"coordinates":[
[

[
-122.478531156081,
37.7394760665792

-122.478795146849,
37.7409374031664

-122.477965461578,
37.7409374031664

-122.477739183777,
37.7394760665792

-122.478531156081,
37.7394760665792

]
}

roperties":{

30

"nas:uniqueEntityIdentifier":"UUID-1-132904",
"nas:place":{

"nas:FeaturePlaceInfo":{
"nas:uniqueEntityIdentifier":"UUID-1-132904",
"nas:place":{

"nas:featureEntity":null
}

}

}

as:restriction":{
"nas:RestrictionInfo":{
"nas:uniqueEntityldentifier":"UUID-1-here",
"nas:commercialCopyrightNotice":{
"nas:TextLexUnconMeta":{
"nas:valueOrReason":"Copyright National Geospatial-Intelligence
Agency"
}

}

as:securityAttributesGroup":{
"nas:RestrictionInfoSecurityAttributesGroupMeta":{
"nas:valueOrReason":null

}

}
}

as:area":{
"nas:RealNonNegMeta":{
"nas:valueOrReason":"415836540000",
"nas:restriction":{

"nas:RestrictionInfo":{
"nas:uniqueEntityIdentifier":"UUID-1-here",
"nas:commercialCopyrightNotice":{

"nas:TextLexUnconMeta":{
"nas:valueOrReason":"Copyright National Geospatial-

Intelligence Agency"

}
Iy
"nas:securityAttributesGroup”:{

"nas:RestrictionInfoSecurityAttributesGroupMeta”:{

"nas:valueOrReason":null

}

}
}

as:bgnAdminLevel":{
"nas:AdministrativeSubdivisionBgnAdminLevelCodeMeta": {

"nas:valueOrReason":"http://api.nsgreg.nga.mil/codelist/BgnAdminLevel/firstOrder"
¥

}

as:designation":{

"nas:AdminSubdivisionDesig":{
"nas:uniqueEntityIdentifier":"UUID-1-132904",
"nas:gencPreferredName": {

"nas:TextLexUnconMeta":{
"nas:valueOrReason":"California"
}
}

as:gencShortUrnBasedIdentifier":{
"nas:GencShortUrnBasedIdentifierTextMeta":{
"nas:valueOrReason":"ge:GENC:3:3-3:US-CA"
}

¥
b
"nas:principalSubdivision0f":{

"nas:GeopoliticalEntity":{
"nas:uniqueEntityIdentifier":"ge:GENC:3:3-3:USA",
"nas:boundary":null,

"nas:designation”:{

"nas:GeopoliticalEntityDesig":{
"nas:uniqueEntityIdentifier":"UUID-1-132904",
"nas:gencShortUrnBasedIdentifier":{

"nas:GencShortUrnBasedIdentifierTextMeta":{
"nas:valueOrReason":"ge:GENC:3:3-3:US-CA"

}

HTTP/1.1 201 Created

Additional examples such as changing the value of a property would use PUT method etc.

7.4. Lessons Learned

Based on the experiences of Testbed 12, a GeoJSON WFS API may have significant potential to
represent real world phenomena as open geospatial features as open geospatial REST Resources
that can be accessed and updated using the language of the World Wide Web.

In the future, REST WFS may represent the Capabilities Resource as JSON Schema instead of current
XML. There currently is no guidance for such metadata descriptions.

31

Chapter 8. WMS REST Server

The WMS (A040) work item for Testbed 12 involved investigating and implementing the use of
GeoJSON as an output format for the WMS GetFeatureInfo operation as described in OGC 15-053,
“Testbed 11 Implementing JSON/Geo]JSON in an OGC Standard Engineering Report”. Specifically, this
work item was concerned with recommendation 28 from OGC 15-053 which proposed including an
encoding for GetFeatureInfo responses based on GeoJSON. Recommendation 28 further proposed
replacing the geometry part by a marker of the position of the query and the position of the
returned feature. If the returned objects correspond to simple features, an identifier is to be
included in the response that allows recovering the geometry using an additional WFS query. The
Testbed 12 RFP proposed using the proposed WMS 1.4 draft specification as the base service
standard for this work. The state of the WMS 1.4 draft specification, however, is such that it would
not be possible to implement a service with the WMS 1.4 API within the time and resource allocated
for this work item in Testbed 12. Instead, the existing and more stable WMS 1.3 (OGC 06-042) server
was proposed and used for this work item.

8.1. Resources to be provided

We can infer from the purpose of the GetFeatureInfo operation that the relevant resource is a
“feature” and that a GeoJSON response would be considered a representation of that feature.

The current draft WMS 1.4 specification (which seems to deprecate an existing draft
NOTE WMS 2.0 version based on the modification dates of the documents) discusses REST
only in a peripheral way and not related to the GetFeatureInfo operation at all.

8.2. Operations on resources

The WMS is a data portrayal service and as such, the only HTTP method used is the GET method
which is used to retrieve the resources provided by the service (i.e. maps and feature info).

8.3. Implementation

A WMS 1.3 server supporting GeoJSON as a GetFeatureInfo output format was deployed for Testbed
12 here:

http://tb12.cubewerx.com/a040/cubeserv?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilitie
S

The following example retrieves GeoJSON output is response to a GetFeatureInfo request:

32

http://tb12.cubewerx.com/a040/cubeserv?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities
http://tb12.cubewerx.com/a040/cubeserv?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities

Example of HTTP GET request for retrieving a feature info resource (NOTE: Request has been line-
wrapped for easier reading)

http://tb12.cubewerx.com/a040/cubeserv?SERVICE=WMS&
VERSION=1.3.0&
LANGUAGE=en-CA, en&
REQUEST=GetFeatureInfo&
CRS=EPSG%3A3857&
BBOX=-13641185.826,4546529.053,-13601935.412,4575116.502&
WIDTH=1027&HEIGHT=748&
LAYERS=USGS.Struct_Point&
FORMAT=1mage%2Fx-jpegorpng&
QUERY_LAYERS=USGS.Struct_Pointé&
FEATURE_COUNT=10&
1=812&
J=345&
INFO_FORMAT=application%2Fjson

The following GeoJSON document is retrieved by this URL:

Example of a feature info resource encoded as GeoJSON.

{
"type": "FeatureCollection",
"features": [
{

"type": "Feature",

"fsetName": "Struct_Point",

"geometry": {
"type": "Point",
"coordinates": [

-122.2622829998311,
37.87610699954206

1

I

"properties": {
"PERMANENT_": "{F154F04D-FD02-4D8E-9B8E-E122331C931C}",
"SOURCE_FEA": "115214",
"SOURCE_DAT": "{B04D081F-2258-4584-B950-3659EE6688B8}",
"SOURCE_D_1": "Schools ORNL nationwide schools dataset USGS provisional load",
"SOURCE_ORI": "Oak Ridge National Laboratory, Geographic Information Sciences

and Technology Group",

"DATA_SECUR": 5,
"DISTRIBUTI": "E3",
"LOADDATE": "2011-12-20 00:00:00.000 +00:00",
"FTYPE": 730,
"FCODE": 73006,
"NAME": "Graduate Theological Union",
"ISLANDMARK": 2,
"POINTLOCAT": 1,

33

34

"ADMINTYPE": null,
"ADDRESSBUI": null,
"ADDRESS": "2400 Ridge Rd",
"CITY": "Berkeley",
"STATE": "CA",

"ZIPCODE": "94709-",
"GNIS_ID": null,

"FOOT_ID": null,
"COMPLEX_ID": null

"type": "Feature",
"fsetName": "Struct Point",
"geometry": {
"type": "Point",
"coordinates": [
-122.2614299998325,
37.87587699954241
]
I
"properties": {
"PERMANENT_": "{D8BFD704-2104-4EC2-A725-6CB66A6E7BI7}",
"SOURCE_FEA": "112127",
"SOURCE_DAT": "{B04D081F-2258-4584-B950-3659EE6688B8}",
"SOURCE_D_1": "Schools ORNL nationwide schools dataset USGS provisional load",
"SOURCE_ORI": "Oak Ridge National Laboratory, Geographic Information Sciences
and Technology Group",
"DATA_SECUR": 5,
"DISTRIBUTI": "E3",
"LOADDATE": "2011-12-20 00:00:00.000 +00:00",
"FTYPE": 730,
"FCODE": 73006,
"NAME": "Church Divinity School of the Pacific",
"ISLANDMARK": 2,
"POINTLOCAT": 1,
"ADMINTYPE": null,
"ADDRESSBUI": null,
"ADDRESS": "2451 Ridge Road",
"CITY": "Berkeley",
"STATE": "CA",
"ZIPCODE": "94709-1211",
"GNIS_ID": null,
"FOOT_ID": null,
"COMPLEX_ID": null
}
Iy

1,
"bbox": [
-122.2624979998308,

37.875506999543,
-122.2614299998325,
37.87680799954097

Normally, packed JSON output is generated from by the A040 server but the output

NOTE presented here has been wrapped and truncated to make it easier to read.

8.4. Lessons Learned

Providing a Geo]JSON response for WMS GetFeaturelnfo requests makes a lot of sense, since more
and more client applications are web-browser based and JSON is the more natural representation
in this environment. However, OGC 15-053 imposes certain complications that were questioned,
and ultimately discarded, in the implementation of A040.

OGC 15-053 states that "we are not recommending returning the full geometry description because
we assume that this is the work of a WFS GetFeature operation using identifiers recovered by the
GetFeatureInfo request”. The justification for suggesting that returning a geometry is out of scope
for a WMS GetFeatureIlnfo response was not clear. The entire point of having a WMS
GetFeaturelInfo request is to:

1. give a WMS client the ability to query information about a feature without having to implement
any WFS logic

2. give a WMS server the ability to provide information about a feature without having to
implement a companion WFS

If a WMS client is interested in the geometry of a feature, it’s likely for the purpose of plotting it on
the map to highlight the feature(s) that the user has clicked on. Wouldn’t it be convenient if the
GeoJSON GetFeaturelnfo response could include the geometry as part of the response? Of course,
GeoJSON can do exactly that so we saw no reason for needlessly complicating the situation by
bringing a WES into the picture.

Furthermore, returning a vector pointing from the user click location (which client already knows)
to "a point that is in the interior or the border of the returned feature" is completely useless to the
client. Then requiring the client to somehow determine the association to the appropriate WFS
server and WFS feature type (see discussion below), formulate and issue an appropriate WEFS
GetFeature request, and be equipped to handle the WFS response, is a lot to ask of a simple WMS
client especially in the case where the client simply wants to highlight a feature on the map.

The requirements imposed on a WMS server by this aspect of requirement 28 are also overly
onerous. The requirement is basically suggesting that if a WMS wants to be able to serve geometries
to its client —so that it can highlight them on a map for example — then the WMS must also include
an implementation of a WFS server to handle that. This all seems very heavyweight for no good
reason, especially since GeoJSON responses are naturally equipped to return the geometries right
from the start.

If the concern is that returning geometries in a WMS GetFeaturelnfo response uses unnecessary

35

bandwidth for client applications that don’t require the geometries, then our position is that using a
bit of extra bandwidth like this is a small price to pay for the simplicity of the interface. The
addition of two optional GetFeaturelnfo parameters (Table 8) is proposed to streamline this:

Table 9. Additional proposed GetFeaturelnfo request parameters
Parameter Name Values Description

GET_GEOMETRIES Boolean Indicates whether or not
geometries should be returned
in the GetFeaturelnfo response.
If FALSE, then (at least in the
case of GeoJSON output) the
geometry should be returned as
null. If unspecified, it’s at the
server’s discretion. The server
is not obligated to honor this
parameter.

SIMPLIFY GEOMETRIES Boolean Indicates whether or not
geometries returned in
GetFeaturelnfo response should
be simplified to the resolution
of the corresponding GetMap
request. If unspecified, the
default value is FALSE. The
server is not obligated to honor
this parameter.

The deployed TB12 implementation of the GetFeatureInfo operation includes these two parameters.

Finally, none of this is to say that returning the WFS feature identifier of the feature as part of the
WMS GetFeatureInfo response is necessarily a bad thing. In fact, it might be useful to complex
clients that really do need full WFS access to the feature (for example, to perform updates on it,
etc.). It's worth noting that a WFS feature identifier alone is not enough. The client application
would have to also know:

1. The base URL of the association WES server (it’s not necessarily the same as the base URL of the
WMS server being accessed)

2. The name of the associated WFS feature type (it’s not necessarily the same as the name of the
WMS layer being accessed)

3. The namespace of the associated WFS feature type (there is not way to deduce this from the
WMS interface)

The mechanism(s) to allow the determination of these associations was certainly beyond the scope
of OGC 15-053r1. However, OGC 16-043, "Testbed-12 Web Integration Service Engineering Report",
proposes just such a mechanism in Clause 6, "GetAssociations operation”.

36

8.5. Speculations on a RESTful API from WMS

8.5.1. Introduction

The question has been asked about whether the WMTS can be considered as the REST API for the
WMS? The real question, however, is why is a WMS necessary now that we have a WMTS? For
many situations the WMTS can indeed act as a RESTful replacement from the WMS. However, the
answer to this question comes down to one of flexibility (WMS) versus scalability (WMTS).

The WMS can serve maps of arbitrary size, at arbitrary scales, in arbitrary coordinate system and
with arbitrary styles and in a variety of output formats.

The WMST, on the other hand, serves images composed of tiles at very specific scales, with very
specific tile boundaries, in very specific coordinate systems and in very specific output formats. In
order to approach the flexibility of a WMS, a WMTS would need to generate a tile cache for each
offered CRS, in each offered style, at each offered scale, for each offered output format, etc. Clearly,
this quickly becomes an unmanageable combinatorial and space problem.

So, assuming that that WMTS is not the REST API for a WMS, the question then becomes, what does
a RESTful API for WMS look like?

This clause does not attempt to answer this question but rather provides some speculations for
consideration when designing a RESTful API for the WMS. Specifically, the discussion will speculate
about:

1. the list of resources of a RESTful WMS
2. query parameters that may be used with those resources

3. discovery considerations (i.e. how clients should determine those resource URLS)

8.5.2. List of resources

The first task for designing a RESTful API is to establish what the resources are available. Some
examples of possible basic resources might include:

1. service metadata

* i.e. the capabilities document

2. layer

* a basic unit of geographic information that may be requested as a map from a WMS

3. map

* an order list of layers

4, view

* aresource to control how a map is rendered onto a screen; (e.g. where the map is centered,
what zoom level is being displayed what projection is being used, etc.)

37

feature

* aresource for feature-information queries

This is by no means meant to be an exhaustive list of WMS resources. Other aspects of a WMS
might also be materialized as resource; for example, styles or map legends. This list is meant only to
stimulate discussion in future test beds and in the WMS standards working group.

8.5.3. Query parameters

Once the set of resource have been identified the next task would be to identify the query
parameters that may be used with those resource. Assuming the list of resources proposed in the
previous clause, the following parameters might be relevant:

1. layer parameters

a. style

2. map parameters
a. output format
b. transparent
c. back ground color
d. exceptions format
e. time

f. elevation

3. view parameters
a. bbox
b. crs
c. height
d. width

8.5.4. Discovery

Once the resources and parameters have been defined, there will be a need to consider how a client
should determine the resource URLs. Some possibilities might be:

* A URL-template solution similar to WMTS; the capabilities document would need to report the
templates; the template variables and the precise syntax of their values would need to be
specified.

* A well-known URL structures for each resource type.

» Some sort of opaque top-level map resource with hypermedia controls to various sub-resources
and related resources; this would probably be the most RESTful approach, but might be the
trickiest to define since there are so many variables (spatial window, coordinate system, layers,

5 styles, extra dimensions, map size in pixels, image format, etc.) to take into consideration, and

38

the mechanism would have to be as expressively powerful as the current KVP interface.

e A combination of one or more of the above.

39

Chapter 9. WMTS REST Server

The WMTS work item (A042) for Testbed 12 involved three tasks:

1. Deployment of the WMTS server, serving data for GeoPackage generation

2. An implementation of the TileJSON for the WMTS simple profile as per clause 10.3.1 or OGC 15-

053

3. Support for the two tile matrix sets World Mercator (EPSG 3395) and Web Mercator (EPSG 3857

or EPSG 4326)

The first work item was completed very early on with the deployment of a WMTS server offering
National Land Cover and Ortho Imagery data. The remainder of this clause describes the other two

work items.

9.1. Resources to be provided

According to the WMTS Specification (OGC 07-057r7), the resources provided by a WMTS REST

server are listed in Table 9.

Table 10. Resources provided by the WMS REST server

Resource Class

Capabilities

Tile

Description Access Path

The complete service metadata {WMTSBaseURL}/1.0.0/WMTSCa
document. pabilities.xml

A rectangular pictorial {WMTSBaseURL}/{TileMatrixSet
representation of geographic Y{TileMatrix}/{TileRow}/{TileCo
data, often part of a set of such 1}.png

elements, covering a spatially

contiguous extent and sharing

similar information content and

graphical styling, which can be

uniquely defined by a pair of

indices for the column and row

along with an identifier for the

tile matrix.

Information related to a
particular pixel of a map that
refers to the geographic data

Featurelnfo

{WMTSBaseURL}/{TileMatrixSet
}{TileMatrix}/{TileRow}/{TileCo
LAJHATxml

portrayed on that area.

Besides the standard resources provided by a WMTS (i.e. tiles), if we define a Tile]SON document of
a layer to be a resource in and of itself, then the resource provided by A042 is a "TileJSON

document".

The TileJ]SON document is defined by an open specification that can be found here:

https://github.com/mapbox/tilejson-spec/tree/master/2.1.0.

The document defines a very simple

encoding for describing the availability of a WMTS Simple profile layer in Web Mercator.

40

http://portal.opengeospatial.org/files/?artifact_id=35326
https://github.com/mapbox/tilejson-spec/tree/master/2.1.0

9.1.1. Operations on resources

The WMTS is a data portrayal service and as such, the only operation defined is the HTTP GET
method which is used to retrieve the resources provided by the service (i.e. tiles and TileJSON
documents).

9.1.2. Associations between resources

A WMS Capabilities document provides links to the TileJSON document of each layer in two
redundant ways:

1. by advertising a service-oriented GetTileJSON operation which takes SERVICE, VERSION,
OPERATION=GetTileJSON and LAYER parameters

2. by advertising a "TileJSON" ResourceURL for each layer

A TileJSON document in turn provides links to a set of tiles by means of tile-URL templates (as
defined by the TileJSON specification).

9.2. Implementation
The TileJSON-generating WMTS server was deployed in Testbed 12 at the following URL:
http://tb12.cubewerx.com/a042/cubeserv/default/wmts/1.0.0/WMTSCapabilities.xml

The following is a RESTful example of accessing a TileJSON document from this server using the
HTTP GET method:

http://tb12.cubewerx.com/a@42/cubeserv/default/wmts/1.0.0/tileJSON/National_Land_Cover
.National _Land_Cover

The following Tile]SON document is retrieved by this URL (NOTE: Normally, packed JSON output is
generated from by the A042 server but the output has been wrapped in this example to make it
easier to read):

41

http://tb12.cubewerx.com/a042/cubeserv/default/wmts/1.0.0/WMTSCapabilities.xml

{"tilejson":"2.1.0",
"name":"National Land Cover",
“tiles":["http://tb12-1.cubewerx.com/ab42/0penImageMap/tilesets/USGS/
National _Land_Cover/National_Land Cover/default/
smerc/{z}/{y}/{x}.jop",
"http://tb12-2.cubewerx.com/ad42/0penImageMap/tilesets/USGS/
National_Land_Cover/National_Land_Cover/default/

smerc/{z}/{y}/{x}.jop",
"http://tb12-3.cubewerx.com/ad42/0penImageMap/tilesets/USGS/
National _Land_Cover/National_Land Cover/default/

smerc/{z}/{y}/{x}.jop",
"http://tb12-4.cubewerx.com/ad42/0penImageMap/tilesets/USGS/
National _Land_Cover/National_Land Cover/default/

smerc/{z}/{y}/{x}.jop"1],
"bounds":[-2493045,1317885,-1713555,2497245]

}

9.3. Lessons Learned

This exercise showed that the WMTS specification can be easily extended to support other tile-
access strategies.

TileJSON essentially does what WMTS does, but in a more restrictive way, allowing only the
Spherical Mercator coordinate system, a single layer, a single style, no extra dimensions, no feature-
info querying, etc.. This makes TileJSON clients a bit easier to implement than WMTS clients
(assuming that the restrictions of TileJSON are acceptable).

Adding TileJSON support to a WMTS could help allow a TileJSON client to use the WMTS. However,
it’s not a perfect plug-in solution for TileJSON clients, because the WMTS capabilities document still
needs to be parsed (either by a human or automatically) in order to determine the TileJ]SON URLs.

9.4. Relationship of TileJ]SON to REST-WMS/WMTS

Now that is has been shown that a WMTS can generate a TileJ]SON document the question of
whether all the necessary components are in place to build a REST-WMS/WMTS can be discussed.

The availability of TileJSON is orthogonal to the issue of REST. Its availability or not does not make
a service any more or less RESTful. A TileJSON document is simply an alternative representation of
a set of tile URL templates. The primary effects of the availability of Tile]SON are:

* TileJSON clients will have an easier time communicating with a WMTS
* being able to access TileJSON from a WMTS will likely aid in the construction of browser-based

WMTS clients because JSON is natively handled by Javascript

On the issue of building a REST-WMS/WMTS, the WMTS is (depending on how rigorous your
requirements for RESTfulness are) already a RESTful service. Its primary resources (i.e. tiles) are
individually addressable via URL and there is a means of navigating from the service root to those

42

resource via the tile URL templates advertised in the service metadata document (i.e. the
capabilities document).

The WMS, on the other hand, cannot currently be considered a RESTful service. In some
circumstances where the full flexibility of the WMS API is not required (e.g. building web-based
geoportal applications) the WMTS can be considered a RESTful replacement for WMS. However, as
already discussed in the "WMS REST Server" clause, the WMS is far more flexible and dynamic than
the WMTS and would thus require its own RESTful API to be defined to properly cover all the
requirements of a WMS.

43

Chapter 10. WCS REST Server

The WCS REST Server is used to serve multidimensional coverages (terrain data, satellite imagery,
climate data) in a RESTful way that allows for easier client development using standard web
libraries and clients (e.g. Postman, RestfulJs, the average browser).

The coverages that were used to exemplify our REST requests are provided by the NASA Earth
Observatory and contain monthly-averaged temperature and radiance data with global coverage
over a span of 10 years in two different formats. The first, contained in the AvgLandTemp coverage,
exposes the direct values as floating points, the other, RadianceColorScaled contains radiance data
which was processed using a color profile resulting in an multi-band rgb coverage.

The implementation used in the examples follows the WCS REST Protocol Binding draft extension
that is described in the next section. The technical details of the implementation are discussed in
the Implementation section.

10.1. WCS REST binding

Details about the WCS REST Protocol Binding can be found in the WCS REST extension draft.
Synthesized, the protocol binding exposes all the functionality of the WCS service by mapping
previously defined operations like GetCapabilities or DescribedCoverage to REST resources like
Capabilities and CoverageDescription. Both the core and extension requests are covered by the
protocol binding.

10.1.1. Provided resources

The resources that are provided by a WCS REST server are listed in Table 10 below and include the
capabilities document of the server, coverages (including subsets) and corresponding metadata

Table 11. Resources provided by the WCS REST server

Resource Class Description Access Path Example

Capabilities The complete service =~ {WCSRestBaseUrl}/capa http://ows.rasdaman.or
metadata document. It bilities g/rasdaman/ows/wcs/2.
contains a list of 0.1/capabilities
available extensions
and all the available
coverage resources

Coverage Full coverage in the {WCSRestBaseUrl}/cove http://ows.rasdaman.or

format negotiated by
the client and server
through the proper
HTTP Headers (e.g.
Accept)

rage/{coverageld} g/rasdaman/ows/wcs/2.

0.1/coverage/NN3_1

Coverage Description

44

Full metadata
regarding one specific
coverage in the
negotiated format

{WCSRestBaseUrl}/cove
rage/{coverageld}/descr
iption

http://ows.rasdaman.or
g/rasdaman/ows/wcs/2.
0.1/coverage/AvgLandT
emp/description

https://portal.opengeospatial.org/wiki/pub/Testbed12/RESTArchitectureER/12-174_WCS-REST-extension_2013-08-10.docx
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/capabilities
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/capabilities
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/capabilities
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/NN3_1
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/NN3_1
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/NN3_1
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/description
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/description
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/description
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/description

Resource Class

Subset of a coverage

Range subset of a
coverage

Description

A coverage derived on
the fly from a subset
operation applied to a
persistent coverage.
*The subset of a
coverage is still a
coverage

A coverage derived on
the fly from a range
subsetting operation
applied to a persistent
coverage *The range
subset of a coverage is
still a coverage

10.1.2. Operations on resources

Access Path

{WCSRestBaseUrl}/cove
rage/{coverageld}/subs
et({subset})

{WCSRestBaseUrl}/cove
rage/{coverageld}/rang
esubset({subset})

Example

http://ows.rasdaman.or
g/rasdaman/ows/wcs/2.
0.1/coverage/AvgLandT
emp/subset(Lat(0:1))/su
bset(Long(0:1))

http://ows.rasdaman.or

g/rasdaman/ows/wcs/2.

0.1/coverage/RadianceC
olorScaled/subset(Lat(0:
1))/subset(Long(0:1))/ra

ngesubset(Red)

Due to the protocol binding only GET operations can be applied on the resources mentioned in the
section above. This follows the REST guidelines as all operations in WCS are idempotent and are
mapped to concrete resources.

Since the first version of the protocol binding draft, the WCS-T extension of WCS was adopted as a
standard in OGC, which provides the first non-idempotent operation that a service serving
coverages could implement. It is our opinion that based on this new addition to the ecosystem two
new operations should be defined in a future draft of the protocol that allow PUT and PATCH
operations on a coverage resource. The table below contains this proposal as well.

Table 12. Operations provided by the WCS REST server

HTTP Operation Access Path Parameters Description
GET {wcsRESTBaseURL} NA Retrieval of Capabilities
resource

PUT {wcsRESTBaseURL}/cov A valid coverage in one Creates a new coverage

erage/MyCoverage of the server supported identified by the given
formats url

PATCH {wcsRESTBaseURL}/cov A valid coverage in one Updates an existing
erage/MyCoverage OR of the server supported coverage or a subset of
{wcsRESTBaseURL}/cov formats it with the given input

erage/MyCoverage/subs
et(ansi("2012-01-01"))

10.1.3. Associations between resources

coverage

No direct associations are made between the resources as this is a Level 2 implementation
according to Richardson’s maturity model.

A Level 3 implementation should aim to associate the Subset and RangeSubset of a Coverage with

45

http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/subset(Lat(0:1))/subset(Long(0:1))
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/subset(Lat(0:1))/subset(Long(0:1))
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/subset(Lat(0:1))/subset(Long(0:1))
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/subset(Lat(0:1))/subset(Long(0:1))
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/AvgLandTemp/subset(Lat(0:1))/subset(Long(0:1))
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/RadianceColorScaled/subset(Lat(0:1))/subset(Long(0:1))/rangesubset(Red)
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/RadianceColorScaled/subset(Lat(0:1))/subset(Long(0:1))/rangesubset(Red)
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/RadianceColorScaled/subset(Lat(0:1))/subset(Long(0:1))/rangesubset(Red)
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/RadianceColorScaled/subset(Lat(0:1))/subset(Long(0:1))/rangesubset(Red)
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/RadianceColorScaled/subset(Lat(0:1))/subset(Long(0:1))/rangesubset(Red)
http://ows.rasdaman.org/rasdaman/ows/wcs/2.0.1/coverage/RadianceColorScaled/subset(Lat(0:1))/subset(Long(0:1))/rangesubset(Red)

the original coverage in a meaningful way, most likely by using some standardized URL templates
for describing the association. At this time there is no concrete REST solution that would allow a
direct link from a coverage to all its subset coverages without exploding the coverage document in
terms of size.

10.2. Implementation

The implementation is based on the WCS Server of the rasdaman array database and extends it by
adding a new Protocol Binding. The architecture of a typical server is described in the following
diagram:

Web clients (m2m, browser)

N0

\\ Internet
rasdaman J sasanas
geo services 2
[1
| 'ELE”/ distributed query
rasserver PEBOETTIT

No single point of failure

alternative
storage

|
]
]

| —

external File system database
files il

Figure 7. rasdaman Architecture

The REST implementation is using the Java Servlet API to parse the URL into meaningful fragments
that are grouped together into a WCS Internal request that is independent of any specific protocol.
The request is then passed to a service that handles the request and provides a response that can be
returned to the user.

10.3. Lessons Learned

The Web Coverage Service is an operation-oriented web service and this made encoding the
operations in a RESTful way slightly cumbersome. Most operations, for example subsetting,
rangesubsetting and scaling can be mapped to resources, as any operation on a coverage will result
in a coverage with different properties. However, the representation of these ad-hoc resources
obtained from the original coverage do not add anything in particular to the existing KVP protocol
binding which uses the same communication protocol (HTTP), same way of addressing the end
result (URLs), same way of building the requests (constructing URLs as opposed to navigation
through association links).

46

Associations between resources are unfortunately impossible to implement as the number of
associations between certain resources is too large (a coverage has a virtually unlimited amount of
subset coverage resources). Furthermore, no concrete method of describing an association between
resources in the GML format is possible as far as we know.

Since the Capabilities are hard to use for describing the REST binding, the capabilities have been
unchanged in the current implementation. However, a common way for describing the REST
binding in a machine-readable manner needs to be developed in future versions.

Despite the shortcomings, the REST protocol binding proved simple to implement on top of an
existing WCS platform and offers some advantages to users more accustomed to the REST approach
in non-OGC services by defining resources that can be accessed through HTTP requests. The
implementation done in this deliverable proves that the protocol is viable and can be implemented
by service providers.

47

Chapter 11. WPS REST Server

This section describes the REST Binding and corresponding implementation of a Web Processing
Service (WPS) offering conflation processes (A047).

The WPS REST Conflation Service was used to conflate road datasets in an area-of-interest. The
reference layer, i.e. the layer that should be used as base, was the USGS Trans_RoadSegment layer.
As geometry snap layer, delivering updated/new features, a current snapshot of OpenStreetMap
data in the area of interest was chosen. Figure 8 shows the Trans_RoadSegment data with a
OpenStreetMap Background:

: 1t ~ - i @ OpenSteetiap {and) contributors, CC-BY-SA
s i B2 Ca 4 == 9

Figure 8. Trans_RoadSegment data with OpenStreetMap background

The OSM roads are shown in Figure 9 below.

48

Figure 9. OSM Roads data

You can see that the Trans_RoadSegment layer is already complete to a high degree. The OSM layer
is missing some features of the Trans_RoadSegment layer but has more detail in other areas.

The conflation process was performed using Hootenanny with the standard parameters. The output
is shown in Figure 10:

49

= 8 OpenSteethlap (and) contributors, CC-BY-SA
.

Figure 10. Resulting road data set that was generated by the conflation process

The conflation results will be discussed in detail in The WPS Conflation Service Profile ER (OGC 16-
022).

11.1. Resources to be provided by WPS

As there is not yet an official REST binding of the WPS available, the REST binding has been
specified in Testbed 12. The resources that are provided by a WPS REST server are listed in Table 12
below and include the capabilities document of the server, the list of processes available
(ProcessCollection and Process), jobs (running processes) and outputs of processes.

Table 13. Resources provided by the WPS REST server

Resource Class Description Access Path Example
Capabilities The complete service ~ {WpsRESTBaseURL} http://geoprocessing.de
metadata document. mo.52north.org:8080/w

PS-proxy

50

http://geoprocessing.demo.52north.org:8080/wps-proxy
http://geoprocessing.demo.52north.org:8080/wps-proxy
http://geoprocessing.demo.52north.org:8080/wps-proxy

Resource Class

ProcessCollection

Process

JobCollection

Job

Process Output Data

Description

List of processes
available

Detailed process
description of a single
process

List of jobs of a process

Representation of a job
(execution of a process)
containing status

Access Path

{WpsRESTBaseURL}/pr
ocesses

{WpsRESTBaseURL}/pr
ocesses/{process-id}

{WpsRESTBaseURL}/pr
ocesses/{processID}/job
s/{job-id}

{WpsRESTBaseURL}/pr
ocesses/{processID}/job
s/{job-id}

information
Resource containing {WpsRESTBaseURL}/pr
the different process ocesses/{processID}/job
outputs inline or as s/{job-id}/outputs
reference.

Notations:

Example

http://geoprocessing.de
mo.52north.org:8080/w
ps-proxy/processes

http://www.maps.bob/e
topo2/default/WholeWo
rld_CRS_84/10m/1/3/86/
132.xml

NA

NA

NA

{WpsRESTBaseURL}: The base URL of the WPS REST endpoint.
{process-id}: identifier of a process.
{job-id}: identifier to a job.

11.2. Operations on WPS resources

In general, the HTTP GET operation is used to provide access to the resources described above.
However, in order to create a new job, the HTTP POST method is used to post a new job by sending
a new job resource represented by an execute request to the server. This results in the operations

listed in Table 13 below.

Table 14. Operations on resources provided by the WPS REST server

HTTP Operation

GET

GET

GET

GET

Access Path

{WpsRESTBaseURL}

{WpsRESTBaseURL}/pr
ocesses

{WpsRESTBaseURL}/pr
ocesses/{process-id}

{WpsRESTBaseURL}/pr
ocesses/{processID}/job
S

Parameters

NA

NA

NA

NA

Description

Retrieval of Capabilities
resource

Retrieval of
ProcessCollection
resource

Retrieval of a Process
resource (process
description)

Retrieval of list of jobs
of a specific process
(JobCollection)

51

http://geoprocessing.demo.52north.org:8080/wps-proxy/processes
http://geoprocessing.demo.52north.org:8080/wps-proxy/processes
http://geoprocessing.demo.52north.org:8080/wps-proxy/processes
http://www.maps.bob/etopo2/default/WholeWorld_CRS_84/10m/1/3/86/132.xml
http://www.maps.bob/etopo2/default/WholeWorld_CRS_84/10m/1/3/86/132.xml
http://www.maps.bob/etopo2/default/WholeWorld_CRS_84/10m/1/3/86/132.xml
http://www.maps.bob/etopo2/default/WholeWorld_CRS_84/10m/1/3/86/132.xml

HTTP Operation Access Path Parameters Description

GET {WpsRESTBaseURL}/pr NA Retrieval of a single Job
ocesses/{processID}/job resource
s/{job-id}
POST {WpsRESTBaseURL}/pr Execute request Execution of a process
ocesses/{processID}/job (contained in body)
S
Notations:

{WpsRESTBaseURL}: The base URL of the WPS REST endpoint.
{process-id}: identifier of a process.
{job-id}: identifier to a job.

11.3. Associations between WPS resources

As stated above in the listing of resources (Table 12), the basic resources managed by the WPS REST
server are processes, jobs, outputs and its corresponding collections. An overview on the
associations between the resources is given in Figure 11.

class ProcessModel /

Capabilites

lists

y

ProcessCollection

ishlemberCf

Process

isRunBy

JobCollection Cutput_Data
ishlemberOf generates

Figure 11. Resource model of the WPS REST server

The Capabilities has an association to the ProcessCollection that aggregates the single Processes

52

offered by the Web Processing Server. The process has an association to the collection of jobs
(JobCollection) that aggregates single jobs, i.e. instances that run a certain process.

11.4. Implementation

The architecture of the 52°North WPS REST PI implementation is shown in Figure 12. The 52°North
WPS REST API was realized as proxy to be able to test it with different WPS implementations
during the specification process. The proxy was written in Java using the Spring framework and
Jackson libraries for XML and JSON handling. The WPS requests and responses are handled using
the 52°North WPS 2.0 XMLBeans. The underlying WPS was a 52°North WPS 2.0 instance, wrapping
the Hootenanny conflation software.

Client

Proxy

z WPS REST API |

N

WES

Figure 12. Architecture of the 52°North WPS REST API implementation

In the following, example requests and responses for the different operations and resources will be
shown.

Example of HTTP GET request for retrieving JSON WPS Capabilities.

http://tb12.dev.52north.org/wps-rest

53

Example of WPS Capabilities encoded as JSON.

{
"Capabilities": {
"Serviceldentification": {
"Title": "52°North WPS 4.0.0-SNAPSHOT",
"Abstract": "Service based on the 52°North implementation of WPS 1.0.0",
"ServiceType": "WPS",
"ServiceTypeVersion": ["1.0.0",
"2.0.0"],
"Fees": "NONE",
"AccessConstraints": "NONE"
I
"ServiceProvider": {
"ProviderName": "52North",
"ProviderSite": {
"HRef": "http://www.52north.org/"
iy
"ServiceContact": {
"IndividualName": "Your name",
"ContactInfo": {

}
}
I
"Contents": {
"ProcessSummaries": [{
"identifier": "testbed12.fo.DouglasPeuckerAlgorithm",
"title": "testbed12.fo.DouglasPeuckerAlgorithm",
" _processVersion": "1.0.0",
"_jobControlOptions": "sync-execute",
"_outputTransmission": "value",
"url": "http://tb12.dev.52north.org:80/wps-
rest/processes/testbed12.fo.DouglasPeuckerAlgorithm"
o
]
I
" service": "WPS",
_version": "2.0.0"

The process summaries in the contents-section contain links to the process description of the
respective process. The standalone list of processes can be requested as follows:

Example of HTTP GET request for retrieving the list of offered processes encoded as JSON.

http://tb12.dev.52north.org/wps-rest/processes

54

Example of WPS Capabilities encoded as JSON.

{

"ProcessSummaries": [

{
"identifier": "testbed12.fo.DouglasPeuckerAlgorithm",
"title": "testbed12.fo.DouglasPeuckerAlgorithm",
"_processVersion": "1.0.0",
"_jobControlOptions": "sync-execute",
"_outputTransmission": "value",
"url": "http://tb12.dev.52north.org:80/wps-

rest/processes/testbed12.fo.DouglasPeuckerAlgorithm"
| S
]

Example of HTTP GET request for retrieving the process description of a process encoded in JSON.
(NOTE: Request has been line-wrapped for easier reading).

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm

Example of WPS Capabilities encoded as J[SON.(NOTE: Some inputs and formats have been left out for
easier reading).

{

"ProcessOffering": {
"Process": {
"Title": "Hootenanny Conflation Process",
"Identifier": "testbed12.1sa.HootenannyConflation",
"Input": [
{
"Title": "INPUTT1",
"Identifier": "INPUT1",
"ComplexData": {
"Format": [
{
" default": "true",
"_mimeType": "application/x-zipped-shp"
oo
]
s

" minOccurs": "1",
_max0ccurs": "1"

I

{
"Title": "INPUT1_TRANSLATION",
"Identifier": "INPUT1_TRANSLATION",
"ComplexData": {

55

56

"Format": [

{
" default": "true",
" _mimeType": "text/x-script.phyton”
H
{
" default": "false",
" _mimeType": "text/plain”
}

]
}I
" minOccurs": "0",
" maxOccurs": "1"

}I

{
"Title": "INPUT2",
"Identifier": "INPUT2",
"ComplexData": {
"Format": [
{
" default": "true",
"_mimeType": "application/x-openstreetmap+xml"
..
]
s
" minOccurs": "1",
" maxOccurs": "1"
I

{
"Title": "CONFLATION_TYPE",

"Identifier": "CONFLATION_TYPE",
"LiteralData": {
"Format": [
{
" default": "true",
"_mimeType": "text/plain”

b
{
" default": "false",
"_mimeType": "text/xml"
}
15
"LiteralDataDomain": [
{
"AnyValue": null,
"DataType": {
"_reference": "xs:string"
}
}

_minOccurs": "0",
_max0ccurs": "1"

|
1.
"Output": [
{
"Title": "CONFLATION_OUTPUT",
"Tdentifier": "CONFLATION OUTPUT",
"ComplexData": {
"Format": [
{
"_default": "true",
" _mimeType": "application/x-zipped-shp"
J
]
}
I
{
"Title": "CONFLATION_REPORT",
"Tdentifier": "CONFLATION_ REPORT",
"ComplexData": {
"Format": [
{
"_default": "true",
"_mimeType": "text/plain”
}
]
}
}
]

I
"_processVersion": "1.0.0",
"_jobControlOptions": "sync-execute async-execute",
"_outputTransmission": "value reference",
"execute-url": "http://tb12.dev.52north.org:80/wps-
rest/processes/testbed12.1sa.HootenannyConflation/jobs"
}
}

Example of HTTP GET request for getting a list of jobs of a process. (NOTE: Request has been line-
wrapped for easier reading).

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm/jobs

57

Example of a list of jobs for a process encoded as JSON.

{

"Jobs": [
"1317¢058-cb4d-4ab4-ad21-b78e51229a17",
"1319d2fc-cac8-4e8d-8039-2¢511f55a9d3"

]

}

Example of HTTP POST request for executing a process. (NOTE: Request has been line-wrapped for
easier reading).

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm/jobs

By default, the process will be executed asynchronously. If the process supports synchronous
execution, this can be achieved by appending the following URL-parameter:

Example of HTTP POST request for synchronously executing a process. (NOTE: Request has been line-
wrapped for easier reading)

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm/jobs?sync-execute=true

58

Example of WPS Execute request encoded as JSON.

{

"Execute": {
"Identifier": "testbed12.lsa.HootenannyConflation",
"Input": [
{
"Reference": {
"_mimeType": "application/x-zipped-shp",
"_href":
"http://geoprocessing.demo.52north.org:8080/data/Trans_RoadSegment-aoi.zip
s
"_id": "INPUTT"
Iz
{
"Reference": {
"_mimeType": "text/x-script.phyton”,
"_href":
"http://geoprocessing.demo.52north.org:8080/data/TNM_Roads.py"
i
"_id": "INPUT1_TRANSLATION"
s
{
"Reference": {
"_mimeType": "application/x-openstreetmap+xml",
"_href":
"http://geoprocessing.demo.52north.org:8080/data/sf_only_roads-aoi.osm
s
"_id": "INPUT2"
}

1
"output": [{
"_mimeType": "application/x-zipped-shp",
" id": "CONFLATION_OUTPUT",
" transmission": "reference"

A

_mimeType": "text/plain",
" id": "CONFLATION_REPORT",
" transmission": "reference"

H,
" service": "WPS",
_version": "2.0.0"

The direct response to a asynchronously executed process is HTTP status code 201 (created) and the
URL to obtain status information and finally the result. The URL will be returned in a HTTP header
named Location. For synchronous execution, the result document will be returned after the process
has finished.

59

Example of HTTP GET request for retrieving status information about a asynchronously executed
process (NOTE: Request has been line-wrapped for easier reading).

http://tb12.dev.52north.org/wps-rest/processes/

testbed12.fo.DouglasPeuckerAlgorithm/jobs/
c731d14b-1de6-499c-9317-20224e056012

Example of WPS StatusInfo response encoded as J[SON. The process is still running.

{
"StatusInfo": {
"JobID": "c731d14b-1de6-499c-9317-20224e056012",
"Status": "Running",
"Progress": 0
}
}

After the process has finished, the progress element will be replaced by the URL to obtain the
outputs

Example of WPS StatusInfo response encoded as JSON. The process has finished.

{
"StatusInfo": {

"JobID": "c731d14b-1de6-499c-9317-20224e056012",

"Status": "Succeeded",

"Output": "http://tb12.dev.52north.org/wps-
rest/processes/testbed12.1sa.HootenannyConflation/jobs/c731d14b-1de6-499c-9317-
20224e056012/outputs”

}
}

60

Example of WPS Result response encoded as JSON.

{
"Result": {
"JobID": "c731d14b-1de6-499c-9317-20224e056012",
"Output": [
{

"ID": "CONFLATION_OUTPUT",
"Reference": {

"_mimeType": "application/x-zipped-shp",

" href":
"http://tb12.dev.52north.org:80/wps/RetrieveResultServlet?id=c731d14b-1de6-499c-9317-
20224e056012CONFLATION_OUTPUT.b1172b1c-c9aa-495a-aa8b-62220ac93605"

}
b

{
"ID": "CONFLATION_REPORT",

"Reference": {

"_mimeType": "text/plain",

" href":
"http://tb12.dev.52north.org:80/wps/RetrieveResultServlet?id=c731d14b-1de6-499c-9317-
20224e056012****CONFLATION_REPORT.220391a6-4357-44e2-b5f3-c0a0983cedae"

}
}
]
}
}

11.5. Lessons Learned

The WPS REST API simplifies the interaction between servers and clients. The HTTP methods with
its clear semantics ease to understand the interface and its communication pattern. The usage of
hypermedia encoded as JSON allows clients to browse from the Capabilities to the processes
available, to navigate from these processes to jobs (running instances of these processes) and, once
a job is finished, to browse to the resulting outputs of a job. We hence submitted a change request
(Request 396: Specify a REST binding for WPS 2.0) to the WPS SWG for defining a WPS REST binding
based on the REST component developed in this testbed.

One difficulty encountered is the description of the API using the Capabilities document. In general,
in order to interact with an HTTP based RESTful API, clients need to know

» which resources are offered and

* which HTTP methods need to be applied in order to retrieve or manipulate these resources
While the information about the resources offered can be easily embedded in the Contents section
of the Capabilities document, the integration of the description about which HTTP methods are
applicable on which resources is not straightforward. Usually, the OperationsMetadata section

would be used for describing the operations offered, the endpoints and the operation parameter.
However, since the OperationsMetadata have been defined for Web Services in Service-oriented

61

http://ogc.standardstracker.org/show_request.cgi?id=396

Architectures, the description of REST APIs is not straightforward for the following reasons:

* Only HTTP GET and POST are supported.

* There is no way to describe on which resources the HTTP methods, e.g. HTTP GET, can be
applied.

For this reason, we omitted the OperationsMetadata section and described the application of the
HTTP methods in the specification draft. In future, it would be desirable to also offer a machine-
readable description of the API relying upon existing description language, e.g. the OpenAPI
specification [4].

62

Chapter 12. OGC REST Components Outside
Testbhed 12

This clause describes other REST components that have been not directly addressed in Testbed 12.
It provides short component overviews and references to existing documentation.

12.1. WaterML REST API

The WaterML REST API has been published as a best practice document (OGC 15-033) resulting
from the interoperability experiment testing the information model part 2 of WaterML (OGC 15-
018r2). The REST API hence provides access to the following resources:

Table 15. Resources provided by the WPS REST server

Resource Class Description Access Path Example
ResourceListing Listing of resources. {BaseURL} http://waterml2.csiro.a
u/rgs-api/vl/
Gauging {BaseURL}/gauging http://waterml2.csiro.a
u/rgs-api/vl/gauging/
Conversion Relationship between {BaseURL}/conversion http://waterml2.csiro.a
two phenomena at a u/rgs-
moment in time as api/vl/conversion/
defined by an equation,
table of paired values
or other form.
MonitoringPoint primary location for {WpsRESTBaseURL}/m http://waterml2.csiro.a

conducting onitoring-point u/rgs-
observations api/vl/monitoring-
point/

Notations:
{BaseURL}: The base URL of the REST endpoint.

The RESTful API defined is currently a read-only service and thus only implements the HTTP GET
method for resources.

An implementation of the REST API is available at
http://waterml2.csiro.au/rgs-api/v1/

Since the resources returned contain links to other resources the RMM level is level 3.

12.2. Sensor Things API

The OGC SensorThings API Part 1: Sensing (15-078r6) is intended as a standard for connecting

63

http://waterml2.csiro.au/rgs-api/v1/
http://waterml2.csiro.au/rgs-api/v1/
http://waterml2.csiro.au/rgs-api/v1/gauging/
http://waterml2.csiro.au/rgs-api/v1/gauging/
http://waterml2.csiro.au/rgs-api/v1/conversion/
http://waterml2.csiro.au/rgs-api/v1/conversion/
http://waterml2.csiro.au/rgs-api/v1/conversion/
http://waterml2.csiro.au/rgs-api/v1/monitoring-point/
http://waterml2.csiro.au/rgs-api/v1/monitoring-point/
http://waterml2.csiro.au/rgs-api/v1/monitoring-point/
http://waterml2.csiro.au/rgs-api/v1/monitoring-point/

Internet of Things (IoT) devices as well as related data and applications via the Web. Currently, Part
1 of this standard is available which covers sensor observations. It supports the retrieval of
observations of IoT devices and their related metadata. Tasking functionality will be covered by a

separate part of this standard.

The following table provides an overview of the resources offered by the Sensor Things API:

Table 16. Resources provided by the Sensor Things API

Resource Class Description Access Path Example

ResourceListing Listing of resources. {BaseURL}/v1.0/ http://example.sensoru

p-com/v1.0/

Thing Individual physical or {BaseURL}/v1.0/Things/ http://example.sensoru
information world p.com/v1.0/Things/
object.

Location Entity describing the {BaseURL}/v1.0/ http://example.sensoru
last known location of a p-com/v1.0/Locations/
thing.

HistoricalLocation Entity describing a past {BaseURL}/v1.0/ http://example.sensoru
location of a thing (at a p-com/v1.0/HistoricalLo
certain time). cations/

Datastream Collection of {BaseURL}/v1.0/ http://example.sensoru
Observations of the p-com/v1.0/Datastreams
same /

ObservedProperty by
the same Sensor.

Sensor Instrument observing {BaseURL}/v1.0/ http://example.sensoru
an ObservedProperty to p-com/v1.0/Sensors/
generate Observations.

ObservedProperty Phenomenon of an {BaseURL}/v1.0/ http://example.sensoru
Observation. p-com/v1.0/ObservedPr

operties/

Observation Act of determining the {BaseURL}/v1.0/ http://example.sensoru
value of an p-com/v1.0/Observation
ObservedProperty at a s/
certain time.

FeatureOfInterest Geospatial object to {BaseURL}/v1.0/ http://example.sensoru
which an observation is p-com/v1.0/FeaturesOfI
associated. nterest/

Notations:

{BaseURL}: The base URL of the REST endpoint.

It is important to note, that the Sensor Things API is, like the Sensor Observation Service (SOS),
based on the general ISO/OGC Observations and Measurements model. As the functionality of the
sensing part of the Sensor Things API is widely identical to the core operations of the SOS standard,
a stronger harmonization would be recommended. In order to avoid confusion among potential

64

http://example.sensorup.com/v1.0/
http://example.sensorup.com/v1.0/
http://example.sensorup.com/v1.0/Things/
http://example.sensorup.com/v1.0/Things/
http://example.sensorup.com/v1.0/Locations/
http://example.sensorup.com/v1.0/Locations/
http://example.sensorup.com/v1.0/HistoricalLocations/
http://example.sensorup.com/v1.0/HistoricalLocations/
http://example.sensorup.com/v1.0/HistoricalLocations/
http://example.sensorup.com/v1.0/Datastreams/
http://example.sensorup.com/v1.0/Datastreams/
http://example.sensorup.com/v1.0/Datastreams/
http://example.sensorup.com/v1.0/Sensors/
http://example.sensorup.com/v1.0/Sensors/
http://example.sensorup.com/v1.0/ObservedProperties/
http://example.sensorup.com/v1.0/ObservedProperties/
http://example.sensorup.com/v1.0/ObservedProperties/
http://example.sensorup.com/v1.0/Observations/
http://example.sensorup.com/v1.0/Observations/
http://example.sensorup.com/v1.0/Observations/
http://example.sensorup.com/v1.0/FeaturesOfInterest/
http://example.sensorup.com/v1.0/FeaturesOfInterest/
http://example.sensorup.com/v1.0/FeaturesOfInterest/

operators and users, an idea could be to advance the Sensor Things API to become a REST binding
of the SOS standard.

65

Chapter 13. Commonalities and Differences
between the different REST Servers

The previous clauses show that the different REST server implementations for WMS, WMTS, WCS
and WFS, differ regarding the compliance to the REST principles. This results in different levels of
the Richardson Maturity Model, as shown in Table 16.

13.1. RMM Levels (Support of Hypermedia)

As can be seen in Table 16, hypermedia is not always returned due to the very different nature of
geospatial information that is provided. While, for example, features served in GeoJSON may also
easily include links to related features, it is more difficult to embed links in an image that is
returned from a WMS server. Also, as stated in the lessons learned section of the WCS REST server
description (Clause 10), in some cases there may be an infinite set of possible associations, e.g. a
coverage resources has an unlimited number of associations to subset coverage resources. Since the
subsetting is depending on the client and application, it does not make sense to provide only a
subset of those associations.

Table 17. Maturity Levels of the different OGC Testbed 12 REST servers

Component RMM Comment
Level
REST WCS (A044) 2 No hypermedia returned.
REST WMS (A040) Z No hypermedia returned.
REST WMTS (A042) 3 If TileJSON is returned, hypermedia is returned, otherwise

no hypermedia for the tile resources.

REST WFS (A035) 2 In TB 12 implementation, no hypermedia returned. In TB
11 example with comprehensive usage of hypermedia (see
OGC 15-052r1, section 6.4).

REST WPS (A044) 3 Hypermedia supported.

13.2. Complexity and Implementation Efforts

In the lessons learned, all developers of the REST servers in Testbed 12 mentioned the simplicity of
the implementations. This may be considered as a major improvement since especially the support
of complex XML schemas with circular references was considered to be a major implementation
task for the POX or SOAP based OGC services. Instead, requests are simply URLs that are invoked
with different HTTP methods.

13.3. Service Capabilities

Since all OGC services inherit from the OWS Common specification (OGC 06-121r9), they need to
provide a Capabilities document stating:

66

* the service type, e.g. WMS, WCS or WPS (section Serviceldentification)
* information about the provider, e.g. contact, institution, etc. (section ServiceProvider)

* the supported service operations and parameters, e.g. GetMap with mandatory parameters
(section OperationsMetadata)

» information about the content provided, e.g. layers in WMS, feature types in WFS

* options on filtering content, e.g. which spatial filters are supported (optional; not specified in
OWS Common, but in the different W*S service specifications)

Hence, the Capabilities document is considered as an additional resource offered by the different
OGC REST servers. However, the way how the Capabilities document is offered differs in the
different implementations. WPS, WFS, and WCS are providing the Capabilities document at the
base URL of the REST server, whereas the WMTS is providing it under a fixed subdomain
(/capabilities), as specified in the WMTS specification (OGC 07-057r7).

In order to utilize a RESTful API, clients need to know

* which resources are offered

* how too access and/or manipulate them, i.e. which HTTP methods can be applied to the
resources

While the first information can be embedded in the Contents section of a Capabilities document (as
shown, for example for the WPS REST server), the way how to access these resource or manipulate
them cannot be simply mapped to the operations metadata section of the Capabilities. Hence, in
case of WPS, for example, the decision was made to not provide the OperationsMetadata section
(see also Clause 14).

13.4. JSON Encodings

Except the WCS REST server, all of the services are providing JSON encodings for at least some
resources. Similarly to the support of hypermedia, the provision of resource representations as
JSON is depending on the nature of the resources offer. While the encoding of geospatial features
with vector geometries can be easily done using GeoJSON, a JSON encoding of Coverages or Map
images provided by a WMS is not meaningful.

A special role is the encoding of the Capabilities document. So far, a dedicated mapping from the
Capabilities elements to JSON does not exist. Rules how a mapping may be realized are currently
defined in the JSON as an activity in this testbed. The WPS REST server provides an example how a
JSON-encoded Capabilities document may look like (Clause 11).

13.5. Associations

There are three different types of associations in OGC REST APIs:

 within resource offered by a single REST API:

* Example: link from feature collection to single feature in RESTful WFS

67

e across different REST APISs:

* Examples: link from catalog entry to a feature type in a RESTful WFS; link from an
observation in a SOS to a featureOfInterest (observed feature) in a WFS

* to external resources

* Example: features in a WFS may be linked to additional external information, e.g. data for
facility management maintained in a separate service

Furthermore a specific subtype may be links from a whole resource to sub-resources that are part
of a larger resources. The association between coverages in coverage subsets may be consider as
such an association.

The associations given in the resource representations are currently either given as embedded
URLSs in JSON (see Clause 11 for examples) or as ATOM links in RESTful WEFS (see OGC 15-052r1).
REST APIs supporting RMM Level 2 (WMS and WCS) are not providing the associations explicitly as
links within data, but rather explicitly through their hierarchical URL templates.

A discussion has been held how to provide links for tile resources encoded as binary media types in
a WMTS. A first suggestion was to define additional HTTP header parameters. Since there is already
a Link parameter, it was agreed that this may be the right way to go, though this was not
demonstrated by an implementation in Testbed 12.

13.6. URL Templates vs. HATEOAS

The WMTS and WCS REST bindings are defining URL templates in order to construct the URLs for
specific tiles or coverage subsets by replacing certain parts of an URL. For example, the URL
template for retrieving a specific tile in WMTS looks like:

./{TileMatrixSet}/{TileMatrix}/{TileRow}/{TileCol}.png

The parameter names between the curly brackets ('{' and '}') need to be replaced by a client in order
to retrieve a specific tile, resulting in an URL like:

https://my.wmts.org/rest/tileMatrixSetXY/TileMatrixYZ/41/42.png

Since these APIs are not returning hypermedia (RMM Level 2), the URL templates are needed to
specify the access to resources. In contrast, if, for example, the REST API is providing hypermedia,
the Capabilities may serve as an entry point to the resources and the client can then navigate
through the different resources and states following the HATEOAS principle.

The usage of URL templates is a source of dispute on the Web. The advantage of the approach is that
there is a clear pre-defined structure for the resource identifiers and there is no need for
hypermedia. Hence, the usage of URL templates appears to be appropriate for APIs at RMM level 2.

However, the approach also comes with disadvantages: The URL structure cannot be easily changed
by the server, if, for example, also the resource model has changed, since the client is expecting the

68

structure defined by the template. In addition, the approach contradicts the HATEOAS principle,
since the URLs are not opaque and the links to resources are not given in hypermedia, but the a-
priori specified URL template. Finally, there are also security concerns, since the URLs may be
easily hackable to resources that are not officially published.

In the end, similarly to the support of JSON and hypermedia, the usage of URL templates depends
on the nature of the data that is provided via the APIs: In case of coverages (WCS), maps (WMS), and
map tiles (WMTS), the usage of URL templates is reasonable. In case the resource representations
can be provided as hypermedia, there is no need for a pre-defined URL structure, if there is a pre-
defined entry point to the resources, e.g. the Contents section of the Capabilities.

13.7. Request Parameters & Filtering

Several options are available to filter on resources in a RESTful API and to implement additional
query parameters. The traditional way is to utilize the Key-Value-Pair approach, i.e. appending
parameters to the URL. For example, when searching for features within a Bounding Box, the bbox
parameter may be appended to the resource URL, applying the filter on the resource provided.

https://my.wfs.org/rest/featureCollection?bbox=7.0,52.0,8.0,53.0

Another option would be to encode the bbox parameters in the URL and hence consider the result
set laying in the bounding box as an additional resource offered by the REST server. This may look
like:

https://my.wfs.org/rest/featureCollection/7.0/52.0/8.0/53.0

However, this appears to be somewhat cumbersome since no template for encoding the bounding
box parameters (minx, miny, maxx, maxy) currently exists. Furthermore, another open question
would be, which resource is offered at a shorter path, e.g.

https://my.wfs.org/rest/featureCollection/7.0

Similarly, several approaches exist to query the resource representations in a specific format, i.e.
content negotiation. The common way to implement content negotiation is using the Accept
parameter in the HTTP header. However, some other approaches exists in the current OGC REST
APIs: The WFS REST server implemented in Testbed 12 utilizes the outputFormat parameter of the
URL:

http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision?outputFormat
=json

The WMTS specification suggests to append the file format extension to the URL, which may look
like the following URL containing the ".xml" suffix at the end indicating that the XML media type is
requested:

69

http://my.wmts.org/rest/Capabilities.xml

To sum up, no common approach for applying filters on the resources and additional parameters,
e.g. for content negotiation currently exist.

13.8. Security

Since there were no special requirements for security for the REST components, the only security
method implemented has been HTTP Basic Authorization.

70

Chapter 14. Recommendations

As a result of the discussions held about RESTful APIs for OGC services during the Testbed 12,
several recommendations have been derived.

14.1. Suggested RMM Level

The current REST APIs implementing WMS, WMTS, WCS, WES, and WPS vary in the RMM level that
is supported. As described in the implementation sections (Clauses 7 to 11) and the previous
discussion about the commonalities and differences (Clause 13), depending on the nature of the
information that is offered, e.g. coverages vs. features, hypermedia may be returned or not.

Recommendation 1: If possible, OGC REST APIs should support RMM level 3.

14.2. Identification of Resources

The resources offered by a specific service type are defined in the service specification or data
models referenced from the service specification. For example, as illustrated in Clause 6, the
resources offered by a Sensor Observation Services (SOS) are defined in the Observations &
Measurements (O&M) and Sensor Model Language (SensorML) standards. Similarly, the Web
Feature Service offers features compliant to the General Feature Model.

Recommendation 2: The resources offered by an OGC W*S RESTful API should be compliant to the
data specifications of the corresponding service specifications.

Furthermore, the resources should be identifiable by a unique identifier.

Recommendation 3: All OGC REST implementations shall follow the general REST requirement
that resources are identifiable by an unique URIL.

In addition, there should be an unique entry point for the resources. This recommendation is given
below in the section about the API description and Capabilities document.

14.3. Associations between Resources

The associations given in the resource representations are currently either given as embedded
URLs in JSON (see Clause 11 for examples), as ATOM links in RESTful WFS (see OGC 15-052r1) or
using XML links in O&M XML. REST APIs supporting RMM Level 2 (WMS and WCS) are not
providing the associations explicitly as links within data, but rather explicitly through their
hierarchical URL templates.

Resulting from the varying encodings of associations, we define the following recommendations for
REST APIs supporting RMM Level 3:

For each media type, a common way how to encode associations should be defined.

Recommendation 4: A unique way how to encode associations should be defined for different
media types of OGC REST APIs.

71

In case the resource representation cannot be used to provide the associations inline, e.g. binary
encoding of an image, associations to related resources should be given in the HTTP header using
the Link parameter.

Recommendation 5: If links cannot be encoded in the resource representation returned, the Link
param of the HTTP header should be used.

Currently, the semantics of associations are defined in the specification documents. One strength of
hypermedia and linked data is to utilize explicitly defined semantics of the associations, e.g. in form
of dictionaries or ontologies, that can be embedded in different linked data serializations, e.g. RDF
or JSON-LD.

A couple of common vocabularies are already existing. One of the most prominent examples is the
IANA Link Relations vocabulary [2].

Recommendation 6: OGC REST APIs should re-use existing vocabularies for describing link
relations.

However, some of the special spatial relations like topological relations (e.g. within, intersects, etc.)
are not covered by these vocabularies. Hence, these need to be specified and maintained by the
OGC Naming Authority.

Recommendation 7: Associations representing spatial relationships should be specified by OGC
and maintained by the OGC Naming Authority.

14.4. Description of API & Discovery of Resources

As shown in the previous Clause 13, there is currently no single way how the OGC REST APIs are
described. Some are using plain XML documents without links to resources, others are embedding
links to resources in the XML Capabilities, and others are providing a JSON encoding of the
Capabilities with embedded links to resources. There is hence a need for harmonization of the
different approaches.

One approach is to utilize the Capabilities document as an entry point to the resources. The WPS
REST server developed in Testbed 12 (Clause 11) provides an example how this may look like. In
addition the retrieval of the Capabilities document differs between the different REST APIs.

Recommendation 8: The Capabilities document should be provided at the root of the API endpoint.

Recommendation 9: The Capabilities document should provide an entry point to the resources
offered by the API.

As there currently is not a concrete JSON encoding of the Capabilities document specified, the
encodings vary as well. Hence, there is a need for a specification of a JSON encoding of the
Capabilities document.

Recommendation 10: A JSON encoding of the Capabilities document should be specified.

If REST servers and clients would follow completely the HATEOAS principle, no further information
would be needed, since requesting the allowed HTTP methods on a particular resource via the

72

HTTP OPTIONS method would be sufficient. However, as in reality most of the REST APIs are not
providing a full HATEOAS support, this information is needed in an API description. As stated above
the OperationsMetadata is difficult to apply for the REST API description, in particular which HTTP
methods need to be applied in order to retrieve or manipulate the resources offered by the OGC
REST API. We hence suggest to also specify the provision of an additional API description file that is
based on common Web standards already in use. One possible approach would be to utilize the
OpenAPI specification and provide best practices how OpenAPI descriptions can be provided for
OGC REST APIs.

Recommendation 11: The OGC should specify how an additional API description can be provided
that defines how HTTP methods can be applied to the resources offered in order to retrieve or
manipulate them.

14.5. Usage of HTTP Verbs

As already stated in Clause 13, HTTP GET is used for retrieving resource representations. To create
new resources, PUT or POST are usually used and DELETE for deleting resources. The REST binding
for the WCS suggest to use the HTTP PATCH method for an partial update of a resource. This results
in the following usage of HTTP methods:

Recommendation 12: OGC REST APIs should utilize the HTTP methods as shown in Table 17.

Table 18. Recommended HTTP verbs for OGC RESTful APIs

Uniform GET PUT PATCH POST DELETE
Resource

Locator (URL)

Collection, Retrieve Replace entire Update parts of Create new Delete entire
such as representation collection collection entry in collection
http://api.exam of collection collection

ple.com/resour

ces/

Single resource Retrieve Create or Replace parts - Delete resource
representation, representation replace of

such as of resource representation representation

http://api.exam
ple.com/resour
ces/resource_x

y

14.6. Usage of HTTP Status Codes

As common in REST APIs and illustrate already in the previous clauses, HTTP Status Codes should
be used (e.g. 200 for OK, 400 for bad request, etc.).

Recommendation 13: OGC REST APIs should utilize the HTTP Status Codes in their responses.

73

http://api.example.com/resources/
http://api.example.com/resources/
http://api.example.com/resources/
http://api.example.com/resources/resource_xy
http://api.example.com/resources/resource_xy
http://api.example.com/resources/resource_xy
http://api.example.com/resources/resource_xy
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

14.7. Filter Parameters and Content Negotiation

A common use case is to apply spatial filters on collections of resources, e.g. the bounding box filter.
As it is already common practice to utilize URL parameters for this purpose, it is also recommended
to utilize them for applying filters to resource collection, for example:

https://my.wfs.org/rest/featureCollection?bbox=7.0,52.0,8.0,53.0
Recommendation 14: Filters that should be applied to the resources should be given in the URL as

URL parameters.

In the implementation of OGC REST APIs, different options mechanism for content negotiation are
implemented. As using the ACCEPT parameter of the HTTP header is already common practice, we
recommend to specify this option as mandatory.

Recommendation 15: Content negotiation should be implemented by OGC REST APIs using the
ACCEPT parameter of HTTP headers.

74

Appendix A: List of OGC documents
dealing with REST

This listing shows the relevant OGC documents that specify REST interfaces. It extends the previous
listing presented in OGC15-052r1.

Date

2009-08

2010-04

2014-04

2014-07

2015-08

2015-09

2015-12

2016-01

Title

OWS-6 DSS Engineering
Report - SOAP/XML and
REST in WMTS

OpenGIS Web Map Tile
Service
Implementation
Standard

OGCRESTful
Encoding ofOrdering
Services Framework
ForEarth Observation
Products

RESTful encoding of
OGC Sensor Planning
Service for Earth
Observation satellite
Tasking

OGC® Testbed 11
Implementing
JSON/GeoJSON in an
OGC Standard
Engineering Report

OGC® Testbed 11 REST
Interface Engineering
Report

OGC Observations and
Measurements - JSON
implementation

OGC WMTS Simple
Profile

OGC#
09-006

07-057r/

13-042

14-012r1

15-053r1

15-052r1

15-100r1

13-082r2

Status
Approved Engineering

Report

Implementation
Standard

Best Practices
Document

Best Practices
Document

Approved Engineering
Report

Approved Engineering
Report

Discussion Paper

Profile

75

Appendix B: Revision History

Table 19. Revision History

Date

April, 2016

September, 2016 .

September, 2016 .

September, 2016 .

September, 2016 .

September, 2016 .

October, 2016

October, 2016

October, 2016

October, 2016

76

Editor(s)

S. Jirka, C. Stasch

P. Vretanos, C.
Stasch

B. Pross

A. Dumitru

]J. Harrison

C. Stasch, S. Jirka

P. Vretanos

A. Dumitru

]J. Harrison

C. Stasch, S. Jirka

Primary
clauses
modified

all
8+9

11

10

6,12,13

8,9

10

all

Descriptions

initial version

description of
WMS and WMTS

description of
WPS

description of
WCS

description of
WES

content added

update
according to
review
feedbackC.

update
according to
review feedback

update
according to
review feedback

final revision,
section 6.5.3
added

Appendix C: Bibliography

[1] Fielding, R.: Fielding Dissertation: Chapter 5: Representational State Transfer,
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm (2000)

[2] IANA. Link Relations, http://www.iana.org/assignments/link-relations/link-relations.xhtml (2016).
[3] Richardson, L., Amundsen, M.: RESTful Web APIs, O’Reilly Media, ISBN 978-1-449-35806-8.

[4] OAI/Open API-Specification: The OpenAPI Specification Repository,
https://github.com/OAI/OpenAPI-Specification (2016).

[5] Wikipedia Foundation: Representational State Transfer,
https://en.wikipedia.org/wiki/Representational_state_transfer (2016)

77

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.iana.org/assignments/link-relations/link-relations.xhtml
https://github.com/OAI/OpenAPI-Specification
https://en.wikipedia.org/wiki/Representational_state_transfer

	Testbed-12 REST Architecture Engineering Report
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope
	1.2. Document contributor contact points
	1.3. Future Work
	1.4. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Application Programming Interface (API)
	3.2. Hypermedia
	3.3. Representational State Transfer (REST)
	3.4. Representations
	3.5. Resource

	Chapter 4. Conventions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. General Considerations
	6.1. REST Principles.
	6.1.1. The Core Principle: Uniform Interface
	6.1.2. Additional Principles of REST

	6.2. RESTful APIs
	6.3. Richardson Maturity Model
	6.4. Advantages and Disadvantages of using REST
	6.5. From an Service-oriented to a RESTful OGC Architecture
	6.5.1. Identification of Resources
	6.5.2. Specification of the API
	6.5.3. Hypermedia replacing the OGC services?

	Chapter 7. WFS REST Server
	7.1. Background
	7.1.1. WFS
	7.1.2. NAS GML
	7.1.3. GeoJSON

	7.2. WFS REST
	7.2.1. Resources to be provided
	7.2.2. Operations on resources

	7.3. Implementation
	7.3.1. Request GeoJSON
	7.3.2. NAS GML Attributes
	7.3.3. Create GeoJSON FeatureType

	7.4. Lessons Learned

	Chapter 8. WMS REST Server
	8.1. Resources to be provided
	8.2. Operations on resources
	8.3. Implementation
	8.4. Lessons Learned
	8.5. Speculations on a RESTful API from WMS
	8.5.1. Introduction
	8.5.2. List of resources
	8.5.3. Query parameters
	8.5.4. Discovery

	Chapter 9. WMTS REST Server
	9.1. Resources to be provided
	9.1.1. Operations on resources
	9.1.2. Associations between resources

	9.2. Implementation
	9.3. Lessons Learned
	9.4. Relationship of TileJSON to REST-WMS/WMTS

	Chapter 10. WCS REST Server
	10.1. WCS REST binding
	10.1.1. Provided resources
	10.1.2. Operations on resources
	10.1.3. Associations between resources

	10.2. Implementation
	10.3. Lessons Learned

	Chapter 11. WPS REST Server
	11.1. Resources to be provided by WPS
	11.2. Operations on WPS resources
	11.3. Associations between WPS resources
	11.4. Implementation
	11.5. Lessons Learned

	Chapter 12. OGC REST Components Outside Testbed 12
	12.1. WaterML REST API
	12.2. Sensor Things API

	Chapter 13. Commonalities and Differences between the different REST Servers
	13.1. RMM Levels (Support of Hypermedia)
	13.2. Complexity and Implementation Efforts
	13.3. Service Capabilities
	13.4. JSON Encodings
	13.5. Associations
	13.6. URL Templates vs. HATEOAS
	13.7. Request Parameters & Filtering
	13.8. Security

	Chapter 14. Recommendations
	14.1. Suggested RMM Level
	14.2. Identification of Resources
	14.3. Associations between Resources
	14.4. Description of API & Discovery of Resources
	14.5. Usage of HTTP Verbs
	14.6. Usage of HTTP Status Codes
	14.7. Filter Parameters and Content Negotiation

	Appendix A: List of OGC documents dealing with REST
	Appendix B: Revision History
	Appendix C: Bibliography

