Testbed-12 ShapeChange Engineering
Report

Table of contents

I 6 L0 0T 16 [0 o) 4 L 7
I 00) 7
1.2. Document CONEIIDULOTLSttt e et eea 7
1.3 FUtUre WOTK .. e 7

1.3.1. Improve Support for Multilingual Application Schemas 7
1.3.2. OWL from OCL CONSIIAINTS . . . vttt ettt ettt et ettt 8
OWL from OCL to Restrict Allowed Code List Valuesccoiiiiiiiiiiinnn. 8
OWL from OCL to Restrict Allowed Geometriesuuiiiiiiniiiiiiiiiinneen.. 10
1.3.3. Validation Of RDF Datattt et e 10
1.3.4. Ontology for Real-world ObJectS.oouiiiiii e 11
1.3.5. Support Specification in OWL of Properties Re-used Within an Application Schema ... 12
1.3.6. Creating Multiple Ontologies that Support Different Levels of Complexity............. 13
1.3.7. Implement the Profiling Workflow EXtensionsccooiiiiiiiiiinneo... 13
1.3.8. JSON, JSON Schema, and JSON-LDttt 14
Converting the NASto JSON Schema ... e 14
Conversion to JSON-LD Context DOCUIMEeNtSttt 15
Validation of JSON and JSON-LD Datattt 15

1.4. Changes to the OGC Standards Baseline.ooiiiiiiiiiiiiiiiiiinnn, 16
1.5 FOTEWOTA . ..ottt e e e e e 16

2 RO O EIICES . . .ttt e 17

3. ADDreviated TEITIIS . . . oo u ettt ettt ettt et e e e e e 18

0)< 74 (P 20
4.1. The Value of Application Schemas. e e 20
4.2.ShapeChange. o e 21

5. Status Quo and New Requirements Statement.oiutiiitininne e 23
5.1 StATUS QUO . .ottt e e e 23

5.1 Profilingoee e 23
5.1.2. UML to RDF/OWL/SKOS . ..ttt et et e e et ees 23
5.2. Requirements Statementottt e 24
5.2 0. Profilingooei e e 24
Adding Additional Options for Restricting Model Elementscooon.. 24
Specifying Profile Restrictions by an External Configuration File........................ 24
5.2.2. UML to RDE/SKOS/OWL ...ttt e et et ees 25

B. SOLULIONS . .ottt e e e e 26
6.1. Targeted SOIULIONSottt i 26

6.1.0. Profilingottt e 26
Loading Profile Information ...t e 26

6.1.2. Profile Configuration Formatcoo i 26

6.1.3. Intelligent Automated Revision of Constraints vs. Simple Validation 26

6.1.4. UML to RDE/SKOS/OWLt e e e e 26
Conversion Of UNIONSttt ittt e e e ettt it 26
Conversion of Generalization/Inheritance Relationship - Disjointness 27

6.2. ReCOMIMENAAtIONS . . . oottt ettt et ettt et e e e e e e 28

6.2.1. Profiling . ..ot e 28
Loading Profile Informationo oottt e 28
Profile Configuration Formatcoiiiiiiiii it e 28
Intelligent and Automated Revision of Constraints vs. Simple Validation................. 28

6.2.2. UML to RDE/SKOS/OWLt i 29

280 50) 1 10 4 PP 30
8 R =) o 2 1= PP 30
7.2. Representation of Profile Information i 31

7.2.1. Profile Identifiero e 31

7.2.2. Profile CONSIraintottt et e it e i 32

7.2.3. Profile Metadataouu ettt et e e e e 32

7.3. Profiling ProCesSSINg STePS ..ottt ettt ettt et e e 32

7.3.1. CONStraiNtLOAder . ..o oottt ettt ettt e e et e e e e 32

7.3.2. ProfileLoader.ottt e 36

7.3.3. PO IleT . ..t e 41
PO PTOCESSIIIE . . ettt ettt ettt et e e e e e 41
PO S SIIIg . o vttt ettt et e e e e e e e 41
PO PTOCESSIIIE . « v et ettt et ettt e e ettt e e e e e e e 43

7.4. Constraint Parsing and Validationt it e 43
7.5. IMPlemMeNntationottt e e 43
8. UML to RDE/OWL/SKOS . . . oottt e et i 44
ST R0 7= V4 (= 44
8.2. CONVETrSION RULESo e e e et e 44

8.2 0. GEMETAl . .ottt e e 44
DOCUMENTATION &« . o e ettt ettt et et et e e e ettt e 44

8.2, 2, PaACKA G . . o e it e e 48
Name and NamMeSPaACE . . . oo vttt ettt ettt et e et e et et e e i 49
Version INformationoouuuiit i e e e 50
Package DOoCUMENTatioNo ottt ettt ettt e 51
043 00 o T PP 51

82,3 LA e v vttt e e e e 51
€23 =) i U A 52
ClaSS NAIMIE . o ettt ittt e e e et e e e e e e e e e 52
ADSETACE ClaSS . o vttt et e 53
Generalization/INheritancettt e et 53

Custom SUDClasSSOf MapPPINES . ..o v e vttt ettt et e e e e e e e iae e e 55

FeatUre Ty PeS . .ottt e 56

(0] o) [0t dh 172 1= 56

1Y 0: 0 T 2 -1 57

LD F: U= 72 0 LT P 57
BaSIC Ty DS . o ettt et e e 57
L85 4) o 58
ENUMETationottt et 65
C0de LIStS . ettt ettt 66
L0100 1= U 174 1= 79
e o (0 1= /P 79
GNETAl ... e 79
Property Name e 80
Scope-Local vs. Globalt e 81
RaAN e . . e e 84
MU P CIEY .« o vttt e e e e e e e e 85
Custom SUDPropertyOf MappPings. . .« v v ettt ettt e et iiee i 87
ATTIDULE . o oo e 87
ASSOCIAtION ROLE e 87
8.2.5. ASSOCIALION ClaSS. . . . ittt ettt ettt e e e e 88
8.2.6. COMSITAINES . . .ottt ettt e e 91
Background: ISO 191502 . ..ottt ittt ettt et et e 91
Background: NAS OCL CONStIraiNtS.ottt tt ettt e et e e et iee et iiaa e 92
Background: Constraints in ShapeChange, 92
Mapping NAS Constraints to ShapeChange Constraintsccovviiiiineeennnn.. 93
Conversion of Constraints to RDF/OWL i 93

8.3. IMPLemMENtationo ottt ettt et e e e 97
8.4. NAS Ontology Encoding RuUlettt et et 97
8.4.1. Deriving the NSG Enterprise Ontology (NEO)oovtininiti e 97
8.4.2. Deriving the NSG Taxonomy (NTAX) ovvuint ittt 100
Annex A: Comparison of Encoding Rules in ISO 19150-2 Draftand Final 103
Annex B: XML Schema DOCUIMENTSttt 115
B.1. ConstraintLoader XSD 115
B.2. ProfileLoader XSDttt 116
B.3. descriptorTargets XSDttt e e e 118
B4 rdfMapENIries XSDttt ettt e e 119
B.5. rdfConversionParameters XSDcuiiiiititntiiie e 121
B.6. constraintMappings XSDttt e 124

2001 10 =3 =)) 12 126

Publication Date: 2017-04-04

Approval Date: 2017-03-09

Posted Date: 2016-10-31

Reference number of this document: OGC 16-020

Reference URL for this document: http://www.opengis.net/doc/PER/t12-A087
Category: Public Engineering Report

Editor: Johannes Echterhoff

Title: Testbed-12 ShapeChange Engineering Report

OGC Engineering Report
COPYRIGHT

Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of
use, visit http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for
review and comment. It is subject to change without notice and may not be
referred to as an OGC Standard. Further, any OGC Engineering Report should
not be referenced as required or mandatory technology in procurements.
However, the discussions in this document could very well lead to the definition
of an OGC Standard.

http://www.opengis.net/doc/PER/t12-A087
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"),
free of charge and subject to the terms set forth below, to any person obtaining a
copy of this Intellectual Property and any associated documentation, to deal in
the Intellectual Property without restriction (except as set forth below),
including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to
permit persons to whom the Intellectual Property is furnished to do so, provided
that all copyright notices on the intellectual property are retained intact and
that each person to whom the Intellectual Property is furnished agrees to the
terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual
Property must include, in addition to the above copyright notice, a notice that
the Intellectual Property includes modifications that have not been approved or
adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY
RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE
WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL
PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE.
ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL
PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER
LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by

destroying the Intellectual Property together with all copies in any form. The
license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the
operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be
likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the
Intellectual Property together with all copies in any form, whether held by you
or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder
of a copyright in all or part of the Intellectual Property shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such
copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other
special designations to indicate compliance with any LICENSOR standards or
specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts.
The application to this Agreement of the United Nations Convention on
Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be
a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may
be downloaded or otherwise exported or reexported in violation of U.S. export
laws and regulations. In addition, you are responsible for complying with any
local laws in your jurisdiction which may impact your right to import, export or
use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make
this license enforceable.

Abstract

This document is a deliverable of the OGC Testbed 12. It describes the results of
enhancing the tool ShapeChange in the following areas of processing an ISO
19109 conformant application schema:

1. Creating a schema profile - to support implementations that focus on a subset
of the use cases in scope of the original application schema.

2. Deriving an ontology representation of the application schema (using
RDF(S)/SKOS/OWL) - to support Semantic Web / Linked Data implementations.

Business Value

Application schemas are a key enabler of interoperable information exchange.
They define the structure and semantics of geographic features for a specific
domain, community, or application. Numerous application schemas exist, for
example in the defense and intelligence as well as aviation domains.

Traditionally, XML Schemas have been derived from application schemas, based
upon the encoding rules of the Geography Markup Language (GML). These
schemas are used for exchanging XML encoded geographic information in an
interoperable way.

This report advances location-based technologies in two ways:

» It describes the design of new functionality that allows a higher level of
control and flexibility when creating an application schema profile.

* It defines rules for converting an application schema into an OWL ontology.
The design is based upon the conversion rules defined by ISO 19150-2. A
number of configuration options as well as additional conversion rules
provide a higher level of control and flexibility when deriving an ontology
compared to the conversion rules defined by ISO 19150-2.

Profiling:

Some application schemas are designed to support a range of applications and
use cases. Often, software components are built to support a specific subset of
these use cases. Likewise, products (like maps on different scales) may contain a
specific subset of the information that is specified by the application schema.
Profiling reduces the application schema to the relevant subset. Once a profile
has been created, a number of implementation schemas can be derived, for
example XML schemas, database schemas, and ontologies. These schemas serve

as blueprints and specifications that facilitate the implementation of geographic
information systems. Note that the information to create a profile is stored in a
machine readable way. A profile can thus automatically be created, which is a
key benefit of model driven engineering. The new profiling functionality
described in this report supports the creation of more fine-grained schema
profiles. The existing profiling functionality supports the removal of irrelevant
classes and properties from the application schema. With the new functionality,
restrictions can be defined and applied on the remaining model elements.
Furthermore, model constraints - for example defined by OCL expressions - can
be added, updated, validated and deleted. With the new functionality designed
in Testbed 12, a domain expert can create schema profiles that express the
modeling intent in more detail than what has been possible before.

Conversion to OWL Ontology:

Converting an application schema into an ontology results in a key component
that can be used by web applications. The ontology defines the concepts for
encoding geographic information in machine-processible representation
languages (RDF/OWL/SKOS). RDF data published on the web supports linking
between different datasets. The ontology makes conceptual knowledge available
for automated reasoning over RDF data. Combined, this can unlock new
information.

The ER describes rules for deriving ontologies from ISO 19109 conformant
application schemas. The encoding rules of the recently published ISO IS 19150-
2 are taken into account and adapted as necessary.

The rules to convert an application schema to an OWL ontology have been
implemented by ShapeChange. Application schemas can now automatically be
converted to OWL ontologies. This facilitates the use of geographic information
in linked data and semantic web applications.

The concepts defined by the ontology can also be used to provide meaning to the
data contained in a JSON-LD document. JSON-LD adds linking to JSON, which is a
popular data format for web developers.

Why this ER is valuable for the Working Group(s) and OGC in general

The ER is important for the OGC Architecture DWG and the OGC in general
because it describes enhancements for working with application schemas in two
areas: Profiling and UML to RDF/OWL/SKOS. These enhancements extend the

existing rules for modelling and encoding an application schema:

» Value of improvements in profiling. New features in the area of schema
profiling support requirements of domains with large-scale application
schemas. Profiling automates the task of creating a subset of an application
schema to tailor it to the needs of a particular implementation. The result is
improved mission-specific profiles created using a configurable, repeatable
automated procedure.

 Value of UML-to-OWL transformation. New rules implemented in
ShapeChange provide automated capability for deriving ontologies and
controlled vocabularies in W3C encodings from ISO 19109 conformant
application schemas. The result is support for the use of semantics to
enhance geospatial information in Linked Data and Semantic Web
applications.

Keywords
UML, RDF, OWL, SKOS, Profile, Profiling, ShapeChange, UGAS, Ontology,
Controlled Vocabulary

Proposed OGC Working Group for Review and Approval
* Primary: Architecture DWG

» Secondary: Geosemantics DWG (UML to RDF/OWL/SKOS)

Chapter 1. Introduction

1.1. Scope

This OGC® document specifies enhancements to the application schema profiling functionality
provided by ShapeChange.

It specifies rules to convert an application schema in UML to an OWL ontology as well as SKOS
concepts and concept schemes.

This OGC® document is applicable to anyone who is defining or implementing an application
schema and wants to leverage the advantages of the Model-driven engineering approach, i.e.
automatically processing the schema to create schema subsets or to derive components that
facilitate implementation.

1.2. Document Contributors
All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization

Ellen D. Badgley MITRE Corporation

Deborah L. Nichols MITRE Corporation

Paul Birkel Geosemantic Resources, LL.C
Clemens Portele interactive instruments GmbH
Johannes Echterhoff (editor) interactive instruments GmbH

1.3. Future Work

1.3.1. Improve Support for Multilingual Application Schemas

With the new version from 2015, ISO 19109 has a mechanism to provide key information
(name/designation, definition, and description) in an application schema in more than one
language. RDF supports language tagging of literal values. Combined, this would allow the encoding
of descriptive information (definition, description, etc.) in multiple languages when converting an
application schema component to RDF. For example, an RDF resource representing a class could
have multiple rdfs:label and rdfs:comment properties, documenting the class in different
languages. Tools could display the content of an ontology in different languages, according to user
preference. From a more general point of view, artifacts automatically derived from the application
schema (e.g. documentation in the form of feature catalogues as well as XML Schemas) could be
provided in multiple languages, which can facilitate implementation within a multilingual
community.

Typically, application schemas are not multilingual yet. The NSG Application Schema, which was

the basis for the work on ShapeChange in OGC Testbed 12, uses English as the primary and only
language. Therefore, supporting multilingual application schemas throughout the processing chain
of ShapeChange was given a lower priority in Testbed 12.

Future work, however, should incorporate this feature. It would particularly be useful if a
multilingual community started developing and using a multilingual application schema.

One reason for doing so would be that the community has multiple official languages (like the
International Hydrographic Organization [[HO] and the European Union [EU]), and that artifacts
like documentation must be derived from the application schema in multiple languages. Another
reason would be that the community wants to support implementers with different linguistic
backgrounds. Their work could be facilitated if the application schema - and, subsequently, artifacts
derived from it - supported a language in which they are more proficient. This should be of interest
for all international communities, like Defense and Intelligence and Aviation.

1.3.2. OWL from OCL Constraints

An application schema may use specific types of OCL constraints that can be mapped to OWL
constructs such as class expressions and axioms. For example, an OCL constraint in a subtype can
restrict the type of a property inherited from a supertype. This and other types of constraints (e.g.
value ranges and allowed values [see the following subsection]) can be represented using OWL
property restrictions.

In order to implement such mappings, a detailed analysis of the types of OCL constraints used in
application schemas needs to be performed. Then we would need to analyze if and how a specific
type of constraint maps to OWL constructs. Ideally, an automated analysis of an OCL expression
would identify to which OWL construct a given OCL constraint can be mapped. However, the
implementation of such an analysis is non-trivial. Additional knowledge about the types of
constraints used in an application schema and the structures of the corresponding OCL expressions
can reduce the complexity. For example, the names of OCL constraints could contain a specific code
that identifies the type of the constraint.

In general, the derivation of OWL from OCL constraints would result in an ontology that provides
more information for automated reasoning.

OWL from OCL to Restrict Allowed Code List Values

The NSG Application Schema (NAS) contains OCL expressions that restrict the use of code values
from a code list to a particular subset in the context of a property in a specific class. Consider the
example shown in the following figure.

FeatureEntity ‘

«FeatureType»
Building

«dataType»
BuildingFeatureFunctionCodeMeta

«attribute»
+ featureFunction: BuildingFeatureFunctionCodeMeta [0..1]

+ valuesOrReason: SequenceBuildingFeatureFunctionCodeReason

«attribute»

«Union»
SequenceBuildingFeatureFunctionCodeReason

«inheritRelation» «attribute»
‘ + values: BuildingFeatureFunctionCodeList [1..*] {ordered}
+ reason: VoidValueReason

«FeatureType»
AircraftHangar

«codelist»
BuildingFeatureFunctionCodeList

OCL constraint "Feature Function - Allowed Values" on feature type
AircraftHangar:

[* The Feature Function of an aircraft hangar (inherited from [Building]) is
(without repetition) zero or more of: Aircraft Repair; Air Transport; Cargo
Handling; Emergency Operations; Emergency Shelter; Out-patient Care; and
Warehousing and Storage. */

inv: featureFunction.valuesOrReason.values->notEmpty() implies
(featureFunction.valuesOrReason.values->forAll(e|(e =
BuildingFeatureFunctionCodelList :aircraftRepair or e =
BuildingFeatureFunctionCodelList:airTransport or e =
BuildingFeatureFunctionCodeList:cargoHandling or e =
BuildingFeatureFunctionCodelList::emergencyOperations or e =
BuildingFeatureFunctionCodelList:emergencyShelter or e =
BuildingFeatureFunctionCodeList outPatientCare or e =
BuildingFeatureFunctionCodeList::warehousing Storage)) and
featureFunction.valuesOrReason.values->isUnique(x|x))

Figure 1. Example of OCL constraint restricting allowed code list values

Here the list of codes from the BuildingFeatureFunctionCodeList is restricted to the set
{aircraftRepair, airTransport, cargoHandling, emergencyOperations, emergencyShelter,
outPatientCare, warehousingStorage}. The context of the OCL expression is the <<featureType>>
AircraftHangar. The restriction ultimately applies to the "values" property in <<Union>>
SequenceBuildingFeatureFunctionCodeReason - when used in the context of an AircraftHangar (via
the property path of "featureFunction" - inherited from "Building" - and the "valuesOrReason" in
<<dataType>> BuildingFeatureFunctionCodeMeta).

In this example, the "BuildingFeatureFunctionCodeList" is empty, i.e. it does not
contain any attributes that would define code values. This is a perfectly legal
approach to modelling code lists. It indicates that the code list is managed
externally, for example in a registry.

NOTE

Future work should investigate what is needed to express the semantics of this specific type of OCL
constraint in OWL. A conversion rule should be implemented and tested.

A subClassOf expression like the following (here defined in Manchester syntax) on the OWL class
representing AircraftHangar could be used to define the constraint, at least the restriction of
allowed values:

Building.featureFunction only

(BuildingFeatureFunctionCodeMeta

and (BuildingFeatureFunctionCodeMeta.values only
{aircraftRepair,airTransport,cargoHandling,emergencyOperations,emergencyShelter,outPat
ientCare,warehousingStorage}))

This requires that the individuals representing the code values of BuildingFeatureFunctionCodeList
are defined to be different from each other.

Automatically creating this kind of expression requires detailed knowledge about the way the
application schema is converted to an ontology. For example, the expression above assumes that
the <<Union>> has been converted using rule-owl-cls-union-replace defined in Testbed 12. It also
assumes that the properties "featureFunction" and "values" are converted with local scope (for
further details see the section on locally vs globally scoped properties). Furthermore, there is an
assumption that the names of the individuals that represent the code list values are identical to the
code list value names found in the OCL expression.

OWL from OCL to Restrict Allowed Geometries

In this case, an OWL representation is needed for the restrictions on geometries that are stated in
OCL constraints. NAS OCL constraints may restrict the allowed values for the geometry of a specific
type of feature (i.e., some subclass of Feature Entity), to one or two kinds of the three possible
geometries. For example, for Runway Intersection, the OCL constraint “Place Representations
Allowed” ([Definition] inv: place — forAll(p | p.oclIsKindOf(SurfacePositionInfo))) restricts the value
to surface geometry.

Geometries in the NAS are represented by subclasses of the abstract class Place
Information. Place Information is abstract, as is its subclass Position Information,
which has three concrete subclasses: Curve Position Information, Point Position
Information, and Surface Position Information.

NOTE

1.3.3. Validation of RDF Data

Ontologies describe semantics. Reasoning on RDF data can be performed based upon the
information found in ontologies. This can lead to new information and knowledge.

Pure validation of RDF data is another use case. Validation can verify that a given dataset is
compliant to a specification. This is of interest whenever a data publisher and consumer have
agreed to exchange information compliant to a certain specification. This is even more important
when there are many publishers and consumers (think of information exchange on and between
the communal, regional, national, and international level).

The W3C is developing the Shapes Constraint Language (SHACL)[1]. This could become a key
technology for validating RDF data.

10

Future work should:

* Investigate to which extent SHACL supports validation of RDF data against an application
schema ontology, similar to how XML Schema can be used to validate GML data against a GML
application schema.

* An extension of this work would be an investigation to which extent SHACL can also be used
to validate JSON-LD data. RDF and JSON-LD are closely aligned - the JSON-LD standard
specifies the serialization/deserialization of JSON-LD to/from RDF. JSON-LD could thus be
seen as a web-programmer friendly RDF format. Consequently, it should be possible to
validate JSON-LD data with SHACL once the JSON data has been serialized to RDF. An
example where this would be useful is validation of new data before it is inserted by a
transactional Web Feature Service (WFS-T).

* Define and implement rules to automatically derive SHACL descriptions and constraints, called
'shapes’, from a UML application schema.

» Test semantic web software components to analyze to which extent they support SHACL.

This work would provide useful and relevant input to decision makers that consider integrating
interoperable exchange of RDF - and potentially also JSON-LD - data into their business. Validation
is a key aspect in ensuring compliance to interoperability agreements, in particular compliance of
data (GML, RDF, and JSON-LD) to application schemas.

According to the RDF Data Shapes Working Group Charter the standard was
planned to be published as a W3C Recommendation in February 2016. This goal has
not been met. The First Public Working Draft was published in October 2015, which

NOTE is ten months behind schedule according to the charter. This gives an indication that
SHACL will not become a W3C Recommendation before early 2017. Depending on
when the future work items described above would be carried out, they may need
to be performed against a non-final standard.

1.3.4. Ontology for Real-world Objects

The Defence Geospatial Information Working Group (DGIWG) maintains and develops the NATO
Geospatial Information Model (NGIM), an application schema for geospatial information. NGIM is
part of the NATO Geospatial Information Framework (NGIF). The concepts in NGIM are often rather
abstract (e.g. class "Facility"). The NATO Geospatial Real World Object Index (NGRWI) specifies a
range of real-world objects that are more user friendly (e.g. "AircraftFactory" and "Embassy"). It
does so by specifying which conditions must be met by an NGIM object to classify as a particular
real-world object. For example, "AircraftFactory"” is an NGIM "Facility" with property
"featureFunction" having the value "aircraftManufac". Likewise, "Embassy" is an NGIM "Facility"
with property "featureFunction" equal to "embassy".

We used Protégé to briefly test if this kind of condition can be expressed in OWL. The test
application schema defines class "Building" and property "religionFacilityType". The real-world
object "Cathedral" is defined as a Building with religionFacilityType equal to "Cathedral". The class
"Cathedral” can be defined in OWL as follows:

11

https://www.w3.org/2014/data-shapes/charter
https://www.w3.org/TR/2015/WD-shacl-20151008/

rwor:Cathedral a owl:Class ;
owl:equivalentClass [a owl:Class ;
owl:intersectionOf (ex:Building [a owl:Restriction ;
owl:hasValue "Cathedral" ;
owl:onProperty :religionFacilityType])] .

With the inference-aware Snap SPARQL query in Protégé it was possible to directly query for all
Cathedral real-world objects in a triple store that only contained objects of type Building. In other
words, we were able to perform a search by real-world object in a data store that only contained
data compliant to the more abstract feature type defined by the application schema.

Benefits: A real-world object index - like NGRWI - can:

« Simplify the identification and retrieval of real-world objects from a data store that contains
application schema (e.g. NGIM) compliant feature data.

* This can be useful for building applications around such a data store.

* It can also help implementers that do not have detailed knowledge of all aspects of the
application schema. This is especially relevant if the application schema is very large (like
NGIM) and supports a wide range of use cases, only a few of which may be of interest to a
particular application.

Future work should:

* Perform a complete analysis to which extent the conditions stated in the NGRWI (or its
successor) can be expressed in OWL (the test performed in OGC Testbed 12 only looked at one
particular example). If the conditions for real-world objects were defined in OCL, this work
would be related to the analysis of expressing OCL constraints in OWL.

* Identify the properties that an application schema must have in order to support the creation of
a real-world object index (RWI). Analyze if the NSG Application Schema has these properties. If
it does, create a draft RWI with a subset of representative real-world objects.

* Analyze how an RWI can be encoded (e.g. in UML or as an Excel workbook) so that a UGAS tool
like ShapeChange can read the definitions of real-world objects.

* Define and implement rules to automatically convert the real-world object index into an OWL
ontology.

* This work item would have to take into account how the application schema in UML is
converted to OWL. Otherwise, the OWL axioms and class expressions that represent the
conditions of real-world objects cannot be implemented through an automated process.

1.3.5. Support Specification in OWL of Properties Re-used Within an
Application Schema

The current approach covering ISO 19150-2 rules and ShapeChange capabilities provides for the
specification in OWL of UML properties either as globally scoped (that is, applicable to any OWL
class) or as scoped locally (that is, defined specifically for the OWL class representing the owning
UML class). An additional option is needed to represent the semantics of properties in a UML model

12

that are used with the same definition in the context of multiple UML classes but which may
intentionally not be used with all classes in the model. For example, in the NSG Application Schema
(NAS), the property Feature Function is applicable to just the UML classes: Agricultural Colony,
Building, Built-up Area, Cableway, Camp, etc. (a long but finite list that excludes many NAS UML
classes). Future work should develop transformation rules to represent such “re-used” UML
properties by an OWL property whose domain is scoped to a class (using an OWL property domain
axiom) that is defined as the union (i.e., ObjectUnionOf) of all the OWL classes representing all the
UML classes owning the re-used property. This would require a means of identifying the re-used
properties and their owning classes in the application schema (e.g., using a tagged value). An
alternative for identifying the re-used properties would be to string-match on identical property
names; however, we consider that a less reliable method.

1.3.6. Creating Multiple Ontologies that Support Different Levels of
Complexity

When converting an application schema to OWL, ShapeChange currently creates at most five
ontologies: one with concepts for all feature, object, and data types, two for the classes representing
enumerations and code lists, and two for the individuals derived from enumerations and code lists.
These ontologies contain complex class expressions and axioms, for example OWL DisjointClasses
and OWL DifferentIndividuals.

Typically, linked data applications only need basic definitions for class and property concepts. The
more complex expressions and axioms are mostly required when applying reasoners to infer new
information.

Future work should investigate the partitioning of derived ontologies into a) an ontology with the
basic concepts, and b) an ontology with the complex expressions and axioms. The latter would
import the former. This would result in a simple ontology to be used in linked data applications,
and one to be used for cases that require complex reasoning.

1.3.7. Implement the Profiling Workflow Extensions

An application schema specifies the information that is relevant for a community. The information
usually supports more than one use case. It is therefore often the case that large schemas - for
example the NSG Application Schema (NAS) and the Aeronautical Information Exchange Model
(AIXM) - are profiled, so that the resulting schema profile only specifies the information that is
relevant to a particular application or use case.

ShapeChange can create application schema profiles, and derive a number of implementation
schemas from them, for example XML Schema, Schematron, SQL DDL, and Ontologies.

At the moment, ShapeChange requires that profile information is contained in the application
schema itself. Creating, updating, and deleting application schema profiles can become a tedious
task. It would be better to keep profile definitions and the application schema separate from each
other, and load relevant profiles on-the-fly while executing ShapeChange.

The enhancements and extensions to the profiling workflow designed in Testbed 12 support a clean
separation between an application schema and profile definitions. The design should be
implemented as part of future activities.

13

1.3.8. JSON, JSON Schema, and JSON-LD

Work in Testbed 12 included a brief investigation of automatically converting the NAS to JSON. The
main focus of this investigation was to test the conversion to JSON Schema with the current NAS.
The conversion to JSON Schema was added to ShapeChange in Testbed 9 (for further details, see the
OWS-9 SSI UGAS ER). Another aspect of the investigation was the automatic derivation of JSON-LD
context documents. The observations and recommendations for future work that resulted from
these investigations are documented in the following subsections.

Converting the NAS to JSON Schema

1.

14

Association classes can be transformed as defined by GML 3.3. A generic transformer has been
implemented in Testbed 12 to support the conversion of association classes when deriving an
ontology from an application schema. The transformer can be re-used in any workflow that
requires the mapping of association classes.

The current implementation of the conversion to JSON Schema produces a schema that
conforms to JSON Schema, draft v3. Enhancements available in JSON Schema, draft v4, should
be analyzed to identify if they would improve the conversion of application schemas to JSON
Schema.

a. One example where draft v4 looks promising is improved support for inheritance, using the
keyword "allOf" (for further details on this keyword, see Understanding JSON Schema or
json-schema-validation).

b. In the NAS, the subtypes of PositionInfo are used to represent geometry information in
combination with additional information about the place represented by the geometry. The
JSON Schema target does not support this modelling approach yet, since the geometry types
from ISO 19107 are not modelled as property value types, but as supertypes of the NAS
PositionInfo subtypes. Inheritance flattening is not appropriate in this case. However, if
JSON Schemas for geometry types were defined, as recommended by the OWS-9 SSI UGAS
ER, then the PositionInfo subtypes could be implemented using combinations of JSON
Schemas with the "allOf" keyword. Note that an official JSON Schema for GeoJSON does not
exist yet, although some work has been done in that regard.

JSON Schemas should be defined for ISO schemas - or profiles of those schemas, for example
ISO 19107, ISO 19108, ISO 19115, and ISO 19157. A common set of JSON Schemas that implement
types specified in the ISO schemas would facilitate the implementation of application schemas
such as the NAS on platforms that use JSON encoded data. Standardized ISO JSON Schemas
would provide a basis to specify a JSON encoding for features according to ISO 19109 in a
consistent, testable way.

The ShapeChange target that converts an application schema into a JSON Schema has been
developed in OGC Testbed 9. Since then, a number of generic model transformation capabilities
were added to ShapeChange. One of them, the "flattener”, can simplify a conceptual model,
similar to what is necessary for the conversion to JSON Schema. A future revision of the existing
JSON Schema target should leverage these generic transformation capabilities, for example the
transformation of properties with a multiplicity greater than one.

The conversion to JSON Schema currently ignores mixin types and basic types. For further
details on these types, see clauses Mixin Types and Basic Types. Support for these special types

https://spacetelescope.github.io/understanding-json-schema/reference/combining.html#allof
http://json-schema.org/latest/json-schema-validation.html#anchor82
https://github.com/fge/sample-json-schemas/tree/master/geojson

should be added, to cover all types that occur in the NAS.

Conversion to JSON-LD Context Documents

JSON-LD is a lightweight syntax to serialize Linked Data in JSON. As the name suggests, it supports
linking in and between datasets, much like Xlinks in GML data.

A key aspect that JSON-LD adds to JSON is semantic tagging of data elements. Like in XML, each
element can be assigned to a namespace. This allows clients to identify the exact meaning of an
element, especially if there are multiple elements that happen to have the same name. JSON-LD
context documents are used to provide the necessary information. A context document typically
references terms from one or more vocabulary or ontology. These terms then provide the semantics
of elements in the actual JSON data.

Being able to identify the meaning of a data element, especially the namespace it belongs to, is
important in more complex environments. For example, an application schema may import
multiple other schemas, some of which can be extended dynamically. Actual JSON data would then
include elements defined in multiple namespaces. If these elements had the same name, clients
would not know the exact meaning of the elements - unless that meaning was defined through
JSON-LD. Clients that can identify the meaning of a data element can parse it correctly.

The serialization of an ontology in JSON-LD does not result in the JSON-LD context documents that
would be needed for use in actual JSON-LD data. However, it would be possible to convert an
application schema to JSON-LD context documents. This can be done while converting the schema
to RDF/OWL/SKOS (which is documented in this report).

Validation of JSON and JSON-LD Data

Creating a JSON Schema serves two purposes:

1. validating JSON data, where needed, and
2. facilitating the development and setup of software through

a. automatically deriving programming language specific bindings from the JSON Schema
(with tools like jsonschema2pojo and NJsonSchema for .NET)

b. configuring a service with JSON Schemas to specify the data that the service shall consume
or provide (for example, the Open API specification).

A question that came up in OGC Testbed 12 was if JSON Schema could be used to validate JSON-LD
data. To answer this question, further analysis is required. However, there is at least one issue:
JSON-LD has multiple ways to encode the same information. JSON-LD Framing could be one
approach to solve this issue:

15

https://github.com/joelittlejohn/jsonschema2pojo
https://github.com/NJsonSchema/NJsonSchema
https://github.com/OAI/OpenAPI-Specification

A JSON-LD document is a representation of a directed graph. A single
directed graph can have many different serializations, each expressing
exactly the same information. Developers typically work with trees,
represented as JSON objects. While mapping a graph to a tree can be done,
the layout of the end result must be specified in advance. A Frame can be
used by a developer on a JSON-LD document to specify a deterministic
layout for a graph.

— From the introduction of JSON-LD Framing

With framing, a JSON-LD document could be brought into a specific layout, which could then be
validated using a JSON Schema. Further analysis and testing would be necessary to verify that this
approach is feasible.

There could also be another solution for validating JSON-LD data. If the data transformed well to
RDF (this requires further analysis), then the Shapes Constraint Language (SHACL)[1] - which is also
mentioned in the future work item on Validation of RDF Data - might be better suited to validate the
data. SHACL would be processing the pure RDF data, and be independent of the data format.

1.4. Changes to the OGC Standards Baseline

This report documents new developments in the area of application schema profiling and
conversion of application schemas in UML to RDF/OWL/SKOS. The work did not identify a need for
change requests against the OGC standards baseline.

1.5. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

16

Chapter 2. References

The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

* ISO 19103:2015, Geographic information - Conceptual schema language

* ISO 19109:2015, Geographic information - Rules for application schema

* ISO 19150-2:2015, Geographic information — Ontology — Part 2: Rules for developing ontologies
in the Web Ontology Language (OWL).

» ISO/IEC 19505-2:2012, Information technology - Object Management Group Unified Modeling
Language (OMG UML), Superstructure

* OWL 2 Web Ontology Language, Structural Specification and Functional-Style Syntax (Second
Edition), W3C Recommendation 11 December 2012, available online at
http://www.w3.org/TR/owl2-syntax/

* OGC Geography Markup Language (GML) - Extended schemas and encoding rules, OGC
document number 10-129r1

17

http://www.w3.org/TR/owl2-syntax/

Chapter 3. Abbreviated Terms

AIXM
DDL
DGIWG
DIS
DWG
ER

EU
FOL
TPS
GML
THO

IRI

ISO
JSON
JSON-LD
MDE
NAS
NEO
NGIF
NGIM
NGRWI
NSG
NTAX
OCL
0GC
OWL
RDF
RDFS
RWI

SBVR

18

Aeronautical Information Exchange Model
Data Definition Language

Defence Geospatial Information Working Group
Draft International Standard

Domain Working Group

Engineering Report

European Union

First Order Logic

Feature Portrayal Service

Geography Markup Language

International Hydrographic Organization
Internationalized Resource Identifier
International Organization for Standardization
JavaScript Object Notation

JSON for Linked Data

Model-driven engineering

NSG Application Schema

NSG Enterprise Ontology

NATO Geospatial Information Framework
NATO Geospatial Information Model

NATO Geospatial Real World Object Index

U.S. National System for Geospatial Intelligence
NSG Taxonomy

Object Constraint Language

Open Geospatial Consortium

Web Ontology Language

Resource Description Framework

RDF Schema

Real-world Object Index

Semantics of Business Vocabulary and Business Rules

SDI
SHACL
SKOS
SPARQL
SQL
Turtle
UML
URI
URL
W3C
WES
WES-T
WMS
XMI
XML

Spatial Data Infrastructure

Shapes Constraint Language

Simple Knowledge Organization System
SPARQL Protocol and RDF Query Language
Structured Query Language

Terse RDF Triple Language

Unified Modeling Language

Uniform Resource Identifier

Uniform Resource Locator

World Wide Web Consortium

Web Feature Service

Web Feature Service - Transactional
Web Map Service

XML Metadata Interchange

Extensible Markup Language

19

Chapter 4. Overview

An application schema is a fundamental building block of interoperable spatial data infrastructures
(SDD). It is a conceptual model that defines the structure and content of geographic information.

Through automated processing, an application schema can be converted into an implementation
schema. Such a schema describes the content and structure of geographic information in a
technology-specific way, for example XML schemas, Schematron schemas, database schemas, JSON
schemas, and ontologies. Developers use these schemas and artifacts to write applications. In
general, creating and using application schemas is a realization of the Model-driven engineering
(MDE) approach.

This report documents two areas of processing an application schema that have been enhanced in
OGC Testbed 12:

* Creating an application schema profile to support implementations that focus on a subset of the
use cases in scope of the original application schema - see chapter Profiling.

* Converting an application schema to an ontology (using RDF(S)/OWL/SKOS) to support Semantic
Web and Linked Data implementations - see chapter UML to RDF/OWL/SKOS.

Converting an application schema to JSON Schema and JSON-LD Context documents
NOTE to support mobile and browser based applications has been investigated as well, but
only to a very limited extent. The results constitute a future work item.

The remainder of this chapter is structured as follows: The next subsection highlights the value of
application schemas for the geospatial community. The following subsection describes the
capabilities of ShapeChange, a tool for processing application schemas. ShapeChange was used to
implement the enhancements in application schema processing developed in OGC Testbed 12.

4.1. The Value of Application Schemas

An application schema defines structure and semantics of geographic features for a specific
domain, community, or application.

ISO 19109 defines rules for writing an application schema, while ISO 19136 defines encoding rules
to map an ISO 19109 conformant application schema (using UML as the conceptual schema
language [1: ISO 19103 identifies the Unified Modeling Language (UML) and the Object Constraint
Language (OCL) as the conceptual schema language for specification of geographic information.])
into a GML application schema (which is an XML Schema).

Web Feature Services (WFS) provide interoperable transactions on and access to geographic
features. The types of these features are defined in application schemas. By default, each WFS
supports features described using a GML application schema. Additional encodings are allowed,
too. The geographic information provided by a WFS can be used by various components within a
Spatial Data Infrastructure (SDI) to support a multitude of use cases. A common use case, for
example, is to visualize the information using components like the Web Map Service (WMS) and
Feature Portrayal Service (FPS).

20

Summary: application schemas are a key enabler and building block of geographic information
systems.

4.2. ShapeChange

ShapeChange is a software tool to process application schemas. The following figure illustrates how
it works.

Input loading

Application
Schemal Application
Schema2

Transformations
(Optional)

Targets

Figure 2. ShapeChange - Overview

* A UML model with one or more application schemas is loaded. The model can be loaded from
an Enterprise Architect repository, an XMI file, or a NAS-conformant database. At least one of
the schemas is selected (via the configuration) for further processing.

* NOTE: By default, ShapeChange processes all application schemas it finds in the
configuration. Typically, parameters are used to select a subset of all schemas contained the
model. Schemas can be selected by name as well as a regular expression to match the name
or the target namespace.

21

* The model can be transformed multiple times.

* The input model as well as any transformed model is encoded by one or more targets. Outputs
created by ShapeChange include, but are not limited to:

XML Schemas
» Feature catalogues (documentation, in different formats)

* Ontologies (RDF, OWL, SKOS)

ArcGIS Workspace models

SQL DDL

JSON Schemas

* Process execution is documented in a log file. Issues encountered when loading the input
model, or when processing it, will be reported in this file.

* A configuration file defines parameters and rules for loading the input model as well as

executing transformations and targets.

The behavior for processing a model is primarily controlled through conversion rules. In addition,
parameters and other configuration elements (like map entries) influence the way a schema is
processed.

An encoding rule is a specific set of conversion rules. The encoding rule can be defined in a
standard (like ISO 19136). However, with ShapeChange, a community can also define its own
encoding rule.

More detailed documentation is available on http://shapechange.net

22

http://shapechange.net

Chapter 5. Status Quo and New
Requirements Statement

This chapter explains the status quo and the new requirements or existing problems and issues that
have been addressed by this ER.

5.1. Status Quo

5.1.1. Profiling

Application schemas as defined by ISO 19109 are a Kkey building block in Spatial Data
Infrastructures (SDI). They define the structure and semantics of geospatial features that are of
interest to a specific domain. Domains like defense and aviation have large and complex schemas
that support a wide range of applications and use cases. A given application usually only depends
on a subset of such an overarching schema. In other words, it depends on a schema profile.

ShapeChange processes ISO 19109 compliant application schemas. One of the available processing
steps is the Profiler transformation, with which a model profile can be created. The Profiler can
remove classes and their properties from a schema if they do not belong to one or more specific
profiles (indicated via information contained in the tagged value "profiles"). The resulting profile
can be processed like any normal application schema. It can be written as a GML application
schema / XML Schema, a feature catalogue, or a UML model.

The behavior for handling constraints while profiling is rather limited. Constraints can either be
kept as-is or be removed. When removing constraints, either all constraints are removed or only
those constraints are removed whose name contains the name of a property that has been
removed.

The Profiler can also perform some pre- and postprocessing around the actual work of creating a
model profile. During preprocessing, it can check the profile settings of model elements for
consistency. During postprocessing, it can remove residual types (all non-featuretype classes that
are not used directly or indirectly by feature types of the model) and empty packages.

5.1.2. UML to RDF/OWL/SKOS

The first ShapeChange target to automatically map an ISO 19109 compliant application schema in
UML to an ontology representation (in RDF, OWL, and SKOS) was created in OGC Testbed 8 in 2011
(for further details, see [4] - section 8.1).

At the same time, the ISO TC 211 project 19150 was already active, working on two standards: ISO
19150-1 and ISO 19150-2. ISO 19150-1 was published in 2012 and defines a framework for semantic
interoperability of geographic information. The development of ISO 19150-2 was completed in 2015,
with ISO/DIS (a draft version) published in 2013. ISO 19150-2 defines rules and guidelines for the
development of OWL ontologies for ISO geographic information UML models and application
schemas.

In 2014, a new ShapeChange target was created based upon ISO/DIS 19150-2.

23

5.2. Requirements Statement

5.2.1. Profiling
The profiling functionality shall be enhanced to:

1. Support restrictions on model elements, and
2. Enable restrictions to be specified by an external configuration file rather than being carried

exclusively as UML tag-values in the application schema itself.

The following sections describe the requirements in more detail.

Adding Additional Options for Restricting Model Elements

The following restrictions shall be supported:

A. Overwrite the multiplicity of properties, e.g.:
a. 1.* - 1.norl
b. 0.1 -1

c. 0.* - 0.nor0.1

B. Adjust uniqueness and ordering of properties:
a. Adjust the uniqueness of values by setting “isUnique” to true or false;

b. Adjust the ordering of values by setting “isOrdered” to true or false.

C. Set association role navigability to true or false.

D. Make classes non-instantiable/abstract if, for example, their instantiation is disallowed by the
profile, but subclass instantiation is allowed.

E. Adjust OCL constraints:

a. Support the addition of new OCL constraints to further constrain classes and properties
selected for inclusion in the profile.

b. Support overwriting a constraint with a more restrictive one specified for a profile.
c. Support the deletion of constraints in a profile.

d. Support the parsing/validation of constraints with a profile as context (to ensure that the
constraint does not rely on model elements that may have been removed through profiling).

Specifying Profile Restrictions by an External Configuration File

This represents a paradigm shift regarding how profile information may be conveyed to the Profiler
transformation. Whereas ShapeChange currently expects profile information to be provided in the
input model, the enhanced version of ShapeChange would be able to load profile information from
an external file. This would support workflows where profiles are developed "on-the-fly" against a
stable, base application schema, which then does not need to be modified during profile
development.

24

The external configuration file should be in a format that is easy to develop and maintain. It must
be possible to overwrite all profile information that may be contained in the input model with the
information of the external configuration file.

5.2.2. UML to RDF/SKOS/OWL

The general requirements for the conversion of an application schema in UML to RDF/SKOS/OWL in
Testbed 12 were defined as follows:

* Extend the ShapeChange output target for RDF/OWL based on additional/alternative rules from
those specified in ISO 19150-2 to improve interoperability with, and reuse of, ontologies from
outside the geospatial community. The additional/alternative rules are defined during the
Testbed. Add support for N-Triples format.

* Add ShapeChange output target for RDF/SKOS to support specification of Controlled
Vocabularies and Taxonomies, including support for N-Triples format.

The existing ShapeChange targets to derive an OWL ontology from an application schema in UML
do not implement the rules of the final version of ISO 19150-2. Therefore, the ShapeChange target
that is based on ISO/DIS 19150-2 needs to be updated to implement the rules from the final version
of ISO 19150-2.

An analysis of the conversion rules from the draft and final version of ISO 19150-2 is

NOTE documented in Annex A.

25

Chapter 6. Solutions

6.1. Targeted Solutions

6.1.1. Profiling

Loading Profile Information

Two options were identified for loading profile information from an external source:

e Let the Profiler transformation load the information.

 Load the information in a separate transformation.

6.1.2. Profile Configuration Format

XML and Excel have been discussed as formats for encoding profile information in an external file.

To dynamically support new formats, the ShapeChange configuration should support the
specification of the class that implements profile loading.

6.1.3. Intelligent Automated Revision of Constraints vs. Simple Validation

If profiling removes properties and classes from the model that are required by OCL constraints,
then ShapeChange should at least report which constraints have become invalid due to profiling.
Ideally, constraints can be updated during or after profiling, to take into account the model changes
in the model that were introduced by this transformation.

6.1.4. UML to RDF/SKOS/OWL

One option to automatically derive an OWL ontology from an application schema in UML would
have been to use the rules defined in the final version of ISO 19150-2 as-is. However, a detailed
analysis of these rules showed that - in some cases - they are:

» vague - for example regarding the content of the “iso19150-2:constraint” annotation,
* potentially insufficient - for example regarding the encoding of unions (see below), or

* silent - for example regarding the conversion of association classes.

Therefore, another option was identified: Use the rules from ISO 19150-2 as a basis, and adapt or
add to them as necessary.

The following subsections document some of the issues with the conversion rules of ISO 19150-2 in
more detail.

Conversion of Unions

ISO 19150-2 provides an encoding for union types. The union is implemented as an OWL class that
uses an ObjectUnionOf (a union of class expressions - in RDF syntax: owl:unionOf) to represent the

26

members of the union. This approach is insufficient, for the following reasons:

* It does not handle cases where the value types of union properties are a mix of object and
datatypes.

* It does not handle cases where the same value type is used by more than one union property.

* It focuses on the value types of the union properties, completely ignoring the fact that the
properties themselves can carry meaning and therefore must not be discarded.

* It does not take into account that a union property can have multiplicity other than exactly 1.

An alternative approach must be found that solves these issues.

Conversion of Generalization/Inheritance Relationship - Disjointness

ISO 19150-2 states that a UML generalization/inheritance relationship shall be implemented as an
rdfs:subClassOf declaration. It does not address the representation of uniqueness between
subtypes.

ISO 19109 covers uniqueness of subtypes via the uniquelnstance attribute of the InheritanceRelation
<<metaclass>>. The definition of uniquelnstance in ISO 19109 is: "Uniquelnstance is a Boolean
variable, where TRUE means that an instance of the supertype shall not be an instance of more than
one of the subtypes, whereas FALSE means that an instance of the supertype may be an instance of

n

more than one subtype. Optional with a default value of 'true".

Application schemas typically do not limit generalization/inheritance relationships
NOTE to feature types. The NAS, for example, also uses this relationship between <<type>>
classifiers.

In ISO 19109 and UML, the default value for uniquelnstance in an inheritance relationship is 'true'.
Given the example shown in the following figure, uniquelnstance=true says that an Animal can be
an Elephant or a Mosquito, but not both at the same time. In other words, the subtypes are mutually
disjoint.

«featureType»
Animal

«featureType» «featureType»
Elephant Mosquito

Figure 3. Inheritance example to illustrate uniqueness

27

NOTE In the NAS (Part 1, Version 7.0) uniquelnstance is always TRUE.

In the W3C Web Ontology Language (OWL), subtypes are not assumed to be mutually disjoint. The
OWL 2 Primer observes that “...the information that two classes are disjoint is part of our
background knowledge and has to be explicitly stated for a reasoning system to make use of it.” [3].

The disjointness constraints imposed by a TRUE value of uniquelnstance are therefore not part of
the meaning of rdfs:subClassOf. Given the example, that means that an individual Animal may be
both an Elephant and a Mosquito.

An additional conversion rule is required to address the representation of uniqueness/disjointness
of subtypes in inheritance trees.

6.2. Recommendations

6.2.1. Profiling

Loading Profile Information

Instead of adding the functionality to load profile information from an external file to the Profiler
transformation, we assigned this functionality to two transformations:

* The ProfileLoader is a new transformation that loads information from an external source to
populate the "profiles" tagged value of model elements.

* The ConstraintLoader has been developed in Testbed 11 and is an ideal candidate to host all
functionality related to the loading of constraints from an external source.

The responsibilities for loading profile information and of actually creating a profile are thus
clearly separated. Even though this results in an additional processing step, represented by an
additional 'Transformer' in the ShapeChange configuration file, it avoids a 'scope creep' for the
Profiler.

Profile Configuration Format

It was decided that XML would suffice to store profile information.

Intelligent and Automated Revision of Constraints vs. Simple Validation

Early on in the Testbed it was decided that developing a specification for an automated revision of
OCL constraints, based upon information from profiles, would be impossible to achieve during the
Testbed without putting all other requirements documented in this report at risk.

A simple validation of constraints after a transformation was pursued. This functionality already
provides much needed support to a domain expert who defines application schema profiles. The
validation report will inform the expert which of the original constraints from the application
schema need to be removed or replaced when creating a particular profile of the schema.

28

6.2.2. UML to RDF/SKOS/OWL

Early on in the Testbed, it became apparent that simply relying only on the rules defined by ISO
19150-2 to convert an application schema to an OWL ontology did not meet the requirements for
deriving an OWL ontology from the NSG Application Schema (NAS).

Therefore, it was recommended to introduce a range of additional conversion rules and
configuration options as well as adaptations of the rules from ISO 19150-2. This solution is
documented in chapter UML to RDF/OWL/SKOS. It addresses the representation of union semantics
as well as the representation of uniqueness/disjointness of subtypes in inheritance trees.

29

Chapter 7. Profiling

This chapter discusses the enhancements to the profiling capability of ShapeChange.

The profiling functionality that is already implemented by ShapeChange is

NOTE documented at http://shapechange.net/transformations/profiler

7.1. Overview

Some application schemas - for example in the defense and intelligence as well as aviation domains
- are designed to support a range of applications and use cases. Often, software components are
built to support a specific subset of these use cases. Consequently, only a subset of the whole
application schema is of interest to such components. This is where profiling comes into play:
profiling can remove and update model elements (classes, properties, constraints as well as their
details) so that the resulting model is tailored for a particular application, and all aspects that are
irrelevant for the application have been removed or suppressed.

Manually creating a schema profile can be a tedious, error prone process. Therefore, ShapeChange
automates this process. A domain expert can focus on specifying profile definitions. ShapeChange
reads these profile definitions and then creates the schema profiles. Various outputs can then be
derived for each schema profile (for further details, see the overview of ShapeChange).

The requirements on the profiling mechanism are documented in section Profiling. The following
sections describe the design of ShapeChange to support these requirements.

The overall workflow of profiling a model is depicted in the next figure.

30

http://shapechange.net/transformations/profiler

Input loading

Transformations

i i“!ml i optional

s

Figure 4. Profiling workflow

7.2. Representation of Profile Information

Three types of information are relevant for profiling:

* profile identifiers
* profile constraints

* key-value-pair formatted profile metadata

7.2.1. Profile Identifier

A profile identifier consists of a name (for the profile definition) and optional version indicator
(which is not required in Testbed 12). Each model element (class, property, constraint) can be
assigned to one or more profile definitions through profile identifiers.

31

For classes and properties, profile identifiers are contained in the tagged value "profiles".

Constraints do not have tagged values. That is why we define a specific constraint type, a profile
constraint, which includes profile identifier(s) at the start of the constraint text.

7.2.2. Profile Constraint

A constraint is defined by its name, the model element it belongs to, a constraint text (that can
include comments), and the constraint type [2: The status of the constraint usually is irrelevant].

If the type of the constraint is "Profile” (ignoring case) then ShapeChange will recognize it as a
constraint that has one or more profile identifiers in the first line of the constraint text. If the
profile constraint is used to indicate that a particular constraint (most likely defined in the input
model for the original schema) shall be deleted then the remaining text will be empty. Otherwise,
the second line of text specifies the actual constraint type (e.g. "OCL" or "Invariant”). In that case,
the actual constraint text shall not be empty (so there must be at least three lines of text, because it
represents the actual constraint text.

7.2.3. Profile Metadata
Simple metadata can be provided for profiles in the form of key-value-pairs.

This metadata can be added to a profile identifier as follows:

ProfileA(multiplicity[1..n]),ProfileB(multiplicity[1])

e ProfileA(isAbstract[true])

ProfileA(isAbstract[true],geometry[P,S])

ProfileA[4-](isAbstract[true]),ProfileB(isAbstract[true])
A profile identifier would then have the following structure:

1. profile name
2. version indicator (optional)

3. profile metadata (optional)
Profile metadata cannot be specified for specific versions of a profile (which can be

NOTE specified via the optional version indicator of the profile identifier). This would be
overly complicated and is not a use case for Testbed 12.

7.3. Profiling Processing Steps

The Profiling workflow shows that three types of model transformations are used to realize the
desired profiling. They are described in the following sections.

7.3.1. ConstraintLoader

This transformation loads constraints from an external source (supported format is XML and Excel)

32

and adds them to the model. More specifically: it adds constraints only to the schemas that have
been selected for processing.

The following table describes the information that is provided for each constraint

Table 2. ConstraintLoader - Constraint Information

Informati Type Required / Default Description

on Item Optional Value

Constraint String Optional - Name of the Constraint. If no value is provided,
Name the ConstraintLoader will attempt to extract the

name from the constraint expression based
upon the following structure (in BNF): [<name>
‘] <constraint expression>.

Constraint String Optional - The type of the constraint, for example

Type "Invariant”, "OCL", "SBVR", "Profile". If no value
is provided then the ConstraintLoader uses the
value provided via the configuration parameter
"defaultConstraintType". If that parameter is not
provided, then the type is left empty.

Constraint String Required - Specifies the constraint, using the following

Expression structure (in BNF): [<name> .’] <constraint
expression>.

Comment String Optional - Describes the constraint.

Schema String Required - Name of the schema package that contains the

Package class or property a constraint is specified for.

Name

Context String Required - Name of the schema class or property a

Element constraint is defined for. If the context element

Name type is "Property" then the context element

name has the following structure: <class
name>'".:'<property name>.

Context Enumerati Optional Class The type of the element a constraint is defined

Element on: Class & for. This can either be a class or property.

Type Property

Profiles String Optional - Comma-separated list of profile identifiers. Can
be used to define a constraint for a specific set of
profiles.

Constraint information can be provided in different formats. XML (the XML Schema is documented
in Annex A) and Excel are supported.

The following listing gives an example:

<?xml version="1.0" encoding="UTF-8"7>
<Constraints xmlns="http://shapechange.net/constraintLoader/1.0"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"

33

34

xsi:schemalocation="http://shapechange.net/constraintLoader/1.0
./constraintLoader.xsd">
<constraint>
<Constraint>
<constraintName>Place Representations Allowed</constraintName>
<constraintType>0CL</constraintType>
<constraintExpression>inv: place-
>forA11(p| (p.oc1IsKindOf(PointPositionInfo)))</constraintExpression>
<schemaPackageName>Schema A</schemaPackageName>
<contextElementName>WindTurbine</contextElementName>
<profile>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</profile>
</Constraint>
</constraint>
<constraint>
<Constraint>
<constraintName>Place Representations Allowed</constraintName>
<constraintType>0CL</constraintType>
<constraintExpression>inv: place-
>forA11(p| (p.oclIsKindOf(PointPositionInfo)))</constraintExpression>
<schemaPackageName>Schema A</schemaPackageName>
<contextElementName>WindFarm</contextElementName>
<profile>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</profile>
</Constraint>
</constraint>
<constraint>
<Constraint>
<constraintName>Place Representations Allowed</constraintName>
<constraintType>0CL</constraintType>
<constraintExpression>inv: place-
>forA11(p| (p.oc1IsKindOf(PointPositionInfo)))</constraintExpression>
<schemaPackageName>Schema A</schemaPackageName>
<contextElementName>Zoo</contextElementName>
<profile>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</profile>
</Constraint>
</constraint>
<constraint>
<Constraint>
<constraintName>Place Representations Allowed</constraintName>
<constraintType>0CL</constraintType>

<constraintExpression>inv: place-
>forA11(p| (p.oc1IsKindOf(PointPositionInfo)))</constraintExpression>
<schemaPackageName>Schema A</schemaPackageName>
<contextElementName>Windmill</contextElementName>
<profile>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</profile>
</Constraint>
</constraint>
<constraint>
<Constraint>
<constraintName>Place Representations Allowed</constraintName>
<constraintType>0CL</constraintType>
<constraintExpression>inv: place-
>forA11(p| (p.oc1IsKindOf(PointPositionInfo)))</constraintExpression>
<schemaPackageName>Schema A</schemaPackageName>
<contextElementName>Wreck</contextElementName>
<profile>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</profile>
</Constraint>
</constraint>
</Constraints>

The parameters in the following table are used to provide information required by the
transformation process.

Table 3. ConstraintLoader - Parameters

Parameter Type Required / Default Description
Name Optional Value
inputFile String Required - Location of the file with constraint information.

This can be a file path (absolute or relative to the
working directory) and URL.

defaultCon String Optional - If a value is provided, the ConstraintLoader will

straintType use it as the constraint type whenever a
constraint from the input does not define the
type itself.

oclConstrai String Optional - Regular expression that is applied to the type of

ntTypeReg a constraint. If the type matches, then the

ex constraint is treated as an OCL constraint. If the

parameter is not present or an empty value is
given, then a constraint will not be recognized
as OCL constraint. Also see NOTE1 and NOTE2 at
the bottom of this table.

35

Parameter Type
Name

folConstrai String
ntTypeReg
ex

profileCon String
straintTyp
eRegex

Required / Default
Optional Value

Optional -

Optional -

Description

Regular expression that is applied to the type of
a constraint. If the type matches, then the
constraint is treated as a First Order Logic (FOL)
constraint. If the parameter is not present or an
empty value is given, then a constraint will not
be recognized as FOL constraint. Also see NOTE1
and NOTE2 at the bottom of this table.

Regular expression that is applied to the type of
a constraint. If the type matches, then the
constraint is treated as a profile constraint. If the
parameter is not present or an empty value is
given, then a constraint will not be recognized
as profile constraint. Also see NOTE1 and NOTE2
at the bottom of this table.

NOTE1: A constraints whose type is not recognized will be converted to a text constraint. NOTE2:
the constraint type regexes are evaluated with following priority: profileConstraintTypeRegex >
oclConstraintTypeRegex > folConstraintTypeRegex

By default, the ConstraintLoader adds the constraints found in the input to the constraint set of
their respective context elements. Previously existing constraints are not changed (e.g. overwritten
or deleted). The following rules can be used to modify the default behavior.

Table 4. ConstraintLoader
Rule ID

rule-trf- -
constraintload
er-
deleteAllPreexi
stingConstraint

S

rule-trf- -
constraintload
er-
overwritePreex
istingNonProfil
eConstraint

7.3.2. ProfileLoader

Parameters

- Rules

Map Entries

Behavior

The ConstraintLoader deletes all constraints in
the input model (more specifically: in the
schemas selected for processing) before loading
the constraints from the input file. NOTE: this
rule has higher priority than rule-trf-
constraintloader-
overwritePreexistingNonProfileConstraint

The ConstraintLoader overwrites a preexisting
constraint if the input file contains a constraint
with the same name, same context element, and
both constraints are not profile constraints. If
the constraint from the input file has an empty
expression then the preexisting constraint will
be deleted.

This transformation populates the profiles tagged value of classes and properties with profile
information provided via an input file. It does not add new constraints - that functionality is

covered by the Constraint

36

Loader.

Profile information can be provided in XML (the XML Schema is documented in Annex C). The
following listing gives an example:

<?xml version="1.0" encoding="UTF-8"?7>
<ProfileInformation xmlns="http://shapechange.net/profileLoader/1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://shapechange.net/profileLoader/1.0 ./profilelLoader.xsd">
<schema>
<Schema>
<packageName>Schema A</packageName>
<requirement>
<Requirement>
<class>FeatureEntity</class>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</identifier>
</Profile>
</profile>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>NameOfAnotherProfile</name>
<versionIndicator>2.2-</versionIndicator>
</Profileldentifier>
</identifier>
</Profile>
</profile>
</Requirement>
</requirement>
<requirement>
<Requirement>
<class>WindTurbine</class>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</identifier>
</Profile>
</profile>
</Requirement>
</requirement>
<requirement>
<Requirement>

37

38

<class>WindTurbine</class>
<property>windFarm</property>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</identifier>
<metadata>
<KeyValuePair>
<key>multiplicity</key>
<value>1</value>
</KeyValuePair>
</metadata>
</Profile>
</profile>
</Requirement>
</requirement>

<requirement>
<Requirement>
<class>Wetland</class>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>PlaceGeomTestV3</name>
</Profileldentifier>
</identifier>
<metadata>
<KeyValuePair>
<key>isAbstract</key>
<value>false</value>
</KeyValuePair>
</metadata>
</Profile>
</profile>
</Requirement>
</requirement>
</Schema>
</schema>
<schema>
<Schema>
<packageName>Schema B</packageName>
<requirement>
<Requirement>
<class>FeatureTypel</class>
<profile>

<Profile>
<identifier>
<Profileldentifier>
<name>ProfileA</name>
</Profileldentifier>
</identifier>
</Profile>
</profile>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>ProfileB</name>
</Profileldentifier>
</identifier>
</Profile>
</profile>
</Requirement>
</requirement>
<requirement>
<Requirement>
<class>FeatureType2</class>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>ProfileA</name>
</Profileldentifier>
</identifier>
</Profile>
</profile>
</Requirement>
</requirement>
<requirement>
<Requirement>
<class>FeatureType2</class>
<property>attributel</property>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>ProfileA</name>
</Profileldentifier>
</identifier>
</Profile>
</profile>
</Requirement>
</requirement>
<requirement>
<Requirement>
<class>FeatureType2</class>

<property>attribute2</property>
<profile>
<Profile>
<identifier>
<Profileldentifier>
<name>ProfileA</name>
</Profileldentifier>
</identifier>
</Profile>
</profile>
</Requirement>
</requirement>
</Schema>
</schema>
</ProfileInformation>

This example contains profile information for two schemas. It shows that the ProfileLoader can add
profile information to multiple schemas contained in the model.

Table 5. ProfileLoader - Parameter(s)

Parameter Type Required / Default Description
Name Optional Value
inputFile String Required - Location of the file with profile information.

This can be a file path (absolute or relative to the
working directory) and URL.

For each requirement from the input file the ProfileLoader creates a profiles (tagged) value and
adds it to the class or property specified by the requirement. By default, all preexisting profiles
tagged values on this model element will be deleted before the new tagged value is added. If
schema elements already have a profiles tagged value and the input file does not contain specific
profile information for this element, the tagged value will be kept.

The optional rule-trf-profileloader-deleteAllProfilesTaggedValues supports deletion of all profiles
tagged values in the model before adding new ones.

The default behavior thus supports updating profile information for parts of the schemas that are
selected for processing. It does not require profile information to be provided for all (relevant)
elements of these schemas.

Table 6. ProfileLoader - Rules

Rule ID Parameters Map Entries Behavior

rule-trf- - - If this rule is configured, the ProfileLoader

profileloader- deletes all profiles tagged values in the

deleteAllProfile application schemas that are selected for

sTaggedValues processing before new profiles tagged values are
generated based upon the content of the input
file.

40

7.3.3. Profiler

This transformation creates a subset of a given model. It is documented in detail on
http://shapechange.net/transformations/profiler

In the following we highlight the enhancements specified in Testbed 12, assigned to the three
processing phases.

Preprocessing

Before profiling a model, the profiler can perform a number of checks:
* Check that the profile information of a model element is well-formed. If an inconsistent value is
found, a warning will be logged. This check is extended as follows:
* check profile information of profile constraints
* the check of profile information takes the occurrence of profile metadata into account
* Check that the profile information of a model element is consistent regarding the model, i.e. the

profile set of a class contains the profile sets of all its subclasses and properties. This check is
extended as follows:

* check that the profile set of a class also contains the profile sets of its constraints

Processing

During the main processing phase, the Profiler creates the profile (i.e. removes properties and
classes that don’t belong to the profile).

When the Profiler processes a class or a property, the Profiler first checks if it belongs to the target
profiles. If it does not, then the class/property is removed from the model, including any constraints
that are defined for it. Otherwise the model element is kept as is, and new/updated behavior is
executed: metadata handling and constraint handling.

Metadata Handling

If profile metadata in the form of key-value-pairs is provided in the profile that the model element
(class/property) belongs to, then:

* All keys recognized by the profiler are used to modify the element; the following keys are
defined:

* Kkey: isAbstract — abstractness is set according to the value (either "false" or "true", ignoring
case); if the value cannot be parsed to a Boolean or if the model element is not a class, a
warning is logged and the key-value-pair ignored

* key: multiplicity — the multiplicity is set to the according value (e.g. "0..1"); if the value
cannot be parsed to a multiplicity or if the model element is not a property, a warning is
logged and the key-value-pair ignored

* key: isOrdered — ordered constraint on property is set according to the value (either "false"
or "true", ignoring case); if the value cannot be parsed to a Boolean or if the model element

41

http://shapechange.net/transformations/profiler

is not a property, a warning is logged and the key-value-pair ignored

* key: isUnique — uniqueness constraint on property is set according to the value (either
"false" or "true", ignoring case); if the value cannot be parsed to a Boolean or if the model
element is not a property, a warning is logged and the key-value-pair ignored

* key: isNavigable — association end navigability is set according to the value (either "false" or
"true", ignoring case); if the value cannot be parsed to a Boolean or if the model element is
not an association role, a warning is logged and the key-value-pair ignored

* All keys that are not recognized by the Profiler will automatically be added to the model

element as tagged value (name = key & value = value). They can then be used in subsequent
processing steps (e.g. by the Flattener transformation to only apply the homogeneous geometry
rule for specific geometry types).

Constraint Handling

1.

2.

3.

4.

42

Any profile constraint is checked to determine if it belongs to the target profiles. If it does not, it
is removed. In that respect, a profile constraint is treated like any other model element
(currently: class/property) that has profile information attached to it.

The Profiler transformation parameter "constraintHandling" specifies additional behavior for
handling constraints while the model is actually being profiled/modified. It applies to all
constraints (profile constraints and other constraint types):

* keep (default): all constraints are kept as-is (i.e. all profile constraints that remain from step
1 and all other types of constraints)

e remove: all constraints are removed

* removeByPropertyNameInConstraintName: remove a class constraint if its name contains
the name of a property (with the suffix “ Type”) that is being removed through profiling. For
example, if the attribute “att” is removed from a class during profiling, then any constraint
of that class whose name contains “att_Type” is removed by the Profiler.

Once profiling of classes and properties is complete, the Profiler revisits the constraints of the
remaining classes and properties to see if there are constraints with the same name. If there
are, then:

« if multiple profile constraints have the same name, ShapeChange logs a warning and only
keeps one (which is chosen on an arbitrary basis)

« if multiple non-profile constraints (for example, OCL constraints) have the same name,
ShapeChange logs a warning and only keeps one (which is chosen on an arbitrary basis)

o if (after the previous two checks), both a profile constraint and a non-profile constraint
remain, then:

i. the non-profile constraint is deleted; this supports revision of constraints

ii. if the profile constraint has no expression it is also deleted; this supports deletion of a
constraint in a profile

Finally, the profiler transforms profile constraints into constraints of the according types.

rule-trf-profiling-processing-explicitProfileSettings does NOT apply to constraints. A
NOTE profile constraint always has a defined profile identifier. Non-profile constraints
simply apply to the class or profile in any profile that this element belongs to.

Postprocessing

A new postprocessing rule has been defined in Testbed 12: rule-trf-profiling-postprocessing-
removeProfilesTaggedValues. As the name says, it can be used to delete all profiles tagged values in
the model profile. This can be useful for cleaning up the model for subsequent processing steps
where profile information shall not be included, like writing the profile back into an Enterprise
Architect repository.

7.4. Constraint Parsing and Validation

A model transformation - especially profiling - can modify the model in such a way that constraints
are no longer valid.

In Testbed 12, the postprocessing functionality available for all transformations has been extended
to parse and validate constraints.

If a constraint is invalid in the context of the transformed model, then ShapeChange will log a
warning (which includes the reason why the constraint is invalid) and convert the constraint into a
simple text constraint, so that processing can proceed. The user can then either modify the input
model (e.g. constraint definitions), the transformations (e.g. profiling), or the output (if there were
only minor issues).

Parsing and validating constraints of a transformed model can help prevent errors.

Validating constraints at the end of a transformation can also be skipped by including rule-trf-all-
postprocess-skip-constraint-validation in the rules of that transformation. This can be useful if
constraints of transformed models are irrelevant for target processing (i.e., the derivation of the
final output).

7.5. Implementation

The common constraint parsing and validation functionality has been implemented in Testbed 12.
Due to resource limitations, the implementation of the ConstraintLoader, the ProfileLoader, as well
as the extensions to the Profiler had to be postponed. They are future work items.

43

Chapter 8. UML to RDF/OWL/SKOS

8.1. Overview

One of the goals in Testbed 12 was the conversion of the NSG Application Schema (NAS) into an
OWL ontology. During the Testbed, a number of requirements were identified for this conversion. It
turned out that the recently published ISO 19150-2 does not support all of these requirements.
Therefore, additional conversion rules were defined in Testbed 12, together with adaptations and
extensions of the rules from ISO 19150-2. These rules are documented in the following section.
Some aspects of the ShapeChange implementation of the conversion rules are documented in the
Implementation section. The final section of this chapter documents the encoding rule for deriving
an ontology from the NAS.

8.2. Conversion Rules

The following subsections describe how the content of an application schema represented using
UML as the conceptual schema language can be converted to RDF/SKOS/OWL elements.

For many schema constructs a default conversion rule exists. Specific rules can be used to augment
or replace the default rule.

A conversion rule describes how a specific aspect of the conceptual schema shall be
NOTE encoded in the target representation (e.g. RDF/OWL). An encoding rule consists of a
set of conversion rules — as required by a community.

8.2.1. General

Documentation

The documentation of UML packages, classes, properties, and associations includes the following
pieces of generic descriptive information, called descriptors:

Table 7. Descriptors

Descriptor Name Explanation

(and ID)

Name The name of the model element (as named in the source UML, i.e. using
(name) upper and lower camel case).

Alias An alternative, human-readable name for the model element.

(alias)

Definition The normative specification of the model element.

(definition)

Description Additional information about the model element.

(description)

44

Descriptor Name Explanation

(and ID)

Example(s) Example(s) illustrating the model element.

(example)

Legal basis The legal basis for the model element.

(legalBasis) NOTE: This descriptor is optional. For some communities, this
information is needed in model documentation generated by
ShapeChange.

Data capture Statement(s) describing how to capture instances of this model element

statement(s) from the real world.

(dataCaptureStatement)

Primary code The primary code for this model element.

(primaryCode) NOTE: The main code for a model element should be assigned to this
descriptor. The primary code may be the only one. Optional additional
tagged values may be added for other codes.

NOTE The descriptor ID is used in templates of descriptor targets - see next table.

Typically, a community has a preferred way to model and encode this information. For example,
one community may want to encode the definition of a model element in a skos:definition property,
while another prefers to encode it as part of an rdfs:comment property. Yet another community
may want to do both. ShapeChange can support this type of diversity through descriptor targets
that are part of the configuration. A descriptor target specifies how the content of a specific RDF
property (that shall be generated while converting a model element) is constructed from
descriptors. It uses a template to do so. The descriptor target also takes into account that a model
element may not have an actual value for each descriptor, and that some descriptors can have
multiple values.

In addition to the well-known descriptors (see previous list), additional descriptive information can
be incorporated through UML tagged values from the application schema, as explained in the
previous table. For example, the "name" tagged value on classes in the NAS could be used to create
skos:prefLabel declarations.

The following table documents the structure of a descriptor target. An example is also provided
below the table. The XML Schema can be found in the Annex on XML Schema Documents.

Table 8. Descriptor Target

45

Informa
tion
Item
(configu
red via
XML
attribut
e)

appliesT
0

target

46

Datatyp Require Default Description
e& d/ Value

Structu Optiona

re 1

one of Optional "all" Identifies the type of ontology element to which the
"ontolog DescriptorTarget applies. A value of "all" means that the
vy, descriptor applies to an ontology, class, conceptscheme,
"class", and property.

"concept

scheme",

"propert

y", "all"

string; Require not IRI of an RDF property that will be added with the
the d applicabl resource representing the model element as subject. The
syntax e value is determined by the template attribute, with the
shall value format being defined by the format attribute.
follow

QNames,

with the

prefix

being

equal to

the

namesp

ace

abbrevia

tion of a

namesp

ace that

is

containe

d in the

configur

ation of

the

ShapeCh

ange

ontology

target

Informa Datatyp Require Default
tion e& d/ Value
Item Structu Optiona
(configu re 1

red via

XML

attribut

e)

template string Require not

Description

Text template where an occurrence of the field

d applicabl "[[descriptor-ID]]" is replaced with the value(s) of that

e

format enum: Optional langStri
string, ng
langStri
ng, or
IRI

noValue enum: Optional ignore
Behavio ignore
r or

populate

Once

noValue string Optional the
Text empty
string

multiVal enum: Optional connectl
ue either nSingleT
Behavio connectl arget
r nSingleT

arget or

splitToM

ultipleTa

rgets

multiVal string Optional a single

ue space
Connect characte
orToken r

descriptor. The IDs of supported descriptors are listed in
the table above. An occurrence of the field "[[TV:name]]" is
replaced with the value(s) of the UML tagged value with
the given name from the input schema. The content of a
tagged value can also be split into multiple strings. In that
case, use a field "[[TV(separator):name]]". The tagged value
will be split around matches of the given separator (which
is treated as a literal).

Defines the format of the property value: * langString:
language-tagged string; the configuration parameter
"language" (in the ontology target configuration) provides
the value of the language tag * string: string without
language tag * IRI: the value is the IRI of a resource

Determines the behavior in the case that no value is
available for any of the fields contained in the template: *
ignore: No target property is created. * populateOnce: A
single target property is created, with the noValueText
being used for all fields.

If a descriptor used in a template has no value, then this
information item provides the text to use instead (e.g.
"N/A" or "FIXME").

Specifies how descriptors with multiple values shall be
encoded: * connectInSingleTarget: Multiple values of a
descriptor contained in the template are combined in a
single target RDF property value, using the
multiValueConnectorToken to combine them. *
splitToMultipleTargets: Multiple values for one or more
descriptors result in multiple target RDF properties, one
for each value-combination of multi-valued descriptors
(resulting in a permutation of the values of each
descriptor contained in the template).

If a descriptor used in a template has multiple values, and
the multiValueBehavior of the descriptor target is set to
connectInSingleTarget, then the values are concatenated to
a single string value using this token as connector between
two values.

The following listing gives an example illustrating the use of descriptor targets:

47

8.

<sc:descriptorTargets xmlns:sc="http://www.interactive-
instruments.de/ShapeChange/Configuration/1.1"

xmlns:xi="http://www.w3.0rg/2001/XInclude"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<sc:DescriptorTarget target="rdfs:label" template="[[alias]]"/>

<sc:DescriptorTarget target="rdfs:Comment"

template="-- Definition: [[definition]] -- Description: [[description]]"

noValue="FIXME"/>

<sc:DescriptorTarget target="skos:preflLabel" template="[[TV:name]]"/>

<sc:DescriptorTarget target="skos:altlLabel" template="[[TV(]|):aliasList]]"
multiValueBehavior="splitToMultipleTargets"/>

<sc:DescriptorTarget target="rdfs:isDefinedBy"
template="[[TV:informationResourceURI]]" format="IRI"/>

<sc:DescriptorTarget target="ex:example" template="[[example]]" noValue="n/a"
multiValueConnectorToken="\r\n\r\n"/>
</sc:descriptorTargets>

* Descriptors can be converted to RDF using a specific language identified via the
parameter "language" (in the ontology target configuration). A future work item
provides further details.

» Additional annotations (e.g. rdfs:seeAlso and owl:deprecated) for which no

information is contained in the application schema - in descriptors or tagged

NOTE values - need to either be set manually or suitable UML tagged values added to
the application schema elements and then realize using descriptor targets.

* The ISO 19150-2 documentation requirements - for example setting rdfs:label
and rdfs:isDefinedBy - can be realized using descriptor targets.

* Descriptor targets are processed when encoding UML packages, classes, and
properties. They do not apply to constraints.

2.2. Package

By default, an ontology with a unique RDF namespace is created for each package that belongs to a
schema that is selected for processing by ShapeChange. This matches the behavior described in ISO
19150-2 clause 6.

If

As described in the overview, the ShapeChange configuration allows a user to select
NOTE a specific subset of all schemas contained in the input model. Transformations and
targets will only be executed for selected schemas.

rule-owl-pkg-singleOntologyPerSchema is enabled, then one ontology namespace will be created

for the selected schema and its child packages.

48

The content of a UML package, i.e. UML classes and their properties, will be

NOTE converted to OWL depending upon the conversion rules that have been configured.

Name and Namespace

The ontology name is determined by ShapeChange according to the following rules:

* If rule-owl-pkg-ontologyName-iso191502 is enabled, then the ontology name is the normalized
package name appended to a base URI (with “/” as separator).

o If rule-owl-pkg-ontologyName-byTaggedValue is included in the encoding rule and a tagged value
- identified by the configuration parameter ontologyNameTaggedValue (default value:
ontologyName) - is set for the package, then its value is used.

» This option is useful if ontologies shall be derived from multiple schemas, and each shall
have a specific ontology name that is defined in the UML model.

o If rule-owl-pkg-singleOntologyPerSchema and rule-owl-pkg-ontologyName-code are both in effect,
the ontology name is constructed as follows: a code value is appended to a base URI (see next
NOTE for further details) with "/" as separator.

The code value is determined by first looking at the configuration parameter
ontologyNameCode. If it exists, its value is used. Otherwise, the abbreviation defined for an
application schema package - via the tagged value xmlns on the application schema package - is
used for constructing the ontology name. If neither the configuration parameter nor the tagged
value exist, or they do not contain a non-empty string, then "FIXME" will be used as the code
value.

The name of the file in which the ontology is stored will then also be constructed using the code
value - instead of the package name (which would be normalized according to ISO 19150-2).

 This option is useful if a community uses specific codes to identify its schemas.

o If rule-owl-pkg-ontologyName-withPath is in effect, then the umlPackageName (that is appended
to a base URI with "/" as separator) is constructed using the path of the package to the upmost
owner that is in the same target namespace - using a combination of "/" and normalized package
names for all parent packages in the same target namespace.

» This option is useful if child packages of a schema shall be converted to ontologies with
different names, and the package names are suitable to construct the ontology name.

The base URI is determined as follows: if the configuration parameter 'URIbase' is
NOTE set, then its value is used - otherwise the targetNamespace of the package provides
the value of the base URI.

If rule-owl-pkg-ontologyName-appendVersion is enabled, and the 'version' tagged value of the
application schema package contains a non-empty string, then the version is appended to the
ontology name with separator "/".
Although including a version number in the ontology name is not common practice,
NOTE it can be useful to better enforce use of a particular version of an ontology within a

community.

The RDF namespace of an ontology - also known as the ontology IRI - is constructed by appending a

49

specific character to the ontology name. ISO 19150-2 specifies that character as '#":

rdfNamespace = ontologyName "#"

This can be changed - for example to '/ - using the ShapeChange configuration parameter
rdfNamespaceSeparator.

Using '/" as separator allows access to individual resources (e.g. classes, properties)

NOTE within an ontology. This can be useful for large ontologies.

Rule execution priority and dependencies
The conversion rules to determine the ontology name are executed with the following priority:

1. rule-owl-pkg-ontologyName-byTaggedValue

2. rule-owl-pkg-ontologyName-code (only in combination with rule-owl-pkg-
singleOntologyPerSchema)

3. rule-owl-pkg-ontologyName-withPath
4. rule-owl-pkg-ontologyName-is0191502

If none of these rules is enabled, ShapeChange will log a warning and use rule-owl-pkg-
ontologyName-iso191502 as fallback.

Appending a version to the ontology name is an additional processing step. Therefore, rule-owl-pkg-
ontologyName-appendVersion is independent of the other rules.

Version Information

If a package that is converted into an ontology has version information and rule-owl-pkg-
versionInfo is enabled, then the information is encoded in an owl:versionInfo element.

ShapeChange looks up the version of a package either directly in the configuration
(more specifically: in Packagelnfo elements) or in the tagged value "version" of the
package. If no version information is found there, the version of the parent package

NOTE is checked. If the parent package has version information, it is used for the child
package. Because of this, <<leaf>> packages of an application schema usually have
the same version as the application schema. This can be useful if ontologies are
created for all packages within a given application schema.

If rule-owl-pkg-versionlRI is included and a package that is converted into an ontology has version
information, then the versionIRI of the ontology is constructed as follows:

ontologyName "/" version

If rule-owl-pkg-versionIRI and rule-owl-pkg-ontologyName-appendVersion are both enabled, and the
package has version information, then the version would be duplicated in the versionIRI. To avoid

50

this, enable rule-owl-pkg-versionIRI-avoid-duplicate-version.

No rules are available to set additional annotations related to versioning of
NOTE ontologies (owl:priorVersion, owl:backwardCompatibleWith,
owl:incompatibleWith). If necessary, they need to be set manually.

Package Documentation

In addition to the general documentation rules, if rule-owl-pkg-dctSourceTitle is enabled, then the
conversion of a UML package into an ontology also adds information about the title of the
specification or standard that is the source of the ontology definitions, using a dct:source element
as described by ISO 19150-2.

The value of this element is computed as follows:

« If the configuration parameter "sourceTaggedValueName" is set and the package has this tagged
value, its value is used.

* Otherwise, if the configuration parameter "source" is set, then its value is used.

* Otherwise the value "FIXME" is used (obviously, this requires manual adjustment after the
ontology has been created by ShapeChange).

Imports

The import of an external ontology is specified using an owl:imports declaration.
An owl:imports is required in the following cases:

» The application schema uses one or more types from an external schema, for example in
inheritance relationships or as value types. In this case, the ontology that is derived from the
application schema must import the RDF/OWL implementation of the external schema.
More specifically, the RDF/OWL implementation of the types from the external schema must be
imported. This implementation is not necessarily a single ontology. As discussed before, the
packages of a schema (in this case: the external schema) may have been converted to multiple
ontologies. Also, ShapeChange supports mappings of individual types and properties from the
UML model to any RDF/OWL representation.

* The conversion of the application schema to an ontology can add additional relationships to
RDF/OWL classes and properties (for example, using the rdfs:subClassOf predicate). These
relationships are not necessarily modelled in UML. However, they need to be represented in the
resulting ontology. That requires importing the ontologies that define these RDF/OWL classes
and properties.

If rule-owl-pkg-importISO191502Base is included, then each ontology imports the base ontology
defined by ISO 19150-2 with IRI http://def.isotc211.0rg/iso19150-2/2012/base#.

8.2.3. Class

51

http://def.isotc211.org/iso19150-2/2012/base#

General

Unless stated otherwise for specific types of classes (e.g. enumerations), a UML class is converted to
an owl:Class.

However, in general, if an RdfTypeMapEntry in the ShapeChange configuration provides a mapping
for a UML type from the processed schema, then the UML type is not itself encoded. Instead,
whenever the UML type is used in the schema, the target RDFS or OWL class specified by the map
entry is used in the RDF implementation.

For example, the following configuration fragment specifies that:

* UML type "Typel100" in schema "MySchema" is implemented by class http://example.org/1#Z.
* UML type "Typel01" in any schema is implemented by datatype http://example.org/1#Y

<sc:rdfMapEntries>
<sc:RdfTypeMapEntry type="Type100" schema="MySchema" target="ex1:7"/>
<sc:RdfTypeMapEntry type="Typel101" target="ex1:Y" targetType="datatype"/>
</sc:rdfMapEntries>
<sc:namespaces>
<sc:Namespace nsabr="ex1" ns="http://example.org/14"/>
</sc:namespaces>

The XML Schema definition of rdfMapEntries (including documentation of attributes) is provided
in Annex B.

Provision of the "targetType" in an RdfTypeMapEntry is necessary to differentiate if
the target is an RDFS class or a datatype. UML properties with the type stated in the
map entry as value type can then be encoded accordingly. The default value for
"targetType" is "class".

NOTE

The configuration may contain multiple RdfTypeMapEntry elements (RTMEs) for a
specific type (T), each with a different 'schema'. The look-up of the
RdfTypeMapEntry that applies to T is performed as follows:

* If one RdfTypeMapEntry from RTME has a schema that matches the schema of T

NOTE then that map entry is chosen (because it is specific for T).

* Otherwise, if one RdfTypeMapEntry from RTME does not define any schema,
then it is chosen (because it is a generic mapping for T).

* Otherwise, none of the elements in RTME applies to T.

Class Name

Following ISO 19150-2, the OWL class name is a combination of the RDF namespace of the ontology
and the UML class name:

52

http://example.org/1#Z
http://example.org/1#Y

className = rdfNamespace umlClassName

The UML class name is given in upper camel case. Punctuation characters other than dash and
underscore are replaced by underscore characters. Space characters are removed.

The rule for constructing the name is the same for an OWL class and an OWL

NOTE datatype.

Abstract class

If rule-owl-cls-iso1915021sAbstract is enabled, then the owl:Class representation of an abstract class
from the schema receives the annotation property iso19150-2:isAbstract with value set to true.

Generalization/Inheritance

If rule-owl-cls-generalization is enabled, then a generalization relationship between a class in the
schema and another class is implemented as an rdfs:subClassOf declaration.

Uniqueness / Disjointness

As described in the section on targeted solutions, ISO 19150-2 does not address the representation
of uniqueness/disjointness of subtypes in inheritance trees.

If rule-owl-cls-disjoint-classes is enabled, then an OWL disjoint classes axiom is created for each
case where a supertype has more than one subtype. The axiom contains a collection of the direct
subtypes of the supertype, thus ensuring that they are mutually disjoint.

Consider the following example:

53

«featureType»

Animal
«featureType» «featureType»
Elephant Mosquito
«featureType» «featureType»
IndianElephant AfricanElephant

Figure 5. Inheritance example to illustrate conversion of uniqueness

The conversion rule would create two OWL DisjointClasses axioms to represent this inheritance
tree:

* DisjointClasses(ex:Elephant ex:Mosquito)

* DisjointClasses(ex:IndianElephant ex:AfricanElephant)

The first axiom ensures that an animal can either be an elephant or a mosquito (this includes
subclasses - so an Indian elephant cannot be a mosquito) but not both. Likewise, the second axiom
ensures that an elephant can either be an Indian elephant or an African elephant, but not both.

Multiple inheritance is covered as well - consider the following figure.

54

«type»

Geometry
«type» «type» «type»
Point Curve Surface

/A A

«type» ‘

PointyCurve

«type» «type»
CurvePositioninfo SurfacePositioninfo

«type»
Positioninfo

Figure 6. uniqueness / disjointness - multiple inheritance example

As long as the supertypes (including all their supertypes up to the top of the inheritance tree) of a
class are not disjoint, such a class can exist. In the example, Point, Curve, and Surface are disjoint
according to rule-owl-cls-disjoint-classes applied to the supertype Geometry. By the same rule,
CurvePositionInfo and SurfacePositionInfo are disjoint subclasses of PositionIinfo. A PointyCurve
individual cannot exist because Point and Curve are disjoint. However, individuals belonging to
CurvePositionInfo can exist, because its superclasses (Curve and PositionInfo) are not disjoint.
Similarly, individuals belonging to SurfacePositionInfo may also exist.

Custom subClassOf Mappings

If required by a specific encoding rule, rdfs:subClassOf properties can be added to particular classes
and types of classes (identified by stereotypes). The needed conversion information is kept separate
from the model. It is provided in the ShapeChange configuration, using the configuration elements
StereotypeConversionParameter and TypeConversionParameter.

For example, the following configuration fragment specifies that:

55

» All <<featureType>> classes shall be rdfs:subClassOf GeoSPARQL "Feature".

» The UML type "Featurel" from "Schema 1" shall be rdfs:subClassOf the class
http://example.org/1#C.

<sc:rdfConversionParameters>
<sc:StereotypeConversionParameter wellknown="FeatureType"
subClassOf="geosparql:Feature"/>
<sc:TypeConversionParameter type="Featurel" schema="Schema 1" subClassOf="ex1:C"/>
</sc:rdfConversionParameters>
<sc:namespaces>
<sc:Namespace nsabr="geosparql" ns="http://www.opengis.net/ont/geosparql#"/>
<sc:Namespace nsabr="ex1" ns="http://example.org/1#"/>
</sc:namespaces>

The XML Schema definition of rdfConversionParameters (including documentation of attributes) is
provided in Annex B.

 If both an RDF map entry and an RDF conversion parameter apply to the same
UML type (or UML property), then the RDF map entry has higher priority (and
the RDF conversion parameter will be ignored).

* The "schema" attribute in a TypeConversionParameter element can be used to

identify the application schema to which the "type" belongs.

The configuration may contain multiple TypeConversionParameter elements (TCP)
for a specific type (T), each with a different 'schema'. The look-up of the
NOTE TypeConversionParameter that applies to T is performed as follows:

* If one TypeConversionParameter from TCP has a schema that matches the
schema of T, then that conversion parameter is chosen (because it is specific for
T).

* Otherwise, if one TypeConversionParameter from TCP does not define any
schema, then it is chosen (because it is a generic mapping for T).

* Otherwise, none of the elements in TCP applies to T.

Feature Types

If rule-owl-cls-encode-featuretypes is enabled, feature types will be converted to OWL classes.

Object Types

ShapeChange treats UML types without stereotype as plain objects with identity, called object types.
UML types with stereotype <<type>> are usually also treated this way.

If rule-owl-cls-encode-objecttypes is enabled, object types will be converted to OWL classes.

Omitting this encoding rule can be useful when creating a taxonomy of particular

NOTE UML types.

56

http://example.org/1#C

Mixin Types

ShapeChange supports the notion of mixin ¢type (for further details, see
http://shapechange.net/targets/xsd/extensions/mixin/). They are primarily used by the XML Schema
target. However, if that target is contained in the ShapeChange configuration, it has implications on
how UML types are loaded. In this case, it may lead to UML types being loaded as mixin types. A
UML type is loaded as a mixin type if:

* rule-xsd-cls-mixin-classes is contained in the XSD encoding rule and:
* the tagged value gmIMixin is set to true, or

* The type has the stereotype <<type>>, is abstract, and the tagged value gmlMixin is not set to
false.

For the ontology conversion rules, a mixin type is usually treated as any other object type. If UML
types are loaded by ShapeChange as mixin types, include rule-owl-cls-encode-mixintypes to convert
them to OWL classes.

Omitting this encoding rule can be useful when creating a taxonomy of particular

NOTE UML types.

Data Types

If rule-owl-cls-encode-datatypes is enabled, data types will be converted to OWL classes.

Omitting this encoding rule can be useful when creating a taxonomy of particular

NOTE UML types.

Basic Types

ShapeChange supports the notion of basic type (for further details, see
http://shapechange.net/targets/xsd/extensions/#rule-xsd-cls-basictype). They are primarily used by
the XML Schema target. However, if that target is contained in the ShapeChange configuration, it
has implications on how UML types are loaded. In this case, it may lead to UML types being loaded
as basic types. A UML type is loaded as a basic type if:

* rule-xsd-cls-basictype is contained in the XSD encoding rule, and:

* the UML type has the stereotype <<BasicType>>, or

* the UML type is an object type, mixin type, or data type and has a supertype that is
identified as a basic type through an XSD map entry (which does not have its xmlTypeType
and xmlTypeContent attributes both set to 'complex’ - either explicitly or by using the default
values, which is 'complex’ for both attributes).

For the ontology conversion rules, a basic type is usually treated as any other type. If UML types are
loaded by ShapeChange as basic types, include rule-owl-cls-encode-basictypes to convert them to
OWL classes.

57

http://shapechange.net/targets/xsd/extensions/mixin/
http://shapechange.net/targets/xsd/extensions/#rule-xsd-cls-basictype

Omitting this encoding rule can be useful when creating a taxonomy of particular

NOTE UML types.

Union

As outlined in the section on targeted solutions, the conversion of a <<union>> type as specified by
ISO 19150-2 is insufficient.

In the following, we define a universal rule to convert unions that solves these issues. At the same
time, we explain why the universal rule may not always work well with common semantic web
software. Therefore, we propose two alternative rules, one being specific to how unions are used in
the NAS modeling pattern for XxxMeta datatypes.

Universal Approach

This approach is based on a logical combination of unqualified cardinality constraints. The
resulting class expression ensures that values are given for only one of the properties in the union.

More specifically, the class expression is created as follows:

* For each property P in the <<union>> type:

* Create a set of unqualified cardinality restrictions, to express the multiplicity of P (for
example by restricting the minimum cardinality of P to 1), and that the cardinality of each of
the other properties is restricted to 0.

* NOTE: If multiplicity is not encoded (neither rule-owl-prop-
multiplicityAsQualifiedCardinalityRestriction nor rule-owl-prop-
multiplicityAsUnqualifiedCardinalityRestriction is part of the encoding rule), then the
minimum cardinality of P would explicitly be set to zero, so that the combination of
cardinality restrictions covers the other properties as well as P.

* Combine the set of cardinality restrictions within an intersection class expression. The
meaning of this expression is that if a value is given for P, then no values may be provided
for the other new properties.

* Combine the set of property-specific intersection class expressions within a single union class
expression. This essentially represents the meaning of the <<union>> type: if a value is given for
one of the options, then there must not be values for the other options.

The class expression is added to the OWL class representation of the <<union>> type.

Each <<union>> type property is converted to an OWL property according to the general rules
defined for properties. This ensures that the value type of the property can be represented

properly.

Consider the following example:

58

gunion»
Union1

«property»
+ optl: CharacterString [1..7]
+ opt2: Integer
+ opt3: CharacterString

Figure 7. Example of a <<union>>

In pseudocode, the class expression that declares the union semantics can be described as follows,
where an integer indicates the number of values that exist for a given property:

(#opt1 >= 1 AND #opt2 = @ AND #opt3 = 0)
OR (#opt1 = @ AND #opt2 = 1 AND #opt3 = Q)
OR (#opt1 = @ AND #opt2 = @ AND #opt3 = 1)

The class expression ensures that values exist only for one of the union properties, with the
number of values constrained as defined by the multiplicity of that property in the UML model.

The OWL encoding of Union1 would be (namespaces omitted for brevity):

59

60

rdfs:range xsd:string .

rdfs:range xsd:integer .

rdfs:range xsd:string .

:Union1 rdf:type owl:Class ;

rdfs:subClassOf [
rdf:type owl:Class ;
owl:unionOf (
[owl:intersectionOf (

[rdf:
owl:
owl:

[rdf:
owl:
owl:

[rdf:
owl:
owl:

type owl:Restriction ;

onProperty :optl ;

:opt1 rdf:type owl:DatatypeProperty ;

:opt2 rdf:type owl:DatatypeProperty ;

:opt3 rdf:type owl:DatatypeProperty ;

I

minCardinality "1"Mxsd:nonNegativeInteger]

type owl:Restriction ;

onProperty :opt2 ;
cardinality "@"AAxsd:

type owl:Restriction ;

onProperty :opt3 ;
cardinality "@"AAxsd:

rdf:type owl:Class]
[owl:intersectionOf (

[rdf:
owl:
owl:

[rdf:
owl:
owl:

[rdf:
owl:
owl:

type owl:Restriction ;

onProperty :optl ;
cardinality "@"AAxsd:

type owl:Restriction ;

onProperty :opt2 ;
cardinality "1"M\xsd:

type owl:Restriction ;

onProperty :opt3 ;
cardinality "@"Axsd:

rdf:type owl:Class]
[owl:intersectionOf (

[rdf:
owl:
owl:

[rdf:
owl:
owl:

[rdf:
owl:
owl:

type owl:Restriction ;

onProperty :optl ;
cardinality "0"Axsd:

type owl:Restriction ;

onProperty :opt2 ;
cardinality "@"AAxsd:

type owl:Restriction ;

onProperty :opt3 ;
cardinality "1"Mxsd:

rdf:type owl:Class]

I

nonNegativeInteger]

I

nonNegativelnteger]) ;

I

nonNegativeIlnteger]

’

nonNegativelnteger]

I

nonNegativeIlnteger]) ;

I

nonNegativeInteger]

I

nonNegativeInteger]

r

nonNegativelnteger]) ;

The identifier for this conversion rule is: rule-owl-cls-union.

As described in the section on multiplicity an encoding rule may omit conversion
rules to handle property multiplicity. In that case, the multiplicity defined by the
UML model is not specified by cardinality restrictions in the resulting ontology.
Nevertheless, to model the semantics of a union in OWL, a class expression as
described above would still be used - just with owl:minCardinality of 0 as the
cardinality restriction for each union property. In pseudocode:

(#opt1 >= @ AND #opt2 = @ AND #opt3 = 0)
OR (#opt1 = @ AND #opt2 >= @ AND #opt3 = 0)
NOTE OR (#opt1 = @ AND #opt2 = @ AND #opt3 >= @)

If multiplicity is encoded, then the class expression that defines the union semantics
already defines the multiplicity. Therefore, additional cardinality restrictions for the
union options are not encoded. Actually, if they were encoded, it would often lead to
a class definition that cannot be satisfied: if two options have minimum multiplicity
of 1, then the cardinality restrictions to represent multiplicity would require that an
instance of a union had values for both properties, which contradicts the class
expression that represents the union semantics - where only one of the properties
can have a value.

However, we think that this universal approach might not work well in actual applications.
Because the union is represented as a class, individuals of that union type encoded in RDF would
contain the evaluated union property. A union individual would be an intermediary class between
the value of the property and the individual described by that value. Usually, RDF applications can
find the actual value of a property - for an individual of a "normal" class - directly, i.e. without
having to take an intermediate step (in this case through the "union" individual). It is not clear how
well semantic web software would be able to handle "union" classes as described in this universal
approach.

Alternative: Flattening the Union

In this approach, the union class itself is not converted to an OWL class. Instead, each UML
property - typically a UML attribute - that has a union as value type (a property referred to as "A" in
the following definitions) is converted by replacing it with new properties, one for each property
option (in the following referenced as "B") of the union.

The following paragraphs explain how the name, descriptors (e.g. definition and description),
multiplicity, and value type of the new properties are determined.

The name of a new property is constructed as follows: <name property A> <union_separator>
<name property B>.

The union_separator is defined in the configuration parameter "separatorForPropertyFromUnion".

For example, where the union_separator is set to "_by_", the resulting property names from
flattening a union with two properties are "vulnerabilityToPollution_by_singleQuantity" and

61

"vulnerabilityToPollution_by_quantityInterval".

In some cases, the name of the union property B already contains the name of property A. For
example: "areaOfResponsibility” (name of property A) and "areaOfResponsibilityByPolygon" (name
of the union property B). Concatenation of names in such a case would lead to duplication (in the
example: areaOfResponsibility_by_areaOfResponsibilityByPolygon). This can be corrected through
a manual review of the resulting ontology.

An approach for automatically detecting and avoiding such duplication may become

NOTE available in the future.

The descriptors of properties A and B are merged:
* Definition, description, primary code, and legal basis are concatenated, using a single space as
separator.
* The data capture statements are merged into a single list.
* The examples are merged into a single list.

This automatic combination may not always be ideal. Therefore, a manual review of the resulting
ontology should be performed.

The handling of tagged values also needs to be defined. The default behavior - which can be
modified in the future through additional rules - is to ignore the tagged values from property A and
to use the tagged values from property B for the new property. The sequenceNumber tagged value is
a special case, because it will need to be adjusted so that the new property is correctly positioned
within its class, without any duplication of sequence numbers.

Each new property receives the value type of the union property as its value type.
The multiplicity of the new property is defined as follows:

* lower bound: If maximum multiplicity of A is 1 then the lower bound is the product of the
minimum multiplicities of property A and B; otherwise it is 0.

* NOTE: If the maximum multiplicity of A is 1, then a class expression as defined in the
universal approach can be used to represent the union semantics; in that case, the actual
minimum multiplicity of A is of interest (so should not always be set to 0).

* upper bound: The product of the maximum multiplicities of property A and B - or unbounded if
one of the maximum multiplicities is unbounded.

Cardinality restrictions can be used to express the resulting multiplicity for each new property.

If the lower bound of the multiplicities of properties A or B is 0, then the cardinality
restriction for the new property should use owl:minCardinality=0. This supports the

NOTE situation in which the new property does not have a value at all. In most cases,
property B - so a <<union>> option - will have a lower bound of 1. Property A, on the
other hand, can have a lower bound of 0.

As described in the universal approach, an OWL class expression can be used to express that an

62

individual can only have values for one of the new properties (or none at all), thus specifying the
union semantics. Such a class expression is only created if the maximum multiplicity of property A
is one. In this case, the restriction to one of the new properties is correct.

If the maximum multiplicity of A is greater than one, then it can have values from
NOTE more than one option. In that case, it would not be correct to add a class expression
that restricts values to only one of the new properties.

The rule to transform the model in this way has the identifier rule-trf-prop-flatten-types. The
following listing provides an example of a ShapeChange configuration element, with parameters
and this rule, with which this transformation can be achieved. For further details about the
transformation rule and its parameters, see http://shapechange.net/transformations/flattener/#rule-
trf-prop-flatten-types

<Transformer
class="de.interactive_instruments.ShapeChange.Transformation.Flattening.Flattener"
input="A" id="B" mode="enabled">
<parameters>
<ProcessParameter name="includeUnionIdentifierTaggedValue" value="true"/>
<ProcessParameter name="mergeDescriptors" value="true"/>
<ProcessParameter name="separatorForPropertyFromUnion" value="_"/>
<ProcessParameter name="flattenObjectTypes" value="false"/>
<ProcessParameter name="flattenDataTypesExcludeRegex" value=".*"/>
<ProcessParameter name="setMinCardinalityToZeroWhenMergingUnion" value=
"false"/>
</parameters>
<rules>
<ProcessRuleSet name="flattener">
<rule name="rule-trf-prop-flatten-types"/>
</ProcessRuleSet>
</rules>
</Transformer>

During the transformation, ShapeChange sets tagged values (tag name is: 'SC_UNION_SET") to keep
track of which properties belong to which union. When converting the model to an ontology, the
conversion rule rule-owl-cls-unionSets can make use of this information to create class expressions
that represent the union semantics.

Alternative: replace property with union as value type with union options

In special cases, a simpler flattening approach may be applied. If only a single property (A) of a
non-union type (e.g. a datatype) has a specific union as value type, and if that property has
maximum multiplicity 1, then merging property names would not be necessary. In that case, the
union properties can simply replace property A without merging. This would not produce
ambiguity in the non-union type. Only the sequenceNumbers will need to be adjusted, so that the
union properties are correctly positioned within their new class.

NOTE The mentioned preconditions can automatically be checked by ShapeChange.

63

http://shapechange.net/transformations/flattener/#rule-trf-prop-flatten-types
http://shapechange.net/transformations/flattener/#rule-trf-prop-flatten-types

In the NAS, for example, unions represent choices between an actual "value" for a property and a
"reason” why the value is not provided. The union is always used by a single property
"valueOrReason" or "valuesOrReason" of an XxxMeta datatype. The following figure provides an
example.

«dataType» «dataType»
ShipyardVesselCodeMeta DatatypeMeta

«inheritRelation»

«attribute»
+ valuesOrReason: SequenceShipyardVesselCodeReason

«Union»
SequenceShipyardVesselCodeReason

«attribute» «Enumeration»

+ values: ShipyardVesselCodeList [1..*] {ordered} VoidValueReason
+ reason: VoidValueReason

«enumerationLiteral»
nolnformation

«codelList» other

ShipyardVesselCodeList notApplicable
valueSpecified

Figure 8. Example of <<union>> usage within the NAS

Both "value" and ‘"reason" can directly replace "valuesOrReason" within the
ShipyardVesselCodeMeta datatype.

The OWL property name is constructed using the XxxMeta class name, because both
"value" and "reason" are not global properties. Encoding of "reason" as a global
property would make sense in this specific case because the semantics are the same
for each XxxReason <<union>>. This would work for the conversion of NAS unions,
because an XxxMeta datatype only has a single property with union value type. If
multiple of these unions were used in the XxxMeta datatype and "reason" was a
global property, then it would not be possible to differentiate for which particular
property a "reason" is provided.

NOTE

The rule to transform the model in this way has the identifier rule-trf-cls-replace-with-union-
properties. The following listing provides an example of a ShapeChange configuration element, with
parameters and this rule, with which this transformation can be achieved. For further details about
the transformation rule and its parameters, see
http://shapechange.net/transformations/flattener/#rule-trf-cls-replace-with-union-properties

64

http://shapechange.net/transformations/flattener/#rule-trf-cls-replace-with-union-properties

<Transformer
class="de.interactive_instruments.ShapeChange.Transformation.Flattening.Flattener"
input="A" id="B" mode="enabled">
<parameters>
<ProcessParameter name="includeUnionIdentifierTaggedValue" value="true"/>
</parameters>
<rules>
<ProcessRuleSet name="flattener">
<rule name="rule-trf-cls-replace-with-union-properties"/>
</ProcessRuleSet>
</rules>
</Transformer>

As described before, ShapeChange sets tagged values (tag name is: 'SC_UNION_SET') during the
transformation to keep track of which properties belong to which union. When converting the
model to an ontology, the conversion rule rule-owl-cls-unionSets can make use of this information to
create class expressions that represent the union semantics.

Rule Execution Priority and Dependencies

The conversion rules for unions - rule-owl-cls-union and rule-owl-cls-unionSets - are independent of
each other.

If none of these rules is enabled, unions and union semantics will not be encoded. The range of
properties with a union as value type will then be set to the value of the ShapeChange configuration
parameter defaultTypeImplementation (default is owl:Class).

Enumeration

ISO 19150-2

The conversion of enumerations as defined by ISO 19150-2 is covered by rule-owl-cls-
is0191502Enumeration. The enumeration corresponds to an RDFS datatype that specifies the
restricted list of literals using an owl:oneOf declaration.

Enumeration as Code List

An alternative conversion rule is also available: rule-owl-cls-enumerationAsCodelist. It takes into
account that the conceptual difference between enumerations and code lists is rather small. An
enumeration is considered to be a complete list of codes, while a code list is extensible. Both contain
lists of acceptable values to be used with properties, typically as strings of natural language or
mnemonic abbreviations. Optionally (and preferably) both kinds of elements are provided with
definitions.

Due to their dynamic nature, code lists are now often encoded (e.g. using SKOS) and managed
separately from the application schema. SKOS representation can be applied to enumerations as
well. If rule-owl-cls-enumerationAsCodelist is enabled, then the conversion to RDF treats
enumerations as code lists.

65

That means that tagged values vocabulary and codeList can also be relevant on
enumerations. If rule-owl-cls-enumerationAsCodelist and rule-owl-cls-codelist-
external are enabled and an enumeration has the tagged value vocabulary or
codeList, then the enumeration will be treated as externally managed. It will not be
converted to an OWL class and SKOS individuals; instead, the OWL representation
of UML properties that have the enumeration as value type will reference the
external representation of the enumeration (see section on code lists for further
details).

NOTE

Treating enumerations as code lists may also be desirable for the following reasons:

* The representation of enumerations as string values (within an owl:oneOf declaration as
specified by ISO 19150-2) does not allow for providing definitions of the enumerants within the
ontology.

* The approach in ISO 19150-2 makes the representation of enumerations very different from the
representation of code lists, even though conceptually the two are similar except for
enumerations being supposed to be a complete, closed coverage of the value space.

* Applications that are designed to utilize controlled vocabularies in SKOS - for example for
tagging and indexing - cannot make use of enumerations represented as defined by ISO 19150-2.

* In the RDF/XML serialization of owl:oneOf, the rdf:List structure, with its LISP-like nesting, is
unwieldy:.

Rule Execution Priority and Dependencies

The conversion rules for enumerations are mutually exclusive. If both rules are enabled,
ShapeChange will log a warning and continue processing as if only rule-owl-cls-
is0191502Enumeration was enabled. If none of these rules is enabled, enumerations will not be
encoded. The range of properties with an enumeration as value type will then be set to the value of
the ShapeChange configuration parameter defaultTypeImplementation (default is owl:Class).

Code Lists

<<codeList>> UML classes can be converted in a number of ways:
» They can be treated as stubs that simply provide a reference to an externally managed resource
that represents the codelist.

» They can be converted as specified by ISO 19150-2.
External References

Communities often already manage their code lists outside of the application schema, SKOS being a
prominent encoding. In such a case, <<codeList>> UML classes are contained in the application
schema without declaring any specific code values. These classes serve as stubs. They can be used
as value types for properties. In addition, they can - and should - provide links to the resource that
represents the code list using a tagged value.

rule-owl-cls-codelist-external supports such a scenario. If this conversion rule is enabled, then a
code list that has the vocabulary or codeList tagged value is not represented as part of the OWL

66

ontology derived from the application schema.

In this case, the IRI contained in the tagged value links to a resource that represents the code list.
The resource can be a simple web page. It can also be a registry entry, with the registry providing
multiple formats of the resource. For example, an HTML page is presented for human readers,
while an RDF/OWL/SKOS representation is made available for automated processing. HTTP "Accept"
headers can be used to identify the desired format.

However, the IRI often does not directly identify an rdfs:Class (since, as explained before, it may
link to different types of resources that represent the code list). A specific range to be used by
RDF/OWL properties that have the code list as value is therefore missing.

An RdfTypeMapEntry can be used to define the mapping between a <<codeList>> UML class and an
RDFS/OWL class - see the general section on conversion of classes for further details.

If no specific range is available to represent the value type of a UML property, then a globally
configured range is used. It can be configured using the parameter defaultTypeImplementation
(default is owl:Class).

ISO 19150-2

If rule-owl-cls-codelist-19150-2 is enabled then <<codeList>> UML classes are converted as defined
by ISO 19150-2 (section 6.7.2) - except for the SKOS collection (for which a separate conversion rule
is defined).

67

owl: rdf:type

Class
F Y
rdf:type
| skos: skos: skos:
rdfs:subClassOf Concept ConceptScheme Collection
rdf:type T rdf:type
exPk: dctiisFormatOf exPkCode:
ClassA) ClassA
rdf:type 1 1 skos:inScheme
exPkCode:
ClassA/valuel
F Y
skos:member
exPkCode:
ClassA/value2
Legend: skos:member
| exPkCode:
OWL Class ClassACollection

Figure 9. Conversion of <<codelist>> UML classes as defined by ISO 19150-2

This rule can be augmented as follows:

o If rule-owl-cls-codelist-19150-2-skos-collection is enabled, then a SKOS collection is created.

* NOTE: Omitting the SKOS collection may be desirable for a community, because all concepts
belonging to a particular scheme can be identified using their skos:inScheme relations. SKOS
collections are primarily useful for grouping concepts - especially a subset of the concepts in

a concept scheme - under a common label.

* By setting the codeNamespace configuration parameter to a specific URI, the rules from ISO
19150-2 (section 6.2.7, table 8) to construct the codeNamespace can be overridden. This is useful
if the code namespace chosen by a community does not match the structure defined by ISO

19150-2.

* Note that this would result in a single namespace for all code lists contained in the
application schema that are converted by rule-owl-cls-codelist-19150-2, which is suitable if

rule-owl-pkg-singleOntologyPerSchema is enabled.

* The codeNamespaceForEnumerations configuration parameter can be used to set a specific
namespace URI for enumerations when encoding them like codelists under rule-owl-cls-

enumerationAsCodelist.

* If rule-owl-cls-codelist-19150-2-objectOneOfForEnumeration is enabled, and the code list actually
is an <<enumeration>> that is treated like a code list under rule-owl-cls-enumerationAsCodelist,

68

then an OWL ObjectOneOf class expression is defined for the OWL class representing the code
list. The expression enumerates the named individuals representing the code values and thus
expresses the semantics of the enumeration as a closed list, in a standard way.

o If rule-owl-cls-codelist-19150-2-owlClassInDifferentNamespace is enabled, then the OWL class
that is derived from the code list according to ISO 19150-2 is assigned to an RDF namespace
defined by the configuration parameter codeListOwlClassNamespace. Otherwise the OWL class
will be assigned to the application schema namespace, as in ISO 19150-2.

» If the namespace of the application schema ontology can change between subsequent
versions of the ontology, we recommend moving the OWL class representing the code list to
a namespace that is different from the application schema ontology namespace. This is
explained in more detail further below.

* The codeListOwlClassNamespaceForEnumerations configuration parameter can be used to
set a specific namespace URI for the OWL class derived from enumerations when encoding
them like codelists under rule-owl-cls-enumerationAsCodelist.

* The name of the SKOS concept scheme can be augmented by appending a suffix, which can be
defined via the optional configuration parameter skosConceptSchemeSuffix.

o If the codeListOwlClassNamespace and the codeNamespace /
codeNamespaceForEnumerations parameters are set to the same value, the OWL class and
the SKOS individuals representing the code list or enumeration (as code list under rule-owl-
cls-enumerationAsCodelist) would be in the same namespace, resulting in a name conflict
between the OWL class and the SKOS concept scheme. This conflict can be solved with
parameter skosConceptSchemeSuffix.

o If rule-owl-cls-codelist-19150-2-differentIindividuals is enabled, then an individual inequality
axiom is defined for the named individuals that represent the codes of the code list. This axiom
ensures that a reasoner will never consider these individuals as equal. Without this axiom, a
reasoner can treat individuals as equal because the semantics of OWL 2 does not make the
unique name assumption — that is, it does not assume distinct individuals to be necessarily
different.

o If rule-owl-cls-codelist-19150-2-conceptSchemeSubclass is enabled, then another OWL class
representing the code list is created. It is a subclass of skos:ConceptScheme. If the tagged value
skosConceptSchemeSubclassName is provided for the code list, then it is used as the name for
this class. Otherwise, its name is the name of the code list (potentially augmented via parameter
skosConceptSchemeSubclassSuffix). The named individual that would otherwise be created as a
type of skos:ConceptScheme will then be created using the subclass of skos:ConceptScheme as
type. This additional subclass can be useful in case there is a need to differentiate between
different kinds of concept schemes.

Considerations on Ontology Lifecycle and Code List Conversion

An application schema can evolve, meaning that multiple versions of the schema can be published.
An automatically derived ontology can then also have multiple versions. ISO 19150-2 defines rules
for the conversion of code lists to OWL and SKOS. This section discusses potential issues that can
arise when considering multiple versions of an application schema and the derived ontology,
specifically in these cases:

69

* The ontology name changes between subsequent versions of the ontology (see NOTE below).

* The code lists defined by the application schema are externalized, meaning they are converted
to OWL and SKOS only once; afterwards, the OWL and SKOS representation is managed outside
of the application schema, which subsequently only refers to this representation.

If ISO 19150-2 is strictly followed, the ontology name can change if the URIbase
changes or if the names of UML packages are changed. The conversion rules

NOTE described in the section on package name and namespaces can also lead to changes
in the names of ontologies derived from different versions of the application
schema namespaces.

Assume that an application schema defines a code list ClassA that contains a collection of codes.
The intent is to derive an ontology from this schema, thereby deriving an OWL and SKOS
representation of the code list (via rule-owl-cls-codelist-19150-2). Also assume that this
representation will subsequently be managed outside of the application schema. For example,
addition of new codes as well as deprecation of old codes may be performed in a registry, without
reflecting those changes in the application schema. To acknowledge the fact that the code list is
managed externally, subsequent versions of the application schema only contain a stub for the code
list.

Application Schema - vl Application Schema — v2
<<codelist>> <<codelList>>
ClassA ClassA

+valuel

value? >

<<featureType>> <<featureType>>

FT FT
+ prop: ClassA + prop: ClassA

Figure 10. Externalizing code lists - Overview of the evolution of the example application schema

Consider what happens if rule-owl-cls-codelist-19150-2 (following ISO 19150-2, table 16) is used to
convert <<codeList>> ClassA in both versions of the application schema. This would lead to a
disconnect as shown in the following figure.

70

Application Schema - v1

<<codelist>>
ClassA

+valuel
+value2

<<featureType>>
FT

+ prop: ClassA

Application Schema —v2

<<codeList>>
ClassA

<<featureType>>
FT

+ prop: ClassA

Conversion

—

Conversion

—

Application schema ontology:

Individuals:

ns1_1:ClassA rdf:type owl:Class ;
rdfs:subClassOf skos:Concept .

4
nsl_1:prop rdf:type I"I \
owl:ObjectProperty ; |
|

rdfs:domain ns1_1:FT; |

rdfs:range [ns1_1:ClassA|.

ns1_1:FT rdf:type owl:Class .

ns2_1:ClassA rdf:type owl:Namedindividual ,
skos:ConceptScheme ;

dct:isFormatOf|ns1 1:ClassA .

ns2_1:ClassA/valuel rdf:type owl:Namedindividual

Jnsl_1:ClassA|, skos:Concept ;

skos:inScheme ns2_1:ClassA .

ns2_1:ClassA/value? rdf:type owl:Namedindividual

JAns1 1:ClassA |, skos:Concept ;

skos:inScheme ns2_1:ClassA .

Disconnect between the re

sources representing <<codelist>> ClassA

Application schema ontology:

Individuals:

ns1_2:ClassA rdf:type owl:Class ;
rdfs:subClassOf skos:Concept .
t
nsl 2:prop rdf:type I.‘
owl:ObjectProperty ; |
rdfs:domain ns1_2:FT; |

rdfs:range |ns1_2:ClassA |

ns1_2:FT rdf:type owl:Class .

ns2_2:ClassA rdf:type owl:Namedindividual ,
skos:ConceptScheme ;

dct:isFormatOf|ns1_2:ClassA .

Figure 11. Externalizing code lists - Disconnect

The code list is converted into two independent sets of OWL classes and SKOS individuals. The
namespaces of OWL class and SKOS concept scheme changed in the second version of the ontology,

which is indicated by different namespace prefixes.

The second concept scheme is meaningless because it does not have any concepts. One could add
additional statements to assert equivalence of the OWL classes ns1_1:ClassA and ns1_2:ClassA as

well as SKOS concept schemes ns2_1:ClassA and ns2_2:ClassA. However, that would have to be done
each time the namespace changes in a new version of the ontology. Also, the link between a
property and the actual SKOS concepts that can be used as values would be obscured.

To avoid this disconnect, the "stub" code list in the second version of the application schema should

be converted using rule-owl-cls-codelist-external.

71

Application Schema -v1

<<codelList>>
ClassA

+valuel
+value2

<<featureType>>
FT

+ prop: ClassA

Application Schema —v2

<<codelList>>
ClassA

<<featureType>>
FT

+ prop: ClassA

Conversion

—

Conversion

—

Application schema ontology:

Individuals:

nsl_1:ClassA rdf:type owl:Class
rdfs:subClassOf skos:Concept .

ns2:ClassA rdf:type owl:Namedindividual ,
skos:ConceptScheme ;

f4r
nsl_1:prop rdf:type [\
owl:ObjectProperty ; ‘.' ‘|

rdfs:domain ns1_1:FT; | I|

rdfs:range |ns1_1:ClassA I‘

|

\
ns1_1:FT rdf:type owI:CIassf .
\

"
L\

"~ dctisFormatOf[ns1_1:ClassA .

.| ns2:ClassA/valuel rdf:type owl:Namedindividual ,

ns1_1:ClassA|, skos:Concept ;

\ skos:inScheme ns2:ClassA .

ns2:ClassA/value? rdf:type owl:Namedindividual ,

nsl 1:ClassA |, skos:Concept ;

skos:inScheme ns2:ClassA .

T
Application schema 0nt0|¢gv:

nsl_2:prop rdf:type |‘
owl:ObjectProperty ; |

rdfs:domain ns1 2:FT; |

rdfs:range|nsl_1:ClassA|.

ns1_2:FT rdf:type owl:Class .

Because <<codelist>> ClassA is
managed externally, version 2 of
the applicationschema only
containsa stub of the code list.

Figure 12. Externalizing code lists - OWL class in application schema ontology namespace

NOTE

The SKOS collection has been omitted in the figure for simplicity.

In this case (illustrated in the figure above), the next version of the ontology (derived from
application schema v2) no longer defines 'ClassA. Instead, property 'prop' references the OWL
'ClassA' that has initially been derived from the code list (this reference can be achieved by adding
an RdfTypeMapEntry for the code list to the ShapeChange configuration). Values of 'prop' can thus
be individuals of 'ClassA'. The disconnect described before no longer exists.
However, this requires an import of the previous ontology. To avoid this, the OWL 'ClassA’ should
have been created in a namespace that is different to that of the application schema (using the
configuration parameter codeListOwlClassNamespace). This approach is illustrated in the following

figure.

72

Application Schema - vl

<<codelist>>
ClassA

+valuel
+value2

<<featureType>>
FT

+ prop: ClassA

Conversion

—

Application Schema —v2

<<codelist>>
ClassA

<<featureType>>
FT

+ prop: ClassA

—

Application schema ontology:

nsl_1:prop rdf:type
owl:ObjectProperty ;
rdfs:domain ns1 1:FT;

rdfs:range |ns2:ClassA .

nsl 1:FT rdf:type owl:Class .

OW!I class & individuals:

Application schema ontology:

nsl_2:prop rdf:type
owl:ObjectProperty ;
rdfs:domain ns1 2:FT;

rdfs:range|ns2:ClassA .

nsl1_2:FT rdf:type owl:Class .

Conversion

ns2:ClassA rdf:type owl:Class ;
. rdfs:subClassOf skos:Concept

— ns2:ClassA | skos:Concept ;

ns2:ClassA_ConceptScheme rdf:type
owl:Namedindividual , skos:ConceptScheme ;

dct:isFormatOf|ns2:ClassA

ns2:ClassAfvaluel rdf:type owl:Namedindividual ,

ns2:ClassA | skos:Concept ;

skos:inScheme ns2:ClassA_ConceptScheme .

ns2:ClassAfvalue2 rdf:type owl:Namedindividual ,

skos:inScheme ns2:ClassA_ConceptScheme .

Figure 13. Externalizing code lists - OWL class outside of application schema ontology namespace

(recommended approach)

If code lists are not managed outside the application schema, the situation is different.
Enumerations encoded like code lists are a good example:

Application Schema - v1

<<enumeration>>
Enum

+enuml

<<featureType>>
FT

+ prop: Enum

Application Schema —v2

<<enumeration>>
Enum

+enuml

+enum2

<<featureType>>
FT

+ prop: Enum

Application schema ontology:

Individuals:

nsl_1:Enum rdf:type owl:Class ;
rdfs:subClassOf skos:Concept .
Conversion -

ns1_1:prop rdf:type /

|
|:> owl:ObjectProperty ; I"I

rdfs:domain ns1 1:FT; |

rfs:range [is1_L:Enum |

nsl 1:FT rdf:type owl:Class .

\

ns2_1:Enum rdf:type owl:Namedindividual ,
skos:ConceptScheme ;

detrisFormatOfins1_1:Enum . |

ns2_1:Enum/enum1 rdf:type owl:Namedindividual
nsl 1:Enum | skos:Concept ;
skos:inScheme ns2_1:Enum .

Application schema ontology:

Individuals:

4

new in ‘ ns1_2:Enum rdf:type owl:Class ;
v2 rdfs:subClassOf skos:Concept .
fRx
. nsl_2:prop rdf:type AN
Conversion f)

owl:ObjectProperty ; [

| \

rdfs:domain ns1_2:FT; | \

—

nsl 2:FT rdf:type owl:Class .

rdfs:range[ps_2:Enum |\

ns2 2:Enum rdf:type owl:Namedindividual ,
skos:ConceptScheme ;

detzisFormatOfins1 2:Enum . |

ns2_2:Fnum/enum? rdf:type owl:Namedindividual

, skos:Concept ;

skos:inScheme ns2_2:Enum .

ns2_2:Enum/enum? rdf:type owl:Namedindividual

\ , skos:Concept ;

skos:inScheme ns2_2:Enum .

Figure 14. Enumerations as code lists - managed in the application schema

Both versions of the UML application schema contain the complete enumeration. The only

difference is a new listed value added in v2.
The enumeration is converted using rule-owl-cls-codelist-19150-2 - both in the first and the second

73

version of the ontology. Consequently, both ontologies contain their own OWL class representing
the code list. In each version, the OWL class representing the code list is referenced by a set of SKOS
individuals (concepts and concept scheme) derived from the same version. There is no disconnect
because each application schema version defines the relevant codes, which are represented by the
OWL and SKOS resources that are produced when creating the respective ontologies.

Code Hierarchies

Some communities define hierarchically structured code lists. These code lists contain broader and
narrower terms.

For example, the list of codes to denote a feature function of a building can be structured as follows:

* accommodation
* JongTermAccommodation
* dependentsHousing
* dormitory

* residence

e shortTermAccommodation
¢ communalBath
* guestHouse

* hostel

e agriculture
* grazing
» growingOfCrops
* mixedFarming

* raisingOfAnimals

Here, the term "accommodation" is broader than "longTermAccommodation” and
"shortTermAccommodation”. Likewise, the term "agriculture" is broader than "grazing" and
"growingOfCrops". However, there is no broader term for "accommodation" or "agriculture.

If the broader/narrower relationship between terms is known, they can be represented in SKOS
using the skos:broader and/or skos:narrower relations. It is also possible to identify the terms that
are at the top of the hierarchy, using the skos:topConceptOf property.

ISO 19150-2 does not cover the conversion of hierarchically structured code lists, presumably
because ISO 19103 - where the <<codeList>> stereotype is defined - does not specify how this
structure should be modeled (there is only an example in ISO 19103 Annex G.5.3).

If rule-owl-prop-code-broader-byBroaderListedValue is enabled, then skos:broader relationships are
established for code values as follows: If a code - e.g. "longTermAccommodation” - has the tag
"broaderListedValue" and it contains the name of another code - e.g. "accommodation” - from the

74

same code list, then the following triple is added to the ontology: "longTermAccommodation”
skos:broader "accommodation”. If a code does not have a value for the tag "broaderListedValue"
then a skos:topConceptOf relationship is added to the SKOS concept that represents the code,
referencing the SKOS concept scheme that the concept is skos:inScheme of. If the value of the tag
"broaderListedValue" does not match any code in the code list, then ShapeChange logs a warning
and treats it as a top concept.

The following listing gives an example of converting the NSG ApronAccessibilityStatusType, where
the enums lockedOpen and lockedClosed have enum locked as "broaderListedValue".

<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType">
<owl:oneOf rdf:parseType="Collection">
<e:ApronAccessibilityStatusType
rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/closed">
<skos:topConceptOf>
<skos:ConceptScheme
rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme">
<skos:preflLabel xml:lang="en">Apron Accessibility Status Type - Concept
Scheme</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=106468"/>
<skos:definition xml:lang="en">![CDATA[Definition: A coded domain value denoting
the
accessibility status type of an apron. Description: [None
Specified]]]</skos:definition>
<rdfs:label xml:lang="en">ApronAccessibilityStatusType_ConceptScheme</rdfs:1label>
<dct:isFormatOf
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType"/>
</skos:ConceptScheme>
</skos:topConceptOf>
<skos:inScheme
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:preflLabel xml:lang="en">Closed</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116678"/>
<skos:definition xml:lang="en">![CDATA[Definition: Access is officially prohibited.
Description:
May be covered and/or blocked by a physical barrier.]]</skos:definition>
<rdfs:label xml:lang="en">closed</rdfs:1label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType
rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/limited">
<skos:topConceptOf
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme

75

76

rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:preflLabel xml:lang="en">Limited</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116677"/>
<skos:definition xml:lang="en">![CDATA[Definition: A limitation on access, but not
function, has
been imposed. Description: Not necessarily enforced by a physical
barrier.]]</skos:definition>
<rdfs:label xml:lang="en">limited</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType
rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/locked">
<skos:topConceptOf
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:preflLabel xml:lang="en">Locked</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116672"/>
<skos:definition xml:lang="en">![CDATA[Definition: Access is prevented by a
physical barrier,
requiring special means to pass (for example: a key). Description: [None
Specified]]]</skos:definition>
<rdfs:label xml:lang="en">locked</rdfs:1label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType
rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/lockedClosed">
<skos:broader
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/locked"/>
<skos:inScheme
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:preflLabel xml:lang="en">Locked (losed</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116674"/>
<skos:definition xml:lang="en">![CDATA[Definition: Access is officially prohibited
and 1is
restricted by a physical barrier, requiring special means to pass (for example: a
key).
Description: [None Specified]]]</skos:definition>
<rdfs:label xml:lang="en">lockedClosed</rdfs:1label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType
rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/lockedOpen">
<skos:broader
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/locked"/>

<skos:inScheme
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:preflLabel xml:1lang="en">Locked Open</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116675"/>
<skos:definition xml:lang="en">![CDATA[Definition: Access is officially allowed
although
restricted by a physical barrier that is currently open, requiring special means
to close and
prevent future passage (for example: a key). Description: [None
Specified]]]</skos:definition>
<rdfs:label xml:lang="en">lockedOpen</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType
rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/open">
<skos:topConceptOf
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:preflLabel xml:lang="en">0Open</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116673"/>
<skos:definition xml:lang="en">![CDATA[Definition: Access is officially allowed.
Description: May
be covered and/or blocked by a physical barrier that is temporarily
passable.]]</skos:definition>
<rdfs:label xml:lang="en">open</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType
rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType/restricted">
<skos:topConceptOf
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme
rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-
enum/8.0#ApronAccessibilityStatusType_ConceptScheme"/>
<skos:preflLabel xml:1lang="en">Restricted</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116676"/>
<skos:definition xml:lang="en">![CDATA[Definition: Access is officially allowed
although a
limitation on function has been imposed. Description: Not necessarily enforced by
a physical
barrier.]]</skos:definition>
<rdfs:label xml:lang="en">restricted</rdfs:label>
</e:ApronAccessibilityStatusType>
</owl:one0f>
<rdfs:subClassOf rdf:resource="http://www.w3.0rq/2004/02/skos/core#Concept"/>
<skos:preflLabel xml:lang="en">Apron Accessibility Status Type</skos:preflLabel>

77

<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=106468"/>
<skos:definition xml:lang="en">![CDATA[Definition: A coded domain value denoting the
accessibility

status type of an apron. Description: [None Specified]]]</skos:definition>
<rdfs:label xml:lang="en">ApronAccessibilityStatusType</rdfs:label>
</owl:Class>

Rule Execution Priority and Dependencies

The conversion rules for code lists are executed with the following priority:

1. rule-owl-cls-codelist-external

2. rule-owl-cls-codelist-19150-2

* The following conversion rule(s) can be used with this rule:

rule-owl-cls-codelist-19150-2-skos-collection
rule-owl-cls-codelist-19150-2-objectOneOfForEnumeration
rule-owl-cls-codelist-19150-2-differentIndividuals
rule-owl-cls-codelist-19150-2-owlClassInDifferentNamespace
rule-owl-cls-codelist-19150-2-conceptSchemeSubclass

rule-owl-prop-code-broader-byBroaderListedValue

Additional rules may be added in the future.

78

NOTE

Because the conversion rules are not mutually exclusive, they can be combined in
an encoding rule. An application schema can therefore have code lists that are used
as stubs (to reference an external resource representing the code list), as well as
code lists that contain actual codes. This can be useful when:

* The application schema contains some code lists that are managed by other
organizations. These code lists would only be referenced in the application
schema, using rule-owl-cls-codelist-external to encode them.

* The application schema also contains code lists with actual codes, for which an
encoding (to OWL and SKOS) is not available yet and thus shall automatically be
derived by ShapeChange, for example using rule-owl-cls-codelist-19150-2.

* Once the encoding is available, the <<codeList>> UML classes can be
transformed into stubs to reference the externally managed encoding. This
approach supports the transition to an application schema where all code
lists used by the schema are managed externally. In this case, it is

recommended that rule-owl-cls-codelist-19150-2-
owlClassInDifferentNamespace be used during the initial conversion of the
code list.

Other Types

At the moment, no specific conversion rules are defined for other types.

8.2.4. Property

General

The conversion of UML properties (attributes and navigable association roles) into OWL properties
is enabled or disabled by respectively including or excluding rule-owl-prop-general in the encoding
rule.

However, this rule does not apply to UML properties of <<codeList>> and <<enumeration>> types,
because the rules defined to convert those types specify if and how their properties - i.e., listed
values - are converted.

Being able to "switch off" property conversion is useful when deriving a taxonomy
NOTE . o
instead of a complete ontology from the application schema.

Under rule-owl-prop-general, a UML property is converted to:

* an OWL object property, if the value type of the UML property is represented as an OWL class;

* an OWL datatype property, if the value type of the UML property is represented as an OWL
datatype or literal.

However, in general, if an RdfPropertyMapEntry in the ShapeChange configuration provides a
mapping to an RDF/OWL property for a UML property from the processed schema, then the UML
property is not encoded. Instead, whenever the UML property is used in the schema, the RDF/OWL
property specified by the map entry is used in the RDF implementation.

For example, the following configuration fragment specifies that:

* UML property "attCommon" (from any UML type in the schemas selected for processing by
ShapeChange) will be mapped to the target RDF/OWL property http://example.org/1#prop11.

 This supports general mapping of named properties.

* When converting "attCommon", and if the range of the target property
http://example.org/1#propl1 is needed (for example in existential and universal quantifications,
as well as quantified property cardinality restrictions), then http://example.org/1#ClassA is used
as range.

* An RdfPropertyMapEntry that maps a UML property to a target RDF/OWL property can be
used to define a "range" for the target property.
This is useful if the declaration of the external property does not include a range axiom, or if
the range shall be set on a case-by-case basis. For example, the range of the target RDF/OWL
property "location" could be any geometry type. When "location" is used to represent the
property of a specific UML class from the application schema, for example
"TransportationStop", a single geometry type may be more appropriate, for example "Point".

* UML property "att12" (from UML type "Featurel02") will be mapped to RDF property

79

http://example.org/1#prop11
http://example.org/1#prop11
http://example.org/1#ClassA

http://example.org/1#prop11.
 This supports precise mappings of individual UML properties (scoped to a specific class).

» The range to be used for http://example.org/1#prop11 when it represents Feature102::att12 is
http://example.org/1#ClassB.

<sc:rdfMapEntries>
<sc:RdfPropertyMapEntry property="attCommon" target="ex1:prop11"
range="ex1:ClassA"/>
<sc:RdfPropertyMapEntry property="Feature102::att12" target="ex1:prop11"
range="ex1:ClassB"/>
</sc:rdfMapEntries>
<sc:namespaces>
<sc:Namespace nsabr="ex1" ns="http://example.org/14"/>
</sc:namespaces>

The XML Schema definition of rdfMapEntries (including documentation of attributes) is provided
in Annex B.

* An RdfPropertyMapEntry is used to describe the mapping of application schema
properties to RDF/OWL properties.

* An RdfPropertyMapEntry can be used to define the range of the RDF/OWL
property, which may be especially useful when using it to implement a specific
UML property.

« If a UML property P is mapped to an RDF/OWL property from an external
ontology EX, then the resulting ontology RES will import EX. The property
declaration from EX will then be available and used in RES. RES will not contain
an OWL property declaration of P in its own namespace.

NOTE

* No 'targetType' attribute is defined in the XML Schema of RdfPropertyMapEntry.
As in an RdfTypeMapEntry, such an attribute could indicate whether the 'target'
is an RDF property, an OWL object property, or an OWL datatype property.
Currently, this information is not required for the conversion to RDF/OWL/SKOS.
This extension can be added in the future.

Property Name

Following ISO 19150-2, the OWL property name is a combination of the RDF namespace of the
ontology, the UML class name (conditional), and the UML property name:

propertyName = rdfNamespace [umlClassName "."] propertylLocalName
propertylLocalName = umlAttributeName / umlRoleName

The property local name is given in lower camel case. Punctuation characters other than dash and
underscore are replaced by underscore characters. Space characters are removed.

The UML class name is included if the property is not converted to a globally scoped property (see

80

http://example.org/1#prop11
http://example.org/1#prop11
http://example.org/1#ClassB

next topic).

This naming convention is implemented in rule-owl-prop-iso191502-naming.

At the moment, rule-owl-prop-iso191502-naming is the default for creating the name
NOTE of an OWL property. Additional rules can be added in the future to implement
alternative naming conventions.

Scope - Local vs. Global

In UML, an attribute belongs to the class that defines it. Likewise, an association role is a property
that belongs to a specific class. In RDF, a property can be described in terms of the class to which it
applies (as its domain), but it can also be described independently of any class.

In this respect, there is a mismatch between UML and RDF; in UML, a property belongs to its class,
while in RDF, a property can be used by multiple classes. In other words, in UML, a property is
always scoped to a specific class, while in RDF the scope of properties can be global.

A property domain axiom is defined for an RDF property with local scope. No such
NOTE axiom is defined for an RDF property with global scope, allowing it to be used by
multiple classes.

A straightforward solution for converting UML properties would be to convert each UML property
to a uniquely corresponding OWL property, relating it to a specific class by:

1. adding the class name that the property belongs to in UML to the OWL property name (so that
the OWL property declaration is unique in the ontology), and

2. declaring the OWL representation of its owning UML class as the domain of the OWL property.
This approach is covered by the conversion rule rule-owl-prop-localScopeAll.

However, if multiple properties with the same name and the same semantics exist in an application
schema, this localizing approach will lead to repetition that would clearly be undesirable and not in
the spirit of RDF. In this case, there should be a way to identify which properties can be mapped to
a global property definition. Global properties can be reused within a single ontology and across
multiple ontologies.

The following rules are available to identify and encode UML properties as global OWL properties:
Common, Unique Attribute Concepts Defined in a Dictionary

Some communities specify most (if not all) schema concepts within a dictionary. In addition to
concepts for classes, the dictionary also contains concepts for each attribute that occurs within the
schema. A specific class concept in the application schema uses a particular set of common
attribute concepts defined in the dictionary. Given such a framework, all UML attributes can be
encoded as globally scoped OWL properties. This behavior will be executed if rule-owl-prop-
globalScopeAttributes is enabled.

Explicit Identification

81

If rule-owl-prop-globalScopeByConversionParameter is enabled, then conversion parameters
contained in the OWL target of the ShapeChange configuration file specify which properties from
the conceptual schema in UML shall be represented as global OWL properties.

For example, the following configuration fragment specifies that:

» "att4" from "Featurel" - which belongs to the application schema with package name "Schema
1" - will be converted to a globally scoped OWL property.

* All other "att4" UML properties from "Schema 1" will be implemented using the OWL
implementation of this global property.

* UML property "att" (from UML type "Feature2" in "Schema 2") is converted to a globally scoped
OWL property.

* Other "att" UML properties will be converted to locally scoped OWL properties (because an
additional conversion parameter as for properties with name "att4" is not defined).

* NOTE: if the schema contains more properties with name "att" and similar semantics,
then they should be mapped to the globally scoped property.

* The UML properties "att11" and "att12" (from UML types "Feature3" and "Feature4" - both
from "Schema 3") will be implemented using the OWL implementation of this global

property.

<sc:rdfConversionParameters>
<sc:PropertyConversionParameter property="Featurel::att4" schema="Schema 1"
global="true"/>
<sc:PropertyConversionParameter property="att4" schema="Schema 1"
target="Featurel::att4" schema="Schema 1"/>
<sc:PropertyConversionParameter property="Feature2::att" schema="Schema 2"
global="true"/>
<sc:PropertyConversionParameter property="Feature3::att11" schema="Schema 3"
target="Feature2::att" schema="Schema 2"/>
<sc:PropertyConversionParameter property="Feature4::att12" schema="Schema 3"
target="Feature2::att" schema="Schema 2"/>
</sc:rdfConversionParameters>

The XML Schema definition of rdfConversionParameters (including documentation of attributes) is
provided in Annex B.

82

» If a UML property is the subject of both a PropertyConversionParameter and an
RdfPropertyMapEntry, then the former is ignored and ShapeChange logs a
warning.

 Setting "global" to "true" is only allowed if the "property" identifies the property
of a specific UML class from a specific schema. This way, there cannot be
ambiguity regarding the semantics of the globally scoped property - it is defined
by a single UML property from the model.

 "global" has no effect if "target" is also present in the same conversion parameter
- because then the UML property will be mapped to another UML property that

is implemented as a global property.

NOTE
* If the PropertyConversionParameter has a "target" (which shall be scoped to a

class to avoid ambiguity when a schema is encoded as multiple ontologies) then
it must also have a "targetSchema", to unambiguously identify a global property
to which the "property"” from the PropertyConversionParameter is mapped.

* Currently, there is no mechanism to encode a specific UML property as a global
RDF/OWL property with a name that is different than the one computed from
the name of the UML property.

* The combination of "global" and "subPropertyOf" is allowed. In that case, a
"subPropertyOf" declaration is added to the encoding of the global OWL

property.
Unique Property Name in Ontology

If rule-owl-prop-globalScopeByUniquePropertyName is enabled, then ShapeChange will determine if
the name of a UML property from the application schema is going to be unique within the ontology
into which its OWL property representation will be placed. If it is unique, then the property will be
converted to a globally scoped property.

NOTE This approach is suggested by ISO 19150-2 (section 6.2.6).

Comparing Global and Mapped Property

If a property is mapped to a global one, ShapeChange can compare the range, definition,
description, and alias of the two properties. This can be useful to identify potential inconsistencies
that may be introduced through the mapping. A warning will be logged for each potential
inconsistency. This comparison is implemented in rule-owl-prop-mapping-compare-specifications.

Rule Execution Priority and Dependencies

The conversion rules to determine the scope of OWL properties are executed with the following
priority:

1. rule-owl-prop-localScopeAll
2. rule-owl-prop-globalScopeAttributes

3. rule-owl-prop-globalScopeByUniquePropertyName

83

4. rule-owl-prop-globalScopeByConversionParameter

o If both rule-owl-prop-globalScopeAttributes and rule-owl-prop-
globalScopeByConversionParameter (or rule-owl-prop-globalScopeByUniquePropertyName)
are enabled in an encoding rule, then for the conversion of UML attributes there is no need
to check the conversion parameters (or property names), because all UML attributes will be
converted to globally scoped properties.

Additional rules may be added in the future.

ISO 19150-2 (section 6.2.6) also suggests that properties with same "meanings" can
NOTE be converted to globally scoped properties. However, this is a rather vague
definition. Therefore, the design does not include a corresponding conversion rule.

Range
Identifying the Range of a Property

A UML property from the application schema is either encoded as an OWL property in the
application schema ontology, or mapped to an RDF/OWL property (using an RdfPropertyMapEntry).

If the UML property is encoded as an OWL property in the application schema ontology, then the
range of the OWL property is the RDFS (or OWL) class or datatype (identified by IRI) that represents
the value type of the UML property.

If the UML property is mapped to an RDF/OWL property, then the range of the RDF/OWL property
applies. The range is either given explicitly by the RdfPropertyMapEntry, or it is undefined. In that
case, statements that require the range of the RDF/OWL property cannot be made. If such a
situation occurs, ShapeChange will log a warning. This is not necessarily an error, because the
external ontology may define a range axiom for the property, thus the range would be defined
globally.

Range Definition - Global vs. Local
The range of a property can be encoded globally or locally:

o If rule-owl-prop-range-global is enabled, then an OWL range axiom (Object-/DataPropertyRange)
is defined for the OWL property that represents the UML property.

o If rule-owl-prop-range-local-withUniversalQuantification is enabled, then OWL universal
quantifications are included in the ontology, to restrict the range of a property only within the
scope of those OWL classes which represent UML classes that own the property.

Declaring the range locally can be desirable with respect to re-use of properties in other ontologies.
In such a case, the other ontology may prefer to use a specific range for the property. If the range is
already globally defined for an OWL property, then it cannot easily be changed.

84

Global or local range must not be confused with global or local scope of a property.
The former controls whether an OWL range axiom is declared for an OWL property,
while the latter controls the naming of the OWL property and whether a domain
axiom is declared for it.

NOTE

Multiplicity

As described in ISO 19150-2, section 6.9, the multiplicity of a UML property specifies how many
values the property can have. The default multiplicity is 1.

In OWL, the cardinality of a property need not be restricted. This means that an instance of a class
may have zero or any number of values for a given property. However, cardinality restrictions for
properties can be expressed in OWL.

Object and Data Property Cardinality Restrictions are available to restrict the number of times that a
property can be assigned to a class. They can be qualified and unqualified.

A qualified cardinality restriction only applies to property values that are of a specific type.

ex:ownsAnimal rdf:type owl:0bjectProperty ;
rdfs:range ex:Animal .

ex:Animal rdf:type owl:(Class .

ex:Elephant rdf:type owl:(Class ;
rdfs:subClassOf ex:Animal .

ex:Zoo rdf:type owl:Class ;
rdfs:subClassOf [rdf:type owl:Restriction ;
owl:onProperty ex:ownsAnimal ;
owl:minCardinality "1"Axsd:nonNegativelnteger ;

1.

ex:SmallZoo rdf:type owl:Class ;
rdfs:subClassOf ex:Zoo ,
[rdf:type owl:Restriction ;
owl:onProperty ex:ownsAnimal ;
owl:maxQualifiedCardinality "10"A"xsd:nonNegativelnteger ;
owl:onClass ex:Elephant

1.

ex:BigZoo rdf:type owl:(Class ;
rdfs:subClassOf ex:Zoo ,
[rdf:type owl:Restriction ;
owl:onProperty ex:ownsAnimal ;
owl:minQualifiedCardinality "11"Axsd:nonNegativelnteger ;
owl:onClass ex:Elephant

85

An unqualified cardinality restriction is sufficient to state that a Zoo must own at least one animal.
The example shows how qualified cardinality restrictions can be used to specify that a Zoo can be
classified as a SmallZoo if it owns at most ten elephants, and as a BigZoo if it owns at least eleven
elephants.

A reasoner could infer from the cardinality restrictions stated in this example that

NOTE . .
SmallZoo and BigZoo are disjoint classes.

Two conversion rules are available to convert the multiplicity of a UML property into OWL

property cardinality restrictions (which are defined on the OWL class which represents the UML

class owning the UML property):

o If rule-owl-prop-multiplicityAsUnqualifiedCardinalityRestriction is enabled, then the multiplicity
of a UML property is encoded with an unqualified cardinality restriction.

o If rule-owl-prop-multiplicityAsQualifiedCardinalityRestriction is enabled, then the multiplicity of
a UML property is encoded with a qualified cardinality restriction.

ISO 19150-2 appears to require that an OWL property restriction, more specifically a
universal quantification (encoded in RDF as owl:allValuesFrom), is encoded together
with an OWL property cardinality restriction. This should not be required. As
explained in the section on property range, the range of an OWL property can be
defined globally using a property range axiom but also locally with a universal
quantification.

NOTE

It is possible to omit the conversion of multiplicity by simply omitting both rule-owl-
prop-multiplicityAsUnqualifiedCardinalityRestriction and rule-owl-prop-
multiplicityAsQualifiedCardinalityRestriction from the encoding rule.

Reasons for doing so include, but are not limited to:

» Applications do not support or require the validation of cardinality constraints.

NOTE * The ontology derived from the application schema shall serve as a base ontology

that defines the relevant concepts (classes and properties) without cardinality
restrictions. Cardinality restrictions would be captured in an additional ontology
that would import the base ontology. The base ontology would therefore be
lightweight, with more axiomatization and formalism provided in the additional
ontology. This also allows for re-use of the base ontology in application
ontologies that impose different cardinality restrictions for business reasons.

Regarding OWL functional properties:

OWL functional object and data properties could be useful to restrict the cardinality of a property
on a global level. These restrictions ensure that the maximum cardinality of a property is always 1,
regardless of the OWL class context in which the property may occur.

The OWL 2 structural specification uses ex:hasFather as an example of a functional property.

86

An example of a property that should not be declared as a functional property is ex:hasChild.

At this time, however, no conversion rule is defined with which property functionality axioms can
be defined for OWL properties.

Custom subPropertyOf Mappings

If required by a specific encoding rule, special rdfs:subPropertyOf declarations can be added to
particular properties (globally, or scoped to a specific type and/or schema) in the ontology. This
information is kept separate from the UML model; it is provided in the ShapeChange configuration.

For example, the following configuration fragment specifies that:
* UML property "attl" in UML type "Featurel" (in "Schema 1") shall be declared

rdfs:subPropertyOf http://example.org/1#PropX.

* All UML properties named "att2", in all UML types of all schemas selected for processing by
ShapeChange, shall be declared rdfs:subPropertyOf http://example.org/1#PropX.

<sc:rdfConversionParameters>
<sc:PropertyConversionParameter property="Featurel::att1" schema="Schema 1"
subProperty0f="ex1:PropX"/>
<sc:PropertyConversionParameter property="att2" subPropertyOf="ex1:PropX"/>
</sc:rdfConversionParameters>
<sc:namespaces>
<sc:Namespace nsabr="ex1" ns="http://example.org/14"/>
</sc:namespaces>

The XML Schema definition of a PropertyConversionParameter element (including documentation
of attributes) is provided in Annex B.

"subPropertyOf" has no effect if “target" is also present in the
NOTE PropertyConversionParameter (because then the UML property is implemented by a
global property [for which a "subPropertyOf" statement can be made]).

Attribute
The general conversion rules for UML properties apply for the conversion of UML attributes.

No additional specific rules are defined for the conversion of UML attributes.

Association Role
The general conversion rules for UML properties apply for the conversion of UML association roles.
In addition, the following conversion rules are available:

» If the association to which the association role belongs has a name and rule-owl-prop-
iso191502AssociationName is enabled, then an iso19150-2:associationName annotation is added
to the OWL property representing the association role, with the association name as its value.

87

http://example.org/1#PropX
http://example.org/1#PropX

 If the association to which the association role belongs is bi-directional and rule-owl-prop-
inverseOf is enabled, then an owl:iinverseOf predicate is added to the OWL property
representing the association role, with the IRI of the inverse property as its value.

« If the association role is playing the part role in a shared or composite aggregation, and rule-
owl-prop-iso191502Aggregation is enabled, then an is019150-2:aggregationType annotation is
added to the OWL property representing the association role, with value
"partOfSharedAggregation” or "partOfCompositeAggregation” - depending upon the given type
of aggregation.

If an association role is converted to a globally scoped OWL property, and other
association roles with that name are implemented by this OWL property, then
the conversion rules described in this section can cause multiple iS019150-
2:associationName annotations, is019150-2:aggregationType annotations, or
owl:inverseOf predicates to be defined for the OWL property. In the following
figure, the association role named "role" could be converted to a globally

scoped property.
«featureType» FT B FT A «featureType» | 0.1 FT D FT A «featureType»
FT_B — FT_A — FT_D

+role
«property»

+role
«property»

WARNING

+role
«property»

FT_€.FT_A
e

«featureType»
FT_C

Figure 15. Example of multiple associations with same name for one role

In the case of owliinverseOf, this can lead to undesired results, because a
reasoner would infer that the inverse properties are equivalent.

The annotation properties is019150-2:associationName and is019150-
2:aggregationType are defined as having the domain owl:Class. However,
NOTE owl:ObjectProperty and owl:DatatypeProperty are not of type owl:Class. Strictly
speaking, the annotation properties defined by ISO 19150-2 cannot be used on OWL
properties. Also see the discussion on the is019150-2:constraint annotation property.

8.2.5. Association Class

In UML, an association class has both association and class properties (see UML Superstructure
2.4.1, section 7.3.4). It connects a set of classes and also defines a set of properties that belong to the
relationship itself and not to any of the classes.

ISO 19150-2 does not specify conversion rules for association classes.

The OGC GML 3.3 standard defines a rule for converting an association class from a conceptual

88

schema in UML to GML (see GML 3.3, section 12.3). The rule specifies the mapping of the
characteristics of the UML association class into parts of a new structure having an intermediate

class associated separately to the two classes originally linked by the association class.

+role2_1
«featureType» «property» «featureType»
Feature1 Feature2
T
l a..b
|
|
I
«featureType»
F12
+role3 4
«featureType» i +roled_3 «featureType»
« »
Feature3 PEORERY «property» Feature4
T
c.d l e.f
|
|
|
|
l
«featureType»
F34
Figure 16. Model with association classes (source: OGC GML 3.3)
+role2_1 +role2_1
«featureType» = «featureType» — «featureType»
FeaturZ‘Fl) <praperlys F12 i «property» ‘ Featur:g
a”b ‘ 1 ‘
«featureType» +role3_4 +roled_3 «featureType» +role3_4 +roled_3 «featureType»
Feature3 «property» «property» F34 «property» «property» Feature4
1

e.f ‘

c.d

1 ‘

Figure 17. Association classes converted to intermediate classes (source: OGC GML 3.3)

89

The same approach should be applied when converting from UML to RDF/OWL. However, because
this mapping may be relevant for other ShapeChange targets, it is realized as a ShapeChange
transformation. The transformation will be performed before executing the OWL target. The OWL
target - and other targets - then convert the resulting UML construct as usual (based upon the rules
for converting classes, associations, and properties).

Input loading

Transformatio

Target(s)

Figure 18. Ontology derivation workflow - with mapping of association classes

The following listing provides an example of a ShapeChange configuration element with the
relevant transformation.

<Transformer input="A" id="B"
class="de.interactive_instruments.ShapeChange.Transformation.Flattening.AssociationCla
ssMapper"/>

90

OCL constraints in the original schema might contain expressions that navigate to
the association class or via the association that is (bound to) the association class. If
the model is transformed according to the pattern from GML 3.3, then the paths in
these OCL expressions would need to be updated. OCL expressions that navigate
from the association class should not be affected. Whether or not this is significant
depends on: a) if the schema contains OCL expressions that would need to be
updated and b) if the target implementation would implement the OCL expression
in some way. Regarding condition (b): The XML Schema Target supports derivation
of Schematron constraints from OCL constraints. There, an update of the OCL
expression when transforming association classes before executing the XML
Schema Target would be necessary for the derivation of Schematron constraints. In
the UML-to-RDF conversion, OCL expressions may be documented, but actual
parsing and implementation - for example as OWL property restrictions - is not
performed yet. See the future work section for further details.

NOTE

8.2.6. Constraints

UML classes and properties can have constraints that express additional requirements. For
example, the value range of an integer-valued property can be restricted to the interval [0:100], or
the existence of values for a specific property can be prohibited in the scope of a certain class.
Constraints add precision to models.

ISO 19103 recommends the use of the Object Constraint Language (OCL) (v2) for expressing
constraints. Accordingly, application schemas often contain constraints written in OCL. In some
cases, other types of constraints are used as well. A simple human-readable text, for example, can
express modeling intent to a human reader. Natural-language-like sentences expressed using the
Semantics of Business Vocabulary and Business Rules (SBVR) can be read by humans and -
depending on the grammar used - also by machines (see [2] for further details).

This section documents the conversion of constraints contained in the UML model to RDF/OWL. At
first, background information is provided about the current state of: a) constraint conversion in ISO
19150-2, b) constraint usage in the NAS, and c¢) support of constraints in ShapeChange. Then, the
mapping from NAS constraints to the ShapeChange constraint model is discussed. Finally, the rules
for converting constraints to RDF/OWL are specified.

Background: ISO 19150-2

According to ISO 19150-2, clause 6.11, a constraint is represented using the iso19150-2:constraint
annotation property, which is defined in the base ontology as a string-valued property. Nothing
specific is said about how the string value of this annotation shall be constructed. ISO 19150-2
recognizes that OWL has some mechanisms for describing constraints. However, “these constraints
are somewhat different to or have a different purpose of UML CONSTRAINTSs” (ISO 19150-2, section
6.11.2).

The base ontology is described in ISO 19150-2, Annex D. The ontology name is
http://def.isotc211.0rg/is019150/-2/2012/base, and its namespace is http://def.isotc211.0org/is019150/-
2/2012/base# with the prefix is019150-2. The is019150-2:constraint property is defined as follows:

91

http://def.isotc211.org/iso19150/-2/2012/base
http://def.isotc211.org/iso19150/-2/2012/base#
http://def.isotc211.org/iso19150/-2/2012/base#

<owl:AnnotationProperty rdf:about="&is019150-2;constraint">
<rdfs:domain rdf:resource="&owl;Class"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:AnnotationProperty>

Because the annotation property domain is set to owl:Class, the is019150-

NOTE 2:constraint can only be used on resources that are represented as OWL classes.

Background: NAS OCL Constraints

NAS constraints are usually expressed in OCL. They are documented in, for example, the NAS v7.0
workbook, Entities tab, Col. M. They can also be found online in the NSG Registry.

In the NAS entry for an OCL constraint, the formal OCL expression is the “Definition” of the
constraint, while the English statement is captured as the “Description”.

NAS constraints have their own:

* Code (e.g., “ReligiousSignificanceExc”)
* Name (e.g., “Religious Significance — Excluded")

* Definition (e.g., inv: religiousSignificance — isEmpty())

Description (e.g., "An access zone never has religious significance (which is otherwise inherited
from [FeatureEntity])")

Status (e.g., Valid)

Date (e.g., 11 Jul 2013)

Background: Constraints in ShapeChange

ShapeChange supports constraints on classes and properties. Constraints can be expressed in OCL,
as plain text, and as a profile of SBVR. Constraints expressed with OCL and SBVR can be parsed into
an internal language to derive additional artifacts, such as Schematron files for validating XML
data.

ShapeChange supports the following constraint properties:

Table 9. ShapeChange Constraint Properties

Constraint Description Supported Supported Supported

property in text in OCL in

name constraint constraint constraint
parsed from
SBVR

Name Identifies the constraint. Yes Yes Yes

Text The textual representation of the Yes Yes Yes

constraint.

92

Constraint Description Supported Supported Supported

property in text in OCL in

name constraint constraint constraint
parsed from
SBVR

Status Expresses some state of refinedness, Yes Yes Yes

validity or purpose of the constraint;
NOTE: This property is experimental.

Context References the class or property on Yes Yes Yes
model which the constraint is defined.

element

Comment Human readable comment. NOTE: No Yes Yes

Comments can be parsed from the
constraint text. In the case of OCL
comments, they would be included
within '/*" and "/'. In the case of
comments parsed from SBVR, they
represent the original text.

Mapping NAS Constraints to ShapeChange Constraints

The information items defined for NAS constraints (code, name, etc.) need to be mapped to the
internal model of ShapeChange. The following table describes a possible mapping:

NAS OCL constraint Mapping to ShapeChange OCL constraint property
property

Code No direct mapping (but could be provided as part of the name)

Name Name

Definition Text

Description Comment(s) (and, optionally, included in the text - i.e. the OCL expression

- within '/*' and '*/")
Status Status

Date No direct mapping

The actual mapping depends on how the model is loaded. If the NAS model is encoded in an
Enterprise Architect repository (e.g., an .eap file), then the NAS constraint properties will already
have been mapped to the EA constraint model. If the model is encoded in a NAS-conformant
database, then all NAS constraint properties are directly accessible and available for a mapping.

Conversion of Constraints to RDF/OWL

The conversion of constraints as specified by ISO 19150-2 is a starting point. There are two issues:

* ISO 19150-2 does not provide a precise requirement for constructing the string value of the
is019150-2:constraint annotation property. However, in this case it is understandable why no

93

specific rules are provided by ISO 19150-2:

* Constraints can be expressed in a number of ways: OCL, natural language, based on SBVR,
etc. For each type of constraint, a different set of information items may be available and
relevant (name, text, comment(s), etc.).

* Communities can have different preferences as to how the information items available for a
specific type of constraint are encoded in RDF (e.g., name and comments, or alternatively,
just the text).

* The domain of the is019150-2:constraint annotation property is owl:Class. Thus, adding the
constraint annotation to properties would not be allowed. There are two reasons why this might
not be an issue:

* Most often, constraints are defined on classes, not properties. If an application schema does
not declare constraints on properties, then the domain of the is019150-2:constraint
annotation is suitable.

* It is not entirely clear if software that processes an ontology would report an error if the
1s019150-2:constraint annotation was added to properties. A test with Protégé ignored the
use of an annotation property on resources other than the one declared as the domain of the
annotation property (a test with object properties assigned to the wrong class - also
declaring that class as disjoint with the class that was defined as the domain of the property
- resulted in an error). So software might ignore the annotation property domain.

Two conversion rules have been defined to specify how constraints can be encoded.
Human Readable Text Only

If rule-owl-all-constraints-humanReadableTextOnly is enabled, then only the human readable text of
a constraint is encoded. This means:

» For ShapeChange text constraints as well as constraints parsed from SBVR, the complete text is
encoded.

* For ShapeChange OCL constraints, the values of the comment property are encoded (multiple
comments are concatenated using a single space character as separator).

* In both cases, the constraint name is prepended to the text.
By Constraint Mapping

If rule-owl-all-constraints-byConstraintMapping is enabled, then constraints on UML classes and
properties are converted to an RDF property, as specified via the constraintMappings configuration
(using defaults documented above as fallback).

With constraintMappings, the mappings to a string value can be explicitly defined for each
constraint type. Templates are used to specify how the properties of a given constraint are mapped
to a string value. This is similar to how descriptorTargets work. A constraint mapping also allows
choosing an RDF property other than iso19150-2:constraint for representing constraints.

The following table documents the structure of a constraint mapping. An example is also provided.
The XML Schema can be found in the Annex on XML Schema Documents.

94

Table 10. Constraint Mapping

Informat Datatype &

ion Item Structure

(configur

ed via

XML

attribute

)

constrain enum: "Text", "OCL",

tType or "FOL"

target string; the syntax
shall follow QNames,
with the prefix being
equal to the
namespace
abbreviation of a
namespace that is
contained in the
configuration of the
ShapeChange
ontology target

template string

noValue string

multiValu string

e

Connecto

rToken

format enum: string, or

langString

Required Default

/
Optional

Required

Optional

Required

Optional

Optional

Optional

Value

not
applicable

is019150-
2:constrai
nt

not
applicable

the empty
string

a single
space
character

string

Description

Identifies the type of constraint for which
the mapping is defined.

IRI of an RDF property or OWL annotation
property that will be used to represent the
constraint; the subject is the OWL class or
property representing the UML class or
property on which the constraint is
defined (i.e., its context model element),
and the object is a language tagged string.
The string content is determined by the
template. The configuration parameter
"language" (in the ontology target
configuration) provides the value of the
language tag.

Text template where an occurrence of the
field "[[constraint property ID]]" is replaced
with the value of that property. The
available constraint property IDs as well as
additional details are documented in the
table below.

If a constraint property used in a template
has no value, then this information item
provides the text to use instead (e.g., "N/A"
or "FIXME").

If a constraint property used in a template
has multiple values, they are concatenated
to a single string value using this token as
connector between two values.

Defines the format of the target property
value: * langString: language-tagged string;
the configuration parameter "language" (in
the ontology target configuration) provides
the value of the language tag * string:
string without language tag

95

Only a single mapping is allowed per constraint type.

A constraint is mapped using the template that is most specific for the given
constraint type. For example, FOL constraints are subtypes of Text constraints. If the
configuration contains mappings for both Text and FOL constraints, then the latter
is applied for a FOL constraint, but not the former. If the configuration only
contained a mapping for Text constraints, then it would be applied for a FOL
constraint (because no mapping is provided that is more specific for a FOL
constraint).

NOTE

If the ShapeChange configuration does not contain a mapping for a constraint type
encountered in the application schema (or one of its supertypes), ShapeChange will
report a warning and wuse the default values for noValue and
multiValueConnectorToken, as well as the default template: [[name]]: [[text]]

The following example shows the use of constraintMappings.

<sc:constraintMappings>
<sc:ConstraintMapping constraintType="Text" template="[[name]]: [[text]]"
noValue="FIXME"/>
<sc:ConstraintMapping constraintType="0CL"
template="[[name]]: [[comment]] --- OCL expression: [[text]]"/>
</sc:constraintMappings>

The following table documents which properties are available for which type of constraint
supported by ShapeChange.

Table 11. ShapeChange constraint property IDs and further details

Constraint Single- or multi- Available in Text Available in OCL Available in FOL
Property ID valued (S/M) Constraint (Y/N) Constraint (Y/N) Constraint (Y/N)
name S Y Y Y
text S Y Y Y
status S Y Y Y
comment M N Y Y

The context model element cannot be used in the template of a constraint mapping.
NOTE The element is represented by the OWL class or property to which the target
annotation property (as defined by the constraint mapping) is added.

Rule Execution Priority and Dependencies

The conversion rules for constraints are mutually exclusive. If both rules are enabled, ShapeChange
will log a warning and continue processing as if only rule-owl-all-constraints-
humanReadableTextOnly was enabled. If none of these rules is enabled, constraints will not be
encoded.

96

8.3. Implementation

All of the UML to RDF/OWL/SKOS conversion rules and parameters documented in this chapter
have been implemented.

The implementation is based on Apache Jena (http://jena.apache.org/).
The output of ShapeChange can be written in the formats supported by Apache Jena:

Table 12. Formats supported for writing an ontology

Format value of "outputFormat" configuration
parameter
Turtle turtle
RDF/XML rdfxml
N-Triples ntriples
JSON-LD jsonld
RDF/JSON rdfjson
TriG trig
N-Quads nquads
TriX trix
RDF Thrift rdfthrift

For further details, see https://jena.apache.org/documentation/io/#formats

8.4. NAS Ontology Encoding Rule

The following sections contain extracts of ShapeChange configurations with which an ontology as
well as a taxonomy were derived from the NSG Application Schema.

These extracts only serve as examples. They do not necessarily reflect the
NOTE configuration that was used to generate any of the publicly available NSG Enterprise
Ontology (NEO) or NSG Taxonomy (NTAX) documents.

8.4.1. Deriving the NSG Enterprise Ontology (NEO)

<?xml version="1.0" encoding="UTF-8"7>

<TargetOwl inputs="TRF2"
class="de.interactive_instruments.ShapeChange.Target.Ontology.OWLISO19150"
mode="enabled">

<targetParameter name="outputDirectory" value="testResults/NEO_v8.0"/>
<targetParameter name="outputFormat" value="rdfxml"/>

<targetParameter name="defaultEncodingRule" value="NEQ"/>
<targetParameter name="language" value="en"/>

97

http://jena.apache.org/
https://jena.apache.org/documentation/io/#formats

<targetParameter name="defaultTypeImplementation" value="owl:Class"/>
<targetParameter name="ontologyNameCode" value="neo"/>
<targetParameter name="source" value="NSG Enterprise Ontology (NEO) Standard (2016-
mm-dd)"/>
<targetParameter name="URIbase" value="http://api.nsgreg.nga.mil/ontology"/>
<targetParameter name="skosConceptSchemeSuffix" value="_ConceptScheme"/>
<targetParameter name="codeNamespaceForEnumerations"
value="http://api.nsgreg.nga.mil/ontology/neo-enum/8.0"/>
<targetParameter name="codelistOwlClassNamespaceForEnumerations"
value="http://api.nsgreg.nga.mil/ontology/neo-enum/8.0"/>
<descriptorTargets>
<DescriptorTarget appliesTo="ontology" target="rdfs:1label"
template="[[TV:ontologyName]]"
format="1angString"/>
<DescriptorTarget appliesTo="ontology" target="skos:definition"
template="![CDATA[Definition: [[TV:ontologyDefinition]] Description:
[[TV:ontologyDescription]]]]"
noValueText="[None Specified]" format="1langString"/>
<DescriptorTarget appliesTo="ontology" target="rdfs:isDefinedBy"
template="[[TV:ontologyResourceURI]]" format="IRI"/>
<DescriptorTarget appliesTo="ontology" target="skos:preflLabel"
template="[[TV:ontologyName]]"
format="1angString"/>
<DescriptorTarget appliesTo="ontology" target="skos:altLabel"
template="[[TV(|):aliasList]]"
multiValueBehavior="splitToMultipleTargets" format="1langString"/>
<DescriptorTarget appliesTo="class" target="rdfs:label"
template="[[TV:primaryCode]]"
format="1angString"/>
<DescriptorTarget appliesTo="class" target="skos:definition"
template="![CDATA[Definition: [[TV:definition]] Description: [[TV:description]]]]"
noValueText="[None Specified]" format="langString"/>
<DescriptorTarget appliesTo="class" target="rdfs:isDefinedBy"
template="http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
<DescriptorTarget appliesTo="class" target="skos:preflLabel" template="[[TV:name]]"
format="1angString"/>
<DescriptorTarget appliesTo="class" target="skos:altLabel"
template="[[TV(]|):aliasList]]"
multiValueBehavior="splitToMultipleTargets" format="1langString"/>
<DescriptorTarget appliesTo="property" target="rdfs:1abel"
template="[[TV:primaryCode]]"
format="1angString"/>
<DescriptorTarget appliesTo="property" target="skos:definition"
template="![CDATA[Definition: [[TV:definition]] Description: [[TV:description]]]]"
noValueText="[None Specified]" format="1langString"/>
<DescriptorTarget appliesTo="property" target="rdfs:isDefinedBy"
template="http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
<DescriptorTarget appliesTo="property" target="skos:preflLabel"
template="[[TV:name]]"
format="1angString"/>
<DescriptorTarget appliesTo="property" target="skos:altLabel"

template="[[TV(|):aliasList]]"
multiValueBehavior="splitToMultipleTargets" format="1langString"/>
<DescriptorTarget appliesTo="conceptscheme" target="rdfs:1label"
template="[[TV:primaryCode]]_ConceptScheme" format="1angString"/>
<DescriptorTarget appliesTo="conceptscheme" target="skos:definition"
template="I[CDATA[Definition: [[TV:definition]] Description: [[TV:description]]]]"
noValueText="[None Specified]" format="1langString"/>
<DescriptorTarget appliesTo="conceptscheme" target="rdfs:isDefinedBy"
template="http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
<DescriptorTarget appliesTo="conceptscheme" target="skos:preflLabel"
template="[[TV:name]] - Concept Scheme" format="langString"/>
</descriptorTargets>
<xi:include href="test/config/StandardMapEntries-owl.xml"/>
<rdfMapEntries>
<RdfTypeMapEntry type="SecurityAttributesGroupType" target="ntk:RequiresType"/>
<RdfTypeMapEntry type="ISM_Notice" target="icism:NoticeType"/>
<RdfTypeMapEntry type="NTKAccess" target="ntk:RequiresType"/>
<RdfTypeMapEntry type="RevisionRecall" target="rr:RevisionRecallType"/>
</rdfMapEntries>
<constraintMappings>
<ConstraintMapping constraintType="0CL" template="[[name]]: [[comment]] OCL
expression: [[text]]"
noValue="[None Specified]" format="1langString"/>
</constraintMappings>
<xi:include href="test/config/StandardNamespaces-owl.xml"/>
<namespaces>
<Namespace nsabr="1icism"
ns="https://www.dni.qgov/files/documents/CIO0/ICEA/Juliet/ISM-Public#"
location="https://www.dni.gov/files/documents/CI0/ICEA/Juliet/ISM-Public"/>
<Namespace nsabr="ntk" ns="https://www.dni.gov/files/documents/CIO0/ICEA/India/NTK-
V10-Public#"
location="https://www.dni.gov/files/documents/CI0/ICEA/India/NTK-V10-Public"/>
<Namespace nsabr="rr"
ns="https://www.dni.qgov/files/documents/CI0/ICEA/Juliet/RevRecall-Public#"
location="https://www.dni.qgov/files/documents/CIO/ICEA/Juliet/RevRecall-Public"/>
</namespaces>
<rules>
<EncodingRule name="NEO" extends="*">
<rule name="rule-owl-pkg-singleOntologyPerSchema"/>
<rule name="rule-owl-pkg-ontologyName-code"/>
<rule name="rule-owl-pkg-ontologyName-appendVersion"/>
<rule name="rule-owl-pkg-versionInfo"/>
<rule name="rule-owl-pkg-versionIRI"/>
<rule name="rule-owl-pkg-versionIRI-avoid-duplicate-version"/>
<rule name="rule-owl-pkg-dctSourceTitle"/>
<rule name="rule-owl-cls-is0191502IsAbstract"/>
<rule name="rule-owl-cls-generalization"/>
<rule name="rule-owl-cls-disjoint-classes"/>
<rule name="rule-owl-cls-encode-featuretypes"/>
<rule name="rule-owl-cls-encode-objecttypes"/>
<rule name="rule-owl-cls-encode-mixintypes"/>

99

<rule name="rule-owl-cls-encode-datatypes"/>
<rule name="rule-owl-cls-encode-basictypes"/>
<rule name="rule-owl-prop-general"/>
<rule name="rule-owl-prop-range-global"/>
<rule name="rule-owl-prop-localScopeAll"/>
<rule name="rule-owl-prop-multiplicityAsUnqualifiedCardinalityRestriction"/>
<rule name="rule-owl-prop-iso191502AssociationName"/>
<rule name="rule-owl-prop-inverse0f"/>
<rule name="rule-owl-prop-iso191502Aggregation”/>
<rule name="rule-owl-all-constraints-byConstraintMapping"/>
<rule name="rule-owl-cls-union"/>
<rule name="rule-owl-cls-unionSets"/>
<rule name="rule-owl-cls-enumerationAsCodelist"/>
<rule name="rule-owl-cls-codelist-external”/>
<rule name="rule-owl-cls-codelist-19150-2"/>
<rule name="rule-owl-cls-codelist-19150-2-objectOneOfForEnumeration”/>
<rule name="rule-owl-cls-codelist-19150-2-differentIndividuals"/>
<rule name="rule-owl-cls-codelist-19150-2-owlClassInDifferentNamespace"/>
<rule name="rule-owl-prop-code-broader-byBroaderListedValue"/>
</EncodingRule>
</rules>
</TargetOwl>

8.4.2. Deriving the NSG Taxonomy (NTAX)

<?xml version="1.0" encoding="UTF-8"7>
<TargetOwl inputs="TRF3"
class="de.interactive_instruments.ShapeChange.Target.Ontology.0OWLISO19150"
mode="enabled">
<targetParameter name="outputDirectory" value="testResults/NTAX_v8.0"/>
<targetParameter name="outputFormat" value="rdfxml"/>
<targetParameter name="defaultEncodingRule" value="NEO"/>
<targetParameter name="language" value="en"/>
<targetParameter name="defaultTypeImplementation" value="owl:Class"/>
<targetParameter name="ontologyNameCode" value="ntax"/>
<targetParameter name="source" value="NSG Taxonomy (NTAX) Standard (draft)"/>
<targetParameter name="URIbase" value="http://api.nsgreg.nga.mil/taxonomy"/>
<descriptorTargets>
<DescriptorTarget appliesTo="ontology" target="rdfs:1abel"
template="[[TV:taxonomyName]]"
format="1angString"/>
<DescriptorTarget appliesTo="ontology" target="skos:definition"
template="![CDATA[Definition: [[TV:taxonomyDefinition]] Description:
[[TV:taxonomyDescription]]]]"
noValueText="[None Specified]" format="1langString"/>
<DescriptorTarget appliesTo="ontology" target="rdfs:isDefinedBy"
template="[[TV:taxonomyResourceURI]]" format="IRI"/>
<DescriptorTarget appliesTo="ontology" target="skos:preflLabel"
template="[[TV:taxonomyName]]"
format="1angString"/>

100

<DescriptorTarget appliesTo="ontology" target="skos:altLabel"
template="[[TV(]|):aliasList]]"
multiValueBehavior="splitToMultipleTargets" format="1langString"/>
<DescriptorTarget appliesTo="class" target="rdfs:1label"
template="[[TV:primaryCode]]"
format="1angString"/>
<DescriptorTarget appliesTo="class" target="skos:definition"
template="![CDATA[Definition: [[TV:definition]] Description: [[TV:description]]]]"
noValueText="[None Specified]" format="1langString"/>
<DescriptorTarget appliesTo="class" target="rdfs:isDefinedBy"
template="http://nsgreqg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
<DescriptorTarget appliesTo="class" target="skos:preflLabel" template="[[TV:name]]"
format="1angString"/>
<DescriptorTarget appliesTo="class" target="skos:altLabel"
template="[[TV(]|):aliasList]]"
multiValueBehavior="splitToMultipleTargets" format="1langString"/>
</descriptorTargets>
<xi:include href="test/config/StandardMapEntries-owl.xml"/>
<rdfMapEntries>
<RdfTypeMapEntry type="Binary" target="owl:Class"/>
<RdfTypeMapEntry type="SecurityAttributesGroupType" target="ntk:RequiresType"/>
<RdfTypeMapEntry type="ISM_Notice" target="icism:NoticeType"/>
<RdfTypeMapEntry type="NTKAccess" target="ntk:RequiresType"/>
<RdfTypeMapEntry type="RevisionRecall" target="rr:RevisionRecallType"/>
</rdfMapEntries>
<rdfConversionParameters>
<TypeConversionParameter type="Dataset" schema="NSG Application Schema"
subClassOf="ntax:RecordSet"/>
<TypeConversionParameter type="Series" schema="NSG Application Schema"
subClassOf="ntax:RecordSet"/>
<TypeConversionParameter type="DataQuality" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="Dataldentification" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="DigitalTransferOptions" schema="NSG Application
Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="DataProcessStep" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="ResourcePartyOrg" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="ResourceConstraints" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="LegalConstraints" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="DataSource" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="Datalineage" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="DispositionHold" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>

101

<TypeConversionParameter type="ElectronicRecordsManagement” schema="NSG Application
Schema"
subClassOf="ntax:RecordMetadata"/>
<TypeConversionParameter type="RecordDisposition" schema="NSG Application Schema"
subClassOf="ntax:RecordMetadata"/>
</rdfConversionParameters>
<constraintMappings>
<ConstraintMapping constraintType="0CL" template="[[name]]: [[comment]] OCL
expression: [[text]]"
noValue="[None Specified]" format="1langString"/>
</constraintMappings>
<xi:include href="test/config/StandardNamespaces-owl.xml"/>
<namespaces>
<Namespace nsabr="ntax" ns="http://api.nsgreg.nga.mil/taxonomy/ntax/8.04"/>
<Namespace nsabr="1icism"
ns="https://www.dni.gov/files/documents/CIO/ICEA/Juliet/ISM-Public#"
location="https://www.dni.gov/files/documents/CI0/ICEA/Juliet/ISM-Public"/>
<Namespace nsabr="ntk" ns="https://www.dni.gov/files/documents/CIO0/ICEA/India/NTK-
V10-Public#"
location="https://www.dni.gov/files/documents/CI0/ICEA/India/NTK-V10-Public"/>
<Namespace nsabr="rr"
ns="https://www.dni.qgov/files/documents/CI0/ICEA/Juliet/RevRecall-Public#"
location="https://www.dni.qgov/files/documents/CIO/ICEA/Juliet/RevRecall-Public"/>
</namespaces>
<rules>
<EncodingRule name="NEO" extends="*">
<rule name="rule-owl-pkg-singleOntologyPerSchema"/>
<rule name="rule-owl-pkg-ontologyName-code"/>
<rule name="rule-owl-pkg-ontologyName-appendVersion"/>
<rule name="rule-owl-pkg-versionInfo"/>
<rule name="rule-owl-pkg-versionIRI"/>
<rule name="rule-owl-pkg-versionIRI-avoid-duplicate-version"/>
<rule name="rule-owl-pkg-dctSourceTitle"/>
<rule name="rule-owl-cls-is0191502IsAbstract"/>
<rule name="rule-owl-cls-generalization"/>
<rule name="rule-owl-cls-disjoint-classes"/>
<rule name="rule-owl-cls-encode-featuretypes"/>
<rule name="rule-owl-cls-encode-objecttypes"/>
<rule name="rule-owl-cls-encode-mixintypes"/>
</EncodingRule>
</rules>
</TargetOwl>

102

Annex A: Comparison of Encoding Rules in
ISO 19150-2 Draft and Final

This appendix documents the results of an analysis that compared the requirements from ISO
19150-2 DIS with the requirements from ISO 19150-2 IS. It also documents the changes, extensions
and limitations of the ShapeChange ontology target that was developed based upon ISO 19150-2
DIS, in comparison to that specification (i.e. ISO 19150-2 DIS).

Due to the revision of the ShapeChange ontology target (based on ISO 19150-2) in
OGC Testbed 12, the parameters and conversion rules mentioned in this annex are
mostly outdated (since they apply to the previous version of the ShapeChange
ontology target).

NOTE

Table 13. Rules for mapping ISO geographic information UML models to OWL ontologies

ISO 19150-2 DIS ISO 19150-2 IS ShapeChange Target
requirement & chapter requirement, chapter & (based on ISO/DIS 19150-2)
changes - Changes, extensions,

limitations compared to
ISO 19150-2 DIS

19150-2owl:ontologyName 19150- Extension: If the conversion

(chapter 6.2.2 Ontology 2package:ontologyName rule “rule-owl-pkg-app-

Name) (chapter 6.2.2 Ontology schema-code” is active, the
Name) CHANGE(S): code for the application
umlPackageName shall be in schema is used (tagged value
lower case (instead of “xmlns” specified by GML
UpperCamelCase) 3.2 /1S0 19136) instead of

umlPackageName

Extension: sub-packages of
an application schema
package do not become
separate ontologies, but are
part of the application
schema ontology, if
conversion rule “rule-owl-
pkg-
singleOntologyPerSchema”
is active Note: The URIbase
is set using the parameter of
the same name

19150-2owl:rdfNamespace 19150- -
(chapter 6.2.3 RDF 2package:rdfNamespace
namespace for ontology) (chapter 6.2.3 RDF

namespace for ontology) NO

CHANGES
19150-2owl:className 19150-2package:className -
(6.2.4 Class name) (6.2.4 Class name) NO

CHANGES

103

ISO 19150-2 DIS
requirement & chapter

19150-2owl:datatypeName
(6.2.5 Datatype name)

19150-2owl:propertyName
(6.2.6 Property name)

19150-2owl:codeName
(6.2.7 Names for codelists
and their members)

104

ISO 19150-2 IS
requirement, chapter &
changes

19150-
2package:datatypeName
(6.2.5 Datatype name) NO
CHANGES

19150-
2package:propertyName
(6.2.6 Property name) No
change, but addition of the
following note: “In addition
to its propertyLocalName, a
propertyName can
optionally include its
umlClassName when the
property is scoped to the
class or if the same
propertyLocalName may be
used by another property of
another class with a
different semantics.”

19150-2package:codeName
(6.2.7 Names for codelists
and their members)
ADDITION: collectionName
= codeNamespace
className "Collection"

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

Change: The properties that
become global properties
are not automatically
determined by the
uniqueness of the property
name, but explicitly
controlled using the
parameter
“globalProperties”. If “*” is
used, all properties will be
global. In case of multiple
properties with the same
name and conflicting
annotations or ranges, the
conflicts need to be resolved
manually. NOTE: if a
property is not marked to be
global then it is
automatically scoped to its
class. Currently there is no
automatic detection of
uniqueness [of a property
name] within a package or
the whole schema. NOTE: if
a property with the same
name has already been
encoded, then the
differences are logged and
the already existing one is
used, rather than the
newj/current one.

Extension: if the conversion
rule “rule-owl-cls-codelist-
external” is active, code lists
are not converted. See also
the comments on sub-clause
6.8.2.

ISO 19150-2 DIS
requirement & chapter

19150-2owl:package
(6.3 Packages)

19150-2owl:class
(6.4 Class)

19150-2owl:abstractClass
(6.5 Abstract class)

ISO 19150-2 IS
requirement, chapter &
changes

19150-2package:package
(6.3 Packages) Clarification
that the UML model of a
geographic information
standard shall correspond to
ontologies rather than
packages with stereotype
<<requirementsClass>>
Some rewording regarding
the import of the base
ontology from ISO 19150-2

19150-2package:class

(6.4 Class) Change: uses
rdfs:label instead of
skos:prefLabel and
rdfs:isDefinedBy instead of
dc:source

19150-
2package:abstractClass
(6.5 Abstract class) NO
CHANGES

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

Change: dc:source is a text
(specified by parameter
“source”) as the rule in
ISO/DIS 19150-2 is based on
the assumption that the
package is from the
harmonized model, i.e.
defined in a standard of
ISO/TC 211. Change:
owl:versionInfo uses the
version information in
tagged value “version”
instead of a date.

Extension: if conversion rule
“rule-owl-all-suppress-dc-
source” is active, dc:source
is omitted (as the source
statement in the ontology
applies, too) Change:
skos:notation is used for the
class name, skos:prefLabel is
used for an (human-
readable) alias, if provided
Change: skos:scopeNote is
provided for a description, if
provided

105

ISO 19150-2 DIS
requirement & chapter

19150-2owl:stereotype
(6.6. Class stereotype)

106

ISO 19150-2 IS
requirement, chapter &
changes

REMOVED - and thus the
requirement to inherit from
classes representing
stereotypes has been
removed in all relevant
clauses, too

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

Change: ISO/DIS 19150-2
includes stereotypes and
tagged values in the
ontology. In general,
stereotypes and tagged
values are UML-specific
extension mechanisms. They
should only be supported in
schema conversion rules
that map the values to naive
RDFS/OWL constructs and
carry relevant information.
For most tags there is little
or no apparent value. For
example, there is no value in
representing tagged values
supporting the GML schema
conversion rules in the
ontology. Therefore,
stereotypes and tagged
values are in general
suppressed.

ISO 19150-2 DIS
requirement & chapter

19150-2owl:attribute-
dataProperty

(6.7.3.1 OWL data property
rules)

&

19150-2owl:attribute-
objectProperty

(6.7.3.2)

19150-2owl:enumeration
(6.8.2 Enumeration)

ISO 19150-2 IS
requirement, chapter &
changes

19150-2package:attribute-
dataProperty

(6.6.3.1 OWL data property
rules)

&
19150-2package:attribute-
objectProperty

(6.6.3.2) Change: uses
rdfs:label instead of
skos:prefLabel and
rdfs:isDefinedBy instead of
dc:source

19150-
2package:enumeration

(6.7.1 Enumeration) Change:

uses rdfs:label instead of
skos:prefLabel and
rdfs:isDefinedBy instead of
dc:source

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

The changes and extensions
listed for “Class” apply here,
too. Limitation:
gco:Datatypes are not
supported Change:
rdfs:domain is not provided
for global properties
Extension: rdfs:range
supports owl:unionOf for
cases where multiple UML
attributes are “merged” to a
single, global RDF property,
see comments on sub-clause
6.2.6. Extension: Attributes
may be implemented using
other RDF vocabularies or
suppressed (using MapEntry
elements in the
configuration with a
param="property” or
“propertyByValueType”).
Extension: For ranges
specified by types from the
ISO Harmonized Model or
other imported schemas,
implementations may be
specified in MapEntry
elements in the
configuration
(param="datatype”).

The changes and extensions
listed for “Class” apply here,
too.

107

ISO 19150-2 DIS
requirement & chapter

19150-2owl:codelist & 19150-
2owl:codelistextension
(6.8.2 Code list)

19150-2owl:union
(6.9 Union)

108

ISO 19150-2 IS
requirement, chapter &
changes

19150-2package:codelist &
19150-
2package:codelistextension
(6.7.2 Code list) Change: uses
rdfs:label instead of
skos:prefLabel and
rdfs:isDefinedBy instead of
dc:source

19150-2package:union
(6.8 Union) NO CHANGES

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

The changes and extensions
listed for “Class” apply here,
too. Extension: If the
conversion rule “rule-owl-
cls-codelist-external” is
active, code lists are not
converted. This should be
the normal case as usually
code lists are managed
outside of the application
schemas. If no tagged value
“codelist” or “vocabulary” is
present, rdfs:Resource is
used as the range, otherwise
the resource identified by
the URIL

Limitation: Unions are
represented by stub classes
as the schema conversion
rule for union data types in
ISO/DIS 19150-2 is
insufficient. It does not
handle common cases
where values are a mix of
object or data types or the
same value type is used by
more than one option.

ISO 19150-2 DIS
requirement & chapter

19150-2owL:multiplicity
(6.10 Multiplicity)

19150-2owl:relationship-
generalization

(6.11.1
Generalization/inheritance)

19150-2owl:relationship-
association
(6.11.2 Association)

19150-2owl:relationship-
aggregation
(6.11.3 Aggregation)

ISO 19150-2 IS
requirement, chapter &
changes

19150-2package:multiplicity
(6.9 Multiplicity) NO
CHANGES

19150-
2package:relationship-
generalization

(6.10.1
Generalization/inheritance)
NO CHANGES

19150-
2package:relationship-
association

(6.10.2 Association) Change:
uses rdfs:label instead of
skos:prefLabel and
rdfs:isDefinedBy instead of
dc:source

19150-
2package:relationship-
aggregation

(6.10.3 Aggregation) NO
CHANGES

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

Extension: If the conversion
rule “rule-owl-prop-
suppress-cardinality-
restrictions” is active,
cardinality restrictions are
not included. Extension: If
the conversion rule “rule-
owl-prop-suppress-
allvaluesFrom-restrictions”
is active, range restrictions
are not included in all cases
when the value would be
identical with the range
information of the property.
Extension: If the conversion
rule “rule-owl-prop-
voidable-as-
minCardinality0" is active
and a property is voidable,
there will be no minimum
cardinality restriction.

The changes and extensions
listed for “Class” and
“Attribute” apply here, too.
Extension: If conversion rule
“rule-owl-prop-suppress-
asociation-names” is active,
1s019150-2:associationName
is not included. Limitation:
ISO/DIS 19150-2 does not
provide rules for association
classes.

109

ISO 19150-2 DIS
requirement & chapter

19150-2owl:constraint
(6.12 Constraint)

19150-2owl:taggedvalue
(6.13 Tagged value)

Table 14. Rules for formalizing an application schema in OWL

ISO 19150-2 DIS
requirement & chapter

19150-2app:identification
(7.2. Rules for identification)

19150-2app:documentation-
ontology

(7.3.1 Ontology
documentation)

19150-2app:documentation-
ontologyComponent

(7.3.2 Ontology component
documentation)

110

ISO 19150-2 IS
requirement, chapter &
changes

19150-2package:constraint
(6.11 Constraint) NO
CHANGES (just a minor
clarification that OWL
supports constraints but not
those we are looking for)

REMOVED

ISO 19150-2 IS
requirement, chapter &
changes

19150-2app:identification
(7.2. Rules for identification)
NO CHANGES

19150-2app:documentation-
ontology

(7.3.1 Ontology
documentation) Change:
rdfs:isDefinedBy instead of
dc:source

19150-2app:documentation-
ontologyComponent

(7.3.2 Ontology component
documentation) Change:
uses rdfs:label instead of
skos:prefLabel and
rdfs:isDefinedBy instead of
dc:source Removed:
annotation properties
1$019150-2:isEnumeration
and -isCodelist no longer
used

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

Extension: Constraints are
only added if conversion
rule “rule-owl-all-
constraints” is active.
Including OCL in an
ontology is questionable.
Probably the most
reasonable way would be to
include only the
documentation of a
constraint.

The changes and extensions
listed for “Stereotype” apply
here, too.

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

The changes and extensions
listed for “Class”, “Attribute”
and “Association” apply here,
too.

ISO 19150-2 DIS
requirement & chapter

19150-2app:integration
(7.4 Rules for integration)

19150-2app:GF_FeatureType
(7.5 Rules for
GF_FeatureType)

19150-2app:attributeType
(7.6.1.1 Rules for
GF_AttributeType)

NOT EXISTENT (due to
update of ISO 19150-2 IS to
new version of ISO 19109
(v2015))
(GF_ThematicAttributeType
is mentioned at the end of
7.6.1.1)

NOT EXISTENT (due to
update of ISO 19150-2 IS to
new version of ISO 19109
(v2015))

ISO 19150-2 IS
requirement, chapter &
changes

19150-2app:integration
(7.4 Rules for integration)
NO CHANGES

19150-2app:featureType
(7.5 Rules for FeatureType)
Change: uses rdfs:label
instead of skos:prefLabel
Removed: not inheriting
from is019150-
2:FeatureType because
stereotypes have been
removed completely

19150-2app:attributeType
(7.6.1.1 Rules for
AttributeType) Removed:
representation of
stereotypes [dpEstimated]
and [opEstimated] (probably
replaced by
ValueAssignment — see last
row of this table) Change:
uses rdfs:label instead of
skos:prefLabel and
rdfs:isDefinedBy instead of
dc:source

19150-
2app:thematicAttributeType
(7.6.1.2 Rules for
ThematicAttributeType)
NEW

19150-
2app:coverageFunctionAttri
buteType

(7.6.1.3 Rules for
CoverageFunctionAttributeT
ype) NEW

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

The changes and extensions
listed for “Class” apply here,
too. Extension: A sub-class
predicate to gfm:AnyFeature
is only added, if conversion
rule “rule-owl-cls-19150-2-
features” is active.
Extension: If conversion rule
“rule-owl-cls-geosparql-
features” is active, a sub-
class predicate to
geo:Feature from
GeoSPARQL is added.

The changes and extensions
listed for “Attribute” apply
here, too.

the DIS did not contain a
specific requirement for
thematic attribute types

the DIS did not contain a
specific requirement for
coverage function attribute

types

111

ISO 19150-2 DIS
requirement & chapter

19150-2app:attribute-
GF_LocationAttributeType
(7.6.1.2 Rules for
GF_LocationAttributeType)

19150-2app:attribute-
GF_SpatialAttributeType
(7.6.1.3 Rules for
GF_SpatialAttributeType)

19150-2app:attribute-
GF_TemporalAttributeType
(7.6.1.4 Rules for
GF_TemporalAttributeType)

19150-2app:attribute-
GF_MetadataAttributeType
(7.6.1.5 Rules for
GF_MetadataAttributeType)

NOT EXISTENT (due to
update of ISO 19150-2 IS to
new version of ISO 19109
(v2015))

19150-2app:attribute-
attributeOfAttribute

(7.6.1.6 Rules for attribute of
attribute)

19150-2app:GF_Operation
(7.6.2 Rules for operation)

19150-
2app:GF_AssociationRole
(7.6.3 Rules for
GF_AssociationRole)

112

ISO 19150-2 IS
requirement, chapter &
changes

19150-
2app:locationAttributeType
(7.6.1.4 Rules for
LocationAttributeType) NO
CHANGES

19150-
2app:spatialAttributeType
(7.6.1.5 Rules for
SpatialAttributeType) NO
CHANGES

19150-
2app:temporalAttributeType
(7.6.1.6 Rules for
TemporalAttributeType) NO
CHANGES

19150-
2app:metadataAttributeType
(7.6.1.7 Rules for
MetadataAttributeType) NO
CHANGES

19150-
2app:qualityAttributeType
(7.6.1.8 Rules for
QualityAttributeType) NEW

19150-
2app:attributeOfAttribute
(7.6.1.9 Rules for attribute of
attribute) NO CHANGES

19150-2app:operation
(7.6.2 Rules for operation)
NO CHANGES

19150-
2app:featureAssociationRole
(7.6.3 Rules for
FeatureAssociationRole)

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

the DIS did not contain a
specific requirement for
coverage function attribute

types

The changes and extensions
listed for “Attribute” apply
here, too.

ISO 19150-2 DIS
requirement & chapter

19150-
2app:GF_AssociationType
(7.6.4 Rules for
GF_AssociationType)

19150-
2app:GF_AggregationType
(7.8 Rules for
GF_AggregationType) (due to
update of ISO 19150-2 IS to
new version of ISO 19109
(v2015) this clause has been
split up into two: one for
aggregation and one for
composition)

NOT EXISTENT (due to
update of ISO 19150-2 IS to
new version of ISO 19109
(v2015))

NOT EXISTENT (due to
update of ISO 19150-2 IS to
new version of ISO 19109
(v2015))

19150-
2app:GF_InheritanceRelatio
n

(7.9 Rules for
GF_InheritanceRelation)

19150-2app:GF_Constraint
(7.10 Rules for
GF_Constraint)

ISO 19150-2 IS
requirement, chapter &
changes

19150-
2app:featureAssociationTyp
e

(7.6.4 Rules for
FeatureAssociationType)
Changes: dropped
requirement to specify the
rdfs:domain for an
association property.

19150-
2app:featureAggregationTyp
e

(7.8 Rules for
FeatureAggregationType) &
19150-
2app:featureCompositionTy
pe

(7.9 Rules for
FeatureCompositionType)
NO CHANGES

19150-
2app:spatialAssociationType
(7.10 Rules for
SpatialAssociationType)
NEW

19150-
2app:temporalAssociationTy
pe

(7.11 Rules for
TemporalAssociationType)
NEW

19150-
2app:inheritanceRelation
(7.12 Rules for
InheritanceRelation) NO
CHANGES

19150-2app:constraint
(7.13 Rules for constraints)
NO CHANGES

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

The changes and extensions
listed for “Association” apply
here, too.

This requirement shall be
implemented as requirement
19150-
2app:featureAssociationType.
Therefore the changes and
extensions listed for
“Association” apply here, too.

This requirement shall be
implemented as requirement
19150-
2app:featureAssociationType.
Therefore the changes and
extensions listed for
“Association” apply here, too.

The changes and extensions
listed for “Constraint” apply
here, too.

113

ISO 19150-2 DIS
requirement & chapter

NOT EXISTENT (as a
separate chapter, but the
ISO DIS had a mechanism to
implement the [estimated]
stereotype for properties —
see 19150-2app:attribute-
GF_AttributeType in chapter
7.6.1.1)

114

ISO 19150-2 IS
requirement, chapter &
changes

19150-
2app:valueAssignment

(7.14 Rules for
ValueAssignment) NEW
(chapter — the mechanism to
implement the [estimated]
stereotype for properties is
different to that specified by
the DIS)

ShapeChange Target
(based on ISO/DIS 19150-2)
- Changes, extensions,
limitations compared to
ISO 19150-2 DIS

Annex B: XML Schema Documents

This annex contains XML Schema definitions for ShapeChange extensions specified in OGC Testbed
12. The latest version of the configuration is available online at http://shapechange.net and
https://github.com/ShapeChange/ShapeChange.

B.1. ConstraintLoader XSD

<?xml version="1.0" encoding="UTF-8"7>
<schema elementFormDefault="qualified"
targetNamespace="http://shapechange.net/constraintLoaderConfiguration/1.0"
version="1.0.0"
xml:lang="en" xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:cl="http://shapechange.net/constraintLoaderConfiguration/1.0">
<element name="Constraints">
<complexType>
<sequence>
<element maxOccurs="unbounded" name="constraint">
<complexType>
<sequence>
<element ref="cl:Constraint"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</element>
<element name="Profileldentifier">
<complexType>
<sequence>
<element name="name" type="string"/>
<element minOccurs="0" name="versionIndicator" type="string"/>
</sequence>
</complexType>
</element>
<element name="Constraint" type="cl:ConstraintType">
<unique name="profileNameInProfiles">
<selector xpath="cl:profile"/>
<field xpath="cl:Profileldentifier/cl:name"/>
</unique>
</element>
<complexType name="ConstraintType">
<sequence>
<element minOccurs="0" name="constraintName" type="string"/>
<element minOccurs="0" name="constraintType" type="string"/>
<element name="constraintExpression" type="string"/>
<element minOccurs="0" name="comment" type="string"/>
<element name="schemaPackageName" type="string"/>
<element name="contextElementName" type="string"/>

115

http://shapechange.net
https://github.com/ShapeChange/ShapeChange

<element default="Class" minOccurs="0" name="contextElementType">
<simpleType>
<restriction base="string">
<enumeration value="Class"/>
<enumeration value="Property"/>
</restriction>
</simpleType>
</element>
<element maxOccurs="unbounded" minOccurs="0" name="profile">
<complexType>
<sequence>
<element ref="cl:Profileldentifier"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</schema>

B.2. ProfileLoader XSD

<?xml version="1.0" encoding="UTF-8"7>
<schema elementFormDefault="qualified"
targetNamespace="http://shapechange.net/profilelLoader/1.0"
version="1.0.0" xml:lang="en" xmlns="http://www.w3.0rg/20@1/XMLSchema"
xmlns:pl="http://shapechange.net/profilelLoader/1.0">
<element name="ProfileInformation">
<complexType>
<sequence>
<element maxOccurs="unbounded" name="schema">
<complexType>
<sequence>
<element maxOccurs="1" name="Schema">
<complexType>
<sequence>
<element name="packageName" type="string"/>
<element maxOccurs="unbounded" name="requirement">
<complexType>
<sequence>
<element ref="pl:Requirement"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</element>

116

</sequence>
</complexType>
<unique name="packageNameOfSchemaInSchemas">
<selector xpath="pl:schema"/>
<field xpath="pl:Schema/pl:packageName"/>
</unique>
</element>
<element abstract="false" name="Requirement" type="pl:RequirementType">
<unique name="profileNameInProfiles">
<selector xpath="pl:profile"/>
<field xpath="pl:Profile/pl:identifier/pl:Profileldentifier/pl:name"/>
</unique>
</element>
<complexType name="RequirementType">
<sequence>
<element name="class" type="string"/>
<element minOccurs="0" name="property" type="string"/>
<element maxOccurs="unbounded" name="profile">
<complexType>
<sequence>
<element ref="pl:Profile"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
<element name="Profile">
<complexType>
<sequence>
<element name="identifier">
<complexType>
<sequence>
<element ref="pl:Profileldentifier"/>
</sequence>
</complexType>
</element>
<element maxOccurs="unbounded" minOccurs="0" name="metadata">
<complexType>
<sequence>
<element ref="pl:KeyValuePair"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
<unique name="keyOfKeyValuePairInMetadata">
<selector xpath="pl:metadata"/>
<field xpath="pl:KeyValuePair/pl:key"/>
</unique>
</element>
<element name="Profileldentifier">

117

<complexType>
<sequence>
<element name="name" type="string"/>
<element minOccurs="0" name="versionIndicator" type="string"/>
</sequence>
</complexType>
</element>
<element name="KeyValuePair">
<complexType>
<sequence>
<element name="key" type="string"/>
<element name="value" type="string"/>
</sequence>
</complexType>
</element>
</schema>

B.3. descriptorTargets XSD

Only the relevant fragment of the whole ShapeChangeConfiguration XML Schema is

NOTE
shown.

<element name="descriptorTargets">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="DescriptorTarget">
<complexType>
<attribute name="appliesTo" default="all">
<simpleType>
<restriction base="string">
<enumeration value="ontology"/>
<enumeration value="class"/>
<enumeration value="conceptscheme"/>
<enumeration value="property"/>
<enumeration value="all"/>
</restriction>
</simpleType>
</attribute>
<attribute name="target" type="string" use="required"/>
<attribute name="template" type="string" use="required"/>
<attribute default="langString" name="format">
<simpleType>
<restriction base="string">
<enumeration value="langString"/>
<enumeration value="IRI"/>
<enumeration value="string"/>
</restriction>
</simpleType>
</attribute>

118

<attribute default="ignore" name="noValueBehavior">
<simpleType>
<restriction base="string">
<enumeration value="ignore"/>
<enumeration value="populateOnce"/>
</restriction>
</simpleType>
</attribute>
<attribute default="" name="noValueText" type="string"/>
<attribute default="connectInSingleTarget" name="multiValueBehavior">
<simpleType>
<restriction base="string">
<enumeration value="connectInSingleTarget"/>
<enumeration value="splitToMultipleTargets"/>
</restriction>
</simpleType>
</attribute>
<attribute default=" " name="multiValueConnectorToken" type="string"/>
</complexType>
</element>
</sequence>
</complexType>
</element>

B.4. rdfMapEntries XSD

Only the relevant fragment of the whole ShapeChangeConfiguration XML Schema is

NOTE
shown.

<element name="rdfMapEntries">
<complexType>
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="sc:RdfTypeMapEntry"/>
<element ref="sc:RdfPropertyMapEntry"/>
<element ref="sc:rdfMapEntries"/>
</choice>
</complexType>
</element>
<element name="RdfTypeMapEntry" type="sc:RdfTypeMapEntryType"/>
<complexType name="RdfTypeMapEntryType">
<sequence/>
<attribute name="type" type="string" use="required">
<annotation>
<documentation>Name of a UML type</documentation>
</annotation>
</attribute>
<attribute name="schema" type="string">
<annotation>
<documentation>The name of the application schema package to which the UML type

119

belongs. Used to avoid ambiguity in case that multiple schemas are being
processed.</documentation>
</annotation>
</attribute>
<attribute name="target" type="string" use="required">
<annotation>
<documentation>IRI of the RDFS/OWL class or datatype to which the UML type shall be
mapped
(e.g. "ex1:A"). Note: the value is expected to be given as a QName, with the
namespace
prefix matching the namespace abbreviation of a namespace declared in the
configuration.</documentation>
</annotation>
</attribute>
<attribute default="class" name="targetType">
<annotation>
<documentation>Type of the target (class or datatype) to which the UML type will be
mapped.</documentation>
</annotation>
<simpleType>
<restriction base="string">
<pattern value="datatype"/>
<pattern value="class"/>
</restriction>
</simpleType>
</attribute>
<attribute name="rule" type="string" use="optional" default="*">
<annotation>
<documentation>The encoding rule to which this mapping applies. May be “*" to
indicate that
the mapping applies to all encoding rules.</documentation>
</annotation>
</attribute>
</complexType>
<element name="RdfPropertyMapEntry" type="sc:RdfPropertyMapEntryType"/>
<complexType name="RdfPropertyMapEntryType">
<sequence/>
<attribute name="property" type="string" use="required">
<annotation>
<documentation>Name of a UML property, optionally scoped to a class from the
application schema (example: FeatureX::propertyY).</documentation>
</annotation>
</attribute>
<attribute name="schema" type="string">
<annotation>
<documentation>The name of the application schema package to which the UML property
belongs. Used to avoid ambiguity in case that multiple schemas are being
processed.</documentation>
</annotation>
</attribute>
<attribute name="target" type="string" use="optional">

120

<annotation>
<documentation>IRI of the RDF/OWL property to which the UML property shall be
mapped (e.g. "ex1:propZ"). Can be omitted or empty if the property shall not be
encoded. Note: the value is expected to be given as a QName, with the namespace prefix
matching the namespace abbreviation of a namespace declared in the
configuration.</documentation>
</annotation>
</attribute>
<attribute name="range" type="string">
<annotation>
<documentation>Range to use in class expressions involving the target (RDF/OWL)
property. Note: the value is expected to be given as a QName, with the namespace
prefix matching the namespace abbreviation of a namespace declared in the
configuration.</documentation>
</annotation>
</attribute>
<attribute name="rule" type="string" use="optional" default="*">
<annotation>
<documentation>The encoding rule to which this mapping applies. May be “*" to
indicate that
the mapping applies to all encoding rules.</documentation>
</annotation>
</attribute>
</complexType>

B.5. rdfConversionParameters XSD

RDF conversion parameters provide instructions for the conversion of application schema classes
and properties to RDF/OWL.

Only the relevant fragment of the whole ShapeChangeConfiguration XML Schema is

NOTE
shown.

<element name="rdfConversionParameters">
<complexType>
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="sc:StereotypeConversionParameter"/>
<element ref="sc:TypeConversionParameter"/>
<element ref="sc:PropertyConversionParameter"/>
<element ref="sc:rdfConversionParameters"/>
</choice>
</complexType>
</element>
<element name="StereotypeConversionParameter"
type="sc:StereotypeConversionParameterType"/>
<complexType name="StereotypeConversionParameterType">
<sequence/>
<attribute name="wellknown" use="required">
<annotation>

121

<documentation>Stereotype that is well-known to ShapeChange</documentation>
</annotation>
<simpleType>
<restriction base="string">
<enumeration value="DataType"/>
<enumeration value="FeatureType"/>
<enumeration value="Enumeration"/>
<enumeration value="Codelist"/>
<enumeration value="Union"/>
<enumeration value="Type"/>
<enumeration value="BasicType"/>
</restriction>
</simpleType>
</attribute>
<attribute name="subClassOf" type="string" use="required">
<annotation>
<documentation>IRIs of classes of which UML types with this stereotype shall be
subClassOf. Multiple IRIs are separated with spaces. Note: the values are expected to
be given as QNames, with the namespace prefixes matching the namespace abbreviations
of the namespaces declared in the configuration.</documentation>
</annotation>
</attribute>
<attribute name="rule" type="string" use="optional" default="*">
<annotation>
<documentation>The encoding rule to which this parameter applies. May be “*” to
indicate that
the parameter applies to all encoding rules.</documentation>
</annotation>
</attribute>
</complexType>
<element name="TypeConversionParameter" type="sc:TypeConversionParameterType"/>
<complexType name="TypeConversionParameterType">
<sequence/>
<attribute name="type" type="string" use="required">
<annotation>
<documentation>Name of a UML type</documentation>
</annotation>
</attribute>
<attribute name="schema" type="string">
<annotation>
<documentation>The name of the application schema package to which the UML type
belongs. Used to avoid ambiguity in case that multiple schemas are being
processed.</documentation>
</annotation>
</attribute>
<attribute name="subClassOf" type="string" use="required">
<annotation>
<documentation>IRIs of classes of which the UML type shall be a subClassOf.
Multiple IRIs are separated with spaces. Note: the values are expected to be given as
QNames, with the namespace prefixes matching the namespace abbreviations of the
namespaces declared in the configuration.</documentation>

122

</annotation>
</attribute>
<attribute name="rule" type="string" use="optional" default="*">
<annotation>
<documentation>The encoding rule to which this parameter applies. May be “*” to
indicate that
the parameter applies to all encoding rules.</documentation>
</annotation>
</attribute>
</complexType>
<element name="PropertyConversionParameter" type=
"sc:PropertyConversionParameterType"/>
<complexType name="PropertyConversionParameterType">
<sequence/>
<attribute name="property" type="string" use="required">
<annotation>
<documentation>Name of a UML property, optionally scoped to a class from the
application schema (example: FeatureX::propertyY).</documentation>
</annotation>
</attribute>
<attribute name="schema" type="string">
<annotation>
<documentation>The name of the application schema package to which the UML property
belongs. Used to avoid ambiguity in case that multiple schemas are being
processed.</documentation>
</annotation>
</attribute>
<attribute default="false" name="global" type="boolean">
<annotation>
<documentation>Specifies if the UML property shall be encoded as a global
property</documentation>
</annotation>
</attribute>
<attribute name="subPropertyOf" type="string">
<annotation>
<documentation>IRIs of RDF/OWL properties of which the RDF/OWL implementation of
the UML property shall be a subPropertyOf. Multiple IRIs are separated with spaces.
Note: the values are expected to be given as QNames, with the namespace prefixes
matching the namespace abbreviations of the namespaces declared in the
configuration.</documentation>
</annotation>
</attribute>
<attribute name="target" type="string">
<annotation>
<documentation>Name of the target UML property (scoped to a class from the
application schema - example: FeatureX::propertyY), whose RDF/OWL implementation will
be used to implement this property.</documentation>
</annotation>
</attribute>
<attribute name="targetSchema" type="string">
<annotation>

123

<documentation>The name of the application schema package to which the target
property belongs. Used to avoid ambiquity in case that multiple schemas are being
processed.</documentation>
</annotation>
</attribute>
<attribute name="rule" type="string" use="optional" default="*">
<annotation>
<documentation>The encoding rule to which this parameter applies. May be “*” to
indicate that
the parameter applies to all encoding rules.</documentation>
</annotation>
</attribute>
</complexType>

B.6. constraintMappings XSD

Only the relevant fragment of the whole ShapeChangeConfiguration XML Schema is

NOTE
shown.

124

<element name="constraintMappings">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="ConstraintMapping">
<complexType>
<attribute name="constraintType" use="required">
<simpleType>
<restriction base="string">
<enumeration value="Text"/>
<enumeration value="FOL"/>
<enumeration value="0CL"/>
</restriction>
</simpleType>
</attribute>
<attribute default="i5019150-2:constraint" name="target" type="string"/>
<attribute name="template" type="string" use="required"/>
<attribute default="" name="noValue" type="string"/>

<attribute default=" " name="multiValueConnectorToken" type="string"/>
<attribute default="string" name="format">
<simpleType>

<restriction base="string">
<enumeration value="langString"/>
<enumeration value="string"/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>
</sequence>
</complexType>
</element>

125

Bibliography

[1] W3C: Shapes Constraint Language (SHACL), W3C Working Draft 28 January 2016,
http:/www.w3.0rg/TR/2016/WD-shacl-20160128/

[2] OGC (2015): OGC® Testbed 11 Aviation - Guidance on Using Semantics of Business Vocabulary
and Business Rules (SBVR) Engineering Report,
https://portal.opengeospatial.org/files/?artifact_id=63794

[3] W3C: OWL 2 Web Ontology Language Primer (Second Edition), W3C Recommendation 11
December 2012, https://www.w3.org/TR/owl-primer

[4] OGC (2011): OGC® OWS-8 Cross Community Interoperability (CCI) Semantic Mediation
Engineering Report, https://portal.opengeospatial.org/files/?artifact_id=46342

[5] OGC (2013): OGC® OWS-9 System Security Interoperability (SSI) UML-to-GML-Application-
Schema (UGAS) Conversion Engineering Report,
https://portal.opengeospatial.org/files/?artifact_id=51784

[6] Longley D., Sporny M., Kellogg G., Lanthaler M. (2016): JSON-LD Framing 1.0 - An Application
Programming Interface for the JSON-LD Syntax, http://json-ld.org/spec/latest/json-ld-framing/
(accessed on September 26, 2016 - status at the time: Draft Community Group Specification)

[71 W3C: JSON-LD 1.0, A JSON-based Serialization for Linked Data, W3C Recommendation 16
January 2014, https://www.w3.org/TR/json-1d/

[8] IETF: The GeoJSON Format, IETF RFC 7946, https://tools.ietf.org/html/rfc7946

126

http://www.w3.org/TR/2016/WD-shacl-20160128/
https://portal.opengeospatial.org/files/?artifact_id=63794
https://www.w3.org/TR/owl-primer
https://portal.opengeospatial.org/files/?artifact_id=46342
https://portal.opengeospatial.org/files/?artifact_id=51784
http://json-ld.org/spec/latest/json-ld-framing/
https://www.w3.org/TR/json-ld/
https://tools.ietf.org/html/rfc7946

	Testbed-12 ShapeChange Engineering Report
	Chapter 1. Introduction
	1.1. Scope
	1.2. Document Contributors
	1.3. Future Work
	1.3.1. Improve Support for Multilingual Application Schemas
	1.3.2. OWL from OCL Constraints
	OWL from OCL to Restrict Allowed Code List Values
	OWL from OCL to Restrict Allowed Geometries

	1.3.3. Validation of RDF Data
	1.3.4. Ontology for Real-world Objects
	1.3.5. Support Specification in OWL of Properties Re-used Within an Application Schema
	1.3.6. Creating Multiple Ontologies that Support Different Levels of Complexity
	1.3.7. Implement the Profiling Workflow Extensions
	1.3.8. JSON, JSON Schema, and JSON-LD
	Converting the NAS to JSON Schema
	Conversion to JSON-LD Context Documents
	Validation of JSON and JSON-LD Data

	1.4. Changes to the OGC Standards Baseline
	1.5. Foreword

	Chapter 2. References
	Chapter 3. Abbreviated Terms
	Chapter 4. Overview
	4.1. The Value of Application Schemas
	4.2. ShapeChange

	Chapter 5. Status Quo and New Requirements Statement
	5.1. Status Quo
	5.1.1. Profiling
	5.1.2. UML to RDF/OWL/SKOS

	5.2. Requirements Statement
	5.2.1. Profiling
	Adding Additional Options for Restricting Model Elements
	Specifying Profile Restrictions by an External Configuration File

	5.2.2. UML to RDF/SKOS/OWL

	Chapter 6. Solutions
	6.1. Targeted Solutions
	6.1.1. Profiling
	Loading Profile Information

	6.1.2. Profile Configuration Format
	6.1.3. Intelligent Automated Revision of Constraints vs. Simple Validation
	6.1.4. UML to RDF/SKOS/OWL
	Conversion of Unions
	Conversion of Generalization/Inheritance Relationship - Disjointness

	6.2. Recommendations
	6.2.1. Profiling
	Loading Profile Information
	Profile Configuration Format
	Intelligent and Automated Revision of Constraints vs. Simple Validation

	6.2.2. UML to RDF/SKOS/OWL

	Chapter 7. Profiling
	7.1. Overview
	7.2. Representation of Profile Information
	7.2.1. Profile Identifier
	7.2.2. Profile Constraint
	7.2.3. Profile Metadata

	7.3. Profiling Processing Steps
	7.3.1. ConstraintLoader
	7.3.2. ProfileLoader
	7.3.3. Profiler
	Preprocessing
	Processing
	Postprocessing

	7.4. Constraint Parsing and Validation
	7.5. Implementation

	Chapter 8. UML to RDF/OWL/SKOS
	8.1. Overview
	8.2. Conversion Rules
	8.2.1. General
	Documentation

	8.2.2. Package
	Name and Namespace
	Version Information
	Package Documentation
	Imports

	8.2.3. Class
	General
	Class Name
	Abstract class
	Generalization/Inheritance
	Custom subClassOf Mappings
	Feature Types
	Object Types
	Mixin Types
	Data Types
	Basic Types
	Union
	Enumeration
	Code Lists
	Other Types

	8.2.4. Property
	General
	Property Name
	Scope - Local vs. Global
	Range
	Multiplicity
	Custom subPropertyOf Mappings
	Attribute
	Association Role

	8.2.5. Association Class
	8.2.6. Constraints
	Background: ISO 19150-2
	Background: NAS OCL Constraints
	Background: Constraints in ShapeChange
	Mapping NAS Constraints to ShapeChange Constraints
	Conversion of Constraints to RDF/OWL

	8.3. Implementation
	8.4. NAS Ontology Encoding Rule
	8.4.1. Deriving the NSG Enterprise Ontology (NEO)
	8.4.2. Deriving the NSG Taxonomy (NTAX)

	Annex A: Comparison of Encoding Rules in ISO 19150-2 Draft and Final
	Annex B: XML Schema Documents
	B.1. ConstraintLoader XSD
	B.2. ProfileLoader XSD
	B.3. descriptorTargets XSD
	B.4. rdfMapEntries XSD
	B.5. rdfConversionParameters XSD
	B.6. constraintMappings XSD

	Bibliography

