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Abstract

The Asynchronous Messaging for Aviation Engineering Report (ER) focuses on
the design of an architecture to create an Publish/Subscribe (PubSub) messaging
layer between different Aviation components such as clients, data provider
instances and Data Brokers. In order to achieve interoperability among these
components, the OGC PubSub 1.0 standard forms the basis of this architecture.
The design of this architecture will cover methods for subscribing for specific
subsets of data (e.g. Flight Information Exchange Model (FIXM) Flights
intersecting a given Airspace), managing such subscriptions as well as
publishing data to the Asynchronous Messaging Server. Different delivery
methods such as Advanced Message Queuing Protocol (AMQP) 1.0, Java Message
Service (JMS) and OASIS WS-Notification are considered. In particular, their
harmonization with OGC PubSub 1.0 is evaluated.

This report focuses on the interface design required to define an interoperable
approach for Aviation using this OGC PubSub 1.0. Specific service level
integrations (i.e., Federal Aviation Administration (FAA) System-Wide
Information Management (SWIM) and Single European Sky ATM Research
Programme (SESAR) SWIM) have been investigated but an implementation has
not been fulfilled.

Business Value

Air Traffic Management (ATM) data as well as Flight data changes frequently. In
order to achieve an efficient and reliable publication of these changes, a pull-
based approach using classical request/response web services is not sufficient.

The design of an asynchronous messaging architecture which is based on the
OGC PubSub 1.0 standard and combines industry-established technologies such
as AMQP 1.0 and Web Services Notification overcomes this gap and eases
integration. By following a standards-based approach, an interoperable solution
is available which, besides the Aviation domain, can be easily transferred to
other fields that require near-real time, push-based data dissemination.

What does this ER mean for the Working Group and OGC in general

Eventing patterns and asynchronous messaging previously played an important
role in OGC Testbed Aviation threads. Architecture patterns similar to the work
done in the PubSub WG have been prototypically implemented based on best
practices. The PubSub 1.0 standard has been approved by the OGC and an
implementation of relevant parts of it will provide a valuable assessment of the
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design approach of the standard. Besides the implementation, a definition of a
profile for aviation could serve as an example on how to integrate OGC PubSub
1.0 into a specific domain.

How does this ER relates to the work of the Working Group

The architecture documented in this ER is one of the first implementations of
the OGC PubSub 1.0 standard. Hence, it is of great importance to assess and
validate the specification itself, in particular as regards the following aspects:

• Extensibility of the PubSub 1.0 specification;

• Harmonization of PubSub 1.0 specification, namely the SOAP binding, with
AMQP 1.0 as a delivery method;

• Integration and backwards compatibility with Harris Data Exchange (DEX)
clients supporting the retrieval of data (e.g. AIXM, FIXM) via JMS;

• As noted, the ER focuses on the Aviation domain, however a definition of a
profile for aviation could serve as an example on how to integrate PubSub
into other fields that require near-real time, push-based data dissemination;

• Use the OGC Filter Encoding 2.0 language to express subscription filters; and

• Plugability of filter languages, e.g. to reference the correct geometry in
aviation-specific data formats, via XPath/XQuery, etc.

This ER also contributes to some of the activities in the current scope for the
PubSub Standards Working Group (SWG), such as:

• Feasibility of adding PubSub capabilities to Web Feature Service (WFS) 2.0
and Web Map Service (WMS) 1.3.0;

• Definition of a generic mechanism to reuse service-specific data requests to
PubSub-enable the existing Web Services; and

• Definition of lexical constants (e.g. "all" to identify all the publications offered
by a Publisher).

AMQP is a broadly useful and popular delivery method, and should be
considered for standardization in the PubSub SWG.  The ER authors are
encouraged to bring an AMQP delivery method document to the SWG for
consideration and standardization.

Finally, the ER provides useful indications on future lines of work for the
PubSub specification, such as:
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• OGC PubSub 1.0 profile for moving objects;

• Specific mechanisms for standardizing delivery methods; and

• Analysis on the role of Message Brokers in enterprise production
environments (cf. the PubSub Brokering Publisher).

Keywords

ogcdocs, testbed-12, PubSub, Eventing, Aviation, AIXM, AMXM, FIXM,
Asynchronous Messaging
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Chapter 1. Introduction

1.1. Scope
Currently, OGC Web Services  [1: the family of OGC standards that share the same service model,
OGC Web Services Common: http://www.opengeospatial.org/standards/common] only support
synchronous web service request-response query capabilities. This report investigates the means to
incorporate asynchronous messaging to  OGC Web Services. Asynchronous messaging is a form of
message delivery where the provider and consumer can be decoupled (e.g. in time and in terms of
knowledge of each other). The recently released OGC Publish/Subscribe specification 1.0 defines a
Publish/Subscribe model for OGC Web Services. The work within this testbed applies this
specification for the retrieval of aviation data (i.e., AIXM and FIXM) information using geospatial
queries and AMQP 1.0 as the underlying messaging protocol. The developed system design, the
involved components as well as common workflows are documented.

This report targets the following problem statements.

• How to define an OGC compliant web service that allows the management of subscriptions and
the corresponding delivery of messages?

• What protocols suite best for the dissemination of Aviation data messages from data publishers
to client components?

• How to define an interoperable solution that meets all requirements in terms of geospatial
filtering capabilities, data dissemination and reliability?

In particular, the design and realization of a service architecture based on an implementation of
the OGC Publish/Subscribe 1.0 specification (PubSub) in combination with the AMQP 1.0 protocol is
illustrated. OGC PubSub 1.0 is a recently published standard which is agnostic of message delivery
protocols. This report therefore focuses on the interface design required to define an interoperable
approach for Aviation using this standard. Specific service level integrations (i.e. FAA SWIM and
SESAR SWIM) have been investigated but an implementation has not been fulfilled. The Future
Work section outlines work packages on corresponding efforts.

An in-depth analysis of the existing approaches for asynchronous messaging in Aviation and
related available technologies was not the scope of this testbed. In particular, it focused on the
prototyping of an OGC based Publish/Subscribe service architecture in correspondence with related
message delivery methods and will not provide recommendations beyond this scope.

1.2. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization

Matthes Rieke (editor,
m.rieke@52north.org)

52°North
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Name Organization

Aleksandar Balaban (editor,
aleksandar.balaban@m-click.aero)

m-click.aero

1.3. Future Work

1.3.1. PubSub-enablement of Data Provision Services

The current architecture uses an OGC PubSub 1.0 standalone publisher for subscription
management and data dissemination. OGC PubSub 1.0 also defines an architectural approach that
adds Publish/Subscribe capabilities to existing OGC services such as the Web Feature Service.
Investigating the feasibility of this approach will be very useful as it may result in a simplified
service architecture.

1.3.2. Profile Definition for Geospatial Queries

The current approach developed within this testbed is not fully interoperable with the referenced
standards due to the manner in which the geometry part of a message/feature is referenced. The
relevant data formats such as AIXM, FIXM and Aerodrome Mapping Exchange Model (AMXM) and
their features often contain multiple geometries. It will therefore be of great benefit to define an
common approach to define subscriptions with geospatial queries for the Aviation domain. A
dedicated profile for OGC PubSub 1.0 could be a reasonable approach. Such a profile would define a
solution on how to reference the correct geometry (e.g., via XPath/XQuery or alternatively constant
values).

1.3.3. WFS Queries as Subscription Filters

The current architecture only supports filters based on the OGC Filter Encoding 2.0 language. The
OGC PubSub SWG has identified the reuse of service-specific data requests as valuable concept for
message filtering. Future work could contribute to the SWG by targeting a WFS specific approach. A
subscription could be defined using a WFS GetFeature query. A client would then request baseline
data from a WFS using a specific query and then simply reuse that query to define a subscription at
the Asynchronous Messaging Server. This will ease the integration of the Asynchronous Messaging
Server into existing WFS-based architectures.

1.3.4. Integration of FAA SWIM Data Producers

Data producers within FAA SWIM currently provide means for accessing data providing certain
business logic (e.g. Stored Queries to access Digital Notice To Airmen (NOTAM) within a 50 miles
radius of a specific NAVAID feature). In order to re-use this business logic and to minimize the
required systems engineering work dedicated work should be carried out on defining
corresponding OGC PubSub 1.0 approaches. The Traffic Flow Management System (TFMS) or the
Terminal Flight Data Manager (TFDM) could provide valuable use cases for such integrations.

1.3.5. Network of Messaging Brokers

Productive messaging systems often feature a network of distributed message broker nodes. In
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order to route messages to the correct destinations additional metadata is required. The current
approach utilizes AMQP 1.0 node links to specify the destination. In a complex brokering
environment this is not sufficient. Future work should take these systems into account and extend
the developed OGC PubSub 1.0 profile with definitions on necessary metadata (e.g. the to property
field of an AMQP 1.0 message).

1.3.6. Moving Object Subscription

In OGC Web Services (OWS) Initiative - Phase 8 a scenario has been developed where a spatial
subscription was defined in a dynamic way (see [OGC 11-093r2]). The position on the flight route of
a given aircraft was used to determine if a message was relevant (if it intersects the remainder of
the route). A prototypical design has been developed but no interoperable approach was specified.
Such a use case has been identified as a valuable contribution within this testbed. Therefore work
on defining an OGC PubSub 1.0 subscription profile for moving objects will be of great benefit for
the Aviation domain (especially FIXM Flight object updates are a perfect match).

1.3.7. Integration of Message Broker Software

A deeper analysis of topic- and queue-based delivery patterns which involve Message Broker
Software and accordingly the definition of OGC PubSub 1.0 delivery profiles should be investigated.
Such Message Brokers play an important role in the establishment of enterprise production
environments and are therefore a crucial aspect of asynchronous messaging architectures.

1.3.8. Definition of an ontology for relevant concepts

A specific need has been identified to define an ontology for the consistent use of asynchronous
messaging terminology that lie within the scope of this work. It will help to position the relevant
specifications (OGC PubSub 1.0, AMQP, OASIS WS-N) and relate it to existing ontologies (e.g. SESAR
SWIM Technical Infrastructure).

1.4. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.
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Chapter 3. Terms and definitions
For the purposes of this report, the following terms and definitions apply.

Table 2. Terms and definitions

Publish/Subscribe
Model

A concept where senders of messages (= publishers), do not send messages
directly to specific receivers (= subscribers), but instead publish messages
without knowing possible subscribers. Vice versa, subscribers express
interest in (a subset of) messages and only receive messages that are of
interest without knowing possible publishers. There exist different
definitions of Publish/Subscribe. This report re-uses the definition given in
the OGC Publish/Subscribe 1.0 specification (section 6.1 of [OGC 13-131]).

Asynchronous
Messaging

Describes a communication pattern in which sending entities can deliver in
an asynchronous way. No immediate response from the receiving entity is
required to continue processing. Receiving entities can pick up messages
directly or at a later point in time. This report uses AMQP 1.0 as the protocol
for asynchronous message delivery.

3.1. SESAR SWIM-TI and OGC PubSub Taxonomy
SESAR SWIM-TI (Technical Infrastructure) specification document provides its own, exact
specification for messaging/communication taxonomy. It defines a vocabulary based on the
available sources and the best practices considering the fact that there is no widely accepted,
international standardized communication vocabulary.

The SWIM-TI defines the communication concepts through three different kinds of communication
participants decoupling, as well as through further two characteristics: the information persistence
and the dissemination (discrete/streaming). Further, it specifies a list of message exchange patterns,
which are the combinations of decoupling, statements about communication participants,
information flow directions and cardinalities.

3.1.1. General communication characteristics

Decoupling

Decoupling describes the degree of loose coupling between the participants. Decoupling is
subdivided into 3 dimensions, as follows.

• Time: Time decoupling means that the interacting parties do not have to be actively
participating at the same time.

• Space: Space decoupling means that the interacting parties do not have to know each other.

• Synchronization: Synchronization decoupling means that the interacting parties are not
blocked and can do other work.

Persistence/transient

In persistent communication, a message that has been submitted for transmission is stored by the
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communication middleware as long as it takes to deliver it to the receiver. In contrast, with
transient communication, a message is stored by the communication system only as long as the
sending and receiving applications are executing.

Discrete/streaming

Discrete/streaming describes if a unit of information exchange does contain all relevant data or the
relevant data will be transmitted/received in many atomic communication steps.

3.1.2. Message exchange patterns

The SWIM information distribution is realized via the support to specific Message Exchange
Patterns (MEP). MEPs are characterized through 4 groups of attributes:

Conversation direction A conversation is a series of related messages. The Conversation direction
describes the sequencing and direction of the flow of messages between the interacting parties.

Cardinality describes the number of participants in the exchange of messages.

Decoupling  describes the degree of loose coupling between the participants.

Push/Pull indicates whether a subscriber will receive the data at the initiative of the publisher
(Push) or whether the subscriber needs to fetch the data (Pull).

The following table represents SWIM-TI message exchange patterns (MEPs), which are directly
supported by OGC PubSub 1.0 standard. Additionally, it explains how OGC PubSub 1.0 requirement
classes implement SWIM-TI message exchange patterns.

Table 3. Message Exchange Patterns

MEP Direction
conversation

Cardinality Time
Decoupling

Synchronization
Decoupling

Space
Decoupling

Consumer=C
Provider=P
Subscriber=S
Publisher=Pu

C / S P / Pu C / S P / Pu C / S P / Pu

Observer Push
(OPUSH-MEP)

1 way (Pu → S) 1-many No No Yes Yes No No

Observer Pull
(OPULL-MEP)

1 way (Pu → S) 1-many No No Yes Yes No No

Publish/Subscribe
Push
(PSPUSH-MEP)

1 way (Pu → S) many-many Yes Yes Yes Yes Yes Yes

Publish/Subscribe
Pull
(PSPULL-MEP)

1 way (Pu → S)
Synchronous R/R

many-many Yes Yes Yes Yes Yes Yes

The following MEPs are removed from the original list because they are irrelevant for the
communication paradigm explored in this engineering report:
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• Synchronous Request/Reply (SRR-MEP)

• Synchronous Request/Reply (SRR-MEP)

• Asynchronous Fire & Forget (AFF-MEP)

• Fully Decoupled Request/Reply (FDRR-MEP)

The OGC PubSub 1.0 core specification is organized into requirement classes. Observer patterns are
specified in the "Standalone Publisher" requirement class, while the Publish/Subscribe ones are
required in the "Brokering Publisher" requirement class.

From the OGC PubSub 1.0 point of view, the Push/Pull MEPs are dependent on the concrete
notification delivery implementation and are not part of the core specification. They are rather
specified in so called binding documents. For example, the requirements class SOAP Brokering
Publisher from OGC PubSub 1.0 SOAP binding document defines a broker middleware component,
which sends notifications (publications) to receivers (subscribers) using push delivery method. This
MEP corresponds to PSPUSH-MEP from the table above.

3.1.3. Communication roles

The MEPs identify distinct participants in the communication with distinct roles. The classification
of roles in SWIM-TI is as follows.

Common roles:

• Service provider: A generic role for providing an ATM specific service that can be consumed;
and

• Service consumer: A generic role for consuming an ATM specific service that is provided.

Roles similar to those used in OGC PubSub 1.0:

• Publisher: A publisher produces information that is potentially of interest for a Publication
consumer;

• Subscriber: A Subscriber subscribes interest for receiving information by a Publication
consumer, negotiates the modalities for delivery of this information and manages the lifecycle
of the subscription; and

• Publication consumer: A Publication consumer receives information for which the Subscriber
has subscribed.

Roles irrelevant for this ER:

• Publication mediator: A Publication mediator receives the information produced by a Publisher
and forwards that information to all Publication consumers for which the subscriptions match
the Publication characteristics;

• Subscription handler: A Subscription handler interacts with the Subscriber and maintains the
subscriptions;

• Registration handler: A Registration handler interacts with the Publisher and maintains the
registrations;
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• Fire & Forget Mediator: A Mediator provides time decoupling between client and server in a
Fire & Forget MEP; and

• Request Reply Mediator: A Mediator provides time and synchronization decoupling between
consumer and provider in a fully decoupled Request/Reply MEP.

Opposite to the detailed role schema defined in SWIM-TI, the OGC PubSub 1.0 distinguishes just a
several roles for entities participating in information exchange interactions such as: Sender,
Receiver, Subscriber, and Publisher.

3.1.4. OGC PubSub 1.0

The OGC PubSub 1.0 standard specification describes an asynchronous communication system
based on individual requirements collected into sets called requirement classes. They extend top
level major concepts from the core document gradually adding more details. The top level
requirement class is called Basic Publisher. It describes a communication between publishers and
subscribers without intermediary middleware components and therefore with temporal
decoupling only. This schema corresponds to Observer patterns. A subclass class called Brokered
Publisher introduces additional requirements for spatial decoupling and  therefore corresponds to
the Publish/Subscribe patterns.

The OGC PubSub 1.0 specification describes a communication system with obligatory temporal
(Standalone Publisher) and optional spatial and synchronization decoupling.

If a system architecture implements OGC PubSub 1.0 Brokering Publisher requirement class, then it
has to implement a message broker, which implies the spatial decoupling. The intermediary
(middleware) broker component is defined as the "Brokered Publisher" in the OGC PubSub 1.0
terminology.

Synchronization decoupling is not mandatory. It is frequently provided by standard
communication software libraries and application architecture implementation models.

The OGC PubSub 1.0 compatible communication system doesn’t explicitly require message
persistence. However, the persistence might be specified as part of binding documents. For
example, if data delivery shall be implemented using pull style, it automatically imply persistence
for messages. Similar is true for discrete/streaming like data dissemination.The requirements are
not included into the core specification and might be specified as part of binding specifications.

The push and pull notification/publication delivery approaches are dependent on a concrete
implementation and are not part of the core specification. However, the binding documents target
on these approaches. For example, the requirements class "SOAP Brokering Publisher" from the
SOAP binding document requires a broker middleware component, which sends notifications
(publications) to receivers (subscribers) using push delivery method. This MEP corresponds to
PSPUSH-MEP from the table above.
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Chapter 4. Conventions

4.1. Abbreviated terms
• AIM  Aeronautical Information Management

• AIXM  Aeronautical Information Exchange Model

• AMQP  Advanced Message Queuing Protocol

• API  Application Program Interface

• ATM  Air Traffic Management

• CSW  OGC Catalogue Service for the Web

• DNOTAM  Digital NOTAM

• EAD  Pan-European AIS Database

• FAA  Federal Aviation Administration

• FES  Filter Encoding Specification

• FIXM  Flight Information Exchange Model

• GML  Geography Markup Language

• GUFI  Globally Unique Flight Identifier

• HTTP  HyperText Transfer Protocol

• ISO  International Standards Organization

• NAS  National Airspace System

• NEMS  NAS Enterprise Messaging Service

• NOTAM  Notice To Airmen

• OASIS  Organization for the Advancement of Structured Information Standards

• OGC  Open Geospatial Consortium

• OWS  OGC Web Service

• PubSub OGC Publish/Subscribe 1.0 Specification

• QoS  Quality of Service

• SAA  Special Activity Airspace

• SESAR  Single European Sky ATM Research Programme

• SOA  Service-oriented architecture

• SOAP  Simple Object Access Protocol

• SWIM  System-Wide Information Management

• TCP  Transmission Control Protocol

• WFS  Web Feature Service

• WSDL  Web Services Description Language
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• WS-N  OASIS Web Services Notification

• XML  Extensible Markup Language
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Chapter 5. Overview
The Engineering Report starts with an overview on the related technological standards (section
Related Technological Standards) in which an overview on the AMQP 1.0 protocol, Java Message
Service as well as Web Services Notification is provided.

Subsequently an analysis on the current state of asynchronous messaging as well as
Publish/Subscribe approaches in the Aviation domain (section Current State of Asynchronous
Messaging) is given. Existing solutions in both the FAA and SESAR SWIM architecture are described
as well as previous OGC work on event-driven message dissemination.

Section Requirements provides an overview on the requirements for the system architecture.
Following the targeted (and discarded) solutions are presented (section Solutions). Sections
Architecture and Implementations describe the architecture design and the corresponding
implementation.

Finally, the report concludes with a summary of accomplishments and lessons learned (section
Conclusions).
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Chapter 6. Related Technological Standards
The technologies and frameworks described in this section are relevant to the design and
implementation of a Publish/Subscribe messaging architecture and a corresponding an
asynchronous messaging layer for Aviation. Therefore, a brief overview is outlined to provide the
necessary context.

6.1. Advanced Message Queuing Protocol 1.0
AMQP 1.0 [2] is a wire-level protocol that was standardized as by OASIS in 2012. There exists
another well-adopted version (0-9-1) that is incompatible with AMQP 1.0 and thus will not be
introduced in this document.

As mentioned above, AMQP 1.0 is a wire-level protocol and not an Application Programming
Interface (API). Therefore, it is a description of the format of the data that is sent across the network
as streams of octets as well as concepts such as reliable delivery of messages. It does not define a set
of methods on how to interact with a software entity like an API.

AMQP 1.0 defines a set of message-delivery guarantees (as part of its internal "link protocol"):

• at-most-once (a message is delivered once or never);

• at-least-once (a message is certain to be delivered, but duplicates could occur); and

• exactly-once (a message will always certainly arrive without duplicates).

The structure of an AMQP 1.0 bare message is composed of a set of standard properties (id, user,
time of creation, subject, etc.), a non-mandatory set of application-specific properties, and the
message body. A bare message is considered as immutable, though it can be annotated with
additional information (see Figure 1). In particular, the message header is a well-defined set of
delivery-related annotations (time to live (TTL), priority, etc.).

Figure 1. AMQP 1.0 Message Format (source: OASIS AMQP 1.0 Specification)

The AMQP 1.0 specification does not define a message broker architecture, e.g., JMS. Therefore a
message broker can define interaction patterns in a custom manner. Still, the specification
describes the concept of distributions nodes (e.g. queues and topics) that shall follow certain rules
(e.g. expiration of messages after their time-to-live (TTL)).
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6.2. OASIS Web Services Notification
The OASIS Web Services Notification (WS-N, [3]) family of standards defines a set of web services
and their interaction following the Publish/Subscribe pattern and asynchronous messaging (for a
definition of these terms see Terms and definitions). WS-N uses the HTTP protocol and SOAP 1.2 as
the message layer protocol.

WS-N defines a set of roles for components of a distributed service architecture and message
protocol. In particular, these roles are Publishers, Notification Producers, Notification Consumers
and Notification Brokers which are briefly described as follows:

• a Publisher is responsible for formatting a Notification and disseminating it to a
NotificationProducer;

• a Notification Consumer must provide an interface for receiving NotificationMessages;

• a Notification Producer must provide an interface for subscribing to a subset of messages and
must be capable to deliver these subsets of NotificationMessages to the subscribing Notification
Consumer; and

• a Notification Broker combines the tasks of a Notification Producer and a Notification
Consumer and acts as an intermediary distributor.

6.3. Java Message Service
The JMS specifies an API for message exchange between two or more clients. JMS is developed
under the Java Community Process  [2: https://www.jcp.org] and is integrated within the Java
Enterprise Edition (Java EE).The JMS API implements the Publish/Subscribe pattern and supports
both 1-to-1 (queues) and 1-to-n (topic) delivery. As JMS is an API, it is not ensured that different
implementors of this API interoperate seamlessly. For example, if a client software wants to interact
with a JMS provider, it has to ensure that it includes provider-specific components into the
software. This is most often limited to runtime components, therefore the business logic of the client
software does not need to be adjusted.
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Figure 2. JMS Architecture (source: [1])

JMS defines a set of concepts and roles (see Figure 2) that interact with each other through the API.
A Producer publishes messages to Destinations (queues or topics). A Consumer listens on these to
receive messages on the other end.
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Chapter 7. Current State of Asynchronous
Messaging
Asynchronous messaging (see Terms and definitions) has been implemented in several ways in the
Aviation domain. These approaches are often specific to a system (e.g. SWIM and SESAR) and are
not designed to be interoperable. This section describes previous efforts of the OGC on an
interoperable Publish/Subscribe architecture supporting asynchronous messaging.

7.1. Federal Aviation Administration
In 2007, the FAA established the SWIM Program to implement a set of Information Technology
principles in the National Airspace System (NAS) and provide users with relevant and commonly
understandable information [5]. The following sections provide an overview of the FAA SWIM
platform.

7.1.1. SWIM Architecture

SWIM enables the sharing of information between diverse systems enabling the Next Generation
Air Transportation System (NextGen) to deliver the right information to the right place at the right
time. To achieve this, SWIM provides the IT Service Oriented Architecture (SOA) enterprise
infrastructure necessary for NAS systems to share and reuse information and increase
interoperability [6]. SWIM’s approach allows software applications in the NAS to interact with one
another through information services that can be accessed without knowledge of an application’s
underlying platform implementation. This simplifies interface requirements to existing NAS
systems and ensures new systems can be built with minimum technology (hardware, software, and
data definition) constraints. SWIM also enables the transition to net-centric NAS operations, and
from tactical conflict management to strategic, trajectory-based operations.

At the heart of the SWIM architecture is the NAS Enterprise Messaging System (NEMS). NEMS
provides some of the core services under the SWIM program including messaging, service
management, service-level security, and mediation services. NEMS provides both asynchronous
publish/subscribe and request/reply platforms. For asynchronous publish/subscribe transactions,
NEMS uses the ActiveMQ 1.0 protocol as well as JMS. Figure 3 illustrates the JMS flow through
NEMS.
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Figure 3. NEMS JMS Message Flow

7.1.2. SWIM in Production

The FAA uses SWIM in its production environment [7]. The following list gives some examples of
what type of systems use SWIM.

• Flight and Flow Data Systems

• Time Based Flow Management System (TBMS): Includes Time Based Metering capability
and trajectory modeler, to enhance efficiency and optimize demand and capacity.

• Traffic Flow Management System (TFMS): Data exchange system for supporting the
management and monitoring of national air traffic flow. TFMS processes all available data
sources such as flight plan messages, flight plan amendment messages, and departure and
arrival messages.

• SWIM Terminal Data Distribution Systems (STDDS): Publishes Terminal data to NAS and
non-NAS consumers.

• SWIM Flight Data Publication Services (SFDPS): Provides flight data and updates to
clients for files and active flight plans.

• Aeronautical Data

• Digital NOTAM Service: Publishes NOTAMS in AIXM 5.1.

• Aeronautical Information Management for the Federal NOTAM System (AIM FNS):
System-to-system interface that enables end systems to receive digital NOTAMs from FNS.

• Aeronautical Information Management for Special Activity Airspace (AIM SAA):
Provides Airport reference and configuration data, definitions and schedule information for
Special Activity Airspace (SAA).
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• Weather Data

• Integrated Terminal Weather System (ITWS) Data Publication: Provides specialized
weather products in the terminal area.

7.2. Previous OGC Work
Within the OGC, several approaches have been designed to implement asynchronous messaging
patterns. In the following, relevant concepts are outlined.

7.2.1. Event Service

The OGC Event Service has been used from OGC Testbeds 6 to 10 to implement a Publish/Subscribe
architecture. It is based on the Sensor Event Service Discussion Paper (OGC 08-133). The design of
the service is heavily based on the OASIS WS-N standards and is extensible in terms of filtering
capabilities.

A client can define a subscription using the OGC Filter Encoding 2.0 specification [OGC 09-026r2]
which is also used by the OGC Web Feature Service 2.0 [OGC 09-025r2] as the primary filtering
language. One drawback of the Event Service is the fact that it it requires clients to implement the
WS-N Consumer role in order to receive messages asynchronously. It does not allow the definition
of alternative dissemination methods (e.g. AMQP 1.0).

The latest state of the Event Service concept has been described in an additional Discussion Paper
(OGC 11-088r1).

7.2.2. Web Event Processing Service

Within the OGC IMIS IoT Pilot an event processing architecture which relies on a OGC Web
Processing Service (WPS) server has been implemented. Central element is the WPS for Event
Processing (Web Event Processing Service, WEPS) which controls the overall workflow (see Figure
4).
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Figure 4. Web Event Processing Service (source: [OGC 15-118])

Main tasks of this WEPS are:

• Handling and managing client event subscriptions through WPS Execute requests; and

• Controlling the event processing module which performs the analysis and pattern matching of
incoming sensor data streams against the event pattern rules contained in the event
subscriptions.

7.2.3. OGC PubSub 1.0

The OGC Publish/Subscribe Interface Standard 1.0  [OGC 13-131] is a recently released specification
that introduces the Publish/Subscribe pattern to the OGC web services world.

Publish/Subscribe 1.0 is an interface specification that supports the core
components and concepts of the Publish/Subscribe message exchange
pattern with OGC Web Services. The Publish/Subscribe pattern
complements the Request/Reply pattern specified by many existing OGC
Web Services. This specification may be used either in concert with, or
independently of, existing OGC Web Services to publish data of interest to
interested Subscribers.

— OGC ® Publish/Subscribe Interface Standard 1.0 - Core

The main concepts of OGC PubSub 1.0 are:

• Publications: an implementing service provides information on the data it makes available for
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subscribing;

• Delivery Methods: the technological solution on how messages are transported to subscribers;
and

• Filtering Capabilities: definition of the way a subscriber can subset data of a publication.

The following role entities are defined:

• Publisher: an entity that offers publications to subscribers;

• Receiver: an entity that receives messages from senders;

• Sender: an entity that sends messages to receivers;

• Subscriber: an entity that creates a subscription at a publisher; and

• Subscription: an expression of interest in (a subset of) a publication offered by a publisher.

Figure 5. PubSub Workflow (source: OGC 13-131)

A common subscription workflow is illustrated in Figure 5. It shows how the above mentioned
entities interact with each other. Within this testbed the following components have been mapped
to OGC PubSub 1.0 entities.

Table 4. PubSub Mapping to Aviation components
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OGC PubSub 1.0 Entity Aviation Architecture Component

Subscriber Aviation Client

Publisher Asynchronous Messaging Server (using WFS as
the backend)

Sender Asynchronous Messaging Server

Receiver Aviation Client

Currently only the SOAP Protocol Binding Extension [OGC 13-133] as a protocol-specific realization
of OGC PubSub 1.0 is available. Therefore, this binding extensions has been implemented during the
testbed.
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Chapter 8. Requirements
Currently, OGC Web Services only support synchronous web service request-response query
capabilities. This report is required to define means to incorporate Publish/Subscribe messaging
patterns for the retrieval of aviation data (i.e. AIXM and FIXM) information using geospatial queries
through an AMQP 1.0 interface. The report shall demonstrate the capability using the
recommended approach.

8.1. Problem Statements
Following the above requirements, these problem statements have been identified.

• How to define an OGC compliant web service that allows the management of subscriptions and
the corresponding delivery of messages?

• What protocols suite best for the dissemination of Aviation data messages from data publishers
to client components?

• How to define an interoperable solution that meets all requirements in terms of geospatial
filtering capabilities, data dissemination and reliability?
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Chapter 9. Solutions
The following sections provide an overview of the approaches that have been discussed and
implemented during this testbed. The different aspects of the Publish/Subscribe architecture, such
as subscription management, publication methods, message delivery, and service orchestration are
outlined. Finally, recommendations for the architectural and technological approaches are
described.

9.1. Targeted Solutions

9.1.1. Service Architecture

• In the analysis and requirements phase of the testbed, it has been identified that OGC PubSub
1.0 (see section OGC PubSub 1.0) and its SOAP binding extension provide a good foundation for
the service-based management of subscription and dissemination of corresponding data. The
specification defines means to subset data streams (using a filtering language) as well as to
disseminate the resulting data streams to a client using a delivery channel of his preference. As
OGC PubSub 1.0 has recently been released and fulfills all requirements, this approach has been
implemented.

• Alternatives such as the OGC Event Service (see section Event Service) have been discussed. The
Event Service has been used in previous testbeds' Aviation threads and also provides
capabilities to manage subscriptions and subset data streams. The dissemination of data is
achieved via HTTP POST requests. The usage of the Event Service has been discarded in favor to
a OGC PubSub 1.0 service due to its lack of flexible support of different data dissemination
methods.

9.1.2. Data Publication

In order to implement a Publish/Subscribe approach, a data provider (e.g. Web Feature Services,
Harris Data Exchange) has to publish (updates to) data in near-real time. To achieve this, several
approaches have been discussed.

• One approach is to set up a component that regularly queries a Web Feature Service using the
same request and compare the response. If a change is observed, the component pushes the
change to the Asynchronous Messaging Server. Such intermediary component would be the
Publisher within the Publish/Subscribe approach. This approach has been discarded due to the
high amount of business logic that would be required to identify updates to data sets. In
particular, the underlying Aviation data models such as AIXM 5.1 have complex logic for
dynamic features and updates to these.

• Alternatively, a WFS could implement a simple push mechanism whenever its data changes (see
section Architecture). The WFS would then be the Publisher. This approach has been
implemented within the testbed due to successful application in previous testbed and the
straightforward realization (see section Patterns for Publishing Data).

• OGC PubSub 1.0 defines an architectural approach where existing data provision services can
add the OGC PubSub 1.0 interface as an extension to the native service interface. This way, the
service would both the Publisher and the Asynchronous Messaging Server. This approach has
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been discarded as the efforts for adding such functionality to existing Web Feature Services
would have exceeded the time frame of the testbed.

9.1.3. Data Dissemination

For the dissemination of data between the data publishers (e.g. Web Feature Services, Harris Data
Exchange), the Asynchronous Messaging Server and clients several approaches have been
discussed.

• OASIS Web Services Notifications (WS-N, see section OASIS Web Services Notification) has been
successfully applied in previous testbeds and provides means to ensure reliable message
transportation. A client that wants to receive data has to implement the WS-N Consumer role
which accepts HTTP POST requests carrying the payload. This approach has been discarded as it
has been proved working in previous testbeds already.

• AMQP 1.0 (see section Advanced Message Queuing Protocol 1.0) is a modern wire-level protocol
designed for asynchronous message exchange. It has built-in support for reliable message
delivery, message expiration as well as encryption and authentication. Within this testbed the
message delivery using AMQP 1.0 has been chosen and implemented.

9.2. Recommendations
This report focuses on a solution which is based on OGC PubSub 1.0. The architecture and workflow
described in the following sections describe the client and server components that implement
against the interfaces defined by OGC PubSub 1.0. To accommodate the existing architectures (e.g.
FAA SWIM’s "Content Based Router") some dedicated efforts have been made to illustrates the
advantages of interoperability (see FAA-specific AMQP 1.0 Profile for OGC PubSub 1.0).

9.2.1. OGC PubSub for Asynchronous Messaging

The central component for this testbeds messaging architecture is a service that implements OGC
PubSub 1.0, i.e., its SOAP binding. It provides the means to manage subscriptions, evaluate these
against message streams and asynchronously disseminate the messages to clients. Section
Workflows and Use Cases describes the design and common workflows.

9.2.2. AMQP 1.0 Data Dissemination

To achieve asynchronous and reliable message delivery the AMQP 1.0 protocol is used (see section
AMQP 1.0 Profile for OGC PubSub 1.0). The use of Message Broker software is discussed in section
Message Broker Software and has been integrated into the asynchronous messaging architecture
(see section Implementations).
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Chapter 10. Architecture
This section provides an overview on both the overall service architecture of the Testbed-12
Aviation thread as well the parts related to the Publish/Subscribe pattern and asynchronous
messaging.

10.1. General Testbed Architecture
The overall service architecture for Aviation within Testbed-12 consists of several components that
can be separated into three layers.

• Data Provider Layer: This layer provides access to aeronautical data (AIXM, FIXM, AMXM)
using OGC Web Feature Service 2.0 (WFS) as well as OGC Web Map Service 1.3.0 (WMS) instances.

• Broker Layer: The Data Broker service and the Asynch Messaging Server build the broker layer.
They act as gateway services to the underlying data providers.

• Client Layer: The Aviation Client accesses the aeronautical data by communicating with the
services of the broker layer.

An OGC Catalogue Service for the Web (CSW) service allows the client to discover relevant services
and is orthogonal to the above three layers. Figure 6 illustrates the Aviation components and their
interaction.
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Figure 6. Aviation Service Architecture

10.2. OGC Publish/Subscribe Architecture
This document focuses on the requirements and service architecture for the asynchronous
messaging parts of the overall architecture. The Asynchronous Messaging Server forms the basis of
this system. It implements the OGC PubSub 1.0 specification (manifestation of the its Publisher and
Sender entities), allowing clients to subscribe for data using advanced filtering (e.g. spatial queries)
as well as data producers to provide access to data in an event-drive fashion.

Figure 7 outlines the components and the interfaces for interaction. For message delivery the AMQP
1.0 wire-level message protocol  is used. It provides an interoperable and platform-independent
way to disseminate messages.

31



Figure 7. Publish/Subscribe and Asynchronous Messaging Architecture

Two different architectural solutions have been developed within this testbed. A basic AMQP 1.0
message delivery method and an advanced FAA-specific AMQP 1.0 method that addresses system-
specific requirements.

10.3. Workflows and Use Cases
The two different approaches (basic AMQP 1.0, FAA-specific) follow different workflow patterns.
The following sections provide an overview on the developed workflows and the participating
software components.

10.3.1. Standalone Publisher

Figure 8 illustrates a common service-oriented setup based on OGC WFS data provisioning services.
An OGC PubSub 1.0 Standalone Publisher ("PubSub Asynch Server" in the figure) acts as the
brokering component (Publisher and Sender entities) in between the data provisioning and the
client layer.
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Figure 8. Standalone Publisher Workflow

The PubSub Async Server evaluates incoming data based on the subscriptions registered by a client.
In the above sequence diagram two WFS services send data updates to the PubSub Async Server via
simple HTTP POST Requests. This emulates a PubSub-enabled WFS instance. OGC PubSub 1.0
defines two design patterns: the Standalone Publisher and PubSub-enabled OGC services (see
section OGC PubSub 1.0). Due to some restrictions it was not possible during this testbed to develop
a PubSub-enabled WFS, thus the emulation using HTTP POST has been established.

10.4. Harris Data Exchange Integration
DEX is a software component that is already in production within the FAA SWIM architecture. It
allows the management of subscriptions and the retrieval of data (e.g. AIXM, FIXM) via JMS (see
section Java Message Service). It does not support complex filtering (e.g. spatial or content-wise).

To benefit from the complex filtering capability of the PubSub Async Server, an integration pattern
has been developed that provides both backwards compatibility for DEX clients and access to
complex filtering in an interoperable way.
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Figure 9. Harris DEX Workflow

Figure 9 and Figure 7 illustrate the architecture and workflow of this integration pattern. A DEX
client simply interacts with the existing DEX subscription management interface. The DEX is then
responsible for converting subscriptions into an OGC PubSub 1.0 conforming structure.

As the DEX uses content-based routing (see section Harris Data Exchange) to deliver messages to
the corresponding user, the PubSub Async Server includes the relevant information in the AMQP 1.0
message header. The details of this approach are outlined in section FAA-specific AMQP 1.0 Profile
for OGC PubSub 1.0.

10.5. Subscribe Patterns
This section provides an overview on the developed patterns for subscribing to asynchronously
disseminated messages. The OGC PubSub 1.0 Core Specification and its SOAP binding extension form
the basis of the design. In addition, a profile for OGC Filter Encoding 2.0 is presented, which ensures
interoperability between clients and service implementations.

10.5.1. OGC PubSub 1.0

The general subscription workflow involves methods for:

• creating a subscription;

• removing a subscription; and

• renewing a subscription (updating the termination time).

The following Listing outlines the common structure of a Subscribe request against a OGC PubSub
1.0 service that implements the SOAP binding extension.

Creating A Subscription
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Subscription using AMQP 1.0 Delivery

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
  xmlns:fes="http://www.opengis.net/fes/2.0"
  xmlns:gml="http://www.opengis.net/gml/3.2"
    xmlns:pubsub="http://www.opengis.net/pubsub/1.0"
  xmlns:wsa="http://www.w3.org/2005/08/addressing"
    xmlns:wsn="http://docs.oasis-open.org/wsn/b-2">
   <env:Header>
      <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest</wsa:Action>
   </env:Header>
   <env:Body>
      <wsn:Subscribe>
         <wsn:ConsumerReference>
           <wsa:Address>http://a.url</wsa:Address>
         </wsn:ConsumerReference>
         <wsn:Filter>
            <wsn:MessageContent Dialect="http://www.opengis.net/fes/2.0">
              ...
            </wsn:MessageContent>
         </wsn:Filter>
         <wsn:InitialTerminationTime>2016-08-18T16:30:00Z</wsn:InitialTerminationTime>
         <pubsub:PublicationIdentifier>AIXM</pubsub:PublicationIdentifier>
         <pubsub:DeliveryMethod>
            <pubsub:Identifier>http://a.delivery.method</pubsub:Identifier>
         </pubsub:DeliveryMethod>
      </wsn:Subscribe>
   </env:Body>
</env:Envelope>

The element wsn:ConsumerReference is used to define the endpoint to where matching messages shall
be delivered. This depends on the delivery method chosen for the given subscription: for example a
WS-N consumer would provide the WS-N Consumer endpoint that accepts HTTP POST requests, an
AMQP 1.0 capable client would specify the node link URL for a topic or a queue.

A Subscriber can use the optional element wsn:Filter/wsn:MessageContent to define filter criteria
which subset the stream of data of the targeted Publication. See section Support for Geospatial
Queries for details.

The element pubsub:PublicationIdentifier references a valid Publication identifier as discovered in
the services Capabilities document (see following section).

The response from the server is structured as follows:
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Subscription Response

<?xml version="1.0" encoding="UTF-8"?>
<soap12:Envelope
    xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
    xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"
    xmlns:add="http://www.w3.org/2005/08/addressing"
    xmlns:pubsub="http://www.opengis.net/pubsub/1.0">
    <soap12:Body>
        <wsn:SubscribeResponse>
            <wsn:SubscriptionReference>
                <add:Address>http://ows.dev.52north.org:8080/subverse-
webapp/service</add:Address>
                <add:ReferenceParameters>
                    <wsn:ConsumerReference>
                        <add:Address>http://message.endpoint.url</add:Address>
                    </wsn:ConsumerReference>
                    <pubsub:SubscriptionIdentifier>9d864279-7972-4002-bc7a-
b9db9d351a5a</pubsub:SubscriptionIdentifier>
                </add:ReferenceParameters>
            </wsn:SubscriptionReference>
            <wsn:CurrentTime>2016-07-11T09:24:44.206Z</wsn:CurrentTime>
            <wsn:TerminationTime>2016-07-11T09:30:00.000Z</wsn:TerminationTime>
        </wsn:SubscribeResponse>
    </soap12:Body>
</soap12:Envelope>

The wsn:ConsumerReference element carries the information for the AMQP 1.0 node where the client
can receive the data. The identifier for later management purposes is provided in the
pubsub:SubscriptionIdentifier element.

Removing A Subscription

Unsubscribing a previously created subscription can be achieved by sending the following request:

Removing a Subscription

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
    xmlns:wsa="http://www.w3.org/2005/08/addressing"
    xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:pubsub="http://www.opengis.net/pubsub/1.0">
    <soap:Body>
        <wsnt:Unsubscribe>
          <pubsub:SubscriptionIdentifier>9d864279-7972-4002-bc7a-
b9db9d351a5a</pubsub:SubscriptionIdentifier>
        </wsnt:Unsubscribe>
    </soap:Body>
</soap:Envelope>
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The client has to provide the previously received identifier in the pubsub:SubscriptionIdentifier
element.

The response from the server is a simple acknowledgment:

Unsubscribe Response

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
    xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
    xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"
    xmlns:pubsub="http://www.opengis.net/pubsub/1.0">
    <soap:Body>
        <wsn:UnsubscribeResponse>
            <pubsub:SubscriptionIdentifier>9d864279-7972-4002-bc7a-
b9db9d351a5a</pubsub:SubscriptionIdentifier>
        </wsn:UnsubscribeResponse>
    </soap:Body>
</soap:Envelope>

Publications

The PubSub specification requires that an implementing service provides a set of publications that
it supports. In general, these publications are a concept to group similar message into one data
stream. A client can then decide if it wants to subscribe to the whole stream of a publication or a
subset of it by defining a filter.

The following publications have been defined for this testbed.

Table 5. Testbed-12 Aviation Publications

identifier abstract

AIXM Provides AIXM 5.1 data for OGC Testbed-12

FIXM Provides FIXM 3.0.1 data for OGC Testbed-12

all Provides all data (root publication)

The available Publications of a service are discoverable via the services Capabilities document. An
exemplary document is appended as an Annex (see Asynchronous Messaging Server Capabilities
Document) to this report.

10.5.2. Support for Geospatial Queries

To enable geospatial filtering within a subscription, a client has to provide a
wsn:Filter/wsn:MessageContent (see above). To streamline the way how spatial queries are
implemented across all Aviation services, the Asynchronous Messaging Server also uses the OGC
Filter Encoding 2.0 Specification. Similar to WFS services, the PubSub service describes via the
Capabilities document which spatial operations it supports.

37



Filter Encoding 2.0

The following Listing shows an exemplary bounding box filter. It uses the input/geometry value to
refer to the geometry of a feature. It is currently the responsibility of the Asynchronous Messaging
Server to decide how to resolve the geometry of a feature. This approach limits the interoperability
and a future work item addressing this issue is documented in section Future Work.

FES 2.0 Filter for Bounding Box

<fes:Filter xmlns:fes="http://www.opengis.net/fes/2.0"
   xmlns:gml="http://www.opengis.net/gml/3.2">
 <fes:ValueReference>input/geometry</fes:ValueReference>
  <fes:BBOX>
     <gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
        <gml:lowerCorner>-33 52</gml:lowerCorner>
        <gml:upperCorner>-32 53</gml:upperCorner>
     </gml:Envelope>
  </fes:BBOX>
</fes:Filter>

• supported operators (comparison, spatial, …)

• queryables (e.g. for AIXM/AMXM geometries

• XPath, XQuery?

WFS Queries as Subscription Filters

The OGC PubSub SWG has identified the reuse of service-specific data requests as valuable concept
for message filtering. A subscription could be defined using a WFS GetFeature query, following an
analogue approach in the common request/response pattern. This support WFS Queries has been
identified as out of scope for this testbed. Thus, a possible future work item has been identified and
documented accordingly (see section Future Work).

10.6. AMQP 1.0 Profile for OGC PubSub 1.0
In order to achieve interoperability for AMQP 1.0 message transportation in combination with OGC
PubSub 1.0, a dedicated profile is required. The current standard provides means to extend a
service at the required locations. In order to interoperable interact with an OGC PubSub 1.0 service
the following extensions are required:

• Extend the capabilities DeliveryCapabilities section with an AMQP 1.0 definition;

• Extend the Subscribe request with additional required parameters - or describe how to use the
existing once; and

• Extend the SubscribeResponse with required information on where the AMQP 1.0 messages are
delivery - or describe how to use the existing once.

This approach uses AMQP 1.0 node links in order to deliver messages to users. When working with
complex brokering architectures (e.g. networks of messages brokers), additional metadata (i.e. the
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to properties field of an AMQP 1.0 message) is required. An implementation of this was out of scope
within this testbed, and is considered for a future work item (see Future Work) has been
documented.

10.6.1. Definitions

The profile itself requires a unique identifier. Proposal:

http://www.opengis.net/extension/PubSubAMQP/1.0/amqp10deliveryMethod

A PubSub DeliveryMethod requires and unique identifier and an abstract. Proposal:

Table 6. AMQP 1.0 Profile definitions

identifier abstract

https://docs.oasis-open.org/amqp/core/v1.0 Advanced Message Queuing Protocol 1.0

An exemplary encoding (following the OGC PubSub 1.0 SOAP Binding) would be:

AMQP 1.0 Profile definitions XML encoding

<pubsub:DeliveryMethod>
    <ows:Abstract>Advanced Message Queuing Protocol 1.0</ows:Abstract>
    <pubsub:Identifier>https://docs.oasis-open.org/amqp/core/v1.0</pubsub:Identifier>
</pubsub:DeliveryMethod>

10.6.2. Exemplary Workflow

The following use cases illustrate possible interaction workflows between client, server and AMQP
1.0 brokers.

Use case 1: Usage of the default AMQP 1.0 broker provided by the PubSub service

1. The client retrieves the Capabilities via web service request.

2. Within the capabilities, the client identifies the existence of the AMQP 1.0 delivery method.

3. The client executes a Subscribe request by providing the AMQP 1.0 delivery method unique
identifier and the default broker (as provided by the capabilities).

4. The server provides a SubscribeResponse with a dynamically created AMQP 1.0 node link that is
unique among subscriptions (1-to-1 delivery).

5. The client connects to the provided AMQP 1.0 node link.

6. Once the server receives data that matches the subscription it sends this data to the AMQP 1.0
node.

7. The subscription terminates (e.g. via an Unsubscribe request, or by end of life) - no more data is
send to the AMQP 1.0 node.

For step 3, additional information on the default AMQP 1.0 broker has to be provided by the
capabilities. Proposal:
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DeliveryMethod XML encoding extensions

<pubsub:DeliveryMethod>
    <ows:Abstract>Advanced Message Queuing Protocol 1.0</ows:Abstract>
    <pubsub:Identifier>https://docs.oasis-open.org/amqp/core/v1.0</pubsub:Identifier>
    <pubsub:Extension>
        <amqp:defaultHost>amqp://a.valid.amqp.node.link</amqp:defaultHost>
    </pubsub:Extension>
</pubsub:DeliveryMethod>

This requires a formal definition (e.g. by XML Schema). Proposal:

Namespace: http://www.opengis.net/pubsub/1.0/amqp/v1.0 Elements:

Table 7. DeliveryMethods extension fields

name example values

defaultHost ows.dev.52north.org, amqp://myserver.com,
amqps://myserver.com

The client shall provide the defaultBroker within the Subscribe request, e.g.:

Use case 1 Subscribe Request

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" xmlns:fes=
"http://www.opengis.net/fes/2.0" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:pubsub="http://www.opengis.net/pubsub/1.0" xmlns:wsa=
"http://www.w3.org/2005/08/addressing" xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
   <env:Header>
      <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest</wsa:Action>
   </env:Header>
   <env:Body>
      <wsn:Subscribe>
         <wsn:ConsumerReference>
           <wsa:Address>amqp://the.default.broker.of.the.server</wsa:Address>
         </wsn:ConsumerReference>
         <wsn:InitialTerminationTime>2112-09-16T00:00:00Z</wsn:InitialTerminationTime>
         <pubsub:PublicationIdentifier>FIXM</pubsub:PublicationIdentifier>
         <pubsub:DeliveryMethod>
            <pubsub:Identifier>https://docs.oasis-
open.org/amqp/core/v1.0</pubsub:Identifier>
         </pubsub:DeliveryMethod>
      </wsn:Subscribe>
   </env:Body>
</env:Envelope>

The SubscribeResponse can reuse the existing elements (in particular
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wsn:SubscribeResponse/wsn:SubscriptionReference/add:ReferenceParameters/wsn:ConsumerReference).
The server shall decide how to create a unique endpoint for the subscription. Example response:

Use case 1 Subscribe Response

<?xml version="1.0" encoding="UTF-8"?>
<soap12:Envelope
    xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
    xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"
    xmlns:add="http://www.w3.org/2005/08/addressing"
    xmlns:pubsub="http://www.opengis.net/pubsub/1.0">
    <soap12:Body>
        <wsn:SubscribeResponse>
            <wsn:SubscriptionReference>
                <add:Address>http://ows.dev.52north.org:8080/subverse-
webapp/service</add:Address>
                <add:ReferenceParameters>
                    <wsn:ConsumerReference>
                        <add:Address>
amqp://ows.dev.52north.org/subverse.adsb.1234asdf</add:Address>
                    </wsn:ConsumerReference>
                    <pubsub:SubscriptionIdentifier>d944e8fe-6a81-4e56-883b-
c131c418bb2c</pubsub:SubscriptionIdentifier>
                </add:ReferenceParameters>
            </wsn:SubscriptionReference>
            <wsn:CurrentTime>2016-04-12T14:58:59.964Z</wsn:CurrentTime>
            <wsn:TerminationTime>2112-09-16T00:00:00.000Z</wsn:TerminationTime>
        </wsn:SubscribeResponse>
    </soap12:Body>
</soap12:Envelope>

The ConsumerReference would be the AMQP 1.0 node link the server and client use to exchange
messages (see steps 5 and 6 above).

Use case 2: Subscriber provides an AMQP 1.0 node

If the PubSub server does not provide a default AMQP 1.0 broker or the client wants to provide an
AMQP 1.0 node link on its own, the above use cannot be applied. The workflow for such situation
could look like the following:

1. The client retrieves the Capabilities via web service request;

2. Within the capabilities, the client identifies the existence of the AMQP 1.0 delivery method;

3. The client executes a Subscribe by providing the AMQP 1.0 delivery method unique identifier
and an AMQP 1.0 node link;

4. The server provides a SubscribeResponse, echoing the provided AMQP 1.0 node link;

5. The client is ready to accept messages on the AMQP 1.0 node link;

6. Once the server receives data that matches the subscription it sends this data to the AMQP 1.0
node link; and
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7. The subscription terminates (e.g. via an Unsubscribe request, or by end of life) - no more data is
published to the AMQP 1.0 node.

Example request for step 3:

Use case 2 Subscribe Request

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" xmlns:fes=
"http://www.opengis.net/fes/2.0" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:pubsub="http://www.opengis.net/pubsub/1.0" xmlns:wsa=
"http://www.w3.org/2005/08/addressing" xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
   <env:Header>
      <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest</wsa:Action>
   </env:Header>
   <env:Body>
      <wsn:Subscribe>
         <wsn:ConsumerReference>
           <wsa:Address>amqp://my.own.host/my-subscription</wsa:Address>
         </wsn:ConsumerReference>
         <wsn:InitialTerminationTime>2112-09-16T00:00:00Z</wsn:InitialTerminationTime>
         <pubsub:PublicationIdentifier>FIXM</pubsub:PublicationIdentifier>
         <pubsub:DeliveryMethod>
            <pubsub:Identifier>https://docs.oasis-
open.org/amqp/core/v1.0</pubsub:Identifier>
         </pubsub:DeliveryMethod>
      </wsn:Subscribe>
   </env:Body>
</env:Envelope>

Example response for step 4 (note the echoed ConsumerReference):
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Use case 2 Subscribe Response

<?xml version="1.0" encoding="UTF-8"?>
<soap12:Envelope
    xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
    xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"
    xmlns:add="http://www.w3.org/2005/08/addressing"
    xmlns:pubsub="http://www.opengis.net/pubsub/1.0">
    <soap12:Body>
        <wsn:SubscribeResponse>
            <wsn:SubscriptionReference>
                <add:Address>http://ows.dev.52north.org:8080/subverse-
webapp/service</add:Address>
                <add:ReferenceParameters>
                    <wsn:ConsumerReference>
                        <add:Address>amqp://my.own.host/my-subscription</add:Address>
                    </wsn:ConsumerReference>
                    <pubsub:SubscriptionIdentifier>d944e8fe-6a81-4e56-883b-
c131c418bb2c</pubsub:SubscriptionIdentifier>
                </add:ReferenceParameters>
            </wsn:SubscriptionReference>
            <wsn:CurrentTime>2016-04-12T14:58:59.964Z</wsn:CurrentTime>
            <wsn:TerminationTime>2112-09-16T00:00:00.000Z</wsn:TerminationTime>
        </wsn:SubscribeResponse>
    </soap12:Body>

10.7. FAA-specific AMQP 1.0 Profile for OGC PubSub 1.0
This section describes the integration pattern of the Asynchronous Messaging architecture into the
FAA NEMS. The DEX is currently the component that implements the Publish/Subscribe mechanism
within FAA NEMS. The concept described in this section therefore focuses on the interaction with
the DEX.

The DEX uses a specialized approach to route message within the system. The DEX is a message
broker implementation providing JMS as well as AMQP 1.0 delivery. It is a multi-user environment
capable of routing messages based on user-specified criteria.

This routing is implemented with a content-based approach. A message sent on the internal broker
contains a set of header fields that map the message to a uniquely identified user. Upon message
reception the DEX analyses the header fields and forwards the message to the corresponding user.

In order to support this behavior the Async Messaging Server needs to implement and provide these
header fields. Consequently, it can be integrated into the existing FAA/SWIM architecture. Thus, the
advanced filtering methods described in this document are available within FAA/SWIM.

10.7.1. Integration Workflow

Figure 10 illustrates the integration of FAA NEMS (i.e., DEX) within the Asynchronous Messaging
Architecture. In step 1 an OGC PubSub 1.0 client performs a Subscribe request against DEX. The
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Subscribe request features the specific elements required to allow the correct content-based
routing of messages (i.e. the user ID as known to DEX). DEX than simply forwards the received
request to the Asynchronous Messaging Server, thus acting as a proxy that hides the underlying
architecture. The Asynchronous Messaging Server evaluates the received Subscribe request and acts
accordingly (setting up the internal subscriptions). An acknowledgment is sent back to DEX (step 3)
which is as well passed directly through to the PubSub Client (step 4).

Figure 10. DEX Integration Workflow

Whenever new data from a Data Publisher arrives at the Asynchronous Messaging Server (step 5) it
is evaluated against the subscription (filtering on publication, optional spatial filtering). Matching
data is enriched with the header fields that are required to apply the content-based routing within
DEX (i.e., the user ID) and is then pushed to DEX via AMQP 1.0 (step 6). DEX then applies its default
content-based routing and delivers the message to the client via AMQP 1.0.

10.7.2. Definitions

Again, the profile itself requires a unique identifier. Proposal:

http://www.opengis.net/extension/PubSubAMQP/1.0/dex-over-amqp10

The DEX-specific profile required a dedicated DeliveryMethod defined by a unique identifier and
an abstract. Proposal:

Table 8. AMQP 1.0 Profile definitions

identifier abstract

http://www.opengis.net/extension/PubSubAMQP/
1.0/dex-over-amqp10

Advanced Message Queuing Protocol 1.0
integrated via FAA NEMS (DEX)

An exemplary encoding (following the OGC PubSub 1.0 SOAP Binding) would be:

AMQP 1.0 Profile definitions XML encoding

<pubsub:DeliveryMethod>
    <ows:Abstract>Advanced Message Queuing Protocol 1.0 integrated via FAA NEMS
(DEX)</ows:Abstract>
    <pubsub:Identifier>http://www.opengis.net/extension/PubSubAMQP/1.0/dex-over-
amqp10</pubsub:Identifier>
</pubsub:DeliveryMethod>
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Subscribe Definition

The subscription has to include the reference to the user ID (as known by DEX) in order to allow the
Asynchronous Messaging Server to set the corresponding AMQP header fields. It is provided in the
dex-amqp:userId element.

Use case 1 Subscribe Request

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" xmlns:fes=
"http://www.opengis.net/fes/2.0" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:pubsub="http://www.opengis.net/pubsub/1.0" xmlns:wsa=
"http://www.w3.org/2005/08/addressing" xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
   <env:Header>
      <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest</wsa:Action>
   </env:Header>
   <env:Body>
      <wsn:Subscribe>
         <wsn:ConsumerReference>
           <!-- wsa:Address left empty intentionally; allowed by schema -->
           <wsa:Address></wsa:Address>
         </wsn:ConsumerReference>
         <wsn:InitialTerminationTime>2112-09-16T00:00:00Z</wsn:InitialTerminationTime>
         <pubsub:PublicationIdentifier>FIXM</pubsub:PublicationIdentifier>
         <pubsub:DeliveryMethod>
            <pubsub:Identifier>http://www.opengis.net/extension/PubSubAMQP/1.0/dex-
over-amqp10</pubsub:Identifier>
            <pubsub:Extension>
              <dex-amqp:userId>dex-user-unique-id</dex-amqp:userId>
            </pubsub:Extension>
         </pubsub:DeliveryMethod>
      </wsn:Subscribe>
   </env:Body>
</env:Envelope>

As in this scenario the Asynchronous Messaging Server is integrated into the DEX architecture the
Subscribe request does not have to state a consumer address - it shall be left blank. Example
response:
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Use case 1 Subscribe Response

<?xml version="1.0" encoding="UTF-8"?>
<soap12:Envelope
    xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
    xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"
    xmlns:add="http://www.w3.org/2005/08/addressing"
    xmlns:pubsub="http://www.opengis.net/pubsub/1.0">
    <soap12:Body>
        <wsn:SubscribeResponse>
            <wsn:SubscriptionReference>
                <add:Address>http://ows.dev.52north.org:8080/subverse-
webapp/service</add:Address>
                <add:ReferenceParameters>
                    <wsn:ConsumerReference>
                      <!-- wsa:Address left empty intentionally; allowed by schema -->
                      <wsa:Address></wsa:Address>
                    </wsn:ConsumerReference>
                    <pubsub:SubscriptionIdentifier>d944e8fe-6a81-4e56-883b-
c131c418bb2c</pubsub:SubscriptionIdentifier>
                </add:ReferenceParameters>
            </wsn:SubscriptionReference>
            <wsn:CurrentTime>2016-04-12T14:58:59.964Z</wsn:CurrentTime>
            <wsn:TerminationTime>2112-09-16T00:00:00.000Z</wsn:TerminationTime>
        </wsn:SubscribeResponse>
    </soap12:Body>
</soap12:Envelope>

10.7.3. DEX Taxonomy

The taxonomy that is required to set up the content-based routing within DEX is straight-forward.
Table 9 illustrates a template for such a taxonomy. Based on this rule, the DEX is capable to route
the message received from the Asynchronous Messaging Server (defined as the DEX_SOURCE_TYPE).

Table 9. Exemplary DEX Taxonomy for PubSub Integration

Taxonomy DEX_SOURCE_TYPE MESSAGE_TYPE User Id

PubSub PubSub_Async_Server * <the user ID as known
to DEX>

10.8. Patterns for Publishing Data
This section provides details on the developed patterns for publishing data within the developed
service architecture.

10.8.1. Data Providers

In order to provide publications on AIXM and FIXM, the Asynchronous Messaging Server has to
have a stream of updates on these data available. As it was not designed to be a data provision
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service on its own, a mechanism has been developed to simulate a PubSub-enabled WFS.

The architecture-specific approach uses a simple HTTP POST endpoint where WFS services push
updates on features to (see section Architecture). Following this approach it can be ensured that all
updates are published in near-real time and in a consistent way. The data pushed to this endpoint is
directly used as the stream of data for the Publications that are provided by the Asynchronous
Messaging Server.

An alternate approach would be an intermediary component, pulling for updates in a regular
interval and publishing these updates accordingly. This approach has the downside that the data
stream may be inconsistent as an update could have been missed during this given interval. In
addition, a consistent delay would be introduced into the architecture.

AIXM 5.1

Updates on AIXM 5.1 features are populated by pushing a Digital NOTAM (DNOTAM) message to the
above described HTTP endpoint. The AIXMBasicMessage element is used. It contains up to three
members:

1. the DNOTAM;

2. the corresponding update on the feature AIXM feature; and

3. an optional aixm:Unit describing the issuing institute.

An exemplary DNOTAM on a Special Activity Airspace is provided in Annex AIXM DNOTAM
Document. Note that the given example is simulated data.

FIXM 3.0.1

Updates on FIXM 3.0.1 Flights are populated by pushing the given fixm:Flight document to the
above described HTTP endpoint. A Flight object contains all relevant information such as the flight
identification, the Globally Unique Flight Identifier (GUFI), the agreed route and the current
position of the aircraft.

An exemplary Flight object is provided in Annex FIXM Flight Document. Note that the given
example is simulated data.

10.8.2. Harris Data Exchange

A (delayed) live FIXM data stream provided by DEX has been integrated as a data publishing source.
At the time of publication the implementation has not been finalized. A description of the approach
will be subject of a Change Request to this report.

10.9. Delivery Methods
During the period of this testbed, different delivery methods have been defined and implemented.
This section provides an overview and discusses advantages and drawbacks of each method.
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10.9.1. AMQP 1.0

As AMQP 1.0 is a wire-level protocol, it does not provide application semantics or definitions on the
data format. Therefore, a basic 1-to-1 communication pattern has been defined and developed
during this testbed. The client provides a valid AMQP 1.0 node URL when subscribing. Matching
messages are then delivered to it accordingly. The node itself could be a simple listener or a
sophisticated message broker implementation such as Apache ActiveMQ or Apache Qpid.

Figure 11. AMQP 1.0 Broker delivery

Figure x illustrates the interaction pattern between the client, the PubSub server, and an AMQP
broker. The PubSub server does not know about the broker concept, it simply sends matching
messages to the provided AMQP node URL.

Figure 12. AMQP 1.0 Client delivery

The same behavior is illustrated in Figure x. Again, the PubSub server is agnostic about the AMQP
node.

Topic Delivery

Message brokers in general provide the ability to deliver messages on topics. This can be
understood as 1-to-n delivery. To support topic delivery in a certain scenario, the system design
needs to ensure that the messages are send to the correct AMQP node, representing a topic.

For example, an AMQP message broker (e.g., QPID or ActiveMQ) supports the topic concept. Now,
when the user subscribes to a subset of messages using the PubSub 1.0 service in conjunction with
the AMQP 1.0 delivery method profile, it simply needs to provide the topic node URL.

Currently, the PubSub 1.0 AMQP profile does not support the concept on its own. Still, it might be a
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future work item to allow the PubSub server to communicate the ability for topic delivery, e.g., via
the PublisherCapabilities  DeliveryMethods. A dedicated field supportsTopicDelivery would indicate
the availability of the functionality. The PubSub server has to ensure that the messages are sent to
an AMQP topic node. This could be done by a service-maintained AMQP message broker instance.

10.9.2. Harris Data Exchange

The DEX system component is used within the FAA SWIM architecture. It provides AMQP 1.0
messaging capabilities. In order to support multiple users and corresponding subscriptions, a
content-based routing (CBR) has been implemented. This concept requires AMQP messages to
provide a set of message header fields. Using these fields, the DEX is able to route message to the
correct users.

At the time of publication the implementation has not been finalized. A description of the approach
will be subject of a Change Request to this report.

10.9.3. Web Services Notification

Besides the aforementioned AMQP 1.0 delivery methods, the well-established WS-N message
delivery has been implemented during this testbed. Once a message matched the subscription
criteria, the PubSub Async Server invokes the WS-N Notify method (which is the only mandatory
method for a WS-N Consumer) at the provided WS-N endpoint URL. The PubSub Async Server again
realizes the OGC PubSub 1.0 Publisher and Sender entities and the WS-N Consumer acts as the
Receiver entity.

Figure 13. WS-N Client delivery

This delivery method was used by OGC Event Service in previous testbeds (see section Event
Service). Its major downside is that a WS-N consumer has to have a publicly available endpoint
URL. This is in particular problematic for client software that is run on many machines or onboard
of an aircraft.
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Chapter 11. Implementations
This section provides an overview on the developed software components, an analysis on the
performance of the overall architecture, as well as recommendations and examples on software
libraries that support the AMQP 1.0 protocol.

11.1. Services
The following services have been integrated into this testbeds system design. They play an
important role in the developed architecture.

11.1.1. 52°North subverse

52°North has developed an implementation of OGC PubSub 1.0 and its SOAP binding extension. The
service is named 52°North subverse  [3: https://github.com/52North/subverse] and is currently
designed as an OGC PubSub 1.0 standalone publisher. Thus it provides dedicated
PublisherCapabilities and supports the required Subscribe and Unsubscribe methods.

11.1.2. Harris Data Exchange

The DEX system component is used within the FAA SWIM architecture. It provides AMQP 1.0
messaging capabilities. In order to support multiple users and corresponding subscriptions, a
content-based routing (CBR) has been implemented. This concept requires AMQP 1.0 messages to
provide a set of message header fields. Using these fields, the DEX is able to route message to the
correct users.

During this testbed, a SWIM/DEX AMQP 1.0 message delivery profile has been developed for OGC
PubSub 1.0.

Figure 14 illustrates a high-level view of how the DEX interacts with FAA systems to deliver the
proper data to the proper consumers.
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Figure 14. High-Level DEX Architecture

Figure 15 illustrates the DEX architecture components.

Figure 15. DEX Architecture Components
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Content-Based Routing

The DEX employs a content-based routing (CBR) system to quickly route messages to their intended
consumers. Publishers into DEX provide a “menu” of the data they will provide in the form of a
taxonomy. Table 10 lists an example taxonomy.

Table 10. Sample DEX Producer Taxonomy

Taxonomy DEX_SOURC
E_TYPE

MESSAGE_T
YPE

ATN Type

SFMS MESSAGE_T
YPE

All Messages SFMS * *

DO260B All Messages SFMS DO260B *

ATN-DL All Messages SFMS ATN-DL *

CM SFMS ATN-DL CM

CPDLC SFMS ATN-DL CPDLC

ADS-C SFMS ATN-DL ADS-C

DEX taxonomies are customizable, allowing for fine-granular filtering of data for potential
consumers. For example, the above sample taxonomy allows consumers the following options for
consuming this data:

• All messages published by the SFMS system

• All DO260B messages

• All messages of type ATN-DL

• Just ATN-DL CM messages

• Just ATN-DL CPDLC messages

• Just ATN-DL ADS-C messages

When the SFMS publisher publishes messages, the messages contain header values corresponding
to these taxonomy entries. Thus, CBR reads the headers, scans consumers to find those that
subscribe to those header values, and routes the messages accordingly. Because CBR only needs to
read the header values and not the message contents, this process is very efficient, able to process
thousands of messages per second.

11.2. Clients

11.2.1. 52°North aviationFX

For assessing the architecture of the asynchronous messaging, 52°North developed a basic client for
aviation: 52°North aviationFX  [4: https://github.com/52North/aviationFX]. The client supports the
OGC PubSub 1.0 SOAP extensions and is thus able to interact with 52°North subverse.
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Figure 16. 52°North aviationFX Client

Figure 16 visualizes the scenario of a Special Activity Airspace with intersecting flights.

11.3. Message Broker Software
As AMQP 1.0 is a wire-level protocol the usage of a software responsible for efficient and
convenient message delivery is highly beneficial. There exist different message brokering software
that support the AMQP 1.0 protocol. Below is a non-exhaustive list of software projects and
products.

• Apache ActiveMQ - an open source message broker software that supports (besides other
protocols) both JMS 1.1 and AMQP 1.0 and therefore is a suitable solution for the Aviation
domain (http://activemq.apache.org/).

• Apache Qpid - a project that offers two AMQP 1.0 message broker implementations, one written
in C++, the other in Java (https://qpid.apache.org/).

• Oracle WebLogic - a multi-purpose COTS Java EE application server which comes with native
support for JMS and AMQP 1.0 support via extensions
(https://www.oracle.com/middleware/weblogic/)

• Microsoft Azure - a cloud computing platform that supports AMQP 1.0 in its Service Bus, thus
allowing components that are built using different languages and frameworks running on
different operating systems to interact with the Azure environment.

11.4. AMQP 1.0 Software Solutions
This section gives a brief overview on existing software libraries that support the AMQP 1.0
protocol. Some examples source code is provided to illustrate the workflow.
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11.4.1. Apache Qpid

Besides the AMQP Broker software the Apache Qpid project also provides a client library for Java. It
implements the AMQP 1.0 protocol and represents the AMQP 1.0 concepts such as messages and
connections.

The Apache Qpid client library provides valuable high-level features such as connection
management. The library is able to detect disconnects and reacts accordingly by reestablishing the
connection to a given AMQP 1.0 broker software. This is very important for the Aviation domain in
particular as reliable connections cannot be ensured for e.g., onboard client software.

The following listing illustrates the steps required to set up a consumer using the Qpid library:
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Qpid Consumer

import java.io.IOException;
import org.apache.qpid.proton.amqp.messaging.AmqpValue;
import org.apache.qpid.proton.amqp.messaging.ApplicationProperties;
import org.apache.qpid.proton.amqp.messaging.Section;
import org.apache.qpid.proton.message.Message;
import org.apache.qpid.proton.messenger.Messenger;

public class QpidConsumer {

    public static void main(String[] args) throws IOException {
        Messenger messenger = Messenger.Factory.create();
        messenger.start();
        while (true) {
            messenger.subscribe("amqp://localhost/my-test-queue");

            while (!messenger.stopped()) {
                System.out.println("start receiving");
                messenger.recv();
                while (messenger.incoming() > 0) {
                    System.out.println("starting receiving loop");
                    Message msg = messenger.get();
                    System.out.println("New Message with subject: "+msg.getSubject());
                    Section body = msg.getBody();
                    if (body instanceof AmqpValue) {
                        System.out.println(((AmqpValue) body).getValue());
                    }

                    ApplicationProperties ap = msg.getApplicationProperties();
                    if (ap != null && ap.getValue() != null) {
                        ap.getValue().forEach((Object key, Object value) -> {
                            System.out.println(key +"="+ value);
                        });
                    }
                }
            }
        }
    }

}

Publishing data to an AMQP 1.0 node is straightforward as well. The following listing gives an
exemplary solution:
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Qpid Publisher

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.qpid.proton.amqp.Symbol;
import org.apache.qpid.proton.amqp.messaging.AmqpValue;
import org.apache.qpid.proton.message.Message;
import org.apache.qpid.proton.messenger.Messenger;

public class QpidPublisher {

    public static void main(String[] args) throws IOException {
        Map<String, String> messageAnnotations = new HashMap<>();
        Map<String, String> deliveryAnnotations = new HashMap<>();

        Messenger messenger = Messenger.Factory.create("my-id");
        messenger.start();

        Message message = Message.Factory.create();
        message.setAddress("amqp://localhost/my-test-queue");

        message.setSubject("testing-amqp");
        message.setContentType("text/plain");

        //set message annotations
        messageAnnotations.forEach((String k, String v) -> {
            message.getMessageAnnotations().getValue().put(Symbol.valueOf(k), v);
        });

        //set delivery annotations
        deliveryAnnotations.forEach((String k, String v) -> {
            message.getDeliveryAnnotations().getValue().put(Symbol.valueOf(k), v);
        });

        message.setBody(new AmqpValue("Hello AMQP!"));

        messenger.put(message);
        messenger.send();
    }

}

The above source code snippets have been verified working with both Apache ActiveMQ and
Apache Qpid Broker.

11.4.2. Microsoft Azure AMQP.Net Lite

AMQP.Net Lite is a lightweight AMQP 1.0 library for the .Net Framework. The library includes both
a client and listener to enable peer to peer and broker based messaging. It is available as Open
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Source under the Apache 2.0 license  [5: https://github.com/Azure/amqpnetlite].
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Chapter 12. Conclusions
The following sections describe the accomplishments achieved within this testbed work item as
well as an overview on lessons learned. Details on candidate future work items are presented in a
separate section (see Future Work).

12.1. Accomplishments
The requirements described in section Requirements have been addressed as follows:

• the design of a service architecture with a foundation of the OGC PubSub 1.0 Specification: this
architecture involves data publishers (WFS services), the Asynchronous Messaging Server (OGC
PubSub 1.0 standalone publisher) and a client that interacts with the Asynchronous Messaging
Server;

• the definition of an AMQP 1.0 delivery profile for OGC PubSub 1.0 that allows the interoperable
management of subscriptions and the corresponding delivery of messages using the AMQP 1.0
protocol;

• the analysis of existing architectures that involve asynchronous messaging with a focus on the
usage of Message Broker Software (such as Apache ActiveMQ);

• the development of a prototypical version of the designed architecture to proof its concept and
functionality;

• the support for geospatial subscriptions using OGC Filter Encoding 2.0 in combination with data
publications for AIXM 5.1 and FIXM 3.0.1; and

• the integration of the developed solutions with existing established systems such as the Harris
Data Exchange (DEX).
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Appendix A: Asynchronous
Messaging Server Capabilities
Document
PubSub Capabilities Document

<?xml version="1.0" encoding="UTF-8"?>
<pubsub:PublisherCapabilities
    xmlns:pubsub="http://www.opengis.net/pubsub/1.0"
    xmlns:ows="http://www.opengis.net/ows/1.1"
    xmlns:xlin="http://www.w3.org/1999/xlink"
    xmlns:ns="http://www.opengis.net/fes/2.0"
    xmlns:amqp="http://www.opengis.net/pubsub/1.0/amqp/v1.0">
    <ows:ServiceIdentification>
        <ows:Title xml:lang="eng">Asynchronous Messaging Server</ows:Title>
        <ows:Abstract xml:lang="eng">52°North subverse Service</ows:Abstract>
        <ows:ServiceType codeSpace="">OGC:PubSub</ows:ServiceType>
        <ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>
 
<ows:Profile>http://www.opengis.net/extension/PubSubAMQP/1.0/amqp10deliveryMethod</ows
:Profile>
        <ows:Fees>NONE</ows:Fees>
        <ows:AccessConstraints>NONE</ows:AccessConstraints>
    </ows:ServiceIdentification>
    <ows:ServiceProvider>
        <ows:ProviderName>52°North</ows:ProviderName>
        <ows:ProviderSite xlin:href="http://52north.org"/>
        <ows:ServiceContact>
            <ows:IndividualName>Matthes Rieke</ows:IndividualName>
            <ows:PositionName>Software Architect</ows:PositionName>
            <ows:ContactInfo>
                <ows:Phone>
                    <ows:Voice>+49(0)251/396 371-0</ows:Voice>
                    <ows:Facsimile>+49(0)251/396 371-11</ows:Facsimile>
                </ows:Phone>
                <ows:Address>
                    <ows:DeliveryPoint>Martin-Luther-King-Weg 24</ows:DeliveryPoint>
                    <ows:City>Münster</ows:City>
                    <ows:AdministrativeArea>North Rhine-
Westphalia</ows:AdministrativeArea>
                    <ows:PostalCode>48155</ows:PostalCode>
                    <ows:Country>Germany</ows:Country>
                    <ows:ElectronicMailAddress>
info@52north.org</ows:ElectronicMailAddress>
                </ows:Address>
            </ows:ContactInfo>
        </ows:ServiceContact>
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    </ows:ServiceProvider>
    <ows:OperationsMetadata>
        <ows:Operation name="GetCapabilities">
            <ows:DCP>
                <ows:HTTP>
                    <ows:Get xlin:href="http://ows.dev.52north.org:8080/subverse-
webapp/service?">
                        <ows:Constraint name="Content-Type">
                            <ows:AllowedValues>
                                <ows:Value>application/x-kvp</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                    </ows:Get>
                </ows:HTTP>
            </ows:DCP>
            <ows:Parameter name="AcceptVersions"/>
        </ows:Operation>
        <ows:Operation name="GetSubscription">
            <ows:DCP>
                <ows:HTTP>
                    <ows:Post xlin:href="http://ows.dev.52north.org:8080/subverse-
webapp/service">
                        <ows:Constraint name="Content-Type">
                            <ows:AllowedValues>
                                <ows:Value>application/xml</ows:Value>
                                <ows:Value>text/xml</ows:Value>
                                <ows:Value>application/soap+xml</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                        <ows:Constraint name="PostEncoding">
                            <ows:AllowedValues>
                                <ows:Value>SOAP</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                    </ows:Post>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
        <ows:Operation name="Notify">
            <ows:DCP>
                <ows:HTTP>
                    <ows:Post xlin:href="http://ows.dev.52north.org:8080/subverse-
webapp/service">
                        <ows:Constraint name="Content-Type">
                            <ows:AllowedValues>
                                <ows:Value>application/soap+xml</ows:Value>
                                <ows:Value>application/xml</ows:Value>
                                <ows:Value>text/xml</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                        <ows:Constraint name="PostEncoding">
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                            <ows:AllowedValues>
                                <ows:Value>SOAP</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                    </ows:Post>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
        <ows:Operation name="Renew">
            <ows:DCP>
                <ows:HTTP>
                    <ows:Post xlin:href="http://ows.dev.52north.org:8080/subverse-
webapp/service">
                        <ows:Constraint name="Content-Type">
                            <ows:AllowedValues>
                                <ows:Value>application/soap+xml</ows:Value>
                                <ows:Value>application/xml</ows:Value>
                                <ows:Value>text/xml</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                        <ows:Constraint name="PostEncoding">
                            <ows:AllowedValues>
                                <ows:Value>SOAP</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                    </ows:Post>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
        <ows:Operation name="Subscribe">
            <ows:DCP>
                <ows:HTTP>
                    <ows:Post xlin:href="http://ows.dev.52north.org:8080/subverse-
webapp/service">
                        <ows:Constraint name="Content-Type">
                            <ows:AllowedValues>
                                <ows:Value>application/soap+xml</ows:Value>
                                <ows:Value>application/xml</ows:Value>
                                <ows:Value>text/xml</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                        <ows:Constraint name="PostEncoding">
                            <ows:AllowedValues>
                                <ows:Value>SOAP</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                    </ows:Post>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
        <ows:Operation name="Unsubscribe">
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            <ows:DCP>
                <ows:HTTP>
                    <ows:Post xlin:href="http://ows.dev.52north.org:8080/subverse-
webapp/service">
                        <ows:Constraint name="Content-Type">
                            <ows:AllowedValues>
                                <ows:Value>application/soap+xml</ows:Value>
                                <ows:Value>application/xml</ows:Value>
                                <ows:Value>text/xml</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                        <ows:Constraint name="PostEncoding">
                            <ows:AllowedValues>
                                <ows:Value>SOAP</ows:Value>
                            </ows:AllowedValues>
                        </ows:Constraint>
                    </ows:Post>
                </ows:HTTP>
            </ows:DCP>
        </ows:Operation>
        <ows:Parameter name="GetCapabilities"/>
        <ows:Parameter name="PubSub"/>
        <ows:Parameter name="1.0.0"/>
    </ows:OperationsMetadata>
    <pubsub:FilterCapabilities>
        <pubsub:FilterLanguage>
            <ows:Abstract>OGC Filter Encoding Spec 2.0</ows:Abstract>
            <pubsub:Identifier>http://www.opengis.net/fes/2.0</pubsub:Identifier>
            <pubsub:SupportedCapabilities>
                <ns:Filter_Capabilities>
                    <ns:Conformance>
                        <ns:Constraint name="ImplementsMinSpatialFilter">
                            <ows:NoValues/>
                            <ows:DefaultValue>true</ows:DefaultValue>
                        </ns:Constraint>
                        <ns:Constraint name="ImplementsTemporalFilter">
                            <ows:NoValues/>
                            <ows:DefaultValue>true</ows:DefaultValue>
                        </ns:Constraint>
                    </ns:Conformance>
                </ns:Filter_Capabilities>
            </pubsub:SupportedCapabilities>
        </pubsub:FilterLanguage>
    </pubsub:FilterCapabilities>
    <pubsub:DeliveryCapabilities>
        <pubsub:DeliveryMethod>
            <ows:Abstract>Advanced Message Queuing Protocol 1.0</ows:Abstract>
            <pubsub:Identifier>https://docs.oasis-
open.org/amqp/core/v1.0</pubsub:Identifier>
            <pubsub:Extension>
                <amqp:defaultHost>ows.dev.52north.org</amqp:defaultHost>
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            </pubsub:Extension>
        </pubsub:DeliveryMethod>
        <pubsub:DeliveryMethod>
            <ows:Abstract>WS-BaseNotification allows a NotificationConsumer to receive
a Notification in one of two forms:

 1. The NotificationConsumer MAY simply receive the "raw" Notification (i.e. the
application-specific content).

 2. The NotificationConsumer MAY receive the Notification data as a Notify message as
described below.</ows:Abstract>
            <pubsub:Identifier>http://docs.oasis-open.org/wsn/b-
2/NotificationConsumer</pubsub:Identifier>
        </pubsub:DeliveryMethod>
    </pubsub:DeliveryCapabilities>
    <pubsub:Publications>
        <pubsub:Publication>
            <ows:Abstract>provides all data (root publication)</ows:Abstract>
            <pubsub:Identifier>all</pubsub:Identifier>
        </pubsub:Publication>
        <pubsub:Publication>
            <ows:Abstract>provides AIXM 5.1 data as DNOTAM</ows:Abstract>
            <pubsub:Identifier>AIXM</pubsub:Identifier>
        </pubsub:Publication>
        <pubsub:Publication>
            <ows:Abstract>provides FIXM 3.0.1 data</ows:Abstract>
            <pubsub:Identifier>FIXM</pubsub:Identifier>
        </pubsub:Publication>
    </pubsub:Publications>
</pubsub:PublisherCapabilities>
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Appendix B: AIXM DNOTAM
Document
Exemplary DNOTAM for a Special Activity Airspace

<?xml version='1.0' encoding='UTF-8'?>
<message:AIXMBasicMessage xmlns:message="http://www.aixm.aero/schema/5.1/message"
xmlns:gts="http://www.isotc211.org/2005/gts" xmlns:gco=
"http://www.isotc211.org/2005/gco" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:gss="
http://www.isotc211.org/2005/gss" xmlns:aixm="http://www.aixm.aero/schema/5.1"
xmlns:gsr="http://www.isotc211.org/2005/gsr" xmlns:gmd=
"http://www.isotc211.org/2005/gmd" xmlns:event="http://www.aixm.aero/schema/5.1/event"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://www.aixm.aero/schema/5.1/message
http://www.aixm.aero/schema/5.1/message/AIXM_BasicMessage.xsd
http://www.aixm.aero/schema/5.1/event
http://www.aixm.aero/schema/5.1/event/version_5.1-e/Event_Features.xsd" gml:id="
M00001">
  <message:hasMember>
    <event:Event gml:id="uuid.cc1bdbc7-476c-4b04-81c0-8f5e7ccb454b">
      <gml:identifier codeSpace="urn:uuid:">cc1bdbc7-476c-4b04-81c0-
8f5e7ccb454b</gml:identifier>
      <event:timeSlice>
        <event:EventTimeSlice gml:id="ID_51">
          <gml:validTime>
            <gml:TimeInstant gml:id="ID_52">
              <gml:timePosition>2016-08-28T06:00:00Z</gml:timePosition>
            </gml:TimeInstant>
          </gml:validTime>
          <aixm:interpretation>PERMDELTA</aixm:interpretation>
          <aixm:sequenceNumber>1</aixm:sequenceNumber>
          <aixm:featureLifetime>
            <gml:TimePeriod gml:id="ID_53">
              <gml:beginPosition>2016-08-28T06:00:00Z</gml:beginPosition>
              <gml:endPosition>2016-08-30T22:30:00Z</gml:endPosition>
            </gml:TimePeriod>
          </aixm:featureLifetime>
          <event:name>EBD04_20140630</event:name>
          <event:encoding>DIGITAL</event:encoding>
          <event:scenario>SAA.ACT</event:scenario>
          <event:version>2.0</event:version>
          <event:revision>2016-08-28T07:49:54</event:revision>
          <event:textNOTAM>
            <event:NOTAM gml:id="ID_54">
              <event:text>DANGER AREA LEB04 LEBEC ACTIVE, FOREST FIRE</event:text>
              <event:lowerLimit>SFC</event:lowerLimit>
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              <event:upperLimit>FL170</event:upperLimit>
              <event:publisherNOF xlink:href="#uuid.6bdb97aa-3f04-41bc-ac10-
64cede76b9ba" xlink:title="STATE NOTAM OFFICE" xsi:nil="true"/>
            </event:NOTAM>
          </event:textNOTAM>
        </event:EventTimeSlice>
      </event:timeSlice>
      <event:timeSlice>
        <event:EventTimeSlice gml:id="ID_56">
          <gml:validTime>
            <gml:TimePeriod gml:id="ID_57">
              <gml:beginPosition>2016-08-28T06:00:00Z</gml:beginPosition>
              <gml:endPosition>2016-08-30T22:30:00Z</gml:endPosition>
            </gml:TimePeriod>
          </gml:validTime>
          <aixm:interpretation>BASELINE</aixm:interpretation>
          <aixm:sequenceNumber>1</aixm:sequenceNumber>
          <aixm:featureLifetime>
            <gml:TimePeriod gml:id="ID_58">
              <gml:beginPosition>2016-08-28T06:00:00Z</gml:beginPosition>
              <gml:endPosition>2016-08-30T22:30:00Z</gml:endPosition>
            </gml:TimePeriod>
          </aixm:featureLifetime>
          <event:name>LEB04_20160828</event:name>
          <event:encoding>DIGITAL</event:encoding>
          <event:scenario>SAA.ACT</event:scenario>
          <event:version>2.0</event:version>
          <event:revision>2016-08-28T07:49:54</event:revision>
          <event:textNOTAM>
            <event:NOTAM gml:id="ID_55">
              <event:text>DANGER AREA LEB04 LEBEC ACTIVE, FOREST FIRE</event:text>
              <event:lowerLimit>SFC</event:lowerLimit>
              <event:upperLimit>FL170</event:upperLimit>
              <event:publisherNOF xlink:href="#uuid.6bdb97aa-3f04-41bc-ac10-
64cede76b9ba" xlink:title="STATE NOTAM OFFICE" xsi:nil="true"/>
            </event:NOTAM>
          </event:textNOTAM>
        </event:EventTimeSlice>
      </event:timeSlice>
    </event:Event>
  </message:hasMember>
  <message:hasMember>
    <aixm:Airspace gml:id="uuid.28e6905-f99a-4ca7-a736-2c0787cdcf57">
      <gml:identifier codeSpace="urn:uuid:">028e6905-f99a-4ca7-a736-
2c0787cdcf57</gml:identifier>
      <aixm:timeSlice>
        <aixm:AirspaceTimeSlice gml:id="ID_65">
          <gml:validTime>
            <gml:TimeInstant gml:id="ID_66">
              <gml:timePosition>2016-08-28T07:49:54Z</gml:timePosition>
            </gml:TimeInstant>
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          </gml:validTime>
          <aixm:interpretation>SNAPSHOT</aixm:interpretation>
          <aixm:type>D</aixm:type>
          <aixm:designator>LEB04</aixm:designator>
          <aixm:name>LEBEC</aixm:name>
          <aixm:geometryComponent>
            <aixm:AirspaceGeometryComponent gml:id="ID_67">
              <aixm:operationSequence>1</aixm:operationSequence>
              <aixm:theAirspaceVolume>
                <aixm:AirspaceVolume gml:id="ID_68">
                  <aixm:upperLimit uom="FL">170</aixm:upperLimit>
                  <aixm:upperLimitReference>OTHER</aixm:upperLimitReference>
                  <aixm:lowerLimit uom="FT">0</aixm:lowerLimit>
                  <aixm:lowerLimitReference>SFC</aixm:lowerLimitReference>
                  <aixm:horizontalProjection>
                    <aixm:Surface srsName="urn:ogc:def:crs:EPSG::4326" gml:id="ID_69">
                      <gml:patches>
                        <gml:PolygonPatch>
                          <gml:exterior>
                            <gml:LinearRing>
                              <gml:posList>34.54163119530972 -118.67980957031249
                                34.420504880133834 -118.95996093749999
                                34.4861839632883 -119.30465698242186
                                34.92760087214065 -119.5147705078125
                                35.08957427943165 -118.99291992187499
                                34.88142481679758 -118.71826171875
                                34.54163119530972 -118.67980957031249</gml:posList>
                            </gml:LinearRing>
                          </gml:exterior>
                        </gml:PolygonPatch>
                      </gml:patches>
                    </aixm:Surface>
                  </aixm:horizontalProjection>
                </aixm:AirspaceVolume>
              </aixm:theAirspaceVolume>
            </aixm:AirspaceGeometryComponent>
          </aixm:geometryComponent>
        </aixm:AirspaceTimeSlice>
      </aixm:timeSlice>
      <aixm:timeSlice>
        <aixm:AirspaceTimeSlice gml:id="ID_70">
          <gml:validTime>
            <gml:TimePeriod gml:id="ID_71">
              <gml:beginPosition>2016-08-28T06:00:00Z</gml:beginPosition>
              <gml:endPosition>2016-08-30T22:30:00Z</gml:endPosition>
            </gml:TimePeriod>
          </gml:validTime>
          <aixm:interpretation>TEMPDELTA</aixm:interpretation>
          <aixm:sequenceNumber>1</aixm:sequenceNumber>
          <aixm:type>P</aixm:type> <!-- see coding rule referring to terms used in the
information from originator that the area is prohibited -->
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          <aixm:activation>
            <aixm:AirspaceActivation gml:id="ID_72">
              <aixm:annotation>
                <aixm:Note gml:id="ID_74">
                  <aixm:purpose>REMARK</aixm:purpose>
                  <aixm:translatedNote>
                    <aixm:LinguisticNote gml:id="ID_75">
                      <aixm:note>SAR activities during fire fighting</aixm:note>
                    </aixm:LinguisticNote>
                  </aixm:translatedNote>
                </aixm:Note>
              </aixm:annotation>
              <aixm:annotation>
                <aixm:Note gml:id="ID_76">
                  <aixm:purpose>REMARK</aixm:purpose>
                  <aixm:translatedNote>
                    <aixm:LinguisticNote gml:id="ID_77">
                      <aixm:note>Prohibited for all manned military and civilian
aircraft during fire fighting activity.</aixm:note>
                    </aixm:LinguisticNote>
                  </aixm:translatedNote>
                </aixm:Note>
              </aixm:annotation>
              <aixm:annotation>
                <aixm:Note gml:id="ID_78">
                  <aixm:purpose>REMARK</aixm:purpose>
                  <aixm:translatedNote>
                    <aixm:LinguisticNote gml:id="ID_79">
                      <aixm:note>More info can be obtained via EBMIZGZF.</aixm:note>
                    </aixm:LinguisticNote>
                  </aixm:translatedNote>
                </aixm:Note>
              </aixm:annotation>
              <aixm:activity>SAR</aixm:activity>
              <aixm:status>ACTIVE</aixm:status>
              <aixm:levels>
                <aixm:AirspaceLayer gml:id="ID_73">
                  <aixm:upperLimit uom="OTHER">CEILING</aixm:upperLimit>
                  <aixm:lowerLimit uom="OTHER">FLOOR</aixm:lowerLimit>
                </aixm:AirspaceLayer>
              </aixm:levels>
            </aixm:AirspaceActivation>
          </aixm:activation>
          <aixm:extension>
            <event:AirspaceExtension gml:id="ID_80">
              <event:theEvent xlink:href="#uuid.cc1bdbc7-476c-4b04-81c0-8f5e7ccb454b"
xsi:nil="true"/>
            </event:AirspaceExtension>
          </aixm:extension>
        </aixm:AirspaceTimeSlice>
      </aixm:timeSlice>
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    </aixm:Airspace>
  </message:hasMember>
  <message:hasMember>
    <aixm:Unit gml:id="uuid.uuid.6bdb97aa-3f04-41bc-ac10-64cede76b9ba">
      <gml:identifier codeSpace="urn:uuid:">uuid.6bdb97aa-3f04-41bc-ac10-
64cede76b9ba"</gml:identifier>
      <aixm:timeSlice>
        <aixm:UnitTimeSlice gml:id="ID_61">
          <gml:validTime>
            <gml:TimeInstant gml:id="ID_62">
              <gml:timePosition>2016-08-28T07:49:54Z</gml:timePosition>
            </gml:TimeInstant>
          </gml:validTime>
          <aixm:interpretation>SNAPSHOT</aixm:interpretation>
          <aixm:name>STATE NOTAM OFFICE</aixm:name>
          <aixm:type>NOF</aixm:type>
          <aixm:contact>
            <aixm:ContactInformation gml:id="ID_63">
              <aixm:phoneFax>
                <aixm:TelephoneContact gml:id="ID_64">
                  <aixm:voice>(12) 345 67 89</aixm:voice>
                </aixm:TelephoneContact>
              </aixm:phoneFax>
            </aixm:ContactInformation>
          </aixm:contact>
        </aixm:UnitTimeSlice>
      </aixm:timeSlice>
    </aixm:Unit>
  </message:hasMember>
</message:AIXMBasicMessage>
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Appendix C: FIXM Flight Document
Exemplary FIXM Flight Object

<fx:Flight xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xmlns:fx="http://www.fixm.aero/flight/3.0"
xmlns:fb="http://www.fixm.aero/base/3.0" xmlns:sdss="
http://www.fixm.aero/ext/sdss/3.0" xmlns:ff="http://www.fixm.aero/foundation/3.0"
xmlns:faa="http://www.fixm.aero/ext/faa/3.0" centre="ZNY" flightFiler="" flightType=
"NON_SCHEDULED" remarks="" source="CL" system="FDPS1" timestamp="2016-08-
29T21:57:46.546Z">
  <fx:agreed>
    <fx:route routeText="GRD LBT 3500N/07400W 3726N/06937W 3745N/06720W 3900N/05000W
4000N/04000W DETOX BARDI UQ424 LUMAS UM985 STP ASTIG ASTI1H" flightDuration=
"PT50M0.000S" initialFlightRules="IFR">
      <fx:expandedRoute>
        <fx:routePoint estimatedTime="2016-08-29T21:01:00.000Z">
          <fx:point xsi:type="fb:FixPointType" fix="LBT"/>
        </fx:routePoint>
        <fx:routePoint estimatedTime="2016-08-29T21:32:00.000Z">
          <fx:point xsi:type="fb:LocationPointType">
            <fb:location srsName="urn:ogc:def:crs:EPSG::4326">
              <ff:pos>34.31281554905527 -118.89953613281249</ff:pos>
            </fb:location>
          </fx:point>
        </fx:routePoint>
        <fx:routePoint estimatedTime="2016-08-29T22:05:00.000Z">
          <fx:point xsi:type="fb:LocationPointType">
            <fb:location srsName="urn:ogc:def:crs:EPSG::4326">
              <ff:pos>35.15135442846945 -119.38980102539062</ff:pos>
            </fb:location>
          </fx:point>
        </fx:routePoint>
      </fx:expandedRoute>
      <fx:initialCruisingSpeed uom="KNOTS">480.0</fx:initialCruisingSpeed>
      <fx:requestedAltitude ref="FLIGHT_LEVEL" uom="FEET">
33000.0</fx:requestedAltitude>
      <fx:segment>
        <fx:routePoint>
          <fx:point xsi:type="fb:FixPointType" fix="GRD"/>
        </fx:routePoint>
      </fx:segment>
      <fx:segment>
        <fx:routePoint>
          <fx:point xsi:type="fb:FixPointType" fix="LBT"/>
        </fx:routePoint>
      </fx:segment>
      <fx:segment>
        <fx:routePoint>
          <fx:point xsi:type="fb:LocationPointType">
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            <fb:location srsName="urn:ogc:def:crs:EPSG::4326">
              <ff:pos>34.31281554905527 -118.89953613281249</ff:pos>
            </fb:location>
          </fx:point>
        </fx:routePoint>
      </fx:segment>
      <fx:segment>
        <fx:routePoint>
          <fx:point xsi:type="fb:LocationPointType">
            <fb:location srsName="urn:ogc:def:crs:EPSG::4326">
              <ff:pos>34.6015631772409 -119.15222167968751</ff:pos>
            </fb:location>
          </fx:point>
        </fx:routePoint>
      </fx:segment>
      <fx:segment>
        <fx:routePoint>
          <fx:point xsi:type="fb:LocationPointType">
            <fb:location srsName="urn:ogc:def:crs:EPSG::4326">
              <ff:pos>35.15135442846945 -119.38980102539062</ff:pos>
            </fb:location>
          </fx:point>
        </fx:routePoint>
      </fx:segment>
      <fx:segment>
        <fx:routePoint>
          <fx:point xsi:type="fb:FixPointType" fix="DETOX"/>
        </fx:routePoint>
      </fx:segment>
    </fx:route>
  </fx:agreed>
  <fx:aircraftDescription wakeTurbulence="H">
    <fx:aircraftType>
      <fx:icaoModelIdentifier>B744</fx:icaoModelIdentifier>
    </fx:aircraftType>
    <fx:capabilities>
      <fx:communication>
        <fx:communicationCode>V</fx:communicationCode>
      </fx:communication>
      <fx:navigation>
        <fx:navigationCode>D O</fx:navigationCode>
      </fx:navigation>
      <fx:surveillance>
        <fx:surveillanceCode>S</fx:surveillanceCode>
      </fx:surveillance>
    </fx:capabilities>
  </fx:aircraftDescription>
  <fx:arrival>
    <fx:arrivalAerodrome xsi:type="fb:IcaoAerodromeReferenceType" code="LIMC"/>
  </fx:arrival>
  <fx:departure standardInstrumentDeparture="DOOLY7">
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    <fx:departureAerodrome xsi:type="fb:IcaoAerodromeReferenceType" code="KATL"/>
    <fx:runwayPositionAndTime runwayName="27R">
      <fb:runwayTime>
        <fb:actual time="2016-08-29T20:46:00.000Z"/>
        <fb:target time="2016-08-29T20:53:41.258Z"/>
      </fb:runwayTime>
    </fx:runwayPositionAndTime>
    <fx:standPositionAndTime standName="D7">
      <fb:standTime>
        <fb:actual time="2016-08-29T20:49:36.258Z"/>
        <fb:target time="2016-08-29T20:49:36.258Z"/>
      </fb:standTime>
    </fx:standPositionAndTime>
  </fx:departure>
  <fx:enRoute system="TGF">
    <fx:beaconCodeAssignment>
      <fx:currentBeaconCode>2003</fx:currentBeaconCode>
    </fx:beaconCodeAssignment>
    <fx:position positionTime="2016-08-29T21:14:06.926Z" source="FAA" system="TGF">
      <fx:actualSpeed>
        <fx:surveillance uom="KNOTS">0.0</fx:surveillance>
      </fx:actualSpeed>
      <fx:altitude ref="FLIGHT_LEVEL" uom="FEET">28000.0</fx:altitude>
      <fx:position xsi:type="fb:LocationPointType">
        <fb:location srsName="urn:ogc:def:crs:EPSG::4326">
          <ff:pos>${lat} ${lon}</ff:pos>
        </fb:location>
      </fx:position>
      <fx:track uom="DEGREES">${bearing}</fx:track>
    </fx:position>
  </fx:enRoute>
  <fx:flightIdentification aircraftIdentification="MNG200D"/>
  <fx:gufi codeSpace="urn:uuid">8c7995c5-1a65-430c-96d8-a8347b9ed2a3</fx:gufi>
</fx:Flight>
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