
OGC® DOCUMENT: 24-014
External identifier of this OGC® document: http://www.opengis.net/doc/IS/SWE/3.0

OGC SWE COMMON
DATA MODEL
ENCODING STANDARD

STANDARD
Implementation

APPROVED

Version: 3.0.0
Submission Date: 2025-03-19
Approval Date: 2025-06-02
Publication Date: 2025-07-16
Editor: Alexandre Robin

Notice: This document is an OGC Member approved international standard. This document is available on a royalty free, non-discriminatory
basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware
and to provide supporting documentation.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Suggested additions, changes and comments on this document are welcome and encouraged. Such suggestions may be submitted using the online
change request form on OGC web site: http://ogc.standardstracker.org/

Copyright notice

Copyright © 2025 Open Geospatial Consortium
To obtain additional rights of use, visithttps://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 24-014 ii

https://www.ogc.org/license
http://ogc.standardstracker.org/
https://www.ogc.org/legal

CONTENTS

I. ABSTRACT ..xi

II. KEYWORDS ... xi

III. PREFACE ..xii

IV. SECURITY CONSIDERATIONS ... xiii

V. SUBMITTING ORGANIZATIONS ... xiv

VI. SUBMITTERS ... xiv

VII. FOREWORD ... xv

1. SCOPE .. 2

2. CONFORMANCE .. 4

3. NORMATIVE REFERENCES ... 7

4. TERMS AND DEFINITIONS ...10

6. CONVENTIONS ...14
6.1. Identifiers ... 14
6.2. Abbreviated terms ... 14
6.3. UML Notation ...15

7. REQUIREMENTS CLASS: CORE CONCEPTS (NORMATIVE CORE)17
7.1. Introduction ...17
7.2. Data Representation ... 18
7.3. Nature of Data ... 22
7.4. Data Quality ..25
7.5. Data Structure .. 26
7.6. Data Encoding .. 28

8. UML CONCEPTUAL MODELS (NORMATIVE) ..30
8.1. Package Dependencies ...30
8.2. Requirements Class: Basic Types and Simple Components Packages ... 31
8.3. Requirements Class: Record Components Package ...54
8.4. Requirements Class: Choice Components Package ...59
8.5. Requirements Class: Block Components Package ... 61

OPEN GEOSPATIAL CONSORTIUM 24-014 iii

8.6. Requirements Class: Geometry Components Package ... 69
8.7. Requirements Class: Simple Encodings Package .. 71
8.8. Requirements Class: Advanced Encodings Package .. 74

9. JSON IMPLEMENTATION (NORMATIVE) ... 78
9.1. Requirements Class: Basic Types and Simple Components JSON Schemas 78
9.2. Requirements Class: Record Components JSON Schema ..92
9.3. Requirements Class: Choice Components JSON Schema ..96
9.4. Requirements Class: Block Components JSON Schema .. 98
9.5. Requirements Class: Geometry Components JSON Schema ..105
9.6. Requirements Class: Simple Encodings JSON Schema ...107
9.7. Requirements Class: Advanced Encodings JSON Schema ...109

10. DATA BLOCKS AND STREAMS ENCODING RULES (NORMATIVE) 116
10.1. Requirements Class: General Encoding Rules .. 116
10.2. Requirements Class: JSON Encoding Rules ..119
10.3. Requirements Class: Text Encoding Rules ...125
10.4. Requirements Class: Binary Encoding Rules ...132

ANNEX A (NORMATIVE) CONFORMANCE CLASS ABSTRACT TEST SUITE 140
A.1. Core Conformance Classes ...140
A.2. UML Conformance Classes .. 144
A.3. JSON Conformance Classes ...160
A.4. Datastream Encoding Conformance Classes .. 171

ANNEX B (INFORMATIVE) EXAMPLES ... 182
B.1. Text Encoding Rules Examples ...182
B.2. JSON Encoding Rules Examples ..190

ANNEX C (INFORMATIVE) RELATIONSHIP WITH OTHER ISO MODELS 197
C.1. Feature model ..197
C.2. Coverage model ...197

ANNEX D (INFORMATIVE) REVISION HISTORY .. 199

BIBLIOGRAPHY .. 202

LIST OF TABLES

Table 1 — Requirements Classes .. 4
Table 2 — Allowed Binary Data Types ... 111
Table 3 — Simple Component to JSON Value Types Mapping ...121
Table 4 — Range Component to JSON Mapping ...122

OPEN GEOSPATIAL CONSORTIUM 24-014 iv

LIST OF FIGURES

Figure 2 — Internal Package Dependencies .. 30
Figure 3 — External Package Dependencies ... 31
Figure 4 — Scalar Data Components .. 33
Figure 5 — Range Data Components ..33
Figure 6 — Basic types for pairs of scalar types .. 35
Figure 7 — AbstractDataComponent Class ... 35
Figure 8 — AbstractSimpleComponent Class ..37
Figure 9 — Boolean Class .. 40
Figure 10 — Text Class ... 40
Figure 11 — Category Class .. 41
Figure 12 — Count Class ..42
Figure 13 — Quantity Class ...43
Figure 14 — Time Class ..44
Figure 15 — CategoryRange Class ...47
Figure 16 — CountRange Class .. 48
Figure 17 — QuantityRange Class ... 49
Figure 18 — TimeRange Class ...49
Figure 19 — Quality Union ..50
Figure 20 — NilValues Class ..51
Figure 21 — AllowedTokens Class ... 52
Figure 22 — AllowedValues Class .. 52
Figure 23 — AllowedTimes Class ... 53
Figure 24 — Simple Component Unions .. 54
Figure 25 — Record Data Components ..55
Figure 26 — DataRecord Class ... 56
Figure 27 — Vector Class ...57
Figure 28 — DataChoice Class ... 60
Figure 29 — Array Components ...62
Figure 30 — DataArray Class .. 63
Figure 31 — Matrix Class ...67
Figure 32 — DataStream Class ... 68
Figure 33 — Geometry Class ...70
Figure 34 — Simple Encodings ... 72
Figure 35 — TextEncoding Class .. 73
Figure 36 — BinaryEncoding Class .. 75

OPEN GEOSPATIAL CONSORTIUM 24-014 v

LIST OF RECOMMENDATIONS

REQUIREMENTS CLASS 1: CORE CONCEPTS ... 17

REQUIREMENTS CLASS 2: SIMPLE COMPONENTS UML PACKAGE .. 31

REQUIREMENTS CLASS 3: RECORD COMPONENTS UML PACKAGE ..54

REQUIREMENTS CLASS 4: CHOICE COMPONENTS UML PACKAGE ...59

REQUIREMENTS CLASS 5: BLOCK COMPONENTS UML PACKAGE ...61

REQUIREMENTS CLASS 6: GEOMETRY COMPONENTS UML PACKAGE69

REQUIREMENTS CLASS 7: SIMPLE ENCODINGS UML PACKAGE ...71

REQUIREMENTS CLASS 8: ADVANCED ENCODINGS UML PACKAGE .. 74

REQUIREMENTS CLASS 9: BASIC TYPES AND SIMPLE COMPONENTS JSON SCHEMAS
..78

REQUIREMENTS CLASS 10: RECORD COMPONENTS JSON SCHEMA 92

REQUIREMENTS CLASS 11: CHOICE COMPONENTS JSON SCHEMA ...96

REQUIREMENTS CLASS 12: BLOCK COMPONENTS JSON SCHEMA ...98

REQUIREMENTS CLASS 13: GEOMETRY COMPONENTS JSON SCHEMA 105

REQUIREMENTS CLASS 14: SIMPLE ENCODINGS JSON SCHEMA .. 107

REQUIREMENTS CLASS 15: ADVANCED ENCODINGS JSON SCHEMA109

REQUIREMENTS CLASS 16: GENERAL ENCODING RULES ...116

REQUIREMENTS CLASS 17: JSON ENCODING RULES ...119

REQUIREMENTS CLASS 18: TEXT ENCODING RULES ... 125

REQUIREMENTS CLASS 19: BINARY ENCODING RULES .. 132

REQUIREMENT 1 .. 18

REQUIREMENT 2 .. 19

REQUIREMENT 3 .. 19

REQUIREMENT 4 .. 20

REQUIREMENT 5 .. 21

REQUIREMENT 6 .. 21

REQUIREMENT 7 .. 23

REQUIREMENT 8 .. 23

REQUIREMENT 9 .. 24

REQUIREMENT 10 ..24

REQUIREMENT 11 ..26

OPEN GEOSPATIAL CONSORTIUM 24-014 vi

REQUIREMENT 12 ..27

REQUIREMENT 13 ..28

REQUIREMENT 14 ..33

REQUIREMENT 15 ..34

REQUIREMENT 16 ..34

REQUIREMENT 17 ..37

REQUIREMENT 18 ..37

REQUIREMENT 19 ..38

REQUIREMENT 20 ..38

REQUIREMENT 21 ..39

REQUIREMENT 22 ..39

REQUIREMENT 23 ..41

REQUIREMENT 24 ..42

REQUIREMENT 25 ..42

REQUIREMENT 26 ..44

REQUIREMENT 27 ..45

REQUIREMENT 28 ..45

REQUIREMENT 29 ..47

REQUIREMENT 30 ..47

REQUIREMENT 31 ..48

REQUIREMENT 32 ..49

REQUIREMENT 33 ..51

REQUIREMENT 34 ..51

REQUIREMENT 35 ..52

REQUIREMENT 36 ..55

REQUIREMENT 37 ..56

REQUIREMENT 38 ..57

REQUIREMENT 39 ..58

REQUIREMENT 40 ..58

REQUIREMENT 41 ..58

REQUIREMENT 42 ..60

REQUIREMENT 43 ..61

REQUIREMENT 44 ..62

OPEN GEOSPATIAL CONSORTIUM 24-014 vii

REQUIREMENT 45 ..63

REQUIREMENT 46 ..64

REQUIREMENT 47 ..67

REQUIREMENT 48 ..69

REQUIREMENT 49 ..69

REQUIREMENT 50 ..70

REQUIREMENT 51 ..71

REQUIREMENT 52 ..72

REQUIREMENT 53 ..74

REQUIREMENT 54 ..79

REQUIREMENT 55 ..79

REQUIREMENT 56 ..80

REQUIREMENT 57 ..81

REQUIREMENT 58 ..81

REQUIREMENT 59 ..84

REQUIREMENT 60 ..86

REQUIREMENT 61 ..92

REQUIREMENT 62 ..96

REQUIREMENT 63 ..98

REQUIREMENT 64 ... 103

REQUIREMENT 65 ... 103

REQUIREMENT 66 ... 105

REQUIREMENT 67 ... 107

REQUIREMENT 68 ... 108

REQUIREMENT 69 ... 108

REQUIREMENT 70 ... 109

REQUIREMENT 71 ... 110

REQUIREMENT 72 ... 111

REQUIREMENT 73 ... 111

REQUIREMENT 74 ... 111

REQUIREMENT 75 ... 113

REQUIREMENT 76 ... 113

REQUIREMENT 77 ... 114

OPEN GEOSPATIAL CONSORTIUM 24-014 viii

REQUIREMENT 78 ... 117

REQUIREMENT 79 ... 118

REQUIREMENT 80 ... 119

REQUIREMENT 81 ... 119

REQUIREMENT 82 ... 120

REQUIREMENT 83 ... 120

REQUIREMENT 84 ... 121

REQUIREMENT 85 ... 122

REQUIREMENT 86 ... 123

REQUIREMENT 87 ... 124

REQUIREMENT 88 ... 124

REQUIREMENT 89 ... 125

REQUIREMENT 90 ... 126

REQUIREMENT 91 ... 126

REQUIREMENT 92 ... 128

REQUIREMENT 93 ... 129

REQUIREMENT 94 ... 131

REQUIREMENT 95 ... 132

REQUIREMENT 96 ... 133

REQUIREMENT 97 ... 134

REQUIREMENT 98 ... 135

REQUIREMENT 99 ... 135

REQUIREMENT 100 ...137

RECOMMENDATION 1 ... 84

CONFORMANCE CLASS A.1 ...140

CONFORMANCE CLASS A.2: BASIC TYPES AND SIMPLE COMPONENTS UML PACKAGES
... 144

CONFORMANCE CLASS A.3: RECORD COMPONENTS UML PACKAGE152

CONFORMANCE CLASS A.4: CHOICE COMPONENTS UML PACKAGE155

CONFORMANCE CLASS A.5: BLOCK COMPONENTS UML PACKAGE156

CONFORMANCE CLASS A.6: GEOMETRY COMPONENTS UML PACKAGE158

CONFORMANCE CLASS A.7: SIMPLE ENCODINGS UML PACKAGE ..159

CONFORMANCE CLASS A.8: ADVANCED ENCODINGS UML PACKAGE 160

OPEN GEOSPATIAL CONSORTIUM 24-014 ix

CONFORMANCE CLASS A.9: BASIC TYPES AND SIMPLE COMPONENTS JSON SCHEMAS
... 160

CONFORMANCE CLASS A.10: RECORD COMPONENTS JSON SCHEMA 163

CONFORMANCE CLASS A.11: CHOICE COMPONENTS JSON SCHEMA 164

CONFORMANCE CLASS A.12: BLOCK COMPONENTS JSON SCHEMA164

CONFORMANCE CLASS A.13: GEOMETRY COMPONENTS JSON SCHEMA166

CONFORMANCE CLASS A.14: SIMPLE ENCODINGS JSON SCHEMA ..166

CONFORMANCE CLASS A.15: ADVANCED ENCODINGS JSON SCHEMA 168

CONFORMANCE CLASS A.16: GENERAL ENCODING RULES .. 171

CONFORMANCE CLASS A.17: JSON ENCODING RULES .. 173

CONFORMANCE CLASS A.18: TEXT ENCODING RULES ...176

CONFORMANCE CLASS A.19: BINARY ENCODING RULES ..178

OPEN GEOSPATIAL CONSORTIUM 24-014 x

I ABSTRACT

The primary focus of the SWE Common Data Model is to define and package data in a self-
describing and semantically enabled way. The main objective is to achieve interoperability, first
at the syntactic level, and later at the semantic level (by using ontologies and probably semantic
mediation) so that (sensor) data can be better understood by machines, processed automatically
in complex workflows and easily shared between intelligent nodes.

This standard is one of several implementation standards produced under OGC’s Connected
Systems activity, and is a revision of content that was previously developed in the context of
the Sensor Web Enablement initiative. These common data models are intended to be used in
various OGC standards, and in particular, SensorML and OGC API — Connected Systems.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, html, SWE, sensor, sensorweb, connected systems, json, encoding,
observation, command, tasking, property

OPEN GEOSPATIAL CONSORTIUM 24-014 xi

I I I PREFACE

The OGC SWE Common Data Model Encoding Standard is the result of work done by the
Connected Systems Working Group of the OGC, with the aim of modernizing the Sensor Web
Enablement (SWE) suite of Standards.

To increase the brevity and readability of this Standard, many OGC document titles are
shortened and/or abbreviated. Therefore, in the context of this document, the following phrases
are defined:

• “this Standard” shall be interpreted as equivalent to “OGC SWE Common Data Model
Encoding Standard;” and

• “SensorML” or “SensorML Standard” shall be interpreted as equivalent to “OGC SensorML
Encoding Standard.”

OPEN GEOSPATIAL CONSORTIUM 24-014 xii

IV SECURITY CONSIDERATIONS

No security considerations have been made for this Standard.

OPEN GEOSPATIAL CONSORTIUM 24-014 xiii

V SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• GeoRobotix, Inc.

• Botts Innovative Research, Inc.

• Cesium GS, Inc.

• 52°North Spatial Information Research GmbH

• Pelagis Data Solutions

• National Geospatial-Intelligence Agency (NGA)

VI SUBMITTERS

All questions regarding this submission should be directed to the editor or the submitters:

NAME AFFILIATION

Alex Robin (Editor) GeoRobotix, Inc.

Christian Autermann 52° North Spatial Information Research GmbH

Chuck Heazel Heazeltech

Mike Botts Botts Innovative Research, Inc.

Additional contributors to this Standard include the following:

NAME AFFILIATION

Arne Broering 52° North Initiative

Barry Reff US Department of Homeland Security (DHS)

Ingo Simonis iGSI

OPEN GEOSPATIAL CONSORTIUM 24-014 xiv

NAME AFFILIATION

Johannes Echterhoff iGSI

John Herring Oracle USA

Luis Bermudez SURA

Nick Garay Botts Innovative Research, Inc.

Peter Taylor CSIRO

VII FOREWORD

This document supersedes version 2.0 of the OGC® SWE Common Data Model Encoding
Standard (OGC 08-094r2).

The following changes have been made:

• Addition of the JSON encodings and schemas;

• Addition of the Geometry data component (modeled on OGC simple feature geometries);

• Removal of the XML encodings; and

• Technical revision and improved explanations in various clauses.

This release is not fully backward compatible with version 2.0, this concerns especially the
removal of the XML encodings.

OPEN GEOSPATIAL CONSORTIUM 24-014 xv

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 24-014 1

1 SCOPE

This standard defines low level data models for exchanging sensor related data between nodes
of the OGC® Connected Systems framework (previously Sensor Web Enablement (SWE)
framework). These models allow applications and/or servers to structure, encode and transmit
sensor datasets in a self-describing and semantically enabled way.

More precisely, the SWE Common Data Model is used to define the representation, nature,
structure and encoding of sensor related data. These four pieces of information, essential for
fully describing a data stream, are further defined in Clause 7.

The SWE Common Data Model is intended to be used for describing static data (files) as well as
dynamically generated datasets (on the fly processing), data subsets, process and web service
inputs and outputs, and real time streaming data and commands. All categories of sensor
observations are in scope ranging from simple in-situ temperature data to satellite imagery and
full motion video.

This standard defines JSON encodings for the dataset/datastream description, while the data
itself can be encoded in JSON, text or binary form. This standard is used by other existing OGC
standards such as the Sensor Model Language (SensorML) and OGC API — Connected Systems.
One goal of the SWE Common Data Model is to maintain the functionality and consistency
between these related standards.

OPEN GEOSPATIAL CONSORTIUM 24-014 2

2

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 24-014 3

2 CONFORMANCE

This Standard was written to be compliant with the OGC Specification Model – A Standard
for Modular Specification (OGC 08-131r3). Extensions of this Standard shall themselves be
conformant to the OGC Specification Model.

This Standard defines the following requirements classes and standardization targets:

Table 1 — Requirements Classes

REQUIREMENTS CLASS STANDARDIZATION TARGET

Core

Clause 7, Requirements Class:
Core Concepts (normative core)

Derived Models and Software Implementations

UML Models

Clause 8.2, Requirements
Class: Basic Types and Simple
Components Packages

Clause 8.3, Requirements Class:
Record Components Package

Clause 8.4, Requirements Class:
Choice Components Package

Clause 8.5, Requirements Class:
Block Components Package

Clause 8.6, Requirements Class:
Geometry Components Package

Clause 8.7, Requirements Class:
Simple Encodings Package

Clause 8.8, Requirements Class:
Advanced Encodings Package

Software Implementation or Encoding of the Conceptual Models

JSON Encodings

Clause 9.1, Requirements
Class: Basic Types and Simple
Components JSON Schemas

Clause 9.2, Requirements Class:
Record Components JSON
Schema

JSON Document

OPEN GEOSPATIAL CONSORTIUM 24-014 4

REQUIREMENTS CLASS STANDARDIZATION TARGET

Clause 9.3, Requirements Class:
Choice Components JSON
Schema

Clause 9.4, Requirements Class:
Block Components JSON Schema

Clause 9.5, Requirements Class:
Geometry Components JSON
Schema

Clause 9.6, Requirements Class:
Simple Encodings JSON Schema

Clause 9.7, Requirements Class:
Advanced Encodings JSON
Schema

Datastream Encoding Rules

Clause 10.3, Requirements Class:
Text Encoding Rules

Clause 10.4, Requirements Class:
Binary Encoding Rules

Clause 10.2, Requirements Class:
JSON Encoding Rules

Encoded Values Instance

Different types of implementations can seek conformance with this OGC® Standard.

• An implementation that defines a new data model shall at least conform with the core
requirements class.

• An encoding of the conceptual models (e.g., a protobuf encoding) shall implement at least
one of the requirements classes listed in the “UML Models” section of the table.

• An implementation that produces or consumes SWE Common data components encoded
in JSON shall implement at least one of the requirements classes listed in the “JSON
Encodings” section of the table.

• An implementation that produces or consumes datastreams encoded according to a
schema defined using SWE Common components shall implement at least one of the
requirements classes listed in the “Datastream Encoding Rules” section of the table.

The conformance classes corresponding to these requirements classes are presented in
Annex A (normative). Conformance with this Standard shall be checked using all the relevant
tests specified in Annex A. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing
Policies and Procedures and the OGC Compliance Testing web site.

OPEN GEOSPATIAL CONSORTIUM 24-014 5

3

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 24-014 6

3 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Policy SWG: OGC 08-131r3, The Specification Model — Standard for Modular specifications.
Open Geospatial Consortium (2009). https://portal.ogc.org/files/?artifact_id=
34762&version=2.

John Herring: OGC 06-103r4, OpenGIS Implementation Specification for Geographic information —
Simple feature access — Part 1: Common architecture. Open Geospatial Consortium
(2011). http://www.opengis.net/doc/is/sfa/1.2.1.

Linda van den Brink, Clemens Portele, Panagiotis (Peter) A. Vretanos: OGC 10-100r3, Geography
Markup Language (GML) simple features profile (with Corrigendum). Open Geospatial
Consortium (2011). https://portal.ogc.org/files/?artifact_id=42729.

ISO: ISO 8601:2019, Date and time — Representations for information interchange — Part 1: Basic
rules. International Organization for Standardization, Geneva (2019). https://www.iso.
org/standard/70907.html.. ISO (2019).

ISO: ISO 8601:2019, Date and time — Representations for information interchange — Part 2:
Extensions. International Organization for Standardization, Geneva (2019). https://
www.iso.org/standard/70908.html.. ISO (2019).

ISO/IEC: ISO/IEC 11404:2007, Information technology — General-Purpose Datatypes (GPD).
International Organization for Standardization, International Electrotechnical
Commission, Geneva (2007). https://www.iso.org/standard/39479.html.

ISO: ISO 19101-1:2014, Geographic information — Reference model — Part 1: Fundamentals.
International Organization for Standardization, Geneva (2014). https://www.iso.
org/standard/59164.html.

ISO: ISO 19103:2005, Conceptual Schema Language. ISO (2005).

ISO: ISO 19107:2003, Geographic information — Spatial schema. International Organization for
Standardization, Geneva (2003). https://www.iso.org/standard/26012.html.

ISO: ISO 19108:2002, Geographic information — Temporal schema. International Organization for
Standardization, Geneva (2002). https://www.iso.org/standard/26013.html.

ISO: ISO 19111:2007, Geographic information — Spatial referencing by coordinates. International
Organization for Standardization, Geneva (2007). https://www.iso.org/standard/
41126.html.

Unified Code for Units of Measure (UCUM), Version 2.1, November 2017, https://ucum.org/
ucum

OPEN GEOSPATIAL CONSORTIUM 24-014 7

https://portal.ogc.org/files/?artifact_id=34762&version=2
https://portal.ogc.org/files/?artifact_id=34762&version=2
http://www.opengis.net/doc/is/sfa/1.2.1
https://portal.ogc.org/files/?artifact_id=42729
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70908.html
https://www.iso.org/standard/70908.html
https://www.iso.org/standard/39479.html
https://www.iso.org/standard/59164.html
https://www.iso.org/standard/59164.html
https://www.iso.org/standard/26012.html
https://www.iso.org/standard/26013.html
https://www.iso.org/standard/41126.html
https://www.iso.org/standard/41126.html
https://ucum.org/ucum
https://ucum.org/ucum

Unicode Technical Std #18, Unicode Regular Expressions, Version 19, Oct. 2016

The Unicode Standard, Version 10.0, December 2017

T. Bray (ed.): IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format. RFC
Publisher (2017). https://www.rfc-editor.org/info/rfc8259.

H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub: IETF RFC 7946, The GeoJSON Format.
RFC Publisher (2016). https://www.rfc-editor.org/info/rfc7946.

M. Nottingham: IETF RFC 8288, Web Linking. RFC Publisher (2017). https://www.rfc-editor.org/
info/rfc8288.

JSON Schema Validation: A Vocabulary for Structural Validation of JSON, Version 2020-12,
https://json-schema.org/draft/2020-12/json-schema-validation.html

N. Freed, N. Borenstein: IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. RFC Publisher (1996). https://www.rfc-editor.
org/info/rfc2045.

P. Overell: IETF RFC 5234, Augmented BNF for Syntax Specifications: ABNF. RFC Publisher (2008).
https://www.rfc-editor.org/info/rfc5234.

IEEE: IEEE 754™-2008, IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and
Electronics Engineers (2013). https://ieeexplore.ieee.org/document/4610935.

L. Masinter: IETF RFC 2397, The “data” URL scheme. RFC Publisher (1998). https://www.rfc-
editor.org/info/rfc2397.

OPEN GEOSPATIAL CONSORTIUM 24-014 8

https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc7946
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://json-schema.org/draft/2020-12/json-schema-validation.html
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc5234
https://ieeexplore.ieee.org/document/4610935
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc2397

4

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 24-014 9

4 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Data Component

Element of sensor data definition corresponding to an atomic or aggregate data type

Note 1 to entry: A data component is a part of the overall dataset definition. The dataset
structure can then be seen as a hierarchical tree of data components.

4.2. Feature

Abstraction of real-world phenomena

[SOURCE: ISO 19101-1:2014, definition 4.1.11]

4.3. Observation

Act of measuring or otherwise determining the value of a property

[SOURCE: ISO 19156:2011, definition 4.11]

OPEN GEOSPATIAL CONSORTIUM 24-014 10

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

4.4. Observation Procedure

Method, algorithm or instrument, or system of these, which may be used in making an
observation

Note: In the context of the sensor web, an observation procedure is often composed of one or
more sensors that transform a real world phenomenon into digital information, plus additional
processing steps.

[SOURCE: ISO 19156:2011, definition 4.12]

4.5. Property

Facet or attribute of an object referenced by a name Example : Abby’s car has the color red,
where “color red” is a property of the car instance

[SOURCE: ISO 19143:2010]

4.6. Sensor

An entity capable of observing a phenomenon and returning an observed value. Type of
observation procedure that provides the estimated value of an observed property at its output.

Note 1 to entry: A sensor uses a combination of physical, chemical or biological means in order
to estimate the underlying observed property. At the end of the measuring chain electronic
devices often produce signals to be processed.

4.7. Sensor Data

List of digital values produced by a sensor that represents estimated values of one or more
observed properties of one or more features.

Note 1 to entry: Sensor data is usually available in the form of data streams or computer files.

OPEN GEOSPATIAL CONSORTIUM 24-014 11

4.8. Sensor-Related Data

List of digital values produced by a sensor that contains ancillary information that is not directly
related to the value of observed properties

EXAMPLE: sensor status, quality of measure, quality of service, battery life, etc. Such data
can be sent in the same data stream with measured values and when measured is sometimes
indistinguishable from sensor data.

OPEN GEOSPATIAL CONSORTIUM 24-014 12

6

CONVENTIONS

OPEN GEOSPATIAL CONSORTIUM 24-014 13

6 CONVENTIONS

6.1. Identifiers

The normative provisions in this standard are denoted by the URI

http://www.opengis.net/spec/SWE/3.0

All requirements and conformance tests that appear in this document are denoted by partial
URIs which are relative to this base.

6.2. Abbreviated terms

In this document the following abbreviations and acronyms are used or introduced:

• CRS: Coordinate Reference System

• CSML: Climate Science Modeling Language

• GPS: Global Positioning System

• ISO International Organization for Standardization

• MISB Motion Imagery Standards Board

• OGC Open Geospatial Consortium

• SAS Sensor Alert Service

• SensorML Sensor Model Language

• SI Système International (International System of Units)

• SOS Sensor Observation Service

• SPS Sensor Planning Service

• SWE Sensor Web Enablement

• TAI Temps Atomique International (International Atomic Time)

• UML Unified Modeling Language

• UTC Coordinated Universal Time

OPEN GEOSPATIAL CONSORTIUM 24-014 14

http://www.opengis.net/spec/SWE/3.0

• XML eXtensible Markup Language

• 1D One Dimensional

• 2D Two Dimensional

• 3D Three Dimensional

6.3. UML Notation

The diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram. The UML notations used in this standard are described in the
diagram below.

Figure 1

OPEN GEOSPATIAL CONSORTIUM 24-014 15

7

REQUIREMENTS CLASS:
CORE CONCEPTS
(NORMATIVE CORE)

OPEN GEOSPATIAL CONSORTIUM 24-014 16

7 REQUIREMENTS CLASS: CORE CONCEPTS
(NORMATIVE CORE)

REQUIREMENTS CLASS 1: CORE CONCEPTS

IDENTIFIER /req/core

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE CLASS Conformance class A.1: /conf/core

NORMATIVE STATEMENTS

 Requirement 1: /req/core/core-concepts-used
 Requirement 2: /req/core/boolean-rep-valid
 Requirement 3: /req/core/categorical-rep-valid
 Requirement 4: /req/core/numerical-rep-valid
 Requirement 5: /req/core/countable-rep-valid
 Requirement 6: /req/core/textual-rep-valid
 Requirement 7: /req/core/semantics-defined
 Requirement 8: /req/core/semantics-resolvable
 Requirement 9: /req/core/temporal-frame-defined
 Requirement 10: /req/core/spatial-frame-defined
 Requirement 11: /req/core/nil-reasons-defined
 Requirement 12: /req/core/aggregates-model-valid
 Requirement 13: /req/core/encoding-method-valid

7.1. Introduction

The generic SWE Common data model defined by this standard aims at providing verbose
information to robustly describe sensor related datasets. This Standard defines Sensor Data as
data resulting from the observation of properties of virtual or real world objects (or features) by
any type of Observation Procedure (See the Observation and Measurements specification OGC
07-022r1 for a more complete description of the observation model used in SWE).

Sensor related datasets however are not limited to sensor observation values, but can also
include auxiliary information such as status or ancillary data. In the following sections, this
Standard will use the term ‘property’ in a broader sense, which does not necessarily imply
“property measured by a sensor.”

A dataset is composed of Data Components whose values need to be put into context in order
to be fully understood and interpreted, by either humans or machines. The SWE Common Data

OPEN GEOSPATIAL CONSORTIUM 24-014 17

Model provides several pieces of information that are necessary to achieve this goal. More
precisely, the SWE Common Data Model covers the following aspects of datasets description:

• Representation

• Nature of data and semantics (by using identifiers pointing to external semantics)

• Quality

• Structure

• Encoding

This requirement class constitutes the core of this standard. The standardization target types of
this core are all models or software implementations seeking compliance with this standard.

REQUIREMENT 1

IDENTIFIER /req/core/core-concepts-used

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
A derived model or software implementation shall correctly implement the concepts defined in the
core of this standard.

7.2. Data Representation

Data representation deals with how property values are represented and stored digitally. Each
component (or field) in a dataset carries a value that represents the state of a property. This
representation will vary depending on the nature of the method used to capture the data and/
or the target usage. For instance, a fluid temperature can be represented as a decimal number
expressed in degrees Celsius (i.e., 25.4 °C), or as a categorical value taken from a list of possible
choices (such as “freezing, cold, normal, warm, hot”).

The following types of representations have been identified: Boolean, Categorical, Continuous
Numerical, Discrete Countable and Textual. The paragraphs below explain basic features of each
of these representation types.

7.2.1. Boolean

A Boolean representation of a property can take only two values that should be “true/false”
or “yes/no”. In a sense, this type of representation is a particular case of the categorical
representation with only two predefined options.

OPEN GEOSPATIAL CONSORTIUM 24-014 18

Example: Examples
Motion detectors output can be represented by a boolean value – TRUE if there is motion in the
room, FALSE otherwise.

On/Off status of a measurement system can be represented by a boolean value – TRUE if the
system in on, FALSE if the system is off.

REQUIREMENT 2

IDENTIFIER /req/core/boolean-rep-valid

INCLUDED IN Requirements class 1: /req/core

STATEMENT A boolean representation shall at least consist of a boolean value.

The “Boolean” class described in Clause 8.2.4 is used to define a data component with a Boolean
representation.

7.2.2. Categorical

A categorical representation is a type of discrete representation of a property that only allows
picking a value from a well defined list of possibilities (i.e., categories). This list is called a code
space in this standard, following ISO 19103 terminology.

The different possible values constituting a code space are usually listed explicitly in an out-of-
band dictionary or ontology. This is necessary because each value should be defined formally
and unambiguously, so that it can be interpreted correctly.

Example: Examples
Biological or chemical species data is usually represented by a categorical data component that
can leverage an existing controlled vocabulary.

A camera mode can be represented by a categorical value: AUTO_FOCUS, MANUAL_FOCUS,
etc.

REQUIREMENT 3

IDENTIFIER /req/core/categorical-rep-valid

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
A categorical representation shall at least consist of a category identifier and information describing
the value space of this identifier.

OPEN GEOSPATIAL CONSORTIUM 24-014 19

The “Category” class described in Clause 8.2.6 is used to define a data component with a
categorical representation.

7.2.3. Numerical (continuous)

Perhaps the most used representation of a property value, especially in the science and technical
communities, is the numerical one, as the majority of properties measured by sensors can be
represented by numbers.

Numerical representation is often used for continuous values and, in this case, the
representation consists of a decimal (often floating point) number associated to a scale or unit
of measure. The unit specification is mandatory even for quantities such as ratios that have no
physical unit (in this case a scale factor is provided such as 1, 1/100 for percents, 1/1000 for per
thousands, etc.).

Example: Examples
Temperature measurements can be represented by a number associated to a unit such as
degrees Celsius or Fahrenheit: 23.51°C, 94°F.

A velocity vector is composed of several values (usually 2 or 3) associated to a unit of speed: [1.0
2.0 3.0] m/s.

REQUIREMENT 4

IDENTIFIER /req/core/numerical-rep-valid

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
A continuous numerical representation shall at least consist of a decimal number and the scale (or
unit) used to express this number.

The “Quantity” class described in Clause 8.2.8 is used to define a data component with a
decimal representation and a unit of measure.

7.2.4. Countable (discrete)

Discrete countable properties are also of interest and are most accurately captured with a
numerical integer representation. They do not require a unit since the unit is always the unit of
count (i.e., the person if we are counting persons, the pixel if we are counting pixels, etc). Note
that continuous properties can also be represented as integers with certain combinations of
scale and precision. This case should not be confused with the countable properties described
here.

Example: Examples
Array indices and sizes are countable properties with no unit.

OPEN GEOSPATIAL CONSORTIUM 24-014 20

There are numerous other countable properties such as number of persons, number of bytes,
number of frames, etc. for which the unit is obvious from the definition of the property itself.

A discrete countable representation should not be confused with a continuous numerical
representation whose scale and precision allow encoding the property value as an integer.

REQUIREMENT 5

IDENTIFIER /req/core/countable-rep-valid

INCLUDED IN Requirements class 1: /req/core

STATEMENT A countable representation shall at least consist of an integer number.

The “Count” class described in Clause 8.2.7 is used to define a data component with an integer
representation and no unit of measure.

7.2.5. Textual

A textual representation is useful for providing human readable data, expressed in natural
language, as well as various alpha numeric tokens that cannot be assigned to well-defined
categories.

Example: Examples
Comments or notes written by humans (ex: data annotations, quality assessments).

Machine generated messages for which there is no taxonomy (ex: automatic alert messages).

Alphanumeric identifier schemes leading to a large number of possibilities that cannot be
explicitly enumerated (ex: UUID, ISBN code, URN).

REQUIREMENT 6

IDENTIFIER /req/core/textual-rep-valid

INCLUDED IN Requirements class 1: /req/core

STATEMENT A textual representation shall at least consist of a character string.

The “Text” class described in Clause 8.2.5 is used to define a data component with a textual
representation.

OPEN GEOSPATIAL CONSORTIUM 24-014 21

7.2.6. Constraints

Constraints can be added to some representation types to further restrict the set of possible
values allowed for a given property.

• A boolean representation cannot be restricted further since it is already limited to only
two possibilities.

• A numerical representation can be constrained by a list of allowed values and/or bounded
or unbounded intervals. A decimal representation can also be constrained by the number
of significant digits after the decimal point.

• A categorical representation can be constrained by a list of possible choices, which should
be a subset of the list of possibilities defined by the code space.

• A textual representation can be constrained by a pattern expressed in a well known
language such as regular expression syntax.

These constraints apply only to the value of the data component to which they are associated.
They shall not be used to express constraints on other data components or on any other
information than the value.

Example: Examples
A decimal representation of an angular property such as latitude can be constrained to the [-90°
90°] interval.

A temperature reading produced by a sensor can be constrained to the [-50°C +250°C] range.

7.3. Nature of Data

We define “Nature of data” as the information needed to understand what property the value
represents. It is thus connected to semantics and the semantic details are often provided by
external sources such as dictionaries, taxonomies or ontologies. Note that it is independent of
the type of representation used and it does not include information about how the data was
actually measured or acquired. This lineage information should be described by other means as
explained in Clause 7.4.3.

7.3.1. Human readable information

The first means by which nature of data can be communicated is through human readable text.
The data component’s description, which is present in all data types defined in this specification,
can hold any length of text for this purpose. The data component’s label is used to carry short

OPEN GEOSPATIAL CONSORTIUM 24-014 22

human readable information (i.e., a short name); this is useful to allow data consumers to quickly
identify the represented property.

It is not recommended to use the concepts of “description” and “label” in a way that they contain
robust semantic information (i.e., that machines can rely upon). The content of such fields is
intended to be interpretable solely by humans.

7.3.2. Robust semantics

All SWE Common data types allow for associating each data component in a dataset with the
definition of the Property that it represents.

REQUIREMENT 7

IDENTIFIER /req/core/semantics-defined

INCLUDED IN Requirements class 1: /req/core

STATEMENT All data values shall be associated with a clear definition of the property that the value represents.

It is recommended that a model uses references to out-of-band dictionaries rather than inline
information because semantics are supposed to be shared by multiple datasets. Using references
also helps by providing a framework that is independent from the actual semantic technology
used.

The SWE Common UML models and JSON schemas described in this standard can be used in
combination with any semantic web technology. It is thus possible to connect a SWE dataset
description to an existing taxonomy provided the external register exposes a unique identifier
for each entry.

These semantic references point to out-of-band semantic information that can be encoded in
various languages, such as the Ontology Web Language (OWL) or GML dictionary.

REQUIREMENT 8

IDENTIFIER /req/core/semantics-resolvable

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
If semantic information is provided by referencing out-of-band data, the locators or identifiers used
to point to this information shall be resolvable by some well-defined method.

OPEN GEOSPATIAL CONSORTIUM 24-014 23

7.3.3. Time, space and projected quantities

Temporal, spatial and other projected quantities need to be further defined by specifying the
reference frame and axis with respect to which the quantity is expressed. In SWE Common, any
simple component type can be associated to a particular axis of a given reference frame.

Example: Examples
Satellite position data can be defined as a vector of 3 components, expressed in the J2000 ECI
Cartesian frame, the 1st component being associated to the X axis, the 2nd to the Y axis and the
3rd to the Z axis.

Angular velocity data from an Inertial Measurement Unit can be defined as a vector of 3
components, expressed in the plane reference frame (for instance ENU defined by local East,
North, Up directions), the Euler components being mapped to X, Y, Z respectively.

Relative time data can be given with respect to an arbitrary epoch itself positioned in a well
defined reference frame such as TAI (from the French “Temps Atomique International” =
International Atomic Time).

REQUIREMENT 9

IDENTIFIER /req/core/temporal-frame-defined

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
A temporal quantity shall be expressed with respect to a well defined temporal reference frame and
this frame shall be specified.

REQUIREMENT 10

IDENTIFIER /req/core/spatial-frame-defined

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
A spatial quantity shall be expressed with respect to the axes of a well defined spatial reference
frame and this frame shall be specified.

The “Time” class described in Clause 8.2.9 is designed for carrying a temporal reference frame or
a time of reference in the case of relative time data.

The “Vector” class detailed in Clause 8.3.2 is a special type of record used to assign a reference
frame to all its child-components.

OPEN GEOSPATIAL CONSORTIUM 24-014 24

The “Matrix” class defined in Clause 8.5.2 allows the definition of higher order tensor quantities.

This standard does not impose requirements on the type of reference frames that a
standardization target shall support. Standards that are dependent on this specification can (and
often should) however define a minimum set of reference frames that shall be supported by all
implementations.

7.4. Data Quality

Quality information can be essential to the data consumer and the SWE Common Data Model
provides simple and flexible ways to associate qualitative information with each component of a
dataset.

7.4.1. Simple quality information

Simple quality information can be associated with any scalar data component, in the form of
another scalar or range value. The quality information defined here applies solely to the value
of the associated data component (i.e., the measurement value) and, depending on its data type,
quality can be represented by a numerical, categorical or textual value, or by a range of values.

This quality information can be static, i.e., constant over the whole dataset, or dynamic
and provided with the data itself. In this case, the quality value is in fact carried by another
component of the dataset (and described in SWE Common as such).

The exact type of quality information provided should be specified via semantic tagging just like
with any other property in SWE Common.

Example: Examples
Examples of quality measures are “absolute accuracy”, “relative accuracy”, “absolute precision”,
“tolerance”, and “confidence level.”

Quality related comments can also describe operating conditions, such as “sensor contained
blockage and was removed” or “engineer on site, values may be affected.” This information can
inform the user of potential inaccuracy in the data across certain periods.

7.4.2. Nil Values

The concept of NIL value is used to indicate that the actual value of a property cannot be given
in the data stream, and that a special code (i.e., reserved value) is used instead. It is thus a kind
of quality information. The reason for which the value is not included is essential for a good
interpretation of the data, so each reserved value is associated to a well-defined reason. In that
sense, a NIL value definition is essentially a mapping between a reserved value and a reason.

Each component of a dataset can define one or several NIL values corresponding to one or more
reasons.

OPEN GEOSPATIAL CONSORTIUM 24-014 25

Example: Example
In low level satellite imagery with, for instance, 8-bits per channel, the imagery metadata often
defines: - A reserved value to indicate that a pixel value was “Below Detection Limit” usually set
to ‘0’; and - A reserved value to indicate that a pixel value was “Above Detection Limit” usually
set to ‘255’.

REQUIREMENT 11

IDENTIFIER /req/core/nil-reasons-defined

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
A model of a NIL value shall always include a mapping between the selected reserved value and a
well-defined reason.

7.4.3. Full lineage and traceability

Full lineage and traceability is not in the scope of this specification. It is fully addressed by the
OGC® Sensor Model Language Standard, which allows robust definition of measurement chains,
with detailed information about the processing that takes place at each stage of the chain. This
means that complex lineage guarantying full traceability can be recorded in a SensorML process
chain, separately from the data itself.

Datasets can be associated to lineage information described using the Sensor Model Language
by using a metadata wrapper such as the “Observation” object defined in the OGC®
Observations, Measurements and Samples Specification (OMS). In this standard, the “procedure”
and “observer” properties of the “Observation” class allows attaching detailed information
about the measurement process (that is to say a description of how the data was obtained, i.e.,
lineage), to the data itself.

7.5. Data Structure

Data structure defines how individual pieces of data are grouped, ordered, repeated and
interleaved to form a complete data stream. The SWE Common models are based on data
structures commonly accepted in computer science and formalized in ISO 11404. Classical
aggregate datatypes are defined below:

• Record: consists of a list of fields, each of them being keyed by a field identifier and
defining its own type that can be any scalar or aggregate structure.

OPEN GEOSPATIAL CONSORTIUM 24-014 26

• Array: consists of many elements of the same type, usually indexed by an integer. The
element type can be any data structure including scalars and aggregates. The array size
constitutes the upper bound of the index.

• Choice: consists of a list of alternatives, each of them being keyed by a tag value and
having its own type. Only values for one alternative at a time are actually present in the
data stream described by such a structure.

REQUIREMENT 12

IDENTIFIER /req/core/aggregates-model-valid

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
Aggregate data structures shall be implemented in a way that is consistent with definitions of ISO
11404.

This standard also defines the concept of “data component” as any part of the structure of a
dataset, aggregate or not. It is thus the superset of all the aggregate structures described above
and of all scalar elements implementing the representations described in Clause 7.2.

Example: Example
A dataset representing a time series of observations acquired by a mobile sensor can be
encoded with various methods depending on the requirements:

• JSON encoding can be used when data needs to be easily styled to other markup formats
(such as HTML) or when precise error localization (in the case of an error in the stream) is
needed;

• ASCII encoding can be used to achieve a good compromise between readability and size
efficiency; and

• Binary encoding can be used (eventually with embedded compression) when pure
performance (i.e., size but also reading and writing throughput) is the main concern.

A data component can be both a data descriptor and a data container:

• A data component used as a data descriptor defines the structure, representation,
semantics, quality, and other metadata of a data set but does not include the actual data
values; and

• A data component used as a data container equally defines the dataset but also includes
the actual property values.

OPEN GEOSPATIAL CONSORTIUM 24-014 27

7.6. Data Encoding

A key concept of the SWE Common Data Model is the ability to separate data values themselves
from the description of the data structure, semantics and representation. This allows verbose
metadata to be used in order to robustly define the content and meaning of a dataset while still
being able to package the data values in very efficient manners.

Data encoding methods define how the data is packed as blocks that can efficiently be
transferred or stored using various protocols and formats. Different methods allow encoding the
data as JSON, text (CSV like), binary and even compressed or encrypted formats in a way that is
agnostic to a particular structure. This allows any of the encoding methods to be selected and
used based on a particular requirement, such as performance, re-use of tools, alignment with
existing standards and so on.

REQUIREMENT 13

IDENTIFIER /req/core/encoding-method-valid

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
All encoding methods shall be applicable to any arbitrarily complex data structures as long as they
are made of the data components described in Clause 7.5.

OPEN GEOSPATIAL CONSORTIUM 24-014 28

8

UML CONCEPTUAL
MODELS (NORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 24-014 29

8 UML CONCEPTUAL MODELS (NORMATIVE)

This standard defines normative UML models with which derived encoding models as well as all
future separate extensions should be compliant. The standardization target type for the UML
requirements classes defined in this clause is thus a software implementation or an encoding
model that directly implements the conceptual models defined in this standard.

8.1. Package Dependencies

The following packages are defined by the SWE Common Data Model:

Figure 2 — Internal Package Dependencies

This standard also has dependencies on external packages defined by other standards, namely
ISO 19103, ISO 19108 and ISO 19111, as show below:

OPEN GEOSPATIAL CONSORTIUM 24-014 30

Figure 3 — External Package Dependencies

8.2. Requirements Class: Basic Types and Simple
Components Packages

REQUIREMENTS CLASS 2: SIMPLE COMPONENTS UML PACKAGE

IDENTIFIER /req/uml-simple-components

TARGET TYPE Software Implementation or Encoding of the Conceptual Models

CONFORMANCE CLASS Conformance class A.2: /conf/uml-simple-components

PREREQUISITE Requirements class 1: /req/core

NORMATIVE STATEMENTS

 Requirement 14: /req/uml-simple-components/package-fully-
implemented
 Requirement 15: /req/uml-simple-components/iso19103-
implemented
 Requirement 16: /req/uml-simple-components/iso19108-
implemented
 Requirement 17: /req/uml-simple-components/definition-
present
 Requirement 18: /req/uml-simple-components/axis-valid
 Requirement 19: /req/uml-simple-components/axis-defined
 Requirement 20: /req/uml-simple-components/ref-frame-defined
 Requirement 21: /req/uml-simple-components/value-constraint-
valid
 Requirement 22: /req/uml-simple-components/value-attribute-
present

OPEN GEOSPATIAL CONSORTIUM 24-014 31

REQUIREMENTS CLASS 2: SIMPLE COMPONENTS UML PACKAGE

 Requirement 23: /req/uml-simple-components/category-
constraint-valid
 Requirement 24: /req/uml-simple-components/category-enum-
defined
 Requirement 25: /req/uml-simple-components/category-value-
valid
 Requirement 26: /req/uml-simple-components/time-ref-frame-
defined
 Requirement 27: /req/uml-simple-components/time-ref-time-
valid
 Requirement 28: /req/uml-simple-components/time-local-frame-
valid
 Requirement 29: /req/uml-simple-components/range-value-valid
 Requirement 30: /req/uml-simple-components/category-range-
valid
 Requirement 31: /req/uml-simple-components/category-range-
codespace-order
 Requirement 32: /req/uml-simple-components/time-range-valid
 Requirement 33: /req/uml-simple-components/nil-reason-
resolvable
 Requirement 34: /req/uml-simple-components/nil-value-type-
coherent
 Requirement 35: /req/uml-simple-components/allowed-values-
unit-coherent

Data components are the most essential part of the SWE Common Data Model. They are used
to describe all types of data structures, whether they represent data stream contents, tasking
messages, alert messages or process inputs/outputs.

The “Simple Components” UML package contains classes modeling simple data components,
that is to say scalar components and range components (i.e., value extents). These classes
implement concepts defined in the core section of this standard, and are designed to collect
information about nature, representation and quality of data. These include six scalar
types – Boolean, Text, Category, Count, Quantity, and Time – as well as four range types –
CategoryRange, CountRange, QuantityRange and TimeRange.

The “Basic Types” UML package from which the “Simple Components” package is dependent is
also included in this requirements class.

As an overview, conceptual models of the six scalar component types are shown on the
following UML class diagram:

OPEN GEOSPATIAL CONSORTIUM 24-014 32

Figure 4 — Scalar Data Components

Classes representing the four range data components are shown on the diagram below:

Figure 5 — Range Data Components

Details and requirements about each of these classes are given in the following sections.

REQUIREMENT 14

IDENTIFIER /req/uml-simple-components/package-fully-implemented

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

OPEN GEOSPATIAL CONSORTIUM 24-014 33

REQUIREMENT 14

STATEMENT
The encoding or software shall correctly implement all classes defined in the “Simple Components”
and “Basic Types” UML packages.

Several dependencies to ISO standards exist and are detailed below.

Data types from several packages of the ISO 19103 standard are used directly which makes this
requirement class dependent on it. These data types are “CharacterString,” “Boolean,” “Real,”
“Integer,” “Date,” “Time,” “DateTime,” “ScopedName,” “UnitOfMeasure,” and “UomTime.”

REQUIREMENT 15

IDENTIFIER /req/uml-simple-components/iso19103-implemented

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The encoding or software shall correctly implement all UML classes defined in ISO 19103 that are
referenced directly or indirectly by this standard.

The “TM_Position” data type from the “Temporal Reference System” package of the ISO 19108
standard is also used.

REQUIREMENT 16

IDENTIFIER /req/uml-simple-components/iso19108-implemented

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The encoding or software shall correctly implement all UML classes defined in ISO 19108 that are
referenced directly or indirectly by this standard.

The “SC_CRS” and “TM_Temporal_CRS” classifiers are referenced conceptually from ISO 19111
but their implementation is not required by this standard. Implementations are allowed to
simply use a Coordinate Reference System (CRS) identifier as a means of recognizing predefined
coordinate reference systems. The use of identifiers from the EPSG database is recommended
in this case. However, when new CRS definitions need to be created (e.g., engineering CRS
attached to sensors or platforms), the models defined in ISO 19111 shall be used.

8.2.1. Basic Data Types

This requirement class also includes requirements for the “Basic Types” UML package. This
package defines low level data types that are used as property types by classes defined in the
other packages.

OPEN GEOSPATIAL CONSORTIUM 24-014 34

Data types defined in this package relate to defining pairs of data types defined in ISO 19103
for use within classes describing value extents:

Figure 6 — Basic types for pairs of scalar types

8.2.2. Attributes shared by all data components

All SWE Common data component classes carry standard attributes inherited (transitively)
from the “AbstractDataComponent” and “AbstractSWEIdentifiable” classes (The
“AbstractSWEIdentifiable” class is actually defined in the “Basic Types” package but is shown
here for clarity). The class hierarchy is shown on the following UML diagram:

Figure 7 — AbstractDataComponent Class

Label and Description

The optional “label” and “description” attributes can be used to provide human readable
information describing what property the component represents. The “label” is meant to hold
a short descriptive name whereas “description” can carry any length of plain text. These two
fields should not be used to specify robust semantic information (see Clause 7.3.2). Instead, the
“definition” attribute described below should be used for that purpose.

Identifier

The optional “id” attribute allows assigning a unique identifier to the component, so that it can
be referenced later on. It can be used, for example, when defining the unique identifier of a
universal constant.

Definition

OPEN GEOSPATIAL CONSORTIUM 24-014 35

The “definition” attribute identifies the property (often an observed property in our context)
that the data component represents by using a scoped name. It should map to a controlled term
defined in a (web accessible) dictionary, registry or ontology. Such terms provide the formal
textual definition agreed upon by one or more communities, eventually illustrated by pictures
and diagrams as well as additional semantic information such as relationships to units and other
concepts, ontological mappings, etc.

Example: Examples
The definition may indicate that the value represents an atmospheric temperature using a URN
such as “urn:ogc:def:property:OGC::SamplingTime” referencing the complete definition in a
register.

The definition may also be a URL linking to a concept defined in an ontology such as [http//
www.opengis.net/def/OGC/0/SamplingTime]. The label could be “Sampling Time”, which allows
quick identification by human data consumers.

The description could be “Time at which the observation was made as measured by the on-
board clock” which adds contextual details.

Flags

The “optional” attribute is an optional flag indicating if the component value can be omitted in
the data stream. It is only meaningful if the component is used as a schema descriptor (i.e., not
for a component containing an inline value). It is ‘false’ by default.

The “updatable” attribute is an optional flag indicating if the component value is fixed or can be
updated. It is only applicable if the data component is used to define the input of a process (i.e.,
when used to define the input or parameter of a service, process or sensor, but not when used
to define the content of a dataset).

Example: Examples
The “updatable” flag can be used to identify what parameters of a system are changeable. The
exact semantics depends on the context. For example:

• In SensorML process chains, the “updatable” flag is used to identify process parameters
that can accept an incoming connection (and thus can get changed while the process is in
execution);

• In a SensorML System it is used to indicate whether or not a system parameter is
changeable, either by an operator (i.e., by turning a screw or inserting a jumper) or
remotely by sending a command; and

• In the Sensor Planning Service it is used to indicate if tasking parameters are changeable
by the client (i.e., by using the Update operation) after a task has been submitted.

OPEN GEOSPATIAL CONSORTIUM 24-014 36

8.2.3. Attributes shared by all simple data components

As shown on Figures 4 and 5, classes modeling simple data components inherit attributes from
the “AbstractSimpleComponent” class from which they are directly derived. This abstract class is
shown again below:

Figure 8 — AbstractSimpleComponent Class

The definition attribute inherited from the “AbstractDataComponent” class is mandatory on this
class and thus on all its descendants.

REQUIREMENT 17

IDENTIFIER /req/uml-simple-components/definition-present

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The “definition” attribute shall be specified by all instances of concrete classes derived from
“AbstractSimpleComponent”.

Reference Frames and Axes

It provides two attributes allowing the association of a data component to a reference frame and
an axis and thus implements core concepts introduced in Clause 7.3.3. These attributes are used
for a component which value is the projection of a property along a temporal or spatial axis.

The “referenceFrame” attribute identifies the reference frame (as defined by the “SC_CRS”
object) relative to which the coordinate value is given. The “axisID” attribute takes a string that
uniquely identifies one of the reference frame’s axes along which the coordinate value is given.

REQUIREMENT 18

IDENTIFIER /req/uml-simple-components/axis-valid

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The value of the “axisID” attribute shall correspond to the “axisAbbrev” attribute of one of the
coordinate system axes listed in the specified reference frame definition.

OPEN GEOSPATIAL CONSORTIUM 24-014 37

The union of these two attributes thus uniquely identifies one axis of one given reference
frame along which the value of the component is expressed. Note that even though the ISO
19111 model assigns units to CRS axes in addition to a direction, only the direction is used
in this standard and the unit is defined by the data component itself. This allows expressing
other quantities than the one predefined along the CRS’s axes such as velocity, acceleration or
rotation.

A component representing a projected quantity can be defined in isolation or can be contained
within a “Vector” or ”Matrix” aggregate when it contributes to the specification of a multi-
dimensional quantity (see Clauses 8.3.2 and 8.5.2). In this last case the reference frame
definition is usually inherited from the parent “Vector” or ”Matrix” instance and is thus omitted
from the scalar component itself. However, the “axisID” attribute still needs to be specified on
“Vector” components.

REQUIREMENT 19

IDENTIFIER /req/uml-simple-components/axis-defined

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The “axisID” attribute shall be specified by all instances of concrete classes derived from “Abstract
SimpleComponent” and representing a property projected along a spatial axis.

REQUIREMENT 20

IDENTIFIER /req/uml-simple-components/ref-frame-defined

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The “referenceFrame” attribute shall be specified by all instances of concrete classes derived from
“AbstractSimpleComponent” and representing a property projected along a spatial or temporal axis,
except if it is inherited from a parent aggregate (Vector or Matrix).

Quality

The optional “quality” attribute is used to provide simple quality information as discussed
in Clause 7.4.1. It is of type “Quality” which is a union of several classes as defined in
Clause 8.2.15. Its multiplicity is more than one which means that several quality measures can
be given on for a single data component.

Example: Example
Both precision and accuracy of the value associated to a data component can be specified
concurrently (see http://en.wikipedia.org/wiki/Accuracy_and_precision for a good explanation of
the difference between the two).

OPEN GEOSPATIAL CONSORTIUM 24-014 38

http://en.wikipedia.org/wiki/Accuracy_and_precision

Nil Values

The optional “nilValues” attribute is used to provide a list (i.e., one or more) of NIL values as
defined in Clause 7.4.2. The model of the “NilValues” class is detailed in Clause 8.2.16.

Concrete sub-classes of “AbstractSimpleComponent” can also define a “constraint” attribute that
allows further restriction of the possible values allowed by the corresponding representation.
This implements concepts defined in Clause 7.2.6. These constraints always apply to the value
of the property as represented by the corresponding data component whether this value is given
inline (data container case) or out-of-band (data descriptor case).

Constraints

REQUIREMENT 21

IDENTIFIER /req/uml-simple-components/value-constraint-valid

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The property value (formally the representation of the property value) attached to an instance of a
class derived from “AbstractSimpleComponent” shall satisfy the constraints specified by this instance.

All concrete sub-classes of “AbstractSimpleComponent” also define a “value” attribute. This
attribute is not defined in this abstract class because it has a different primitive type in each
concrete data component class (See following clauses).

REQUIREMENT 22

IDENTIFIER /req/uml-simple-components/value-attribute-present

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
All concrete classes derived from the “AbstractSimpleComponent” class (directly or indirectly) shall
define an optional “value” attribute and use it as defined by this standard.

The “value” attribute is always optional on any simple data component in order to allow for both
data descriptor and data container cases.

• When the data component is used as a data container, this attribute always carries the
value of the associated property (formally the representation of the estimated or asserted
value of the property). Quality information, nil values definitions and constraints thus
apply to the value taken by this attribute.

• When the data component is used as a data descriptor, its actual value is provided
somewhere else, often encoded as part of a larger data block. In this case, quality
information, nil values definitions and constraints apply to the out-of-band value and not

OPEN GEOSPATIAL CONSORTIUM 24-014 39

to the “value” attribute. Instead, the “value” attribute can then be used to specify a default
value.

Whether the data component is used as a descriptor or a container depends on the context and
should be explicitly stated by any standard that makes use of the SWE Common Data Model.

All UML classes in this package that derive from “AbstractSimpleComponent” define a “value”
attribute with the adequate primitive type and whose meaning is the one explained above.

8.2.4. Boolean Class

The “Boolean” class is used to specify a scalar data component with a Boolean representation as
defined in Clause 7.2.1. It derives from “AbstractSimpleComponent” and is shown below:

Figure 9 — Boolean Class

The “value” attribute of this class is of the boolean primitive type.

NOTE: The boolean primitive type is defined in ISO19103 and is not to be confused with the
“Boolean” class defined in this standard. This clause is the only place in this standard where the ISO
19103 boolean data type is referenced. All other occurrences of the “Boolean” class in this standard
refer to the class defined in this clause.

8.2.5. Text Class

The “Text” class is used to specify a component with a textual representation as defined in
Clause 7.2.5. It derives from “AbstractSimpleComponent” and is shown below:

Figure 10 — Text Class

Constraints

The “constraint” attribute allows further restricting the range of possible values by using the
“AllowedTokens” class defined in Clause 8.2.17. This class allows the definition of the constraint
by either enumerating the allowed tokens and/or by specifying a pattern that the value must
match.

OPEN GEOSPATIAL CONSORTIUM 24-014 40

Value

The “value” attribute (or the corresponding value in out-of-band data) is a string that must match
the constraint.

NOTE: The “Text” component can be used to wrap a string representing complex content such as an
expression in a programming language, xml or html content. This practice should however be used only
for systems that don’t require high level of interoperability since the client must know how to interpret
the content. Also care must be taken to properly escape such content before it is inserted in a JSON
document or in a SWE Common data stream.

8.2.6. Category Class

The “Category” class is used to specify a scalar data component with a categorical
representation as defined in Clause 7.2.2. It derives from “AbstractSimpleComponent” and is
shown below:

Figure 11 — Category Class

Code Space

The “codeSpace” attribute is of type “Dictionary” and allows listing and defining the meaning
of all possible values for this component. It is expected that instances of the “Dictionary” class
will usually be referenced (rather than included inline) by implementations of this class since the
code space definition is usually obtained from a controlled vocabulary maintained at a remote
location. This type of implementation is the one chosen in the JSON encodings defined by this
standard.

Constraints

The “constraint” attribute allows further restricting the list of possible values by using the
“AllowedTokens” class defined in Clause 8.2.17. This is usually done by specifying a limited list of
possible values, which have to be extracted from the code space.

REQUIREMENT 23

IDENTIFIER /req/uml-simple-components/category-constraint-valid

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
When an instance of the “Category” class specifies a code space, the list of allowed tokens provided
by the “constraint” property of this instance shall be a subset of the values listed in this code space.

OPEN GEOSPATIAL CONSORTIUM 24-014 41

It is also possible to use this class without a code space, even though it is not recommended as
values allowed in the component would then not be formally defined. However, as the intent
of this class is to always represent a value extracted from a set of possible options, a constraint
shall be defined if no code space is specified.

REQUIREMENT 24

IDENTIFIER /req/uml-simple-components/category-enum-defined

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
An instance of the “Category” class shall either specify a code space or an enumerated list of allowed
tokens, or both.

Value

The “value” attribute (or the corresponding value in out-of-band data) is a string that must be
one of the items of the code space and also match the constraint.

REQUIREMENT 25

IDENTIFIER /req/uml-simple-components/category-value-valid

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
When an instance of the “Category” class specifies a code space, the value of the property
represented by this instance shall be equal to one of the entries of the code space.

8.2.7. Count Class

The “Count” class is used to specify a scalar data component with a discrete countable
representation as defined in Clause 7.2.4. It derives from “AbstractSimpleComponent” and is
shown below:

Figure 12 — Count Class

Constraints

The “constraint” attribute can be used to restrict the range of possible values to a list of inclusive
intervals and/or single values using the “AllowedValues” class defined in Clause 8.2.18. Numbers

OPEN GEOSPATIAL CONSORTIUM 24-014 42

used to define these constraints should be integers and expressed in the same scale as the
count value itself. The “significantFigures” constraint allowed by the “AllowedValues” class is not
applicable to the “Count” class.

Value

The “value” attribute (or the corresponding value in out-of-band data) is an integer that must be
within one of the constraint intervals or exactly one of the enumerated values.

8.2.8. Quantity Class

The “Quantity” class is used to specify a component with a continuous numerical representation
as defined in Clause 7.2.3. It derives from “AbstractSimpleComponent” and is shown below:

Figure 13 — Quantity Class

Unit of Measure (UoM)

In addition to attributes inherited from the “AbstractSimpleComponent” class, this class provides
a unit of measure declaration through the “uom” attribute. This unit is essential for the correct
interpretation of data represented as decimal numbers and is thus mandatory. Quantities with
no physical unit still have a scale (such as unity, percent, per thousands, etc.) that must be
specified with this property.

Constraints

The “constraint” attribute is used to restrict the range of possible values to a list of inclusive
intervals and/or single values using the “AllowedValues” class defined in Clause 8.2.18. Numbers
used to define these constraints must be expressed in the same unit as the quantity value itself.
Additionally, it is possible to constrain the number of significant digits that can be added after
the decimal point.

Value

The “value” attribute (or the corresponding value in out-of-band data) is a real value that is
within one of the constraint intervals or exactly one of the enumerated values, and most
importantly is expressed in the unit specified.

8.2.9. Time Class

The “Time” class is used to specify a component with a date-time representation and whose
value is projected along the axis of a temporal reference frame. This class is also necessary

OPEN GEOSPATIAL CONSORTIUM 24-014 43

to specify that a time value is expressed in a calendar system. This class derives from
“AbstractSimpleComponent” and is shown below:

Figure 14 — Time Class

Time is treated as a special type of continuous numerical quantity that can be either expressed
as a scalar number with a temporal unit or a calendar date with or without a time of day.
Consequently, this class has all properties of the “Quantity” class, plus some others that are
specific to the treatment of time.

Reference Frame

As time is always expressed relative to a particular reference frame, the “referenceFrame”
attribute inherited from the parent class “AbstractSimpleComponent” shall always be set on
instances on this class unless the default ‘UTC’ is meant.

REQUIREMENT 26

IDENTIFIER /req/uml-simple-components/time-ref-frame-defined

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The “referenceFrame” attribute inherited from “AbstractSimple Component” shall always be set on
instance of the “Time” class unless the UTC temporal reference system is used.

Note that specifying the frame of reference is required even when using ISO notation because
there can be ambiguities between several universal time references such as UTC, TAI, GPS, UT1,
etc… Differences between these different time reference systems are indeed in the order of a
few seconds (and increasing), that is to say not negligible in various situations.

Example: Example
J2000 is a well known epoch in astronomy and is equal to:

• January 1, 2000, 11:59:27.816 in the TAI time reference system

• January 1, 2000, 11:58:55.816 in the UTC time reference system

• January 1, 2000, 11:59:08.816 in the GPS time reference system

These offsets are not always constant and depend on the irregular insertion of leap seconds in
UTC.

OPEN GEOSPATIAL CONSORTIUM 24-014 44

The “axisID” attribute inherited from the parent class does not need to be set since a time
reference system always has a single dimension. However it can be set to ‘T’ for consistency
with spatial axes.

Reference Time

The “referenceTime” attribute is used to specify a different time origin than the one sometimes
implied by the “referenceFrame”. This is used to express a time relative to an arbitrary epoch
(i.e., different from the origin of a well known reference frame). The new time origin specified by
“referenceTime” shall be expressed with respect to the reference frame specified and is of type
“DateTime”. This forces the definition of this origin as a calendar date/time combination.

REQUIREMENT 27

IDENTIFIER /req/uml-simple-components/time-ref-time-valid

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The value of the “referenceTime” attribute shall be expressed with respect to the system of reference
indicated by the “referenceFrame” attribute.

Example: Example
This class can be used to define a value expressed as a UNIX time (i.e., number of seconds
elapsed since January 1, 1970, 00:00:00 GMT) by:

• Specifying that the reference frame is the UTC reference system;

• Setting the reference time to January 1, 1970, 00:00:00 GMT; and

• Setting the unit of measure to seconds.

See definitions of some commonly accepted time standards at http://en.wikipedia.org/wiki/
Time_standard or http://stjarnhimlen.se/comp/time.html.

Local Frame

The optional “localFrame” attribute allows for the definition of a local temporal frame of
reference through the value of the component (i.e., we are specifying a time origin), as opposed
to the referenceFrame which specifies that the value of the component is in reference to this
frame.

REQUIREMENT 28

IDENTIFIER /req/uml-simple-components/time-local-frame-valid

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

OPEN GEOSPATIAL CONSORTIUM 24-014 45

http://en.wikipedia.org/wiki/Time_standard
http://en.wikipedia.org/wiki/Time_standard
http://stjarnhimlen.se/comp/time.html

REQUIREMENT 28

STATEMENT
The “localFrame” attribute of an instance of the “Time” class shall have a different value than the
“referenceFrame” attribute.

This feature allows chaining several relative time positions. This is similar to what is done with
spatial position in a geopositioning algorithm (and which is also supported by this standard using
the “Vector” class).

Example: Example 1
In the case of a whiskbroom scanner instrument, the “sampling time” is often expressed relative
to the “scan start time” which is itself given relative to the “mission start time”. It is important to
properly identify the chain of time reference systems at play so that the adequate process can
compute the absolute time of every measurement made (Note that it is often not practical to
record the absolute time of each single measurement when high sampling rates are used).

Example 2

A model forecast may represent its result times relative to the “run time” of the model for
efficient encoding. The values of the output will be in reference to this base epoch. In this
example the “referenceFrame” attribute of the model time is set to UTC and the “localFrame”
set as “ModelTime”. The model result would then define its “referenceFrame” as “ModelTime”,
allowing the time values to be encoded relative to the specified time origin.

Unit of Measure (UoM)

The “uom” attribute is mandatory since time is a continuous property that shall always be
expressed in a well defined scale. The only units allowed are obviously time units.

Constraints

Similarly to the “Quantity” class, the “constraint” attribute allows further restricting the range of
possible time values by using the “AllowedTimes” class defined in Clause 8.2.19.

Value

The “value” attribute (or the corresponding value in out-of-band data) is of type
“TimePosition” (see Clause 8.2.1) and must match the constraint.

8.2.10. Requirements applicable to all range classes

This UML package defines four classes “CategoryRange,” “CountRange,” “QuantityRange,” and
“TimeRange” that are used for representing extents of property values. These classes have
common requirements that are expressed in this clause.

The “value” attribute of all these classes takes a pair of values (with a datatype corresponding to
the representation) that represent the inclusive minimum and maximum bounds of the extent.
These values must both satisfy the constraints specified by an instance of the class, and be
expressed in the unit specified when applicable.

OPEN GEOSPATIAL CONSORTIUM 24-014 46

REQUIREMENT 29

IDENTIFIER /req/uml-simple-components/range-value-valid

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
Both values specified in the “value” property of an instance of a class representing a property range
(i.e., “CategoryRange”, “CountRange”, “QuantityRange” and “TimeRange”) shall satisfy the same
requirements as the scalar value used in the corresponding scalar classes.

NOTE: These classes are intentionally not derived from their scalar counterparts because they are
aggregates of two values and should be treated as such by implementations (especially by encoding
methods defined in this standard).

8.2.11. CategoryRange Class

The “CategoryRange” class is used to express a value extent using the categorical representation
of a property. It defines the same attributes as the “Category” class and those should be used in
the same way (see Clause 8.2.6):

Figure 15 — CategoryRange Class

REQUIREMENT 30

IDENTIFIER /req/uml-simple-components/category-range-valid

INCLUDED IN Requirements class 2: /req/uml-simple-components

STATEMENT
All requirements associated to the “Category” class defined in Clause 8.2.6 apply to the “Category
Range” class.

Code Space

The “CategoryRange” class also requires that the underlying code space is well-ordered (i.e.,
the ordering of the different categories in the code space is clearly defined) so that the range is
meaningful.

OPEN GEOSPATIAL CONSORTIUM 24-014 47

REQUIREMENT 31

IDENTIFIER /req/uml-simple-components/category-range-codespace-order

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The code space specified by the “codeSpace” attribute of an instance of the “CategoryRange” class
shall define a well-ordered set of categories.

Example: Example
A “CategoryRange” can be used to specify the approximate time of a geological event by
using names of geological eons, eras or periods such as [Archean — Proterozoic] or [Jurassic —
Cretaceous].

Value

The “value” attribute of the “CategoryRange” class takes a pair of tokens representing the
inclusive minimum and maximum bounds of the extent.

8.2.12. CountRange Class

The “CountRange” class is used to express a value extent using the discrete countable
representation of a property. It defines the same attributes as the “Count” class and those
should be used in the same way (see Clause 8.2.7):

Figure 16 — CountRange Class

Value

The “value” attribute of the “CountRange” class takes a pair of integer numbers representing the
inclusive minimum and maximum bounds of the extent.

8.2.13. QuantityRange Class

The “QuantityRange” class is used to express a value extent using the discrete countable
representation of a property. It defines the same attributes as the “Quantity” class and those
should be used in the same way (see Clause 8.2.8):

OPEN GEOSPATIAL CONSORTIUM 24-014 48

Figure 17 — QuantityRange Class

Value

The “value” attribute of the “QuantityRange” class takes a pair of real numbers representing the
inclusive minimum and maximum bounds of the extent.

8.2.14. TimeRange Class

The “TimeRange” class is used to express a value extent of a time property. It defines the same
attributes as the “Time” class and those should be used in the same way (see Clause 8.2.9):

Figure 18 — TimeRange Class

REQUIREMENT 32

IDENTIFIER /req/uml-simple-components/time-range-valid

INCLUDED IN Requirements class 2: /req/uml-simple-components

STATEMENT
All requirements associated to the “Time” class defined in Clause 8.2.9 apply to the “TimeRange”
class.

The “value” attribute of the “TimeRange” class takes a pair of values of type “TimePosition”
representing the inclusive minimum and maximum bounds of the extent.

8.2.15. Quality Union

The “Quality” class is a union allowing the use of different representations of quality.

OPEN GEOSPATIAL CONSORTIUM 24-014 49

Quality can indeed be specified as a decimal value, an interval, a categorical value or a textual
statement. In our model, quality objects are in fact data components used in a recursive way, as
shown on the following diagram:

Figure 19 — Quality Union

These different representations of quality are useful to cover most use cases where simple
quality information is provided with the data.

Example: Examples
“Quantity” is used to specify quality as a decimal number such as accuracy, variance and mean,
or probability.

“QuantityRange” is used to specify a bounded interval of variation such as a bi-directional
tolerance.

“Category” is used for a quality statement based on a well defined taxonomy such as
certification levels.

“Text” is used to include a textual quality statement such as a comment written by a field
operator.

The “definition” attribute of the chosen quality component helps to further define the type of
quality information given just like any other data component, and the “uom” should be specified
in the case of a decimal quality value or interval.

NOTE: Reusing data components to specify quality also allows the inclusion of quality values in the
data stream itself. This is useful if the quality is varying and re-estimated for each measurement. This
is for example the case in a GPS receiver where both horizontal and vertical errors are given along with
the geographic position.

8.2.16. NilValues Class

The “NilValues” class is used by all classes deriving from “AbstractSimpleComponent”. It allows
the specification of one or more reserved values that may be included in a data stream when
the normal measurement value is not available (see Clause 7.4.2). The UML model of this class is
given below:

OPEN GEOSPATIAL CONSORTIUM 24-014 50

Figure 20 — NilValues Class

An instance of the “NilValues” class is composed of one to many “NilValue” objects, each of
which specifies a mapping between a reserved value and a reason.

The mandatory “reason” attribute indicates the reason why a measurement value is not
available. It is a resolvable reference to a controlled term that provides the formal textual
definition of this reason (usually agreed upon by one or more communities).

REQUIREMENT 33

IDENTIFIER /req/uml-simple-components/nil-reason-resolvable

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The “reason” attribute of an instance of the “NilValue” class shall map to the complete human
readable definition of the reason associated with the NIL value.

The mandatory “value” attribute specifies the data value that would be found in the stream to
indicate that a measurement value is missing for the corresponding reason. The range of values
allowed here is the range of values allowed by the datatype of the parent data component.

REQUIREMENT 34

IDENTIFIER /req/uml-simple-components/nil-value-type-coherent

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

STATEMENT
The value used in the “value” property of an instance of the “NilValue” class shall be compatible with
the datatype of the parent data component object.

This means that when specifying NIL values for a “Quantity” component, only real values
are allowed (in most implementations, this includes NaN, -INF and INF) and for a “Count”
component only integer values are allowed.

OPEN GEOSPATIAL CONSORTIUM 24-014 51

Consequently, it is also impossible to specify NIL values for a “Boolean” data component since it
allows only two possible values. In this case a “Category” component should be used.

There are no restrictions on the choice of NIL values for “Category” and “Text” components since
their datatype is String.

8.2.17. AllowedTokens Class

The “AllowedTokens” class is used to express constraints on the value of a data component
represented by a “Text” or a “Category” class. The UML class is shown below:

Figure 21 — AllowedTokens Class

This class allows defining the constraint either by enumerating a list of allowed values by using
one or more “value” attributes and/or by specifying a pattern that the value must match. The
value must then either be one of the enumerated tokens or match the pattern.

8.2.18. AllowedValues Class

The “AllowedValues” class is used to express constraints on the value of a data component
represented by a “Count” or a “Quantity” class. The UML class is shown below:

Figure 22 — AllowedValues Class

This class allows constraints to be defined either by enumerating a list of allowed values and/or
a list of inclusive intervals. To be valid, the value must either be one of the enumerated values or
included in one of the intervals. The numbers used in the “value” and “interval” properties shall
be expressed in the same unit as the parent data component.

REQUIREMENT 35

IDENTIFIER /req/uml-simple-components/allowed-values-unit-coherent

INCLUDED
IN

Requirements class 2: /req/uml-simple-components

OPEN GEOSPATIAL CONSORTIUM 24-014 52

REQUIREMENT 35

STATEMENT
The scale of the numbers used in the “enumeration” and “interval” properties of an instance of the
“AllowedValues” class shall be expressed in the same scale as the value(s) that the constraint applies
to.

If the parent data component instance is used to define a projected quantity (i.e., when the
“axisID” is set), then the constraints given by this class are expressed along the same spatial
reference frame axis.

The number of significant digits can also be specified with the “significantFigures” property
though it is only applicable when used with a decimal representation (i.e., within the “Quantity”
class). This limits the total number of digits that can be included in the number represented
whether a scientific notation is used or not.

Example: Examples
All non-zero digits are considered significant. 123.45 has five significant figures: 1, 2, 3, 4 and 5.

Zeros between two non-zero digits are significant. 101.12 has five significant figures: 1, 0, 1, 1
and 2.

Leading zeros are not significant. 0.00052 has two significant figures: 5 and 2 and is equivalent
to 5.2×10-4 and would be valid even if the number of significant figures is restricted to 2.

Trailing zeros are significant. 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0 and would
thus be invalid if the number of significant figures is restricted to 4.

NOTE: The number of significant figures and/or an interval constraint (i.e., min/max values) can help
a software implementation choosing the best data type to use (i.e., ‘float’ or ‘double’, ‘short’, ‘int’ or
‘long’) to store values associated to a given data component.

8.2.19. AllowedTimes Class

The “AllowedTimes” class is used to express constraints on the value of a data component
represented by a “Time” class. The UML class is shown below:

Figure 23 — AllowedTimes Class

This class is almost identical to the “AllowedValues” class and in fact all properties are used in
the same way. The only difference with this class is that the “value” and “interval” properties
allow the use of time data types as defined in Clause 8.2.1.

OPEN GEOSPATIAL CONSORTIUM 24-014 53

The constraints given by this class are expressed along the same time reference frame axis as the
value attached to the parent data component.

8.2.20. Unions of simple component classes

Several useful groups of classes are also defined in this package. These unions can be used as
attribute types and they are shown on the following diagram:

Figure 24 — Simple Component Unions

The “AnyScalar” union groups all classes representing scalar components, numerical or not. The
“AnyNumerical” union includes all classes corresponding to numerical scalar representations.
The “AnyRange” union regroups all range components.

8.3. Requirements Class: Record Components Package

REQUIREMENTS CLASS 3: RECORD COMPONENTS UML PACKAGE

IDENTIFIER /req/uml-record-components

TARGET TYPE Software Implementation or Encoding of the Conceptual Models

CONFORMANCE CLASS Conformance class A.3: /conf/uml-record-components

PREREQUISITE Requirements class 2: /req/uml-simple-components

NORMATIVE STATEMENTS

 Requirement 36: /req/uml-record-components/package-fully-
implemented
 Requirement 37: /req/uml-record-components/record-field-
name-unique
 Requirement 38: /req/uml-record-components/vector-coord-
name-unique
 Requirement 39: /req/uml-record-components/vector-component-
no-ref-frame
 Requirement 40: /req/uml-record-components/vector-component-
axis-defined

OPEN GEOSPATIAL CONSORTIUM 24-014 54

REQUIREMENTS CLASS 3: RECORD COMPONENTS UML PACKAGE

 Requirement 41: /req/uml-record-components/vector-local-
frame-valid

As detailed in the following clauses, this package defines classes modeling record style
component types that can be nested to build complex structures from the simple component
types introduced in Clause 8.2.

The classes defined in this package are “DataRecord” and “Vector” (other aggregates are defined
in the “Choice Components” and “Block Components” packages defined in Clauses 8.4 and 8.5
respectively). The UML model is exposed below:

Figure 25 — Record Data Components

REQUIREMENT 36

IDENTIFIER /req/uml-record-components/package-fully-implemented

INCLUDED
IN

Requirements class 3: /req/uml-record-components

STATEMENT
The encoding or software shall correctly implement all classes defined in the “Record Components”
UML package.

As with simple component types, all data aggregates inherit attributes from the
“AbstractDataComponent” class. In this case, however, these attributes provide information
about the group as a whole rather than its individual components.

Example: Examples
A particular “DataRecord” might represent a standard collection of error codes coming from a
GPS device.

A particular “Vector” might represent the linear or angular velocity vector of an aircraft.

OPEN GEOSPATIAL CONSORTIUM 24-014 55

In these two cases, the “definition” attribute should reference a semantic description in a
registry, so that the data consumer knows what kind of data the aggregate represents. This
semantic description can then be interpreted appropriately by consuming clients: for example to
automatically decide how to style the data in visualization software.

8.3.1. DataRecord Class

The “DataRecord” class is modeled on the definition of ‘Record’ from ISO 11404. In this
definition, a record is a composite data type composed of one to many fields, each of which
having its own name and type definition. Thus it defines some logical collection of components
of any type that are grouped for a given purpose.

As shown on the following figure, the “DataRecord” class in SWE Common is based on a full
composite design pattern, such that each one of its “field” can be of a different type, including
simple component types as well as any aggregate component type.

Figure 26 — DataRecord Class

The “DataRecord” class derives from the “AbstractDataComponent” class, which is necessary
to enable the full composite pattern in which a “DataRecord” can be used to group scalar
components, but also other records, arrays and choices recursively.

Fields

Each “field” attribute can take an instance of any concrete sub-class of
“AbstractDataComponent”, which is the superset of all data component types defined in this
standard. The name of each field must be unique within a given “DataRecord” instance so that it
can be used as a key to uniquely identify and/or index each one of the record components.

REQUIREMENT 37

IDENTIFIER /req/uml-record-components/record-field-name-unique

INCLUDED
IN

Requirements class 3: /req/uml-record-components

STATEMENT
Each “field” attribute in a given instance of the “DataRecord” class shall be identified by a name that
is unique to this instance.

Example: Example
A “DataRecord” can group related values such as “temperature,” “pressure,” and “wind speed”
into a structure called “weather measurements.” This feature is often used to organize the data
and present it in a clear way to the user.

OPEN GEOSPATIAL CONSORTIUM 24-014 56

Similarly a “DataRecord” can be used to group values of several spectral bands in multi-spectral
sensor data. However, using a “DataArray” may be easier to describe hyper spectral datasets
with several hundreds of bands.

NOTE: The slightly different definition of record found in ISO 19103 provides for its schema to be
specified in an associated “RecordType”. When used as a descriptor, the “DataRecord” implements
the ISO 19103 “RecordType”. When used as a data container, it is self-describing: the descriptive
information is then interleaved with the record values.

8.3.2. Vector Class

The “Vector” class is used to express multi-dimensional quantities with respect to a well
defined referenced frame (usually a spatial or spatio-temporal reference frame). This is done by
projecting the quantity on one or several axes that define the reference frame and assigning a
value to each of the axis projections.

The “Vector” class is a special case of a record that takes a collection of coordinates that are
restricted to a numerical representation. Coordinates of a “Vector” can thus only be of type
“Quantity,” “Count,” or “Time.” Its UML diagram is shown below:

Figure 27 — Vector Class

Coordinates

Just like record fields, vector coordinates must have a unique name:

REQUIREMENT 38

IDENTIFIER /req/uml-record-components/vector-coord-name-unique

INCLUDED
IN

Requirements class 3: /req/uml-record-components

STATEMENT
Each “coordinate” attribute in a given instance of the “Vector” class shall be identified by a name that
is unique to this instance.

Reference Frame

This class contains a mandatory “referenceFrame” attribute that identifies the frame of
reference with respect to which the vector quantity is expressed. The coordinates of the vector
correspond to values projected on the axes of this frame.

OPEN GEOSPATIAL CONSORTIUM 24-014 57

The “referenceFrame” attribute is inherited by all components of the “Vector,” so that it shall
not be redefined for each coordinate. However the “axisID” attribute shall be specified for each
coordinate, in order to unambiguously indicate what axis of the reference frame it corresponds
to.

REQUIREMENT 39

IDENTIFIER /req/uml-record-components/vector-component-no-ref-frame

INCLUDED
IN

Requirements class 3: /req/uml-record-components

STATEMENT
The “referenceFrame” attribute shall be ommited from all data components used to define
coordinates of a “Vector” instance.

REQUIREMENT 40

IDENTIFIER /req/uml-record-components/vector-component-axis-defined

INCLUDED
IN

Requirements class 3: /req/uml-record-components

STATEMENT
The “axisID” attribute shall be specified on all data components used as children of a “Vector”
instance.

Local Frame

The optional “localFrame” attribute allows identifying the frame of interest, that is to say
the frame we are positioning with the coordinate values associated to this component (by
opposition to the “referenceFrame” that specifies the frame with respect to which the values of
the coordinates are expressed).

REQUIREMENT 41

IDENTIFIER /req/uml-record-components/vector-local-frame-valid

INCLUDED
IN

Requirements class 3: /req/uml-record-components

STATEMENT
The “localFrame” attribute of an instance of the “Vector” class shall have a different value than the
“referenceFrame” attribute.

Correctly identifying the local and reference frame is an important feature that allows chaining
several relative positions, something that is essential to correctly compute accurate position of
sensor data (especially remote sensing data).

Example: Example 1

OPEN GEOSPATIAL CONSORTIUM 24-014 58

A position vector (or location vector) is used to locate the origin of a frame of interest (the
local frame) relative to the origin of a frame of reference (the reference frame) through a linear
translation. It is composed of three coordinates of type “Quantity”, each with a definition
indicating that the coordinate represents a length expressed in the desired unit. The definition of
the “Vector” itself should also indicate that it is a “location vector.”

Example 2

An orientation vector is used to indicate the rotation of the axes of a frame of interest (the local
frame) relative to a frame of reference (the reference frame). It is composed of three coordinates
of type “Quantity” with a definition indicating an angular property. The “Vector” definition
should indicate the type of orientation vector such as “Euler Angles” or “Quaternion”. Depending
on the exact definition, the order in which the coordinates are listed in the vector may matter.

NOTE: “Vector” aggregates are most commonly used to describe position, orientation, velocity, and
acceleration within temporal and spatial domains, but can also be used to express relationships
between any two coordinate frames.

8.4. Requirements Class: Choice Components Package

REQUIREMENTS CLASS 4: CHOICE COMPONENTS UML PACKAGE

IDENTIFIER /req/uml-choice-components

TARGET TYPE Software Implementation or Encoding of the Conceptual Models

CONFORMANCE CLASS Conformance class A.4: /conf/uml-choice-components

PREREQUISITE Requirements class 2: /req/uml-simple-components

NORMATIVE STATEMENTS

 Requirement 42: /req/uml-choice-components/package-fully-
implemented
 Requirement 43: /req/uml-choice-components/choice-item-name-
unique

OPEN GEOSPATIAL CONSORTIUM 24-014 59

As detailed in the following clauses, this package defines a class modeling a disjoint union
component type. This aggregate type can be nested with other aggregate components to build
complex structures.

REQUIREMENT 42

IDENTIFIER /req/uml-choice-components/package-fully-implemented

INCLUDED
IN

Requirements class 4: /req/uml-choice-components

STATEMENT
The encoding or software shall correctly implement all classes defined in the “Choice Components”
UML package.

8.4.1. DataChoice Class

The “DataChoice” class (also called Disjoint Union) is modeled on the definition of ‘Choice’
from ISO 11404. It is a composite component that allows for a choice of child components.
By opposition to records that carry all their fields simultaneously, only one item at a time can
be present in the data when wrapped in a “DataChoice”. The following diagram shows the
“DataChoice” class as implemented in the SWE Common Data Model:

Figure 28 — DataChoice Class

This class implements a full composite pattern, so that each “item” can be any data component,
including simple and aggregate types.

The “choiceValue” attribute is used to represent the token value that would be present in the
data stream and that indicates the actual choice selection before the corresponding data can
be given (i.e., knowing what choice item was selected ahead of time is necessary for proper
decoding of encoded data streams).

Items

Each “item” attribute can take an instance of any concrete sub-class of
“AbstractDataComponent,” which is the superset of all data component types defined in this
standard. The name of each item shall be unique within a given “DataChoice” instance so that it
can be used as a key to uniquely identify and/or index each one of the choice components.

OPEN GEOSPATIAL CONSORTIUM 24-014 60

REQUIREMENT 43

IDENTIFIER /req/uml-choice-components/choice-item-name-unique

INCLUDED
IN

Requirements class 4: /req/uml-choice-components

STATEMENT
Each “item” attribute in a given instance of the “DataChoice” class shall be identified by a name that
is unique to this instance.

The “DataChoice” component is used to describe a data structure (or a part of the structure) that
can alternatively contain different types of objects. It can also be used to define the input of a
service or process that allows a choice of structures as its input.

Example: Examples
NMEA 0183 compatible devices can output several types of sentences in the same data stream.
Some sentences include GPS location, while some others contain heading or status data. This
can be described by a “DataChoice” which items represent all the possible types of sentences
output by the device.

A Sensor Planning Service (SPS) can define a choice in the tasking messages that the service can
accept, thus leaving more possibilities to the users.

8.5. Requirements Class: Block Components Package

REQUIREMENTS CLASS 5: BLOCK COMPONENTS UML PACKAGE

IDENTIFIER /req/uml-block-components

TARGET TYPE Software Implementation or Encoding of the Conceptual Models

CONFORMANCE CLASS Conformance class A.5: /conf/uml-block-components

PREREQUISITES
Requirements class 2: /req/uml-simple-components
Requirements class 7: /req/uml-simple-encodings

NORMATIVE STATEMENTS

 Requirement 44: /req/uml-block-components/package-fully-
implemented
 Requirement 45: /req/uml-block-components/array-component-
no-value
 Requirement 46: /req/uml-block-components/array-values-
properly-encoded
 Requirement 47: /req/uml-block-components/matrix-element-
type-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 61

REQUIREMENTS CLASS 5: BLOCK COMPONENTS UML PACKAGE

 Requirement 48: /req/uml-block-components/datastream-array-
valid

This package defines additional aggregate components for describing arrays of values that
are designed to be encoded as efficient data blocks. These additional aggregate components
are purposely defined in a separate requirement class because they require a more advanced
implementation for handling data values as encoded blocks.

The UML models for these additional aggregate components are shown below:

Figure 29 — Array Components

REQUIREMENT 44

IDENTIFIER /req/uml-block-components/package-fully-implemented

INCLUDED
IN

Requirements class 5: /req/uml-block-components

STATEMENT
The encoding or software shall correctly implement all classes defined in the “Block Components”
UML package.

The principle of these two classes is that the number and type of elements contained in the
array is defined once, while the actual array values are listed separately without being redefined
with each value. In order to achieve this, all array values are encoded as a single data block in
the “values” attribute. Consequently, these classes are restricted to cases where all elements
are homogeneous and thus can be described only once even though the array data may in fact
contain many of them.

This package also defines the “DataStream” class that is similar in principle to the “DataArray”
class but cannot be nested within other aggregate data components. It is a top level class that
encapsulates the description of a full data stream.

OPEN GEOSPATIAL CONSORTIUM 24-014 62

8.5.1. DataArray Class

The “DataArray” class is modeled on the corresponding definition of ISO 11404. This definition
states that an array is a collection of elements of the same type (as opposed to a record where
each field can have a different type), with a defined size. This class is shown on the following
UML diagram:

Figure 30 — DataArray Class

This class implements a full composite pattern, so that the “elementType” can be any data
component, including simple and aggregate types. It can be used to group identical scalar
components as well as records, choices and arrays in a recursive manner.

Element Count

The “elementCount” attribute is used to indicate the size of the array, that is to say the number
of elements of the given type in the array. Note that each element is not necessarily scalar but
can be a record, another array, etc.

Element Type

The content of the “elementType” attribute defines the exact structure of each element in the
array. The data component used and all of its children shall not include any inline values, as
these will be block encoded in the “values” attribute of the parent “DataArray.”

REQUIREMENT 45

IDENTIFIER /req/uml-block-components/array-component-no-value

INCLUDED
IN

Requirements class 5: /req/uml-block-components

STATEMENT
Data components that are children of an instance of a block component shall be used solely as data
descriptors. Their values shall be block encoded in the “values” attribute of the block component
rather than included inline.

However, the “DataArray” class itself, like any other data component can be used either as a
data descriptor or as a data container. To use it as a data descriptor the “encoding” and “values”
attributes are not set. To use it as a data container, these attributes are both set as described
below.

OPEN GEOSPATIAL CONSORTIUM 24-014 63

Encoding and Values

The “encoding” and “values” fields are there to provide array data as an efficient block which can
be encoded in several ways. The different encoding methods are described in Clauses 8.7 and
8.8. The “encoding” field shall have a value if the “values” field is present, and the data shall be
encoded using the specified encoding.

REQUIREMENT 46

IDENTIFIER /req/uml-block-components/array-values-properly-encoded

INCLUDED
IN

Requirements class 5: /req/uml-block-components

STATEMENT
Whenever an instance of a block component contains values, an encoding method shall be specified
by the “encoding” property and array values shall be encoded as specified by this method.

The choice of simple encodings (defined in the “Simple Encodings” package) allows encoding
data as JSON or as text using a delimiter separated values (DSV, a variant of CSV) format. The
“Advanced Encodings” package defines binary encodings that can be used to efficiently package
large datasets.

Nested Components

By combining instances of “DataArray”, “DataRecord” and scalar components, one can obtain
the complex data structures that are necessary to fully describe any kind of sensor data. In
particular, the possibility of nesting a “DataRecord” or “Vector” inside a “DataArray” allows
defining structures such as trajectories, profiles, multi-band images, etc.

Example: Example 1
The “DataArray” class can be used to describe a simple 1D array of measurements such as
radiance values obtained using a 12000 cells (1 row) CCD strip for instance. This can be done
by using the “Quantity” class as the element type. In such a case, describing the dataset as a
“DataRecord” would be a very repetitive task given the number of elements (12000 in this case!).

Example 2

The “DataArray” class can be used as a descriptor for a trajectory dataset by using a vector of
[latitude, longitude] coordinates as its element type. Note that this can also be considered as a
1D coverage in a 2D CRS.

OPEN GEOSPATIAL CONSORTIUM 24-014 64

Multi-dimensional Arrays

Since the “DataArray” class alone can only represent 1-dimensional arrays, the construction of
multi-dimensional arrays is done by nesting “DataArray” objects inside each other.

Example: Example
The structure of panchromatic imagery data can be described with two nested arrays, which
sizes indicate the two dimensions of the image. A “Quantity” is used as the element type of the
nested array in order to indicate that the repeated element of the 2D array is of type infrared
radiance with a given unit.

In this example, the image is described as an array of rows, each row being an array of samples.
It is also possible to describe an image as an array of columns by reversing the two dimensions.
Note that this would change the order in which the data values would appear in a stream (by
rows vs. by columns).

Array Size

One powerful feature of the “DataArray” model is that it allows for the element count to be
either fixed or variable, thus allowing the description of data streams with variable number of
repetitive elements as is often the case with many kinds of sensor.

In a fixed size array, the number of elements can be provided in the descriptor as an instance of
the “Count” class with an inline value. This value is only present in the data description and not
in the encoded block of array values. The definition of the “Count” instance is not required.

In a variable size array, the “elementCount” attribute either contains an instance of the “Count”
class with no value or references an instance of a “Count” class in a parent or sibling data
component. The value giving the actual array size is then included in the stream, before the array
values themselves, so that the block can be properly decoded. One obvious implementation
constraint is that the value representing the array size must be received before the array values.
This is detailed further in the JSON implementation section.

Example: Examples

OPEN GEOSPATIAL CONSORTIUM 24-014 65

Argo profiling floats can measure ocean salinity and temperature profiles of variable lengths by
diving at different depths and depending on the conditions. A variable size “DataArray” could be
used to describe their output data as well as a dataset aggregating data from several Argo floats.

Variable size arrays can often be used to avoid unnecessary padding of fixed size array
data. However for efficiency reasons (usually to enable fast random access w/o preliminary
indexation), padding can also be specified in SWE Common when using the binary encoding.

Array Semantics

As with any other data component, the “name” and “description” can be used to better describe
the array and more importantly the “definition” attribute can be used to formally indicate the
semantics behind the array.

Example: Example
When a “DataArray” is used to package data relative to the spectral response of a sensor, the
array “definition” attribute can be used to point to the formal out-of-band definition of the
“spectral response” concept.

Similarly a “DataArray” used to describe the output data of an Argo float would have its
“definition” attribute reference the formal definition of a “profile.”

The value of the “definition” attribute of the “Count” instance used as the “elementCount” is
also especially important, since it is used to define the meaning of the array dimension. Thanks
to this, it is possible to tag the dimension of an array as spatial, temporal, spectral, or any other
kind. However it is not mandatory as it is on other simple components.

Example: Examples
In the CCD strip example described as a 1D array, the array index is the cell number in the strip.

In the 2D image example, the outer array index is the row number, while the inner array index is
the column (or sample) number.

In a 1D array representing a time series, the array index is along the temporal dimension.

In a 2D array representing a spatial coverage, the two array indices are along spatial dimensions.

In a 3D array representing hyper-spectral imagery, the two first arrays have indices along spatial
dimension while the most inner array is indexed along the spectral dimension.

This extra information can be used by software to make decisions (or at least ask the user by
providing him this information) about how to represent or even interpolate the data.

8.5.2. Matrix Class

The “Matrix” extends the “DataArray” class by providing a reference frame within which the
matrix elements are expressed and a local frame of interest. The UML diagram of this class is
shown below:

OPEN GEOSPATIAL CONSORTIUM 24-014 66

Figure 31 — Matrix Class

The “Matrix” class is usually used to represent a position matrix or a tensor quantity of second or
higher order. Each matrix element is expressed along the axis of a well defined reference frame.

Element Type

The “elementType” attribute inherited from the “DataArray” class can only take a nested “Matrix”
instance or a scalar numerical component. Nested matrix objects allow the full description of N-
dimensional matrices.

REQUIREMENT 47

IDENTIFIER /req/uml-block-components/matrix-element-type-valid

INCLUDED
IN

Requirements class 5: /req/uml-block-components

STATEMENT
The “elementType” attribute of an instance of the “Matrix” class can only be an instance of “Matrix”
or of the classes listed in the “AnyNumerical” union.

Reference Frame

The “referenceFrame” attribute is used in the same way as with the “Vector” class to specify the
frame of reference with respect to which the matrix element values are expressed. It is inherited
by all child components.

Local Frame

The “localFrame” attribute is used to identify the frame of interest, that is to say the frame
whose orientation or position is given with the matrix in the case where it is a position matrix.
If the matrix does not specify position, “localFrame” should not be used. Whether an instance
of the “Matrix” class represents a position matrix or not should be disambiguated by setting the
value of its “definition” attribute.

Example: Examples
The “Matrix” class can be used to represent for instance: - A 3D 3×3 stress tensor - A 4D 4×4
homogeneous affine transformation matrix

In particular it is often used to specify the orientation of an object relative to another one, like
for instance the attitude of a plane relative to the earth.

OPEN GEOSPATIAL CONSORTIUM 24-014 67

8.5.3. DataStream Class

The “DataStream” class has a structure similar than the “DataArray” class but is not a data
component (i.e., it does not derive from “AbstractDataComponent”) and thus cannot be used as
a child of other aggregate components. Below is its UML diagram:

Figure 32 — DataStream Class

This class should be used as the wrapper object to define a complete data stream. It defines a
data stream as containing a list of elements with an arbitrary complex structure. An important
feature is that the data stream can be open ended (i.e., the number of elements is not known in
advance) and is thus designed to support real time streaming of data.

Element Count

The “elementCount” attribute is optional and can be used to indicate the number of elements
in the stream if it is known. This is done by instantiating an instance of the “Count” class whose
“value” attribute would be set to the number of elements.

Element Type

The “elementType” attribute is used to define the structure of each element in the stream. The
data component used as the element type and all of its children shall be used solely as data
descriptors, meaning that they shall not include any inline values. These values will instead be
block encoded in the “values” attribute of the parent “DataStream”.

Encoding and Values

The “encoding” and “values” fields are there to provide the stream values as an efficient block
which can be encoded in several ways. The same encoding methods as for the “DataArray” class
are available and are described in Clauses 8.7 and 8.8. The “values” attribute is optional as the
DataStream class can be used as a simple descriptor.

OPEN GEOSPATIAL CONSORTIUM 24-014 68

REQUIREMENT 48

IDENTIFIER /req/uml-block-components/datastream-array-valid

INCLUDED
IN

Requirements class 5: /req/uml-block-components

STATEMENT
Data components that are children of an instance of the ”DataStream” class shall be used solely used
as data descriptors. Their values shall never be included inline since they will be block encoded in the
stream described by the ”DataStream”.

8.6. Requirements Class: Geometry Components Package

REQUIREMENTS CLASS 6: GEOMETRY COMPONENTS UML PACKAGE

IDENTIFIER /req/uml-geom-components

TARGET TYPE Software Implementation or Encoding of the Conceptual Models

CONFORMANCE CLASS Conformance class A.6: /conf/uml-geom-components

PREREQUISITE Requirements class 2: /req/uml-simple-components

NORMATIVE STATEMENTS

 Requirement 49: /req/uml-geom-components/package-fully-
implemented
 Requirement 50: /req/uml-geom-components/srs-valid
 Requirement 51: /req/uml-geom-components/geom-value-valid

This package defines an additional component for representing simple feature geometries, as
defined by OGC 06-103r4, within an encoded SWE Common data block or stream.

REQUIREMENT 49

IDENTIFIER /req/uml-geom-components/package-fully-implemented

INCLUDED
IN

Requirements class 6: /req/uml-geom-components

STATEMENT
The encoding or software shall correctly implement all classes defined in the “Geometry
Components” UML package.

OPEN GEOSPATIAL CONSORTIUM 24-014 69

8.6.1. Geometry Class

The “Geometry” class extends the “AbstractDataComponent” class with a value of type
geometry and a constraint that can be used to limit the types of allowed geometries. This class is
shown on the following UML diagram:

Figure 33 — Geometry Class

Coordinate Reference System

The “crs” attribute provides the URI of the coordinate reference system with respect to which
the geometry coordinates are expressed. The unit of the coordinates is also provided by the
coordinate reference system.

REQUIREMENT 50

IDENTIFIER /req/uml-geom-components/srs-valid

INCLUDED IN Requirements class 6: /req/uml-geom-components

STATEMENT The “srs” attribute shall reference the definition of a valid 2D or 3D spatial reference system.

Constraints

The “constraint” attribute is used to restrict the possible geometries that can be provided
using this component when it is used as a descriptor. The constraint is provided using the
“AllowedGeometries” class that includes a list of allowed geometry types.

OPEN GEOSPATIAL CONSORTIUM 24-014 70

Value

The value of this component must be a geometry instance, whether it’s provided inline using the
“value” attribute, or as part of a datastream.

REQUIREMENT 51

IDENTIFIER /req/uml-geom-components/geom-value-valid

INCLUDED
IN

Requirements class 6: /req/uml-geom-components

STATEMENT
The “value” attribute shall be one of the concrete geometry value classes defined in OGC 06-103r4:
“Point”, “MultiPoint”, “LineString”, “MultiLineString”, “Polygon”, or “MultiPolygon”.

NOTE: Encoding sections in this standard define how the geometry value is encoded:
• GeoJSON in the JSON implementation and JSON encoding rules

• WKT in the Text encoding rules

• WKB in the Binary encoding rules

8.7. Requirements Class: Simple Encodings Package

REQUIREMENTS CLASS 7: SIMPLE ENCODINGS UML PACKAGE

IDENTIFIER /req/uml-simple-encodings

TARGET TYPE Software Implementation or Encoding of the Conceptual Models

CONFORMANCE CLASS Conformance class A.7: /conf/uml-simple-encodings

PREREQUISITE Requirements class 1: /req/core

NORMATIVE STATEMENT
Requirement 52: /req/uml-simple-encodings/package-fully-
implemented

Encoding methods describe how structured array and stream data is encoded into a low level
byte stream (see related concepts in Clause 7.6). Once encoded as a sequence of bytes, the
data can then be transmitted using various digital means such as files on a disk or network
connections.

This package includes two classes that provide definitions of simple encoding methods. They
are used as descriptors of the method used to encode data component values wrapped by

OPEN GEOSPATIAL CONSORTIUM 24-014 71

aggregate classes defined in the “Block Components” package. There model is shown on the
diagram below:

Figure 34 — Simple Encodings

REQUIREMENT 52

IDENTIFIER /req/uml-simple-encodings/package-fully-implemented

INCLUDED
IN

Requirements class 7: /req/uml-simple-encodings

STATEMENT
The encoding or software shall correctly implement all classes defined in the “Simple Encodings”
UML package.

All classes defining encoding methods derive from a common abstract class called
“AbstractEncoding.” Extensions to this standard that define new encoding methods shall derive
encoding classes from this abstract class.

The intent of this standard is to provide a set of core encodings covering most common needs.
Each encoding has specific benefits that match the needs of different applications. Sometimes
several encodings of the same dataset can be offered in order to satisfy several types of
consumers and/or use cases.

In the model provided in this standard, the encoding specification is provided separately from
the data component tree describing the dataset structure, thus enabling several encodings to be
applied to the same data structure without changing it.

8.7.1. JSONEncoding Class

The “JSONEncoding” class defines a method allowing encoding arbitrarily complex data as
JSON. The class used to specify this encoding method is shown in Figure 34.

OPEN GEOSPATIAL CONSORTIUM 24-014 72

The “recordsAsArrays” attribute specifies whether “DataRecord” values are encoded as JSON
objects or JSON arrays. The “vectorsAsArrays” attribute specifies whether “Vector” values are
encoded as JSON objects or JSON arrays. Both attributes are optional and default to false,
meaning “DataRecord” and “Vector” values are per default encoded as JSON objects. The
detailed rules are given in the implementation in Clause 10.2.

8.7.2. TextEncoding Class

The “TextEncoding” class defines a method allowing encoding arbitrarily complex data using
a text based delimiter separated values (DSV) format. The class used to specify this encoding
method is shown below:

Figure 35 — TextEncoding Class

The “tokenSeparator” attribute specifies the characters to use for separating each scalar value
from one another. Scalar values appear sequentially in the stream alternatively with the token
separator characters, in an order unambiguously defined by the data component structure. The
detailed rules are given in the implementation in Clause 10.3.

The “blockSeparator” attribute specifies characters used to mark the end of a “block”,
corresponding to the complete structure defined by the data component tree (in a “DataArray”,
“Matrix” or “DataStream” one block corresponds to one element, that is to say the structure
defined by the “elementType” property). Stream or array data can then be composed of several
blocks of the same type separated by block separator characters.

The “decimalSeparator” attribute specifies the character used as the decimal point in decimal
number. This attribute is optional and the default is a period (‘.’).

Example: Example
In the case of a “DataStream” with an element type that is a “DataRecord” containing three fields
– one of type “Category” and two of type “Quantity” — a data stream encoded using the Text
method would look like the following:

STATUS_OK,24.5,1022.5¶
STATUS_OK,24.5,1022.5¶
STATUS_OK,24.5,1022.5¶

Where , (comma) is the token separator and ¶ (carriage return) is the block separator (i.e., this is
the CSV format). Note that there could be many more values in a single block if the data set has
a large number of fields, or if it contains an array of values.

OPEN GEOSPATIAL CONSORTIUM 24-014 73

The “collapseWhiteSpaces” attribute is a boolean flag used to specify if extra white spaces
(including line feeds, tabs, spaces and carriage returns) surrounding the token and block
separators should be ignored (skipped) when processing the stream.

This type of encoding is used when compactness is important but balanced by a desire of human
readability. This type of encoding is easily readable (for debugging or manual usage) as well as
easily imported in various spreadsheet, charting or scientific software.

The main drawback of such an encoding is the impossibility of locating an error in the stream
with certitude. Secondly, if only one expected value is missing, the whole block is usually lost
since the parser cannot resynchronize correctly before the next block separator. This last
issue can however be solved by transmitting this type of encoded stream using error resilient
protocols when needed.

8.8. Requirements Class: Advanced Encodings Package

REQUIREMENTS CLASS 8: ADVANCED ENCODINGS UML PACKAGE

IDENTIFIER /req/uml-advanced-encodings

TARGET TYPE Software Implementation or Encoding of the Conceptual Models

CONFORMANCE CLASS Conformance class A.8: /conf/uml-advanced-encodings

PREREQUISITE Requirements class 7: /req/uml-simple-encodings

NORMATIVE STATEMENT
Requirement 53: /req/uml-advanced-encodings/package-fully-
implemented

This package defines an additional encoding method for packaging sensor data as raw or base
64 binary blocks. When this package is implemented, the binary encoding method is usable, as
any other encoding method, within the “DataArray” and “DataStream” classes.

REQUIREMENT 53

IDENTIFIER /req/uml-advanced-encodings/package-fully-implemented

INCLUDED
IN

Requirements class 8: /req/uml-advanced-encodings

STATEMENT
The encoding or software shall correctly implement all classes defined in the “Advanced Encodings”
UML package.

OPEN GEOSPATIAL CONSORTIUM 24-014 74

8.8.1. BinaryEncoding Class

The “BinaryEncoding” class defines a method that allows encoding complex structured data
using primitive data types encoded directly at the byte level, in the same way that they are
usually represented in memory.

The binary encoding method can lead to very compact streams that can be optimized for
efficient parsing and fast random access. However this comes with the lack of human readability
of the data and sometimes lack of compatibility with other software (i.e., software that is not
SWE Common enabled).

More information is needed to fully define a binary encoding, so the model is more complex
than the other encodings. It is shown below:

Figure 36 — BinaryEncoding Class

The main class “BinaryEncoding” specifies overall characteristics of the encoded byte stream
such as the byte order (big endian or little endian) and the byte encoding (raw or base64). The
two corresponding attributes, respectively “byteOrder” and “byteEncoding” are mandatory.
Base64 encoding is usually chosen to insert binary content within a JSON or XML document.

The “byteLength” attribute is optional and can be used to specify the overall length of the
encoded data as a total number of bytes. This should be indicated whenever possible if the data
size is known in advance as it can be useful for efficient memory allocation.

The “BinaryEncoding” class also has several “member” attributes that contain detailed
information about parts of the data stream. This attribute can take a choice of instance of two
classes: “Component” or “Block.”

The “Component” class is used to specify binary encoding details of a given scalar component in
the stream. The following information can be provided for each scalar field:

OPEN GEOSPATIAL CONSORTIUM 24-014 75

• The “ref” attribute allows identifying the data component in the dataset structure for
which we’re specifying the encoding parameters. Soft-typed property names are used to
uniquely identify a given component in the tree.

• The “dataType” attribute allows selecting a data type among commonly accepted ones
such as ‘byte’, ‘short’, ‘int’, ‘long’, ‘double’, ‘float’, ‘string’, etc…

• The “byteLength” or “bitLength” attributes are mutually exclusive and used to further
specify the length of the data type in the case where it is not a standard length (i.e., to
encode integer numbers on more than 8 bytes or less than 8 bits for instance).

• The “significantBits” can be used to signal that only some of the bits of the data type are
actually used to carry the value (i.e., a value may be encoded as a byte but only use 4 bits
to encode a value between 0 and 15). This is mostly informational.

• The “encryption” attribute can be used to select the method with which the value is
encrypted before being written to the stream.

The “Block” class is used to specify binary encoding details of a given aggregate component
representing a block of values in the data stream. This is used either to specify padding before
and/or after a block of data or to enable compression or encryption of all or part of a dataset.

• The “ref” attribute allows identifying the data component in the dataset structure for
which we’re specifying the encoding parameters. Soft-typed property names are used to
uniquely identify a given component in the tree.

• The optional “byteLength” attribute allows indicating the overall length of the encoded
block to facilitate memory allocation.

• The “paddingBytes-before” and “paddingBytes-after” are used to specify the number of
empty bytes (i.e., usually 0 bytes) that are inserted in the stream respectively before and
after data for the referenced component. This is sometimes used to align data on N-bytes
block for faster access.

• The “encryption” attribute identifies the encryption method that is used to encrypt the
block of data before it is inserted in the stream.

• The “compression” attribute identifies the compression method that is used to compress
the block of data before it is inserted in the stream.

This standard does not define any concrete encryption and compression methods, so that
software implementations of this requirement class are not required to support any value in the
“encryption” and “compression” attributes of the “Component” and “Block” classes. Extensions
of this standard that define binary encryption and compression methods shall describe how the
encrypted or compressed data is inserted in the SWE Common data stream.

OPEN GEOSPATIAL CONSORTIUM 24-014 76

9

JSON IMPLEMENTATION
(NORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 24-014 77

9 JSON IMPLEMENTATION (NORMATIVE)

This standard defines a normative JSON implementation of the conceptual models presented
in Clause 8. The standardization target type for all requirements classes in this clause is a JSON
instance document that seeks compliance with this JSON encoding model.

JSON schemas defined in this section are a direct implementation of the UML conceptual
models described in Clause 8. They have been generated from these models by strictly following
well-defined encoding rules. All attributes and composition/aggregation associations contained
in the UML models are encoded as JSON object members.

All JSON examples given in this section are informative and are used solely for illustrating
features of the normative model. Many of these examples reference semantic information by
using URLs that resolve to the following online ontologies:

• The OGC online registry at http://www.opengis.net/def/;

• The QUDT quantity kinds ontology at http://qudt.org/2.1/vocab/quantitykind;

• The SWEET ontology maintained by ESIP at http://sweetontology.net/; and

• The MMI ontology registry and repository at http://mmisw.org/ont/.

Some of the JSON examples contain inline values while others don’t. This is meant to illustrate
that the component objects defined by the JSON implementation can be used as value objects
for properties of larger metadata objects (e.g., SensorML system descriptions), but can also be
used as descriptors to describe, for instance, the content of a datastream or the rangeset of a
coverage.

9.1. Requirements Class: Basic Types and Simple
Components JSON Schemas

REQUIREMENTS CLASS 9: BASIC TYPES AND SIMPLE COMPONENTS JSON SCHEMAS

IDENTIFIER /req/json-simple-components

TARGET TYPE JSON Document

CONFORMANCE CLASS
Conformance class A.9: /conf/json-simple-
components

INDIRECT PREREQUISITE Requirements class 2: /req/uml-simple-components

OPEN GEOSPATIAL CONSORTIUM 24-014 78

http://www.opengis.net/def/;
http://qudt.org/2.1/vocab/quantitykind;
http://sweetontology.net/;
http://mmisw.org/ont/

REQUIREMENTS CLASS 9: BASIC TYPES AND SIMPLE COMPONENTS JSON SCHEMAS

NORMATIVE STATEMENTS

 Requirement 54: /req/json-simple-components/
component-types
 Requirement 55: /req/json-simple-components/
schema-valid
 Requirement 56: /req/json-simple-components/
special-numerical-values
 Requirement 57: /req/json-simple-components/
definition-resolvable
 Requirement 58: /req/json-simple-components/
inline-value-constraint-valid
 Requirement 59: /req/json-simple-components/
ucum-code-and-href-represent-same-unit
 Requirement 60: /req/json-simple-components/
iso8601-uom-used

Validation patterns that implement all classes defined respectively in the “Basic Types” and
“Simple Components” UML packages are provided as JSON schema files at https://schemas.
opengis.net/sweCommon/3.0/json.

The entry point schema used for validation is “sweCommon.json”.

REQUIREMENT 54

IDENTIFIER /req/json-simple-components/component-types

INCLUDED IN Requirements class 9: /req/json-simple-components

STATEMENT
The standardization target SHALL implement the following data component types:
Boolean, Text, Category, Count, Quantity, Time, CategoryRange, CountRange, QuantityRange, TimeRange

REQUIREMENT 55

IDENTIFIER /req/json-simple-components/schema-valid

INCLUDED IN Requirements class 9: /req/json-simple-components

STATEMENT
The JSON document instance shall be valid with respect to the JSON schema “sweCommon.
json”.

9.1.1. General JSON Principles

The following rules were used when generating the JSON schemas:

OPEN GEOSPATIAL CONSORTIUM 24-014 79

https://schemas.opengis.net/sweCommon/3.0/json
https://schemas.opengis.net/sweCommon/3.0/json
https://schemas.opengis.net/sweCommon/3.0/json/sweCommon.json
https://schemas.opengis.net/sweCommon/3.0/json/sweCommon.json
https://schemas.opengis.net/sweCommon/3.0/json/sweCommon.json

• Classes are implemented as JSON Objects;

• Any property with a multiplicity greater than one is implemented as a JSON Array and its
name is converted to plural form;

• Textual fields are implemented as a JSON String;

• Decimal fields are implemented as a union of JSON Number and JSON String value types
(the string value allowing for special values, see Clause 9.1.2); and

• ISO8601 date/time fields are implemented as a JSON String with a union of date/time
formats.

9.1.2. Special Numerical Values

JSON does not define special decimal values for ‘Not a Number’, positive infinity and negative
infinity. It is thus necessary to encode them as strings.

REQUIREMENT 56

IDENTIFIER /req/json-simple-components/special-numerical-values

INCLUDED
IN

Requirements class 9: /req/json-simple-components

STATEMENT
The special JSON Strings NaN, -Infinity and +Infinity shall be allowed as the inline or out-of-
band value for Quantity and Time components (except when the Time component uses the ISO 8601
format).

NOTE: These special value strings have been chosen because they are supported natively by
Javascript/ECMA Script implementations. The + unary operator can be used to transparently
parse one of these strings to a Number type (see https://262.ecma-international.org/13.0/#sec-
unary-plus-operator).

These values also correspond to infinities and NaN values defined in IEEE 754™-2008.

9.1.3. Abstract Base Classes

The three abstract base classes defined in the UML models are implemented by the following
JSON schemas:

• AbstractSweIdentifiable.json

• AbstractDataComponent.json

• AbstractSimpleComponent.json

OPEN GEOSPATIAL CONSORTIUM 24-014 80

https://262.ecma-international.org/13.0/#sec-unary-plus-operator
https://262.ecma-international.org/13.0/#sec-unary-plus-operator
https://schemas.opengis.net/sweCommon/3.0/json/AbstractSweIdentifiable.json
https://schemas.opengis.net/sweCommon/3.0/json/AbstractDataComponent.json
https://schemas.opengis.net/sweCommon/3.0/json/AbstractSimpleComponent.json

REQUIREMENT 57

IDENTIFIER /req/json-simple-components/definition-resolvable

INCLUDED
IN

Requirements class 9: /req/json-simple-components

STATEMENT
The “definition” object member defined in the “AbstractDataComponent.json” schema shall contain
a URI that can be resolved to the complete human readable definition of the property that is
represented by the data component.

REQUIREMENT 58

IDENTIFIER /req/json-simple-components/inline-value-constraint-valid

INCLUDED
IN

Requirements class 9: /req/json-simple-components

STATEMENT
The inline value included in a JSON instance validating against the “AbstractSimpleComponent.json”
schema shall satisfy the constraints specified by this instance.

9.1.4. Unit Reference Object

The “UnitReference” object is the partial JSON schema implementation of the “UnitOfMeasure”
UML class used in Clause 8.2.8 and Clause 8.2.13, and the “UomTime” UML class used in
Clause 8.2.9 and Clause 8.2.14, as defining the model for “UnitOfMeasure” and “UomTime”
are out of scope for SWE Common. SWE Common only references implementations of
“UnitOfMeasure”, like for instance the ones provided by UCUM.

The schema for this class is provided in basicTypes.json (see #definitions/UnitReference). Further
details on the usage of “UnitReference” object can be found in Clause 9.1.9 and Clause 9.1.10.

Examples of references to a unit of measure are provided below:

{
 "code": "W.m-2.Sr-1.um-1"
}

Listing

{
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
}

Listing

{
 "symbol": "°C",
 "code": "Cel",
 "href": "https://qudt.org/vocab/unit/DEG_C"

OPEN GEOSPATIAL CONSORTIUM 24-014 81

https://schemas.opengis.net/sweCommon/3.0/json/basicTypes.json

}

Listing

9.1.5. Boolean Object

The “Boolean” object is the JSON schema implementation of the “Boolean” UML class defined in
Clause 8.2.4. The schema for this class is provided in Boolean.json.

The following snippet shows an example boolean component with an inline value:

{
 "type": "Boolean",
 "definition": "http://sweet.jpl.nasa.gov/2.0/physDynamics.owl#Motion",
 "label": "Motion Detected",
 "description": "True when motion was detected in the room",
 "value": true
}

Listing

The next snippet is an example of boolean component used as data descriptor, hence with no
value:

{
 "type": "Boolean",
 "definition": "http://mmisw.org/ont/q2o/test/timeContinuityTest",
 "label": "Time Continuity Test",
 "description": "Set to true to enable time continuity test"
}

Listing

9.1.6. Text Object

The “Text” object is the JSON schema implementation of the “Text” UML class defined in
Clause 8.2.5. The schema for this class is provided in Text.json.

Constraints on a “Text” representation are expressed using the AllowedTokens Object.

The following snippets show how the “Text” component can be used to define human readable
text fields, as well as any other alpha-numerical properties:

{
 "type": "Text",
 "definition": "http://sensorml.com/ont/swe/property/Manufacturer",
 "label": "Manufacturer",
 "value": "Ocean Devices, Inc."
}

Listing

{
 "type": "Text",
 "definition": "http://sensorml.com/ont/x-swe/property/
VehicleRegistrationNumber",
 "label": "License Plate",

OPEN GEOSPATIAL CONSORTIUM 24-014 82

https://schemas.opengis.net/sweCommon/3.0/json/Boolean.json
https://schemas.opengis.net/sweCommon/3.0/json/Text.json

 "value": "45ER-EJK-235"
}

Listing

Constraints can also be used — typically when the component is used as a descriptor — to limit
the possible text values, either by enumeration or a regular expression pattern:

{
 "type": "Text",
 "definition": "http://sensorml.com/ont/x-swe/property/
VehicleRegistrationNumber",
 "label": "License Plate",
 "constraint": {
 "pattern": "^[0-9][A-Z]{4}-[A-Z]{3}-[0-9]{3}$"
 }
}

Listing

NOTE: This standard does not define any limit on the size of the text data than can be included
as the value of a “Text” component, either inline or as part of a datastream. Implementations are
responsible for documenting this upper limit.

9.1.7. Category Object

The “Category” object is the JSON schema implementation of the “Category” UML class defined
in Clause 8.2.6. The schema for this class is provided in Category.json.

Constraints on a “Category” representation are expressed using the AllowedTokens Object.

The following examples illustrate how the “Category” component is used to define various fields
with categorical representations. The categorical scale is defined either via a code space, an
enumeration constraint, or both (in which case the enumeration constraint defines a subset of
possible values from a code space):

{
 "type": "Category",
 "definition": "http://sweet.jpl.nasa.gov/2.0/timeGeologic.owl#GeologicTime",
 "label": "Geological Period",
 "description": "Name of the geological period according to the nomenclature of
the International Commission on Stratigraphy",
 "codeSpace": "http://sweet.jpl.nasa.gov/2.0/timeGeologic.owl#Period",
 "value": "Jurassic"
}

Listing

{
 "type": "Category",
 "definition": "http://sweet.jpl.nasa.gov/2.0/biol.owl#Species",
 "label": "Bird Species",
 "description": "Bird species according to the classification of the World Bird
Database",
 "codeSpace": "http://www.birdlife.org/datazone/species/index.html"

OPEN GEOSPATIAL CONSORTIUM 24-014 83

https://schemas.opengis.net/sweCommon/3.0/json/Category.json

}

Listing

9.1.8. Count Object

The “Count” object is the JSON schema implementation of the “Count” UML class defined in
Clause 8.2.7. The schema for this class is provided in Count.json.

Constraints on a “Count” representation are expressed using the AllowedValues Object.

The following snippet shows a “Count” component used to define the size of a row in a raster
dataset:

{
 "type": "Count",
 "definition": "http://www.opengis.net/def/property/OGC/0/NumberOfPixels",
 "label": "Row Size",
 "description": "Number of pixels in each row of the image",
 "value": 1024
}

Listing

9.1.9. Quantity Object

The “Quantity” object is the JSON schema implementation of the “Quantity” UML class defined
in Clause 8.2.8. The schema for this class is provided in Quantity.json.

Constraints on a “Quantity” representation are expressed using the AllowedValues Object.

The unit of measure is defined using either a URI or a code expressed using the Unified Code for
Units of Measure (UCUM) standard.

RECOMMENDATION 1

IDENTIFIER /rec/json-simple-components/ucum-code-used

STATEMENT
Whenever it can be constructed using the UCUM specification, the unit of measure should be
specified using a UCUM code as the value of the “uom/code” property. Otherwise the “uom/href”
property should be used to reference an external unit definition.

REQUIREMENT 59

IDENTIFIER /req/json-simple-components/ucum-code-and-href-represent-same-unit

INCLUDED
IN

Requirements class 9: /req/json-simple-components

OPEN GEOSPATIAL CONSORTIUM 24-014 84

https://schemas.opengis.net/sweCommon/3.0/json/Count.json
https://schemas.opengis.net/sweCommon/3.0/json/Quantity.json

REQUIREMENT 59

STATEMENT
If the unit of measurements is specified using a UCUM code as the value of the “uom/code” property
and an external unit definition is referenced in the “uom/href” property, both the UCUM code and
the external unit definition shall reference the same unit.

The following snippets show how “Quantity” components are used to define various (observable
or controllable) properties with continuous decimal representations:

{
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Temperature",
 "label": "Outside Temperature",
 "description": "Outside temperature taken at the top of the antenna",
 "uom": { "code": "Cel" },
 "value": 21.5
}

Listing

{
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/SpectralRadiance",
 "label": "Radiance",
 "description": "Radiance measured on band1",
 "uom": { "code": "W.m-2.Sr-1.um-1" },
 "value": 2.83e-2
}

Listing

{
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/HeightAboveMSL",
 "referenceFrame": "http://www.opengis.net/def/crs/EPSG/0/5714",
 "axisID": "H",
 "label": "MSL Height",
 "description": "Height above mean sea level",
 "uom": { "code": "m" }
}

Listing

{
 "type": "Quantity",
 "definition": "https://qudt.org/vocab/quantitykind/CostPerUnitEnergy",
 "label": "Electricity Cost",
 "description": "Average cost of electricity in Europe",
 "uom": {
 "href": "https://qudt.org/vocab/unit/EUR-PER-KiloW-HR"
 }
}

Listing

OPEN GEOSPATIAL CONSORTIUM 24-014 85

9.1.10. Time Object

The “Time” object is the JSON schema implementation of the “Time” UML class defined in
Clause 8.2.9. The schema for this class is provided in Time.json.

Constraints on a “Time” representation are expressed using the AllowedTimes Object.

The unit of measure is defined using either a URI or a code expressed using the Unified
Code for Units of Measure (UCUM) standard. When the temporal property is provided in the
ISO 8601:2019 format, this is indicated by using a specific URI.

REQUIREMENT 60

IDENTIFIER /req/json-simple-components/iso8601-uom-used

INCLUDED
IN

Requirements class 9: /req/json-simple-components

STATEMENT
When ISO 8601 notation is used to express the value associated to a “Time” element, the URI “http:
//www.opengis.net/def/uom/ISO-8601/0/Gregorian” shall be used as the value of the “uom/href”
property.

The following snippets show how “Time” components are used to define various temporal
properties, with different time scales:

ISO8601 formatted time stamp based on the UTC time standard:

{
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC-EO/0/MissionStartTime",
 "referenceFrame": "http://www.opengis.net/def/trs/BIPM/0/UTC",
 "localFrame": "urn:org:systems:001#MISSION-START-TIME",
 "label": "Flight Time",
 "description": "Time at take-off in UTC",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 },
 "value": "2009-01-26T10:21:45+01:00"
}

Listing

ISO8601 formatted time stamp based on the GPS time standard:

{
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/USNO/0/GPS",
 "label": "Sampling Time",
 "description": "Time at which the measurement was made",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 },

OPEN GEOSPATIAL CONSORTIUM 24-014 86

https://schemas.opengis.net/sweCommon/3.0/json/Time.json

 "value": "2009-11-05T16:29:26Z"
}

Listing

Time stamp in seconds past the Unix epoch:

{
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/RunTime",
 "referenceTime": "1970-01-01T00:00:00Z",
 "label": "Model Run Time",
 "description": "Run time of the model expressed as a Unix time",
 "uom": {"code": "s" },
 "value": 1257415633
}

Listing

Time stamp in seconds past a custom time reference called MISSION_START_TIME:

{
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC-EO/0/ScanStartTime",
 "referenceFrame": "urn:org:systems:001#MISSION-START-TIME",
 "localFrame": "urn:org:systems:001#SCAN-START-TIME",
 "label": "Scanline Time",
 "description": "Acquisition time of the scan line",
 "uom": { "code": "s" }
}

Listing

9.1.11. CategoryRange Object

The “CategoryRange” object is the JSON schema implementation of the “CategoryRange” UML
class defined in Clause 8.2.11. The schema for this class is provided in CategoryRange.json.

“CategoryRange” objects share most properties with “Category” object, as shown on the
following snippet:

{
 "type": "CategoryRange",
 "definition": "http://sweet.jpl.nasa.gov/2.0/timeGeologic.owl#GeologicTime",
 "label": "Approximate Dating",
 "description": "Approximate geological dating expressed as a range of
geological eras",
 "codeSpace": "http://sweet.jpl.nasa.gov/2.0/timeGeologic.owl#Era",
 "value": ["Paleozoic", "Mesozoic"]
}

Listing

OPEN GEOSPATIAL CONSORTIUM 24-014 87

https://schemas.opengis.net/sweCommon/3.0/json/CategoryRange.json

9.1.12. CountRange Object

The “CountRange” object is the JSON schema implementation of the “CountRange” UML class
defined in Clause 8.2.12. The schema for this class is provided in CountRange.json.

“CountRange” objects share most properties with “Count” object, as shown on the following
snippet:

{
 "type": "CountRange",
 "definition": "http://www.opengis.net/def/property/OGC/0/ArrayIndex",
 "label": "Index Range",
 "value": [0, 3000]
}

Listing

9.1.13. QuantityRange Object

The “QuantityRange” object is the JSON schema implementation of the “QuantityRange” UML
class defined in Clause 8.2.13. The schema for this class is provided in QuantityRange.json.

“QuantityRange” objects share most properties with the “Quantity” object, as shown on the
following snippet:

{
 "type": "QuantityRange",
 "definition": "http://mmisw.org/ont/mmi/device/OperationalRange",
 "label": "Operational Range",
 "description": "Operational temperature range of the cryogenic thermometer",
 "uom": { "code": "K" },
 "value": [10, 300]
}

Listing

9.1.14. TimeRange Object

The “TimeRange” object is the JSON schema implementation of the “TimeRange” UML class
defined in Clause 8.2.14. The schema for this class is provided in TimeRange.json.

“TimeRange” objects share most properties with the “Time” object, as shown on the following
snippet:

{
 "type": "TimeRange",
 "definition": "http://www.opengis.net/def/property/EO/0/SurveyPeriod",
 "referenceFrame": "http://www.opengis.net/def/trs/BIPM/0/UTC",
 "label": "Survey Period",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 },
 "value": ["2008-01-05T11:02:54Z", "2009-11-05T16:29:26Z"]

OPEN GEOSPATIAL CONSORTIUM 24-014 88

https://schemas.opengis.net/sweCommon/3.0/json/CountRange.json
https://schemas.opengis.net/sweCommon/3.0/json/QuantityRange.json
https://schemas.opengis.net/sweCommon/3.0/json/TimeRange.json

}

Listing

9.1.15. NilValues Object

The “NilValues” object is the JSON schema implementation of the “NilValues” UML class defined
in Clause 8.2.16. Schema patterns for this class are provided in basicTypes.json. Several sub-
patterns are defined for the decimal, integer and text cases.

Examples of NIL values definitions are provided below, in the case of numerical, countable and
textual representations:

{
 "type": "Quantity",
 "definition": "http://sweet.jpl.nasa.gov/2.0/physRadiation.
owl#IonizingRadiation",
 "label": "Radiation Dose",
 "description": "Radiation dose measured by Gamma detector",
 "uom": { "code": "uR" },
 "nilValues": [
 { "reason": "http://www.opengis.net/def/nil/OGC/0/BelowDetectionRange",
"value": "-Infinity" },
 { "reason": "http://www.opengis.net/def/nil/OGC/0/AboveDetectionRange",
"value": "Infinity" }
]
}

Listing

{
 "type": "Count",
 "definition": "http://sweet.jpl.nasa.gov/2.0/physRadiation.owl#Radiance",
 "label": "Band 1",
 "nilValues": [
 { "reason": "http://www.opengis.net/def/nil/OGC/0/BelowDetectionRange",
"value": 0 },
 { "reason": "http://www.opengis.net/def/nil/OGC/0/AboveDetectionRange",
"value": 255 }
]
}

Listing

{
 "type": "Text",
 "definition": "http://sensorml.com/ont/x-swe/property/
VehicleRegistrationNumber",
 "label": "License Plate",
 "nilValues": [
 { "reason": "http://www.opengis.net/def/nil/OGC/0/Missing", "value":
"Missing" },
 { "reason": "http://www.opengis.net/def/nil/OGC/0/Unknown", "value":
"Unknown" }
]
}

Listing

OPEN GEOSPATIAL CONSORTIUM 24-014 89

https://schemas.opengis.net/sweCommon/3.0/json/basicTypes.json

9.1.16. AllowedTokens Object

The “AllowedTokens” object is the JSON schema implementation of the “AllowedTokens” UML
class defined in Clause 8.2.17. The schema for this class is provided in basicTypes.json (see
#definitions/AllowedTokens).

Examples of constraints for textual or categorical properties are provided below:

{
 "type": "Text",
 "definition": "http://sensorml.com/ont/swe/property/ModelNumber",
 "label": "Model Number",
 "constraint": {
 "pattern": "^[0-9][A-Z]{3}[0-9]{2}S1$"
 }
}

Listing

{
 "type": "Category",
 "definition": "http://www.opengis.net/def/property/OGC/0/SensorStatus",
 "label": "Sensor Status",
 "description": "Current connection status of the sensor",
 "constraint": {
 "values": ["Off", "Stand-by", "Ready", "Busy"]
 }
}

Listing

9.1.17. AllowedValues Object

The “AllowedValues” object is the JSON schema implementation of the “AllowedValues” UML
class defined in Clause 8.2.18. The schema for this class is provided in basicTypes.json (see
#definitions/AllowedValues).

Examples of constraints for various numerical properties are provided below:

{
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Angle",
 "label": "Planar Angle",
 "uom": { "code": "deg" },
 "constraint": {
 "intervals": [[-180, 180]]
 }
}

Listing

{
 "type": "Count",
 "definition": "http://www.opengis.net/def/property/OGC/0/NumberOfPixels",
 "label": "Image Width",
 "constraint": {

OPEN GEOSPATIAL CONSORTIUM 24-014 90

https://schemas.opengis.net/sweCommon/3.0/json/basicTypes.json
https://schemas.opengis.net/sweCommon/3.0/json/basicTypes.json

 "values": [256, 512, 1024]
 }
}

Listing

{
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/GeodeticLatitude",
 "label": "Latitude",
 "uom": { "code": "deg" },
 "constraint": {
 "intervals": [[-90, 90]],
 "significantFigures": 6
 }
}

Listing

Numerical constraints can also be unbounded:

{
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/RadialDistance",
 "label": "Radial Distance",
 "description": "Radial distance is always positive",
 "uom": { "code": "m" },
 "constraint": {
 "intervals": [[0, "+Infinity"]]
 }
}

Listing

9.1.18. AllowedTimes Object

The “AllowedTimes” object is the JSON schema implementation of the “AllowedTimes” UML
class defined in Clause 8.2.19. The schema for this class is provided in basicTypes.json (see
#definitions/AllowedTimes).

Examples of constraints for various temporal properties, expressed as ISO-8601 or decimal
values, are provided below:

{
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/USNO/0/GPS",
 "label": "Acquisition Time",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 },
 "constraint": {
 "intervals": [["2009-01-01T00:00:00Z", "+Infinity"]]
 }
}

Listing

{
 "type": "Time",

OPEN GEOSPATIAL CONSORTIUM 24-014 91

https://schemas.opengis.net/sweCommon/3.0/json/basicTypes.json

 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "urn:org:systems:001#SCAN-START-TIME",
 "label": "Lidar Pulse Time",
 "description": "Time stamp of LiDAR pulse relative to start of scan",
 "uom": { "code": "ms" },
 "constraint": {
 "intervals": [[0, 1e6]]
 }
}

Listing

9.2. Requirements Class: Record Components JSON
Schema

REQUIREMENTS CLASS 10: RECORD COMPONENTS JSON SCHEMA

IDENTIFIER /req/json-record-components

TARGET TYPE JSON Document

CONFORMANCE CLASS
Conformance class A.10: /conf/json-record-
components

PREREQUISITE Requirements class 9: /req/json-simple-components

INDIRECT PREREQUISITE Requirements class 3: /req/uml-record-components

NORMATIVE STATEMENT
Requirement 61: /req/json-record-components/
component-types

REQUIREMENT 61

IDENTIFIER /req/json-record-components/component-types

INCLUDED
IN

Requirements class 10: /req/json-record-components

STATEMENT
The standardization target SHALL implement the following data component types: DataRecord,
Vector

OPEN GEOSPATIAL CONSORTIUM 24-014 92

9.2.1. DataRecord Object

The “DataRecord” object is the JSON schema implementation of the “DataRecord” UML class
defined in Clause 8.3.1. The schema for this class is provided in DataRecord.json.

The example below describes a record composed of weather data fields. In this case the
“DataRecord” element is used as a descriptor for records of data that are provided as part of a
datastream:

{
 "type": "DataRecord",
 "label": "Weather Data Record",
 "fields": [
 {
 "name": "time",
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/BIPM/0/UTC",
 "label": "Sampling Time",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 }
 },
 {
 "name": "temperature",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/air_temperature",
 "label": "Air Temperature",
 "uom": { "code": "Cel" }
 },
 {
 "name": "pressure",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/air_pressure_at_mean_sea_
level",
 "label": "Air Pressure",
 "uom": { "code": "mbar" }
 },
 {
 "name": "windSpeed",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_speed",
 "label": "Wind Speed",
 "uom": { "code": "km/h" }
 },
 {
 "name": "windDirection",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_to_direction",
 "label": "Wind Direction",
 "uom": { "code": "deg" }
 }
]
}

Listing

{
 "type": "DataRecord",

OPEN GEOSPATIAL CONSORTIUM 24-014 93

https://schemas.opengis.net/sweCommon/3.0/json/DataRecord.json

 "definition": "urn:x-ogc:def:property:CSM::RadialDistortionCoefficients",
 "label": "Radial Distortion Coefficients",
 "fields": [
 {
 "name": "k1",
 "type": "Quantity",
 "definition": "urn:x-ogc:def:property:CSM::DISTOR_RAD1",
 "label": "Coef k1",
 "uom": { "code": "mm-2" },
 "value": 1.92709e-5
 },
 {
 "name": "k2",
 "type": "Quantity",
 "definition": "urn:x-ogc:def:property:CSM::DISTOR_RAD2",
 "label": "Coef k2",
 "uom": { "code": "mm-2" },
 "value": -5.14206e-10
 },
 {
 "name": "k3",
 "type": "Quantity",
 "definition": "urn:x-ogc:def:property:CSM::DISTOR_RAD3",
 "label": "Coef k3",
 "uom": { "code": "mm-2" },
 "value": -3.33356e-12
 }
]
}

Listing

9.2.2. Vector Object

The “Vector” object is the JSON schema implementation of the “Vector” UML class defined in
Clause 8.3.2. The schema for this class is provided in Vector.json.

{
 "type": "Vector",
 "definition": "http://www.opengis.net/def/property/OGC/0/PlatformLocation",
 "referenceFrame": "http://www.opengis.net/def/crs/EPSG/0/4326",
 "label": "Platform Location",
 "coordinates": [
 {
 "name": "lat",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/GeodeticLatitude",
 "label": "Latitude",
 "axisID": "Lat",
 "uom": { "code": "deg" },
 "value": 45.36
 },
 {
 "name": "lon",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Longitude",
 "label": "Longitude",
 "axisID": "Lon",
 "uom": { "code": "deg" },
 "value": 5.2

OPEN GEOSPATIAL CONSORTIUM 24-014 94

https://schemas.opengis.net/sweCommon/3.0/json/Vector.json

 }
]
}

Listing

{
 "type": "Vector",
 "definition": "http://qudt.org/vocab/quantitykind/LinearVelocity",
 "referenceFrame": "http://www.opengis.net/def/crs/OGC/0/ECI_J2000",
 "label": "Platform Velocity",
 "coordinates": [
 {
 "name": "vx",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Speed",
 "label": "Velocity X",
 "uom": { "code": "m/s" }
 },
 {
 "name": "vy",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Speed",
 "label": "Velocity Y",
 "uom": { "code": "m/s" }
 },
 {
 "name": "vz",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Speed",
 "label": "Velocity Z",
 "uom": { "code": "m/s" }
 }
]
}

Listing

{
 "type": "Vector",
 "definition": "http://sensorml.com/ont/swe/property/RotationQuaternion",
 "referenceFrame": "http://www.opengis.net/def/crs/OGC/0/ECI_J2000",
 "localFrame": "urn:org:systems:001#PLATFORM_FRAME",
 "label": "Platform Orientation",
 "coordinates": [
 {
 "name": "qx",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Coordinate",
 "label": "QX",
 "uom": { "code": "1" }
 },
 {
 "name": "qy",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Coordinate",
 "label": "QY",
 "uom": { "code": "1" }
 },
 {
 "name": "qz",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Coordinate",

OPEN GEOSPATIAL CONSORTIUM 24-014 95

 "label": "QZ",
 "uom": { "code": "1" }
 },
 {
 "name": "qw",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Coordinate",
 "label": "QW",
 "uom": { "code": "1" }
 }
]
}

Listing

9.3. Requirements Class: Choice Components JSON
Schema

REQUIREMENTS CLASS 11: CHOICE COMPONENTS JSON SCHEMA

IDENTIFIER /req/json-choice-components

TARGET TYPE JSON Document

CONFORMANCE CLASS
Conformance class A.11: /conf/json-choice-
components

PREREQUISITE Requirements class 9: /req/json-simple-components

INDIRECT PREREQUISITE Requirements class 4: /req/uml-choice-components

NORMATIVE STATEMENT
Requirement 62: /req/json-choice-components/
component-types

REQUIREMENT 62

IDENTIFIER /req/json-choice-components/component-types

INCLUDED IN Requirements class 11: /req/json-choice-components

STATEMENT The standardization target SHALL implement the following data component types: DataChoice

OPEN GEOSPATIAL CONSORTIUM 24-014 96

9.3.1. DataChoice Object

The “DataChoice” object is the JSON schema implementation of the “DataChoice” UML class
defined in Clause 8.4.1. The schema for this class is provided in DataChoice.json.

{
 "type": "DataChoice",
 "label": "Weather Data Message",
 "items": [
 {
 "name": "TEMP",
 "type": "DataRecord",
 "label": "Temperature Measurement",
 "fields": [
 {
 "name": "time",
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/BIPM/0/UTC",
 "label": "Sampling Time",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 }
 },
 {
 "name": "temp",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/air_temperature",
 "label": "Air Temperature",
 "uom": { "code": "Cel" }
 }
]
 },
 {
 "name": "PRESS",
 "type": "DataRecord",
 "label": "Pressure Measurement",
 "fields": [
 {
 "name": "time",
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/BIPM/0/UTC",
 "label": "Sampling Time",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 }
 },
 {
 "name": "press",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/air_pressure_at_mean_
sea_level",
 "label": "Air Pressure",
 "uom": { "code": "HPa" }
 }
]
 }
]

OPEN GEOSPATIAL CONSORTIUM 24-014 97

https://schemas.opengis.net/sweCommon/3.0/json/DataChoice.json

}

Listing

9.4. Requirements Class: Block Components JSON
Schema

REQUIREMENTS CLASS 12: BLOCK COMPONENTS JSON SCHEMA

IDENTIFIER /req/json-block-components

TARGET TYPE JSON Document

CONFORMANCE CLASS
Conformance class A.12: /conf/json-block-
components

PREREQUISITE Requirements class 9: /req/json-simple-components

INDIRECT PREREQUISITE Requirements class 5: /req/uml-block-components

NORMATIVE STATEMENTS

 Requirement 63: /req/json-block-components/
component-types
 Requirement 64: /req/json-block-components/
encoded-values-valid
 Requirement 65: /req/json-block-components/
referenced-encoded-values-valid

REQUIREMENT 63

IDENTIFIER /req/json-block-components/component-types

INCLUDED
IN

Requirements class 12: /req/json-block-components

STATEMENT
The standardization target SHALL implement the following data component types: DataArray, Matrix,
DataStream

9.4.1. DataArray Object

The “DataArray” element is the JSON schema implementation of the “DataArray” UML class
defined in Clause 8.5.1. The schema for this class is provided in DataArray.json.

{

OPEN GEOSPATIAL CONSORTIUM 24-014 98

https://schemas.opengis.net/sweCommon/3.0/json/DataArray.json

 "type": "DataArray",
 "label": "Calibration Table",
 "elementType": {
 "name": "point",
 "type": "DataRecord",
 "label": "Data Point",
 "fields": [
 {
 "name": "t",
 "type": "Quantity",
 "definition": "https://qudt.org/vocab/quantitykind/Temperature",
 "label": "Temperature",
 "uom": { "code": "Cel" }
 },
 {
 "name": "r",
 "type": "Quantity",
 "definition": "https://qudt.org/vocab/quantitykind/Resistance",
 "label": "Resistance",
 "uom": { "code": "KOhm" }
 }
]
 },
 "values": [
 {"t": 12, "r": 3.03},
 {"t": 30.1, "r": 1.68},
 {"t": 40.0, "r": 1.16},
 {"t": 50.1, "r": 0.85},
 {"t": 59.8, "r": 0.62}
]
}

Listing

When provided inline, “DataArray” values are encoded using the method defined in Clause 9.4.4.

The following example shows how to define a 1D variable size array whose data is provided
separately.

{
 "type": "DataArray",
 "definition": "http://sensorml.com/ont/swe/property/Trajectory",
 "label": "Mobile Trajectory",
 "elementCount": {
 "definition": "http://www.opengis.net/def/property/OGC/0/NumberOfPoints",
 "label": "Implicit Size"
 },
 "elementType": {
 "name": "point",
 "type": "Vector",
 "definition": "http://www.opengis.net/def/property/OGC/0/PlatformLocation",
 "referenceFrame": "http://www.opengis.net/def/crs/EPSG/0/4326",
 "label": "Location Point",
 "coordinates": [
 {
 "name": "lat",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/GeodeticLatitude",
 "label": "Latitude",
 "axisID": "Lat",
 "uom": { "code": "deg" }
 },

OPEN GEOSPATIAL CONSORTIUM 24-014 99

 {
 "name": "lon",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Longitude",
 "label": "Longitude",
 "axisID": "Lon",
 "uom": { "code": "deg" }
 }
]
 }
}

Listing

“DataArray” components can also be nested to form multi-dimensional arrays, as shown in the
following example of a 2D array:

{
 "type": "DataArray",
 "definition": "http://sensorml.com/ont/swe/property/RasterImage",
 "label": "Satellite Image",
 "elementCount": {
 "definition": "http://www.opengis.net/def/property/OGC/0/NumberOfRows",
 "value": 3000
 },
 "elementType": {
 "name": "row",
 "type": "DataArray",
 "definition": "http://sensorml.com/ont/swe/property/RasterImage",
 "elementCount": {
 "definition": "http://www.opengis.net/def/property/OGC/0/NumberOfSamples",
 "value": 3000
 },
 "elementType": {
 "name": "pixel",
 "type": "DataRecord",
 "definition": "http://sensorml.com/ont/swe/property/GridCell",
 "fields": [
 {
 "name": "band1",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Radiance",
 "label": "Radiance",
 "description": "Radiance measured on band1",
 "uom": { "code": "W.m-2.Sr-1" }
 },
 {
 "name": "band2",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Radiance",
 "label": "Radiance",
 "description": "Radiance measured on band2",
 "uom": { "code": "W.m-2.Sr-1" }
 },
 {
 "name": "band3",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Radiance",
 "label": "Radiance",
 "description": "Radiance measured on band3",
 "uom": { "code": "W.m-2.Sr-1" }
 }
]

OPEN GEOSPATIAL CONSORTIUM 24-014 100

 }
 }
}

Listing

9.4.2. Matrix Object

The “Matrix” object is the JSON schema implementation of the “Matrix” UML class defined in
Clause 8.5.2. The schema for this class is provided in Matrix.json.

{
 "type": "Matrix",
 "definition": "http://sensorml.com/ont/swe/property/RotationMatrix",
 "referenceFrame": "http://www.opengis.net/def/crs/OGC/0/ECI_J2000",
 "label": "3D Orientation Matrix",
 "elementType": {
 "name": "row",
 "type": "Matrix",
 "elementType": {
 "name": "coef",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Coordinate",
 "label": "Matrix Coef",
 "uom": { "code": "1" }
 }
 },
 "values": [
 [0.36,0.48,-0.8],
 [-0.8,0.6,0],
 [0.48,0.64,0.6]
]
}

Listing

When provided inline, “Matrix” values are encoded using the method defined in Clause 9.4.4.

9.4.3. DataStream Object

The “DataStream” object is the JSON schema implementation of the “DataStream” UML class
defined in Clause 8.5.3. The schema for this class is provided in DataStream.json.

{
 "type": "DataStream",
 "label": "Aircraft Navigation",
 "elementType": {
 "name": "navData",
 "type": "DataRecord",
 "fields": [
 {
 "type": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/USNO/0/GPS",
 "referenceTime": "1970-01-01T00:00:00Z",
 "label": "Sampling Time",
 "uom": { "code": "s" }
 },

OPEN GEOSPATIAL CONSORTIUM 24-014 101

https://schemas.opengis.net/sweCommon/3.0/json/Matrix.json
https://schemas.opengis.net/sweCommon/3.0/json/DataStream.json

 {
 "name": "location",
 "type": "Vector",
 "definition": "http://www.opengis.net/def/property/OGC/0/
PlatformLocation",
 "referenceFrame": "http://www.opengis.net/def/crs/EPSG/0/4979",
 "label": "Platform Location",
 "coordinates": [
 {
 "name": "lat",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/
GeodeticLatitude",
 "label": "Latitude",
 "axisID": "Lat",
 "uom": { "code": "deg" }
 },
 {
 "name": "lon",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Longitude",
 "label": "Longitude",
 "axisID": "Lon",
 "uom": { "code": "deg" }
 },
 {
 "name": "alt",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/
HeightAboveEllipsoid",
 "label": "Altitude",
 "axisID": "h",
 "uom": { "code": "m" }
 }
]
 },
 {
 "name": "attitude",
 "type": "Vector",
 "definition": "http://www.opengis.net/def/property/OGC/0/
PlatformOrientation",
 "referenceFrame": "http://www.opengis.net/def/cs/OGC/0/ENU",
 "label": "Platform Attitude",
 "coordinates": [
 {
 "name": "heading",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/TrueHeading",
 "label": "Heading",
 "axisID": "Z",
 "uom": { "code": "deg" }
 },
 {
 "name": "pitch",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/PitchAngle",
 "label": "Pitch",
 "axisID": "X",
 "uom": { "code": "deg" }
 },
 {
 "name": "roll",
 "type": "Quantity",

OPEN GEOSPATIAL CONSORTIUM 24-014 102

 "definition": "http://sensorml.com/ont/swe/property/RollAngle",
 "label": "Roll",
 "axisID": "Y",
 "uom": { "code": "deg" }
 }
]
 }
]
 },
 "encoding": {
 "type": "TextEncoding",
 "tokenSeparator": ",",
 "blockSeparator": "\n",
 "decimalSeparator": "."
 }
}

Listing

When provided inline, “DataStream” values are encoded using the method defined in
Clause 9.4.4.

9.4.4. Inline Value Blocks

Inline values for “DataArray”, “Matrix” and “DataStream” components shall always be encoded
using the JSON encoding rules when provided within a JSON document. No other method is
allowed within a JSON document compliant with this standard. Inline block component values
shall always be wrapped using a JSON Array.

REQUIREMENT 64

IDENTIFIER /req/json-block-components/encoded-values-valid

INCLUDED IN Requirements class 12: /req/json-block-components

STATEMENT Inline values of all block components SHALL be encoded using the JSON Encoding Rules.

However, when values are provided separately from the component description (e.g., when
datastream values are provided separately), any encoding methods defined in Clause 10 can be
used. The out-of-band values can be referenced using an URL, for which at least the schemes
http, https and data (as specified in IETF RFC 2397) shall be supported.

REQUIREMENT 65

IDENTIFIER /req/json-block-components/referenced-encoded-values-valid

INCLUDED
IN

Requirements class 12: /req/json-block-components

OPEN GEOSPATIAL CONSORTIUM 24-014 103

REQUIREMENT 65

STATEMENT Implementations SHALL support at least the schemes http, https and data for referenced values.

The data schema can be used to include all kind of data inline:

{
 "$schema": "file:///home/autermann/Source/ogcapi-connected-systems/swecommon/
schemas/json/DataArray.json",
 "type": "DataArray",
 "definition": "http://sensorml.com/ont/swe/property/RasterImage",
 "label": "Satellite Image",
 "elementCount": {
 "definition": "http://www.opengis.net/def/property/OGC/0/NumberOfRows",
 "value": 4
 },
 "elementType": {
 "name": "row",
 "type": "DataArray",
 "definition": "http://sensorml.com/ont/swe/property/RasterImage",
 "elementCount": {
 "definition": "http://www.opengis.net/def/property/OGC/0/NumberOfSamples",
 "value": 4
 },
 "elementType": {
 "name": "pixel",
 "type": "DataRecord",
 "definition": "http://sensorml.com/ont/swe/property/GridCell",
 "fields": [
 {
 "name": "band1",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Radiance",
 "label": "Radiance",
 "description": "Radiance measured on band1",
 "uom": { "code": "W.m-2.Sr-1" }
 },
 {
 "name": "band2",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Radiance",
 "label": "Radiance",
 "description": "Radiance measured on band2",
 "uom": { "code": "W.m-2.Sr-1" }
 },
 {
 "name": "band3",
 "type": "Quantity",
 "definition": "http://qudt.org/vocab/quantitykind/Radiance",
 "label": "Radiance",
 "description": "Radiance measured on band3",
 "uom": { "code": "W.m-2.Sr-1" }
 }
]
 }
 },
 "encoding": {
 "type": "BinaryEncoding",
 "byteEncoding": "raw",
 "byteOrder": "bigEndian",

OPEN GEOSPATIAL CONSORTIUM 24-014 104

 "members": [
 {
 "type": "Component",
 "ref": "row/pixel/band1",
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/unsignedByte"
 },
 {
 "type": "Component",
 "ref": "row/pixel/band2",
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/unsignedByte"
 },
 {
 "type": "Component",
 "ref": "row/pixel/band3",
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/unsignedByte"
 }
]
 },
 "values":{"href": "data:application/octet-stream;base64,MptSyfqPYAB5A9aV3j1uYw9
EywICwMDZVcmnRlpS1NI1crn8K7NUe/X0I8r4IVq9"}
}

Listing

9.5. Requirements Class: Geometry Components JSON
Schema

REQUIREMENTS CLASS 13: GEOMETRY COMPONENTS JSON SCHEMA

IDENTIFIER /req/json-geom-components

TARGET TYPE JSON Document

CONFORMANCE CLASS
Conformance class A.13: /conf/json-geom-
components

PREREQUISITE Requirements class 9: /req/json-simple-components

INDIRECT PREREQUISITE Requirements class 6: /req/uml-geom-components

NORMATIVE STATEMENT
Requirement 66: /req/json-geom-components/
component-types

REQUIREMENT 66

IDENTIFIER /req/json-geom-components/component-types

OPEN GEOSPATIAL CONSORTIUM 24-014 105

REQUIREMENT 66

INCLUDED IN Requirements class 13: /req/json-geom-components

STATEMENT The standardization target SHALL implement the following data component types: Geometry

9.5.1. Geometry Object

The “Geometry” object is the JSON schema implementation of the “Geometry” UML class
defined in Clause 8.6.1. The schema for this class is provided in Geometry.json.

{
 "type": "Geometry",
 "definition": "http://sensorml.com/ont/swe/property/TargetLocation",
 "srs": "http://www.opengis.net/def/crs/EPSG/0/4326",
 "label": "Target Location",
 "description": "A point geometry",
 "value": {
 "type": "Point",
 "coordinates": [12.34, 56.36]
 }
}

{
 "type": "Geometry",
 "definition": "http://sensorml.com/ont/swe/property/Trajectory",
 "srs": "http://www.opengis.net/def/crs/EPSG/0/4326",
 "label": "Desired Trajectory",
 "description": "Desired UxS trajectory defined as a line string",
 "value": {
 "type": "LineString",
 "coordinates": [[12.34, 56.36], [12.45, 56.37], [12.45, 56.39], [12.34,
56.36]]
 }
}

{
 "type": "Geometry",
 "definition": "http://sensorml.com/ont/x-swe/property/SurveillanceArea",
 "srs": "http://www.opengis.net/def/crs/EPSG/0/4326",
 "label": "Surveillance Area",
 "description": "Desired UxS surveillance area defined as a polygon",
 "value": {
 "type": "Polygon",
 "coordinates": [
 [[12.34, 56.36], [12.45, 56.37], [12.45, 56.39], [12.34, 56.36]]
]
 }
}

Listing

OPEN GEOSPATIAL CONSORTIUM 24-014 106

https://schemas.opengis.net/sweCommon/3.0/json/Geometry.json

9.6. Requirements Class: Simple Encodings JSON Schema

REQUIREMENTS CLASS 14: SIMPLE ENCODINGS JSON SCHEMA

IDENTIFIER /req/json-simple-encodings

TARGET TYPE JSON Document

CONFORMANCE CLASS Conformance class A.14: /conf/json-simple-encodings

PREREQUISITES
Requirements class 18: /req/text-encoding-rules
Requirements class 17: /req/json-encoding-rules

INDIRECT PREREQUISITE Requirements class 14: /req/json-simple-encodings

NORMATIVE STATEMENTS

 Requirement 67: /req/json-simple-encodings/
encoding-types
 Requirement 68: /req/json-simple-encodings/json-
encoding-rules-applied
 Requirement 69: /req/json-simple-encodings/text-
encoding-rules-applied

REQUIREMENT 67

IDENTIFIER /req/json-simple-encodings/encoding-types

INCLUDED
IN

Requirements class 14: /req/json-simple-encodings

STATEMENT
The standardization target SHALL support the following encoding types: JSONEncoding, Text
Encoding

Validation patterns that implement classes defined in the “Simple Encodings” UML packages are
provided in the JSON schema encodings.json.

When datastream or data array values are provided out-of-band (i.e., not inline in the
“DataArray”, “Matrix” or “DataStream” description), a different encoding than JSON can be
selected. This is specified by using one of the following classes.

9.6.1. JSONEncoding Object

OPEN GEOSPATIAL CONSORTIUM 24-014 107

https://schemas.opengis.net/sweCommon/3.0/json/encodings.json

REQUIREMENT 68

IDENTIFIER /req/json-simple-encodings/json-encoding-rules-applied

INCLUDED
IN

Requirements class 14: /req/json-simple-encodings

STATEMENT
The encoded values block described by a “JSONEncoding” object shall pass the “JSON Encoding
Rules” conformance test class.

The “JSONEncoding” object is the JSON schema implementation of the “JSONEncoding” UML
class defined in Clause 8.7.1. The schema for this class is provided in encodings.json#/$defs/
JSONEncoding.

{
 "type": "JSONEncoding",
 "recordsAsArrays": false,
 "vectorsAsArrays": false
}

Listing

The JSON encoding method is the default method when the data component tree is itself
encoded in JSON.

9.6.2. TextEncoding Object

REQUIREMENT 69

IDENTIFIER /req/json-simple-encodings/text-encoding-rules-applied

INCLUDED
IN

Requirements class 14: /req/json-simple-encodings

STATEMENT
The encoded values block described by a “TextEncoding” object shall pass the “Text Encoding Rules”
conformance test class.

The “TextEncoding” object is the JSON schema implementation of the “TextEncoding” UML
class defined in Clause 8.7.2. The schema for this class is provided in encodings.json#/$defs/
TextEncoding.

{
 "type": "TextEncoding",
 "tokenSeparator": ",",
 "blockSeparator": "\n",
 "decimalSeparator": "."
}

Listing

OPEN GEOSPATIAL CONSORTIUM 24-014 108

https://schemas.opengis.net/sweCommon/3.0/json/encodings.json
https://schemas.opengis.net/sweCommon/3.0/json/encodings.json
https://schemas.opengis.net/sweCommon/3.0/json/encodings.json
https://schemas.opengis.net/sweCommon/3.0/json/encodings.json

9.7. Requirements Class: Advanced Encodings JSON
Schema

REQUIREMENTS CLASS 15: ADVANCED ENCODINGS JSON SCHEMA

IDENTIFIER /req/json-advanced-encodings

TARGET TYPE JSON Document

CONFORMANCE CLASS
Conformance class A.15: /conf/json-advanced-
encodings

PREREQUISITES
Requirements class 14: /req/json-simple-encodings
Requirements class 19: /req/binary-encoding-rules

INDIRECT PREREQUISITE Requirements class 8: /req/uml-advanced-encodings

NORMATIVE STATEMENTS

 Requirement 70: /req/json-advanced-encodings/
encoding-types
 Requirement 71: /req/json-advanced-encodings/
binary-encoding-rules-applied
 Requirement 72: /req/json-advanced-encodings/ref-
syntax-valid
 Requirement 73: /req/json-advanced-encodings/
scalar-ref-component-valid
 Requirement 74: /req/json-advanced-encodings/
datatype-valid
 Requirement 75: /req/json-advanced-encodings/
datatype-compatible
 Requirement 76: /req/json-advanced-encodings/no-
datatype-length
 Requirement 77: /req/json-advanced-encodings/
block-ref-component-valid

REQUIREMENT 70

IDENTIFIER /req/json-advanced-encodings/encoding-types

INCLUDED IN Requirements class 15: /req/json-advanced-encodings

STATEMENT The standardization target SHALL support the following encoding types: BinaryEncoding

OPEN GEOSPATIAL CONSORTIUM 24-014 109

This requirement class defines an additional encoding method that can be used to encode data
values as raw or base64 binary blocks.

9.7.1. BinaryEncoding Object

REQUIREMENT 71

IDENTIFIER /req/json-advanced-encodings/binary-encoding-rules-applied

INCLUDED
IN

Requirements class 15: /req/json-advanced-encodings

STATEMENT
The encoded values block described by a “BinaryEncoding” element shall pass the “Binary Encoding
Rules” conformance test class.

The “BinaryEncoding” object is the JSON schema implementation of the “BinaryEncoding” UML
class defined in Clause 8.8.1. The schema for this class is provided in encodings.json#/$defs/
BinaryEncoding.

An example instance is provided below:

{
 "type": "BinaryEncoding",
 "byteOrder": "bigEndian",
 "byteEncoding": "raw",
 "members": [
 {
 "type": "Component",
 "ref": "/time",
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/double"
 },
 {
 "type": "Block",
 "ref": "/img",
 "compression": "H264"
 }
]
}

Listing

9.7.1.1. Binary Component Object

The “Component” object implements the UML class with the same name. It is used to specify
encoding parameters of scalar components. It allows for the detailed specification of the
encoding parameters associated to components of the data description tree as discussed in
Clause 8.8.1.

The “ref” attribute takes a value of a particular syntax that allows pointing to any data
component. The syntax is a ‘/’ separated list of component names, starting with the name of the

OPEN GEOSPATIAL CONSORTIUM 24-014 110

https://schemas.opengis.net/sweCommon/3.0/json/encodings.json
https://schemas.opengis.net/sweCommon/3.0/json/encodings.json

root component and listed hierarchically. Each of these component names shall match the value
of the “name” attribute defined in the data definition tree.

REQUIREMENT 72

IDENTIFIER /req/json-advanced-encodings/ref-syntax-valid

INCLUDED
IN

Requirements class 15: /req/json-advanced-encodings

STATEMENT
The “ref” attribute of the “Component” or “Block” object SHALL contain a hierarchical ‘/’ separated
list of data component names.

The “ref” attribute used on the “Component” element shall point exclusively to a scalar
component.

REQUIREMENT 73

IDENTIFIER /req/json-advanced-encodings/scalar-ref-component-valid

INCLUDED IN Requirements class 15: /req/json-advanced-encodings

STATEMENT The “ref” attribute of a “Component” object SHALL reference a scalar or range component.

This standard defines the list of data types that are allowed for scalar values when encoded with
the binary encoding method. The corresponding URIs listed below shall be used as the value of
the datatype attribute of an instance of the “Component” element.

REQUIREMENT 74

IDENTIFIER /req/json-advanced-encodings/datatype-valid

INCLUDED
IN

Requirements class 15: /req/json-advanced-encodings

STATEMENT
The value of the “dataType” property of the “Component” object SHALL be one of the URIs listed in
Table 2.

These data types are specified in the normative table below:

Table 2 — Allowed Binary Data Types

Common
Name

URI to use in “data
Type” attribute

Description

OPEN GEOSPATIAL CONSORTIUM 24-014 111

Signed Byte
http://www.opengis.
net/def/dataType/
OGC/0/signedByte

8-bits signed binary integer.
Range: −128 to +127

Unsigned
Byte

http://www.
opengis.net/def/
dataType/OGC/0/
unsignedByte

8-bits unsigned binary integer.
Range: 0 to +255

Signed Short
http://www.opengis.
net/def/dataType/
OGC/0/signedShort

16-bits signed binary integer.
Range: −32,768 to +32,767

Unsigned
Short

http://www.
opengis.net/def/
dataType/OGC/0/
unsignedShort

16-bits unsigned binary integer.
Range: 0 to +65,535

Signed Int
http://www.opengis.
net/def/dataType/
OGC/0/signedInt

32-bits signed binary integer.
Range: −2,147,483,648 to +2,147,483,647

Unsigned Int
http://www.opengis.
net/def/dataType/
OGC/0/unsignedInt

32-bits unsigned binary integer.
Range: 0 to +4,294,967,295

Signed Long
http://www.opengis.
net/def/dataType/
OGC/0/signedLong

64-bits signed binary integer.

Range: −263 to +263 — 1

Unsigned
Long

http://www.
opengis.net/def/
dataType/OGC/0/
unsignedLong

64-bits unsigned binary integer.

Range: 0 to +264 — 1

Half
Precision
Float

http://www.opengis.
net/def/dataType/
OGC/0/float16

16-bits single precision floating point number as defined in IEEE 754.

Float
http://www.opengis.
net/def/dataType/
OGC/0/float32

32-bits single precision floating point number as defined in IEEE 754.

Double

http://www.opengis.
net/def/dataType/
OGC/0/double or
http://www.
opengis.net/def/
dataType/OGC/0/
float64

64-bits double precision floating point number as defined in IEEE 754.

Long Double
http://www.opengis.
net/def/dataType/
OGC/0/float128

128-bits quadruple precision floating point number as defined in IEEE 754.

OPEN GEOSPATIAL CONSORTIUM 24-014 112

http://www.opengis.net/def/dataType/OGC/0/signedByte
http://www.opengis.net/def/dataType/OGC/0/signedByte
http://www.opengis.net/def/dataType/OGC/0/signedByte
http://www.opengis.net/def/dataType/OGC/0/unsignedByte
http://www.opengis.net/def/dataType/OGC/0/unsignedByte
http://www.opengis.net/def/dataType/OGC/0/unsignedByte
http://www.opengis.net/def/dataType/OGC/0/unsignedByte
http://www.opengis.net/def/dataType/OGC/0/signedShort
http://www.opengis.net/def/dataType/OGC/0/signedShort
http://www.opengis.net/def/dataType/OGC/0/signedShort
http://www.opengis.net/def/dataType/OGC/0/unsignedShort
http://www.opengis.net/def/dataType/OGC/0/unsignedShort
http://www.opengis.net/def/dataType/OGC/0/unsignedShort
http://www.opengis.net/def/dataType/OGC/0/unsignedShort
http://www.opengis.net/def/dataType/OGC/0/signedInt
http://www.opengis.net/def/dataType/OGC/0/signedInt
http://www.opengis.net/def/dataType/OGC/0/signedInt
http://www.opengis.net/def/dataType/OGC/0/unsignedInt
http://www.opengis.net/def/dataType/OGC/0/unsignedInt
http://www.opengis.net/def/dataType/OGC/0/unsignedInt
http://www.opengis.net/def/dataType/OGC/0/signedLong
http://www.opengis.net/def/dataType/OGC/0/signedLong
http://www.opengis.net/def/dataType/OGC/0/signedLong
http://www.opengis.net/def/dataType/OGC/0/unsignedLong
http://www.opengis.net/def/dataType/OGC/0/unsignedLong
http://www.opengis.net/def/dataType/OGC/0/unsignedLong
http://www.opengis.net/def/dataType/OGC/0/unsignedLong
http://www.opengis.net/def/dataType/OGC/0/float16
http://www.opengis.net/def/dataType/OGC/0/float16
http://www.opengis.net/def/dataType/OGC/0/float16
http://www.opengis.net/def/dataType/OGC/0/float32
http://www.opengis.net/def/dataType/OGC/0/float32
http://www.opengis.net/def/dataType/OGC/0/float32
http://www.opengis.net/def/dataType/OGC/0/double
http://www.opengis.net/def/dataType/OGC/0/double
http://www.opengis.net/def/dataType/OGC/0/double
http://www.opengis.net/def/dataType/OGC/0/float64
http://www.opengis.net/def/dataType/OGC/0/float64
http://www.opengis.net/def/dataType/OGC/0/float64
http://www.opengis.net/def/dataType/OGC/0/float64
http://www.opengis.net/def/dataType/OGC/0/float128
http://www.opengis.net/def/dataType/OGC/0/float128
http://www.opengis.net/def/dataType/OGC/0/float128

UTF-8 String
(Variable
Length)

http://www.opengis.
net/def/dataType/
OGC/0/string-utf-8
“byteLength”
attribute is not set.

Variable length string composed of a 2-bytes unsigned short value indicating its
length followed by a sequence of UTF-8 encoded characters as specified by the
Unicode Standard (2.5).

UTF-8
String*
(Fixed
Length)

http://www.opengis.
net/def/dataType/
OGC/0/string-utf-8
“byteLength”
attribute is set.

Fixed length string composed of a sequence of UTF-8 encoded characters as
specified by the Unicode Standard (2.5), and padded with 0 characters.

The data type should be chosen so that its range allows the encoding of all possible values
for a field (i.e., compatible with the field representation and constraints) including NIL values.
This means that certain combinations of data type and components are not allowed. If a scalar
component does not specify any constraint, any data type compatible with its representation
can be used and it is the responsibility of the implementation to ensure that all future values for
the component will “fit” in the data type.

REQUIREMENT 75

IDENTIFIER /req/json-advanced-encodings/datatype-compatible

INCLUDED
IN

Requirements class 15: /req/json-advanced-encodings

STATEMENT
The chosen data type SHALL be compatible with the scalar component representation, constraints
and NIL values.

Only data types marked with an asterisk allow the usage of the “byteLength” or “bitLength”
attribute to customize their size. Usage of these attributes is forbidden on all other data types
since their size is fixed and already specified in this standard (in the case of a variable length
string, the size is included in the stream).

REQUIREMENT 76

IDENTIFIER /req/json-advanced-encodings/no-datatype-length

INCLUDED IN Requirements class 15: /req/json-advanced-encodings

STATEMENT The “bitLength” and “byteLength” properties SHALL not be set when a fixed size data type is used.

The value of the “byteEncoding” attribute allows the selection of either the ‘raw’ or
‘base64’ encoding methods. When ‘base64’ is selected each byte is converted to its base 64
representation before it is included in the encoded block, making it possible to include the
values directly inline in the JSON instance.

OPEN GEOSPATIAL CONSORTIUM 24-014 113

http://www.opengis.net/def/dataType/OGC/0/string-utf-8
http://www.opengis.net/def/dataType/OGC/0/string-utf-8
http://www.opengis.net/def/dataType/OGC/0/string-utf-8
http://www.opengis.net/def/dataType/OGC/0/string-utf-8
http://www.opengis.net/def/dataType/OGC/0/string-utf-8
http://www.opengis.net/def/dataType/OGC/0/string-utf-8

9.7.1.2. Binary Block Object

The “Block” element implements the UML class with the same name. It is used to specify
padding, encryption and/or compression of a block of data corresponding to an aggregate
component.

The “ref” attribute shall point to an aggregate component in the data description and set one or
more of the “compression,” “encryption,” or “padding” attributes.

REQUIREMENT 77

IDENTIFIER /req/json-advanced-encodings/block-ref-component-valid

INCLUDED IN Requirements class 15: /req/json-advanced-encodings

STATEMENT The “ref” attribute of the “Block” object SHALL reference an aggregate component.

When padding is specified, padding bytes with a value of zero are inserted before (when
“paddingBytesBefore” is set) and/or after (when “paddingBytesAfter” is set) the whole block
of values corresponding to the aggregate components. Decoders should skip these bytes
completely.

This standard does not specify specific compression or encryption methods. Future extensions
can define single or groups of methods to target specific application domains. Compression
methods can be specific such as the ones for video (e.g., MPEG-2, MPEG-4, etc.) or imagery
(e.g., JPEG, JPEG2000, etc.) or generic so that they are applicable for any kind of data (e.g., GZIP,
BZIP, etc.). They can be lossy or lossless. When a compression method results in variable length
data blocks, the method should also define how the the block length is specified.

OPEN GEOSPATIAL CONSORTIUM 24-014 114

10

DATA BLOCKS AND
STREAMS ENCODING
RULES (NORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 24-014 115

10 DATA BLOCKS AND STREAMS ENCODING
RULES (NORMATIVE)

10.1. Requirements Class: General Encoding Rules

REQUIREMENTS CLASS 16: GENERAL ENCODING RULES

IDENTIFIER /req/general-encoding-rules

TARGET TYPE Encoded Values Instance

CONFORMANCE CLASS Conformance class A.16: /conf/general-encoding-rules

INDIRECT PREREQUISITE Requirements class 7: /req/uml-simple-encodings

NORMATIVE STATEMENTS

 Requirement 78: /req/general-encoding-rules/record-
encoding-rule
 Requirement 79: /req/general-encoding-rules/choice-
encoding-rule
 Requirement 80: /req/general-encoding-rules/array-
encoding-rule
 Requirement 81: /req/general-encoding-rules/array-
size-encoding-rule

All encodings defined in this standard follow general principles so that it is possible to implement
them in a similar way.

The way values are encoded is linked to the data structure specified using a hierarchy of data
components. The values are included sequentially in the data stream by recursively processing
all data components composing the dataset definition tree.

10.1.1. Rules for Scalar Components

The value of each scalar component is encoded as a single scalar value. The actual binary
representation of this scalar value depends on the encoding method. For example, in
“TextEncoding,” a numerical value is represented by its string representation that usually span
several bytes (e.g., ‘1.2345’ spans 6 bytes), why with the “BinaryEncoding” encode a similar value
would likely be encoded as an IEEE 754 single precision floating-point format.

OPEN GEOSPATIAL CONSORTIUM 24-014 116

The value of a “Time” component is encoded either as a decimal value or as a string in the case
where a calendar representation or indeterminate value is used.

When the value of a scalar component is NIL, the appropriate nil value is used in the stream and
replaces the actual measurement value. This is always possible because nil values are required to
be expressed with a data type that is compatible with the representation of the corresponding
field.

10.1.2. Rules for Range Components

The values of range components are encoded as a sequence of two successive values, first the
lower bound of the range, then the upper bound. Each of these values is encoded exactly like
the values of scalar components.

10.1.3. Rules for DataRecord and Vector

Both “DataRecord” and “Vector” components are aggregates consisting of an ordered sequence
of child components. The values contained in these aggregates are encoded by successively
encoding each child component in the order in which they are listed in the record or vector
descriptor and including the resulting values sequentially in the stream.

The definition of a “DataRecord” (or “Vector”) structure composed of N fields (or coordinates for
vectors) can be represented in the following way:

The data block corresponding to such a structure would sequentially include all values for field
1, then all values for field 2, etc. until the last field is reached. Each field may consist of a single
value if it is a scalar but may also consist of multiple values if it is itself an aggregate or a range
component.

REQUIREMENT 78

IDENTIFIER /req/general-encoding-rules/record-encoding-rule

INCLUDED
IN

Requirements class 16: /req/general-encoding-rules

STATEMENT
“DataRecord” fields or “Vector” coordinates shall be encoded sequentially in a data block in the order
in which these fields or coordinates are listed in the data descriptor.

OPEN GEOSPATIAL CONSORTIUM 24-014 117

10.1.4. Rules for DataChoice

The “DataChoice” is an aggregate consisting of a choice of several child components called
items. When values of a data choice are encoded, the resulting data block consists of two things:
A token identifying the selecting item and the item values themselves. Only values of a single
item can be encoded in each instance of a choice.

The data block corresponding to such a structure would then sequentially include the item
identifier (i.e., the choice value) and then the value(s) for the selected item. The item may consist
of a single value if it is a scalar or multiple values if it is itself an aggregate or a range component.

REQUIREMENT 79

IDENTIFIER /req/general-encoding-rules/choice-encoding-rule

INCLUDED
IN

Requirements class 16: /req/general-encoding-rules

STATEMENT
Encoded values for the selected item of a “DataChoice” shall be provided along with information that
unambiguously identifies the selected item.

10.1.5. Rules for DataArray and Matrix

The “DataArray” is an aggregate consisting of a number of repeated elements, all of the same
type as defined by the element type. Values contained by a “DataArray” are encoded by
sequentially including the values of each element.

The definition of a “DataArray” (“Matrix”) structure composed of the array dimension and size
and the element type definition. This can be represented in the following way:

The data block corresponding to such a structure would sequentially include the number
representing the array size (only if it is variable) followed by one or more values corresponding to
each array element. The number of values encoded for each element depends only on the array
element definition, and the total number of values also depends on the array size.

OPEN GEOSPATIAL CONSORTIUM 24-014 118

REQUIREMENT 80

IDENTIFIER /req/general-encoding-rules/array-encoding-rule

INCLUDED
IN

Requirements class 16: /req/general-encoding-rules

STATEMENT
“DataArray” elements shall be encoded sequentially in a data block in the order of their index in the
array (i.e., from low to high index).

REQUIREMENT 81

IDENTIFIER /req/general-encoding-rules/array-size-encoding-rule

INCLUDED
IN

Requirements class 16: /req/general-encoding-rules

STATEMENT
Encoded data for a variable size “DataArray” shall include a number specifying the array size
whatever the encoding method used.

10.2. Requirements Class: JSON Encoding Rules

REQUIREMENTS CLASS 17: JSON ENCODING RULES

IDENTIFIER /req/json-encoding-rules

TARGET TYPE Encoded Values Instance

CONFORMANCE CLASS Conformance class A.17: /conf/json-encoding-rules

PREREQUISITE Requirements class 16: /req/general-encoding-rules

INDIRECT PREREQUISITE Requirements class 7: /req/uml-simple-encodings

NORMATIVE STATEMENTS

 Requirement 82: /req/json-encoding-rules/json-valid
 Requirement 83: /req/json-encoding-rules/scalar-
value-valid
 Requirement 84: /req/json-encoding-rules/range-
value-valid
 Requirement 85: /req/json-encoding-rules/record-
object-valid
 Requirement 86: /req/json-encoding-rules/vector-
object-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 119

REQUIREMENTS CLASS 17: JSON ENCODING RULES

 Requirement 87: /req/json-encoding-rules/choice-
object-valid
 Requirement 88: /req/json-encoding-rules/array-
values-valid
 Requirement 89: /req/json-encoding-rules/geometry-
valid

The “JSON Encoding” method encodes field values by their JSON representation.

REQUIREMENT 82

IDENTIFIER /req/json-encoding-rules/json-valid

INCLUDED
IN

Requirements class 17: /req/json-encoding-rules

STATEMENT
Data blocks and datastreams encoded using the JSON Encoding rules shall be valid JSON documents
as defined by IETF RFC 8259.

The encoding rules defined in this document refer to JSON data types defined by
IETF RFC 8259. Their definitions are recalled below:

JSON Object: An object structure is represented as a pair of curly brackets surrounding zero or
more name/value pairs (or members). Members are separated by commas. Each member must
have a distinct name.

JSON Array: An array structure is represented as square brackets surrounding zero or more
values (or elements). Elements are separated by commas.

JSON Number: A decimal or integer number represented in base 10, with a sign and optional
exponent.

JSON String: A string of Unicode characters that begins and ends with quotation marks.

10.2.1. Rules for Scalar Components

Scalar components are encoded as specified in Table 3. Special numerical values allowed for
“Quantity” and “Time” components are defined in Clause 9.1.2.

REQUIREMENT 83

IDENTIFIER /req/json-encoding-rules/scalar-value-valid

INCLUDED
IN

Requirements class 17: /req/json-encoding-rules

OPEN GEOSPATIAL CONSORTIUM 24-014 120

REQUIREMENT 83

STATEMENT
The value of a scalar component shall be represented using a JSON Number, a JSON String, or a
boolean literal value, as defined in Table 3.

Table 3 — Simple Component to JSON Value Types Mapping

COMPONENT
TYPE

JSON VALUE TYPE EXAMPLES

Boolean Boolean literal
true
false

Text JSON String
"word"
"a full sentence"
"BYC-589-AA"

Category JSON String
"ON"
"Paleozoic"
"diesel"

Count JSON Number
12
0

Quantity
JSON Number, or
JSON String with special numerical value.

12
23.1
"NaN"
"-Infinity"
"+Infinity"

Time
JSON String with a ISO8601 date/time string, or JSON
Number, or
JSON String with special numerical value.

"2023-03-15T12:45:56Z"
-23.1
12
"NaN"
"-Infinity"
"+Infinity"

10.2.2. Rules for Range Components

A range component is encoded using a JSON array of two values.

REQUIREMENT 84

IDENTIFIER /req/json-encoding-rules/range-value-valid

INCLUDED IN Requirements class 17: /req/json-encoding-rules

A Values of range components shall be wrapped in a JSON Array with exactly 2 scalar values.

OPEN GEOSPATIAL CONSORTIUM 24-014 121

REQUIREMENT 84

B
Each value is encoded in the same manner as the corresponding scalar component as defined in
Table 3.

Table 4 — Range Component to JSON Mapping

COMPONENT TYPE EXAMPLES

CategoryRange ["Cenozoic", "Paleozoic"]

CountRange [0, 12]

QuantityRange

[-12, 35]
[-180.0, 180.0]
["-Infinity", 0.0]
[10.0, "+Infinity"]
["NaN", "NaN"]

TimeRange

["2023-01-01T00:00:00Z", "2023-03-15T12:45:56Z"]
["2023-01-01T00:00:00Z", "+Infinity"]
["-Infinity", "2023-01-01T00:00:00Z"]
["2023-01-01T00:00:00Z", "+Infinity"]
["NaN", "NaN"]

10.2.3. Rules for DataRecord and Vector

“DataRecord” and “Vector” components are encoded using a JSON Object whose members are
named like the record fields per default. The attributes vectorAsArrays and recordsAsArrays
of the corresponding JSON Encoding can be used to switch to a more compact encoding using
JSON arrays.

REQUIREMENT 85

IDENTIFIER /req/json-encoding-rules/record-object-valid

INCLUDED
IN

Requirements class 17: /req/json-encoding-rules

A

“DataRecord” values shall be wrapped either in a JSON Object or in a JSON Array. If the attribute
‘recordsAsArrays’ of the corresponding ‘JSONEncoding’ is true, all “DataRecord” values shall be
encoded as JSON objects, else as JSON arrays. If the ‘recordsAsArrays’ or the corresponding
‘JSONEncoding’ is omitted, “DataRecord” values shall be encoded as JSON objects by default.

B
If “DataRecord” values are encoded as JSON objects, the name of the JSON object members shall be
the same as the “DataRecord” field names. The value of each JSON object member shall be chosen
by following the encoding rules of the data component used as the record field with the same name.

OPEN GEOSPATIAL CONSORTIUM 24-014 122

REQUIREMENT 85

If a record field is marked as ‘optional’, the corresponding JSON object member can be omitted or its
JSON value can be set to null.

C

If “DataRecord” values are encoded as JSON arrays, the order of JSON array items shall be the same
as the “DataRecord” fields. The value of each JSON array item shall be chosen by following the
encoding rules of the data component used as the record field at the same position. If a record field is
marked as ‘optional’, the corresponding JSON array item can be set null, but cannot be omitted.

REQUIREMENT 86

IDENTIFIER /req/json-encoding-rules/vector-object-valid

INCLUDED
IN

Requirements class 17: /req/json-encoding-rules

A

“Vector” values shall be wrapped either in a JSON Object or in a JSON Array. If the attribute ‘vectors
AsArrays’ of the corresponding ‘JSONEncoding’ is true, all “Vector” values shall be encoded as JSON
objects, else as JSON arrays. If the ‘vectorsAsArrays’ or the corresponding ‘JSONEncoding’ is omitted,
“Vector” values shall be encoded as JSON objects by default.

B

If “Vector” values are encoded as JSON objects, the name of the JSON object members shall be the
same as the “Vector” coordinate names. The value of each JSON object member shall be chosen by
following the encoding rules of the data component used as the vector coordinate field with the same
name.

C
If “Vector” values are encoded as JSON arrays, the order of JSON array items shall be the same as
the “Vector” coordinate fields. The value of each JSON array item shall be chosen by following the
encoding rules of the data component used as the vector coordinate field at the same position.

See the following examples:

• DataArray with inline values (curve)

• Datastream with records (weather data)

• Datastream with records and optional fields (navigation data)

• Datastream with records and vector fields encoded as arrays (navigation data)

10.2.4. Rules for DataChoice

Values of “DataChoice” components are encoded using a JSON Object with a single member
whose name is the name of the selected choice item.

OPEN GEOSPATIAL CONSORTIUM 24-014 123

REQUIREMENT 87

IDENTIFIER /req/json-encoding-rules/choice-object-valid

INCLUDED
IN

Requirements class 17: /req/json-encoding-rules

A “DataChoice” values shall be encapsulated in a JSON Object.

B The JSON object shall contain a single member whose name is the same as the selected choice item.

C
The JSON value of this unique member shall be chosen according to the encoding rules of the data
component corresponding to the selected item.

See example: Datastream with choice (navigation data)

10.2.5. Rules for DataArray and Matrix

Values of “DataArray” and “Matrix” components are encoded using a JSON Array, containing as
many elements as there are elements in the Array component.

REQUIREMENT 88

IDENTIFIER /req/json-encoding-rules/array-values-valid

INCLUDED
IN

Requirements class 17: /req/json-encoding-rules

A “DataArray” and “Matrix” values shall be encapsulated in a JSON Array.

B
Each array element shall be encoded using the rules corresponding to the data component used as
the array element type.

See the following examples:

• Fixed size 2D array (stress matrix)

• Datastream of variable size 1D arrays (profile series)

10.2.6. Rules for Geometry

The value of a “Geometry” component is encoded using a GeoJSON Geometry object.

OPEN GEOSPATIAL CONSORTIUM 24-014 124

REQUIREMENT 89

IDENTIFIER /req/json-encoding-rules/geometry-valid

INCLUDED
IN

Requirements class 17: /req/json-encoding-rules

A
The value of a “Geometry” component shall be encoded as a GeoJSON Geometry Object, following
rules defined by IETF RFC 7946.

B
The allowed GeoJSON geometry types shall be restricted to: Point, LineString, Polygon,
MultiPoint, MultiLineString, and MultiPolygon

C
The number of dimensions of the GeoJSON geometry shall match the number of dimensions of the
coordinate reference system identified by the “srs” attribute of the component.

See example: Datastream with geometry (feature detection)

10.2.7. Media Types

When array or datastream values are encoded with the JSON encoding method and provided
standalone (i.e., outside of any wrapper format), one of the following media type identifiers shall
be used.

1. One of application/json or application/vnd.ogc.swe+json shall be used as
the content-type for files and HTTP responses.

2. application/vnd.ogc.swe+json shall be used for format negotiation between
server and client (e.g., when the format is advertised by an API or web service). In
particular, this media type shall be used in HTTP Accept and Link headers and in
any server response used to advertise support or link to a resource encoded with
this format.

10.3. Requirements Class: Text Encoding Rules

REQUIREMENTS CLASS 18: TEXT ENCODING RULES

IDENTIFIER /req/text-encoding-rules

TARGET TYPE Encoded Values Instance

CONFORMANCE CLASS Conformance class A.18: /conf/text-encoding-rules

OPEN GEOSPATIAL CONSORTIUM 24-014 125

REQUIREMENTS CLASS 18: TEXT ENCODING RULES

PREREQUISITE Requirements class 16: /req/general-encoding-rules

INDIRECT PREREQUISITE Requirements class 7: /req/uml-simple-encodings

NORMATIVE STATEMENTS

 Requirement 90: /req/text-encoding-rules/abnf-
syntax-valid
 Requirement 91: /req/text-encoding-rules/
separators-valid
 Requirement 92: /req/text-encoding-rules/optional-
field-marker-present
 Requirement 93: /req/text-encoding-rules/choice-
selection-marker-valid
 Requirement 94: /req/text-encoding-rules/geometry-
valid

The “TextEncoding” method encodes field values (especially numbers) by their text
representation. Special characters provide a way to separate successive values and successive
blocks. The ABNF syntax defined in IETF RFC 5234 is used to formalize the encoding rules, and
thus all ABNF snippets provided in this section are normative.

REQUIREMENT 90

IDENTIFIER /req/text-encoding-rules/abnf-syntax-valid

INCLUDED
IN

Requirements class 18: /req/text-encoding-rules

STATEMENT
The encoded values block shall be formatted as defined by the ABNF grammar defined in this
clause.

10.3.1. Separators

Token separators are used between single values and the block separator is used at the end
of each block. The block corresponds to one element of the “DataArray” or “DataStream”
carrying the “values” element in which the values are encoded. There are no special separators
to delimitate nested records, arrays and choices.

Separators shall be chosen so that nothing in the dataset contains the exact same character
sequence as the one chosen for token or block separator.

REQUIREMENT 91

IDENTIFIER /req/text-encoding-rules/separators-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 126

REQUIREMENT 91

INCLUDED
IN

Requirements class 18: /req/text-encoding-rules

STATEMENT
Block and token separators used in the “TextEncoding” method shall be chosen as a sequence of
characters that never occur in the data values themselves.

When the attribute “collapseWhiteSpaces” is set to true (its default value), all white space
characters surrounding the token and block separators shall be ignored. The BNF grammar for
separators is given below:

white-space = %d9 / %d10 / %d13 / %d32 ; TAB, LF, CR or SPACE

token-separator-chars = < Value of the tokenSeparator attribute >

block-separator-chars = < Value of the blockSeparator attribute >

token-separator = [white-space] token-separator-chars [white-space]

block-separator = [white-space] block-separator-chars [white-space]

Listing

White spaces around separators are in fact only allowed when the “collapseWhiteSpaces”
attribute is set to ‘true’ (which is the default).

10.3.2. Rules for Scalar Components

The value for a scalar component is encoded as its text representation, following XML schema
datatypes conventions.

scalar-value = xs:bool / xs:string / xs:double / xs:int / xs:date / xs:dateTime

Listing

Nil values are included in the stream just like normal scalar values. Since their data type has to
match the field data type, there is no special treatment necessary for a decoder or encoder.
It is the responsibility of the application to match the data value against the list of registered
nil values for a given field in order to detect if it is associated to a nil reason or if it is an actual
measurement value.

10.3.3. Rules for Range Components

Range components are encoded as a sequence of two tokens (each one representing a scalar
value) separated by a token separator:

min-value = scalar-value

max-value = scalar-value

OPEN GEOSPATIAL CONSORTIUM 24-014 127

range-values = min-value token-separator max-value

Listing

10.3.4. Rules for DataRecord and Vector

Values of fields of a “DataRecord” are recursively encoded following rules associated to the type
of component used for the field’s description (i.e., scalar, record, array, etc.) and separated by
token separators as expressed by the following grammar:

field-count = < Number of fields in the record minus one. Greater or equal to 0 >

any-field-value = scalar-value / range-values / record-values / choice-values /
array-values

mandatory-field-value = any-field-value

optional-field-value = (“Y” token-separator any-field-value) / “N”

field-value = mandatory-field-value / optional-field-value

record-values = field-value <field-count>*(token-separator field-value)

Listing

When a field is marked as optional in the definition, the token ‘Y’ or ‘N’ shall be inserted in the
data block. When the field value is omitted, the token ‘N’ is inserted alone. When it is included,
the token ‘Y’ is inserted followed by the actual field value.

REQUIREMENT 92

IDENTIFIER /req/text-encoding-rules/optional-field-marker-present

INCLUDED
IN

Requirements class 18: /req/text-encoding-rules

STATEMENT
The ‘Y’ or ‘N’ token shall be inserted in a text encoded data block for all fields that have the
“optional” attribute set to ‘true’.

Coordinate values of “Vector” components are encoded with a similar syntax, but a coordinate
value can only be scalar and cannot be omitted:

coord-count = < Number of coordinates in the vector minus one. Greater or equal
to 0 >

vector-values = scalar-value <coord-count>*(token-separator scalar-value)

Listing

See the following examples:

• DataArray with inline values (curve)

OPEN GEOSPATIAL CONSORTIUM 24-014 128

• Datastream with records (weather data)

• Datastream with records and optional fields (navigation data)

10.3.5. Rules for DataChoice

A “DataChoice” is encoded with the text method by providing the name of the selected item
before the item values themselves. The name used shall correspond to the “name” attribute of
the “item” property element that describes the structure of the selected item.

selected-item-name = < Value of the “name” attribute of the item selected >
selected-item-values = scalar-value / range-values / record-values / choice-
values / array-values
choice-values = selected-item-name token-separator selected-item-values

Listing

REQUIREMENT 93

IDENTIFIER /req/text-encoding-rules/choice-selection-marker-valid

INCLUDED
IN

Requirements class 18: /req/text-encoding-rules

STATEMENT
The selected-item-name token shall correspond to the value of the “name” attribute of the “item”
property element that represents the selected item.

See example: Datastream with choice (navigation data).

10.3.6. Rules for DataArray and Matrix

Values of each “DataArray” or “Matrix” element are recursively encoded following rules
associated to the type of component used for the element type (i.e., scalar, record, array,
etc.). Groups of values (or single value in the case of a scalar element type) corresponding to
each element are sequentially appended to the data block and separated by token or block
separators, depending on the context: When the “DataArray” is the root of the component tree
that is being encoded, its elements are separated by block separators, otherwise its elements are
separated by token separators.

A “DataArray” or “Matrix” can have a fixed or variable size, which leads to two slightly different
syntaxes for encoding values: array-separator = token-separator / block-separator ; block-
separator is only used when the array is the root of the component tree whose values are being
encoded.

array-values = fixed-size-array-values / variable-size-array-values

Listing

OPEN GEOSPATIAL CONSORTIUM 24-014 129

Fixed size arrays have a size of at least one, and are encoded as defined below:

fixed-element-count = < Number of elements in a fixed size array minus one.
Greater or equal to 0 since fixed size is always at least one >

element-values = scalar-value / range-values / record-values / choice-values /
array-values

fixed-size-array-values = element-values <fixed-element-count>*(array-separator
element-values)

Listing

When a “DataArray” (“Matrix”) is defined as variable size, its size can be 0 and the array size is
included as a token in the data block, before the actual array elements values are listed:

variable-element-count = < Number of elements in a variable size array. Greater
or equal to 0 since variable size can be 0 for an empty array >

variable-size-array-values = variable-element-count <variable-element-count>
*(array-separator element-values)

Listing

See the following examples:

• DataArray with inline values (curve)

• Fixed size 2D array (stress matrix)

• Datastream of variable size 1D arrays (profile series)

10.3.7. Rules for DataStream

Values of “DataStream” elements are encoded as a sequence of tokens in a way similar to how
“DataArray” values are encoded. Groups of encoded values corresponding to one element of a
“DataStream” are always separated by block separators, while all values within these groups are
separated by token separators:

stream-element-count = < Number of elements in a data stream minus one. Greater
or equal to 0 since the number of elements in a data stream is always at least
one >

stream-values = element-values <stream-element-count>*(block-separator element-
values);

Listing

Examples of “DataStream” with “TextEncoding” have already been given in previous sections.

OPEN GEOSPATIAL CONSORTIUM 24-014 130

10.3.8. Rules for Geometry

The value of a “Geometry” component is encoded using the WKT format defined in the Simple
Feature Access Standard (OGC 06-103r4).

REQUIREMENT 94

IDENTIFIER /req/text-encoding-rules/geometry-valid

INCLUDED
IN

Requirements class 18: /req/text-encoding-rules

A
The value of a “Geometry” component shall be encoded using the WKT format defined in OGC 06-
103r4, clause 7.

B
The WKT representation shall be either a “Two-Dimension Geometry WKT” (clause 7.2.2 of OGC 06-
103r4) or a “Three-Dimension Geometry WKT” (clause 7.2.3 of OGC 06-103r4). The ‘M’ coordinate
shall not be used.

C
The number of dimensions of the WKT geometry shall match the number of dimensions of the
coordinate reference system identified by the “srs” attribute of the component.

D
When a geometry value is included in a text-encoded datastream, the token separator shall not
be the comma character (ASCII code 44) to avoid conflicting with commas used inside the WKT
representation.

See example: Datastream with geometry (feature detection)

10.3.9. Media Types

When array or datastream values are encoded with the Text encoding method and provided
standalone (i.e., outside of any wrapper format such as a JSON or XML document), one of the
following media type identifiers shall be used.

1. One of text/plain, text/csv, or application/vnd.ogc.swe+text shall be used
as the content-type for files and HTTP responses.

• text/csv can be used only when the token separator is set to a single comma
‘,’ and the block separator is set to ‘CRLF’.

• text/plain and application/vnd.ogc.swe+text can be used for any
combination of separators.

2. application/vnd.ogc.swe+text shall be used for format negotiation between
server and client (e.g., when the format is advertised by an API or web service). In
particular, this media type shall be used in HTTP Accept and Link headers and in

OPEN GEOSPATIAL CONSORTIUM 24-014 131

any server response used to advertise support or link to a resource encoded with
this format.

NOTE:It is recommended that the character set code be correctly appended to these media types if it
differs from US-ASCII or UTF-8.

10.4. Requirements Class: Binary Encoding Rules

REQUIREMENTS CLASS 19: BINARY ENCODING RULES

IDENTIFIER /req/binary-encoding-rules

TARGET TYPE Encoded Values Instance

CONFORMANCE CLASS Conformance class A.19: /conf/binary-encoding-rules

PREREQUISITE Requirements class 16: /req/general-encoding-rules

INDIRECT PREREQUISITE Requirements class 8: /req/uml-advanced-encodings

NORMATIVE STATEMENTS

 Requirement 19-6: /req/binary-encodings-rules/
geometry-valid
 Requirement 95: /req/binary-encoding-rules/abnf-
syntax-valid
 Requirement 96: /req/binary-encoding-rules/type-
encoding-valid
 Requirement 97: /req/binary-encoding-rules/base64-
translation-applied
 Requirement 98: /req/binary-encoding-rules/optional-
field-marker-present
 Requirement 99: /req/binary-encoding-rules/choice-
selection-marker-valid

The “BinaryEncoding” method encodes field values by their binary representation. The ABNF
syntax defined in IETF RFC 5234 is used to formalize the encoding rules, and thus all ABNF
snippets provided in this section are normative.

REQUIREMENT 95

IDENTIFIER /req/binary-encoding-rules/abnf-syntax-valid

INCLUDED
IN

Requirements class 19: /req/binary-encoding-rules

OPEN GEOSPATIAL CONSORTIUM 24-014 132

REQUIREMENT 95

STATEMENT
The encoded values block shall be formatted as defined by the ABNF grammar defined in this
clause.

The encoding rules are similar to those of the “TextEncoding” method except that numerical
values are encoded directly as their binary representation and that no separators are used.
Separators are not needed because data types have either a fixed size or contain length
information (See String encoding).

10.4.1. Rules for Scalar Components

The value for a scalar component is encoded as its binary representation. This especially applies
to numerical values that are encoded directly in binary form in accordance to the selected data
type and the value of the “byteOrder” attribute.

scalar-value = < binary value encoded according to data type, byte encoding and
byte order specifications >

Listing

The last column of Table 2 indicates how each data type shall be binary encoded into a low level
byte sequence. The actual order of bytes composing a multi-bytes data type depends on the
value of the “byteOrder” attribute. The ‘bigEndian’ option indicates that muti-bytes data types
are encoded with the most significant byte (MSB) first, while selecting ‘littleEndian’ signifies that
encoding is done with the less significant byte (LSB) first. A UTF-8 string is not considered as
a multi-byte data type and is always encoded in the same order, as specified by the Unicode
Standard.

REQUIREMENT 96

IDENTIFIER /req/binary-encoding-rules/type-encoding-valid

INCLUDED
IN

Requirements class 19: /req/binary-encoding-rules

STATEMENT
Binary data types in Table 2 shall be encoded according to their definition in the description column
and the value of the “byteOrder” attribute.

Nil values are included in the stream just like normal scalar values. Since their data type has to
match the field data type, there is no special treatment necessary for a decoder or encoder.
It is the responsibility of the application to match the data value against the list of registered
nil values for a given field in order to detect if it is associated to a nil reason or if it is an actual
measurement value.

When the ‘raw’ byte encoding option is selected, bytes resulting from the data type encoding
process defined above are inserted in the binary stream directly. This is referred to as ‘raw
binary’ encoding. When the ‘base64’ option is selected, each byte resulting from the binary
encoding process is also encoded in Base64 before being included in the stream. Scalar values

OPEN GEOSPATIAL CONSORTIUM 24-014 133

can be Base 64 encoded one by one or by blocks as long as the resulting stream is compatible
with requirements of IETF RFC 2045.

REQUIREMENT 97

IDENTIFIER /req/binary-encoding-rules/base64-translation-applied

INCLUDED
IN

Requirements class 19: /req/binary-encoding-rules

STATEMENT
When the ‘base64’ encoding option is selected, binary data shall be encoded with the Base64
technique defined in IETF RFC 2045 Section 6.8: Base64 Content-Transfer-Encoding.

10.4.2. Rules for Range Components

Range components are encoded as a sequence of two binary values (each one representing a
scalar value):

min-value = scalar-value

max-value = scalar-value

range-values = min-value max-value

Listing

Values are always included in the same order: The lower bound of the range first, followed by
the upper bound.

10.4.3. Rules for DataRecord and Vector

Values of fields of a “DataRecord” are recursively encoded following rules associated to the type
of component used as the field’s description (i.e., scalar, record, array, etc.) and appended to the
binary block:

field-count = < Number of fields in the record. Greater or equal to 1 >

any-field-value = scalar-value / range-values / record-values / choice-values /
array-values / block_values

mandatory-field-value = any-field-value

optional-field-value = (“Y” any-field-value) / “N”

field-value = mandatory-field-value / optional-field-value

record-values = <field-count>*field-values

Listing

When a field is marked as optional in the definition, the 1-byte value ‘Y’ (ASCII code 89) or
‘N’ (ASCII code 78) shall be inserted in the data block. When the field value is omitted, the token

OPEN GEOSPATIAL CONSORTIUM 24-014 134

‘N’ is inserted alone. When it is included, the token ‘Y’ is inserted followed by the actual field
value.

REQUIREMENT 98

IDENTIFIER /req/binary-encoding-rules/optional-field-marker-present

INCLUDED
IN

Requirements class 19: /req/binary-encoding-rules

STATEMENT
The one byte ASCII character ‘Y’ or ‘N’ shall be inserted in a binary encoded data block for all “Data
Record” fields that have the “optional” attribute set to ‘true’.

Coordinate values of “Vector” components are encoded with a similar syntax, but a coordinate
value can only be scalar and cannot be omitted:

coord-count = < Number of coordinates in the vector. Greater or equal to 1 >

vector-values = <coord-count>*scalar-value

Listing

Vector coordinates cannot be optional.

10.4.4. Rules for DataChoice

A “DataChoice” is encoded with the binary method by providing the zero-based index of the
selected item before the item values themselves. The index value ranges from 0 for the first
choice item to (number_of_items - 1) for the last item.

selected-item-idx = < Index of the item selected >

selected-item-value = scalar-value / range-values / record-values / choice-
values / array-values

choice-values = selected-item-idx selected-item-value

Listing

REQUIREMENT 99

IDENTIFIER /req/binary-encoding-rules/choice-selection-marker-valid

INCLUDED
IN

Requirements class 19: /req/binary-encoding-rules

STATEMENT
The value of the selected-item-idx flag shall be the zero-based index of the selected item (within
the ordered list of items provided by the choice descriptor) and be encoded on a single unsigned
byte.

OPEN GEOSPATIAL CONSORTIUM 24-014 135

10.4.5. Rules for DataArray and Matrix

Values of each “DataArray” or “Matrix” element are recursively encoded following rules
associated to the type of component used for the element type (i.e., scalar, record, array, etc.).
Groups of values (or single value in the case of a scalar element type) corresponding to each
element are sequentially appended to the data block. Since a “DataArray” or “Matrix” can have a
fixed or variable size, two slightly different syntaxes for encoding values are possible:

array-values = fixed-size-array-values / variable-size-array-values

element-value = scalar-value / range-values / record-values / choice-values /
array-values / block_values

Listing

Fixed size arrays have a size of at least one, and are encoded as defined below:

fixed-element-count = < Number of elements in a fixed size array >

fixed-size-array-values = <fixed-element-count>*element-value

Listing

When a “DataArray” (“Matrix”) is defined as variable size, its size can be 0 and the array size is
included as a token in the data block, before the actual array elements values are listed:

variable-element-count = < Number of elements in a variable size array >

variable-size-array-values = variable-element-count <variable-element-count>
*element-value

Listing

When the array size is 0, only this number is encoded and no element values are included in the
data block.

10.4.6. Rules for DataStream

Values of “DataStream” elements are encoded exactly as elements of an array:

stream-element-count = < Number of elements in a data stream >

stream-values = <stream-element-count>*element-value

Listing

A data stream usually contains at least one value but could be empty.

OPEN GEOSPATIAL CONSORTIUM 24-014 136

10.4.7. Rules for Geometry

The value of “Geometry” is encoded using the WKB format defined in the Simple Feature Access
Standard (OGC 06-103r4).

REQUIREMENT 100

IDENTIFIER /req/binary-encoding-rules/geometry-valid

A
The value of a “Geometry” component shall be encoded using the WKB format defined in OGC 06-
103r4, clause 8.

B

The WKB geometry type shall be one of the following types listed in OGC 06-103r4, clause 8.2.3,
table 7: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, Point
Z, LineString Z, Polygon Z, MultiPoint Z, MultiLineString Z, MultiPolygon Z. Other
geometry type codes shall not be used.

C
The number of dimensions of the WKB geometry shall match the number of dimensions of the
coordinate reference system identified by the “srs” attribute of the component.

No specific marker or length information needs to be pre-pended to the binary representation
since the WKB format is self descriptive and parsable without knowing the total length ahead of
time.

10.4.8. Block encoded components

When block encoding characteristics are also specified in the encoding description, the
encryption and/or compression algorithm shall be applied after the binary encoding process
described above is completed for the block. Extensions of this standard can define compression
and encryption methods that fit the needs of particular communities.

In order to maximize compatibility with existing software, when compressing a binary encoded
data stream results in a well known binary format, the corresponding mime type can be used
instead of application/octet-stream. For instance video/h264 can be used when the entirety of
the dataset (presumably a video stream) is compressed using the H264 video codec.

10.4.9. Media Types

When array or stream values are encoded with the Binary encoding method and provided
standalone (i.e., outside of any wrapper format), one of the following media type identifiers shall
be used:

1. One of application/octet-stream or application/vnd.ogc.swe+binary shall
be used as the content-type for files and HTTP responses.

OPEN GEOSPATIAL CONSORTIUM 24-014 137

2. application/vnd.ogc.swe+binary shall be used for format negotiation between
server and client (e.g., when the format is advertised by an API or web service). In
particular, this media type shall be used in HTTP Accept and Link headers and in
any server response used to advertise support or link to a resource encoded with
this format.

OPEN GEOSPATIAL CONSORTIUM 24-014 138

A

ANNEX A (NORMATIVE)
CONFORMANCE CLASS
ABSTRACT TEST SUITE

OPEN GEOSPATIAL CONSORTIUM 24-014 139

A ANNEX A
(NORMATIVE)
CONFORMANCE CLASS ABSTRACT TEST
SUITE

A.1. Core Conformance Classes

A.1.1. Conformance Class: Core Concepts

CONFORMANCE CLASS A.1

IDENTIFIER /conf/core

REQUIREMENTS CLASS Requirements class 1: /req/core

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TESTS

 Abstract test A.1: /conf/core/core-concepts-used
 Abstract test A.2: /conf/core/boolean-rep-valid
 Abstract test A.3: /conf/core/categorical-rep-valid
 Abstract test A.4: /conf/core/numerical-rep-valid
 Abstract test A.5: /conf/core/countable-rep-valid
 Abstract test A.6: /conf/core/textual-rep-valid
 Abstract test A.7: /conf/core/semantics-defined
 Abstract test A.8: /conf/core/semantics-resolvable
 Abstract test A.9: /conf/core/temporal-frame-defined
 Abstract test A.10: /conf/core/spatial-frame-defined
 Abstract test A.11: /conf/core/nil-reasons-defined
 Abstract test A.12: /conf/core/aggregates-model-valid
 Abstract test A.13: /conf/core/encoding-method-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 140

ABSTRACT TEST A.1: CORE CONCEPTS ARE THE BASE OF ALL DERIVED MODELS

IDENTIFIER /conf/core/core-concepts-used

REQUIREMENT Requirement 1: /req/core/core-concepts-used

TEST PURPOSE
Verify that the target implementation correctly implements the core
concepts.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.2: A BOOLEAN REPRESENTATION CONSISTS OF A BOOLEAN VALUE

IDENTIFIER /conf/core/boolean-rep-valid

REQUIREMENT Requirement 2: /req/core/boolean-rep-valid

TEST PURPOSE
Verify that the target implementation correctly implements the Boolean
representation.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.3: A CATEGORICAL REPRESENTATION CONSISTS OF A TOKEN WITH A
CODE SPACE

IDENTIFIER /conf/core/categorical-rep-valid

REQUIREMENT Requirement 3: /req/core/categorical-rep-valid

TEST PURPOSE
Verify that the target implementation correctly implements the
Categorical representation.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.4: A CONTINUOUS NUMERICAL REPRESENTATION CONSISTS OF A
NUMBER WITH A SCALE

IDENTIFIER /conf/core/numerical-rep-valid

REQUIREMENT Requirement 4: /req/core/numerical-rep-valid

TEST PURPOSE
Verify that the target implementation correctly implements the
Numerical representation.

OPEN GEOSPATIAL CONSORTIUM 24-014 141

ABSTRACT TEST A.4: A CONTINUOUS NUMERICAL REPRESENTATION CONSISTS OF A
NUMBER WITH A SCALE

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.5: A COUNTABLE REPRESENTATION CONSISTS OF AN INTEGER
NUMBER

IDENTIFIER /conf/core/countable-rep-valid

REQUIREMENT Requirement 5: /req/core/countable-rep-valid

TEST PURPOSE
Verify that the target implementation correctly implements the
Countable representation.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.6: A TEXTUAL REPRESENTATION IS IMPLEMENTED AS A CHARACTER
STRING

IDENTIFIER /conf/core/textual-rep-valid

REQUIREMENT Requirement 6: /req/core/textual-rep-valid

TEST PURPOSE
Verify that the target implementation correctly implements the Textual
representation.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.7: A SEMANTIC DEFINITION OF EACH PROPERTY SHALL BE
PROVIDED

IDENTIFIER /conf/core/semantics-defined

REQUIREMENT Requirement 7: /req/core/semantics-defined

TEST PURPOSE
Verify that the target implementation allows attaching a semantic definition
to all property representations.

TEST METHOD Inspect the target implementation.

OPEN GEOSPATIAL CONSORTIUM 24-014 142

ABSTRACT TEST A.8: REFERENCES TO SEMANTICAL INFORMATION SHALL BE
RESOLVABLE

IDENTIFIER /conf/core/semantics-resolvable

REQUIREMENT Requirement 8: /req/core/semantics-resolvable

TEST PURPOSE
Verify that the target implementation encodes the semantic links in a way that
they can be resolved to an actual concept definition.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.9: A TEMPORAL QUANTITY IS ASSOCIATED TO A TEMPORAL
REFERENCE FRAME

IDENTIFIER /conf/core/temporal-frame-defined

REQUIREMENT Requirement 9: /req/core/temporal-frame-defined

TEST PURPOSE
Verify that the target implementation allows providing a temporal reference
frame along with any date/time quantity.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.10: A SPATIAL QUANTITY IS ASSOCIATED TO AN AXIS OF A SPATIAL
REFERENCE FRAME

IDENTIFIER /conf/core/spatial-frame-defined

REQUIREMENT Requirement 10: /req/core/spatial-frame-defined

TEST PURPOSE
Verify that the target implementation allows providing a spatial reference frame
and axis along with any quantity that is projected along a spatial dimension.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.11: A NIL VALUE MAPS A RESERVED VALUE TO A REASON

IDENTIFIER /conf/core/nil-reasons-defined

REQUIREMENT Requirement 11: /req/core/nil-reasons-defined

TEST PURPOSE
Verify that the target implementation allows providing a reason along with each
NIL (reserved) value.

OPEN GEOSPATIAL CONSORTIUM 24-014 143

ABSTRACT TEST A.11: A NIL VALUE MAPS A RESERVED VALUE TO A REASON

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.12: AGGREGATE DATA TYPES ARE MODELED ACCORDING TO ISO
11404

IDENTIFIER /conf/core/aggregates-model-valid

REQUIREMENT Requirement 12: /req/core/aggregates-model-valid

TEST PURPOSE
Verify that the target implementation models aggregate data types
according to ISO 11404 definitions.

TEST METHOD Inspect the target implementation.

ABSTRACT TEST A.13: ENCODING METHODS SHALL BE DEFINED FOR ALL POSSIBLE
DATA STRUCTURES

IDENTIFIER /conf/core/encoding-method-valid

REQUIREMENT Requirement 13: /req/core/encoding-method-valid

TEST PURPOSE
Verify that the target implementation provides encoding methods for all
representations and all implemented data structures.

TEST METHOD Inspect the target implementation.

A.2. UML Conformance Classes

A.2.1. Conformance Class: Basic Types and Simple Components UML
Packages

CONFORMANCE CLASS A.2: BASIC TYPES AND SIMPLE COMPONENTS UML PACKAGES

IDENTIFIER /conf/uml-simple-components

REQUIREMENTS CLASS Requirements class 2: /req/uml-simple-components

OPEN GEOSPATIAL CONSORTIUM 24-014 144

CONFORMANCE CLASS A.2: BASIC TYPES AND SIMPLE COMPONENTS UML PACKAGES

PREREQUISITE Conformance class A.1: /conf/core

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TESTS

 Abstract test A.23: /conf/uml-simple-components/
category-constraint-valid
 Abstract test A.24: /conf/uml-simple-components/
category-enum-defined
 Abstract test A.25: /conf/uml-simple-components/
category-value-valid
 Abstract test A.26: /conf/uml-simple-components/
time-ref-frame-defined
 Abstract test A.27: /conf/uml-simple-components/
time-ref-time-valid
 Abstract test A.28: /conf/uml-simple-components/
time-local-frame-valid
 Abstract test A.29: /conf/uml-simple-components/
range-value-valid
 Abstract test A.30: /conf/uml-simple-components/
category-range-valid
 Abstract test A.31: /conf/uml-simple-components/
category-range-codespace-order
 Abstract test A.32: /conf/uml-simple-components/
time-range-valid
 Abstract test A.14: /conf/uml-simple-components/
package-fully-implemented
 Abstract test A.33: /conf/uml-simple-components/
nil-reason-resolvable
 Abstract test A.34: /conf/uml-simple-components/
nil-value-type-coherent
 Abstract test A.35: /conf/uml-simple-components/
allowed-values-unit-coherent
 Abstract test A.15: /conf/uml-simple-components/
iso19103-implemented
 Abstract test A.16: /conf/uml-simple-components/
iso19108-implemented
 Abstract test A.17: /conf/uml-simple-components/
definition-present
 Abstract test A.18: /conf/uml-simple-components/
axis-valid
 Abstract test A.19: /conf/uml-simple-components/
axis-defined
 Abstract test A.20: /conf/uml-simple-components/
ref-frame-defined
 Abstract test A.21: /conf/uml-simple-components/
value-constraint-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 145

CONFORMANCE CLASS A.2: BASIC TYPES AND SIMPLE COMPONENTS UML PACKAGES

 Abstract test A.22: /conf/uml-simple-components/
value-attribute-present

ABSTRACT TEST A.14: COMPLIANCE WITH UML MODELS DEFINED IN THIS PACKAGE

IDENTIFIER /conf/uml-simple-components/package-fully-implemented

REQUIREMENT
Requirement 14: /req/uml-simple-components/package-fully-
implemented

TEST PURPOSE Verify that the target implements all classes in the UML package.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.15: COMPLIANCE WITH UML MODELS DEFINED IN ISO 19103

IDENTIFIER /conf/uml-simple-components/iso19103-implemented

REQUIREMENT
Requirement 15: /req/uml-simple-components/iso19103-
implemented

TEST PURPOSE
Verify that the target implements all classes imported from ISO 19103 UML
packages.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.16: COMPLIANCE WITH UML MODELS DEFINED IN ISO 19108

IDENTIFIER /conf/uml-simple-components/iso19108-implemented

REQUIREMENT
Requirement 16: /req/uml-simple-components/iso19108-
implemented

TEST PURPOSE
Verify that the target implements all classes imported from ISO 19108 UML
packages.

TEST METHOD Inspect the model or software implementation.

OPEN GEOSPATIAL CONSORTIUM 24-014 146

ABSTRACT TEST A.17: A DEFINITION URI IS MANDATORY ON ALL SIMPLE
COMPONENTS

IDENTIFIER /conf/uml-simple-components/definition-present

REQUIREMENT
Requirement 17: /req/uml-simple-components/definition-
present

TEST PURPOSE
Verify that the target implementation has a constraint that enforces the
requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.18: THE VALUE OF THE AXISID AND AXISABBREV ATTRIBUTES
MATCH

IDENTIFIER /conf/uml-simple-components/axis-valid

REQUIREMENT Requirement 18: /req/uml-simple-components/axis-valid

TEST PURPOSE
Verify that the target implementation has a constraint that enforces the
requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.19: THE AXIS ID IS ALWAYS SPECIFIED ON SCALAR SPATIAL
PROPERTIES

IDENTIFIER /conf/uml-simple-components/axis-defined

REQUIREMENT Requirement 19: /req/uml-simple-components/axis-defined

TEST PURPOSE
Verify that the target implementation has a constraint that enforces the
requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.20: THE REFERENCE FRAME IS SPECIFIED ON SCALAR SPATIAL
PROPERTIES NOT PART OF A VECTOR

IDENTIFIER /conf/uml-simple-components/ref-frame-defined

REQUIREMENT
Requirement 20: /req/uml-simple-components/ref-
frame-defined

TEST PURPOSE
Verify that the target implementation has a constraint that
enforces the requirement.

OPEN GEOSPATIAL CONSORTIUM 24-014 147

ABSTRACT TEST A.20: THE REFERENCE FRAME IS SPECIFIED ON SCALAR SPATIAL
PROPERTIES NOT PART OF A VECTOR

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.21: THE VALUE OF A COMPONENT SATISFIES THE CONSTRAINTS

IDENTIFIER /conf/uml-simple-components/value-constraint-valid

REQUIREMENT
Requirement 21: /req/uml-simple-components/value-constraint-
valid

TEST PURPOSE
Verify that the target implementation has a constraint that enforces the
requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.22: ALL DERIVED SIMPLE COMPONENTS HAVE AN OPTIONAL VALUE
ATTRIBUTE

IDENTIFIER /conf/uml-simple-components/value-attribute-present

REQUIREMENT
Requirement 22: /req/uml-simple-components/value-
attribute-present

TEST PURPOSE
Verify that the target implementation has a constraint that enforces
the requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.23: THE LIST OF VALUES ALLOWED IN A CATEGORY COMPONENT IS
A SUBSET OF THE CODE SPACE

IDENTIFIER
/conf/uml-simple-components/category-constraint-
valid

REQUIREMENT
Requirement 23: /req/uml-simple-components/category-
constraint-valid

TEST PURPOSE
Verify that the target implementation has a constraint that
enforces the requirement.

TEST METHOD Inspect the model or software implementation.

OPEN GEOSPATIAL CONSORTIUM 24-014 148

ABSTRACT TEST A.24: A CATEGORY COMPONENT ALWAYS SPECIFIES A LIST OF
POSSIBLE VALUES

IDENTIFIER /conf/uml-simple-components/category-enum-defined

REQUIREMENT
Requirement 24: /req/uml-simple-components/category-enum-
defined

TEST PURPOSE
Verify that the target implementation has a constraint that enforces
the requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.25: THE VALUE OF A CATEGORY COMPONENT IS ONE DEFINED IN
THE CODE SPACE

IDENTIFIER /conf/uml-simple-components/category-value-valid

REQUIREMENT
Requirement 25: /req/uml-simple-components/category-
value-valid

TEST PURPOSE
Verify that the target implementation has a constraint that enforces
the requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.26: THE TEMPORAL REFERENCE FRAME IS DEFINED

IDENTIFIER /conf/uml-simple-components/time-ref-frame-defined

REQUIREMENT Requirement 26: /req/uml-simple-components/time-ref-frame-defined

TEST PURPOSE
Verify that the implementation correctly assumes the default value when the
attribute is not set.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.27: THE TIME OF REFERENCE IS EXPRESSED RELATIVE TO THE
ORIGIN OF THE REFERENCE FRAME

IDENTIFIER /conf/uml-simple-components/time-ref-time-valid

REQUIREMENT
Requirement 27: /req/uml-simple-components/time-ref-
time-valid

TEST PURPOSE
Verify that the target implementation has a constraint that
enforces the requirement.

OPEN GEOSPATIAL CONSORTIUM 24-014 149

ABSTRACT TEST A.27: THE TIME OF REFERENCE IS EXPRESSED RELATIVE TO THE
ORIGIN OF THE REFERENCE FRAME

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.28: THE LOCAL AND REFERENCE FRAMES OF A TIME COMPONENT
ARE DIFFERENT

IDENTIFIER /conf/uml-simple-components/time-local-frame-valid

REQUIREMENT
Requirement 28: /req/uml-simple-components/time-local-
frame-valid

TEST PURPOSE
Verify that the target implementation has a constraint that enforces
the requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.29: VALUES OF RANGE COMPONENTS SATISFY THE SAME
REQUIREMENTS AS SCALAR VALUES

IDENTIFIER /conf/uml-simple-components/range-value-valid

REQUIREMENT
Requirement 29: /req/uml-simple-components/range-
value-valid

TEST PURPOSE
Verify that the target implementation has a constraint that
enforces the requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.30: CATEGORYRANGE COMPONENTS SATISFY ALL REQUIREMENTS
OF A CATEGORY COMPONENT

IDENTIFIER /conf/uml-simple-components/category-range-valid

REQUIREMENT
Requirement 30: /req/uml-simple-components/category-range-
valid

TEST PURPOSE
Verify that the target implementation has constraints that enforce the
requirement.

TEST METHOD

Inspect the model or software implementation. Apply the following
conformance tests to the “CategoryRange” class:

• Abstract test A.23: /conf/uml-simple-components/
category-constraint-valid

• Abstract test A.24: /conf/uml-simple-components/
category-enum-defined

OPEN GEOSPATIAL CONSORTIUM 24-014 150

ABSTRACT TEST A.30: CATEGORYRANGE COMPONENTS SATISFY ALL REQUIREMENTS
OF A CATEGORY COMPONENT

• Abstract test A.25: /conf/uml-simple-components/
category-value-valid

ABSTRACT TEST A.31: THE CODE SPACE OF A CATEGORYRANGE COMPONENT IS WELL-
ORDERED

IDENTIFIER /conf/uml-simple-components/category-range-codespace-order

REQUIREMENT
Requirement 31: /req/uml-simple-components/category-range-
codespace-order

TEST PURPOSE
Verify that the code space contains elements that have a specific order (either
implied or defined).

TEST METHOD
Inspect instances generated by the implementation of the “CategoryRange”
class, including a codepace, to verify the requirement.

ABSTRACT TEST A.32: TIMERANGE COMPONENTS SATISFY ALL REQUIREMENTS OF THE
TIME CLASS

IDENTIFIER /conf/uml-simple-components/time-range-valid

REQUIREMENT Requirement 32: /req/uml-simple-components/time-range-valid

TEST PURPOSE
Verify that the target implementation has constraints that enforce the
requirement.

TEST METHOD

Inspect the model or software implementation. Apply the following
conformance tests to the “TimeRange” class:

• Abstract test A.26: /conf/uml-simple-components/time-ref-
frame-defined

• Abstract test A.27: /conf/uml-simple-components/time-ref-
time-valid

• Abstract test A.28: /conf/uml-simple-components/time-
local-frame-valid

ABSTRACT TEST A.33: THE REASON ATTRIBUTE IS A URI THAT IS RESOLVABLE TO A
DEFINITION

IDENTIFIER /conf/uml-simple-components/nil-reason-resolvable

REQUIREMENT
Requirement 33: /req/uml-simple-components/nil-reason-
resolvable

TEST PURPOSE
Verify that the target implementation allows the value of a NIL reason
identifier to be either:

OPEN GEOSPATIAL CONSORTIUM 24-014 151

ABSTRACT TEST A.33: THE REASON ATTRIBUTE IS A URI THAT IS RESOLVABLE TO A
DEFINITION

• a well known reason code defined by OGC

• a URI that can be resolved to the textual description of a custom
reason.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.34: VALUES RESERVED FOR NIL REASONS ARE COMPATIBLE WITH
THE COMPONENT DATA TYPE

IDENTIFIER
/conf/uml-simple-components/nil-value-type-
coherent

REQUIREMENT
Requirement 34: /req/uml-simple-components/nil-value-
type-coherent

TEST PURPOSE
Verify that the target implementation has a constraint that
enforces the requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.35: THE SCALE OF CONSTRAINTS IS THE SAME AS THE SCALE OF THE
COMPONENT VALUE

IDENTIFIER /conf/uml-simple-components/allowed-values-unit-coherent

REQUIREMENT
Requirement 35: /req/uml-simple-components/allowed-values-unit-
coherent

TEST PURPOSE Verify that numerical constraints are expressed with the correct scale.

TEST METHOD
Inspect instances generated by the implementation of the “Quantity”, “Count”
and “Time” classes, including an “AllowedValues” constraint, to verify the
requirement.

A.2.2. Conformance Class: Record Components UML Package

CONFORMANCE CLASS A.3: RECORD COMPONENTS UML PACKAGE

IDENTIFIER /conf/uml-record-components

REQUIREMENTS CLASS Requirements class 3: /req/uml-record-components

OPEN GEOSPATIAL CONSORTIUM 24-014 152

CONFORMANCE CLASS A.3: RECORD COMPONENTS UML PACKAGE

PREREQUISITE Conformance class A.2: /conf/uml-simple-components

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TESTS

 Abstract test A.36: /conf/uml-record-components/
package-fully-implemented
 Abstract test A.37: /conf/uml-record-components/record-
field-name-unique
 Abstract test A.38: /conf/uml-record-components/vector-
coord-name-unique
 Abstract test A.39: /conf/uml-record-components/vector-
component-no-ref-frame
 Abstract test A.40: /conf/uml-record-components/vector-
component-axis-defined
 Abstract test A.41: /conf/uml-record-components/vector-
local-frame-valid

ABSTRACT TEST A.36: COMPLIANCE WITH UML MODELS DEFINED IN THIS PACKAGE

IDENTIFIER /conf/uml-record-components/package-fully-implemented

REQUIREMENT
Requirement 36: /req/uml-record-components/package-fully-
implemented

TEST PURPOSE Verify that the target implements all classes in the UML package.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.37: EACH DATARECORD FIELD HAS A UNIQUE NAME

IDENTIFIER /conf/uml-record-components/record-field-name-unique

REQUIREMENT
Requirement 37: /req/uml-record-components/record-field-name-
unique

TEST PURPOSE
Verify that the implementation of the “DataRecord” class has a constraint that
enforces the requirement.

TEST METHOD Inspect the model or software implementation.

OPEN GEOSPATIAL CONSORTIUM 24-014 153

ABSTRACT TEST A.38: EACH VECTOR COORDINATE HAS A UNIQUE NAME

IDENTIFIER /conf/uml-record-components/vector-coord-name-unique

REQUIREMENT
Requirement 38: /req/uml-record-components/vector-coord-name-
unique

TEST PURPOSE
Verify that the implementation of the “Vector” class has a constraint that
enforces the requirement.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.39: THE REFERENCE FRAME IS NOT SPECIFIED ON INDIVIDUAL
COORDINATES OF A VECTOR

IDENTIFIER /conf/uml-record-components/vector-component-no-ref-frame

REQUIREMENT
Requirement 39: /req/uml-record-components/vector-component-
no-ref-frame

TEST PURPOSE
Verify that the implementation of the “Vector” class has a constraint that
enforces the requirement.

TEST METHOD
• Inspect the model or software implementation.

• The “referenceFrame” attribute shall be omitted from all data
components used to define coordinates of a “Vector” instance.

ABSTRACT TEST A.40: THE AXIS ID IS SPECIFIED ON ALL COORDINATES OF A VECTOR

IDENTIFIER /conf/uml-record-components/vector-component-axis-defined

REQUIREMENT
Requirement 40: /req/uml-record-components/vector-component-
axis-defined

TEST PURPOSE
Verify that the implementation of the “Vector” class has a constraint that
enforces the requirement.

TEST METHOD
• Inspect the model or software implementation.

• The “axisID” attribute shall be present on all data components used to
define coordinates of a “Vector” instance.

ABSTRACT TEST A.41: THE LOCAL AND REFERENCE FRAMES OF A VECTOR
COMPONENT ARE DIFFERENT

IDENTIFIER /conf/uml-record-components/vector-local-frame-valid

REQUIREMENT
Requirement 41: /req/uml-record-components/vector-local-
frame-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 154

ABSTRACT TEST A.41: THE LOCAL AND REFERENCE FRAMES OF A VECTOR
COMPONENT ARE DIFFERENT

TEST PURPOSE
Verify that the implementation of the “Vector” class has a constraint
that enforces the requirement.

TEST METHOD Inspect the model or software implementation.

A.2.3. Conformance Class: Choice Components UML Package

CONFORMANCE CLASS A.4: CHOICE COMPONENTS UML PACKAGE

IDENTIFIER /conf/uml-choice-components

REQUIREMENTS CLASS Requirements class 4: /req/uml-choice-components

PREREQUISITE Conformance class A.2: /conf/uml-simple-components

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TESTS

 Abstract test A.42: /conf/uml-choice-components/
package-fully-implemented
 Abstract test A.43: /conf/uml-choice-components/choice-
item-name-unique

ABSTRACT TEST A.42: COMPLIANCE WITH UML MODELS DEFINED IN THIS PACKAGE

IDENTIFIER /conf/uml-choice-components/package-fully-implemented

REQUIREMENT
Requirement 42: /req/uml-choice-components/package-fully-
implemented

TEST PURPOSE Verify that the target implements all classes in the UML package.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.43: EACH DATACHOICE ITEM HAS A UNIQUE NAME

IDENTIFIER /conf/uml-choice-components/choice-item-name-unique

REQUIREMENT Requirement 43: /req/uml-choice-components/choice-item-name-unique

OPEN GEOSPATIAL CONSORTIUM 24-014 155

ABSTRACT TEST A.43: EACH DATACHOICE ITEM HAS A UNIQUE NAME

TEST PURPOSE
Verify that the implementation of the “DataChoice” class has a constraint that
enforces the requirement.

TEST METHOD Inspect the model or software implementation.

A.2.4. Conformance Class: Block Components UML Package

CONFORMANCE CLASS A.5: BLOCK COMPONENTS UML PACKAGE

IDENTIFIER /conf/uml-block-components

REQUIREMENTS CLASS Requirements class 5: /req/uml-block-components

PREREQUISITE Conformance class A.2: /conf/uml-simple-components

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TESTS

 Abstract test A.44: /conf/uml-block-components/package-
fully-implemented
 Abstract test A.45: /conf/uml-block-components/array-
component-no-value
 Abstract test A.46: /conf/uml-block-components/array-
values-properly-encoded
 Abstract test A.47: /conf/uml-block-components/matrix-
element-type-valid

ABSTRACT TEST A.44: COMPLIANCE WITH UML MODELS DEFINED IN THIS PACKAGE

IDENTIFIER /conf/uml-block-components/package-fully-implemented

REQUIREMENT
Requirement 44: /req/uml-block-components/package-fully-
implemented

TEST PURPOSE Verify that the target implements all classes in the UML package.

TEST METHOD Inspect the model or software implementation.

OPEN GEOSPATIAL CONSORTIUM 24-014 156

ABSTRACT TEST A.45: COMPONENTS NESTED IN A BLOCK COMPONENT ARE DATA
DESCRIPTORS

IDENTIFIER /conf/uml-block-components/array-component-no-value

REQUIREMENT
Requirement 45: /req/uml-block-components/array-component-no-
value

TEST PURPOSE
Verify that implementations of the block component classes have a
constraint that enforces the requirement.

TEST METHOD
• Inspect the model or software implementation.

• Check that the “DataArray”, “Matrix” and “DataStream” classes have
the constraint.

ABSTRACT TEST A.46: AN ENCODING METHOD IS SPECIFIED WHENEVER AN ENCODED
DATA BLOCK IS INCLUDED

IDENTIFIER /conf/uml-block-components/array-values-properly-encoded

REQUIREMENTS

Requirement 46: /req/uml-block-components/array-values-
properly-encoded
Requirement 48: /req/uml-block-components/datastream-array-
valid

TEST PURPOSE
Verify that the implementation of block component classes have a constraint
that enforces the requirement.

TEST METHOD

• Inspect the model or software implementation.

• Check that the “DataArray”, “Matrix” and “DataStream” classes have the
constraint.

• Inspect instances of these classes generated by the implementation
to verify that an encoding method is specified whenever there are
encoded values present.

ABSTRACT TEST A.47: ELEMENTS OF A MATRIX ARE OF SCALAR TYPES OR NESTED
MATRICES

IDENTIFIER /conf/uml-block-components/matrix-element-type-valid

REQUIREMENT
Requirement 47: /req/uml-block-components/matrix-element-
type-valid

TEST PURPOSE
Verify that the implementation of the “Matrix” class has a constraint that
enforces the requirement.

TEST METHOD Inspect the model or software implementation.

OPEN GEOSPATIAL CONSORTIUM 24-014 157

A.2.5. Conformance Class: Geometry Components UML Package

CONFORMANCE CLASS A.6: GEOMETRY COMPONENTS UML PACKAGE

IDENTIFIER /conf/uml-geom-components

REQUIREMENTS CLASS Requirements class 6: /req/uml-geom-components

PREREQUISITE Conformance class A.2: /conf/uml-simple-components

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TESTS

 Abstract test A.48: /conf/uml-geom-components/package-
fully-implemented
 Abstract test A.49: /conf/uml-geom-components/srs-
valid
 Abstract test A.50: /conf/uml-geom-components/geom-
value-valid

ABSTRACT TEST A.48

IDENTIFIER /conf/uml-geom-components/package-fully-implemented

REQUIREMENT Requirement 49: /req/uml-geom-components/package-fully-implemented

TEST PURPOSE Verify that the target implements all classes in the UML package.

TEST METHOD Inspect the model or software implementation.

ABSTRACT TEST A.49

IDENTIFIER /conf/uml-geom-components/srs-valid

REQUIREMENT Requirement 50: /req/uml-geom-components/srs-valid

TEST PURPOSE Verify that the SRS is valid.

TEST METHOD
• Inspect the model or software implementation.

• Check that the “srs” attribute references a valid coordinate reference system.

OPEN GEOSPATIAL CONSORTIUM 24-014 158

ABSTRACT TEST A.50

IDENTIFIER /conf/uml-geom-components/geom-value-valid

REQUIREMENT Requirement 51: /req/uml-geom-components/geom-value-valid

TEST PURPOSE Verify that the geometry value is valid.

TEST METHOD
• Inspect the model or software implementation.

• Check that the “value” attribute is either not set or contains a valid geometry object.

A.2.6. Conformance Class: Simple Encodings UML Package

CONFORMANCE CLASS A.7: SIMPLE ENCODINGS UML PACKAGE

IDENTIFIER /conf/uml-simple-encodings

REQUIREMENTS CLASS Requirements class 7: /req/uml-simple-encodings

PREREQUISITE Conformance class A.1: /conf/core

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TEST
Abstract test A.51: /conf/uml-simple-encodings/package-
fully-implemented

ABSTRACT TEST A.51: COMPLIANCE WITH UML MODELS DEFINED IN THIS PACKAGE

IDENTIFIER /conf/uml-simple-encodings/package-fully-implemented

REQUIREMENT
Requirement 52: /req/uml-simple-encodings/package-fully-
implemented

TEST PURPOSE Verify that the target implements all classes in the UML package.

TEST METHOD Inspect the model or software implementation.

A.2.7. Conformance Class: Advanced Encodings UML Package

OPEN GEOSPATIAL CONSORTIUM 24-014 159

CONFORMANCE CLASS A.8: ADVANCED ENCODINGS UML PACKAGE

IDENTIFIER /conf/uml-advanced-encodings

REQUIREMENTS CLASS Requirements class 8: /req/uml-advanced-encodings

PREREQUISITE Conformance class A.7: /conf/uml-simple-encodings

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TEST
Abstract test A.52: /conf/uml-advanced-encodings/
package-fully-implemented

ABSTRACT TEST A.52: COMPLIANCE WITH UML MODELS DEFINED IN THIS PACKAGE

IDENTIFIER /conf/uml-advanced-encodings/package-fully-implemented

REQUIREMENT
Requirement 53: /req/uml-advanced-encodings/package-fully-
implemented

TEST PURPOSE Verify that the target implements all classes in the UML package.

TEST METHOD Inspect the model or software implementation.

A.3. JSON Conformance Classes

A.3.1. Conformance Class: Basic Types and Simple Components JSON
Schemas

CONFORMANCE CLASS A.9: BASIC TYPES AND SIMPLE COMPONENTS JSON SCHEMAS

IDENTIFIER /conf/json-simple-components

REQUIREMENTS CLASS
Requirements class 9: /req/json-simple-
components

INDIRECT PREREQUISITE Conformance class A.1: /conf/core

TARGET TYPE JSON Document

OPEN GEOSPATIAL CONSORTIUM 24-014 160

CONFORMANCE CLASS A.9: BASIC TYPES AND SIMPLE COMPONENTS JSON SCHEMAS

CONFORMANCE TESTS

 Abstract test A.53: /conf/json-simple-components/
component-types
 Abstract test A.54: /conf/json-simple-components/
schema-valid
 Abstract test A.55: /conf/json-simple-components/
special-numerical-values
 Abstract test A.56: /conf/json-simple-components/
definition-resolvable
 Abstract test A.57: /conf/json-simple-components/
inline-value-constraint-valid
 Abstract test A.58: /conf/json-simple-components/
ucum-code-and-href-represent-same-unit
 Abstract test A.59: /conf/json-simple-components/
ucum-code-used
 Abstract test A.60: /conf/json-simple-components/
iso8601-uom-used

All tests in this conformance test class and in the following shall be used to check conformance
of JSON documents created according to the schemas defined in this standard. They shall also
be used to check conformance of software implementations that output JSON documents.

ABSTRACT TEST A.53

IDENTIFIER /conf/json-simple-components/component-types

REQUIREMENT Requirement 54: /req/json-simple-components/component-types

TEST METHOD
Run the tests in this conformance class on a set of JSON documents containing instances of the
following data component types: Boolean, Text, Category, Count, Quantity, Time, CategoryRange,
CountRange, QuantityRange, TimeRange.

ABSTRACT TEST A.54: COMPLIANCE WITH JSON SCHEMAS

IDENTIFIER /conf/json-simple-components/schema-valid

REQUIREMENT Requirement 55: /req/json-simple-components/schema-valid

TEST PURPOSE Verify that the JSON document is valid against the schema.

TEST METHOD Validate the JSON document using the JSON schema “sweCommon.json”.

OPEN GEOSPATIAL CONSORTIUM 24-014 161

https://schemas.opengis.net/sweCommon/3.0/json/sweCommon.json

ABSTRACT TEST A.55

IDENTIFIER /conf/json-simple-components/special-numerical-values

REQUIREMENT Requirement 56: /req/json-simple-components/special-numerical-values

TEST METHOD
Check that special values -Infinity, +Infinity and NaN are supported by the standardization
target.

ABSTRACT TEST A.56

IDENTIFIER /conf/json-simple-components/definition-resolvable

REQUIREMENT Requirement 57: /req/json-simple-components/definition-resolvable

TEST METHOD

Check that the URI used for the definition attribute is either:
• An HTTP URL that resolves to a document (response code 200) containing a machine or

human readable definition (can be RDF, GML, HTML, etc.).

• A URN that can be resolved to a document containing a machine or human readable
definition, using a URN resolver provided separately.

ABSTRACT TEST A.57

IDENTIFIER /conf/json-simple-components/inline-value-constraint-valid

REQUIREMENT Requirement 58: /req/json-simple-components/inline-value-constraint-valid

TEST METHOD
Check that the inline value provided as part of a data component satisfies the constraints of the
component (if any).

ABSTRACT TEST A.58

IDENTIFIER /conf/json-simple-components/ucum-code-and-href-represent-same-unit

REQUIREMENT
Requirement 59: /req/json-simple-components/ucum-code-and-href-represent-same-
unit

TEST METHOD
If the uom/code property is set to a UCUM code and the uom/href attribute is set to reference an
external unit definition, check that both properties represent the same unit.

OPEN GEOSPATIAL CONSORTIUM 24-014 162

ABSTRACT TEST A.59

IDENTIFIER /conf/json-simple-components/ucum-code-used

REQUIREMENT Recommendation 1: /rec/json-simple-components/ucum-code-used

TEST METHOD
If the uom attribute is set to a URI of a UCUM code, check that the specified unit cannot be
represented by UCUM.

ABSTRACT TEST A.60

IDENTIFIER /conf/json-simple-components/iso8601-uom-used

REQUIREMENT Requirement 60: /req/json-simple-components/iso8601-uom-used

TEST METHOD
Check that the uom attribute is set to the URI “http://www.opengis.net/def/uom/ISO-8601/0/
Gregorian” if the inline value is set to a ISO8601 string.

A.3.2. Conformance Class: Record Components JSON Schema

CONFORMANCE CLASS A.10: RECORD COMPONENTS JSON SCHEMA

IDENTIFIER /conf/json-record-components

REQUIREMENTS CLASS Requirements class 10: /req/json-record-components

PREREQUISITE
Conformance class A.9: /conf/json-simple-
components

TARGET TYPE JSON Document

CONFORMANCE TEST
Abstract test A.61: /conf/json-record-components/
component-types

ABSTRACT TEST A.61

IDENTIFIER /conf/json-record-components/component-types

REQUIREMENT Requirement 61: /req/json-record-components/component-types

TEST METHOD
Run the tests in this conformance class (and its prerequisites) on a set of JSON documents
containing instances of the following data component types: DataRecord, Vector

OPEN GEOSPATIAL CONSORTIUM 24-014 163

A.3.3. Conformance Class: Choice Components JSON Schema

CONFORMANCE CLASS A.11: CHOICE COMPONENTS JSON SCHEMA

IDENTIFIER /conf/json-choice-components

REQUIREMENTS CLASS Requirements class 11: /req/json-choice-components

PREREQUISITE Conformance class A.9: /conf/json-simple-components

TARGET TYPE JSON Document

CONFORMANCE TEST
Abstract test A.62: /conf/json-choice-components/
component-types

ABSTRACT TEST A.62

IDENTIFIER /conf/json-choice-components/component-types

REQUIREMENT Requirement 62: /req/json-choice-components/component-types

TEST METHOD
Run the tests in this conformance class (and its prerequisites) on a set of JSON documents
containing instances of the DataChoice component.

A.3.4. Conformance Class: Block Components JSON Schema

CONFORMANCE CLASS A.12: BLOCK COMPONENTS JSON SCHEMA

IDENTIFIER /conf/json-block-components

REQUIREMENTS CLASS Requirements class 12: /req/json-block-components

PREREQUISITES

Conformance class A.9: /conf/json-simple-
components
Conformance class A.14: /conf/json-simple-
encodings

TARGET TYPE JSON Document

CONFORMANCE TESTS
 Abstract test A.63: /conf/json-block-components/
component-types

OPEN GEOSPATIAL CONSORTIUM 24-014 164

CONFORMANCE CLASS A.12: BLOCK COMPONENTS JSON SCHEMA

 Abstract test A.64: /conf/json-block-components/
encoded-values-valid
 Abstract test A.65: /conf/json-block-components/
referenced-encoded-values-valid

ABSTRACT TEST A.63

IDENTIFIER /conf/json-block-components/component-types

REQUIREMENT Requirement 63: /req/json-block-components/component-types

TEST METHOD
Run the tests in this conformance class (and its prerequisites) on a set of JSON documents
containing instances of the following data component types: DataArray, Matrix, DataStream

ABSTRACT TEST A.64

IDENTIFIER /conf/json-block-components/encoded-values-valid

REQUIREMENT Requirement 64: /req/json-block-components/encoded-values-valid

TEST PURPOSE Verify that inline values provided in the JSON instance are valid.

TEST METHOD Run all tests from conformance class /conf/json-encoding-rules on the inline values.

ABSTRACT TEST A.65

IDENTIFIER /conf/json-block-components/referenced-encoded-values-valid

REQUIREMENT Requirement 65: /req/json-block-components/referenced-encoded-values-valid

TEST PURPOSE Verify that referenced values provided in the JSON instance are supported.

TEST METHOD
Run the tests in this conformance class (and its prerequisites) on a set of JSON documents
containing instances of the data component types DataArray, Matrix and DataStream having the
value/href attribute set to URLs with the following schemes: http, https and data.

A.3.5. Conformance Class: Geometry Components JSON Schema

OPEN GEOSPATIAL CONSORTIUM 24-014 165

CONFORMANCE CLASS A.13: GEOMETRY COMPONENTS JSON SCHEMA

IDENTIFIER /conf/json-geom-components

REQUIREMENTS CLASS Requirements class 13: /req/json-geom-components

PREREQUISITES

Conformance class A.9: /conf/json-simple-
components
Conformance class A.14: /conf/json-simple-
encodings

TARGET TYPE JSON Document

CONFORMANCE TEST
Abstract test A.66: /conf/json-geom-components/
component-types

ABSTRACT TEST A.66

IDENTIFIER /conf/json-geom-components/component-types

REQUIREMENT Requirement 66: /req/json-geom-components/component-types

TEST METHOD
Run the tests in this conformance class (and its prerequisites) on a set of JSON documents
containing instances of the Geometry data component with the following value types: Point, Line
String, Polygon.

A.3.6. Conformance Class: Simple Encodings JSON Schema

CONFORMANCE CLASS A.14: SIMPLE ENCODINGS JSON SCHEMA

IDENTIFIER /conf/json-simple-encodings

REQUIREMENTS CLASS Requirements class 14: /req/json-simple-encodings

PREREQUISITES
Conformance class A.18: /conf/text-encoding-rules
Conformance class A.17: /conf/json-encoding-rules

TARGET TYPE JSON Document

CONFORMANCE TESTS

 Abstract test A.67: /conf/json-simple-encodings/
encoding-types
 Abstract test A.68: /conf/json-simple-encodings/
json-encoding-rules-applied

OPEN GEOSPATIAL CONSORTIUM 24-014 166

CONFORMANCE CLASS A.14: SIMPLE ENCODINGS JSON SCHEMA

 Abstract test A.69: /conf/json-simple-encodings/
text-encoding-rules-applied

ABSTRACT TEST A.67

IDENTIFIER /conf/json-simple-encodings/encoding-types

REQUIREMENT Requirement 67: /req/json-simple-encodings/encoding-types

TEST METHOD
Run the tests in this conformance class on a set of JSON documents containing block components
with values encoded according to the following encoding types: JSONEncoding, TextEncoding

ABSTRACT TEST A.68

IDENTIFIER /conf/json-simple-encodings/json-encoding-rules-applied

REQUIREMENT Requirement 68: /req/json-simple-encodings/json-encoding-rules-applied

TEST PURPOSE Check that values of a block component are encoded according to the JSON encoding rules

TEST METHOD
1. Retrieve the content of the values property or the out-of-band data.

2. Check that the data fulfills all requirements from Conformance class A.17: /conf/json-
encoding-rules

ABSTRACT TEST A.69

IDENTIFIER /conf/json-simple-encodings/text-encoding-rules-applied

REQUIREMENT Requirement 69: /req/json-simple-encodings/text-encoding-rules-applied

TEST PURPOSE Check that values of a block component are encoded according to the Text encoding rules

TEST METHOD
1. Retrieve the content of the out-of-band data.

2. Check that the data fulfills all requirements from Conformance class A.18: /conf/text-
encoding-rules

A.3.7. Conformance Class: Advanced Encodings JSON Schema

OPEN GEOSPATIAL CONSORTIUM 24-014 167

CONFORMANCE CLASS A.15: ADVANCED ENCODINGS JSON SCHEMA

IDENTIFIER /conf/json-advanced-encodings

REQUIREMENTS CLASS Requirements class 15: /req/json-advanced-encodings

PREREQUISITES
Conformance class A.14: /conf/json-simple-encodings
Conformance class A.19: /conf/binary-encoding-rules

TARGET TYPE JSON Document

CONFORMANCE TESTS

 Abstract test A.70: /conf/json-advanced-encodings/
encoding-types
 Abstract test A.71: /conf/json-advanced-encodings/
binary-encoding-rules-applied
 Abstract test A.72: /conf/json-advanced-encodings/
ref-syntax-valid
 Abstract test A.73: /conf/json-advanced-encodings/
scalar-ref-component-valid
 Abstract test A.74: /conf/json-advanced-encodings/
datatype-valid
 Abstract test A.75: /conf/json-advanced-encodings/
datatype-compatible
 Abstract test A.76: /conf/json-advanced-encodings/
no-datatype-length
 Abstract test A.77: /conf/json-advanced-encodings/
block-ref-component-valid

ABSTRACT TEST A.70

IDENTIFIER /conf/json-advanced-encodings/encoding-types

REQUIREMENT Requirement 70: /req/json-advanced-encodings/encoding-types

TEST PURPOSE Check that the standardization target supports the BinaryEncoding option.

TEST METHOD
Run the tests in this conformance class on a set of JSON documents containing block components
with values encoded according to the following encoding types: BinaryEncoding

ABSTRACT TEST A.71

IDENTIFIER /conf/json-advanced-encodings/binary-encoding-rules-applied

REQUIREMENT Requirement 71: /req/json-advanced-encodings/binary-encoding-rules-applied

OPEN GEOSPATIAL CONSORTIUM 24-014 168

ABSTRACT TEST A.71

TEST PURPOSE Check that values are encoded as defined by the binary encoding rules.

TEST METHOD
Find all binary encoded value blocks included inline (base64 encoded) or referenced by the JSON
document. Apply all tests from Conformance class A.19: /conf/binary-encoding-rules to the
encoded data to validate its syntax and structure.

ABSTRACT TEST A.72

IDENTIFIER /conf/json-advanced-encodings/ref-syntax-valid

REQUIREMENT Requirement 72: /req/json-advanced-encodings/ref-syntax-valid

TEST PURPOSE Check that the path specified by the ref attribute has the correct syntax.

TEST METHOD
1. Inspect the section of the JSON instance describing the binary encoding options.

2. Check that the path formed by the ‘/’ separated list of component names actually points to a
component in the descriptor tree.

ABSTRACT TEST A.73

IDENTIFIER /conf/json-advanced-encodings/scalar-ref-component-valid

REQUIREMENT Requirement 73: /req/json-advanced-encodings/scalar-ref-component-valid

TEST PURPOSE Check that the path specified by the ref attribute points to a valid component.

TEST METHOD

1. Inspect the section of the JSON instance describing the BinaryComponent encoding
options.

2. Resolve the path specified by the ‘ref’ attribute to a component of the dataset definition
tree.

3. Verify that the component is a simple component, that is to say it is either a Boolean, Count,
Quantity, Time, Category, Text, CountRange, QuantityRange, TimeRange or CategoryRange.

ABSTRACT TEST A.74

IDENTIFIER /conf/json-advanced-encodings/datatype-valid

REQUIREMENT Requirement 74: /req/json-advanced-encodings/datatype-valid

TEST PURPOSE Check that the chosen datatype is valid.

OPEN GEOSPATIAL CONSORTIUM 24-014 169

ABSTRACT TEST A.74

TEST METHOD
Verify that the URI used to specify the binary data type is one of the item the list provided in
Table 2.

ABSTRACT TEST A.75

IDENTIFIER /conf/json-advanced-encodings/datatype-compatible

REQUIREMENT Requirement 75: /req/json-advanced-encodings/datatype-compatible

TEST PURPOSE Check that the chosen datatype is compatible with the associated component.

TEST METHOD

For text components (i.e., “Category”, “Text” or “Time” with ISO-8601 encoding), verify that the
data type is one of the string types.
For scalar numerical components (i.e., “Quantity”, “Count” or “Time” with a simple unit), verify that:

• The data type is also numerical (i.e., one of the integer or floating point types)

• The range of values it allows can cover all possible numbers within the allowed intervals and
enumerated values (e.g., A short data type cannot be used for an interval constraint of [-
100000; 10000]). When no interval constraint is specified, this test should be ignored.

• The data type can accommodate the desired precision indicated by the “significantFigures”
constraint (e.g., a float cannot be used for a number of significant figures greater than 7).
When no precision constraint is specified, this test should be ignored.

For a boolean component, verify that the data type is an unsigned byte (http://www.opengis.net/
def/dataType/OGC/0/unsignedByte).

ABSTRACT TEST A.76

IDENTIFIER /conf/json-advanced-encodings/no-datatype-length

REQUIREMENT Requirement 76: /req/json-advanced-encodings/no-datatype-length

TEST PURPOSE Check that the length of a datatype is specified only when appropriate.

TEST METHOD
Verify that the “bitLength” and “byteLength” attributes are used only when one of the UTF-8 String
or Custom Integer data types is selected.

ABSTRACT TEST A.77

IDENTIFIER /conf/json-advanced-encodings/block-ref-component-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 170

http://www.opengis.net/def/dataType/OGC/0/unsignedByte
http://www.opengis.net/def/dataType/OGC/0/unsignedByte

ABSTRACT TEST A.77

REQUIREMENT Requirement 77: /req/json-advanced-encodings/block-ref-component-valid

TEST PURPOSE Check that the binary block encoding specifications are associated to an aggregate component

TEST METHOD

1. Inspect the section of the JSON instance describing the BinaryBlock encoding options.

2. Resolve the path specified by the ‘ref’ attribute to a component of the dataset definition
tree.

3. Verify that the component is an aggregate, that is to say it is either a DataRecord, Vector,
DataChoice, DataArray or Matrix.

A.4. Datastream Encoding Conformance Classes

A.4.1. Conformance Class: General Encoding Rules

CONFORMANCE CLASS A.16: GENERAL ENCODING RULES

IDENTIFIER /conf/general-encoding-rules

REQUIREMENTS CLASS Requirements class 16: /req/general-encoding-rules

TARGET TYPE Encoded Values Instance

CONFORMANCE TESTS

 Abstract test A.78: /conf/general-encoding-rules/
record-encoding-rule
 Abstract test A.79: /conf/general-encoding-rules/
choice-encoding-rule
 Abstract test A.80: /conf/general-encoding-rules/array-
encoding-rule
 Abstract test A.81: /conf/general-encoding-rules/array-
size-encoding-rule

ABSTRACT TEST A.78: DATARECORD FIELDS AND VECTOR COORDINATES ARE
ENCODED RECURSIVELY

IDENTIFIER /conf/general-encoding-rules/record-encoding-rule

REQUIREMENT Requirement 78: /req/general-encoding-rules/record-encoding-rule

OPEN GEOSPATIAL CONSORTIUM 24-014 171

ABSTRACT TEST A.78: DATARECORD FIELDS AND VECTOR COORDINATES ARE
ENCODED RECURSIVELY

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD
Verify that the sequence of scalar values (obtained after decoding the section of the
encoded data block corresponding to the “DataRecord” or “Vector”) includes values
for the successive fields/coordinates in the right order.

ABSTRACT TEST A.79: DATACHOICE SELECTED ITEM IS PROPERLY ENCODED

IDENTIFIER /conf/general-encoding-rules/choice-encoding-rule

REQUIREMENT Requirement 79: /req/general-encoding-rules/choice-encoding-rule

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD
Verify that the sequence of scalar values (obtained after decoding the section of the
encoded data block corresponding to the “DataChoice”) includes a value identifying the
selected item as well as values for the item itself.

ABSTRACT TEST A.80: DATAARRAY ELEMENTS ARE ENCODED RECURSIVELY

IDENTIFIER /conf/general-encoding-rules/array-encoding-rule

REQUIREMENT Requirement 80: /req/general-encoding-rules/array-encoding-rule

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD
Verify that the sequence of scalar values obtained after decoding the section of the
encoded data block corresponding to the “DataArray” includes values for the successive
elements of the array.

ABSTRACT TEST A.81: THE LENGTH OF VARIABLE SIZE ARRAYS IS ENCODED IN THE
DATA BLOCK

IDENTIFIER /conf/general-encoding-rules/array-size-encoding-rule

REQUIREMENT Requirement 81: /req/general-encoding-rules/array-size-encoding-rule

TEST PURPOSE Verify that encoding rules are implemented correctly

OPEN GEOSPATIAL CONSORTIUM 24-014 172

ABSTRACT TEST A.81: THE LENGTH OF VARIABLE SIZE ARRAYS IS ENCODED IN THE
DATA BLOCK

TEST METHOD
Verify that the sequence of values obtained after decoding the section of the
encoded data block corresponding to a variable size “DataArray” includes a value
specifying the size of the array.

A.4.2. Conformance Class: JSON Encoding Rules

CONFORMANCE CLASS A.17: JSON ENCODING RULES

IDENTIFIER /conf/json-encoding-rules

REQUIREMENTS CLASS Requirements class 17: /req/json-encoding-rules

PREREQUISITE Conformance class A.16: /conf/general-encoding-rules

TARGET TYPE Encoded Values Instance

CONFORMANCE TESTS

 Abstract test A.82: /conf/json-encoding-rules/json-
valid
 Abstract test A.83: /conf/json-encoding-rules/scalar-
value-valid
 Abstract test A.84: /conf/json-encoding-rules/range-
value-valid
 Abstract test A.85: /conf/json-encoding-rules/record-
object-valid
 Abstract test A.86: /conf/json-encoding-rules/vector-
object-valid
 Abstract test A.87: /conf/json-encoding-rules/choice-
object-valid
 Abstract test A.88: /conf/json-encoding-rules/array-
values-valid
 Abstract test A.89: /conf/json-encoding-rules/
geometry-valid

ABSTRACT TEST A.82

IDENTIFIER /conf/json-encoding-rules/json-valid

REQUIREMENT Requirement 82: /req/json-encoding-rules/json-valid

TEST PURPOSE Verify that encoding rules are implemented correctly

OPEN GEOSPATIAL CONSORTIUM 24-014 173

ABSTRACT TEST A.82

TEST METHOD Verify that the data in the encoded data block is valid JSON with a JSON validator.

ABSTRACT TEST A.83

IDENTIFIER /conf/json-encoding-rules/scalar-value-valid

REQUIREMENT Requirement 83: /req/json-encoding-rules/scalar-value-valid

TEST PURPOSE Verify that scalar encoding rules are implemented correctly

TEST METHOD
Inspect the JSON of the encoded data block to verify that the value corresponding to a scalar
component is encoded with the data type specified in Table 3.

ABSTRACT TEST A.84

IDENTIFIER /conf/json-encoding-rules/range-value-valid

REQUIREMENT Requirement 84: /req/json-encoding-rules/range-value-valid

TEST PURPOSE Verify that range encoding rules are implemented correctly

TEST METHOD
Inspect the JSON of the encoded data block to verify that:

• Each JSON value corresponding to a range component is a JSON Array with two values.

• Each value in the array has the proper data type as specified in Table 3.

ABSTRACT TEST A.85

IDENTIFIER /conf/json-encoding-rules/record-object-valid

REQUIREMENT Requirement 85: /req/json-encoding-rules/record-object-valid

TEST PURPOSE Verify that record encoding rules are implemented correctly

TEST METHOD

Inspect the JSON of the encoded data block to verify that:
• Each JSON value corresponding to a record component is a JSON Object

• This JSON object has members with the same names as the fields in the vector
description

• Only members corresponding to a field marked as optional are omitted

• The value of each JSON member is valid according to the field descriptor

OPEN GEOSPATIAL CONSORTIUM 24-014 174

ABSTRACT TEST A.86

IDENTIFIER /conf/json-encoding-rules/vector-object-valid

REQUIREMENT Requirement 86: /req/json-encoding-rules/vector-object-valid

TEST PURPOSE Verify that vector encoding rules are implemented correctly

TEST METHOD

Inspect the JSON of the encoded data block to verify that:
• Each JSON value corresponding to a vector component is a JSON Object

• This JSON object has members with the same names as the coordinates in the vector
description

• The value of each JSON member is valid according to the coordinate descriptor

ABSTRACT TEST A.87

IDENTIFIER /conf/json-encoding-rules/choice-object-valid

REQUIREMENT Requirement 87: /req/json-encoding-rules/choice-object-valid

TEST PURPOSE Verify that choice encoding rules are implemented correctly

TEST METHOD

Inspect the JSON of the encoded data block to verify that:
• Each JSON value corresponding to a choice component is a JSON Object

• This JSON object contains a single member and its name is the same as one of the items in
the choice description.

• The value of the JSON member is valid according to the corresponding item descriptor.

ABSTRACT TEST A.88

IDENTIFIER /conf/json-encoding-rules/array-values-valid

REQUIREMENT Requirement 88: /req/json-encoding-rules/array-values-valid

TEST PURPOSE Verify that array encoding rules are implemented correctly

TEST METHOD

Inspect the JSON of the encoded data block to verify that:
• Each JSON value corresponding to an array or matrix component is a JSON Array

• All values in the array are valid according to the array element descriptor

• If the array has a fixed size, the number of elements in the array is equal to the size

OPEN GEOSPATIAL CONSORTIUM 24-014 175

ABSTRACT TEST A.89

IDENTIFIER /conf/json-encoding-rules/geometry-valid

REQUIREMENT Requirement 89: /req/json-encoding-rules/geometry-valid

TEST PURPOSE Verify that geometry encoding rules are implemented correctly

TEST METHOD

Inspect the JSON of the encoded data block to verify that:
• Each JSON value corresponding to a geometry component is a JSON Object

• The JSON Object is a valid GeoJSON Geometry

• The GeoJSON geometry type is either Point, LineString, Polygon, MultiPoint,
MultiLineString, or MultiPolygon

• The number of dimensions in the GeoJSON geometry is the same as the one specified by
the CRS of the Geometry descriptor.

A.4.3. Conformance Class: Text Encoding Rules

CONFORMANCE CLASS A.18: TEXT ENCODING RULES

IDENTIFIER /conf/text-encoding-rules

REQUIREMENTS CLASS Requirements class 18: /req/text-encoding-rules

PREREQUISITE Conformance class A.16: /conf/general-encoding-rules

TARGET TYPE Encoded Values Instance

CONFORMANCE TESTS

 Abstract test A.90: /conf/text-encoding-rules/abnf-
syntax-valid
 Abstract test A.91: /conf/text-encoding-rules/
separators-valid
 Abstract test A.92: /conf/text-encoding-rules/
optional-field-marker-present
 Abstract test A.93: /conf/text-encoding-rules/choice-
selection-marker-valid
 Abstract test A.94: /conf/text-encoding-rules/
geometry-valid

ABSTRACT TEST A.90: COMPLIANCE WITH ABNF GRAMMAR

IDENTIFIER /conf/text-encoding-rules/abnf-syntax-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 176

ABSTRACT TEST A.90: COMPLIANCE WITH ABNF GRAMMAR

REQUIREMENT Requirement 90: /req/text-encoding-rules/abnf-syntax-valid

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD
Verify that the text encoded data block is correct with respect to the ABNF grammar
corresponding to the particular dataset (The complete ABNF grammar of the dataset should
be dynamically constructed from the ABNF snippets provided in the specification).

ABSTRACT TEST A.91: SEPARATOR CHARACTERS ARE WELL CHOSEN

IDENTIFIER /conf/text-encoding-rules/separators-valid

REQUIREMENT Requirement 91: /req/text-encoding-rules/separators-valid

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD
Verify that the values encoded in the data block never include the reserved separator
characters. This can be detected by looking for invalid or superfluous values.

ABSTRACT TEST A.92: SPECIAL FLAGS ARE INSERTED BEFORE OPTIONAL COMPONENT
VALUES

IDENTIFIER /conf/text-encoding-rules/optional-field-marker-present

REQUIREMENT
Requirement 92: /req/text-encoding-rules/optional-field-
marker-present

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD
Verify that the sequence of values corresponding to the optional field
starts with the ‘Y’ or ‘N’ flag.

ABSTRACT TEST A.93: THE NAME OF A SELECTED CHOICE ITEM IS INSERTED IN THE
STREAM

IDENTIFIER /conf/text-encoding-rules/choice-selection-marker-valid

REQUIREMENT
Requirement 93: /req/text-encoding-rules/choice-selection-marker-
valid

TEST PURPOSE Verify that encoding rules are implemented correctly

OPEN GEOSPATIAL CONSORTIUM 24-014 177

ABSTRACT TEST A.93: THE NAME OF A SELECTED CHOICE ITEM IS INSERTED IN THE
STREAM

TEST METHOD
Verify that the sequence of values corresponding to the “DataChoice” starts with a
character string matching the name of one item of the choice descriptor.

ABSTRACT TEST A.94

IDENTIFIER /conf/text-encoding-rules/geometry-valid

REQUIREMENT Requirement 94: /req/text-encoding-rules/geometry-valid

TEST PURPOSE Check that the encoded geometry value is valid

TEST METHOD
1. Verify that the geometry value is a valid WKT string.

2. Verify that the number of dimensions in the WKT is compatible with the specified
geometry SRS.

A.4.4. Conformance Class: Binary Encoding Rules

CONFORMANCE CLASS A.19: BINARY ENCODING RULES

IDENTIFIER /conf/binary-encoding-rules

REQUIREMENTS CLASS Requirements class 19: /req/binary-encoding-rules

PREREQUISITE Conformance class A.16: /conf/general-encoding-rules

TARGET TYPE Encoded Values Instance

CONFORMANCE TESTS

 Abstract test A.95: /conf/binary-encoding-rules/abnf-
syntax-valid
 Abstract test A.96: /conf/binary-encoding-rules/type-
encoding-valid
 Abstract test A.97: /conf/binary-encoding-rules/base64-
translation-applied
 Abstract test A.98: /conf/binary-encoding-rules/
optional-field-marker-present
 Abstract test A.99: /conf/binary-encoding-rules/choice-
selection-marker-valid
 Abstract test A.100: /conf/binary-encoding-rules/
geometry-valid

OPEN GEOSPATIAL CONSORTIUM 24-014 178

ABSTRACT TEST A.95: COMPLIANCE WITH ABNF GRAMMAR

IDENTIFIER /conf/binary-encoding-rules/abnf-syntax-valid

REQUIREMENT Requirement 95: /req/binary-encoding-rules/abnf-syntax-valid

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD
Verify that the binary encoded data block is correct with respect to the ABNF grammar of
the particular dataset (The complete ABNF grammar of the dataset should be dynamically
constructed from the ABNF snippets provided in the specification).

ABSTRACT TEST A.96: DATA TYPES ARE ENCODED AS SPECIFIED IN THIS STANDARD

IDENTIFIER /conf/binary-encoding-rules/type-encoding-valid

REQUIREMENT Requirement 96: /req/binary-encoding-rules/type-encoding-valid

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD

Verify that valid and realistic scalar values are obtained when the binary data block is parsed
by extracting the number of bits specified in the table and decoding the resulting bytes in
the order specified by the “byteOrder” attribute. When the encoded data and the encoding
parameters are not consistent, abberant values (such as -65502 for a temperature field, etc…)
are usually obtained, which can be easily detected.

ABSTRACT TEST A.97: BASE64 ENCODING IS IMPLEMENTED AS DEFINED BY IETF

IDENTIFIER /conf/binary-encoding-rules/base64-translation-applied

REQUIREMENT
Requirement 97: /req/binary-encoding-rules/base64-translation-
applied

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD

• Verify that only characters allowed by base64 encoding are used in the
encoded data content.

• Verify that the data block can be properly parsed after the base64 data is
decoded into a raw binary data stream.

OPEN GEOSPATIAL CONSORTIUM 24-014 179

ABSTRACT TEST A.98: SPECIAL FLAGS ARE INSERTED BEFORE OPTIONAL COMPONENT
VALUES

IDENTIFIER
/conf/binary-encoding-rules/optional-field-marker-
present

REQUIREMENT
Requirement 98: /req/binary-encoding-rules/optional-field-
marker-present

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD

• Verify that any optional field is preceded by the a 1-byte ASCII
character with value ‘Y’ or ‘N’.

• Verify that the actual field value is only present if the flag has the
‘Y’ value.

ABSTRACT TEST A.99: THE NAME OF A SELECTED CHOICE ITEM IS INSERTED IN THE
STREAM

IDENTIFIER /conf/binary-encoding-rules/choice-selection-marker-valid

REQUIREMENT
Requirement 99: /req/binary-encoding-rules/choice-selection-marker-
valid

TEST PURPOSE Verify that encoding rules are implemented correctly

TEST METHOD

• Verify that the sequence of bytes corresponding to the “DataChoice” starts
with a byte value that is greater or equal to 0 and less than the total number of
items defined in the choice descriptor.

• Verify that the parsed index value corresponds to the proper item in the choice
descriptor.

ABSTRACT TEST A.100

IDENTIFIER /conf/binary-encoding-rules/geometry-valid

REQUIREMENT Requirement 100: /req/binary-encoding-rules/geometry-valid

TEST PURPOSE Check that the encoded geometry value is valid

TEST METHOD
1. Verify that the geometry value is valid WKB data.

2. Verify that the number of dimensions in the WKB data is compatible with the specified
geometry SRS.

OPEN GEOSPATIAL CONSORTIUM 24-014 180

B

ANNEX B (INFORMATIVE)
EXAMPLES

OPEN GEOSPATIAL CONSORTIUM 24-014 181

B ANNEX B
(INFORMATIVE)
EXAMPLES

B.1. Text Encoding Rules Examples

B.1.1. DataArray with inline values (curve)

The following example shows how elements of an array defined as a “DataRecord” can be
encoded inline with the text method:

{
 "type": "DataArray",
 "definition": "http://sweet.jpl.nasa.gov/2.0/mathFunction.owl#Function",
 "description": "Measurement error vs. temperature",
 "elementCount": { "value": 5 },
 "elementType": {
 "type": "DataRecord",
 "name": "point",
 "label": "Error vs. Temperature",
 "fields": [
 {
 "type": "Quantity",
 "name": "temp",
 "label": "Temperature",
 "definition": "http://sweet.jpl.nasa.gov/2.0/physThermo.owl#Temperature",
 "uom": { "code": "Cel" }
 },
 {
 "type": "Quantity",
 "name": "error",
 "label": "Relative Error",
 "definition": "http://sweet.jpl.nasa.gov/2.0/sciUncertainty.owl#Error",
 "uom": { "code": "%" }
 }
]
 },
 "encoding": {
 "type": "TextEncoding",
 "blockSeparator": " ",
 "tokenSeparator": ","
 }

OPEN GEOSPATIAL CONSORTIUM 24-014 182

}

Listing

The data array values encoded using the text encoding method as shown below:

0,5 10,2 50,2 80,5 100,15

Listing

In this example, each element consists of a record of two values. The array element structure
also corresponds to one block so that tuples are separated by block separators (here the ‘,’
character). Since the array is of size 5, there are 5 tuples listed sequentially in the data block,
each one composed of the two values of the data record separated by the token separator.
The pattern is “temp,error temp,error …” since values have to be listed in the same order as the
fields.

B.1.2. Datastream with records (weather data)

The following snippet defines a datastream with an element of type record:

{
 "type": "DataStream",
 "label": "Weather Data",
 "elementType": {
 "type": "DataRecord",
 "name": "weatherData",
 "fields": [
 {
 "type": "Time",
 "name": "time",
 "label": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/BIPM/0/UTC",
 "uom": { "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian" }
 },
 {
 "type": "Quantity",
 "name": "temp",
 "label": "Air Temperature",
 "definition": "http://mmisw.org/ont/cf/parameter/air_temperature",
 "uom": { "code": "Cel" }
 },
 {
 "type": "Quantity",
 "name": "press",
 "label": "Atmospheric Pressure",
 "definition": "http://mmisw.org/ont/cf/parameter/air_pressure_at_mean_
sea_level",
 "uom": { "code": "HPa" }
 },
 {
 "type": "Quantity",
 "name": "windSpeed",
 "label": "Wind Speed",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_speed",
 "uom": { "code": "km/h" }
 },
 {

OPEN GEOSPATIAL CONSORTIUM 24-014 183

 "type": "Quantity",
 "name": "windDir",
 "label": "Wind Direction",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_to_direction",
 "uom": { "code": "deg" }
 }
]
 },
 "encoding": {
 "type": "TextEncoding",
 "blockSeparator": "\n",
 "tokenSeparator": ","
 }
}

Listing

The datastream records are encoded using the Text encoding method as shown below:

2023-03-20T15:40:00Z,15.3,1014,3.5,56.0
2023-03-20T15:45:00Z,15.4,1015,5.6,123.0
2023-03-20T15:50:00Z,15.8,1014,13.2,34.0
...

Listing

B.1.3. Datastream with records and optional fields (navigation data)

The following snippet defines a datastream with an element of type record that contains
optional fields:

{
 "type": "DataStream",
 "label": "Aircraft Navigation",
 "elementType": {
 "type": "DataRecord",
 "name": "navData",
 "fields": [
 {
 "type": "Time",
 "name": "time",
 "label": "time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/OGC/0/GPS",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 }
 },
 {
 "type": "Quantity",
 "name": "speed",
 "label": "speed",
 "definition": "http://sweet.jpl.nasa.gov/2.0/humanTransportAir.
owl#GroundSpeed",
 "uom": { "code": "m/s" }
 },
 {
 "type": "Vector",
 "name": "location",
 "label": "location",

OPEN GEOSPATIAL CONSORTIUM 24-014 184

 "definition": "http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.
owl#Location",
 "referenceFrame": "http://www.opengis.net/def/crs/EPSG/0/4979",
 "optional": true,
 "coordinates": [
 {
 "type": "Quantity",
 "name": "lat",
 "label": "lat",
 "definition": "http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.
owl#Latitude",
 "axisID": "Lat",
 "uom": { "code": "deg" }
 },
 {
 "type": "Quantity",
 "name": "lon",
 "label": "lon",
 "definition": "http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.
owl#Longitude",
 "axisID": "Long",
 "uom": { "code": "deg" }
 },
 {
 "type": "Quantity",
 "name": "alt",
 "label": "alt",
 "definition": "http://sweet.jpl.nasa.gov/2.0/spaceExtent.
owl#Altitude",
 "axisID": "h",
 "uom": { "code": "m" }
 }
]
 }
]
 },
 "encoding": {
 "type": "TextEncoding",
 "tokenSeparator": ",",
 "blockSeparator": "\n"
 }
}

Listing

The datastream records are encoded using the Text encoding method as shown below:

2007-10-23T15:46:12Z,15.3,Y,45.3,-90.5,311
2007-10-23T15:46:22Z,25.3,N
2007-10-23T15:46:32Z,20.6,Y,45.3,-90.6,312
2007-10-23T15:46:52Z,18.9,Y,45.4,-90.6,315
2007-10-23T15:47:02Z,22.3,N
...

Listing

In this example, the whole location “Vector” is marked as optional and thus the coordinate values
are only included when the optional flag is set to ‘Y’ in the stream. Field values in each block
have to be listed in the same order as the field properties in the record definition thus following
the “time,speed,Y,lat,lon,alt” or “time,speed,N” pattern depending on whether or not the location
is omitted.

OPEN GEOSPATIAL CONSORTIUM 24-014 185

B.1.4. Datastream with choice (navigation data)

This is illustrated by the following example:

{
 "type": "DataStream",
 "elementType": {
 "type": "DataChoice",
 "name": "message",
 "label": "Message",
 "items": [
 {
 "type": "DataRecord",
 "name": "TEMP",
 "label": "Temperature Measurement",
 "fields": [
 {
 "type": "Time",
 "name": "time",
 "label": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/
SamplingTime",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 }
 },
 {
 "type": "Quantity",
 "name": "temp",
 "label": "Temperature",
 "definition": "http://mmisw.org/ont/cf/parameter/air_temperature",
 "uom": { "code": "Cel" }
 }
]
 },
 {
 "type": "DataRecord",
 "name": "WIND",
 "label": "Wind Measurement",
 "fields": [
 {
 "type": "Time",
 "name": "time",
 "label": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/
SamplingTime",
 "uom": {
 "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 }
 },
 {
 "type": "Quantity",
 "name": "wind_speed",
 "label": "Wind Speed",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_speed",
 "uom": { "code": "km/h" }
 },
 {
 "type": "Quantity",
 "name": "wind_dir",

OPEN GEOSPATIAL CONSORTIUM 24-014 186

 "label": "Wind Direction",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_to_direction",
 "uom": { "code": "deg" }
 }
]
 }
]
 },
 "encoding": {
 "type": "TextEncoding",
 "blockSeparator": "\n",
 "tokenSeparator": ","
 }
}

Listing

The datastream records are encoded using the Text encoding method as shown below:

TEMP,2009-05-23T19:36:15Z,25.5
TEMP,2009-05-23T19:37:15Z,25.6
WIND,2009-05-23T19:37:17Z,56.3,226.3
TEMP,2009-05-23T19:38:15Z,25.5
...

Listing

This datastream interleaves different types of messages separated by the block separator
character. The element type is a “DataChoice” which means that each encoded block is
composed of the item name ‘TEMP’ or ‘WIND’, followed by values of the item. This example also
demonstrates that items of a choice can be of different types and length.

B.1.5. Fixed size 2D array (stress matrix)

The following example illustrates how values of a fixed size 3×3 stress matrix can be text
encoded inline:

{
 "type": "Matrix",
 "definition": "http://sweet.jpl.nasa.gov/2.0/physPressure.owl#Stress",
 "elementCount": { "value": 3 },
 "elementType": {
 "type": "Matrix",
 "name": "row",
 "definition": "http://sweet.jpl.nasa.gov/2.0/info.owl#Row",
 "elementCount": { "value": 3 },
 "elementType": {
 "type": "Quantity",
 "name": "coef",
 "label": "Coefficient",
 "definition": "http://sweet.jpl.nasa.gov/2.0/mathVector.owl#Coordinate",
 "uom": { "code": "MPa" }
 }
 },
 "encoding": {
 "type": "TextEncoding",
 "blockSeparator": " ",
 "tokenSeparator": ","
 }

OPEN GEOSPATIAL CONSORTIUM 24-014 187

}

Listing

The matrix encoded using the Text encoding method as shown below:

0.36,0.48,-0.8 -0.8,0.6,0.0 0.48,0.64,0.6

Listing

Note that elements of the outer array (i.e., a matrix is a special kind of array) are separated by
block separators (i.e., each block surrounded by spaces corresponds to one row of the matrix)
while the inner array elements are separated by token separators.

B.1.6. Datastream of variable size 1D arrays (profile series)

The following example shows how SWE Common can be used to encode a series of irregular
length profiles by using a variable size array:

{
 "type": "DataStream",
 "elementType": {
 "type": "DataRecord",
 "name": "profileData",
 "fields": [
 {
 "type": "Time",
 "name": "time",
 "label": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "uom": { "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian" }
 },
 {
 "type": "DataArray",
 "name": "profilePoints",
 "definition": "http://sweet.jpl.nasa.gov/2.0/info.owl#Profile",
 "elementType": {
 "type": "DataRecord",
 "name": "point",
 "label": "Point",
 "fields": [
 {
 "type": "Quantity",
 "name": "depth",
 "label": "Sampling Point Vertical Location",
 "definition": "http://mmisw.org/ont/cf/parameter/depth",
 "uom": { "code": "m" }
 },
 {
 "type": "Quantity",
 "name": "salinity",
 "label": "Salinity",
 "definition": "http://mmisw.org/ont/cf/parameter#sea_water_
salinity",
 "uom": { "code": "[ppth]" }
 }
]
 }
 }

OPEN GEOSPATIAL CONSORTIUM 24-014 188

]
 },
 "encoding": {
 "type": "TextEncoding",
 "blockSeparator": "@@\n",
 "tokenSeparator": ","
 }
}

Listing

The datastream records are encoded using the Text encoding method as shown below:

2005-05-16T21:47:12Z,5,0,45,10,20,20,30,30,35,40,40@@
2005-05-16T22:43:05Z,4,0,45,10,20,20,30,30,35@@
2005-05-16T23:40:52Z,5,0,45,10,20,20,30,30,35,40,40
...

Listing

The example shows data for 3 profiles with a variable number of measurements along the
vertical dimension. The number of measurements is indicated in the encoded data block by a
number inserted after the timestamp, and before the measurements themselves. Since the array
is itself the element of a “DataStream”, elements of the array are separated by token separators.

B.1.7. Datastream with geometry (feature detection)

The following snippet is an example of datastream that contains a geometry. Here, each
datastream record represents a feature detected in a video stream, and is composed of a
timestamp, a scalar field and the geometry of the geolocated feature.

{
 "type": "DataStream",
 "label": "Feature Detections",
 "elementType": {
 "type": "DataRecord",
 "name": "detection",
 "fields": [
 {
 "type": "Time",
 "name": "time",
 "label": "Time",
 "definition": "http://www.opengis.net/def/property/OGC/0/SamplingTime",
 "referenceFrame": "http://www.opengis.net/def/trs/OGC/0/GPS",
 "uom": { "href": "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian" }
 },
 {
 "type": "Category",
 "name": "type",
 "label": "Feature Type",
 "definition": "http://www.opengis.net/def/featureType",
 "codeSpace": "http://x-myorg.net/def/VehicleTypes"
 },
 {
 "type": "Geometry",
 "definition": "http://www.opengis.net/def/property/OGC/0/Geometry",
 "srs": "http://www.opengis.net/def/crs/EPSG/0/4326",
 "constraint": {
 "geomTypes": ["Point", "Polygon"]

OPEN GEOSPATIAL CONSORTIUM 24-014 189

 }
 }
]
 },
 "encoding": {
 "type": "TextEncoding",
 "blockSeparator": ";\n",
 "tokenSeparator": ";"
 }
}

Listing

The datastream records are encoded using the Text encoding method as shown below:

2007-10-23T15:46:12Z;Car;POINT(-86.3254 35.4812)
2007-10-23T15:49:03Z;Truck;POLYGON((-86.3254 35.4812,-86.3253 35.4812,-86.3253
35.4811,-86.3254 35.4811,-86.3254 35.4812))
2007-10-23T15:56:45Z;Bus;POLYGON((-86.3254 35.4812,-86.3253 35.4812,-86.3253
35.4811,-86.3254 35.4811,-86.3254 35.4812))
...

Listing

B.2. JSON Encoding Rules Examples

The following examples build on the ones provided in the Text Encoding Rules Examples section.
The datastream descriptions are kept the same, except that the encoding method would have to
be changed to JSONEncoding (which is the default).

In the following sections, encoded values were kept identical to the ones used in the text
encoding section, in order to facilitate comparison.

B.2.1. DataArray with inline values (curve)

This example is based on the same “DataArray” description as the one provided in Annex B.1.1.

The equivalent JSON description for this “DataArray” is provided below:

{
 "type": "DataArray",
 "definition": "http://sweet.jpl.nasa.gov/2.0/mathFunction.owl#Function"
 "description": "Measurement error vs. temperature",
 "elementCount": {
 "type": "Count",
 "value": 5
 },
 "elementType": {
 "name": "point",
 "type": "DataRecord",
 "label": "Error vs. Temperature",
 "fields": [
 {
 "name": "temp",

OPEN GEOSPATIAL CONSORTIUM 24-014 190

 "type": "Quantity",
 "definition": "http://sweet.jpl.nasa.gov/2.0/physThermo.owl#Temperature",
 "label": "Temperature",
 "uom": { "code": "Cel" }
 },
 {
 "name": "error",
 "type": "Quantity",
 "definition": "http://sweet.jpl.nasa.gov/2.0/sciUncertainty.owl#Error",
 "label": "Relative Error",
 "uom": { "code": "%" }
 }
]
 },
 "values": [
 {"temp": 0, "error": 5},
 {"temp": 10, "error": 2},
 {"temp": 50, "error": 2},
 {"temp": 80, "error": 5},
 {"temp": 70, "error": 3}
]
}

Listing

B.2.2. Datastream with records (weather data)

This example is based on the same datastream description as the one provided in Annex B.1.2.

The following snippet shows how the datastream records are encoded using the JSON encoding
method:

[
 {
 "time": "2023-03-20T15:40:00Z",
 "temp": 15.3,
 "press": 1014,
 "windSpeed": 3.5,
 "windDir": 56.0
 },
 {
 "time": "2023-03-20T15:45:00Z",
 "temp": 15.4,
 "press": 1015,
 "windSpeed": 5.6,
 "windDir": 123.0
 },
 {
 "time": "2023-03-20T15:50:00Z",
 "temp": 15.8,
 "press": 1014,
 "windSpeed": 13.2,
 "windDir": 34.0
 },
 ...
]

Listing

OPEN GEOSPATIAL CONSORTIUM 24-014 191

B.2.3. Datastream with records and optional fields (navigation data)

This example is based on the same datastream description as the one provided in Annex B.1.3.

The following snippet shows how the datastream records are encoded using the JSON encoding
method:

[
 {
 "time": "2007-10-23T15:46:12Z",
 "speed": 15.3,
 "location": {
 "lat": 45.3,
 "lon": -90.5,
 "alt": 311
 }
 },
 {
 "time": "2007-10-23T15:46:22Z",
 "speed": 25.3,
 "location": null
 },
 {
 "time": "2007-10-23T15:46:32Z",
 "speed": 20.6,
 "location": {
 "lat": 45.3,
 "lon": -90.6,
 "alt": 312
 }
 },
 ...
]

Listing

B.2.4. Datastream with records and vector fields encoded as arrays
(navigation data)

This example is based on the same datastream description as the one provided in Annex B.1.3.

The following snippet shows how the datastream records are encoded using the JSON encoding
method, when vectorsAsArrays is true:

[
 {
 "time": "2007-10-23T15:46:12Z",
 "speed": 15.3,
 "location": [45.3, -90.5, 311]
 },
 {
 "time": "2007-10-23T15:46:22Z",
 "speed": 25.3,
 "location": null
 },
 {

OPEN GEOSPATIAL CONSORTIUM 24-014 192

 "time": "2007-10-23T15:46:32Z",
 "speed": 20.6,
 "location": [45.3, -90.6, 312]
 },
 ...
]

Listing

B.2.5. Datastream with choice (navigation data)

This example is based on the same datastream description as the one provided in Annex B.1.4.

The following snippet shows how the datastream records are encoded using the JSON encoding
method:

[
 {
 "TEMP": {
 "time": "2009-05-23T19:36:15Z",
 "temp": 25.5
 }
 },
 {
 "TEMP": {
 "time": "2009-05-23T19:37:15Z",
 "temp": 25.6
 }
 },
 {
 "WIND": {
 "time": "2009-05-23T19:37:17Z",
 "wind_speed": 56.3,
 "wind_dir": 226.3
 }
 },
 {
 "TEMP": {
 "time": "2009-05-23T19:38:15Z",
 "temp": 25.5
 }
 },
 ...
]

Listing

B.2.6. Fixed size 2D array (stress matrix)

This example is based on the same “Matrix” description as the one provided in Annex B.1.5.

The equivalent JSON description for this “Matrix” is provided below:

{
 "type": "Matrix",
 "definition": "http://sweet.jpl.nasa.gov/2.0/physPressure.owl#Stress"
 "elementCount": {
 "type": "Count",

OPEN GEOSPATIAL CONSORTIUM 24-014 193

 "value": 3
 },
 "elementType": {
 "name": "row",
 "type": "Matrix",
 "elementCount": {
 "type": "Count",
 "value": 3
 },
 "elementType": {
 "name": "coef",
 "type": "Quantity",
 "definition": "http://sweet.jpl.nasa.gov/2.0/mathVector.owl#Coordinate",
 "uom": { "code": "MPa" }
 }
 },
 "values": [[0.36,0.48,-0.8], [-0.8,0.6,0.0], [0.48,0.64,0.6]]
}

Listing

B.2.7. Datastream of variable size 1D arrays (profile series)

This example is based on the same datastream description as the one provided in Annex B.1.6.

The following snippet shows how the datastream records are encoded using the JSON encoding
method:

[
 {
 "time": "2005-05-16T21:47:12Z",
 "profilePoints": [
 { "depth": 0, "salinity": 45 },
 { "depth": 10, "salinity": 20 },
 { "depth": 20, "salinity": 30 },
 { "depth": 30, "salinity": 35 },
 { "depth": 40, "salinity": 40 }
]
 },
 {
 "time": "2005-05-16T22:43:05Z",
 "profilePoints": [
 { "depth": 0, "salinity": 45 },
 { "depth": 10, "salinity": 20 },
 { "depth": 20, "salinity": 30 },
 { "depth": 30, "salinity": 35 }
]
 },
 {
 "time": "2005-05-16T23:40:52Z",
 "profilePoints": [
 { "depth": 0, "salinity": 45 },
 { "depth": 10, "salinity": 20 },
 { "depth": 20, "salinity": 30 },
 { "depth": 30, "salinity": 35 },
 { "depth": 40, "salinity": 40 }
]
 },
 ...

OPEN GEOSPATIAL CONSORTIUM 24-014 194

]

Listing

B.2.8. Datastream with geometry (feature detection)

This example is based on the same datastream description as the one provided in Annex B.1.7.

The following snippet shows how the datastream records are encoded using the JSON encoding
method:

[
 {
 "time": "2007-10-23T15:46:12Z",
 "type": "Car",
 "geom": {
 "type": "Point",
 "coordinates": [-86.3254, 35.4812]
 }
 },
 {
 "time": "2007-10-23T15:49:03Z",
 "type": "Truck",
 "geom": {
 "type": "Polygon",
 "coordinates": [
 [-86.3254 35.4812,-86.3253 35.4812,-86.3253 35.4811,-86.3254 35.4811,-
86.3254 35.4812]
]
 }
 },
 {
 "time": "2007-10-23T15:56:45Z",
 "type": "Bus",
 "geom": {
 "type": "Polygon",
 "coordinates": [
 [-86.3254 35.4812,-86.3253 35.4812,-86.3253 35.4811,-86.3254 35.4811,-
86.3254 35.4812]
]
 }
 },
 ...
]

Listing

OPEN GEOSPATIAL CONSORTIUM 24-014 195

C

ANNEX C (INFORMATIVE)
RELATIONSHIP WITH
OTHER ISO MODELS

OPEN GEOSPATIAL CONSORTIUM 24-014 196

C ANNEX C
(INFORMATIVE)
RELATIONSHIP WITH OTHER ISO MODELS

C.1. Feature model

SWE “Records” can sometimes be seen as feature data from which GML feature representations
could be derived. Even if it is true that a SWE “Record” contains values of feature properties,
it does not always represent an object like a “Feature” does. The “Record” is simply a logical
collection of fields that may be grouped together for a different reason than the fact that they all
represent properties of the same object.

The “Feature” model is a higher level model that is used to regroup property values inside the
objects that they correspond to, as well as associate a meaning to the object itself.

A good example is a set of weather observations obtained from different sensors that may be
grouped into a single “Record” in SWE Common, but which does not constitute a feature in the
GIS sense.

C.2. Coverage model

SWE “Arrays” can sometimes be interpreted as coverage range data or grid data. However, SWE
data arrays are lower level data types and don’t constitute a “Coverage” in themselves. The
“Coverage” model described in OGC Abstract Topic 6 (OGC 07-011) can be used on top of the
SWE “Array” model (which only provides means for describing and encoding the data), in order
to provide a stronger link between range data and domain definition.

Additionally, sensor descriptions given in SensorML (and thus using the SWE Common model)
can be used to define a geo-referencing transformation that can be associated with a coverage
via the same model.

OPEN GEOSPATIAL CONSORTIUM 24-014 197

D

ANNEX D (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 24-014 198

D ANNEX D
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE EDITOR
PRIMARY CLAUSES
MODIFIED

DESCRIPTION

2008-
08-20

2.0 draft Alex Robin All Initial draft version

2008-
10-30

2.0 draft Ingo Simonis All General revision

2009-
10-30

2.0 draft Alex Robin All Draft candidate standard

2009-
11-04

2.0 draft Peter Taylor Clauses 6 and 7 Additional examples, minor edits

2009-
11-10

2.0 draft Alex Robin All General revision, added section 8

2010-
01-15

2.0 draft Alex Robin All Clarifications in requirements

2010-
03-10

2.0 final Alex Robin All Corrections following RFC comments

2023-
03-07

2.1 draft Alex Robin All Conversion to AsciiDoc / Metanorma

2023-
03-08

2.1 draft Alex Robin Clauses 7,8,9
Removed requirements that were
redundant with dependencies

2023-
03-16

2.1 draft Alex Robin Clause 7,8,9 Added Geometry class

2023-
03-21

2.1 draft Alex Robin Clause 9 Added JSON datastream encoding rules

2023-
03-21

2.1 draft Alex Robin Clause 9 Clarified use of media types

2024-
04-29

3.0 draft Alex Robin All
Refactored to v3.0, added JSON encoding,
removed XML encoding sections

2024-
08-13

3.0 draft Alex Robin All Updated ATS

OPEN GEOSPATIAL CONSORTIUM 24-014 199

DATE RELEASE EDITOR
PRIMARY CLAUSES
MODIFIED

DESCRIPTION

2025-
03-18

3.0 draft
Christian
Autermann

All
Incorporated feedback from public
comments

OPEN GEOSPATIAL CONSORTIUM 24-014 200

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 24-014 201

BIBLIOGRAPHY

[1] Katharina Schleidt, Ilkka Rinne: OGC 20-082r4, Topic 20 — Observations, measurements
and samples. Open Geospatial Consortium (2023). http://www.opengis.net/doc/as/om/
3.0.

[2] Mike Botts, Alexandre Robin, Eric Hirschorn: OGC 12-000r2, OGC SensorML: Model and
XML Encoding Standard. Open Geospatial Consortium (2020). http://www.opengis.net/
doc/IS/SensorML/2.1.0.

[3] Alexandre Robin: OGC 08-094r1, OGC® SWE Common Data Model Encoding Standard.
Open Geospatial Consortium (2011). https://portal.ogc.org/files/?artifact_id=41157.

[4] Arne Bröring, Christoph Stasch, Johannes Echterhoff: OGC 12-006, OGC® Sensor
Observation Service Interface Standard. Open Geospatial Consortium (2012). http://www.
opengis.net/doc/IS/SOS/2.0.0.

[5] Ingo Simonis, Johannes Echterhoff: OGC 09-000, OGC® Sensor Planning Service
Implementation Standard. Open Geospatial Consortium (2011). https://portal.ogc.org/
files/?artifact_id=38478.

OPEN GEOSPATIAL CONSORTIUM 24-014 202

http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/IS/SensorML/2.1.0
http://www.opengis.net/doc/IS/SensorML/2.1.0
https://portal.ogc.org/files/?artifact_id=41157
http://www.opengis.net/doc/IS/SOS/2.0.0
http://www.opengis.net/doc/IS/SOS/2.0.0
https://portal.ogc.org/files/?artifact_id=38478
https://portal.ogc.org/files/?artifact_id=38478

	I. Abstract
	II. Keywords
	III. Preface
	IV. Security considerations
	V. Submitting Organizations
	VI. Submitters
	VII. Foreword
	1. Scope
	2. Conformance
	3. Normative references
	4. Terms and definitions
	6. Conventions
	6.1. Identifiers
	6.2. Abbreviated terms
	6.3. UML Notation

	7. Requirements Class: Core Concepts (normative core)
	7.1. Introduction
	7.2. Data Representation
	7.2.1. Boolean
	7.2.2. Categorical
	7.2.3. Numerical (continuous)
	7.2.4. Countable (discrete)
	7.2.5. Textual
	7.2.6. Constraints

	7.3. Nature of Data
	7.3.1. Human readable information
	7.3.2. Robust semantics
	7.3.3. Time, space and projected quantities

	7.4. Data Quality
	7.4.1. Simple quality information
	7.4.2. Nil Values
	7.4.3. Full lineage and traceability

	7.5. Data Structure
	7.6. Data Encoding

	8. UML Conceptual Models (normative)
	8.1. Package Dependencies
	8.2. Requirements Class: Basic Types and Simple Components Packages
	8.2.1. Basic Data Types
	8.2.2. Attributes shared by all data components
	8.2.3. Attributes shared by all simple data components
	8.2.4. Boolean Class
	8.2.5. Text Class
	8.2.6. Category Class
	8.2.7. Count Class
	8.2.8. Quantity Class
	8.2.9. Time Class
	8.2.10. Requirements applicable to all range classes
	8.2.11. CategoryRange Class
	8.2.12. CountRange Class
	8.2.13. QuantityRange Class
	8.2.14. TimeRange Class
	8.2.15. Quality Union
	8.2.16. NilValues Class
	8.2.17. AllowedTokens Class
	8.2.18. AllowedValues Class
	8.2.19. AllowedTimes Class
	8.2.20. Unions of simple component classes

	8.3. Requirements Class: Record Components Package
	8.3.1. DataRecord Class
	8.3.2. Vector Class

	8.4. Requirements Class: Choice Components Package
	8.4.1. DataChoice Class

	8.5. Requirements Class: Block Components Package
	8.5.1. DataArray Class
	8.5.2. Matrix Class
	8.5.3. DataStream Class

	8.6. Requirements Class: Geometry Components Package
	8.6.1. Geometry Class

	8.7. Requirements Class: Simple Encodings Package
	8.7.1. JSONEncoding Class
	8.7.2. TextEncoding Class

	8.8. Requirements Class: Advanced Encodings Package
	8.8.1. BinaryEncoding Class

	9. JSON Implementation (normative)
	9.1. Requirements Class: Basic Types and Simple Components JSON Schemas
	9.1.1. General JSON Principles
	9.1.2. Special Numerical Values
	9.1.3. Abstract Base Classes
	9.1.4. Unit Reference Object
	9.1.5. Boolean Object
	9.1.6. Text Object
	9.1.7. Category Object
	9.1.8. Count Object
	9.1.9. Quantity Object
	9.1.10. Time Object
	9.1.11. CategoryRange Object
	9.1.12. CountRange Object
	9.1.13. QuantityRange Object
	9.1.14. TimeRange Object
	9.1.15. NilValues Object
	9.1.16. AllowedTokens Object
	9.1.17. AllowedValues Object
	9.1.18. AllowedTimes Object

	9.2. Requirements Class: Record Components JSON Schema
	9.2.1. DataRecord Object
	9.2.2. Vector Object

	9.3. Requirements Class: Choice Components JSON Schema
	9.3.1. DataChoice Object

	9.4. Requirements Class: Block Components JSON Schema
	9.4.1. DataArray Object
	9.4.2. Matrix Object
	9.4.3. DataStream Object
	9.4.4. Inline Value Blocks

	9.5. Requirements Class: Geometry Components JSON Schema
	9.5.1. Geometry Object

	9.6. Requirements Class: Simple Encodings JSON Schema
	9.6.1. JSONEncoding Object
	9.6.2. TextEncoding Object

	9.7. Requirements Class: Advanced Encodings JSON Schema
	9.7.1. BinaryEncoding Object
	9.7.1.1. Binary Component Object
	9.7.1.2. Binary Block Object

	10. Data Blocks and Streams Encoding Rules (normative)
	10.1. Requirements Class: General Encoding Rules
	10.1.1. Rules for Scalar Components
	10.1.2. Rules for Range Components
	10.1.3. Rules for DataRecord and Vector
	10.1.4. Rules for DataChoice
	10.1.5. Rules for DataArray and Matrix

	10.2. Requirements Class: JSON Encoding Rules
	10.2.1. Rules for Scalar Components
	10.2.2. Rules for Range Components
	10.2.3. Rules for DataRecord and Vector
	10.2.4. Rules for DataChoice
	10.2.5. Rules for DataArray and Matrix
	10.2.6. Rules for Geometry
	10.2.7. Media Types

	10.3. Requirements Class: Text Encoding Rules
	10.3.1. Separators
	10.3.2. Rules for Scalar Components
	10.3.3. Rules for Range Components
	10.3.4. Rules for DataRecord and Vector
	10.3.5. Rules for DataChoice
	10.3.6. Rules for DataArray and Matrix
	10.3.7. Rules for DataStream
	10.3.8. Rules for Geometry
	10.3.9. Media Types

	10.4. Requirements Class: Binary Encoding Rules
	10.4.1. Rules for Scalar Components
	10.4.2. Rules for Range Components
	10.4.3. Rules for DataRecord and Vector
	10.4.4. Rules for DataChoice
	10.4.5. Rules for DataArray and Matrix
	10.4.6. Rules for DataStream
	10.4.7. Rules for Geometry
	10.4.8. Block encoded components
	10.4.9. Media Types

	Annex A (normative) Conformance Class Abstract Test Suite
	A.1. Core Conformance Classes
	A.1.1. Conformance Class: Core Concepts

	A.2. UML Conformance Classes
	A.2.1. Conformance Class: Basic Types and Simple Components UML Packages
	A.2.2. Conformance Class: Record Components UML Package
	A.2.3. Conformance Class: Choice Components UML Package
	A.2.4. Conformance Class: Block Components UML Package
	A.2.5. Conformance Class: Geometry Components UML Package
	A.2.6. Conformance Class: Simple Encodings UML Package
	A.2.7. Conformance Class: Advanced Encodings UML Package

	A.3. JSON Conformance Classes
	A.3.1. Conformance Class: Basic Types and Simple Components JSON Schemas
	A.3.2. Conformance Class: Record Components JSON Schema
	A.3.3. Conformance Class: Choice Components JSON Schema
	A.3.4. Conformance Class: Block Components JSON Schema
	A.3.5. Conformance Class: Geometry Components JSON Schema
	A.3.6. Conformance Class: Simple Encodings JSON Schema
	A.3.7. Conformance Class: Advanced Encodings JSON Schema

	A.4. Datastream Encoding Conformance Classes
	A.4.1. Conformance Class: General Encoding Rules
	A.4.2. Conformance Class: JSON Encoding Rules
	A.4.3. Conformance Class: Text Encoding Rules
	A.4.4. Conformance Class: Binary Encoding Rules

	Annex B (informative) Examples
	B.1. Text Encoding Rules Examples
	B.1.1. DataArray with inline values (curve)
	B.1.2. Datastream with records (weather data)
	B.1.3. Datastream with records and optional fields (navigation data)
	B.1.4. Datastream with choice (navigation data)
	B.1.5. Fixed size 2D array (stress matrix)
	B.1.6. Datastream of variable size 1D arrays (profile series)
	B.1.7. Datastream with geometry (feature detection)

	B.2. JSON Encoding Rules Examples
	B.2.1. DataArray with inline values (curve)
	B.2.2. Datastream with records (weather data)
	B.2.3. Datastream with records and optional fields (navigation data)
	B.2.4. Datastream with records and vector fields encoded as arrays (navigation data)
	B.2.5. Datastream with choice (navigation data)
	B.2.6. Fixed size 2D array (stress matrix)
	B.2.7. Datastream of variable size 1D arrays (profile series)
	B.2.8. Datastream with geometry (feature detection)

	Annex C (informative) Relationship with other ISO models
	C.1. Feature model
	C.2. Coverage model

	Annex D (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Requirements Classes
	Table 2 — Allowed Binary Data Types
	Table 3 — Simple Component to JSON Value Types Mapping
	Table 4 — Range Component to JSON Mapping

	List of Figures
	Figure 2 — Internal Package Dependencies
	Figure 3 — External Package Dependencies
	Figure 4 — Scalar Data Components
	Figure 5 — Range Data Components
	Figure 6 — Basic types for pairs of scalar types
	Figure 7 — AbstractDataComponent Class
	Figure 8 — AbstractSimpleComponent Class
	Figure 9 — Boolean Class
	Figure 10 — Text Class
	Figure 11 — Category Class
	Figure 12 — Count Class
	Figure 13 — Quantity Class
	Figure 14 — Time Class
	Figure 15 — CategoryRange Class
	Figure 16 — CountRange Class
	Figure 17 — QuantityRange Class
	Figure 18 — TimeRange Class
	Figure 19 — Quality Union
	Figure 20 — NilValues Class
	Figure 21 — AllowedTokens Class
	Figure 22 — AllowedValues Class
	Figure 23 — AllowedTimes Class
	Figure 24 — Simple Component Unions
	Figure 25 — Record Data Components
	Figure 26 — DataRecord Class
	Figure 27 — Vector Class
	Figure 28 — DataChoice Class
	Figure 29 — Array Components
	Figure 30 — DataArray Class
	Figure 31 — Matrix Class
	Figure 32 — DataStream Class
	Figure 33 — Geometry Class
	Figure 34 — Simple Encodings
	Figure 35 — TextEncoding Class
	Figure 36 — BinaryEncoding Class

	List of Recommendations
	Requirements class 1: Core Concepts
	Requirements class 2: Simple Components UML Package
	Requirements class 3: Record Components UML Package
	Requirements class 4: Choice Components UML Package
	Requirements class 5: Block Components UML Package
	Requirements class 6: Geometry Components UML Package
	Requirements class 7: Simple Encodings UML Package
	Requirements class 8: Advanced Encodings UML Package
	Requirements class 9: Basic Types and Simple Components JSON Schemas
	Requirements class 10: Record Components JSON Schema
	Requirements class 11: Choice Components JSON Schema
	Requirements class 12: Block Components JSON Schema
	Requirements class 13: Geometry Components JSON Schema
	Requirements class 14: Simple Encodings JSON Schema
	Requirements class 15: Advanced Encodings JSON Schema
	Requirements class 16: General Encoding Rules
	Requirements class 17: JSON Encoding Rules
	Requirements class 18: Text Encoding Rules
	Requirements class 19: Binary Encoding Rules
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6
	Requirement 7
	Requirement 8
	Requirement 9
	Requirement 10
	Requirement 11
	Requirement 12
	Requirement 13
	Requirement 14
	Requirement 15
	Requirement 16
	Requirement 17
	Requirement 18
	Requirement 19
	Requirement 20
	Requirement 21
	Requirement 22
	Requirement 23
	Requirement 24
	Requirement 25
	Requirement 26
	Requirement 27
	Requirement 28
	Requirement 29
	Requirement 30
	Requirement 31
	Requirement 32
	Requirement 33
	Requirement 34
	Requirement 35
	Requirement 36
	Requirement 37
	Requirement 38
	Requirement 39
	Requirement 40
	Requirement 41
	Requirement 42
	Requirement 43
	Requirement 44
	Requirement 45
	Requirement 46
	Requirement 47
	Requirement 48
	Requirement 49
	Requirement 50
	Requirement 51
	Requirement 52
	Requirement 53
	Requirement 54
	Requirement 55
	Requirement 56
	Requirement 57
	Requirement 58
	Requirement 59
	Requirement 60
	Requirement 61
	Requirement 62
	Requirement 63
	Requirement 64
	Requirement 65
	Requirement 66
	Requirement 67
	Requirement 68
	Requirement 69
	Requirement 70
	Requirement 71
	Requirement 72
	Requirement 73
	Requirement 74
	Requirement 75
	Requirement 76
	Requirement 77
	Requirement 78
	Requirement 79
	Requirement 80
	Requirement 81
	Requirement 82
	Requirement 83
	Requirement 84
	Requirement 85
	Requirement 86
	Requirement 87
	Requirement 88
	Requirement 89
	Requirement 90
	Requirement 91
	Requirement 92
	Requirement 93
	Requirement 94
	Requirement 95
	Requirement 96
	Requirement 97
	Requirement 98
	Requirement 99
	Requirement 100
	Recommendation 1
	Conformance class A.1
	Conformance class A.2: Basic Types and Simple Components UML Packages
	Conformance class A.3: Record Components UML Package
	Conformance class A.4: Choice Components UML Package
	Conformance class A.5: Block Components UML Package
	Conformance class A.6: Geometry Components UML Package
	Conformance class A.7: Simple Encodings UML Package
	Conformance class A.8: Advanced Encodings UML Package
	Conformance class A.9: Basic Types and Simple Components JSON Schemas
	Conformance class A.10: Record Components JSON Schema
	Conformance class A.11: Choice Components JSON Schema
	Conformance class A.12: Block Components JSON Schema
	Conformance class A.13: Geometry Components JSON Schema
	Conformance class A.14: Simple Encodings JSON Schema
	Conformance class A.15: Advanced Encodings JSON Schema
	Conformance class A.16: General Encoding Rules
	Conformance class A.17: JSON Encoding Rules
	Conformance class A.18: Text Encoding Rules
	Conformance class A.19: Binary Encoding Rules

