Open Geospatial Consortium

Submission Date: 2024-06-15

Approval Date: 2024-08-27

Publication Date: 2025-02-10

External identifier of this OGC® document: http://www.opengis.net/doc/is/tdml-part2/1.0
Internal reference number of this OGC® document: 24-006r1

Version: 1.0

Editor: Peng Yue, Ruixiang Liu, Boyi Shangguan

OGC Training Data Markup Language for Artificial Intelligence
(TrainingDML-AI) Part 2: JSON Encoding Standard

Copyright notice
Copyright © 2025 Open Geospatial Consortium

To obtain additional rights of use, visit https://www.ogc.org/ogc/Document.

Warning

This document is an OGC Member approved international standard. This document is available on
a royalty free, non-discriminatory basis.

Recipients of this document are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type: OGC® Standard
Document subtype:

Document stage: Approved

Document language: English

http://www.opengis.net/doc/is/tdml-part2/1.0
https://www.ogc.org/ogc/Document

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set
forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the
Intellectual Property without restriction (except as set forth below), including without limitation the rights to implement,
use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are
retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by
LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE
IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR
THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together
with all copies in any form. The license will also terminate if you fail to comply with any term or condition of this
Agreement. Except as provided in the following sentence, no such termination of this license shall require the termination of
any third party end-user sublicense to the Intellectual Property which is in force as of the date of notice of such termination.
In addition, should the Intellectual Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole
opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its
sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies
in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all
times be the sole entity that may authorize you or any third party to use certification marks, trademarks or other special
designations to indicate compliance with any LICENSOR standards or specifications. This Agreement is governed by the laws
of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be
deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, and as so
modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

Table of Contents

1. Scope
2. Conformance
3. Normative References
4. Terms and Definitions
4.1. Artificial Intelligence (AI)
4.2. Machine Learning (ML)
4.3. Deep Learning (DL)
4.4. Dataset
4.5. Training Dataset
4.6. Label
4.7. Class
4.8. Task
4.9. Provenance
4.10. Quality
4.11. Earth Observation
4.12. Scene Classification
4.13. Object Detection
4.14. Semantic Segmentation
4.15. Change Detection
4.16. 3D Model Reconstruction
4.17. Generative Model
4.18. JavaScript Object Notation (JSON)
4.19. JSON Schema
4.20. Training Dataset Publisher
5. Conventions
5.1. Identifiers
5.2. Abbreviated Terms
6. Overview
6.1. JavaScript Object Notation
7. Requirements for TrainingDML-AI JSON Encoding
7.1. Requirements Class: Base
7.1.1. Requirements Class: JSON Base Type
7.1.2. Requirements Class: ISO Metadata Type
7.1.3. Requirements Class: ISO Quality Type
7.1.4. Requirements Class: Geospatial Type
7.2. Requirements Class: AI_TrainingDataset
7.3. Requirements Class: AI_TrainingData
7.4. Requirements Class: AI_Task

10
10
10
10
10
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
14
14
14
15
15
16
16
16
17
20
21
22
27
30

7.5. Requirements Class: AI_Label
7.6. Requirements Class: AI_Labeling
7.7. Requirements Class: AI_DataQuality
7.8. Requirements Class: AI_TDChangeset
Annex A: Abstract Test Suite (Normative)
A.1. Introduction
A.2. Conformance Class: Base
A.2.1. Conformance Class: JSON Base Type
A.2.2. Conformance Class: ISO Metadata Type
A.2.3. Conformance Class: ISO Quality Type
A.2.4. Conformance Class: Geospatial Type
A.3. Conformance Class: AI_TrainingDataset
A.4. Conformance Class: AI_TrainingData
A.5. Conformance Class: AI_Task
A.6. Conformance Class: AI Label
A.7. Conformance Class: AI_Labeling
A.8. Conformance Class: AI_DataQuality
A.9. Conformance Class: AI_TDChangeset
Annex B: Example (Informative)
B.1. TrainingDataset Encoding Examples
B.1.1. WHU-RS19 Dataset
B.1.2. DOTA-v1.5 Dataset
B.1.3. KITTI 2D Object Detection Dataset
B.1.4. GID Dataset
B.1.5. Toronto3D Dataset
B.1.6. WHU-Building Dataset
B.1.7. California Change Detection Dataset
B.1.8. WHU MVS Dataset
B.1.9.iSAID Dataset
B.2. DataQuality Encoding Example
B.2.1. WHU-RS19 Data Quality
B.3. TDChangeset Encoding Example
B.3.1. DOTA-v1.5 Changeset
B.4. Non-EO Imagery TrainingDataset Encoding Examples
B.4.1. ERAS Dataset
B.4.2. SCIERC Dataset
B.4.3. nuScenes Dataset
Annex C: Revision History (Informative)

Annex D: Bibliography

31
34
37
38
41
41
41
41
42
43
44
44
45
46
47
49
50
51
52
52
52
52
52
53
53
53
53
54
54
54
54
54
54
35
35
35
35
56
57

1. Abstract

The OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 2: JSON
Encoding Standard defines requirements for encoding Al training datasets as JavaScript Object
Notation (JSON). JSON is widely used for encoding data in Web-based applications. It consists of sets
of objects described by name/value pairs. TrainingDML-AI Part 2 is based on the OGC Training Data
Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1: Conceptual Model Standard.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, artificial intelligence, machine learning, deep learning, earth observation,
remote sensing, training data, training sample, encoding, JSON

iii. Preface

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

iv. Security Considerations

No security considerations have been made for this Standard.

v. Submitting organizations
The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

* Wuhan University

* Luoyao Information Technology Co., Ltd

* Pixalytics Ltd

* WiSC Enterprises

* George Mason University

* Laboratoire d’Informatique de Grenoble

* Wuhan University of Technology

* Hubei University

* Chongging Changan Zhitu Technology Co., Ltd

* Hubei Luojia Laboratory
vi. Submitters
All questions regarding this submission should be directed to the editors or the submitters:

Name Affiliation

Peng Yue Wuhan University

Ruixiang Liu
Haoru Wu
Chenxiao Zhang
Boyi Shangguan
Samantha Lavender
Jim Antonisse
Liping Di
Eugene Yu
Danielle Ziébelin
Liangcun Jiang
Lei Hu

Mingda Zhang

Kai Yan

vii. Acknowledgments

Wuhan University

Wuhan University

Wuhan University

Luoyao Information Technology Co., Ltd
Pixalytics Ltd

WiSC Enterprises

George Mason University

George Mason University

Laboratoire d’Informatique de Grenoble
Wuhan University of Technology

Hubei University

Hubei University

Chongqing Changan Zhitu Technology Co., Ltd

Thanks to the members of the TrainingDML-AI Standards Working Group of the OGC as well as all
contributors of change requests and comments. In particular: Scott Simmons, Carl Reed, Sam Meek,
Kaixuan Wang, Zhipeng Cao, Shuaiqi Liu, Ming Zhao, Hanwen Xu, Haipeng Deng, Baoxin Teng.

Chapter 1. Scope

This OGC TrainingDML - AI Part 2: JSON Encoding Standard defines a JSON encoding for the
exchange of training datasets. The TrainingDML - AI Part 2 Standard provides a JSON-based
encoding for the exchange of information describing training datasets, both within and between

different organizations.

The document model is derived from the conceptual models defined in the OGC Training Data
Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1: Conceptual Model Standard.

Chapter 2. Conformance

This Standard defines a JSON encoding for Al training datasets. The standardization target for this
Standard is:

* TrainingDML-AI JSON Encoding Schema

Conformance with this Standard shall be checked using all the relevant tests specified in Annex A
(normative) of this document. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing Policies
and Procedures and the OGC Compliance Testing website.

All requirements-classes and conformance-classes described in this document are owned by the
standard identified.

This standard identifies eleven (11) conformance classes. Each conformance class is defined by one
requirements class. The tests in Annex A are organized by requirements class. So an
implementation of each conformance class must pass all tests specified in Annex A for the
respective requirements class.

Of these eleven conformance classes, only the AI_TrainingDataset conformance class is mandatory.
All other conformance classes are optional. In the case where a conformance class has a
dependency on another conformance class, that conformance class should also be implemented.

If Al _TrainingDataset conformance class is implemented, all other conformance classes will
eventually be implemented based on the dependencies between the conformance classes.
Therefore, all conformance classes can also be considered mandatory.

https://www.opengeospatial.org/cite

Chapter 3. Normative References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of the
normative document referred to applies.

* OGC: OGC 23-008r3, OGC Training Data Markup Language for Artificial Intelligence
(TrainingDML-AI) Part1: Conceptual Model Standard, 2023

* IETF: RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, 2014

» IETF: RFC 7946, The Geo]JSON Format, 2016

» IETF: RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax, 2005

» IETF: RFC 3339, Date and Time on the Internet: Timestamps, 2002

* IETF: RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, 1996

* ISO 19107:2019 Geographic information — Spatial schema

* ISO 19115-1:2014 Geographic information — Metadata — Part 1: Fundamentals

* ISO 19157-1:2023 Geographic information — Data quality — Part 1: General requirements

https://docs.ogc.org/is/23-008r3/23-008r3.html
https://docs.ogc.org/is/23-008r3/23-008r3.html
http://www.ietf.org/rfc/rfc7159.txt
https://tools.ietf.org/html/rfc7946
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc2046.txt
https://www.iso.org/standard/66175.html
https://www.iso.org/standard/53798.html
https://www.iso.org/standard/78900.html

Chapter 4. Terms and Definitions

This document used the terms defined in OGC Policy Directive 49, which is based on the ISO/IEC
Directives, Part 2, Rules for the structure and drafting of International Standards. In particular, the
word "shall" (not "must") is the verb form used to indicate a requirement to be strictly followed to
conform to this Standard and OGC documents do not use the equivalent phrases in the ISO/IEC
Directives, Part 2.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Artificial Intelligence (AI)

refers to a set of methods and technologies that can empower machines or software to learn and
perform tasks like humans.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.2. Machine Learning (ML)

is an important branch of artificial intelligence that gives computers the ability to improve their
performance without explicitly being programmed to do so. ML processes create models from
training data by using a set of learning algorithms, and then can use these models to make
predictions. Depending on whether the training data include labels, the learning algorithms can be
divided into supervised and unsupervised learning.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.3. Deep Learning (DL)

is a subset of machine learning, which is essentially a neural network with three or more layers.
The number of layers is referred to as depth. While a neural network with a single layer can still
make approximate predictions, additional hidden layers can help to optimize and refine for
accuracy.

SOURCE: https://www.ibm.com/topics/deep-learning

4.4. Dataset

identifiable collection of data

Note 1 to entry: A dataset can be a smaller grouping of data which, though limited by
some constraint such as spatial extent or feature type, is located physically within a
larger dataset. Theoretically, a dataset can be as small as a single feature or
feature attribute contained within a larger dataset. A hardcopy map or chart can be

10

https://portal.ogc.org/public_ogc/directives/directives.php
https://www.ibm.com/topics/deep-learning

considered a dataset.

[SOURCE: ISO 19115-1:2014, 4.3]

4.5. Training Dataset

is a collection of samples, often labeled in terms of supervised learning. A training dataset can be
divided into training, validation, and test sets. Training samples are different from samples in OGC
Observations & Measurements (O&M). They are often collected in purposive ways that deviate from
purely probability sampling, with known or expected results labeled as values of a dependent
variable for generating a trained predictive model.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.6. Label

refers to known or expected results annotated as values of a dependent variable in training
samples. A training sample label is different from those on a geographical map, which are known
as map labels or annotations.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.7. Class

<classification> result of a classification process as part of a classification system which subdivides
concepts within a given topic area.

[SOURCE: ISO 19144-2:2023, 3.1.6]

4.8. Task

the specific goal that an Al application want to achieve.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.9. Provenance

information about entities, activities, and people involved in producing a piece of data or thing,
which can be used to form assessments about its quality, reliability or trustworthiness. In this
standard provenance is a record of how training data were prepared.

SOURCE: W3C (https://www.w3.org/TR/prov-overviewy/)

11

https://www.w3.org/TR/prov-overview/

4.10. Quality

degree to which a set of inherent characteristics of an object fulfils requirements [ISO 9000:2015,
3.6.2, modifiedONotes 1 and 2 to entry have been deleted]. Quality of training data (such as data
imbalance and mislabeling) can impact the performance of AI/ML models.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.11. Earth Observation

data and information collected about our planet, whether atmospheric, oceanic or terrestrial. This
includes space-based or remotely-sensed data, as well as ground-based or in situ data.

SOURCE: GEO (https://earthobservations.org/geo_wwd.php)

4.12. Scene Classification

task of identifying scene categories of images, on the basis of a training set of images whose scene
categories are known.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.13. Object Detection

task of recognizing objects such as cars from images. The objects are often localized using bounding
boxes.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.14. Semantic Segmentation

task of assigning class labels to pixels of images or points of point clouds.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.15. Change Detection

task that finds the changes in an area between images taken at different times.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

12

https://earthobservations.org/geo_wwd.php

4.16. 3D Model Reconstruction

task that builds 3D objects and scenes from multi-view images.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.17. Generative Model

is one of the methods of large model training, which improve model performance through
unsupervised pre-training. In the fine-tuning phase, labeled data plays a critical role in optimizing
the model for specific vertical domains or tasks. By incorporating labeled data, the model can learn
to accurately identify and extract relevant features, leading to better performance on specific
downstream tasks. Overall, the combination of generative models and fine-tuning with labeled data
can significantly improve the performance of large models in specialized domains or tasks.

SOURCE: OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1:
Conceptual Model Standard

4.18. JavaScript Object Notation (JSON)

is a lightweight, text-based, language-independent syntax for defining data interchange formats. It
was derived from the ECMAScript programming language but is programming language
independent. JSON defines a small set of structuring rules for the portable representation of
structured data.

SOURCE: ECMA-404 The JSON data interchange syntax 2nd edition, December 2017

4.19. JSON Schema

is a vocabulary that allows you to annotate and validate JSON documents.

SOURCE: https://json-schema.org/

4.20. Training Dataset Publisher

refers to the entity or individual responsible for creating and releasing the JSON-based serialization
syntax for geospatial training datasets, as defined in the TrainingDML-AI Part 2: JSON Encoding
Standard.

13

https://json-schema.org/

Chapter 5. Conventions

This section provides details and examples for any conventions used in the document.

5.1. Identifiers

The normative provisions in this Standard are denoted by the URI:
http://www.opengis.net/spec/TrainingDML-AI-2/1.0

All requirements and conformance tests that appear in this document are denoted by partial URIs
which are relative to this base.

5.2. Abbreviated Terms

In this document the following abbreviations and acronyms are used or introduced:

» AI— Artificial Intelligence

* DL — Deep Learning

* EO — Earth Observation

» JETF — Internet Engineering Task Force
* ISO — International Organization for Standardization
* JSON — JavaScript Object Notation

* ML —Machine Learning

* OGC — Open Geospatial Consortium

* RS— Remote Sensing

* TD —Training Data

* UML — Unified Modelling Language

* URL — Uniform Resource Locator

* UTC— Coordinated Universal Time

* W3C— World Wide Web Consortium

* XML — Extensible Markup Language

14

http://www.opengis.net/spec/TrainingDML-AI-2/1.0

Chapter 6. Overview

The TrainingDML-AI Part 2: JSON Encoding Standard defines a JSON-based serialization syntax for
geospatial training datasets. While other serialization formats are possible, such alternatives are
not discussed in this Standard.

JSON does not have a formal class model. JSON objects are just sets of properties. However, the
JSON encoding described in this Standard features a "type" property on each JSON object.

A training dataset document conforming to this Standard is a JSON document whose root value is
an Al_TrainingDataset object.

6.1. JavaScript Object Notation

JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data
interchange format that defines a small set of formatting rules for the portable representation of
structured data. JSON is derived from the object literals of JavaScript, as defined in the ECMAScript
Programming Language Standard and can represent four primitive types (strings, numbers,
Boolean values, and null) and two structured types (objects and arrays). The ordering of the
members or properties of any JSON object is considered irrelevant. Even though JSON is based on a
subset of the JavaScript Programming Language it is currently well-supported by nearly all
programming languages, including Java, Python, and C#.

The JSON format is currently described by two competing standards, RFC7159 and ECMA-404. Both
standards documents are consistent, but the latter defines mainly the grammatical syntax where
the former provides some additional semantic and security points.

When serialized, absent properties are represented by either (a) setting the property value to null,
or (b) by omitting the property declaration altogether at the option of the training dataset
publisher. These representations are semantically equivalent. If a property has an array value, the
absence of any items in that array shall be represented by omitting the property entirely or by
setting the value to null. The appropriate interpretation of an omitted or explicitly null value is that
no value has been assigned, as opposed to the view that the given value is empty or nil.

15

Chapter 7. Requirements for TrainingDML-
AI JSON Encoding

7.1. Requirements Class: Base

7.1.1. Requirements Class: JSON Base Type

The JSON Base Type requirements class defines the base requirements for JSON encodings, which
includes definitions of common types used in the TrainingDML-AI JSON encoding.

Requirements class

/req/base/jsonbasetype

Dependency JSON

Requirement 1 /req/base/jsonbasetype/json
Requirement 2 /reg/base/jsonbasetype/datetime
Requirement 3 /req/base/jsonbasetype/namedvalue
Requirement 4 /req/base/jsonbasetype/url

The first requirement is that a TrainingDML-AI JSON document is a valid JSON document.
Requirement 1 /reg/base/jsonbasetype/json

An instance SHALL be a conformant JSON document, as defined in ECMA-404
JSON has a limited range of built-in types (http://json.org/). The following requirements provide

standard JSON representations of additional types required across all requirements within this
specification.

The DateTime is encoded as a text string.
Requirement 2 /req/base/jsonbasetype/datetime

Each DateTime value SHALL be encoded as a text string defined in Date and
Time on the Internet: Timestamps RFC 3339 Section 5.6.

RFC 3339 is a profile of the ISO 8601 standard for representation of dates and
times using the Gregorian calendar.

The specification of date and time in any JSON encoding of training set data
SHALL be specified in UTC.

Examples:

16

http://json.org/
https://datatracker.ietf.org/doc/html/rfc3339#section-5.6

a) "2002-05-30T09:00:00"
b) "2002-05-30T09:30:10.5"
c) "2002-05-30T09:30:10Z"
d) "2002-09-24"

e) "2002-09-247"

f) "09:30:10"
g) "09:30:10.5"
h) "09:30:107"

The NamedValue is encoded as a JSON object with two properties named "key" and "value".
Typically, the "key" property represents a unique identifier or name for the value being described,
while the "value" property contains the actual data associated with that identifier. The "key"
element is an open field allowing for arbitrary keys to be used. The "value" element may be any

types.

Requirement 3 /req/base/jsonbasetype/namedvalue

Each NamedValue value SHALL be encoded as a JSON object with properties
"key" and "value", while the value of property "key" is a text string.

Examples:

a) {"key": "forest", "value": "RGB(@,255,255)"}
b) {"key": "precision", "value": 0.8}

The URL is encoded as a text string.
Requirement 4 /req/base/jsonbasetype/url

Each URL value SHALL be encoded as a text string defined in Uniform
Resource Identifier (URI): Generic Syntax RFC 3986 Section 4.1.

Examples:

a) "http://www.opengeospatial.org"”
b) "/file.txt"

7.1.2. Requirements Class: ISO Metadata Type

The ISO Metadata Type requirements class defines the requirements for JSON encoding of ISO
metadata types.

Requirements class
/req/base/isometadatatype

Dependency JSON

17

https://datatracker.ietf.org/doc/html/rfc3986#section-4.1

Requirements class

Dependency GeoJSON

Requirement 5 /reg/base/isometadatatype/band
Requirement 6 /req/base/isometadatatype/extent
Requirement 7 /req/base/isometadatatype/citation
Requirement 8 /req/base/isometadatatype/scope

The MD_Band is encoded as a JSON object.
Requirement 5 /req/base/isometadatatype/band

Each MD_Band value SHALL be encoded as a JSON object matching the XML
Schema type as defined in:

https://schemas.isotc211.0rg/19115/-1/mrc/1.3.0/content.xsd

Examples:

a) {"name": [{"code": "red"}]}
b) {"name": [{"code": "B4"}]}
c¢) {"boundMax": 690, "boundMin": 630, "boundUnits": "nm"}

The EX_Extent is encoded as a GeoJSON bounding box or a JSON Object.
Requirement 6 /req/base/isometadatatype/extent

Each EX_Extent value SHALL be encoded using the GeoJSON bounding box
encoding as defined in The GeoJSON Format RFC 7946 Section 5,

or a JSON object matching the XML Schema type as defined in:

https://schemas.isotc211.0rg/19115/-1/gex/1.3.0/extent.xsd

Examples:

a) [120.0, 30.0, 130.0, 40.0]
b) [120.0, 30.0, 10.0, 130.0, 40.0, 20.0]

o) {

"geographicElement": [{
"westBoundLongitude": -171.76409,
"eastBoundLongitude": -157.86768,
"southBoundLatitude": -14.42443,
"northBoundLatitude": 21.31573

H

}

18

https://schemas.isotc211.org/19115/-1/mrc/1.3.0/content.xsd
https://datatracker.ietf.org/doc/html/rfc7946#section-5
https://schemas.isotc211.org/19115/-1/gex/1.3.0/extent.xsd

"geographicElement": [{
"polygon": [{
"exterior": {
“LinearRing": {
"posList": [51.556272, -0.2803943, 51.5562758, -0.2787397,
51.5556539, -0.278736, 51.5556501, -0.2803906, 51.556272, -0.2803943]
}
Iy
}]
H

The CI_Citation is encoded as a JSON object.
Requirement 7 /req/base/isometadatatype/citation

Each CI_Citation value SHALL be encoded as a JSON object matching the XML
Schema type as defined in:

https://schemas.isotc211.0rg/19115/-1/cit/1.3.0/citation.xsd

Example:

{"title": "Open Geospatial Consortium", "alternateTitle": ["0GC"], "identifier":
[{"code": "https://portal.ogc.org/files/?artifact_id=104605&version=1"}]}

The MD_Scope is encoded as a JSON object.
Requirement 8 /req/base/isometadatatype/scope

Each MD_Scope value SHALL be encoded as a JSON object matching the XML
Schema type as defined in:

https://schemas.isotc211.0rg/19115/-1/mcc/1.3.0/commonClasses.xsd

Examples:

a) {
"level": "dataset",
"levelDescription": [{
"dataset": "whu_rs19"

}

"level": "attribute",
"levelDescription": [{
"attributes": "completeness"

19

https://schemas.isotc211.org/19115/-1/cit/1.3.0/citation.xsd
https://schemas.isotc211.org/19115/-1/mcc/1.3.0/commonClasses.xsd

}H

}
c) |
"level": "coverage",
"extent": [{

"geographicElement": [{
"westBoundLongitude": -171.76409,
"eastBoundLongitude": -157.86768,
"southBoundlLatitude": -14.42443,
"northBoundLatitude": 21.31573

}]

H
}
d) {
"level": "feature",
"extent": [{

"geographicElement": [{

"polygon™: [{

"exterior": {

"LinearRing": {
"posList": [51.556272, -0.2803943, 51.5562758, -0.2787397,
51.5556539, -0.278736, 51.5556501, -0.2803906, 51.556272, -0.2803943]

}

}

}
}]
H

7.1.3. Requirements Class: ISO Quality Type

The ISO Quality Type requirements class defines the requirements for JSON encoding of ISO quality
types.

Requirements class
/req/base/isoqualitytype
Dependency JSON

Requirement 9 [req/base/isoqualitytype/element
The QualityElement object is encoded as a JSON object with properties shown in Table 1.
Requirement 9 [req/base/isoqualitytype/element

Each QualityElement value SHALL be encoded as a JSON object with
properties shown in Table 1.

Table 1. QualityElement properties

20

JSON Property Definition Data type and values Obligation

type The type of the quality CharacterString [1..1] Mandatory
element object.
measure Reference to measure = MeasureReference Mandatory
used. [1..1]
evaluationMethod Evaluation EvaluationMethod Mandatory
information. [1..1]
result Value obtained from QualityResult [1..*] Mandatory
applying a data quality
measure.
Example:
{
"type": "FormatConsistency",
"measure": {

"measureDescription”: "Percentage of training samples with inconsistent image
format"
b
"evaluationMethod": {
"evaluationMethodDescription": "Full test method to calculate the percentage of
training samples with an inconsistent format"

}
"result": [

{
"quantitativeResult": {
"value": [

0
1,
"valueUnit": "%"
}
}
]

7.1.4. Requirements Class: Geospatial Type

The Geospatial Type requirements class defines the requirements for JSON encoding of geospatial
types.

Requirements class

/req/base/geospatialtype

Dependency JSON

Dependency GeoJSON

Requirement 10 /req/base/geospatialtype/feature

21

The encoding of one or more features follows the GeoJSON RFC rules for encoding a Feature object,
with members “type”, “geometry” and “properties”. A Feature object represents a spatially bounded
thing. Every Feature object is a GeoJSON object no matter where it occurs in a GeoJSON text. RFC
7946

Requirement 10 /req/base/geospatialtype/feature

Each Feature value SHALL be encoded using the GeoJSON feature encoding
defined in The GeoJSON Format RFC 7946 Section 3.2.

Examples of Feature encodings are:

a) {"type": "Feature", "geometry": {"type": "Point", "coordinates": [120.0, 30.0]},
"properties": {"class": "station"}}

b) {"type": "Feature", "geometry": {"type": "LineString", "coordinates": [[120.0,
30.0], [130.0, 40.0]11}, "properties": {"class": "road"}}

c) {"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [[[120.0,
30.0], [130.0, 30.0], [125.0, 40.0], [120.0, 30.0]11]}, "properties": {"class":
"building"}}

7.2. Requirements Class: AI_TrainingDataset

The AI TrainingDataset requirements class defines a JSON encoding for the AI TrainingDataset
module, which is based on the UML model specified in the TrainingDML-AI Part 1: Conceptual
Model Standard.

Requirements class

/req/aitrainingdataset

Dependency JSON

Dependency /req/base/jsonbasetype
Dependency /req/base/isometadatatype
Dependency /req/aitrainingdata
Dependency /req/aitask

Dependency /req/ailabeling
Dependency /req/aidataquality
Dependency /req/aitdchangeset

Requirement 11 /req/aitrainingdataset/trainingdataset
Requirement 12 /req/aitrainingdataset/metricsinliterature

Requirement 13 /req/aitrainingdataset/eotrainingdataset

The AI_TrainingDataset object is encoded as a JSON object with properties shown in Table 2.

22

https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946#section-3.2

Requirement 11

[/req/aitrainingdataset/trainingdataset

Each AI_TrainingDataset object SHALL implement the Mandatory properties
shown in Table 2.

Table 2. AL TrainingDataset properties

JSON Property
type

id

doi

scope

nhame

description

version

amountOfTrainingData

createdTime

updatedTime

license

providers

keywords

Definition

Type of the training
dataset.

Identification of the Al

training dataset.

Digital object identifier

of the Al training
dataset.

Description of the
scope of the training
dataset.

Name of the Al training

dataset.

Description of the AI
training dataset.

Version number of the

Al training dataset.

Total number of

training samples in the

Al training dataset.

Time when the Al
training dataset was
created.

Time when the Al
training dataset was
updated.

License description of
the Al training dataset.

People or organizations

who provide the Al
training dataset.

Keywords of the Al
training dataset.

Data type and values

"Al_AbstractTrainingDa

taset”

CharacterString [1..1]

CharacterString [0..1]

MD_Scope [0..1]

CharacterString [1..1]

CharacterString [1..1]

CharacterString [0..1]

Int [0..1]

DateTime [0..1]

DateTime [0..1]

CharacterString [1..1]

CharacterString [0..*]

CharacterString [0..*]

Obligation
Mandatory

Mandatory

Optional

Optional

Mandatory

Mandatory

Optional

Optional

Optional

Optional

Mandatory

Optional

Optional

23

JSON Property Definition Data type and values Obligation

metricsInLIT Results of performance AI_MetricsInLiterature Optional
metrics achieved by [0..%]
AI/ML algorithms in the
peer-reviewed
literature.

statisticsInfo Statistical results for NamedValue [0..*] Optional
training samples in
each class.

dataSources Citation for the data CI_Citation [0..*] Optional
sources.

numberOfClasses Total number of classes Int [0..1] Optional
in the Al training
dataset.

classificationSchema Classification schema CharacterString [0..1] Optional
for classes used in the
Al training dataset.

classes Classes used in the AI NamedValue [0..*] Optional
training dataset.

tasks Task description of the AI_Task [1..*] Mandatory
training dataset.

labeling Provenance Al Labeling [0..%] Optional
information of how the
training dataset is

labeled.

quality Quality information of DataQuality [0..*] Optional
the training dataset.

changesets Changeset between two AI_TDChangeset [0..*] Optional
versions of the training
dataset.

data Training data in the AI_AbstractTrainingDat Mandatory
training dataset. a[1.*]

Example:

{

“type": "AI_AbstractTrainingDataset",

"id": "whu_rs19",

"name": "WHU-RS19",

"description”: "Wuhan University-Remote Sensing 19 Categories (WHU-RS19) has 19
classes of remote sensing images scenes obtained from Google Earth",

"license": "CC BY-SA 4.0",

"amountOfTrainingData": 1013,

24

"createdTime": "2010-01-01",

"providers": ["Wuhan University"],

"keywords": ["Remote Sensing", "Scene (lassification"],
"numberOfClasses": 19,

"classes": [{"key":"Airport","value":null}, {"key":"Beach","value":null},

{“key":

{llkeyll

{llkeyll

"Bridge","value":null}, {"key":"Commercial","value":null},

:"Desert","value":null}, {"key":"Farmland","value":null},
{"key":
{"key":
{"key":
{"key":
{"key":
{"key":
:"Viaduct", "value":null}],

"footballField","value":null}, {"key":"Forest","value":null},
"Industrial”,"value":null}, {"key":"Meadow","value":null},
"Mountain","value":null}, {"key":"Park","value":null},
"Parking","value":null}, {"key":"Pond","value":null},

"Port","value":null}, {"key":"railwayStation","value":null},

"Residential","value":null}, {"key":"River", "value":null},

"tasks": [{"type": "AI_EOTask","id": "whu_rs19-task", "description": "Structural
high-resolution satellite image indexing", "taskType": "Scene Classification"}],

"data": [{"type": "AI_EOTrainingData", "id": "airport_01", "dataSources": [{"title":
"googleEarth"}], "dataURL": ["image/Airport/airport_01.jpg"], "labels": [{"type":
"AI_Scenelabel", "class": "Airport"}1}, -]

}

If the optional element AI_MetricsInLiterature is specified, this element is encoded as JSON object
with properties as shown in Table 3.

Requirement 12 /req/aitrainingdataset/metricsinliterature

Each AI_MetricsInLiterature value SHALL implement the Mandatory
properties shown in Table 3.

Table 3. AI_MetricsInLiterature properties

JSON Property Definition Data type and values Obligation

doi Digital object identifier CharacterString [1..1] Mandatory
of the peer-reviewed
literature.

algorithm AI/ML algorithms used CharacterString [0..1] Optional
in the peer-reviewed
literature.

metrics Metrics and results of NamedValue [1..%] Mandatory
AI/ML algorithms in the
peer-reviewed
literature.

Example:

{
"doi": "10.1109/TGRS.2019.2917161",

"algorithm": "FACNN",

25

"metrics": [{"key": "Overall Accuracy", "value": 0.9881}]
}

The AI_EOTrainingDataset object is encoded as a JSON object with properties shown in Table 2 and
Table 4.

Requirement 13 /req/aitrainingdataset/eotrainingdataset

Each AI_EOTrainingDataset object SHALL implement the Mandatory
properties both shown in Table 2 and Table 4.

Table 4. AI EOTrainingDataset properties

JSON Property Definition Data type and values Obligation

type Type of the training "Al_EOTrainingDataset” Mandatory
dataset.

extent Spatial extent of the EO EX_Extent [0..1] Optional

training dataset.

bands Bands description of MD_Band [0..*] Optional
the images used in the
EO training dataset.

imageSize Size of the images used ChracterString [0..1] Optional
in the EO training
dataset.
Example:
{

"type": "AI_EOTrainingDataset",
"id": "whu_rs19",
"name": "WHU-RS19",
"description”: "Wuhan University-Remote Sensing 19 Categories (WHU-RS19) has 19
classes of remote sensing images scenes obtained from Google Earth",
"license": "CC BY-SA 4.0",
"amountOfTrainingData": 1013,
"createdTime": "2010-01-01",
"providers": ["Wuhan University"],
"keywords": ["Remote Sensing", "Scene (lassification"],
"numberOfClasses": 19,
"extent": [-180, -90, 180, 90],
"bands": [
{"name": [{"code": "red"}]},
{"name": [{"code": "green"}]},
{"name": [{"code": "blue"}]}
P
"imageSize": "6000x7600",
"classes": [{"key":"Airport","value":null}, {"key":"Beach","value":null},

26

{"key":"Bridge","value":null}, {"key":"Commercial","value":null},
{"key":"Desert","value":null}, {"key":"Farmland","value":null},
{"key":"footballField","value":null}, {"key":"Forest","value":null},
{"key":"Industrial", "value":null}, {"key":"Meadow","value":null},
{"key":"Mountain","value":null}, {"key":"Park","value":null},

{"key":"Parking","value":null}, {"key":"Pond","value":null},
{"key":"Port","value":null}, {"key":"railwayStation","value":null},
{"key":"Residential","value":null}, {"key":"River","value":null},
{"key":"Viaduct","value":null}],

"tasks": [{"type": "AI_EOTask", "id": "whu_rs19-task", "description": "Structural
high-resolution satellite image indexing", "taskType": "Scene (Classification"}],

"data": [{"type": "AI_EOTrainingData", "id": "airport_01", "dataSources": [{"title":
"googleEarth"}], "dataURL": ["image/Airport/airport_01.jpg"], "labels": [{"type":
"AI_Scenelabel", "class": "Airport"}1}, -]

}

7.3. Requirements Class: AI_TrainingData

The AL TrainingData requirements class defines a JSON encoding for the AI TrainingData module,
which is based on the UML model specified in the TrainingDML-AI Part 1: Conceptual Model
Standard.

Requirements class

/req/aitrainingdata

Dependency JSON

Dependency /req/base/jsonbasetype
Dependency /req/base/isometadatatype
Dependency /req/ailabel

Dependency /req/ailabeling
Dependency /req/aidataquality

Requirement 14 /req/aitrainingdata/trainingdata
Requirement 15 /req/aitrainingdata/trainingtypecode

Requirement 16 /req/aitrainingdata/eotrainingdata
The AI_TrainingData object is encoded as a JSON object with properties shown in Table 5.
Requirement 14 /req/aitrainingdataset/trainingdata

Each Al _TrainingData object SHALL implement the Mandatory properties
shown in Table 5.

Table 5. AL TrainingData properties

27

JSON Property

type

id

datasetld

trainingType

numberOfLabels

dataSources

labels

labeling

quality

Example:

Definition

Type of the training
sample.

Identification of an
individual AT training
sample.

Identification of the
training dataset that
the training sample

belongs to.

Training type of the
individual AI training
sample.

Total number of labels
in the individual Al
training sample.

Citation of inputs to
prepare a training
sample.

Labels in the training
data.

Provenance
information of how the
training data is labeled.

Quality information of
the training data.

"type": "AI_AbstractTrainingData",

"id": "airport_01",
"dataSources": [{"title": "googleEarth"}],

Data type and values

Obligation

"Al_AbstractTrainingDa Mandatory

n

ta

CharacterString [1..1]

CharacterString [0..1]

AI_TrainingTypeCode

[0..1]

Int [0..1]

CI_Citation [0..*]

Al Label [1..%]

AI Labeling [0..*]

DataQuality [0..*]

"dataURL": ["image/Airport/airport_01.jpg"],
"labels": [{"type": "AI_Scenelabel", "class": "Airport"}]

Mandatory

Optional

Optional

Optional

Optional

Mandatory

Optional

Optional

The AI_TrainingTypeCode is encoded as a text string whose value is one of "training", "

"test” or "retraining".

28

validation",

Requirement 15 /req/aitrainingdataset/trainingtypecode

Each AI_TrainingTypeCode value SHALL be a text string whose value is one of

non

"training", "validation", "test" or "retraining".

Examples:

a) "training"
b) "validation"
c) "test"

d) "retraining"

The AI_EOTrainingData object is encoded as a JSON object with properties both shown in Table 5
and Table 6.

Requirement 16 /req/aitrainingdataset/eotrainingdata

Each AI_EOTrainingData object SHALL implement the Mandatory properties
as defined in Table 5 and Table 6.

Table 6. AI_EOTrainingData properties

JSON Property Definition Data type and values Obligation

type Type of the EO training "AI_EOTrainingData" Mandatory
data.

extent Spatial extent of the EX Extent [0..1] Optional
individual EO training
sample.

dataTime Date time when the EO DateTime [0..*] Optional
data was obtained.

dataURL URL of the EO data, URL [1..*] Mandatory
including both relative
and absolute paths,

which can encompass
local paths, network
addresses, and more.

Example:

"type": "AI_EOTrainingData",
"id": "airport_01",
"dataSources": [{"title": "googleEarth"}],
"extent": {
"geographicElement": [{
"westBoundLongitude": -171.76409,

29

"eastBoundLongitude": -171.56578,
"southBoundLatitude": -14.42443,
"northBoundLatitude": -14.32568
H

H

"dataTime": ["2002-05-30T09:30:10Z7"],

"dataURL": ["image/Airport/airport_01.jpg"],

"labels": [{"type": "AI_Scenelabel", "class": "Airport"}]

7.4. Requirements Class: AI_Task

The AI_Task requirements class defines a JSON encoding for the AI_Task module, which is based on
the UML model specified in the TrainingDML-AI Part 1: Conceptual Model Standard.

Requirements class

/req/aitask
Dependency JSON
Dependency /req/base/jsonbasetype

Requirement 17 /req/aitask/task

Requirement 18 /req/aitask/eotask
The AI_Task object is encoded as a JSON object with properties as shown in Table 7.

Requirement 17 /req/aitask/task

Each AI Task object SHALL implement the Mandatory properties shown in
Table 7.

Table 7. AL Task properties

JSON Property Definition Data type and values Obligation

type Type of the task object. "AI_AbstractTask" Mandatory

id Identification of the CharacterString [1..1] Mandatory
task.

datasetld Identification of the CharacterString [0..1] Optional

training dataset the
training sample
belongs to.

description Description of the Al CharacterString [0..1] Optional
task.

Example:

30

{
"type": "AI_AbstractTask",
"id": "image-indexing-task",
"description”: "Structural high-resolution satellite image indexing"

}

The AI_EOTask object is encoded as a JSON object with properties both shown in Table 7 and Table
8.

Requirement 18 /req/aitask/eotask

Each AI_EOTask object SHALL implement the Mandatory properties shown in
Table 7 and Table 8.

Table 8. AL EOTask properties

JSON Property Definition Data type and values Obligation
type Type of the task object. "AI_EOTask" Mandatory
taskType Type of the EO task. CharacterString [1..1] Mandatory
Example:

{

"type": "AI_EOTask",

"id": "image-indexing-task",

"description": "Structural high-resolution satellite image indexing",
"taskType": "Scene (Classification"

7.5. Requirements Class: Al Label

The AI_Label requirements class defines a JSON encoding for the AI_Label module, which is based
on the UML model specified in the TrainingDML-AI Part 1: Conceptual Model Standard.

Requirements class

/req/ailabel

Dependency JSON

Dependency /req/base/jsonbasetype
Dependency /req/base/geospatialtype

Requirement 19 /req/ailabel/label
Requirement 20 /req/ailabel/scenelabel

Requirement 21 /req/ailabel/objectlabel

31

Requirements class
Requirement 22 /req/ailabel/pixellabel

Requirement 23 /reqg/ailabel/imageformatcode
The AI_Label object is encoded as a JSON object with properties as shown in Table 9.

Requirement 19 /req/ailabel/label

Each AI_Label object SHALL implement the Mandatory properties shown in
Table 9.

Table 9. AL Label properties

JSON Property Definition Data type and values Obligation
type Type of the label object. "AI_AbstractLabel" Mandatory
isNegative Whether the training Bool [0..1] Optional
sample related to the
label is a positive or Default: false

negative sample.

confidence Confidence score of the Float [0..1] Optional
labeler.

Default: 1.0

Range: [0, 1]

Example:
{
"type": "AI_AbstractlLabel”,

"isNegative": false,
"confidence": 1.0

The AI_SceneLabel object is encoded as a JSON object with properties as shown in Table 10.

Requirement 20 /req/ailabel/scenelabel

Each AI_SceneLabel object SHALL implement the properties shown in Table
10.

Table 10. AI_SceneLabel properties

JSON Property Definition Data type and values Obligation

type Type of the label object "AI_SceneLabel" Mandatory
at the scene level.

32

JSON Property Definition Data type and values Obligation

class Class that records the CharacterString [1..1] Mandatory
semantic of the scene
of the training sample.

Example:

{
"type": "AI_Scenelabel",
"class": "Airport"

}

The AI_ObjectLabel object is encoded as a JSON object with properties shown in Table 11.
Requirement 21 /req/ailabel/objectlabel

Each AI_ObjectLabel object SHALL implement the Mandatory properties
shown in Table 11.

Table 11. AL _ObjectLabel properties

JSON Property Definition Data type and values Obligation

type Type of the label object "AI_ObjectLabel" Mandatory
at the object level.

object Feature that represents Feature [1..1] Mandatory
the position and
attributes of the object.

bboxType Type of the bbox. CharacterString [0..1] Optional

class Class that records the CharacterString [1..1] Mandatory
semantic of the object
type.

dateTime Created time of the DateTime [0..1] Optional
object label.

Example:

{

"type": "AI_ObjectlLabel",

"class": "Truck",

"object": {"type": "Feature", "properties": {"truncated": 0.0, "occluded": 0,
"alpha": -1.57}, "geometry": {"type": "Polygon", "coordinates": [[[2257.0, 332.0],
[2271.0, 332.0], [2271.0, 350.0], [2257.0, 350.0], [2257.0, 332.0]]11}},

"bboxType": "Horizontal BBox"

b

The AI_PixelLabel object is encoded as a JSON object with properties as shown in Table 12.

Requirement 22 /req/ailabel/pixellabel

Each AI_PixelLabel object shall implement the Mandatory properties shown in
Table 12.

Table 12. AI_PixelLabel properties

JSON Property Definition Data type and values Obligation

type Type of the label object "AI_PixelLabel" Mandatory
at the pixel level.

imageURL URL of the images URL [1..%] Mandatory
representing the label
information.

imageFormat Image data format. Al _ImageFormatCode Mandatory

[1..%]
Example:
{

"type": "AI_Pixellabel",
"imageURL": ["/1label_5classes/GF2_PMS1__L1A0000647767-MSS1_label.tif"],
"imageFormat": ["image/tiff; application=geotiff"]

}

The AI_ImageFormatCode is encoded as a text string whose value is defined in Multipurpose
Internet Mail Extensions (MIME) Part Two: Media Types RFC 2046.

Requirement 23 /req/ailabel/imageformatcode
Each AI_ImageFormatCode value SHALL be encoded as a text string defined in
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types RFC

2046.

Examples:

a) "image/tiff; application=geotiff"
b) "application/x-netcdf"

c) "image/png"

d) "image/jp2"

7.6. Requirements Class: AI_Labeling

The AI_Labeling requirements class defines a JSON encoding for the AI_Labeling module, which is

34

https://www.ietf.org/rfc/rfc2046.txt
https://www.ietf.org/rfc/rfc2046.txt
https://www.ietf.org/rfc/rfc2046.txt

based on the UML model specified in the TrainingDML-AI Part 1: Conceptual Model Standard.

Requirements class

/req/ailabeling

Dependency JSON

Dependency /req/base/jsonbasetype
Dependency /req/base/isometadatatype

Requirement 24 /req/ailabeling/labeling
Requirement 25 /req/ailabeling/labeler
Requirement 26 ~ /req/ailabeling/labelingprocedure

Requirement 27 /req/ailabeling/labelingmethodcode
The AI_Labeling object is encoded as a JSON object with properties shown in Table 13.
Requirement 24 /req/ailabeling/labeling

Each AI_Labeling object SHALL implement the Mandatory properties shown
in Table 13.

Table 13. AI_Labeling properties

JSON Property Definition Data type and values Obligation
type Type of the labeling "Al_Labeling" Mandatory
object.
id Identifier of the CharacterString [1..1] Mandatory
labeling.
scope Description of the MD_Scope [1..1] Mandatory
scope of the labeling.
labelers Labelers of the labeling AI Labeler [0..*] Optional
activity.
procedure Procedure used in the AI_LabelingProcedure Optional
labeling activity. [0..1]
Example:
{
"type": "AI_Labeling",
llidll: "0",
"scope": {

"level": "dataset",
"levelDescription”: [{
"dataset": "whu_rs19"
H
H

35

"labelers": [{..}],
"procedure": {..}

}

The AI_Labeler object is encoded as a JSON object with properties as shown in Table 14.

Requirement 25 /req/ailabeling/labeler

Each AI_Labeler object SHALL implement the Mandatory properties shown in
Table 14.

Table 14. AI Labeler properties

JSON Property Definition Data type and values Obligation
type Type of the labeler "Al_Labeler” Mandatory
object.
id Identifier of the labeler. CharacterString [1..1] Mandatory
name Name of the labeler. CharacterString [1..1] Mandatory
Example:
{

"type": "AI_Labeler",

Ilidll: "0"’

“name": "Tom"

An AI_LabelingProcedure object is encoded as a JSON object with properties as shown in Table 15.

Requirement 26 /req/ailabeling/labelingprocedure

Each AI_LabelingProcedure object SHALL implement the Mandatory
properties shown in Table 15.

Table 15. AI_LabelingProcedure properties

JSON Property Definition Data type and values Obligation

type Type of the labeling "Al_LabelingProcedure” Mandatory
procedure object.

id Identifier of the CharacterString [1..1] Mandatory
labeling procedure.

methods Methods used in the AI LabelingMethodCod Mandatory
labeling procedure. e [1..*%]

36

JSON Property Definition Data type and values Obligation

tools Tools or software used CharacterString [0..¥] Optional
in the labeling
procedure.
Example:
{
“type": "AI_LabelingProcedure",
Il_idll: II@"’

"methods": ["manual"],
"tools": ["ArcGIS"]

The AI_LabelingMethodCode is encoded as a text string whose value is one of "manual”, "semi-

non

automatic", "automatic" or "unknown".
Requirement 27 /req/ailabeling/labelingmethodcode

Each AI LabelingMethodCode value SHALL be a text string whose value is one

non non

of "manual", "semi-automatic”, "automatic" or "unknown".

Examples:

a) "manual"

b) "semi-automatic"
c) "automatic"

d) "unknown"

7.7. Requirements Class: AI_DataQuality

The AI_DataQuality requirements class defines a JSON encoding for the AI_Labeling module, which
is based on the UML model specified in the TrainingDML-AI Part 1: Conceptual Model Standard.

Requirements class

/req/aidataquality

Dependency JSON

Dependency /req/base/jsonbasetype
Dependency /reqg/base/isometadatatype
Dependency [req/base/isoqualitytype

Requirement 28 /req/aidataquality/classbalancedegree

The AI_ClassBalanceDegree object is encoded as a JSON object with properties as shown in Table 16.

37

Requirement 28 /req/aidataquality/classbalancedegree

Each AI_ClassBalanceDegree object SHALL implement the Mandatory
properties as shown in Table 16.

Table 16. AL ClassBalanceDegree properties

JSON Property Definition Data type and values Obligation

type Type of the class "Al_ClassBalanceDegre Mandatory
balance degree object. e"

measure Reference to measure = MeasureReference Mandatory
used. [1..1]

evaluationMethod Evaluation EvaluationMethod Mandatory
information. [1..1]

result Value obtained from QualityResult [1..*] Mandatory
applying a data quality
measure.

Example:

{

"type": "AI_ClassBalanceDegree",
"measure": {
"measureDescription”: "Balance degree of label classes"
¥
"evaluationMethod": {
"evaluationMethodDescription": "Counting the number of training samples belonging
to each class and calculating the balance degree"

H
"result": [
{
"quantitativeResult": {
"value": [
93.5
1,
"valueUnit": "%"
}
}
]

7.8. Requirements Class: AI TDChangeset

The AI_TDChangeset requirements class defines a JSON encoding for the AI_TDChangeset module,
which is based on the UML model specified in the TrainingDML-AI Part 1: Conceptual Model
Standard.

38

Requirements class

/req/aitdchangeset
Dependency JSON
Dependency /req/base/jsonbasetype

Dependency

Requirement 29

/req/tdtrainingdata

/req/aitdchangeset/tdchangeset

The AI_TDChangeset object is encoded as a JSON object with properties shown in Table 17.

Requirement 29

/req/aitdchangeset/tdchangeset

Each AI_TDChangeset object SHALL implement the Mandatory properties as
shown in Table 17.

Table 17. AL TDChangeset properties

JSON Property

type

id

datasetld

version

changeCount

createdTime

add

modify

delete

Example:

{
lltypell :

Definition

Type of the TD
changeset object.

Identifier of the
changeset.

Identifier of the
training dataset the
changeset belongs to.

Version of the training
dataset that the
changeset belongs to.

Total number of
changed training
samples.

The time that the

changeset was created.

Added training
samples.

Modified training
samples.

Deleted training
samples.

"AI_TDChangeset",

Data type and values

"Al_TDChangeset"

CharacterString [1..1]

CharacterString [0..1]

CharacterString [0..1]

Int [1..1]

DateTime [0..1]

Obligation

Mandatory

Mandatory

Optional

Optional

Mandatory

Optional

AI_AbstractTrainingDat Optional

a[0..*]

AI_AbstractTrainingDat Optional

a [0..¥]

AI_AbstractTrainingDat Optional

a[0..*]

39

40

"id": "changeset-dota_v1.5",

"datasetId": "dota v1.5",

"createdTime": "2019-01-01",

"changeCount": 9,

"modify": [{"type": "AI_EOTrainingData", "id": "P1228", "dataSources": [{"title":
"GF"}], "dataURL": ["train/images/P1228.png"], "numberOflLabels": 5@, "trainingType":
"training", "labels": [{"type": "AI_ObjectlLabel", "class": "ship", "object": {"type":
"Feature", "properties": {}, "geometry": {"type": "Polygon", "coordinates": [[[2306.0,
729.01, [2330.0, 729.0], [2330.0, 744.0], [2306.0, 744.0],

[2306.0,729.0]111}}, "bboxType": "Horizontal BBox"}, :-1}]
}

Annex A: Abstract Test Suite (Normative)

A.1. Introduction

Conformance is tested using the JSON Schema document which formalize the requirements

described above.

A.2. Conformance Class: Base

The Base conformance class tests that occurrences of the basic types are encoded according to the

requirements.

A.2.1. Conformance Class: JSON Base Type

Conformance Class

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/base/jsonbasetype

Requirements class

Abstract Test 1
Test ID
Requirement
Test purpose

Test method

Abstract Test 2
Test ID
Requirement

Test purpose

Test method

Abstract Test 3
Test ID
Requirement

Test purpose

/req/base/jsonbasetype

/conf/base/jsonbasetype/json
/req/base/jsonbasetype/json
Verify that the document is well-formed JSON.

Load the document in a JSON validator. Pass if no errors reported. Fail
otherwise.

/conf/base/jsonbasetype/datetime
[req/base/jsonbasetype/datetime

Verify that JSON instance documents claiming conformance to this
specification contain valid DateTime values according to Date and Time on the
Internet: Timestamps RFC 3339 Section 5.6.

Inspect the instance document to verify the above requirement.

/conf/base/jsonbasetype/namedvalue
/req/base/jsonbasetype/namedvalue

Verify that JSON instance documents claiming conformance to this
specification validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/namedValue.json.

41

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/base/jsonbasetype
https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
http://schemas.opengis.net/trainingdml-ai/part2/1.0/namedValue.json

Test method

Abstract Test 4
Test ID
Requirement

Test purpose

Test method

Validate the instance document against the namedValue.json schema to verify
the above requirement. The process may be using an appropriate software
tool for validation or be a manual process that checks all definitions from the
JSON schema specification.

/conf/base/jsonbasetype/url
/reg/base/jsonbasetype/url

Verify that JSON instance documents claiming conformance to this
specification contain valid URL values according to Uniform Resource
Identifier (URI): Generic Syntax RFC 3986 Section 4.1. A URL value can be
absolute or relative and may have an optional fragment identifier.

Inspect the instance document to verify the above requirement.

A.2.2. Conformance Class: ISO Metadata Type

Conformance Class

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/base/isometadatatype

Requirements class

Abstract Test 5
Test ID
Requirement

Test purpose

Test method

Abstract Test 6
Test ID
Requirement

Test purpose

Test method

42

/req/base/isometadatatype

/conf/base/isometadatatype/band
/req/base/isometadatatype/band

Verify that instance documents using the MD_Band JSON objects validate
against the JSON schema specified in http://schemas.opengis.net/trainingdml-
ai/part2/1.0/md_band.json.

Validate the instance document against the md_band.json schema to verify the
above requirement. The process may be using an appropriate software tool for
validation or be a manual process that checks all definitions from the JSON
schema specification.

/conf/base/isometadatatype/extent
/req/base/isometadatatype/extent

Verify that instance documents using the EX_Extent JSON objects validate
against the JSON schema specified in http://schemas.opengis.net/trainingdml-
ai/part2/1.0/ex_extent.json.

Validate the instance document against the ex_extent.json schema to verify the
above requirement. The process may be using an appropriate software tool for
validation or be a manual process that checks all definitions from the JSON
schema specification.

https://datatracker.ietf.org/doc/html/rfc3986#section-4.1
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/base/isometadatatype
http://schemas.opengis.net/trainingdml-ai/part2/1.0/md_band.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/md_band.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ex_extent.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ex_extent.json

Abstract Test 7

Test ID /conf/base/isometadatatype/citation
Requirement /reg/base/isometadatatype/citation
Test purpose Verify that instance documents using the CI_Citation JSON objects validate

against the JSON schema specified in http://schemas.opengis.net/trainingdml-
ai/part2/1.0/ci_citation.json.

Test method Validate the instance document against the ci_citation.json schema to verify
the above requirement. The process may be using an appropriate software
tool for validation or be a manual process that checks all definitions from the
JSON schema specification.

Abstract Test 8

Test ID /conf/base/isometadatatype/scope

Requirement /req/base/isometadatatype/scope

Test purpose Verify that instance documents using the MD_Scope JSON objects validate
against the JSON schema specified in http://schemas.opengis.net/trainingdml-
ai/part2/1.0/md_scope.json.

Test method Validate the instance document against the md_scope.json schema to verify

the above requirement. The process may be using an appropriate software
tool for validation or be a manual process that checks all definitions from the
JSON schema specification.

A.2.3. Conformance Class: ISO Quality Type

Conformance Class

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/base/isoqualitytype

Requirements class /req/base/isoqualitytype

Abstract Test 9

Test ID /conf/base/isoqualitytype/element

Requirement [req/base/isoqualitytype/element

Test purpose Verify that instance documents using the QualityElement JSON objects validate

against the JSON schema specified in http://schemas.opengis.net/trainingdml-
ai/part2/1.0/qualityElement.json.

Test method Validate the instance document against the qualityElement.json schema to
verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

43

http://schemas.opengis.net/trainingdml-ai/part2/1.0/ci_citation.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ci_citation.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/md_scope.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/md_scope.json
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/base/isoqualitytype
http://schemas.opengis.net/trainingdml-ai/part2/1.0/qualityElement.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/qualityElement.json

A.2.4. Conformance Class: Geospatial Type

Conformance Class

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/base/geospatialtype

Requirements class

Abstract Test 10
Test ID
Requirement

Test purpose

Test method

/req/base/geospatialtype

/conf/base/geospatialtype/feature
[req/base/geospatialtype/feature

Verify that instance documents using the Feature JSON objects validate against
the JSON schema specified in https://geojson.org/schema/Feature.json.

Validate the instance document against the feature.json schema to verify the
above requirement. The process may be using an appropriate software tool for
validation or be a manual process that checks all definitions from the [SON
schema specification.

A.3. Conformance Class: AI_TrainingDataset

The Al _TrainingDataset conformance class tests that the training dataset object is encoded
according to the requirements.

Conformance Class
http://www.opengis
Requirements class
Dependency
Dependency
Dependency
Dependency
Dependency
Dependency
Dependency

Abstract Test 11
Test ID
Requirement

Test purpose

44

.net/spec/TrainingDML-AI-2/1.0/conf/aitrainingdataset

/req/aitrainingdataset
/conf/base/jsonbasetype
/conf/base/isometadatatype
/conf/aitrainingdata
/conf/aitask
/conf/ailabeling
/conf/aidataquality

/conf/aitdchangeset

/conf/aitrainingdataset/trainingdataset
/req/aitrainingdataset/trainingdataset

Verify that instance documents using the AI_TrainingDataset JSON objects
listed in Table 2 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_trainingDataset.json.

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/base/geospatialtype
https://geojson.org/schema/Feature.json
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/aitrainingdataset
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_trainingDataset.json

Test method

Abstract Test 12
Test ID
Requirement

Test purpose

Test method

Abstract Test 13
Test ID
Requirement

Test purpose

Test method

Validate the instance document against the ai_trainingDataset.json schema to
verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

/conf/aitrainingdataset/metricsinliterature
/reqg/aitrainingdataset/metricsinliterature

Verify that instance documents using the AI_MetricsInLiterature JSON objects
listed in Table 3 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/
ai_metricsInLiterature.json.

Validate the instance document against the ai_metricsInLiterature.json
schema to verify the above requirement. The process may be using an
appropriate software tool for validation or be a manual process that checks all
definitions from the JSON schema specification.

/conf/aitrainingdataset/eotrainingdataset
/req/aitrainingdataset/eotrainingdataset

Verify that instance documents using the AI_EOTrainingDataset JSON objects
listed in Table 2 and Table 4 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_eoTrainingDataset.json.

Validate the instance document against the ai_eoTrainingDataset.json schema
to verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

A.4. Conformance Class: AI_TrainingData

The AI_TrainingData conformance class tests that the training data objects are encoded according

to the requirements.

Conformance Class
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/aitrainingdata

Requirements class /req/aitrainingdata

Dependency /conf/base/jsonbasetype
Dependency /conf/base/isometadatatype
Dependency /conf/ailabel

Dependency /conf/ailabeling
Dependency /conf/aidataquality

45

http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_metricsInLiterature.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_metricsInLiterature.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_eoTrainingDataset.json
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/aitrainingdata

Abstract Test 14
Test ID
Requirement

Test purpose

Test method

Abstract Test 15
Test ID
Requirement

Test purpose

Test method

Abstract Test 16
Test ID
Requirement

Test purpose

Test method

/conf/aitrainingdata/trainingdata
/reqg/aitrainingdata/trainingdata

Verify that instance documents using the AIl_TrainingData JSON objects listed
in Table 5 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_trainingData.json.

Validate the instance document against the ai_trainingData.json schema to
verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

/conf/aitrainingdata/trainingtypecode
/req/aitrainingdata/trainingtypecode

Verify that instance documents using the AI_TrainingTypeCode JSON objects
validate against the JSON schema specified in http://schemas.opengis.net/
trainingdml-ai/part2/1.0/ai_trainingTypeCode.json.

Validate the instance document against the ai_trainingTypeCode.json schema
to verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

/conf/aitrainingdata/eotrainingdata
/reqg/aitrainingdata/eotrainingdata

Verify that instance documents using the AI_EOTrainingData JSON objects
listed in Table 5 and Table 6 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_eoTrainingData.json.

Validate the instance document against the ai_eoTrainingData.json schema to
verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

A.5. Conformance Class: AI Task

The AI_Task conformance class tests that the task objects are encoded according to the

requirements.

Conformance Class

http://www.opengis.net/spec/TrainingDMIL-AI-2/1.0/conf/aitask

Requirements class

46

/reqg/aitask

http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_trainingData.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_trainingTypeCode.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_trainingTypeCode.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_eoTrainingData.json
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/aitask

Dependency

Abstract Test 17
Test ID
Requirement

Test purpose

Test method

Abstract Test 18
Test ID
Requirement

Test purpose

Test method

/conf/base/jsonbasetype

/conf/aitask/task
/req/aitask/task

Verify that instance documents using the AI_Task JSON objects listed in Table 7
validate against the JSON schema specified in http://schemas.opengis.net/
trainingdml-ai/part2/1.0/ai_task.json.

Validate the instance document against the ai_task.json schema to verify the
above requirement. The process may be using an appropriate software tool for
validation or be a manual process that checks all definitions from the JSON
schema specification.

/conf/aitask/eotask
[req/aitask/eotask

Verify that instance documents using the AI_EOTask JSON objects listed in
Table 7 and Table 8 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_eoTask.json.

Validate the instance document against the ai_eoTask.json schema to verify the
above requirement. The process may be using an appropriate software tool for
validation or be a manual process that checks all definitions from the [SON
schema specification.

A.6. Conformance Class: AI Label

The AI_Label conformance class tests that the label objects are encoded according to the

requirements.

Conformance Class

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/ailabel

Requirements class

Dependency
Dependency

Abstract Test 19
Test ID
Requirement

Test purpose

/req/ailabel
/conf/base/jsonbasetype

/conf/base/geospatialtype

/conf/ailabel/label
/reqg/ailabel/label

Verify that instance documents using the AI_Label JSON objects listed in Table
9 validate against the JSON schema specified in http://schemas.opengis.net/
trainingdml-ai/part2/1.0/ai_label.json.

47

http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_task.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_task.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_eoTask.json
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/ailabel
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_label.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_label.json

Test method

Abstract Test 20
Test ID
Requirement

Test purpose

Test method

Abstract Test 21
Test ID
Requirement

Test purpose

Test method

Abstract Test 22
Test ID
Requirement

Test purpose

Test method

Abstract Test 23
Test ID

Requirement

48

Validate the instance document against the ai_label.json schema to verify the
above requirement. The process may be using an appropriate software tool for
validation or be a manual process that checks all definitions from the JSON
schema specification.

/conf/ailabel/scenelabel
/reqg/ailabel/scenelabel

Verify that instance documents using the AI_SceneLabel JSON objects listed in
Table 10 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_sceneLabel.json.

Validate the instance document against the ai_sceneLabel.json schema to
verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

/conf/ailabel/objectlabel
/req/ailabel/objectlabel

Verify that instance documents using the AI_ObjectLabel JSON objects listed in
Table 11 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_objectLabel.json.

Validate the instance document against the ai_objectLabel.json schema to
verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

/conf/ailabel/pixellabel
/reqg/ailabel/pixellabel

Verify that instance documents using the AI_PixelLabel JSON objects listed in
Table 12 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_pixelLabel.json.

Validate the instance document against the ai_pixelLabel.json schema to verify
the above requirement. The process may be using an appropriate software
tool for validation or be a manual process that checks all definitions from the
JSON schema specification.

/conf/ailabel/imageformatcode

[/req/ailabel/imageformatcode

http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_sceneLabel.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_objectLabel.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_pixelLabel.json

Test purpose

Test method

Verify that instance documents using the AI_ImageFormatCode JSON objects
conform to the requirements specified by the Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types RFC 2046.

Inspect the instance document to verify the above requirement.

A.7. Conformance Class: AI_Labeling

The AI_Labeling conformance class tests that the labeling objects are encoded according to the

requirements.

Conformance Class

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/ailabeling

Requirements class

Dependency
Dependency

Abstract Test 24
Test ID
Requirement

Test purpose

Test method

Abstract Test 25
Test ID
Requirement

Test purpose

Test method

Abstract Test 26
Test ID

Requirement

/req/ailabeling
/conf/base/jsonbasetype

/conf/base/isometadatatype

/conf/ailabeling/labeling
/req/ailabeling/labeling

Verify that instance documents using the AI_Labeling JSON objects listed in
Table 13 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_labeling.json.

Validate the instance document against the ai_labeling.json schema to verify
the above requirement. The process may be using an appropriate software
tool for validation or be a manual process that checks all definitions from the
JSON schema specification.

/conf/ailabeling/labeler
/req/ailabeling/labeler

Verify that instance documents using the AI_Labeler JSON objects listed in
Table 14 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_labeler.json.

Validate the instance document against the ai_labeler.json schema to verify the
above requirement. The process may be using an appropriate software tool for
validation or be a manual process that checks all definitions from the JSON
schema specification.

/conf/ailabeling/labelingprocedure

[req/ailabeling/labelingprocedure

49

https://www.ietf.org/rfc/rfc2046.txt
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/ailabeling
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_labeling.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_labeler.json

Test purpose

Test method

Abstract Test 27
Test ID
Requirement

Test purpose

Test method

Verify that instance documents using the AI_LabelingProcedure JSON objects
listed in Table 15 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_labelingProcedure.json.

Validate the instance document against the ai_labelingProcedure.json schema
to verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

/conf/ailabeling/labelingmethodcode
[/req/ailabeling/labelingmethodcode

Verify that instance documents using the Al_LabelingMethodCode JSON
objects validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/
ai_labelingMethodCode.json.

Validate the instance document against the ai_LabelingMethodCode.json
schema to verify the above requirement. The process may be using an
appropriate software tool for validation or be a manual process that checks all
definitions from the JSON schema specification.

A.8. Conformance Class: AI_DataQuality

The AI_DataQuality
the requirements.

Conformance Class
http://www.opengis
Requirements class
Dependency
Dependency
Dependency

Abstract Test 28
Test ID
Requirement

Test purpose

50

conformance class tests that the data quality objects are encoded according to

.net/spec/TrainingDML-AI-2/1.0/conf/aidataquality

/req/aidataquality
/conf/base/jsonbasetype
/conf/base/isometadatatype

/conf/base/isoqualitytype

/conf/aidataquality/classbalancedegree
/req/aidataquality/classbalancedegree

Verify that instance documents using the AI_ClassBalanceDegree JSON objects
listed in Table 16 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/
ai_classBalanceDegree.json.

http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_labelingProcedure.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_labelingMethodCode.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_labelingMethodCode.json
http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/aidataquality
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_classBalanceDegree.json
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_classBalanceDegree.json

Test method Validate the instance document against the ai_classBalanceDegree.json schema
to verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

A.9. Conformance Class: AI_TDChangeset

The AI_TDChangeset conformance class tests that the TD changeset objects are encoded according
to the requirements.

Conformance Class

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/aitdchangeset

Requirements class /req/aitdchangeset

Dependency /conf/base/jsonbasetype

Dependency /conf/aitrainingdata

Abstract Test 29

Test ID /conf/aitdchangeset/tdchangeset

Requirement /req/aitdchangeset/tdchangeset

Test purpose Verify that instance documents using the AI_TDChangeset JSON objects listed

in Table 17 validate against the JSON schema specified in
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_tdChangeset.json.

Test method Validate the instance document against the ai_tdChangeset.json schema to
verify the above requirement. The process may be using an appropriate
software tool for validation or be a manual process that checks all definitions
from the JSON schema specification.

31

http://www.opengis.net/spec/TrainingDML-AI-2/1.0/conf/aitdchangeset
http://schemas.opengis.net/trainingdml-ai/part2/1.0/ai_tdChangeset.json

Annex B: Example (Informative)

B.1. TrainingDataset Encoding Examples

B.1.1. WHU-RS19 Dataset

The WHU-RS19 dataset is widely used in scene classification of remote sensing images. This dataset
is collected from Google Earth and has 19 classes including airport, beach, bridge, commercial,
desert, farmland, football field, forest, industrial, meadow, mountain, park, parking, pond, port,
railway station, residential, river, and viaduct. Each class contains around 50 images, with an image
size of 600x600 and a resolution of 0.5 m.

An example of JSON encoding of the WHU-RS19 dataset following the TrainingDML-AI UML model
can be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/
examples/1.0/WHU-RS19.json.

B.1.2. DOTA-v1.5 Dataset

The DOTA-v1.5 dataset is a large-scale dataset for object detection in aerial images. The sources for
content in the dataset include Google Earth, Gaofen-2, and Jilin-1 imagery provided by China
Resources Satellite Data Center. The 16 classes in DOTA-v1.5 are plane, ship, storage tank, baseball
diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small
vehicle, helicopter, roundabout, soccer ball field, swimming pool, and container crane. Compared
with other aerial image object detection datasets, the dataset has the largest number of classes. The
images in the dataset have various image sizes (from 800x800 to 2000x2000) and resolutions
(Google Earth/0.1 m-1 m, Gaofen-2/1 m, Jilin-1/0.72 m).

An example of JSON encoding of the DOTA-v1.5 dataset following the TrainingDML-AI UML model
can be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/
examples/1.0/DOTA-v1.5.json.

B.1.3. KITTI 2D Object Detection Dataset

The KITTI 2D object detection dataset is a novel open-access dataset and benchmark for road area
and ego-lane detection. KITTI 2D consists of 7481 annotated training images of high variability from
the KITTI autonomous driving platform by two PointGrey Flea2 color cameras, capturing a broad
spectrum of urban street views and road scenes. The eight (8) classes in the KITTI 2D object
detection dataset are car, van, truck, pedestrian, person_sitting, cyclist, tram, and misc. Compared
with other street view object detection datasets, this dataset compresses diverse scenarios and
captures real-world traffic situations, ranging from freeways over rural areas to inner-city scenes
with many static and dynamic objects.

An example of JSON encoding of the KITTI 2D object detection dataset following the TrainingDML-
AI UML model can be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/
use-cases/examples/1.0/KITTLjson.

32

https://captain-whu.github.io/BED4RS/
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/WHU-RS19.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/WHU-RS19.json
https://captain-whu.github.io/DOTA/
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/DOTA-v1.5.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/DOTA-v1.5.json
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/KITTI.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/KITTI.json

B.1.4. GID Dataset

The GID dataset is one of state-of-art land cover classification datasets. This dataset has a large
spatial coverage covering many provinces in China with a relatively high spatial resolution (2 m).
GID has two sets. One is the GID-5C. It has 150 images (image size 7200x6800) that are classified into
5 land cover classes. The other set is GID-15C. The images from GID-5C are sliced into 30,000 patches
in GID-15C, which have three types of patch sizes (56x56, 112x112, 224x224) and are classified into
15 land cover classes.

An example of JSON encoding of the GID-5C dataset following the TrainingDML-AI UML model can
be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/
1.0/GID-5C.json.

B.1.5. Toronto3D Dataset

The Toronto3D dataset is a large urban outdoor point cloud dataset for segmentation collected by
the Mobile Laser Scanning System. The dataset covers about 1 km of scene streets in Toronto,
including four areas named L001, L002, L003, and L004, with a total of 78.3 million points. Each
point in this dataset has 10 attributes representing the 3D position, RGB color, intensity, GPS time,
scan angle rank, and category, respectively. This dataset has eight categories, including road, road
mark, natural, building, utility line, pole, car, and fence.

An example of JSON encoding of the Toronto3D dataset following the TrainingDML-AI UML model
can be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/
examples/1.0/Toronto_3D.json.

B.1.6. WHU-Building Dataset

The WHU-Building dataset is a change detection dataset collected from the Land Information New
Zealand Data Service. The dataset is composed of images (with the resolution 0.2 m) in 2012 and
2016, covering 20.5 km2. It includes 12,796 and 16,077 buildings respectively in 2012 and 2016.

An example of JSON encoding of the WHU-Building dataset following the TrainingDML-AI UML
model can be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-
cases/examples/1.0/WHU-building.json.

B.1.7. California Change Detection Dataset

The California Change Detection Dataset is composed of two images and a label image. The first
image is a Landsat 8 acquisition covering Sacramento County, Yuba County and Sutter County,
California, on 5 January 2017. It has nine channels covering the spectrum from deep blue to short-
wave infrared, plus two long-wave infrared channels. The second image was acquired on 18
February 2017 by Sentinel-1A over the same area after the occurrence of a flood. The image is
recorded in polarizations VV and VH and augmented with the ratio between the two intensities as a
third channel. All these channels are log-transformed.

An example of JSON encoding of the California change detection dataset following the
TrainingDML-AI UML model can be found in https://github.com/opengeospatial/TrainingDML-
AI_SWG/tree/main/use-cases/examples/1.0/UiT_HCD_California_2017.json.

33

https://x-ytong.github.io/project/GID.html
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/GID-5C.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/GID-5C.json
https://github.com/WeikaiTan/Toronto-3D
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/Toronto_3D.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/Toronto_3D.json
http://gpcv.whu.edu.cn/data/building_dataset.html
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/WHU-building.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/WHU-building.json
https://arxiv.org/abs/1909.05948
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/UiT_HCD_California_2017.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/UiT_HCD_California_2017.json

B.1.8. WHU MVS Dataset

The WHU MVS dataset is a synthetic aerial dataset created for large-scale and high-resolution Earth
surface reconstruction. The basic training sample of the dataset is a multi-view unit consisting of
five aerial images, and their corresponding depth maps are taken as ground truth. There are a total
of 5680 pairs of five-view aerial images in the dataset. All the images are simulated from a 3D
surface model, which is produced by Smart3D software using Unmanned Aerial Vehicle (UAV)
images and refined by manual editing.

An example of JSON encoding of the WHU MVS dataset following the TrainingDML-AI UML model
can be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/
examples/1.0/WHU_MVS.json.

B.1.9.iSAID Dataset

The iSAID dataset is the first benchmark dataset for instance segmentation in aerial images. This
large-scale and densely annotated dataset contains 655,451 object instances for 15 categories across
2,806 high-resolution images. The images of iSAID is the same as the DOTA-v1.0 dataset, which are
mainly collected from the Google Earth, some are taken by satellite JL-1, the others are taken by
satellite GF-2 of the China Centre for Resources Satellite Data and Application. The object categories
in iSAID include: plane, ship, storage tank, baseball diamond, tennis court, basketball court, ground
track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field and
swimming pool.

An example of JSON encoding of the iSAID dataset following the TrainingDML-AI UML model can be
found in https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/
1.0/iSAID.json.

B.2. DataQuality Encoding Example

B.2.1. WHU-RS19 Data Quality

An encoded data quality example of the WHU-RS19 datasets following the TrainingDML-AI UML
model can be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-
cases/examples/1.0/WHU-RS19-quality.json.

B.3. TDChangeset Encoding Example

B.3.1. DOTA-v1.5 Changeset

DOTA-v1.5 uses the same images as DOTA-v1.0, but the extremely small instances (less than 10
pixels) are also annotated. Moreover, a new category "container crane" is added. It contains 403,318
instances in total. The number of images and dataset splits are the same as DOTA-v1.0. This version
was released for the DOAI Challenge 2019 on Object Detection in Aerial Images in conjunction with
IEEE CVPR 2019.

An encoded changeset example between the DOTA-v1.0 and DOTA-v1.5 datasets following the
TrainingDML-AI UML model can be found in https://github.com/opengeospatial/TrainingDML-

54

http://gpcv.whu.edu.cn/data/WHU_MVS_Stereo_dataset.html
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/WHU_MVS.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/WHU_MVS.json
https://captain-whu.github.io/iSAID/
https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/1.0/iSAID.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/1.0/iSAID.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/WHU-RS19-quality.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/WHU-RS19-quality.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/DOTA-v1.5-changeset.json

AI_SWG/tree/main/use-cases/examples/1.0/DOTA-v1.5-changeset.json.

B.4. Non-EO Imagery TrainingDataset Encoding
Examples

B.4.1. ERAS Dataset

The ERAS dataset is derived from in-situ observational data (Copernicus product), and we limit its
usage scenario to the autoregression problem of time series data. Therefore, its label is the data
itself. Similar to unsupervised learning, the autoregression task for time series data does not
require additional labeled data. For this dataset, inheritance classes for AI_AbstractLabel are not
defined, although this class is required in the existing standard (please note that these test cases are
for future versions of the standard). In addition, additional attributes to support the complete
representation of dataset information were added.

An example of JSON encoding of the ERAS dataset following the TrainingDML-AI UML model can be
found in https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/
1.0/ERA5_hourly_data.json.

B.4.2. SCIERC Dataset

The SCIERC dataset is derived from textual data, and its labels are the classification of the text. This
dataset is a text classification problem, with the goal of information extraction and entity
recognition. For this textual dataset, the Abstract class is inherited and AI TextTrainingDataset,
Al TextTrainingData, AI_TextTask, and AI_EntityLabel respectively are defined. In addition,
additional attributes to support the complete representation of dataset information were added.

An example of JSON encoding of the SCIERC dataset following the TrainingDML-AI UML model can
be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/
examples/1.0/SCIERC.json.

B.4.3. nuScenes Dataset

The nuScenes dataset is a public large-scale dataset for autonomous driving developed by the team
at Motional (formerly nuTonomy). The full dataset includes approximately 1.4M camera images,
390k LIDAR sweeps, 1.4M RADAR sweeps and 1.4M object bounding boxes in 40k keyframes.
Although the training data may come from different domains, the 3D annotation boxes captured by
numerous sensors in the same keyframe are targeted at the same object and are unique. Based on
this, a 3D annotation box is used to organize each 3D object using AI_ObjectLabel. Since each
training data and each 3D object require many additional attributes to be fully described, many
additional attributes to provide a detailed description of the training dataset, training data, labels,
etc. were added.

An example of JSON encoding of the nuScenes dataset following the TrainingDML-AI UML model
can be found in https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/
examples/1.0/nuScenes.json.

55

https://github.com/opengeospatial/TrainingDML-AI_SWG/tree/main/use-cases/examples/1.0/DOTA-v1.5-changeset.json
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&text=ERA5
https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/1.0/ERA5_hourly_data.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/1.0/ERA5_hourly_data.json
https://nlp.cs.washington.edu/sciIE/
https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/1.0/SCIERC.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/1.0/SCIERC.json
https://www.nuscenes.org/nuscenes
https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/1.0/nuScenes.json
https://github.com/opengeospatial/TrainingDML-AI_SWG/blob/main/use-cases/examples/1.0/nuScenes.json

Annex C: Revision History (Informative)

Date

2023-07-28

2023-12-15

2024-02-26

2024-06-09

36

Release

0.1

0.2

0.3

0.4

Author

Peng Yue,
Ruixiang Liu,
Boyi
Shangguan

Peng Yue,
Ruixiang Liu,
Jim Antonisse
Peng Yue,
Ruixiang Liu,
Carl Reed

Peng Yue,
Ruixiang Liu

Paragraph
modified

All

Most

Most

Chapter 2, 4,
Annex A

Description

Draft for internal review.

Revisions based on comments from
Jim Antonisse.

Merge edits and comments from Carl
Reed.

Revisions after OAB review and public
comments.

Annex D: Bibliography

[1] Yue, P, ed., 2023. OGC Training Data Markup Language for Artificial Intelligence (TrainingDML-
AI) Partl: Conceptual Model Standard, OGC 23-008r3. Wayland, MA: Open Geospatial Consortium
Inc. https://docs.ogc.org/is/23-008r3/23-008r3.html

[2] Freed, N., 1996. RFC 2046. Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types. https://www.ietf.org/rfc/rfc2046.txt

[3] Klyne, G., 2002. RFC 3339. Date and Time on the Internet: Timestamps. http://www.ietf.org/rfc/
rfc3339.txt

[4] Berners-Lee, T., 2005. RFC 3986. Uniform Resource Identifier (URI): Generic Syntax.
http://www.ietf.org/rfc/rfc3986.txt

[5] Bray, T., ed., 2014. RFC 7159. The JavaScript Object Notation (JSON) Data Interchange Format.
http://www.ietf.org/rfc/rfc7159.txt

[6] Butler, H., ed., 2016. RFC 7946. The GeoJSON Format. http://www.ietf.org/rfc/rfc7946.txt

[7] 1ISO, 2019. ISO 19107: 2019. Geographic information — Spatial schema. https://www.iso.org/
standard/66175.html

[8] ISO, 2022. ISO 19157-1: 2022. Geographic information — Data quality. https://www.iso.org/
standard/78900.html

[9] ISO, 2014. 19115-1:2014, Geographic information — Metadata — Part 1: Fundamentals.
https://www.iso.org/standard/53798.html

[10] Landry, T., ed., 2018. OGC Testbed-14: Machine Learning Engineering Report, OGC 18-038r2.
Wayland, MA: Open Geospatial Consortium Inc. https://docs.ogc.org/per/18-038r2.html

[11] Meek, S., ed., 2019. OGC Testbed-15: Machine Learning Engineering Report, OGC 19-027r2.
Wayland, MA: Open Geospatial Consortium Inc. https://docs.ogc.org/per/19-027r2.html

[12] Schumann, G., ed., 2020. OGC Testbed-16: Machine Learning Training Data Engineering Report,
OGC 20-018. Wayland, MA: Open Geospatial Consortium Inc. https://docs.ogc.org/per/20-015r2.html

[13] Yue, P, Shangguan, B., Hu, L., Jiang, L., Zhang, C., Cao, Z., Pan, Y., 2022. Towards a training data
model for artificial intelligence in earth observation. International Journal of Geographical
Information Science, 1-25. https://doi.org/10.1080/13658816.2022.2087223

57

https://docs.ogc.org/is/23-008r3/23-008r3.html
https://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc7159.txt
http://www.ietf.org/rfc/rfc7946.txt
https://www.iso.org/standard/66175.html
https://www.iso.org/standard/66175.html
https://www.iso.org/standard/78900.html
https://www.iso.org/standard/78900.html
https://www.iso.org/standard/53798.html
https://docs.ogc.org/per/18-038r2.html
https://docs.ogc.org/per/19-027r2.html
https://docs.ogc.org/per/20-015r2.html
https://doi.org/10.1080/13658816.2022.2087223

	Untitled
	Table of Contents
	Chapter 1. Scope
	Chapter 2. Conformance
	Chapter 3. Normative References
	Chapter 4. Terms and Definitions
	4.1. Artificial Intelligence (AI)
	4.2. Machine Learning (ML)
	4.3. Deep Learning (DL)
	4.4. Dataset
	4.5. Training Dataset
	4.6. Label
	4.7. Class
	4.8. Task
	4.9. Provenance
	4.10. Quality
	4.11. Earth Observation
	4.12. Scene Classification
	4.13. Object Detection
	4.14. Semantic Segmentation
	4.15. Change Detection
	4.16. 3D Model Reconstruction
	4.17. Generative Model
	4.18. JavaScript Object Notation (JSON)
	4.19. JSON Schema
	4.20. Training Dataset Publisher

	Chapter 5. Conventions
	5.1. Identifiers
	5.2. Abbreviated Terms

	Chapter 6. Overview
	6.1. JavaScript Object Notation

	Chapter 7. Requirements for TrainingDML-AI JSON Encoding
	7.1. Requirements Class: Base
	7.1.1. Requirements Class: JSON Base Type
	7.1.2. Requirements Class: ISO Metadata Type
	7.1.3. Requirements Class: ISO Quality Type
	7.1.4. Requirements Class: Geospatial Type

	7.2. Requirements Class: AI_TrainingDataset
	7.3. Requirements Class: AI_TrainingData
	7.4. Requirements Class: AI_Task
	7.5. Requirements Class: AI_Label
	7.6. Requirements Class: AI_Labeling
	7.7. Requirements Class: AI_DataQuality
	7.8. Requirements Class: AI_TDChangeset

	Annex A: Abstract Test Suite (Normative)
	A.1. Introduction
	A.2. Conformance Class: Base
	A.2.1. Conformance Class: JSON Base Type
	A.2.2. Conformance Class: ISO Metadata Type
	A.2.3. Conformance Class: ISO Quality Type
	A.2.4. Conformance Class: Geospatial Type

	A.3. Conformance Class: AI_TrainingDataset
	A.4. Conformance Class: AI_TrainingData
	A.5. Conformance Class: AI_Task
	A.6. Conformance Class: AI_Label
	A.7. Conformance Class: AI_Labeling
	A.8. Conformance Class: AI_DataQuality
	A.9. Conformance Class: AI_TDChangeset

	Annex B: Example (Informative)
	B.1. TrainingDataset Encoding Examples
	B.1.1. WHU-RS19 Dataset
	B.1.2. DOTA-v1.5 Dataset
	B.1.3. KITTI 2D Object Detection Dataset
	B.1.4. GID Dataset
	B.1.5. Toronto3D Dataset
	B.1.6. WHU-Building Dataset
	B.1.7. California Change Detection Dataset
	B.1.8. WHU MVS Dataset
	B.1.9. iSAID Dataset

	B.2. DataQuality Encoding Example
	B.2.1. WHU-RS19 Data Quality

	B.3. TDChangeset Encoding Example
	B.3.1. DOTA-v1.5 Changeset

	B.4. Non-EO Imagery TrainingDataset Encoding Examples
	B.4.1. ERA5 Dataset
	B.4.2. SCIERC Dataset
	B.4.3. nuScenes Dataset

	Annex C: Revision History (Informative)
	Annex D: Bibliography

