
OGC® DOCUMENT: 23-002
External identifier of this OGC® document: http://www.opengis.net/doc/IS/ogcapi-
connectedsystems-2/1.0

OGC API - CONNECTED
SYSTEMS - PART 2:
DYNAMIC DATA

STANDARD
Implementation

APPROVED

Version: 1.0
Submission Date: 2025-03-19
Approval Date: 2025-06-02
Publication Date: 2025-07-16
Editor: Alexandre Robin

Notice: This document is an OGC Member approved international standard. This document is available on a royalty free, non-discriminatory
basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware
and to provide supporting documentation.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Suggested additions, changes and comments on this document are welcome and encouraged. Such suggestions may be submitted using the online
change request form on OGC web site: http://ogc.standardstracker.org/

Copyright notice

Copyright © 2025 Open Geospatial Consortium
To obtain additional rights of use, visithttps://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 23-002 ii

https://www.ogc.org/license
http://ogc.standardstracker.org/
https://www.ogc.org/legal

CONTENTS

I. ABSTRACT ...xii

II. KEYWORDS .. xii

III. PREFACE ...xiv

IV. SECURITY CONSIDERATIONS .. xv

V. SUBMITTING ORGANIZATIONS ... xvi

VI. SUBMITTERS ... xvi

1. SCOPE .. 2

2. CONFORMANCE .. 4

3. NORMATIVE REFERENCES ... 7

4. TERMS AND DEFINITIONS ...10

6. CONVENTIONS ...16
6.1. Identifiers ... 16
6.2. Abbreviated terms ... 16

7. OVERVIEW ...19
7.1. General ... 19
7.2. Design Considerations ..19
7.3. Resource Types ...20
7.4. API Endpoints ... 21

8. REQUIREMENTS CLASS “COMMON” .. 24
8.1. Overview ..24
8.2. Non-feature Resources ...24
8.3. Resource Collections ...25

9. REQUIREMENTS CLASS “DATASTREAMS & OBSERVATIONS” 27
9.1. Overview ..27
9.2. DataStream Resource ..28
9.3. DataStream Canonical URL ... 32
9.4. DataStream Resources Endpoints ..33
9.5. DataStream Collections .. 35

OPEN GEOSPATIAL CONSORTIUM 23-002 iii

9.6. Observation Schemas ... 36
9.7. Observation Resource ...37
9.8. Observation Canonical URL .. 39
9.9. Observation Resources Endpoint ...39
9.10. Observation Collections ...41

10. REQUIREMENTS CLASS “CONTROL STREAMS & COMMANDS” 43
10.1. Overview ... 43
10.2. ControlStream Resource .. 44
10.3. ControlStream Canonical URL ..48
10.4. ControlStream Resources Endpoints ...49
10.5. ControlStream Collections ...51
10.6. Command Schemas ...52
10.7. Command Resource .. 53
10.8. Command Canonical URL ..55
10.9. Command Resources Endpoint .. 55
10.10. Command Collections .. 56
10.11. CommandStatus Resource .. 57
10.12. CommandStatus Resources Endpoint .. 59
10.13. CommandResult Resource .. 60
10.14. CommandResult Resources Endpoint .. 63

11. REQUIREMENTS CLASS “COMMAND FEASIBILITY” ...66
11.1. Overview ... 66
11.2. Feasibility Resource ...67
11.3. Feasibility Canonical URL .. 67
11.4. Feasibility Endpoint ...67
11.5. Feasibility Status ..68
11.6. Feasibility Result .. 69
11.7. Feasibility Collections ...70

12. REQUIREMENTS CLASS “SYSTEM EVENTS” ..72
12.1. Overview ... 72
12.2. SystemEvent Resource ... 72
12.3. SystemEvent Canonical URL ...74
12.4. SystemEvent Resources Endpoints ..75
12.5. SystemEvent Collections ..76

13. REQUIREMENTS CLASS “ADVANCED FILTERING” .. 79
13.1. Overview ... 79
13.2. DataStream Query Parameters .. 80
13.3. Observation Query Parameters ... 82
13.4. ControlStream Query Parameters ... 84
13.5. Command Query Parameters ... 86
13.6. CommandStatus Query Parameters ..88
13.7. SystemEvent Query Parameters .. 89

OPEN GEOSPATIAL CONSORTIUM 23-002 iv

14. REQUIREMENTS CLASS “CREATE/REPLACE/DELETE” .. 92
14.1. Overview ... 92
14.2. DataStreams ..93
14.3. Observations ...94
14.4. Control Streams ... 95
14.5. Commands ...97
14.6. Command Status ... 98
14.7. Command Results ..98
14.8. Feasibility ...99
14.9. Feasibility Status ..99
14.10. Feasibility Results ... 100
14.11. System Events ... 100

15. REQUIREMENTS CLASS “UPDATE” ..103
15.1. Overview ...103
15.2. DataStreams ... 104
15.3. Observations .. 104
15.4. Control Streams ...105
15.5. Commands .. 106
15.6. Command Status ... 107
15.7. Command Results ... 107
15.8. Feasibility .. 108
15.9. Feasibility Status ..108
15.10. Feasibility Results ... 109
15.11. System Events ... 109

16. REQUIREMENTS CLASSES FOR ENCODINGS .. 112
16.1. Requirements Class “JSON Encoding” ... 112
16.2. Requirements Class “SWE Common JSON Encoding” ...124
16.3. Requirements Class “SWE Common Text Encoding” ..128
16.4. Requirements Class “SWE Common Binary Encoding” ..131

ANNEX A (NORMATIVE) CONFORMANCE CLASS ABSTRACT TEST SUITE 137
A.1. Conformance Class “Common” ..137
A.2. Conformance Class “Datastreams & Observations” ... 138
A.3. Conformance Class “Control Streams & Commands” ...145
A.4. Conformance Class “Command Feasibility” .. 153
A.5. Conformance Class “System Events” ..155
A.6. Conformance Class “Advanced Filtering” ..158
A.7. Conformance Class “Create/Replace/Delete” ..168
A.8. Conformance Class “Update” ... 175
A.9. Conformance Class “JSON Encoding” ..180
A.10. Conformance Class “SWE Common JSON Encoding” ... 187
A.11. Conformance Class “SWE Common Text Encoding” ..191
A.12. Conformance Class “SWE Common Binary Encoding” ..194

OPEN GEOSPATIAL CONSORTIUM 23-002 v

ANNEX B (INFORMATIVE) EXAMPLES ... 200

ANNEX C (INFORMATIVE) RELATIONSHIP WITH OTHER OGC/ISO STANDARDS
(INFORMATIVE) ..202

ANNEX D (INFORMATIVE) REVISION HISTORY .. 204

BIBLIOGRAPHY .. 206

LIST OF TABLES

Table 1 — Overview of resource types defined by this Standard ...21
Table 2 — DataStream Attributes ...29
Table 3 — DataStream Types .. 30
Table 4 — Result Types ...30
Table 5 — DataStream Associations .. 31
Table 6 — Observation Attributes ..38
Table 7 — Observation Associations ... 38
Table 8 — ControlStream Attributes ..45
Table 9 — ControlStream Types ..46
Table 10 — ControlStream Associations ...46
Table 11 — Command Attributes ...54
Table 12 — Command Associations ...54
Table 13 — Command Status Attributes .. 58
Table 14 — Command Status Codes ... 59
Table 15 — Command Status Associations ..59
Table 16 — Command Result Attributes .. 62
Table 17 — Command Result Associations ..62
Table 18 — Feasibility Status Codes ..68
Table 19 — System Event Attributes ...73
Table 20 — System Event Types ...73
Table 21 — System Event Associations .. 74

LIST OF FIGURES

Figure 1 — Class diagram of API resources ...20
Figure 2 — DataStream Resource Diagram ..29

OPEN GEOSPATIAL CONSORTIUM 23-002 vi

Figure 3 — Observation Resource Diagram ...38
Figure 4 — ControlStream Resource Diagram ...45
Figure 5 — Command Resource Diagram .. 53
Figure 6 — Command Status Resource Diagram ..58
Figure 7 — Command Result Resource Diagram ..62
Figure 8 — System Event Diagram .. 73

LIST OF RECOMMENDATIONS

REQUIREMENTS CLASS 1 .. 24

REQUIREMENTS CLASS 2 .. 27

REQUIREMENTS CLASS 3 .. 43

REQUIREMENTS CLASS 4 .. 66

REQUIREMENTS CLASS 5 .. 72

REQUIREMENTS CLASS 6 .. 79

REQUIREMENTS CLASS 7 .. 92

REQUIREMENTS CLASS 8 ..103

REQUIREMENTS CLASS 9 ..112

REQUIREMENTS CLASS 10 ... 124

REQUIREMENTS CLASS 11 ... 128

REQUIREMENTS CLASS 12 ... 131

REQUIREMENT 1 .. 24

REQUIREMENT 2 .. 25

REQUIREMENT 3 .. 32

REQUIREMENT 4 .. 32

REQUIREMENT 5 .. 32

REQUIREMENT 6 .. 33

REQUIREMENT 7 .. 34

REQUIREMENT 8 .. 34

REQUIREMENT 9 .. 34

REQUIREMENT 10 ..35

REQUIREMENT 11 ..36

REQUIREMENT 12 ..39

OPEN GEOSPATIAL CONSORTIUM 23-002 vii

REQUIREMENT 13 ..39

REQUIREMENT 14 ..40

REQUIREMENT 15 ..40

REQUIREMENT 16 ..41

REQUIREMENT 17 ..47

REQUIREMENT 18 ..48

REQUIREMENT 19 ..48

REQUIREMENT 20 ..49

REQUIREMENT 21 ..49

REQUIREMENT 22 ..50

REQUIREMENT 23 ..50

REQUIREMENT 24 ..51

REQUIREMENT 25 ..52

REQUIREMENT 26 ..55

REQUIREMENT 27 ..55

REQUIREMENT 28 ..56

REQUIREMENT 29 ..56

REQUIREMENT 30 ..57

REQUIREMENT 31 ..60

REQUIREMENT 32 ..60

REQUIREMENT 33 ..63

REQUIREMENT 34 ..63

REQUIREMENT 35 ..67

REQUIREMENT 36 ..67

REQUIREMENT 37 ..69

REQUIREMENT 38 ..70

REQUIREMENT 39 ..70

REQUIREMENT 40 ..74

REQUIREMENT 41 ..75

REQUIREMENT 42 ..76

REQUIREMENT 43 ..76

REQUIREMENT 44 ..77

REQUIREMENT 45 ..80

OPEN GEOSPATIAL CONSORTIUM 23-002 viii

REQUIREMENT 46 ..80

REQUIREMENT 47 ..81

REQUIREMENT 48 ..81

REQUIREMENT 49 ..82

REQUIREMENT 50 ..83

REQUIREMENT 51 ..83

REQUIREMENT 52 ..84

REQUIREMENT 53 ..84

REQUIREMENT 54 ..85

REQUIREMENT 55 ..85

REQUIREMENT 56 ..86

REQUIREMENT 57 ..86

REQUIREMENT 58 ..87

REQUIREMENT 59 ..88

REQUIREMENT 60 ..88

REQUIREMENT 61 ..89

REQUIREMENT 62 ..89

REQUIREMENT 63 ..93

REQUIREMENT 64 ..94

REQUIREMENT 65 ..94

REQUIREMENT 66 ..95

REQUIREMENT 67 ..95

REQUIREMENT 68 ..95

REQUIREMENT 69 ..96

REQUIREMENT 70 ..96

REQUIREMENT 71 ..97

REQUIREMENT 72 ..97

REQUIREMENT 73 ..98

REQUIREMENT 74 ..98

REQUIREMENT 75 ..99

REQUIREMENT 76 ..99

REQUIREMENT 77 ... 100

REQUIREMENT 78 ... 100

OPEN GEOSPATIAL CONSORTIUM 23-002 ix

REQUIREMENT 79 ... 104

REQUIREMENT 80 ... 104

REQUIREMENT 81 ... 104

REQUIREMENT 82 ... 105

REQUIREMENT 83 ... 105

REQUIREMENT 84 ... 106

REQUIREMENT 85 ... 106

REQUIREMENT 86 ... 107

REQUIREMENT 87 ... 107

REQUIREMENT 88 ... 107

REQUIREMENT 89 ... 108

REQUIREMENT 90 ... 108

REQUIREMENT 91 ... 109

REQUIREMENT 92 ... 109

REQUIREMENT 93 ... 113

REQUIREMENT 94 ... 113

REQUIREMENT 95 ... 114

REQUIREMENT 96 ... 115

REQUIREMENT 97 ... 116

REQUIREMENT 98 ... 117

REQUIREMENT 99 ... 118

REQUIREMENT 100 ...119

REQUIREMENT 101 ...120

REQUIREMENT 102 ...121

REQUIREMENT 103 ...121

REQUIREMENT 104 ...122

REQUIREMENT 105 ...122

REQUIREMENT 106 ...123

REQUIREMENT 107 ...125

REQUIREMENT 108 ...125

REQUIREMENT 109 ...125

REQUIREMENT 110 ...126

REQUIREMENT 111 ...126

OPEN GEOSPATIAL CONSORTIUM 23-002 x

REQUIREMENT 112 ...127

REQUIREMENT 113 ...127

REQUIREMENT 114 ...127

REQUIREMENT 115 ...129

REQUIREMENT 116 ...129

REQUIREMENT 117 ...130

REQUIREMENT 118 ...130

REQUIREMENT 119 ...130

REQUIREMENT 120 ...130

REQUIREMENT 121 ...131

REQUIREMENT 122 ...131

REQUIREMENT 123 ...133

REQUIREMENT 124 ...133

REQUIREMENT 125 ...133

REQUIREMENT 126 ...134

REQUIREMENT 127 ...134

REQUIREMENT 128 ...134

REQUIREMENT 129 ...135

REQUIREMENT 130 ...135

CONFORMANCE CLASS A.1 ...137

CONFORMANCE CLASS A.2 ...138

CONFORMANCE CLASS A.3 ...145

CONFORMANCE CLASS A.4 ...153

CONFORMANCE CLASS A.5 ...156

CONFORMANCE CLASS A.6 ...158

CONFORMANCE CLASS A.7 ...168

CONFORMANCE CLASS A.8 ...175

CONFORMANCE CLASS A.9 ...180

CONFORMANCE CLASS A.10 .. 187

CONFORMANCE CLASS A.11 .. 191

CONFORMANCE CLASS A.12 .. 194

OPEN GEOSPATIAL CONSORTIUM 23-002 xi

I ABSTRACT

OGC API Standards define modular API building blocks to spatially enable Web APIs in a
consistent way. The OpenAPI specification is used to define the API building blocks.

The OGC API family of Standards is organized by resource type. This Standard specifies the
fundamental API building blocks for interacting with Connected Systems and associated
resources. A Connected System represents any kind of system that can either directly transmit
data via communication networks (being connected to them in a permanent or temporary
fashion), or whose data is made available in one form or another via such networks. This
definition encompasses systems of all kinds, including in-situ and remote sensors, actuators,
fixed and mobile platforms, airborne and space-borne systems, robots and drones, and even
humans who collect data or execute specific tasks.

Since many of the resource types defined in this document, including the systems themselves,
are also features, the OGC API — Connected Systems Standard is logically written as an
extension of OGC API — Features.

But beyond features, this Standard is also intended to act as a bridge between static data
(geographic and other application domain features) and dynamic data (observations of these
features properties, and commands/actuations that change these features properties). To this
end, this Standard also describes protocols and formats to transmit dynamic data to/from
connected systems through the API. Some of these protocols allow efficient real-time delivery of
data while some others are more suited for transmitting data in batch.

In addition to providing its own mechanism for interacting with static and dynamic data, the
API allows linking to other APIs from the OGC ecosystem, such as 3D GeoVolumes, 3D Tiles,
Coverages, EDR, SensorThings, Processes, and other Features API instances. Among other
things, this linking capability allows one to retrieve more advanced representations of features
of interest (3D buildings, etc.) and gridded data (coverages) than the one that would typically be
provided through this API.

The API is comprised of multiple parts, each of them being a separate standard. “Part 1 —
Feature Resources” defines the feature types and corresponding schemas for some concepts
of the Semantic Sensor Network Ontology (SOSA/SSN). This part (“Part 2 — Dynamic Data”)
defines the resources, encodings and protocols that allow efficient exchange of dynamic (time-
varying) data related to these features, in a way that is also aligned with SOSA/SSN.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

OPEN GEOSPATIAL CONSORTIUM 23-002 xii

https://ogcapi.ogc.org/#standards
https://www.openapis.org
https://ogcapi.ogc.org/geovolumes
https://github.com/CesiumGS/3d-tiles/tree/main/specification
https://ogcapi.ogc.org/coverages
https://ogcapi.ogc.org/edr
https://ogcapi.ogc.org/sensorthings
https://ogcapi.ogc.org/processes

ogcdoc, OGC document, OpenAPI, REST, feature, API, system, smart system, connected system,
IoT, sensorweb, ssn, sensor, actuator, transducer, sampling, platform, robot, drone, unmanned,
autonomous, observation, measurement, datastream, command, control, trajectory, dynamic

OPEN GEOSPATIAL CONSORTIUM 23-002 xiii

I I I PREFACE

The OGC API — Connected Systems Standard is part of the suite of OGC API Standards.

To increase the brevity and readability of this Standard, many OGC document titles are
shortened and/or abbreviated. Therefore, in the context of this document, the following phrases
are defined.

• “this Standard” shall be interpreted as equivalent to “OGC API — Connected Systems —
Part 2: Dynamic Resources Standard.”

• “CS API” or “CS API Standard” shall be interpreted as equivalent to “OGC API —
Connected Systems Standard” (including all its parts).

• “OGC API — Features” shall be interpreted as equivalent to “OGC API — Features — Part 1:
Core corrigendum.”

• “OGC API — Common” shall be interpreted as equivalent to “OGC API — Common — Part
1: Core.”

OPEN GEOSPATIAL CONSORTIUM 23-002 xiv

IV SECURITY CONSIDERATIONS

All security considerations detailed in OGC API — Connected Systems — Part 1 also apply to this
Standard.

OPEN GEOSPATIAL CONSORTIUM 23-002 xv

V SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• GeoRobotix, Inc.

• Botts Innovative Research, Inc.

• Cesium GS, Inc.

• 52°North Spatial Information Research GmbH

• Riverside Research

• Pelagis Data Solutions

• National Geospatial-Intelligence Agency (NGA)

VI SUBMITTERS

All questions regarding this submission should be directed to the editor or the submitters listed
in the following table:

NAME AFFILIATION

Alex Robin (Editor) GeoRobotix, Inc.

Christian Autermann 52° North Spatial Information Research GmbH

Chuck Heazel Heazeltech

Glenn Laughlin Pelagis Data Solutions

Mike Botts Botts Innovative Research, Inc.

Patrick Cozzi Cesium GS, Inc.

Sam Bolling Riverside Research

Additional contributors to this Standard include the following:

OPEN GEOSPATIAL CONSORTIUM 23-002 xvi

NAME AFFILIATION

Chris Tucker GeoRobotix, Inc.

Ian Patterson Botts Innovative Research, Inc.

Qihua Li GovTech Singapore

Rob Atkinson Open Geospatial Consortium, Inc.

Simon Cox Open Geospatial Consortium, Inc.

Jan Speckamp 52°North Spatial Information Research GmbH

OPEN GEOSPATIAL CONSORTIUM 23-002 xvii

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 23-002 1

1 SCOPE

This Standard defines extensions to OGC API — Features for exposing metadata and dynamic
data regarding all kinds of observing systems and associated resources. It provides an actionable
implementation of concepts defined in the Semantic Sensor Network Ontology (SSN) and also
complies with OGC API — Common.

More specifically, Part 2 of the API, specified in this document, implements the SSN concepts
allowing exchange of dynamic (possibly real-time) data flowing to and from various types of
connected systems (e.g., sensors, actuators, platforms). Several encoding formats are defined
in this Standard, including JSON, CSV and binary formats based on the OGC — SWE Common
Standard. Additional encodings can be added by extensions.

The following types of resources are defined by Part 2 of the API.

• DataStream resources represent data feeds coming out of Systems and are containers
for Observations. They are used for receiving and ingesting real-time Observations as
well as accessing historical Observations. A DataStream is a particular case of sosa:
ObservationCollection where all Observations are coming from the same sensor.

• Observation resources record all information regarding an act of observation, whether
it is made by an automated device or a human. In particular, they carry the observation
result that is structured according to a well defined schema. Observations are grouped
into DataStreams.

• ControlStream resources represent data feeds going into Systems and are containers
for Commands. They are used for receiving and ingesting real-time Commands as well as
accessing historical Commands.

• Command resources represent messages sent to a System to control the parameters
of feature of interest. In particular, a command includes parameters that are structured
according to a well define schema.

• CommandStatus resources provide status reports during the execution of a command.

• SystemEvent resources provide information about a system event, such as sensor
activation, recalibration, maintenance, etc.

CS API Part 1 defines the feature resources that these dynamic data feeds are associated to,
including both the Systems that produce or receive these data feeds, and the features of interest
that these data feeds provide information about.

CS API Part 3 defines pub/sub protocol bindings for exchanging dynamic data that can be used
jointly with the HTTP API.

OPEN GEOSPATIAL CONSORTIUM 23-002 2

2

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 23-002 3

2 CONFORMANCE

This Standard was written to be compliant with the OGC Specification Model – A Standard
for Modular Specification (OGC 08-131r3). Extensions of this Standard shall themselves be
conformant to the OGC Specification Model.

This Standard defines the following requirements classes.

• Clause 8, Requirements Class “Common” defines requirements that are shared by several
other requirements classes.

• Clause 9, Requirements Class “Datastreams Observations” defines requirements for
DataStream and Observation resources.

• Clause 10, Requirements Class “Control Streams Commands” defines requirements for
ControlStream and Command resources.

• Clause 11, Requirements Class “Command Feasibility” defines requirements for
Feasibility resources.

• Clause 12, Requirements Class “System Events” defines requirements for SystemEvent
resources.

• Clause 13, Requirements Class “Advanced Filtering” defines requirements for additional
filters that can be used to query CS resources*.

• Clause 14, Requirements Class “Create/Replace/Delete” defines requirements for creating,
replacing, and deleting CS resources*.

• Clause 15, Requirements Class “Update” defines requirements for updating CS resources*.

• Clause 16.1, Requirements Class “JSON Encoding” defines requirements for encoding CS
resources* as JSON.

• Clause 16.2, Requirements Class “SWE Common JSON Encoding” defines requirements
for encoding Observation and Command resources using SWE Common JSON Encoding
rules.

• Clause 16.3, Requirements Class “SWE Common Text Encoding” defines requirements for
encoding Observation and Command resources using SWE Common Text Encoding rules.

OPEN GEOSPATIAL CONSORTIUM 23-002 4

• Clause 16.4, Requirements Class “SWE Common Binary Encoding” defines requirements
for encoding Observation and Command resources using SWE Common Binary Encoding
rules.

The standardization target for these requirements classes is an implementation of the Web API.

There is no Core requirements class but an implementation target is expected to implement at
least one of the CS resource* types and one encoding.

The conformance classes corresponding to these requirements classes are presented in
Annex A (normative). Conformance with this Standard shall be checked using all the relevant
tests specified in Annex A. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing
Policies and Procedures and the OGC Compliance Testing web site.

[*] “CS resources” means “Connected Systems resources” and refers to all resource types defined in this
Standard.

OPEN GEOSPATIAL CONSORTIUM 23-002 5

3

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 23-002 6

3 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Policy SWG: OGC 08-131r3, The Specification Model — Standard for Modular specifications.
Open Geospatial Consortium (2009). https://portal.ogc.org/files/?artifact_id=
34762&version=2.

Alexandre Robin: OGC 23-001, OGC API — Connected Systems — Part 1: Feature Resources, version
1.0. Open Geospatial Consortium (2025). https://docs.ogc.org/is/23-001/23-001.
html

Clemens Portele, Panagiotis (Peter) A. Vretanos, Charles Heazel: OGC 17-069r4, OGC API —
Features — Part 1: Core corrigendum. Open Geospatial Consortium (2022). http://
www.opengis.net/doc/IS/ogcapi-features-1/1.0.1.

OGC API — Features — Part 4: Create, Replace, Update and Delete, version 1.0.0-DRAFT. http://
www.opengis.net/doc/IS/ogcapi-features-4/1.0

Charles Heazel: OGC 19-072, OGC API — Common — Part 1: Core. Open Geospatial Consortium
(2023). http://www.opengis.net/doc/is/ogcapi-common-1/1.0.0.

Semantic Sensor Network Ontology, (October 19 2017), https://www.w3.org/TR/vocab-ssn

Alexandre Robin: OGC 23-000, OGC SensorML Encoding Standard, version 3.0. Open Geospatial
Consortium (2025). https://docs.ogc.org/is/23-000/23-000.html

Alexandre Robin: OGC 24-014, OGC SWE Common Data Model Encoding Standard, version 3.0.
Open Geospatial Consortium (2025). https://docs.ogc.org/is/24-014/24-014.html

ISO: ISO 8601:2019, Date and time — Representations for information interchange — Part 1: Basic
rules. International Organization for Standardization, Geneva (2019). https://www.iso.
org/standard/70907.html.. ISO (2019).

ISO: ISO 8601:2019, Date and time — Representations for information interchange — Part 2:
Extensions. International Organization for Standardization, Geneva (2019). https://
www.iso.org/standard/70908.html.. ISO (2019).

T. Bray (ed.): IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format. RFC
Publisher (2017). https://www.rfc-editor.org/info/rfc8259.

M. Nottingham: IETF RFC 8288, Web Linking. RFC Publisher (2017). https://www.rfc-editor.org/
info/rfc8288.

JSON Schema Validation: A Vocabulary for Structural Validation of JSON, Version 2020-12,
https://json-schema.org/draft/2020-12/json-schema-validation.html

OPEN GEOSPATIAL CONSORTIUM 23-002 7

https://portal.ogc.org/files/?artifact_id=34762&version=2
https://portal.ogc.org/files/?artifact_id=34762&version=2
https://docs.ogc.org/is/23-001/23-001.html
https://docs.ogc.org/is/23-001/23-001.html
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
http://www.opengis.net/doc/IS/ogcapi-features-4/1.0
http://www.opengis.net/doc/IS/ogcapi-features-4/1.0
http://www.opengis.net/doc/is/ogcapi-common-1/1.0.0
https://www.w3.org/TR/vocab-ssn
https://docs.ogc.org/is/23-000/23-000.html
https://docs.ogc.org/is/24-014/24-014.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70908.html
https://www.iso.org/standard/70908.html
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://json-schema.org/draft/2020-12/json-schema-validation.html

The WebSocket Protocol, December 2011, Proposed Standard. https://www.rfc-editor.org/rfc/
rfc6455

MQTT Version 5.0, 07 March 2019, OASIS Standard. http://docs.oasis-open.org/mqtt/mqtt/v5.
0/mqtt-v5.0.html

OPEN GEOSPATIAL CONSORTIUM 23-002 8

https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

4

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 23-002 9

4 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

All terms defined in OGC API — Common — Part 1: Core, OGC API — Features — Part 1: Core
and OGC API — Features — Part 4: Create, Replace, Update and Delete also apply.

4.1. Application Programming Interface (API)

A formally defined set of types and methods which establish a contract between client code
which uses the API and implementation code which provides the API.

4.2. Actuation

An Actuation carries out an (Actuation) Procedure to change the state of the world using an
Actuator.

[SOURCE: SOSA-SSN,]

4.3. Actuator

A device that is used by, or implements, an (Actuation) Procedure that changes the state of the
world.

[SOURCE: SOSA-SSN,]

OPEN GEOSPATIAL CONSORTIUM 23-002 10

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

4.4. Command

A Command is a message that is sent to a System to trigger an Actuation. The Command
message contains the parameters of the Actuation.

4.5. Connected Systems

Collections of interrelated systems consisting of information technology (IT) devices, sensors,
actuators, platforms, and processes that can seamlessly interact.

4.6. Control Stream

A Control Stream is a collection of Commands targeted at the same System, and sharing the
same controlled properties.

4.7. Data Stream

A Data Stream (or Datastream) is a collection of Observations acquired by the same System, and
sharing the same observed properties.

4.8. Deployment

Describes the Deployment of one or more Systems for a particular purpose. Deployment may be
done on a Platform.

[SOURCE: SOSA/SSN,]

OPEN GEOSPATIAL CONSORTIUM 23-002 11

4.9. Feature

Abstraction of real-world phenomena.

[SOURCE: ISO-19101, definition 4.11]

4.10. Feature Collection

A set of features from a dataset.

[SOURCE: OGC API — Features, definition 4.1.4]

4.11. Feature of Interest

The thing whose property is being estimated or calculated in the course of an Observation to
arrive at a Result, or whose property is being manipulated by an Actuator, or which is being
sampled or transformed in an act of Sampling.

[SOURCE: SOSA/SSN,]

4.12. Observation

Act of carrying out an (Observation) Procedure to estimate or calculate a value of a property of a
Feature of Interest.

[SOURCE: SOSA/SSN,]

4.13. Platform

A Platform is an entity that hosts other entities, particularly Sensors, Actuators, Samplers, and
other Platforms.

[SOURCE: SOSA/SSN,]

OPEN GEOSPATIAL CONSORTIUM 23-002 12

4.14. Procedure

A workflow, protocol, plan, algorithm, or computational method specifying how to make an
Observation, create a Sample, or make a change to the state of the world (via an Actuator). A
Procedure is re-usable, and might be involved in many Observations, Samplings, or Actuations. It
explains the steps to be carried out to arrive at reproducible Results.

[SOURCE: SOSA/SSN,]

4.15. Property

Facet or attribute of an object referenced by a name.

Example : Abby’s car has the color red, where “color red” is a property of the car instance

[SOURCE: ISO-19143]

4.16. Sample

Feature which is intended to be representative of a FeatureOfInterest on which Observations
may be made.

[SOURCE: SOSA/SSN,]

4.17. Sampler

A device that is used by, or implements, a (Sampling) Procedure to create or transform one or
more samples.

[SOURCE: SOSA/SSN,]

OPEN GEOSPATIAL CONSORTIUM 23-002 13

4.18. Sampling Feature

Feature representing a subset of a FeatureOfInterest on which properties are observed or
controlled. For Observations, Sampling Feature is a synonym of Sample.

4.19. Sensor

Device, agent (including humans), or software (simulation) involved in, or implementing, a
Procedure. Sensors respond to a Stimulus, e.g., a change in the environment, or Input data
composed from the Results of prior Observations, and generate a Result. Sensors can be hosted
by Platforms.

[SOURCE: SOSA/SSN,]

4.20. System

System is a unit of abstraction for pieces of infrastructure that implement Procedures. A System
may have components, its subsystems, which are other Systems.

[SOURCE: SOSA/SSN,]

OPEN GEOSPATIAL CONSORTIUM 23-002 14

6

CONVENTIONS

OPEN GEOSPATIAL CONSORTIUM 23-002 15

6 CONVENTIONS

This sections provides details and examples for any conventions used in the document.
Examples of conventions are symbols, abbreviations, use of XML schema, or special notes
regarding how to read the document.

6.1. Identifiers

The normative provisions in this standard are denoted by the URI

http://www.opengis.net/spec/ogcapi-connectedsystems-2/1.0

All requirements and conformance tests that appear in this document are denoted by partial
URIs which are relative to this base.

6.2. Abbreviated terms

In this document the following abbreviations and acronyms are used or introduced:

• API: Application Programming Interface

• CRS: Coordinate Reference System

• CSML: Climate Science Modeling Language

• CSV: Comma-Separated Values

• DSV: Delimiter-Separated Values (a generalization of CSV)

• GPS: Global Positioning System

• ISO: International Organization for Standardization

• MISB: Motion Imagery Standards Board

• OGC: Open Geospatial Consortium

• SAS: Sensor Alert Service

• SensorML: Sensor Model Language

• SI: Système International (International System of Units)

• SOS: Sensor Observation Service

OPEN GEOSPATIAL CONSORTIUM 23-002 16

http://www.opengis.net/spec/ogcapi-connectedsystems-2/1.0

• SPS: Sensor Planning Service

• SWE: Sensor Web Enablement

• TAI: Temps Atomique International (International Atomic Time)

• UML: Unified Modeling Language

• UTC: Coordinated Universal Time

• XML: eXtensible Markup Language

• 1D: One Dimensional

• 2D: Two Dimensional

• 3D: Three Dimensional

OPEN GEOSPATIAL CONSORTIUM 23-002 17

7

OVERVIEW

OPEN GEOSPATIAL CONSORTIUM 23-002 18

7 OVERVIEW

7.1. General

All resources defined in Part 1 of this Standard are feature resources, among which the System
resource. Part 2 (this document) defines additional resource types to describe and interact with
the dynamic data that flows in and out of these systems.

Part 2 of this Standard defines resource types that allow the provision of dynamic data about all
kinds of devices, hardware components or processes that can transmit and/or receive data via
communication networks (a.k.a. connected systems), including sensors, platforms, robots, human
observers, forecast models, computer simulations, etc.

Flows carrying observation and status data coming out of a system are called Datastreams while
flows carrying commands sent to a system are called Control Streams (note that the direction
of the flow mentioned here is relative to the real system, which is different from the direction of
the data flows going in and out of the API server).

7.2. Design Considerations

In this Standard, Observations and Commands are purposefully not modelled as Features. This
choice was made to keep a clear separation between the Features of Interest that represent
concrete or virtual objects (or things) of interest (and in the vast majority of use cases, real-world
objects) and the other concepts that are used to encapsulate dynamic data related to these
features:

• Observations carry the result of the estimation of one or more feature properties, at a
given time (and location); and

• Commands carry the desired value of one or more feature properties, at a given time.

Likewise, DataStreams and ControlStreams are not modelled as features, as they are simply
containers for Observations and Commands, respectively. More specifically, they are particular
cases of homogeneous collections that are associated to a single System (see Clauses 9 and 10).

OPEN GEOSPATIAL CONSORTIUM 23-002 19

7.3. Resource Types

As indicated above, while part 1 of this Standard focused on defining “static” feature types, part
2 defines additional resources to deal with dynamic data associated to these features.

Figure 1 shows a UML class diagram of all Connected Systems API resources. Resources defined
in part 2 are shown with a solid border while resources that were already defined in part 1 are
shown with a dashed light gray outline.

Figure 1 — Class diagram of API resources

The table below provides a short summary description of these resource types:

OPEN GEOSPATIAL CONSORTIUM 23-002 20

Table 1 — Overview of resource types defined by this Standard

RESOURCE
TYPE

REQUIREMENTS
CLASS

DESCRIPTION POSSIBLE ENCODINGS

DataStream Clause 9
Description of datastreams, including observed
properties and features of interest.

JSON

Observation Clause 9 Actual observations, including the result data.
JSON, SWE-JSON, SWE-
Text, SWE-Binary

ControlStream Clause 10
Description of control channels, including
controllable properties and features of interest.

JSON

Command Clause 10
Actual command messages, including the
command parameters data.

JSON, SWE-JSON, SWE-
Text, SWE-Binary

Command
Status

Clause 10 Status info about a given command. JSON

Command
Result

Clause 10 Result of a given command. JSON

Feasibility Clause 11
Feasibility requests, including the command
parameters data.

JSON, SWE-JSON, SWE-
Text, SWE-Binary

Feasibility
Status

Clause 11 Status info about a given feasibility request. JSON

Feasibility
Result

Clause 11 Result of a given feasibility request. JSON

System Event Clause 12
System events (e.g., deployment, maintenance
or replacement events).

JSON

NOTE: The encodings listed in the table are the ones defined in this Standard document but extensions
can define additional encodings.

7.4. API Endpoints

OGC API — Connected Systems — Part 1 defines the concept of canonical resources endpoint
and canonical resource endpoint. This section provides the canonical endpoints used in CS API
Part 2.

7.4.1. Canonical Resources Endpoints

The canonical resources endpoints for resource types defined in Part 2 of the CS API Standard
are:

• {api_root}/datastreams

OPEN GEOSPATIAL CONSORTIUM 23-002 21

• {api_root}/observations

• {api_root}/controlstreams

• {api_root}/commands

• {api_root}/feasibility

• {api_root}/systemEvents

7.4.2. Canonical Resource Endpoints

The canonical URL templates to access a single resource defined in Part 2 of the CS API
Standard are:

• {api_root}/datastreams/{id}

• {api_root}/observations/{id}

• {api_root}/controlstreams/{id}

• {api_root}/commands/{id}

• {api_root}/feasibility/{id}

• {api_root}/systemEvents/{id}

OPEN GEOSPATIAL CONSORTIUM 23-002 22

8

REQUIREMENTS CLASS
“COMMON”

OPEN GEOSPATIAL CONSORTIUM 23-002 23

8 REQUIREMENTS CLASS “COMMON”

REQUIREMENTS CLASS 1

IDENTIFIER /req/api-common

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.1: /conf/api-common

PREREQUISITE
http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/req/api-common

NORMATIVE STATEMENTS
 Requirement 1: /req/api-common/resources
 Requirement 2: /req/api-common/resource-
collection

8.1. Overview

All resource types defined in this Standard must comply with a common set of rules, many of
which are inherited from OGC API — Common.

8.2. Non-feature Resources

Resources defined in this Standard are not considered features, but many of the requirements
specified in OGC API — Features — Part 1: Core and OGC API — Features — Part 4: Create,
Replace, Update and Delete still apply.

REQUIREMENT 1

IDENTIFIER /req/api-common/resources

INCLUDED
IN

Requirements class 1: /req/api-common

A
All references to the term “features” or “feature” in the OGC API — Features — Part 1: Core and OGC
API — Features — Part 4: Create, Replace, Update and Delete Standards SHALL be replaced by the

OPEN GEOSPATIAL CONSORTIUM 23-002 24

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/api-common
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/api-common

REQUIREMENT 1

terms “resources” or “resource” when interpreting requirements for OGC API — Connected Systems —
 Part 2.

8.3. Resource Collections

Resource collections are exposed in the same way feature collections are in OGC API — Features
— Part 1: Core, except that the itemType is set to a different value.

REQUIREMENT 2

IDENTIFIER /req/api-common/resource-collection

INCLUDED
IN

Requirements class 1: /req/api-common

A
A resource collection SHALL fulfill all requirements from Clauses 7.14, 7.15 and 7.16 of OGC
API — Features — Part 1: Core, except for clauses 7.15.3 (parameter bbox) and 7.15.4 (parameter
datetime).

B
All references to the term “features” or “feature” in these requirements SHALL be replaced by the
terms “resources” or “resource”, respectively.

OPEN GEOSPATIAL CONSORTIUM 23-002 25

https://docs.ogc.org/is/17-069r4/17-069r4.html#_collections_

9

REQUIREMENTS CLASS
“DATASTREAMS &
OBSERVATIONS”

OPEN GEOSPATIAL CONSORTIUM 23-002 26

9 REQUIREMENTS CLASS “DATASTREAMS &
OBSERVATIONS”

9.1. Overview

REQUIREMENTS CLASS 2

IDENTIFIER /req/datastream

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.2: /conf/datastream

PREREQUISITE Requirements class 1: /req/api-common

NORMATIVE STATEMENTS

 Requirement 3: /req/datastream/sf-ref-from-
datastream
 Requirement 4: /req/datastream/foi-ref-
from-datastream
 Requirement 5: /req/datastream/canonical-
url
 Requirement 6: /req/datastream/resources-
endpoint
 Requirement 7: /req/datastream/canonical-
endpoint
 Requirement 8: /req/datastream/ref-from-
system
 Requirement 9: /req/datastream/ref-from-
deployment
 Requirement 10: /req/datastream/
collections
 Requirement 11: /req/datastream/schema-op
 Requirement 12: /req/datastream/obs-
canonical-url
 Requirement 13: /req/datastream/obs-
resources-endpoint
 Requirement 14: /req/datastream/obs-
canonical-endpoint
 Requirement 15: /req/datastream/obs-ref-
from-datastream

OPEN GEOSPATIAL CONSORTIUM 23-002 27

REQUIREMENTS CLASS 2

 Requirement 16: /req/datastream/obs-
collections

The “Datastreams & Observations” requirements class specifies how DataStream and
Observation resources are provided using the CS API.

A DataStream resource represents data produced by a single output of an (observation) system
(itself represented by a System feature in the CS API). The DataStream can be used to provide
access to real-time data only, archived data only, or both. The metadata in the DataStream
description can be used to disambiguate between these cases.

DataStream and Observation resources implement the ObservationCollection and Observation
concepts defined in the Semantic Sensor Network Ontology (SOSA/SSN), respectively.

9.2. DataStream Resource

9.2.1. Introduction

In the CS API Standard, DataStream resources are a special kind of resource that implements the
sosa:ObservationCollection concept, with the following restrictions:

• All observations in a DataStream are produced by the same System; and

• All observations in a DataStream share the same observed properties and the same result
schema.

This section defines the attributes and associations composing a DataStream resource, but the
exact way they are encoded in the payload is defined by each encoding. For encodings defined
in this document, please see:

• DataStream resource encoded in JSON

Below is the contextual class diagram of the DataStream resource:

OPEN GEOSPATIAL CONSORTIUM 23-002 28

http://www.w3.org/ns/sosa/ObservationCollection
http://www.w3.org/ns/sosa/Observation
http://www.w3.org/ns/sosa/ObservationCollection

Figure 2 — DataStream Resource Diagram

9.2.2. Properties

The following tables describe the attributes and associations of a DataStream resource and their
mapping to SOSA/SSN.

Table 2 — DataStream Attributes

NAME SOSA/SSN PROPERTY DEFINITION
DATA
TYPE

USAGE

name rdfs:label
The human readable name of the
datastream.

String Mandatory

description rdfs:comment
A human readable description for
the datastream.

String Optional

type -
The type of datastream (see Table
3).

Enum Optional

validTime sosa:validTime
The validity period of the
datastream’s description.

TimeExtent Optional

phenomenonTime sosa:phenomenonTime
The time period spanned by
the phenomenon times of all
observations in the datastream.

TimeExtent Required

resultTime sosa:resultTime
The time period spanned by the
result times of all observations in
the datastream.

TimeExtent Required

OPEN GEOSPATIAL CONSORTIUM 23-002 29

NAME SOSA/SSN PROPERTY DEFINITION
DATA
TYPE

USAGE

observedProperties
sosa:
observedProperty

Properties for which the
observations in the datastream
provide measurements.

List<URI> Required

resultType -
The type of result for observations
in the datastream (see Table 4).

Enum Required

live -
Indicates whether live data is
available from the datastream.

Boolean Required

formats -
The list of formats that the
observations in the datastream can
be encoded to.

List
<String>

Required

The values for the properties observedProperties, phenomenonTime, resultTime, resultType
SHALL be automatically generated by the server based the Observations that are linked to
the Datastream. If there are no linked Observations the properties SHALL be set to null. The
property live MAY be generated by the server. In this case the server MAY ignore updates to
the property.

Table 3 — DataStream Types

DATASTREAM
TYPE

USAGE

status
For datastreams providing status observations of the parent system itself or one of its
subsystems.

observation For datastreams providing observations of other features of interest (not the system itself).

Table 4 — Result Types

RESULT TYPE USAGE

measure When the result is a single scalar value with a unit of measure

vector When the result is a vector quantity (e.g velocity vector, stress tensor)

record When the result is a record containing only scalar values and/or vectors

coverage When the result is a coverage (any number of dimensions)

complex When the result is a record with nested records and/or arrays

OPEN GEOSPATIAL CONSORTIUM 23-002 30

Table 5 — DataStream Associations

NAME SOSA/SSN PROPERTY DEFINITION TARGET CONTENT USAGE

system sosa:isObservedBy

The System
that is the
producer
of the
datastream.

A single System
resource (by
reference).

Required

observations sosa:hasMember

The
Observations
that are
part of the
datastream.

A list of
Observation
resources.

Required

procedure sosa:usedProcedure

The procedure
used to
generate
observations
in the
datastream.

A single Procedure
resource.

Optional

deployment -

The
deployment
during
which the
datastream
was
generated.

A single
Deployment
resource.

Optional

samplingFeatures sosa:hasFeatureOfInterest

The
Sampling
Features
that are the
subject of
observations
in the
datastream.

A list of
SamplingFeature
resources.

Optional

featuresOfInterest
sosa:
hasUltimateFeatureOfInterest

The ultimate
features
of interest
that are the
subject of
observations
in the
datastream.

A list of Feature
resources.

Optional

When sampling features and ultimate features of interest are hosted on the same server, they
are made accessible through sub-endpoints of the DataStream resource.

OPEN GEOSPATIAL CONSORTIUM 23-002 31

REQUIREMENT 3

IDENTIFIER /req/datastream/sf-ref-from-datastream

INCLUDED
IN

Requirements class 2: /req/datastream

CONDITIONS
The server implements http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/
req/sampling

A
The server SHALL implement a Sampling Feature resources endpoint at path {api_root}/
datastreams/{dsId}/samplingFeatures for each available DataStream resource.

B
The endpoint SHALL only expose the Sampling Feature resources that are associated to
observations in the parent DataStream with ID dsId.

REQUIREMENT 4

IDENTIFIER /req/datastream/foi-ref-from-datastream

INCLUDED
IN

Requirements class 2: /req/datastream

CONDITIONS
• The server provides the featuresOfInterest association as part of DataStream resource

representations.

• The server hosts the features of interest descriptions locally.

A
The server SHALL implement a Feature resources endpoint at path {api_root}/datastreams/
{dsId}/featuresOfInterest for each available DataStream resource.

B
The endpoint SHALL only expose the Feature resources that are the ultimate features of interest of
observations in the parent DataStream with ID dsId.

9.3. DataStream Canonical URL

The CS API Standard requires that every DataStream resource has a canonical URL.

REQUIREMENT 5

IDENTIFIER /req/datastream/canonical-url

INCLUDED
IN

Requirements class 2: /req/datastream

OPEN GEOSPATIAL CONSORTIUM 23-002 32

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/sampling
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/sampling

REQUIREMENT 5

A
All DataStream resources exposed by the server SHALL be accessible through their canonical URL
of the form {api_root}/datastreams/{id} where id is the local identifier of the DataStream
resource.

B
If a DataStream resource is retrieved through any other URL than its canonical URL, the server
response SHALL include a link to its canonical URL with relation type canonical.

9.4. DataStream Resources Endpoints

9.4.1. Definition

A DataStream resources endpoint is an endpoint exposing a set of DataStream resources that
can be further filtered using query parameters.

REQUIREMENT 6

IDENTIFIER /req/datastream/resources-endpoint

INCLUDED
IN

Requirements class 2: /req/datastream

A
The server SHALL support the HTTP GET operation at the path associated to the DataStream
resources endpoint.

B
The operation SHALL support the parameter limit defined in Clause 7.15.2 of OGC API — Features
— Part 1: Core. All references to the term “features” or “feature” in OGC API — Features — Part 1:
Core requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C

The operation SHALL support the parameter datetime defined in Clause 7.15.4 of OGC API —
Features — Part 1: Core. All references to the term “features” or “feature” in OGC API — Features —
 Part 1: Core requirements SHALL be replaced by the terms “resources” or “resource”, respectively.
Only DataStream resources that have a validTime property that intersects the temporal
information in the datetime parameter SHALL be part of the result set.

D
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200. The response SHALL only include the DataStream resources selected by the request.

E
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API — Features
— Part 1: Core.

Clause 13.2 defines additional query parameters applicable to DataStream resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 33

https://docs.ogc.org/is/23-001/23-001.html#_endpoint_types
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

9.4.2. Canonical DataStream Resources Endpoint

The CS API Standard requires that a canonical DataStream resources endpoint, exposing all
DataStream resources, be made available by the server.

REQUIREMENT 7

IDENTIFIER /req/datastream/canonical-endpoint

INCLUDED IN Requirements class 2: /req/datastream

A
The server SHALL expose a DataStream resources endpoint at the path {api_root}/
datastreams.

B The endpoint SHALL expose all DataStream resources available on the server.

9.4.3. Nested DataStream Resources Endpoints

The set of datastreams produced by a specific system is available at a nested endpoint under the
corresponding System resource:

REQUIREMENT 8

IDENTIFIER /req/datastream/ref-from-system

INCLUDED
IN

Requirements class 2: /req/datastream

CONDITIONS
The server implements http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/
req/system

A
The server SHALL implement a DataStream resources endpoint at path {api_root}/systems/
{sysId}/datastreams for each available System resource.

B
The endpoint SHALL only expose the DataStream resources associated to the System with ID
sysId.

The set of datastreams associated to a specific deployment is available at a nested endpoint
under the corresponding Deployment resource:

REQUIREMENT 9

IDENTIFIER /req/datastream/ref-from-deployment

OPEN GEOSPATIAL CONSORTIUM 23-002 34

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/system
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/system

REQUIREMENT 9

INCLUDED
IN

Requirements class 2: /req/datastream

CONDITIONS
The server implements http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/
req/deployment

A
The server SHALL implement a DataStream resources endpoint at path {api_root}/
deployments/{depId}/datastreams for each available Deployment resource.

B
The endpoint SHALL only expose the DataStream resources associated to a system that was
deployed during the Deployment with ID depId, and whose valid time intersects the deployment
time period.

9.5. DataStream Collections

Any number of resources collections containing DataStream resources can be available at a CS
API endpoint. DataStream collections are identified with the item type DataStream.

DataStream resources can be grouped into collections according to any arbitrary criteria, as
exemplified below:

Example: Examples of DataStream Collections
• All data collected by organization X at URL {api_root}/collections/orgx_datastreams

• All data collected during a field survey involving multiple sensors at URL {api_root}/
collections/campaignX_datastreams

Note that a given datastream can be part of multiple collections at the same time.

REQUIREMENT 10

IDENTIFIER /req/datastream/collections

INCLUDED
IN

Requirements class 2: /req/datastream

A
If the server exposes collections of DataStream resources, it SHALL be done as specified in Clause
8.3.

B
The server SHALL identify all resource collections containing DataStream resources by setting the
itemType attribute to DataStream in the Collection metadata.

C
For any resource collection with itemType set to DataStream, the HTTP GET operation at the path
/collections/{collectionId}/items SHALL support the query parameters and response of a
DataStream resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 35

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/deployment
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/deployment

9.6. Observation Schemas

A different observation schema is needed for each individual datastream because the exact
content of the observations result changes according to result type and the properties being
observed. Moreover, multiple observation formats can be offered for any given datastream, and
the schema is typically expressed differently for each format.

Thus, for each DataStream resource, the CS API provides a way for the server to communicate
an observation schema (not necessarily a JSON schema) for each supported observation format.
The exact content of a schema resource is defined by each encoding. See section Clause 16.1.4
for example schemas used for observations encoded using the default JSON format.

Extensions to this Standard can define additional representation formats for observations. Such
format extensions must clearly define the mapping between elements of the representation
format and the Observation resource defined in the next clause.

REQUIREMENT 11

IDENTIFIER /req/datastream/schema-op

INCLUDED
IN

Requirements class 2: /req/datastream

A
For every DataStream resource exposed at the CS API endpoint, the server SHALL support the
HTTP GET operation at the path {api_root}/datastreams/{id}/schema.

B

The operation SHALL support the parameter obsFormat with the following characteristics (using an
OpenAPI 3.0 fragment):
name: obsFormat
in: query
description: Media type of the desired observation format
required: true
schema:
 type: string

C
A successful execution of the operation SHALL be reported as a response with a HTTP status
code 200. The server SHALL return a single schema corresponding to the format identified by the
obsFormat parameter.

D
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API —
Features — Part 1: Core.

Example: Example
If a datastream with ID {id} reports the following supported observation formats:

• application/json

• application/swe+csv

• application/swe+binary

OPEN GEOSPATIAL CONSORTIUM 23-002 36

https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

The schema for each of these formats is obtained with the following requests, respectively:

• https://{api_root}/datastreams/{id}/schema?obsFormat=application/json

• https://{api_root}/datastreams/{id}/schema?obsFormat=application/swe%2Bcsv

• https://{api_root}/datastreams/{id}/schema?obsFormat=application/swe%2Bbinary

Note that the media type in the request has to be properly URL encoded, leading to the %2B in
place of the + character.

9.7. Observation Resource

9.7.1. Introduction

In the CS API Standard, Observation resources are a special kind of resource that implements
the sosa:Observation concept.

In the CS API, Observation resources are always associated to a DataStream (e.g., a type of
ObservationCollection). Some properties of the observation (e.g., link to the observing system,
observed properties) can thus be omitted as they are provided at the datastream level.

In addition, the CS API does not restrict Observation resources to have a single observed
property. It is thus possible to package the observation result of several properties in a single
resource.

This section defines the attributes and associations composing a Observation resource, but the
exact way they are encoded in the payload is defined by each encoding. For encodings defined
in this document, please see:

• Observation resource encoded in JSON

Below is the contextual class diagram of the Observation resource:

OPEN GEOSPATIAL CONSORTIUM 23-002 37

http://www.w3.org/ns/sosa/Observation
https://www.w3.org/TR/vocab-ssn-ext/#sosa:ObservationCollection

Figure 3 — Observation Resource Diagram

9.7.2. Properties

The following tables describe the attributes and associations of an Observation resource and
their mapping to SOSA/SSN.

Table 6 — Observation Attributes

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

phenomenonTime
sosa:
phenomenonTime

The time the observed property value applies to
the feature of interest.

DateTime Required

resultTime sosa:resultTime The time the result value was obtained. DateTime Required

parameters -
Observation parameters, providing information
about how the procedure was used to produce
this specific observation.

Any Optional

result sosa:hasResult
Observation result, carrying the estimated
values of the observed properties.

Any Required

NOTE: The phenomenonTime can be in the far past (e.g., geological or deep space observations) or in the
future (e.g., weather forecast). The resultTime, however, can never be in the future.

Table 7 — Observation Associations

NAME SOSA/SSN PROPERTY DEFINITION TARGET CONTENT USAGE

datastream -
The DataStream that
the observation is part
of.

A single DataStream
resource.

Required

OPEN GEOSPATIAL CONSORTIUM 23-002 38

NAME SOSA/SSN PROPERTY DEFINITION TARGET CONTENT USAGE

samplingFeature
sosa:
hasFeatureOfInterest

The sampling feature
that is the subject of
the observation.

A single
SamplingFeature
resource.

Optional

procedure sosa:usedProcedure
The procedure that
was used to make the
observation

A single Procedure
resource.

Optional

9.8. Observation Canonical URL

The CS API Standard requires that every Observation resource has a canonical URL.

REQUIREMENT 12

IDENTIFIER /req/datastream/obs-canonical-url

INCLUDED
IN

Requirements class 2: /req/datastream

A
All Observation resources exposed by the server SHALL be accessible through their canonical URL
of the form {api_root}/observations/{id} where id is the local identifier of the Observation
resource.

B
If a Observation resource is retrieved through any other URL than its canonical URL, the server
response SHALL include a link to its canonical URL with relation type canonical.

9.9. Observation Resources Endpoint

9.9.1. Definition

An Observation resources endpoint is an endpoint exposing a set of Observation resources
that can be further filtered using query parameters.

REQUIREMENT 13

IDENTIFIER /req/datastream/obs-resources-endpoint

OPEN GEOSPATIAL CONSORTIUM 23-002 39

https://docs.ogc.org/is/23-001/23-001.html#_endpoint_types

REQUIREMENT 13

INCLUDED
IN

Requirements class 2: /req/datastream

A
The server SHALL support the HTTP GET operation at the path associated to the Observation
resources endpoint.

B
The operation SHALL support the parameter limit defined in Clause 7.15.2 of OGC API — Features
— Part 1: Core. All references to the term “features” or “feature” in OGC API — Features — Part 1:
Core requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200. The response SHALL only include the Observation resources selected by the request.

D
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API —
Features — Part 1: Core.

9.9.2. Canonical Observation Resources Endpoint

The CS API Standard requires that a canonical Observation resources endpoint, exposing all
Observation resources, be made available by the server.

REQUIREMENT 14

IDENTIFIER /req/datastream/obs-canonical-endpoint

INCLUDED IN Requirements class 2: /req/datastream

A
The server SHALL expose a Observation resources endpoint at the path {api_root}/
observations.

B The endpoint SHALL expose all Observation resources available on the server.

9.9.3. Nested Observation Resources Endpoint

The set of observations produced as part of a specific datastream is available at a nested
endpoint under the corresponding DataStream resource:

REQUIREMENT 15

IDENTIFIER /req/datastream/obs-ref-from-datastream

INCLUDED
IN

Requirements class 2: /req/datastream

OPEN GEOSPATIAL CONSORTIUM 23-002 40

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

REQUIREMENT 15

A
The server SHALL implement a Observation resources endpoint at path {api_root}/
datastreams/{dsId}/observations for each available DataStream resource.

B
The endpoint SHALL only expose the Observation resources that are part of the parent
DataStream with ID dsId.

9.10. Observation Collections

Any number of resources collections containing Observation resources can be available at a CS
API endpoint. Observation collections are identified with the item type Observation.

Observation resources can be grouped into collections according to any arbitrary criteria, as
exemplified below:

Example: Examples of Observation Collections
• All observations collected by organization X at URL {api_root}/collections/orgx_obs

• All observations collected during a field survey involving multiple sensors at URL {api_
root}/collections/campaignX_obs

Note that a given observation can be part of multiple collections at the same time.

REQUIREMENT 16

IDENTIFIER /req/datastream/obs-collections

INCLUDED
IN

Requirements class 2: /req/datastream

A
If the server exposes collections of Observation resources, it SHALL be done as specified in Clause
8.3.

B
The server SHALL identify all resource collections containing Observation resources by setting the
itemType attribute to Observation in the Collection metadata.

C
For any resource collection with itemType set to Observation, the HTTP GET operation at the path
/collections/{collectionId}/items SHALL support the query parameters and response of a
Observation resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 41

10

REQUIREMENTS CLASS
“CONTROL STREAMS &
COMMANDS”

OPEN GEOSPATIAL CONSORTIUM 23-002 42

10 REQUIREMENTS CLASS “CONTROL STREAMS
& COMMANDS”

10.1. Overview

REQUIREMENTS CLASS 3

IDENTIFIER /req/controlstream

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.3: /conf/controlstream

PREREQUISITE Requirements class 1: /req/api-common

NORMATIVE STATEMENTS

 Requirement 17: /req/controlstream/sf-ref-
from-controlstream
 Requirement 18: /req/controlstream/foi-ref-
from-controlstream
 Requirement 19: /req/controlstream/
canonical-url
 Requirement 20: /req/controlstream/
resources-endpoint
 Requirement 21: /req/controlstream/
canonical-endpoint
 Requirement 22: /req/controlstream/ref-from-
system
 Requirement 23: /req/controlstream/ref-from-
deployment
 Requirement 24: /req/controlstream/
collections
 Requirement 25: /req/controlstream/schema-op
 Requirement 26: /req/controlstream/cmd-
canonical-url
 Requirement 27: /req/controlstream/cmd-
resources-endpoint
 Requirement 28: /req/controlstream/cmd-
canonical-endpoint
 Requirement 29: /req/controlstream/cmd-ref-
from-controlstream

OPEN GEOSPATIAL CONSORTIUM 23-002 43

REQUIREMENTS CLASS 3

 Requirement 30: /req/controlstream/cmd-
collections
 Requirement 31: /req/controlstream/status-
resources-endpoint
 Requirement 32: /req/controlstream/command-
status-endpoint
 Requirement 33: /req/controlstream/result-
resources-endpoint
 Requirement 34: /req/controlstream/command-
result-endpoint

This requirements class specifies how ControlStream, Command, and CommandStatus resources
are provided using the CS API.

A ControlStream resource represents a control channel that is used to change the state of (or
affect) a feature of interest (which can be a System itself). The state is changed by sending the
desired values of certain controllable properties of the feature of interest, but note that the
resulting state will not necessarily reflect the exact values requested (If the exact result state
must be known, it can be monitored separately using an associated DataStream resource).

A ControlStream resource represents the real-time stream of command messages sent to
the system, as well as all historical commands received through the channel. It can be used to
provide access to real-time commands only, archived commands only, or both. The metadata in
the ControlStream description can used to disambiguate between these cases.

Command resources are available through their parent ControlStream resource, and each
command can lead to the creation of one or more status reports (i.e., CommandStatus resources).

ControlStream and Command resources implement the ActuationCollection and Actuation
concepts defined in the Semantic Sensor Network Ontology (SOSA/SSN), respectively.

10.2. ControlStream Resource

10.2.1. Introduction

In the CS API Standard, ControlStream resources are a special kind of resource that implements
the sosa:ActuationCollection concept, with the following restrictions:

• All commands in a ControlStream are received by the same System; and

• All commands in a ControlStream share the same controlled properties and the same
parameter schema.

OPEN GEOSPATIAL CONSORTIUM 23-002 44

http://www.w3.org/ns/sosa/ActuationCollection
http://www.w3.org/ns/sosa/Actuation
http://www.w3.org/ns/sosa/ActuationCollection

This section defines the attributes and associations composing a ControlStream resource, but
the exact way they are encoded in the payload is defined by each encoding. For encodings
defined in this document, please see:

• ControlStream resource encoded in JSON

Below is the contextual class diagram of the ControlStream resource:

Figure 4 — ControlStream Resource Diagram

10.2.2. Properties

The following tables describe the attributes and associations of the ControlStream resource and
their mapping to SOSA/SSN.

Table 8 — ControlStream Attributes

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

name rdfs:label
The human readable name of the
control stream.

String Required

description rdfs:comment
A human readable description for the
control stream.

String Optional

type -
The type of control stream (see Table
9).

Enum Optional

validTime sosa:validTime
The validity period of the control
stream’s description.

TimeExtent Optional

OPEN GEOSPATIAL CONSORTIUM 23-002 45

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

issueTime -
The time period spanned by the issue
times of all commands in the control
stream.

TimeExtent Required

executionTime
sosa:
phenomenonTime

The time period spanned by the
execution times of all commands in
the control stream.

TimeExtent Required

controlledProperties
sosa:
actsOnProperty

Properties whose value can be
changed by commands in the control
stream.

List<URI> Required

live -
Indicates whether the control stream
currently accepts commands.

Boolean Required

async -
Indicates whether commands are
processed asynchronously in the
control stream.

Boolean Required

formats -
The list of formats that the commands
in the control stream can be encoded
to.

List
<String>

Required

Table 9 — ControlStream Types

TYPE USAGE

self For control streams that affect the parent system itself or one of its subsystems.

external For control streams that affect external features of interest.

Table 10 — ControlStream Associations

NAME SOSA/SSN PROPERTY DEFINITION TARGET CONTENT USAGE

system sosa:madeByActuator

The System
that received
commands
from the
ControlStream.

A single System
resource.

Required

commands sosa:hasMember

The Commands
that were sent
to the control
channel.

A list of Command
resources.

Required

procedure sosa:usedProcedure
The procedure
used to

A single Procedure
resource.

Optional

OPEN GEOSPATIAL CONSORTIUM 23-002 46

NAME SOSA/SSN PROPERTY DEFINITION TARGET CONTENT USAGE

process
commands
received in
the control
stream.

deployment -

The
deployment
during which
the control
stream was
used.

A single
Deployment
resource.

Optional

samplingFeatures sosa:hasFeatureOfInterest

The Sampling
Features
that are the
target of
commands in
this control
stream.

A list of
SamplingFeature
resources.

Optional

featuresOfInterest
sosa:
hasUltimateFeatureOfInterest

The ultimate
features
of interest
that are
affected by
the commands
in this control
stream.

A list of Feature
resources.

Optional

NOTE: In the case of commands/actuations, the sampling feature is used to describe where the effector
interacts with the feature of interest (e.g., the vent of an A/C system, the part of a larger system, etc.).

When sampling features and ultimate features of interest are hosted on the same server, they
are made accessible through sub-endpoints of the DataStream resource.

REQUIREMENT 17

IDENTIFIER /req/controlstream/sf-ref-from-controlstream

INCLUDED
IN

Requirements class 3: /req/controlstream

CONDITIONS
The server implements http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/
req/sampling

A
The server SHALL implement a Sampling Feature resources endpoint at path {api_root}/
controlstreams/{dsId}/samplingFeatures for each available DataStream resource.

OPEN GEOSPATIAL CONSORTIUM 23-002 47

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/sampling
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/sampling

REQUIREMENT 17

B
The endpoint SHALL only expose the Sampling Feature resources that are associated to
observations in the parent DataStream with ID dsId.

REQUIREMENT 18

IDENTIFIER /req/controlstream/foi-ref-from-controlstream

INCLUDED
IN

Requirements class 3: /req/controlstream

CONDITIONS
• The server provides the featuresOfInterest association as part of ControlStream

resource representations.

• The server hosts the features of interest descriptions locally.

A
The server SHALL implement a Feature resources endpoint at path {api_root}/
controlstreams/{dsId}/featuresOfInterest for each available ControlStream resource.

B
The endpoint SHALL only expose the Feature resources that are the ultimate features of interest of
commands in the parent ControlStream with ID dsId.

10.3. ControlStream Canonical URL

The CS API Standard requires that every ControlStream resource has a canonical URL.

REQUIREMENT 19

IDENTIFIER /req/controlstream/canonical-url

INCLUDED
IN

Requirements class 3: /req/controlstream

A
All ControlStream resources exposed by the server SHALL be accessible through their
canonical URL of the form {api_root}/controls/{id} where id is the local identifier of the
ControlStream resource.

B
If a ControlStream resource is retrieved through any other URL than its canonical URL, the server
response SHALL include a link to its canonical URL with relation type canonical.

OPEN GEOSPATIAL CONSORTIUM 23-002 48

10.4. ControlStream Resources Endpoints

10.4.1. Definition

A DataStream resources endpoint is an endpoint exposing a set of ControlStream resources
that can be further filtered using query parameters.

REQUIREMENT 20

IDENTIFIER /req/controlstream/resources-endpoint

INCLUDED
IN

Requirements class 3: /req/controlstream

A
The server SHALL support the HTTP GET operation at the path associated to the ControlStream
resources endpoint.

B
The operation SHALL support the parameter limit defined in Clause 7.15.2 of OGC API — Features
— Part 1: Core. All references to the term “features” or “feature” in OGC API — Features — Part 1:
Core requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C

The operation SHALL support the parameter datetime defined in Clause 7.15.4 of OGC API —
Features — Part 1: Core. All references to the term “features” or “feature” in OGC API — Features —
 Part 1: Core requirements SHALL be replaced by the terms “resources” or “resource”, respectively.
Only DataStream resources that have a validTime property that intersects the temporal
information in the datetime parameter SHALL be part of the result set.

D
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200. The response SHALL only include the ControlStream resources selected by the request.

E
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API — Features
— Part 1: Core.

Clause 13.2 defines additional query parameters applicable to ControlStream resources
endpoint.

10.4.2. Canonical ControlStream Resources Endpoint

The CS API Standard requires that a canonical ControlStream resources endpoint, exposing all
ControlStream resources, be made available by the server.

REQUIREMENT 21

IDENTIFIER /req/controlstream/canonical-endpoint

OPEN GEOSPATIAL CONSORTIUM 23-002 49

https://docs.ogc.org/is/23-001/23-001.html#_endpoint_types
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

REQUIREMENT 21

INCLUDED IN Requirements class 3: /req/controlstream

A
The server SHALL expose a ControlStream resources endpoint at the path {api_root}/
controlstreams.

B The endpoint SHALL expose all ControlStream resources available on the server.

10.4.3. Nested ControlStream Resources Endpoints

The set of control streams available on a specific system is available at a nested endpoint under
the corresponding System resource:

REQUIREMENT 22

IDENTIFIER /req/controlstream/ref-from-system

INCLUDED
IN

Requirements class 3: /req/controlstream

CONDITIONS
The server implements http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/
req/system

A
The server SHALL implement a ControlStream resources endpoint at path {api_root}/systems/
{sysId}/controlstreams for each available System resource.

B
The endpoint SHALL only expose the ControlStream resources associated to the System with ID
sysId.

The set of control streams associated to a specific deployment can also be made available at a
nested endpoint under the corresponding Deployment resource:

REQUIREMENT 23

IDENTIFIER /req/controlstream/ref-from-deployment

INCLUDED
IN

Requirements class 3: /req/controlstream

CONDITIONS

• The server implements http://www.opengis.net/spec/ogcapi-connectedsystems-1/
1.0/req/deployment

• The server provides the controlstreams association as part of Deployment resource
representations.

A
The server SHALL implement a ControlStream resources endpoint at path {api_root}/
deployments/{depId}/controlstreams for each available Deployment resource.

OPEN GEOSPATIAL CONSORTIUM 23-002 50

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/system
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/system
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/deployment
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/deployment

REQUIREMENT 23

B
The endpoint SHALL only expose the ControlStream resources associated to a system that was
deployed during the Deployment with ID depId, and whose valid time intersects the deployment
time period.

10.5. ControlStream Collections

Any number of resources collections containing ControlStream resources can be available at a
CS API endpoint. ControlStream collections are identified with the item type ControlStream.

ControlStream resources can be grouped into collections according to any arbitrary criteria, as
exemplified below:

Example: Examples of ControlStream Collections
• All control streams used to control a fleet of unmanned systems at URL {api_root}/

collections/uxs_controlstreams

• All control streams used to task agents in a squad at URL {api_root}/collections/squad1_
controlstreams

Note that a given control stream can be part of multiple collections at the same time.

REQUIREMENT 24

IDENTIFIER /req/controlstream/collections

INCLUDED
IN

Requirements class 3: /req/controlstream

A
If the server exposes collections of ControlStream resources, it SHALL be done as specified in
Clause 8.3.

B
The server SHALL identify all resource collections containing ControlStream resources by setting
the itemType attribute to ControlStream in the Collection metadata.

C
For any resource collection with itemType set to ControlStream, the HTTP GET operation at the
path /collections/{collectionId}/items SHALL support the query parameters and response
of a ControlStream resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 51

10.6. Command Schemas

A different command schema is needed for each individual control stream because the exact
content of the command parameters changes according to the the properties being controlled.
Moreover, multiple command formats can be offered for any given control stream, and each
format may express the schema in a different manner.

Thus, for each ControlStream resource, the CS API provides a way for the server to
communicate a command schema (not necessarily a JSON schema) for each supported command
format. The exact content of a schema resource is defined by each encoding. See section
Clause 16.1.7 for example schemas used for commands encoded using the default JSON format.

Extensions to this Standard can define additional representation formats for Command
resources. Such format extensions must clearly define the mapping between elements of the
representation format and the Command resource defined in the next clause.

REQUIREMENT 25

IDENTIFIER /req/controlstream/schema-op

INCLUDED
IN

Requirements class 3: /req/controlstream

A
For every ControlStream resource exposed at the CS API endpoint, the server SHALL support the
HTTP GET operation at the path {api_root}/controlstreams/{id}/schema.

B

The operation SHALL support the parameter cmdFormat with the following characteristics (using an
OpenAPI 3.0 fragment):
name: cmdFormat
in: query
description: Media type of the desired command format
required: false
schema:
 type: string

C
A successful execution of the operation SHALL be reported as a response with a HTTP status
code 200. The server SHALL return a single schema corresponding to the format identified by the
cmdFormat parameter.

D
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API —
Features — Part 1: Core.

Example: Example
If a control stream reports the following supported command formats:

• application/json

• application/swe+csv

• application/swe+binary

OPEN GEOSPATIAL CONSORTIUM 23-002 52

https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

The schema for each of these formats is obtained with the following requests, respectively:

• https://{api_root}/controlstreams/{id}/schema?cmdFormat=application/json

• https://{api_root}/controlstreams/{id}/schema?cmdFormat=application/swe%2Bcsv

• https://{api_root}/controlstreams/{id}/schema?cmdFormat=application/swe%2Bbinary

Note that the media type in the request has to be properly URL encoded.

10.7. Command Resource

In the CS API Standard, Command resources are a special kind of resource that implements a
generalization of the sosa:Actuation concept.

In the CS API, Command resources are always associated to a ControlStream. Some properties of
the command (e.g., link to the parent system, controlled properties) can thus be omitted as they
are provided at the control stream level.

In addition, the CS API does not restrict Command resources to have a single controlled property.
It is thus possible to package the desired value of several controlled parameters in a single
command, and processing a command can result in actions on several properties at once (e.g.,
both orientation and FOV of a camera can be modified with a single ‘ptz’ command).

This section defines the attributes and associations composing a Command resource, but the exact
way they are encoded in the payload is defined by each encoding. For encodings defined in this
document, please see:

• Command resource encoded in JSON

Below is the contextual class diagram of the Command resource:

Figure 5 — Command Resource Diagram

OPEN GEOSPATIAL CONSORTIUM 23-002 53

http://www.w3.org/ns/sosa/Actuation

10.7.1. Properties

The following tables describe the attributes and associations of the Command resource.

Table 11 — Command Attributes

NAME DEFINITION
DATA
TYPE

USAGE

issueTime The time the command was received by the system. DateTime Required*

executionTime
The time period during which the command was executed. The
time period ends when the effect of the command has modified all
controlled properties of the feature of interest.

TimeExtent Optional

sender Identifier of the user or entity who issued the command String Optional

currentStatus Current status code of the command (see Table 14). Enum Required*

parameters The value of the command parameters. Any Required

(*) These properties are required when a command is reported by the server but not when
creating or updating a command. If provided on creation, they should be ignored by the server.

Table 12 — Command Associations

RELATION NAME DEFINITION TARGET CONTENT

controlstream The ControlStream that the command is part of.
A single ControlStream
resource.

samplingFeature
The feature of interest whose properties are changed by
the command.

A single SamplingFeature
resource.

procedure The procedure used to process the command. A single Procedure resource.

status List of status reports related to the command.
A list of CommandStatus
resources.

result
List of results generated during the execution of the
command.

A list of CommandResult
resources.

OPEN GEOSPATIAL CONSORTIUM 23-002 54

10.8. Command Canonical URL

The CS API Standard requires that every Command resource has a canonical URL.

REQUIREMENT 26

IDENTIFIER /req/controlstream/cmd-canonical-url

INCLUDED
IN

Requirements class 3: /req/controlstream

A
All Command resources exposed by the server SHALL be accessible through their canonical URL of the
form {api_root}/commands/{id} where id is the local identifier of the Command resource.

B
If a Command resource is retrieved through any other URL than its canonical URL, the server response
SHALL include a link to its canonical URL with relation type canonical.

10.9. Command Resources Endpoint

10.9.1. Definition

A Command resources endpoint is an endpoint exposing a set of Command resources that can be
further filtered using query parameters.

REQUIREMENT 27

IDENTIFIER /req/controlstream/cmd-resources-endpoint

INCLUDED
IN

Requirements class 3: /req/controlstream

A
The server SHALL support the HTTP GET operation at the path associated to the Command resources
endpoint.

B
The operation SHALL support the parameter limit defined in Clause 7.15.2 of OGC API — Features
— Part 1: Core. All references to the term “features” or “feature” in OGC API — Features — Part 1:
Core requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200. The response SHALL only include the Observation resources selected by the request.

D
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API —
Features — Part 1: Core.

OPEN GEOSPATIAL CONSORTIUM 23-002 55

https://docs.ogc.org/is/23-001/23-001.html#_endpoint_types
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

10.9.2. Canonical Command Resources Endpoint

The CS API Standard requires that a canonical Command resources endpoint, exposing all Command
resources, be made available by the server.

REQUIREMENT 28

IDENTIFIER /req/controlstream/cmd-canonical-endpoint

INCLUDED IN Requirements class 3: /req/controlstream

A The server SHALL expose a Command resources endpoint at the path {api_root}/commands.

B The endpoint SHALL expose all Command resources available on the server.

10.9.3. Nested Command Resources Endpoint

The set of commands received within a specific control stream is available at a nested endpoint
under the corresponding ControlStream resource:

REQUIREMENT 29

IDENTIFIER /req/controlstream/cmd-ref-from-controlstream

INCLUDED
IN

Requirements class 3: /req/controlstream

A
The server SHALL implement a Command resources endpoint at path {api_root}/
controlstream/{csId}/commands for each available ControlStream resource.

B
The endpoint SHALL only expose the Command resources that are part of the parent ControlStream
with ID csId.

10.10. Command Collections

Any number of resources collections containing Command resources can be available at a CS API
endpoint. Command collections are identified with the item type Command.

Command resources can be grouped into collections according to any arbitrary criteria.

Example: Examples of Command Collections

OPEN GEOSPATIAL CONSORTIUM 23-002 56

• All commands received from user A {api_root}/collections/userA_commands (would likely
be visible only to this user)

• All commands that targeted a specific feature of interest B {api_root}/collections/
featureB_commands

Note that a given commands can be part of multiple collections at the same time.

REQUIREMENT 30

IDENTIFIER /req/controlstream/cmd-collections

INCLUDED
IN

Requirements class 3: /req/controlstream

A If the server exposes collections of Command resources, it SHALL be done as specified in Clause 8.3.

B
The server SHALL identify all resource collections containing Command resources by setting the
itemType attribute to Command in the Collection metadata.

C
For any resource collection with itemType set to Command, the HTTP GET operation at the path /
collections/{collectionId}/items SHALL support the query parameters and response of a
Command resources endpoint.

10.11. CommandStatus Resource

CommandStatus resources represent a status report describing the status/progress of a command
at a given point in time.

When commands are processed synchronously, a single status report is provided in the HTTP
response. The status can be either COMPLETED,REJECTED or FAILED.

When commands are processed asynchronously, several status reports can be issued for any
given command. They are used to report early acceptance/rejection of the command, scheduling
and execution steps as well as failure and cancellations. It is recommended for a server to
generate appropriate status reports to report incremental progress of long running commands.

This section defines the attributes and associations composing a CommandStatus resource, but
the exact way they are encoded in the payload is defined by each encoding. For encodings
defined in this document, please see:

• Command Status resource encoded in JSON

Below is the contextual class diagram of the CommandStatus resource:

OPEN GEOSPATIAL CONSORTIUM 23-002 57

Figure 6 — Command Status Resource Diagram

10.11.1. Properties

The following tables describe the attributes and associations of the CommandStatus resource.

Table 13 — Command Status Attributes

NAME DEFINITION DATA TYPE USAGE

reportTime The time when the status report was generated. DateTime Required

statusCode Code describing the state of the command (see Table 14). Enum Required

percentCompletion Estimated progress as a percentage of total progress. Number Optional

executionTime

The time period during which the command was or will be
executed. This can either represent the estimated or actual
execution time period depending on the associated status
code (see status code in Table 14). The time period ends
when the effect of the command has modified all controlled
properties of the feature of interest.

TimeExtent Optional

message A human readable status message. String Optional

result
The result of the command associated to the progress report
(this can be a partial result).

List of Command
Result

Optional

OPEN GEOSPATIAL CONSORTIUM 23-002 58

Table 14 — Command Status Codes

CODE USAGE

PENDING
The command is pending, meaning it has been received by the system but no decision to accept or
reject it has been made.

ACCEPTED
The command was accepted by the receiving system. This usually means that the command has
passed the first validation steps, but it can still be rejected or fail later during execution.

REJECTED
The command was rejected by the receiving system. It won’t be executed at all and the message
property provides the reason for the rejection. This is a final state. No further status updates will be
sent.

SCHEDULED
The command was validated and effectively scheduled by the receiving system. When this status
code is used, the scheduled execution time must be provided.

UPDATED
An update to the command was received and accepted. This code must be used if the system
supports task updates.

CANCELED
The command was canceled by an authorized user. This code must be used if the system supports
user driven task cancellations. The REJECTED state should be used instead if the command was
canceled by the receiving system. This is a final state. No further status updates will be sent.

EXECUTING

The command is currently being executed by the receiving system. The status message can provide
more information about the current progress. A system can send several status updates with
this code but different time stamps to report progress incrementally. In particular, the progress
percentage and the end of the (estimated) execution time period can be refined in each update.

COMPLETED
The command has completed after a successful execution. The actual execution time must be
provided. This is a final state. No further status updates will be sent.

FAILED
The command has failed during execution. The error and/or status message provides the reason for
failure. This is a final state. No further status updates will be sent.

Table 15 — Command Status Associations

NAME DEFINITION TARGET CONTENT

command The Command that this status report relates to. A single Command resource.

10.12. CommandStatus Resources Endpoint

10.12.1. Definition

A Command Status resources endpoint is an endpoint exposing a set of CommandStatus
resources that can be further filtered using query parameters.

OPEN GEOSPATIAL CONSORTIUM 23-002 59

https://docs.ogc.org/is/23-001/23-001.html#_endpoint_types

REQUIREMENT 31

IDENTIFIER /req/controlstream/status-resources-endpoint

INCLUDED
IN

Requirements class 3: /req/controlstream

A
The server SHALL support the HTTP GET operation at the path associated to the CommandStatus
resources endpoint.

B

The operation SHALL support the parameters limit and datetime defined in Clause 7.15.2 of
OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in OGC API
— Features — Part 1: Core requirements SHALL be replaced by the terms “resources” or “resource”,
respectively.

C
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200. The response SHALL only include the CommandStatus resources selected by the request.

D
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API —
Features — Part 1: Core.

10.12.2. Status Endpoint

The set of status reports associated to a given command is available at a nested endpoint under
the corresponding Command resource:

REQUIREMENT 32

IDENTIFIER /req/controlstream/command-status-endpoint

INCLUDED
IN

Requirements class 3: /req/controlstream

A
The server SHALL implement a Command Status resources endpoint at path {api_root}/
command/{cmdId}/status for every Command resource.

B
The endpoint SHALL only expose the CommandStatus resources that are related to the Command
resource with local ID cmdId.

10.13. CommandResult Resource

Certain types of commands lead to the production of data (e.g., tasking a system for data
collection, triggering a process such as a simulation run, etc.).

Different types of result can be attached to a command status report:

OPEN GEOSPATIAL CONSORTIUM 23-002 60

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

• Reference to one or more datastreams containing the result data, each with an optional
time range;

• Reference to one or more individual observations containing the result data;

• Reference to a collection of observations containing the result data; and

• Inline result data encoded as described by the control stream result schema (can be one or
more records).

NOTE 1:In the case of a command result provided inline, the result data may or may not be recorded
separately in a datastream.
NOTE 2:For commands executed synchronously, the result can be provided as part of the status report
returned in the HTTP response.

The following examples describe how command results are used in various use cases:

Example: Example 1: Chemical plume simulation
A command is used to trigger a new run of a chemical plume dispersion model with certain
parameters. The output of the model is a time series of observations where each observation
provides the location of all particles for a given time (phenomenonTime). Each processed
command leads to the creation of a new datastream that will contain all observations resulting
for the model run. When the run is completed, a last progress report is provided with a reference
to the datastream.
Example 2: UAV video footage task
A command is used to task a UAV to collect video data while orbiting around a building. The
output is a set of may observations (i.e., video frames) that are appended to the existing video
datastream of the UAV. When the task is completed, a last status report is provided with a
reference to the video datastream with a time range selecting the portion of the video stream
that is relevant to the task.

Example 3: UAV picture task
A command is used to task a UAV to collect an image at a specific location. The output is a
single observation that is appended to the existing image datastream of the UAV. When the task
is completed, a last progress report is provided with a reference to the image observation.

Example 4: Satellite imagery acquisition
A command is used to task an earth observation satellite to collect imagery to cover a
given geographic area (i.e., coverage request). The output is a set of one or more image
observations that are appended to the existing image datastream of the EO sensor. When the
task is completed, a last status report is provided with references to all the collected image
observations.

Example 5: System state retrieval
A command is used to query the state of a system. The result of the query is provided inline in
the status report (potentially synchronously if the state data can be retrieved quickly).

Example 6: On-demand processing

OPEN GEOSPATIAL CONSORTIUM 23-002 61

A command is used to trigger a simple on-demand process that computes temporal averages
of parameters in a datastream over a certain time period. The output of the process is provided
inline in the status report (potentially synchronously if the computation can be done quickly).

This section defines the attributes and associations composing a CommandResult resource, but
the exact way they are encoded in the payload is defined by each encoding. For encodings
defined in this document, please see:

• Command Result resource encoded in JSON

Below is the contextual class diagram of the CommandResult resource:

Figure 7 — Command Result Resource Diagram

10.13.1. Properties

The following tables describe the attributes and associations of the CommandResult resource. At
least one of the properties must be provided.

Table 16 — Command Result Attributes

NAME DEFINITION
DATA
TYPE

USAGE

inline
The result data provided inline (encoded according to the ControlStream result
schema).

Any Optional

Table 17 — Command Result Associations

NAME DEFINITION TARGET CONTENT

observation
An observation resulting from the execution of the
command

A list of Observation resources (by
reference).

datastream
A datastream containing observations resulting from the
execution of the command

A single DataStream resource (by
reference).

OPEN GEOSPATIAL CONSORTIUM 23-002 62

NAME DEFINITION TARGET CONTENT

external An external dataset containing the results of the command. Any resource (by reference).

10.14. CommandResult Resources Endpoint

10.14.1. Definition

A Command Result resources endpoint is an endpoint exposing a set of CommandResult
resources that can be further filtered using query parameters.

REQUIREMENT 33

IDENTIFIER /req/controlstream/result-resources-endpoint

INCLUDED
IN

Requirements class 3: /req/controlstream

A
The server SHALL support the HTTP GET operation at the path associated to the CommandResult
resources endpoint.

B
The operation SHALL support the parameter limit defined in Clause 7.15.2 of OGC API — Features
— Part 1: Core. All references to the term “features” or “feature” in OGC API — Features — Part 1:
Core requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200. The response SHALL only include the CommandResult resources selected by the request.

D
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API —
Features — Part 1: Core.

10.14.2. Result Endpoint

The set of result items associated to a given command is available at a nested endpoint under
the corresponding Command resource:

REQUIREMENT 34

IDENTIFIER /req/controlstream/command-result-endpoint

INCLUDED
IN

Requirements class 3: /req/controlstream

OPEN GEOSPATIAL CONSORTIUM 23-002 63

https://docs.ogc.org/is/23-001/23-001.html#_endpoint_types
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

REQUIREMENT 34

A
The server SHALL implement a Command Result resources endpoint at path {api_root}/command/
{cmdId}/result for every Command resource that can be associated to a result.

B
The endpoint SHALL only expose the CommandResult resources that are related to the Command
resource with local ID cmdId.

OPEN GEOSPATIAL CONSORTIUM 23-002 64

11

REQUIREMENTS CLASS
“COMMAND FEASIBILITY”

OPEN GEOSPATIAL CONSORTIUM 23-002 65

11 REQUIREMENTS CLASS “COMMAND
FEASIBILITY”

11.1. Overview

REQUIREMENTS CLASS 4

IDENTIFIER /req/feasibility

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.4: /conf/feasibility

PREREQUISITE Requirements class 3: /req/controlstream

NORMATIVE STATEMENTS

 Requirement 35: /req/feasibility/
canonical-url
 Requirement 36: /req/feasibility/ref-from-
controlstream
 Requirement 37: /req/feasibility/status-
endpoint
 Requirement 38: /req/feasibility/result-
endpoint
 Requirement 39: /req/feasibility/
collections

The execution of certain commands is sometimes impossible due to internal or external
constraints (e.g., conflict with other scheduled commands, conflict with another user that has
exclusive control on the system, etc.).

In order for a client to know if a command/task is feasible without sending the actual command,
feasibility channels are supported by the CS API.

In addition to providing a binary (i.e., YES/NO) response to a feasibility request, the CS API
also provides a mechanism for returning detailed feasibility analysis information to a client (e.g.,
provide chances of success, task execution steps, alternatives, etc.).

A feasibility request is initiated by creating a Command resource on the feasibility channel. The
server can then respond synchronously or asynchronously just like for a regular command
channel. The parameters used for the feasibility request are the same as the one for the

OPEN GEOSPATIAL CONSORTIUM 23-002 66

corresponding commands (i.e., both commands and feasibility share the same parameters
schema).

11.2. Feasibility Resource

A Feasibility resource is a Command resource created on a control stream feasibility channel
(see Clause 10.7, Command Resource for details).

All nested resources available under a regular command resource are also available under the
feasibility resource.

11.3. Feasibility Canonical URL

The CS API Standard requires that every Feasibility resource has a canonical URL.

REQUIREMENT 35

IDENTIFIER /req/feasibility/canonical-url

INCLUDED
IN

Requirements class 4: /req/feasibility

A
All Feasibility resources exposed by the server SHALL be accessible through their canonical URL
of the form {api_root}/feasibility/{id} where id is the local identifier of the Feasibility
resource.

B
If a Feasibility resource is retrieved through any other URL than its canonical URL, the server
response SHALL include a link to its canonical URL with relation type canonical.

11.4. Feasibility Endpoint

The set of feasibility requests received for a specific control stream is available at a nested
endpoint under the corresponding ControlStream resource:

REQUIREMENT 36

IDENTIFIER /req/feasibility/ref-from-controlstream

OPEN GEOSPATIAL CONSORTIUM 23-002 67

REQUIREMENT 36

INCLUDED
IN

Requirements class 4: /req/feasibility

A
The server SHALL implement a Command resources endpoint at path {api_root}/
controlstream/{csId}/feasibility for each available ControlStream resource.

B
The endpoint SHALL only expose the Feasibility resources that are part of the parent
ControlStream with ID csId.

11.5. Feasibility Status

Feasibility status is provided using a CommandStatus resource (see Clause 10.11,
CommandStatus Resource for details).

The following table clarifies the meaning of status codes in the case of a feasibility request:

Table 18 — Feasibility Status Codes

CODE USAGE

PENDING
The feasibility request is pending, meaning it has been received by the system but no decision to
accept or reject it has been made.

ACCEPTED
The feasibility request was accepted by the receiving system. This usually means that the request
parameters have passed the first validation steps, but it can still be rejected or fail later during the
analysis.

REJECTED
The feasibility request was rejected by the receiving system. It won’t be processed at all and the
message property provides the reason for the rejection. This is a final state. No further status
updates will be sent.

SCHEDULED Unused for feasibility requests.

UPDATED Unused for feasibility requests.

CANCELED

The feasibility request was canceled by an authorized user. This code must be used if the system
supports user driven task cancellations. The REJECTED state should be used instead if the feasibility
analysis was canceled by the receiving system. This is a final state. No further status updates will be
sent.

EXECUTING

The feasibility request is currently being processed by the receiving system. The status message
can provide more information about the current progress. A system can send several status updates
with this code but different time stamps to report progress incrementally. In particular, the progress
percentage and the end of the (estimated) execution time period can be refined in each update.

COMPLETED
The feasibility analysis has completed successfully. The actual execution time must be provided. This
is a final state. No further status updates will be sent.

OPEN GEOSPATIAL CONSORTIUM 23-002 68

CODE USAGE

FAILED
The feasibility analysis has failed during processing. The error and/or status message provides the
reason for failure. This is a final state. No further status updates will be sent.

The set of status reports associated to a given feasibility request is available at a nested
endpoint under the corresponding Feasibility resource:

REQUIREMENT 37

IDENTIFIER /req/feasibility/status-endpoint

INCLUDED
IN

Requirements class 4: /req/feasibility

A
The server SHALL implement a Command Status resources endpoint at path {api_root}/
feasibility/{feasId}/status for every Feasibility resource.

B
The endpoint SHALL only expose the CommandStatus resources that are related to the
Feasibility resource with local ID feasId.

11.6. Feasibility Result

Feasibility results are provided using CommandResult resources (see Clause 10.13,
CommandResult Resource for details).

The results of a feasibility analysis are usually provided inline. The result structure must match
the “feasibility result schema” provided by the parent ControlStream resource. The “feasibility
result schema” is typically different from the “command result schema”.

Below are examples of feasibility results for various use cases:

Example: Example 1: Tasking a UAV to go to a lat/lon location
In addition to a binary (yes/no) feasibility response, the result of the feasibility analysis may
include the earliest time at which the location could be reached, as well as the expected
trajectory.
Example 2: Tasking a satellite to cover an area with visible imagery
The result of the feasibility analysis may include all the attempts needed to have a high enough
chance of success to obtain a clear (i.e., cloud free) image of the area. If the area is too large
to be covered with a single image, an estimated success rate and completion time could be
provided separately for each subdivision of the geographic area.

The set of result items associated to a given feasibility request is available at a nested endpoint
under the corresponding Feasibility resource:

OPEN GEOSPATIAL CONSORTIUM 23-002 69

REQUIREMENT 38

IDENTIFIER /req/feasibility/result-endpoint

INCLUDED
IN

Requirements class 4: /req/feasibility

A
The server SHALL implement a Command Result resources endpoint at path {api_root}/
feasibility/{feasId}/result for every Feasibility resource.

B
The endpoint SHALL only expose the CommandResult resources that are related to the
Feasibility resource with local ID feasId.

11.7. Feasibility Collections

Collections of feasibility resources are also supported, but are optional.

REQUIREMENT 39

IDENTIFIER /req/feasibility/collections

INCLUDED
IN

Requirements class 4: /req/feasibility

A
If the server exposes collections of Feasibility resources, it SHALL be done as specified in Clause
8.3.

B
The server SHALL identify all resource collections containing Feasibility resources by setting the
itemType attribute to Feasibility in the Collection metadata.

C
For any resource collection with itemType set to Feasibility, the HTTP GET operation at the path
/collections/{collectionId}/items SHALL support the query parameters and response of a
Command resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 70

12

REQUIREMENTS CLASS
“SYSTEM EVENTS”

OPEN GEOSPATIAL CONSORTIUM 23-002 71

12 REQUIREMENTS CLASS “SYSTEM EVENTS”

REQUIREMENTS CLASS 5

IDENTIFIER /req/system-event

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.5: /conf/system-event

PREREQUISITES
Requirements class 1: /req/api-common
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/system

NORMATIVE STATEMENTS

 Requirement 40: /req/system-event/canonical-url
 Requirement 41: /req/system-event/resources-endpoint
 Requirement 42: /req/system-event/canonical-endpoint
 Requirement 43: /req/system-event/ref-from-system
 Requirement 44: /req/system-event/collections

12.1. Overview

SystemEvent resources are used to capture information about various events and maintenance
operations occurring on (observing) systems such as recalibrations, part replacements, software
updates, relocations/deployments, operator handoffs, decommissioning, etc.

This section predefines a certain number of event types but the list can be extended further by
extensions.

12.2. SystemEvent Resource

SystemEvent resources are modeled on the SensorML Event class.

This section defines the attributes and associations composing a SystemEvent resource, but the
exact way they are encoded in the payload is defined by each encoding. For encodings defined
in this document, please see:

• System Event resource encoded in JSON

OPEN GEOSPATIAL CONSORTIUM 23-002 72

Below is the contextual class diagram of the SystemEvent resource:

Figure 8 — System Event Diagram

12.2.1. Properties

The following tables describe the attributes and associations of a SystemEvent resource.

Table 19 — System Event Attributes

NAME DEFINITION DATA TYPE USAGE

name The name of the event. String Required

description A human readable description for the event. String Optional

type The type of event (see Table 20). URI Required

eventTime The time the event occurred on the system. TimeExtent Required

message A human readable message from the operator. String Optional

Table 20 — System Event Types

TYPE URI USAGE

http://www.opengis.
net/def/x-OGC/
TBD/Calibration

System was calibrated or recalibrated.

http://www.
opengis.net/def/

The configuration was changed.

OPEN GEOSPATIAL CONSORTIUM 23-002 73

http://www.opengis.net/def/x-OGC/TBD/Calibration
http://www.opengis.net/def/x-OGC/TBD/Calibration
http://www.opengis.net/def/x-OGC/TBD/Calibration
http://www.opengis.net/def/x-OGC/TBD/ConfigurationChange
http://www.opengis.net/def/x-OGC/TBD/ConfigurationChange

TYPE URI USAGE

x-OGC/TBD/
ConfigurationChange

http://www.
opengis.net/def/
x-OGC/TBD/
SoftwareUpdate

The software was updated.

http://www.
opengis.net/def/
x-OGC/TBD/
PartReplacement

One or more physical parts were replaced.

http://www.opengis.
net/def/x-OGC/
TBD/Relocation

The system was moved to a different location.

http://www.opengis.
net/def/x-OGC/
TBD/Deployment

The system was deployed.

http://www.opengis.
net/def/x-OGC/
TBD/Decommission

The system was decommissioned.

Table 21 — System Event Associations

RELATION NAME DEFINITION TARGET CONTENT

system Link to the System this event relates to. A single System resource.

12.3. SystemEvent Canonical URL

The CS API Standard requires that every SystemEvent resource has a canonical URL.

REQUIREMENT 40

IDENTIFIER /req/system-event/canonical-url

INCLUDED
IN

Requirements class 5: /req/system-event

OPEN GEOSPATIAL CONSORTIUM 23-002 74

http://www.opengis.net/def/x-OGC/TBD/ConfigurationChange
http://www.opengis.net/def/x-OGC/TBD/ConfigurationChange
http://www.opengis.net/def/x-OGC/TBD/SoftwareUpdate
http://www.opengis.net/def/x-OGC/TBD/SoftwareUpdate
http://www.opengis.net/def/x-OGC/TBD/SoftwareUpdate
http://www.opengis.net/def/x-OGC/TBD/SoftwareUpdate
http://www.opengis.net/def/x-OGC/TBD/PartReplacement
http://www.opengis.net/def/x-OGC/TBD/PartReplacement
http://www.opengis.net/def/x-OGC/TBD/PartReplacement
http://www.opengis.net/def/x-OGC/TBD/PartReplacement
http://www.opengis.net/def/x-OGC/TBD/Relocation
http://www.opengis.net/def/x-OGC/TBD/Relocation
http://www.opengis.net/def/x-OGC/TBD/Relocation
http://www.opengis.net/def/x-OGC/TBD/Deployment
http://www.opengis.net/def/x-OGC/TBD/Deployment
http://www.opengis.net/def/x-OGC/TBD/Deployment
http://www.opengis.net/def/x-OGC/TBD/Decommission
http://www.opengis.net/def/x-OGC/TBD/Decommission
http://www.opengis.net/def/x-OGC/TBD/Decommission

REQUIREMENT 40

A
All SystemEvent resources exposed by the server SHALL be accessible through their canonical URL
of the form {api_root}/systemEvents/{id} where id is the local identifier of the SystemEvent
resource.

B
If a SystemEvent resource is retrieved through any other URL than its canonical URL, the server
response SHALL include a link to its canonical URL with relation type canonical.

12.4. SystemEvent Resources Endpoints

12.4.1. Definition

A SystemEvent resources endpoint is an endpoint exposing a set of SystemEvent resources that
can be further filtered using query parameters.

REQUIREMENT 41

IDENTIFIER /req/system-event/resources-endpoint

INCLUDED
IN

Requirements class 5: /req/system-event

A
The server SHALL support the HTTP GET operation at the path associated to the SystemEvent
resources endpoint.

B

The operation SHALL support the parameters limit and datetime defined in Clause 7.15.2 and
Clause 7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature”
in OGC API — Features — Part 1: Core requirements SHALL be replaced by the terms “resources” or
“resource”, respectively.

C
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200. The response SHALL only include the SystemEvent resources selected by the request.

D
Error cases SHALL be reported using HTTP status codes listed in Clause 7.5.1 of OGC API —
Features — Part 1: Core.

Clause 13.7 defines additional query parameters applicable to SystemEvent resources endpoint.

12.4.2. Canonical SystemEvent Resources Endpoint

The CS API Standard requires that a canonical SystemEvent resources endpoint, exposing all
SystemEvent resources, be made available by the server.

OPEN GEOSPATIAL CONSORTIUM 23-002 75

https://docs.ogc.org/is/23-001/23-001.html#_endpoint_types
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_limit
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#http_status_codes

REQUIREMENT 42

IDENTIFIER /req/system-event/canonical-endpoint

INCLUDED IN Requirements class 5: /req/system-event

A
The server SHALL expose a System Event resources endpoint at the path {api_root}/
systemEvents.

B The endpoint SHALL expose all SystemEvent resources available on the server.

12.4.3. Nested SystemEvent Resources Endpoints

The set of events related to a specific system is available at a nested endpoint under the
corresponding System resource:

REQUIREMENT 43

IDENTIFIER /req/system-event/ref-from-system

INCLUDED
IN

Requirements class 5: /req/system-event

A
The server SHALL implement a System Event resources endpoint at path {api_root}/systems/
{sysId}/events for each available System resource.

B
The endpoint SHALL only expose the SystemEvent resources associated to the System with ID
sysId.

12.5. SystemEvent Collections

Any number of resources collections containing SystemEvent resources can be available at a CS
API endpoint. SystemEvent collections are identified with the item type SystemEvent.

SystemEvent resources can be grouped into collections according to any arbitrary criteria, as
exemplified below:

Example: Examples of SystemEvent Collections
• All events related to a fleet of UAVs at URL {api_root}/collections/uas_fleet1_events

• All events related to a particular mission at URL {api_root}/collections/mission23_events

Note that a given event can be part of multiple collections at the same time.

OPEN GEOSPATIAL CONSORTIUM 23-002 76

REQUIREMENT 44

IDENTIFIER /req/system-event/collections

INCLUDED
IN

Requirements class 5: /req/system-event

A
If the server exposes collections of SystemEvent resources, it SHALL be done as specified in Clause
8.3.

B
The server SHALL identify all resource collections containing SystemEvent resources by setting the
itemType attribute to SystemEvent in the Collection metadata.

C
For any resource collection with itemType set to SystemEvent, the HTTP GET operation at the path
/collections/{collectionId}/items SHALL support the query parameters and response of a
System Event resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 77

13

REQUIREMENTS CLASS
“ADVANCED FILTERING”

OPEN GEOSPATIAL CONSORTIUM 23-002 78

13 REQUIREMENTS CLASS “ADVANCED
FILTERING”

REQUIREMENTS CLASS 6

IDENTIFIER /req/advanced-filtering

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.6: /conf/advanced-filtering

PREREQUISITES
Requirements class 1: /req/api-common
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/req/advanced-
filtering

NORMATIVE
STATEMENTS

 Requirement 45: /req/advanced-filtering/datastream-by-phenomenontime
 Requirement 46: /req/advanced-filtering/datastream-by-resulttime
 Requirement 47: /req/advanced-filtering/datastream-by-obsprop
 Requirement 48: /req/advanced-filtering/datastream-by-foi
 Requirement 49: /req/advanced-filtering/obs-by-phenomenontime
 Requirement 50: /req/advanced-filtering/obs-by-resulttime
 Requirement 51: /req/advanced-filtering/obs-by-foi
 Requirement 52: /req/advanced-filtering/controlstream-by-issuetime
 Requirement 53: /req/advanced-filtering/controlstream-by-exectime
 Requirement 54: /req/advanced-filtering/controlstream-by-controlprop
 Requirement 55: /req/advanced-filtering/controlstream-by-foi
 Requirement 56: /req/advanced-filtering/cmd-by-issuetime
 Requirement 57: /req/advanced-filtering/cmd-by-exectime
 Requirement 58: /req/advanced-filtering/cmd-by-status
 Requirement 59: /req/advanced-filtering/cmd-by-sender
 Requirement 60: /req/advanced-filtering/cmd-by-foi
 Requirement 61: /req/advanced-filtering/status-by-statuscode
 Requirement 62: /req/advanced-filtering/event-by-type

13.1. Overview

This requirements class specifies additional filtering options that may be used to select only a
subset of the resources in a collection.

All filters defined in this section are implemented using URL query parameters and are used
in addition to the ones defined in other requirements classes. In particular, all parameters

OPEN GEOSPATIAL CONSORTIUM 23-002 79

defined in Clause 16.3 of OGC API — Connected Systems — Part 1 shall also be supported on all
resource types.

13.2. DataStream Query Parameters

The following query parameters are used to filter DataStream resources at a
DataStream resources endpoint.

13.2.1. Phenomenon Time Filter

This filter is used to select datastreams based on their phenomenonTime extent.

REQUIREMENT 45

IDENTIFIER /req/advanced-filtering/datastream-by-phenomenontime

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an DataStream resources endpoint SHALL support a parameter
phenomenonTime.

B
The parameter SHALL fulfill the same requirements as the parameter datetime defined in Clause
7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in
these requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
Only the phenomenonTime property of DataStream resources SHALL be used to determine the
temporal extent evaluated against the parameter.

13.2.2. Result Time Filter

This filter is used to select datastreams based on their resultTime extent.

REQUIREMENT 46

IDENTIFIER /req/advanced-filtering/datastream-by-resulttime

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an DataStream resources endpoint SHALL support a parameter
resultTime.

OPEN GEOSPATIAL CONSORTIUM 23-002 80

https://docs.ogc.org/DRAFTS/23-001r0.html#_common_resource_query_parameters
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime

REQUIREMENT 46

B
The parameter SHALL fulfill the same requirements as the parameter datetime defined in Clause
7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in
these requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
Only the resultTime property of DataStream resources SHALL be used to determine the temporal
extent evaluated against the parameter.

13.2.3. Observed Property Filter

This filter is used to select datastreams that include specific observable properties.

REQUIREMENT 47

IDENTIFIER /req/advanced-filtering/datastream-by-obsprop

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at a DataStream resources endpoint SHALL support a parameter
observedProperty of type ID_List.

B
Only datastreams that include an observed property that has one of the requested identifiers SHALL
be part of the result set.

13.2.4. Feature of Interest Filter

This filter is used to select datastreams that are associated to specific sampling features or
(ultimate) features of interest.

REQUIREMENT 48

IDENTIFIER /req/advanced-filtering/datastream-by-foi

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an DataStream resources endpoint SHALL support a parameter foi of
type ID_List.

B
Only DataStream resources that are associated to a feature of interest that has one of the requested
identifiers SHALL be part of the result set.

C Both sampling features and domain features of interest SHALL be included in the search.

OPEN GEOSPATIAL CONSORTIUM 23-002 81

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/23-001/23-001.html#filter-idlist-schema
https://docs.ogc.org/is/23-001/23-001.html#filter-idlist-schema

13.3. Observation Query Parameters

The following query parameters are used to filter Observation resources at an {obs-resources-
endpoint}.

13.3.1. Phenomenon Time Filter

This filter is used to select observations based on their phenomenonTime property.

REQUIREMENT 49

IDENTIFIER /req/advanced-filtering/obs-by-phenomenontime

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an Observation resources endpoint SHALL support a parameter
phenomenonTime.

B
The parameter SHALL fulfill the same requirements as the parameter datetime defined in Clause
7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in
these requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
Only the phenomenonTime property of Observation resources SHALL be used to determine the
temporal extent evaluated against the parameter.

Example
Example queries to find Observations by phenomenonTime

closed interval
{api_root}/datastreams/123/observations?phenomenonTime=2018-02-12T00:00:

00Z/2018-03-18T12:31:12Z

open interval
{api_root}/datastreams/123/observations?phenomenonTime=2018-02-12T00:00:

00Z/..

special case now {api_root}/datastreams/123/observations?phenomenonTime=now

13.3.2. Result Time Filter

This filter is used to select observations based on their resultTime property.

OPEN GEOSPATIAL CONSORTIUM 23-002 82

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime

REQUIREMENT 50

IDENTIFIER /req/advanced-filtering/obs-by-resulttime

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an Observation resources endpoint SHALL support a parameter
resultTime.

B
The parameter SHALL fulfill the same requirements as the parameter datetime defined in Clause
7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in
these requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
Only the resultTime property of Observation resources SHALL be used to determine the
temporal extent evaluated against the parameter.

D
In addition to the possible parameter values defined in OGC API — Features — Part 1: Core, the
parameter SHALL also support the special value latest. When this special value is used, only
observations with the latest result time SHALL be included in the result set.

Example
Example queries to find Observations by resultTime

closed interval
{api_root}/datastreams/123/observations?resultTime=2018-02-12T00:00:00Z/

2018-03-18T12:31:12Z

open interval {api_root}/datastreams/123/observations?resultTime=2018-02-12T00:00:00Z/..

special case latest {api_root}/datastreams/123/observations?resultTime=latest

13.3.3. Feature of Interest Filter

This filter is used to select observations that are associated to specific sampling features or
ultimate features of interests.

REQUIREMENT 51

IDENTIFIER /req/advanced-filtering/obs-by-foi

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an Observation resources endpoint SHALL support a parameter foi of
type ID_List.

B
Only Observation resources that are associated to a feature of interest that has one of the
requested identifiers SHALL be part of the result set.

OPEN GEOSPATIAL CONSORTIUM 23-002 83

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/23-001/23-001.html#filter-idlist-schema

REQUIREMENT 51

C Both sampling features and domain features of interest SHALL be included in the search.

13.4. ControlStream Query Parameters

The following query parameters are used to filter ControlStream resources at a ControlStream
resources endpoint.

13.4.1. Issue Time Filter

This filter is used to select control streams based on their issueTime extent.

REQUIREMENT 52

IDENTIFIER /req/advanced-filtering/controlstream-by-issuetime

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an ControlStream resources endpoint SHALL support a parameter
issueTime.

B
The parameter SHALL fulfill the same requirements as the parameter datetime defined in Clause
7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in
these requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
Only the issueTime property of CommandStream resources SHALL be used to determine the
temporal extent evaluated against the parameter.

13.4.2. Execution Time Filter

This filter is used to select control streams based on their executionTime extent.

REQUIREMENT 53

IDENTIFIER /req/advanced-filtering/controlstream-by-exectime

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

OPEN GEOSPATIAL CONSORTIUM 23-002 84

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime

REQUIREMENT 53

A
The HTTP GET operation at an ControlStream resources endpoint SHALL support a parameter
executionTime.

B
The parameter SHALL fulfill the same requirements as the parameter datetime defined in Clause
7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in
these requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
Only the executionTime property of CommandStream resources SHALL be used to determine the
temporal extent evaluated against the parameter.

13.4.3. Controlled Property Filter

This filter is used to select control streams that include specific controllable properties.

REQUIREMENT 54

IDENTIFIER /req/advanced-filtering/controlstream-by-controlprop

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at a ControlStream resources endpoint SHALL support a parameter
controlledProperty of type ID_List.

B
Only control streams that include a controlled property that has one of the requested identifiers
SHALL be part of the result set.

13.4.4. Feature of Interest Filter

This filter is used to select control streams that are associated to specific sampling features or
(ultimate) features of interest.

REQUIREMENT 55

IDENTIFIER /req/advanced-filtering/controlstream-by-foi

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an ControlStream resources endpoint SHALL support a parameter foi of
type ID_List.

B
Only CommandStream resources that are associated to a feature of interest that has one of the
requested identifiers SHALL be part of the result set.

OPEN GEOSPATIAL CONSORTIUM 23-002 85

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/23-001/23-001.html#filter-idlist-schema
https://docs.ogc.org/is/23-001/23-001.html#filter-idlist-schema

REQUIREMENT 55

C Both sampling features and domain features of interest SHALL be included in the search.

13.5. Command Query Parameters

The following query parameters are used to filter Command resources at a
Command resources endpoint.

13.5.1. Issue Time Filter

This filter is used to select commands based on their issueTime property.

REQUIREMENT 56

IDENTIFIER /req/advanced-filtering/cmd-by-issuetime

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an Command resources endpoint SHALL support a parameter
issueTime.

B
The parameter SHALL fulfill the same requirements as the parameter datetime defined in Clause
7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in
these requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
Only the issueTime property of Command resources SHALL be used to determine the temporal
extent evaluated against the parameter.

13.5.2. Execution Time Filter

This filter is used to select commands based on their executionTime property.

REQUIREMENT 57

IDENTIFIER /req/advanced-filtering/cmd-by-exectime

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

OPEN GEOSPATIAL CONSORTIUM 23-002 86

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime

REQUIREMENT 57

A
The HTTP GET operation at an Command resources endpoint SHALL support a parameter
executionTime.

B
The parameter SHALL fulfill the same requirements as the parameter datetime defined in Clause
7.15.4 of OGC API — Features — Part 1: Core. All references to the term “features” or “feature” in
these requirements SHALL be replaced by the terms “resources” or “resource”, respectively.

C
Only the executionTime property of Command resources SHALL be used to determine the temporal
extent evaluated against the parameter.

13.5.3. Status Filter

This filter is used to select commands based on their statusCode property.

REQUIREMENT 58

IDENTIFIER /req/advanced-filtering/cmd-by-status

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A

The HTTP GET operation at an Command resources endpoint SHALL support a parameter
statusCode with the following characteristics (using an OpenAPI 3.0 fragment):
name: statusCode
description: |-
 List of command status codes.
 Only command resources whose current status matches one of the provided
status codes are selected.
in: query
required: false
schema:
 type: array
 minItems: 1
 items:
 type: string
 enum: ["PENDING", "ACCEPTED", "REJECTED", "SCHEDULED", "UPDATED",
"CANCELED", "EXECUTING", "FAILED", "COMPLETED"]
explode: false

B
Only Command resources whose current status matches one of the specified status codes SHALL be
part of the result set.

13.5.4. Sender Filter

This filter is used to select commands issued by a specific sender.

OPEN GEOSPATIAL CONSORTIUM 23-002 87

https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime
https://docs.ogc.org/is/17-069r4/17-069r4.html#_parameter_datetime

REQUIREMENT 59

IDENTIFIER /req/advanced-filtering/cmd-by-sender

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A

The HTTP GET operation at an Command resources endpoint SHALL support a parameter sender
with the following characteristics (using an OpenAPI 3.0 fragment):
name: sender
description: |-
 List of sender IDs.
 Only command resources issued by one of the specified senders are selected.
in: query
required: false
schema:
 type: array
 minItems: 1
 items:
 type: string
explode: false

B Only Command resources issued by one of the specified senders SHALL be part of the result set.

13.5.5. Feature of Interest Filter

REQUIREMENT 60

IDENTIFIER /req/advanced-filtering/cmd-by-foi

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A
The HTTP GET operation at an Command resources endpoint SHALL support a parameter foi of
type ID_List.

B
Only Command resources that are associated to a feature of interest that has one of the requested
identifiers SHALL be part of the result set.

C Both sampling features and domain features of interest SHALL be included in the search.

13.6. CommandStatus Query Parameters

The following query parameters are used to filter CommandStatus resources at a Command
Status resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 88

https://docs.ogc.org/is/23-001/23-001.html#filter-idlist-schema

13.6.1. StatusCode Filter

REQUIREMENT 61

IDENTIFIER /req/advanced-filtering/status-by-statuscode

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

A

The HTTP GET operation at an Command Status resources endpoint SHALL support a parameter
statusCode with the following characteristics (using an OpenAPI 3.0 fragment):
name: statusCode
description: |-
 List of command status codes.
 Only command resources whose current status matches one of the provided
status codes are selected.
in: query
required: false
schema:
 type: array
 minItems: 1
 items:
 type: string
 enum: ["PENDING", "ACCEPTED", "REJECTED", "SCHEDULED", "UPDATED",
"CANCELED", "EXECUTING", "FAILED", "COMPLETED"]
explode: false

B
Only CommandStatus resources with a status that matches one of the specified status codes SHALL
be part of the result set.

13.7. SystemEvent Query Parameters

The following query parameters are used to filter SystemEvent resources at a System Event
resources endpoint.

13.7.1. Event Type Filter

REQUIREMENT 62

IDENTIFIER /req/advanced-filtering/event-by-type

INCLUDED
IN

Requirements class 6: /req/advanced-filtering

OPEN GEOSPATIAL CONSORTIUM 23-002 89

REQUIREMENT 62

A

The HTTP GET operation at an System Event resources endpoint SHALL support a parameter
eventType with the following characteristics (using an OpenAPI 3.0 fragment):
name: eventType
description: |-
 List of event types.
 Only event resources with a type that matches one of the provided types are
selected.
in: query
required: false
schema:
 type: array
 minItems: 1
 items:
 type: string
explode: false

B
Only SystemEvent resources with a type that matches one of the specified types SHALL be part of
the result set.

OPEN GEOSPATIAL CONSORTIUM 23-002 90

14

REQUIREMENTS CLASS
“CREATE/REPLACE/DELETE”

OPEN GEOSPATIAL CONSORTIUM 23-002 91

14 REQUIREMENTS CLASS
“CREATE/REPLACE/DELETE”

14.1. Overview

REQUIREMENTS CLASS 7

IDENTIFIER /req/create-replace-delete

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.7: /conf/create-replace-delete

PREREQUISITE
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-
replace-delete

NORMATIVE STATEMENTS

 Requirement 63: /req/create-replace-delete/
datastream
 Requirement 64: /req/create-replace-delete/
datastream-update-schema
 Requirement 65: /req/create-replace-delete/
datastream-delete-cascade
 Requirement 66: /req/create-replace-delete/
observation
 Requirement 67: /req/create-replace-delete/
observation-schema
 Requirement 68: /req/create-replace-delete/
controlstream
 Requirement 69: /req/create-replace-delete/
controlstream-update-schema
 Requirement 70: /req/create-replace-delete/
controlstream-delete-cascade
 Requirement 71: /req/create-replace-delete/command
 Requirement 72: /req/create-replace-delete/command-
schema
 Requirement 73: /req/create-replace-delete/command-
status
 Requirement 74: /req/create-replace-delete/command-
result
 Requirement 75: /req/create-replace-delete/
feasibility

OPEN GEOSPATIAL CONSORTIUM 23-002 92

http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete

REQUIREMENTS CLASS 7

 Requirement 76: /req/create-replace-delete/
feasibility-status
 Requirement 77: /req/create-replace-delete/
feasibility-result
 Requirement 78: /req/create-replace-delete/system-
event

The “Create/Replace/Delete” requirements class specifies how instances of the resource types
defined in this Standard are created, replaced and deleted via a CS API endpoint.

All resources are created, replaced and deleted using CREATE (HTTP POST), REPLACE (HTTP
PUT) and DELETE (HTTP DELETE) operations, respectively, as defined by the OGC API —
Features — Part 4: Create, Replace, Update and Delete Standard.

OGC API — Features — Part 4: Create, Replace, Update and Delete uses the terms “resources
endpoint” and “resource endpoint” to identify the paths where these operations are supported
by the server. The following sections provide these endpoints for each resource type defined by
the CS API Standard.

14.2. DataStreams

REQUIREMENT 63

IDENTIFIER /req/create-replace-delete/datastream

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A
The server SHALL support the CREATE operation at the DataStream resources endpoints defined
by the following URI template:

• {api_root}/systems/{sysId}/datastreams

B

The server SHALL support the REPLACE and DELETE operations at the DataStream resource
endpoints defined by the following URI templates:

• {api_root}/systems/{sysId}/datastreams/{id}

• {api_root}/datastreams/{id}

C
The sysId parameter is the local identifier of the System resource the DataStream is (or will be)
associated to.
The id parameter is the local identifier of the DataStream resource to replace or delete.

The following constraints must be implemented by the server.

OPEN GEOSPATIAL CONSORTIUM 23-002 93

REQUIREMENT 64

IDENTIFIER /req/create-replace-delete/datastream-update-schema

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A
The server SHALL reject a REPLACE request on a DataStream resource that modifies the
observation schema if the DataStream already has nested Observation resources. The server
SHALL use HTTP status code 409 to report the error.

REQUIREMENT 65

IDENTIFIER /req/create-replace-delete/datastream-delete-cascade

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A
By default, the server SHALL reject a DELETE request on a DataStream resource that has nested
Observation resources. The server SHALL use HTTP status code 409 to report the error.

B
If the request contains the cascade parameter, the server SHALL accept the DELETE request and
delete the DataStream resource as well as all its nested Observation resources.

NOTE 1: A schema must be provided before observations can be inserted in the datastream.
The schema is provided along with the DataStream resource itself. Only one schema (for only one
format) can be provided by a create operation for a given datastream. However, the server is
allowed to automatically convert observations to/from other supported formats, as appropriate.
This implies that the server can also automatically generate equivalent schemas for these other
formats. Future extensions may define patterns to allow client to define multiple schemas
themselves.

NOTE 2: After a datastream has been created and observations have been associated to it, the
server may reject certain updates to the schema (e.g., adding or removing result fields, changing
UoM, etc.). Datastream schema evolution will be addressed in more details in a future revision,
but the current workaround is to create a new datastream if the schema changes.

14.3. Observations

OPEN GEOSPATIAL CONSORTIUM 23-002 94

REQUIREMENT 66

IDENTIFIER /req/create-replace-delete/observation

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A
The server SHALL support the CREATE operation at the Observation resources endpoints defined
by the following URI template:

• {api_root}/datastreams/{dsId}/observations

B

The server SHALL support the REPLACE and DELETE operations at the Observation resource
endpoints defined by the following URI templates:

• {api_root}/datastreams/{dsId}/observations/{id}

• {api_root}/observations/{id}

C
The dsId parameter is the local identifier of the DataStream resource the Observation is (or will
be) associated to.
The id parameter is the local identifier of the Observation resource to replace or delete.

The following constraints must be implemented by the server.

REQUIREMENT 67

IDENTIFIER /req/create-replace-delete/observation-schema

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A
The server SHALL reject an Observation CREATE or REPLACE request with HTTP status code 400
if the Observation representation is not valid with respect to the schema provided by the parent
DataStream resource.

14.4. Control Streams

REQUIREMENT 68

IDENTIFIER /req/create-replace-delete/controlstream

OPEN GEOSPATIAL CONSORTIUM 23-002 95

REQUIREMENT 68

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL support the CREATE operation at the ControlStream resources endpoints
defined by the following URI template:

• {api_root}/systems/{sysId}/controlstreams

B

The server SHALL support the REPLACE and DELETE operations at the ControlStream resource
endpoints defined by the following URI templates:

• {api_root}/systems/{sysId}/controlstreams/{id}

• {api_root}/controlstreams/{id}

C
The sysId parameter is the local identifier of the System resource the ControlStream is (or will
be) associated to.
The id parameter is the local identifier of the ControlStream resource to replace or delete.

The following constraints must be implemented by the server.

REQUIREMENT 69

IDENTIFIER /req/create-replace-delete/controlstream-update-schema

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL reject a REPLACE request on a ControlStream resource that modifies the
command schema if the ControlStream already has nested Command resources. The server SHALL
use HTTP status code 409 to report the error.

REQUIREMENT 70

IDENTIFIER /req/create-replace-delete/controlstream-delete-cascade

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
By default, the server SHALL reject a DELETE request on a ControlStream resource that has
nested Command resources. The server SHALL use HTTP status code 409 to report the error.

B
If the request contains the cascade parameter, the server SHALL accept the DELETE request and
delete the ControlStream resource as well as all its nested Command resources.

OPEN GEOSPATIAL CONSORTIUM 23-002 96

14.5. Commands

REQUIREMENT 71

IDENTIFIER /req/create-replace-delete/command

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL support the CREATE operation at the Command resources endpoints defined by
the following URI template:

• {api_root}/controlstreams/{csId}/commands

B

The server SHALL support the REPLACE and DELETE operations at the Command resource
endpoints defined by the following URI templates:

• {api_root}/controlstreams/{csId}/commands/{id}

• {api_root}/commands/{id}

C
The csId parameter is the local identifier of the ControlStream resource the Command is (or will
be) associated to.
The id parameter is the local identifier of the Command resource to replace or delete.

The following constraints must be implemented by the server.

REQUIREMENT 72

IDENTIFIER /req/create-replace-delete/command-schema

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL reject a Command CREATE or REPLACE request with HTTP status code 400
if the Command representation is not valid with respect to the schema provided by the parent
ControlStream resource.

NOTE: Cancelling a command is different from deleting the Command resource with an HTTP
DELETE request. When a command is cancelled, the Command resource remain on the server but
its status is changed to CANCELED (and of course the command processing should be aborted
whenever possible). Command cancellation is implemented by posting a new status report with
status code CANCELED at the command status endpoint. See requirements for CommandStatus
resources endpoints below.

OPEN GEOSPATIAL CONSORTIUM 23-002 97

14.6. Command Status

REQUIREMENT 73

IDENTIFIER /req/create-replace-delete/command-status

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL support the CREATE operation at the CommandStatus resources endpoints
defined by the following URI template:

• {api_root}/commands/{cmdId}/status

B
The server SHALL support the REPLACE and DELETE operations at the CommandStatus resource
endpoints defined by the following URI template:

• {api_root}/commands/{cmdId}/status/{id}

C
The cmdId parameter is the local identifier of the Command resource the CommandStatus is (or will
be) associated to.
The id parameter is the local identifier of the CommandStatus resource to replace or delete.

14.7. Command Results

REQUIREMENT 74

IDENTIFIER /req/create-replace-delete/command-result

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL support the CREATE operation at the CommandResult resources endpoints
defined by the following URI template:

• {api_root}/commands/{cmdId}/result

B
The server SHALL support the REPLACE and DELETE operations at the CommandResult resource
endpoints defined by the following URI template:

• {api_root}/commands/{cmdId}/result/{id}

C
The cmdId parameter is the local identifier of the Command resource the CommandResult is (or will
be) associated to.

OPEN GEOSPATIAL CONSORTIUM 23-002 98

REQUIREMENT 74

The id parameter is the local identifier of the CommandResult resource to replace or delete.

14.8. Feasibility

REQUIREMENT 75

IDENTIFIER /req/create-replace-delete/feasibility

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Command Feasibility”

A
The server SHALL support the CREATE operation at the Command resources endpoints defined by
the following URI template:

• {api_root}/controlstreams/{csId}/feasibility

B

The server SHALL support the REPLACE and DELETE operations at the Command resource
endpoints defined by the following URI templates:

• {api_root}/controlstreams/{csId}/feasibility

• {api_root}/feasibility/{id}

C
The csId parameter is the local identifier of the ControlStream resource the Feasibility is (or
will be) associated to.
The id parameter is the local identifier of the Feasibility resource to replace or delete.

14.9. Feasibility Status

REQUIREMENT 76

IDENTIFIER /req/create-replace-delete/feasibility-status

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Command Feasibility”

A
The server SHALL support the CREATE operation at the CommandStatus resources endpoints
defined by the following URI template:

OPEN GEOSPATIAL CONSORTIUM 23-002 99

REQUIREMENT 76

• {api_root}/feasibility/{feasId}/status

B
The server SHALL support the REPLACE and DELETE operations at the CommandStatus resource
endpoints defined by the following URI template:

• {api_root}/feasibility/{feasId}/status/{id}

C
The feasId parameter is the local identifier of the Feasibility resource the CommandStatus is
(or will be) associated to.
The id parameter is the local identifier of the CommandStatus resource to replace or delete.

14.10. Feasibility Results

REQUIREMENT 77

IDENTIFIER /req/create-replace-delete/feasibility-result

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Command Feasibility”

A
The server SHALL support the CREATE operation at the CommandResult resources endpoints
defined by the following URI template:

• {api_root}/feasibility/{feasId}/result

B
The server SHALL support the REPLACE and DELETE operations at the CommandResult resource
endpoints defined by the following URI template:

• {api_root}/feasibility/{feasId}/result/{id}

C
The feasId parameter is the local identifier of the Feasibility resource the CommandResult is
(or will be) associated to.
The id parameter is the local identifier of the CommandResult resource to replace or delete.

14.11. System Events

REQUIREMENT 78

IDENTIFIER /req/create-replace-delete/system-event

INCLUDED
IN

Requirements class 7: /req/create-replace-delete

OPEN GEOSPATIAL CONSORTIUM 23-002 100

REQUIREMENT 78

CONDITIONS The server implements Requirements Class “System Events”

A
The server SHALL support the CREATE operation at the SystemEvent resources endpoints defined
by the following URI template:

• {api_root}/systems/{sysId}/events

B

The server SHALL support the REPLACE and DELETE operations at the SystemEvent resource
endpoints defined by the following URI template:

• {api_root}/systems/{sysId}/events/{id}

• {api_root}/systemEvents/{id}

C
The sysId parameter is the local identifier of the System resource the SystemEvent is (or will be)
associated to.
The id parameter is the local identifier of the SystemEvent resource to replace or delete.

OPEN GEOSPATIAL CONSORTIUM 23-002 101

15

REQUIREMENTS CLASS
“UPDATE”

OPEN GEOSPATIAL CONSORTIUM 23-002 102

15 REQUIREMENTS CLASS “UPDATE”

15.1. Overview

REQUIREMENTS CLASS 8

IDENTIFIER /req/update

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.8: /conf/update

PREREQUISITES
Requirements class 7: /req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/update

NORMATIVE STATEMENTS

 Requirement 79: /req/update/datastream
 Requirement 80: /req/update/datastream-update-schema
 Requirement 81: /req/update/observation
 Requirement 82: /req/update/observation-schema
 Requirement 83: /req/update/controlstream
 Requirement 84: /req/update/controlstream-update-schema
 Requirement 85: /req/update/command
 Requirement 86: /req/update/command-schema
 Requirement 87: /req/update/command-status
 Requirement 88: /req/update/command-result
 Requirement 89: /req/update/feasibility
 Requirement 90: /req/update/feasibility-status
 Requirement 91: /req/update/feasibility-result
 Requirement 92: /req/update/system-event

The “Update” requirements class specifies how instances of the resource types defined in this
Standard are updated (i.e., patched) via a CS API endpoint.

All resources are updated using the UPDATE (HTTP PATCH) operation, as defined by the OGC
API — Features — Part 4: Create, Replace, Update and Delete Standard.

OGC API — Features — Part 4: Create, Replace, Update and Delete uses the terms “resources
endpoint” and “resource endpoint” to identify the paths where these operations are supported
by the server. The following sections provide these endpoints for each resource type defined by
the CS API Standard.

OPEN GEOSPATIAL CONSORTIUM 23-002 103

15.2. DataStreams

REQUIREMENT 79

IDENTIFIER /req/update/datastream

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A

The server SHALL support the UPDATE operation at the DataStream resources endpoints defined
by the following URI templates:

• {api_root}/systems/{sysId}/datastreams/{id}

• {api_root}/datastreams/{id}

B
The sysId parameter is the local identifier of the System resource the DataStream is associated to.
The id parameter is the local identifier of the DataStream resource to update.

The following constraints must be implemented by the server.

REQUIREMENT 80

IDENTIFIER /req/update/datastream-update-schema

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A
The server SHALL reject an UPDATE request on a DataStream resource that modifies the
observation schema if the DataStream already has nested Observation resources.

15.3. Observations

REQUIREMENT 81

IDENTIFIER /req/update/observation

OPEN GEOSPATIAL CONSORTIUM 23-002 104

REQUIREMENT 81

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A

The server SHALL support the UPDATE operation at the Observation resource endpoints defined
by the following URI templates:

• {api_root}/datastreams/{dsId}/observations/{id}

• {api_root}/observations/{id}

B
The dsId parameter is the local identifier of the DataStream resource the Observation is
associated to.
The id parameter is the local identifier of the Observation resource to update.

The following constraints must be implemented by the server.

REQUIREMENT 82

IDENTIFIER /req/update/observation-schema

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Datastreams Observations”

A
The server SHALL reject an Observation UPDATE request with HTTP status code 400 if the
Observation representation is not valid with respect to the schema provided by the parent
DataStream resource.

15.4. Control Streams

REQUIREMENT 83

IDENTIFIER /req/update/controlstream

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL support the UPDATE operation at the ControlStream resource endpoints
defined by the following URI templates:

OPEN GEOSPATIAL CONSORTIUM 23-002 105

REQUIREMENT 83

• {api_root}/systems/{sysId}/controlstreams/{id}

• {api_root}/controlstreams/{id}

B
The sysId parameter is the local identifier of the System resource the ControlStream is
associated to.
The id parameter is the local identifier of the ControlStream resource to update.

The following constraints must be implemented by the server.

REQUIREMENT 84

IDENTIFIER /req/update/controlstream-update-schema

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL reject an UPDATE request on a ControlStream resource that modifies the
command schema if the ControlStream already has nested Command resources.

15.5. Commands

REQUIREMENT 85

IDENTIFIER /req/update/command

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A

The server SHALL support the UPDATE operation at the Command resource endpoints defined by
the following URI templates:

• {api_root}/controlstreams/{csId}/commands/{id}

• {api_root}/commands/{id}

B
The csId parameter is the local identifier of the ControlStream resource the Command is
associated to.
The id parameter is the local identifier of the Command resource to update.

OPEN GEOSPATIAL CONSORTIUM 23-002 106

The following constraints must be implemented by the server.

REQUIREMENT 86

IDENTIFIER /req/update/command-schema

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL reject an UPDATE request on a Command resource with HTTP status code 400
if the Command representation is not valid with respect to the schema provided by the parent
ControlStream resource.

15.6. Command Status

REQUIREMENT 87

IDENTIFIER /req/update/command-status

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL support the UPDATE operation at the CommandStatus resources endpoints
defined by the following URI template:

• {api_root}/commands/{cmdId}/status/{id}

B
The cmdId parameter is the local identifier of the Command resource the CommandStatus is
associated to.
The id parameter is the local identifier of the CommandStatus resource to update.

15.7. Command Results

REQUIREMENT 88

IDENTIFIER /req/update/command-result

OPEN GEOSPATIAL CONSORTIUM 23-002 107

REQUIREMENT 88

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Control Streams Commands”

A
The server SHALL support the UPDATE operation at the CommandResult resources endpoints
defined by the following URI template:

• {api_root}/commands/{cmdId}/result/{id}

B
The cmdId parameter is the local identifier of the Command resource the CommandResult is
associated to.
The id parameter is the local identifier of the CommandResult resource to update.

15.8. Feasibility

REQUIREMENT 89

IDENTIFIER /req/update/feasibility

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Command Feasibility”

A

The server SHALL support the UPDATE operation at the Command resource endpoints defined by
the following URI templates:

• {api_root}/controlstreams/{csId}/feasibility/{id}

• {api_root}/feasibility/{id}

B
The csId parameter is the local identifier of the ControlStream resource the Command is
associated to.
The id parameter is the local identifier of the Feasibility resource to update.

15.9. Feasibility Status

REQUIREMENT 90

IDENTIFIER /req/update/feasibility-status

OPEN GEOSPATIAL CONSORTIUM 23-002 108

REQUIREMENT 90

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Command Feasibility”

A
The server SHALL support the UPDATE operation at the CommandStatus resources endpoints
defined by the following URI template:

• {api_root}/feasibility/{feasId}/status/{id}

B
The feasId parameter is the local identifier of the Feasibility resource the CommandStatus is
associated to.
The id parameter is the local identifier of the CommandStatus resource to update.

15.10. Feasibility Results

REQUIREMENT 91

IDENTIFIER /req/update/feasibility-result

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “Command Feasibility”

A
The server SHALL support the UPDATE operation at the CommandResult resources endpoints
defined by the following URI template:

• {api_root}/feasibility/{feasId}/result/{id}

B
The feasId parameter is the local identifier of the Feasibility resource the CommandResult is
associated to.
The id parameter is the local identifier of the CommandResult resource to update.

15.11. System Events

REQUIREMENT 92

IDENTIFIER /req/update/system-event

OPEN GEOSPATIAL CONSORTIUM 23-002 109

REQUIREMENT 92

INCLUDED
IN

Requirements class 8: /req/update

CONDITIONS The server implements Requirements Class “System Events”

A

The server SHALL support the UPDATE operation at the SystemEvent resources endpoints defined
by the following URI template:

• {api_root}/systems/{sysId}/events/{id}

• {api_root}/systemEvents/{id}

B
The sysId parameter is the local identifier of the System resource the SystemEvent is associated
to.
The id parameter is the local identifier of the SystemEvent resource to update.

OPEN GEOSPATIAL CONSORTIUM 23-002 110

16

REQUIREMENTS CLASSES
FOR ENCODINGS

OPEN GEOSPATIAL CONSORTIUM 23-002 111

16 REQUIREMENTS CLASSES FOR ENCODINGS

16.1. Requirements Class “JSON Encoding”

16.1.1. Overview

REQUIREMENTS CLASS 9

IDENTIFIER /req/json

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.9: /conf/json

PREREQUISITE
http://www.opengis.net/spec/SWE/3.0/req/json-
record-components

NORMATIVE STATEMENTS

 Requirement 93: /req/json/mediatype-read
 Requirement 94: /req/json/mediatype-write
 Requirement 95: /req/json/datastream-
schema
 Requirement 96: /req/json/obsschema-schema
 Requirement 97: /req/json/observation-
schema
 Requirement 98: /req/json/observation-
constraints
 Requirement 99: /req/json/controlstream-
schema
 Requirement 100: /req/json/commandschema-
schema
 Requirement 101: /req/json/command-schema
 Requirement 102: /req/json/command-
constraints
 Requirement 103: /req/json/commandstatus-
schema
 Requirement 104: /req/json/commandresult-
schema
 Requirement 105: /req/json/commandresult-
constraints

OPEN GEOSPATIAL CONSORTIUM 23-002 112

http://www.opengis.net/spec/SWE/3.0/req/json-record-components
http://www.opengis.net/spec/SWE/3.0/req/json-record-components

REQUIREMENTS CLASS 9

 Requirement 106: /req/json/systemevent-
schema

This requirements class defines general JSON encodings for all resource types defined in part 2.

16.1.2. Media Type

The media type used to advertise support for this encoding is application/json.

REQUIREMENT 93

IDENTIFIER /req/json/mediatype-read

INCLUDED
IN

Requirements class 9: /req/json

A
The server SHALL accept resource retrieval (read) requests with media type application/json for
all resource types whose representation is specified in this requirements class.

B
The response to such request SHALL be encoded as specified in the clause corresponding to the
resource type.

REQUIREMENT 94

IDENTIFIER /req/json/mediatype-write

INCLUDED
IN

Requirements class 9: /req/json

CONDITIONS The server implements Requirements Class “Create/Replace/Delete”.

A
The server SHALL accept resource insertion (write) requests with media type application/json
for all resource types whose representation is specified in this requirements class.

B
The resource representation provided in the request SHALL be encoded as specified in the clause
corresponding to the resource type.

16.1.3. DataStream Representation

OPEN GEOSPATIAL CONSORTIUM 23-002 113

REQUIREMENT 95

IDENTIFIER /req/json/datastream-schema

INCLUDED
IN

Requirements class 9: /req/json

A
A JSON document containing a single DataStream resource SHALL be valid against the JSON
schema dataStream.json.

B
A JSON document containing a collection of DataStream resources SHALL be valid against the
JSON schema dataStreamCollection.json.

Example — A Datastream in JSON format: This is a simple datastream with a single observed
property.

{
 "id": "958tf25kjm2f6",
 "name": "Indoor Thermometer 001 - Living Room Temperature",
 "outputName": "temp",
 "system@link": {
 "href": "https://data.example.org/api/systems/123",
 "uid": "urn:x-ogc:systems:001"
 },
 "featureOfInterest@link": {
 "href": "https://data.example.org/api/collections/buildings/items/754",
 "title": "My House"
 },
 "samplingFeature@link": {
 "href": "https://data.example.org/api/samplingFeatures/4478",
 "title": "Thermometer Sampling Point"
 },
 "phenomenonTime": [
 "2020-06-29T14:32:00Z",
 "2022-06-29T19:37:00Z"
],
 "resultTime": [
 "2020-06-29T14:32:00Z",
 "2012-06-29T19:37:00Z"
],
 "observedProperties": [
 {
 "definition": "http://mmisw.org/ont/cf/parameter/air_temperature",
 "label": "Room Temperature",
 "description": "Ambient air temperature measured inside the room"
 }
],
 "resultType": "measure",
 "formats": [
 "application/json",
 "application/swe+json",
 "application/swe+csv",
 "application/x-protobuf"
],
 "live": true,
 "links": [
 {
 "rel" : "observations",
 "href" : "https://data.example.org/api/datastreams/958tf25kjm2f6/
observations",

OPEN GEOSPATIAL CONSORTIUM 23-002 114

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/dataStream.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/dataStreamCollection.json

 "type" : "application/json"
 }
]
}

16.1.4. Observation Schema Representation

When using the application/json media type for observations, two separate schemas are
provided to further describe the content of the observation result and parameters properties
(the parameters schema is optional). Both schemas are provided as SWE Common data
component tree in JSON format.

REQUIREMENT 96

IDENTIFIER /req/json/obsschema-schema

INCLUDED
IN

Requirements class 9: /req/json

A
The Observation Schema resource for media type application/json SHALL be valid against the
JSON schema observationSchemaJson.json.

Example — Example Observation Schemas for the JSON format: This is an example schema for
scalar observations:

{
 "obsFormat": "application/json",
 "resultSchema": {
 "name": "temp",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/air_temperature",
 "label": "Room Temperature",
 "description": "Ambient air temperature measured inside the room",
 "uom": {
 "code": "Cel"
 },
 "nilValues": [
 { "reason": "http://www.opengis.net/def/nil/OGC/0/missing", "value": "NaN"
},
 { "reason": "http://www.opengis.net/def/nil/OGC/0/BelowDetectionRange",
"value": "-Infinity" },
 { "reason": "http://www.opengis.net/def/nil/OGC/0/AboveDetectionRange",
"value": "+Infinity" }
]
 }
}

This is an example schema for vector observations:

{
 "obsFormat": "application/json",
 "resultSchema": {
 "name": "location",
 "type": "Vector",
 "label": "Platform Location",

OPEN GEOSPATIAL CONSORTIUM 23-002 115

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaJson.json

 "definition": "http://sensorml.com/ont/swe/property/Location",
 "referenceFrame": "http://www.opengis.net/def/crs/EPSG/0/4979",
 "coordinates": [
 {
 "name": "lat",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/GeodeticLatitude",
 "axisID": "Lat",
 "label": "Geodetic Latitude",
 "uom": {
 "code": "deg"
 }
 },
 {
 "name": "lon",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/Longitude",
 "axisID": "Lon",
 "label": "Longitude",
 "uom": {
 "code": "deg"
 }
 },
 {
 "name": "h",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/
HeightAboveEllipsoid",
 "axisID": "h",
 "label": "Ellipsoidal Height",
 "uom": {
 "code": "m"
 }
 }
]
 }
}

This third example has an out-of-band PNG image as the result:

{
 "obsFormat": "application/json",
 "resultLink": {
 "mediaType": "image/png"
 }
 }

NOTE: All other observation properties are the same for all datastreams and thus described in
the static schema provided in Clause 16.1.5.

16.1.5. Observation Representation

REQUIREMENT 97

IDENTIFIER /req/json/observation-schema

OPEN GEOSPATIAL CONSORTIUM 23-002 116

REQUIREMENT 97

INCLUDED
IN

Requirements class 9: /req/json

A
A JSON document containing a single Observation resource SHALL be valid against the JSON
schema observation.json.

B
A JSON document containing a collection of Observation resources SHALL be valid against the
JSON schema observationCollection.json.

REQUIREMENT 98

IDENTIFIER /req/json/observation-constraints

INCLUDED
IN

Requirements class 9: /req/json

STATEMENT The following constraints apply to Observation resources:

A
The value of the phenomenonTime and resultTime properties SHALL be expressed in the UTC time
scale, with an optional time offset.

B
The value of the result property SHALL be encoded according to the schema of the parent
DataStream. The schema is provided by the resultSchema property of the schema resource.

C
The value of the parameters property SHALL be encoded according to the parametersSchema of
the parent DataStream.

D See observationSchemaJson.json.

Example — Observations in JSON format: This is a simple observation with a scalar observed
property, associated to the datastream of the example above.

{
 "id": "1h6pmb3ntfmogfppknk9aefpvs",
 "datastream@id": "958tf25kjm2f6",
 "phenomenonTime": "2021-03-15T04:53:34Z",
 "resultTime": "2021-03-15T04:53:34Z",
 "result": 23.5
}

This second observation has a vector result type:

{
 "id": "1125alnna75hafppknk9aefpvs",
 "datastream@id": "1vf8i5ois38u8",
 "phenomenonTime": "2021-03-15T04:53:34Z",
 "resultTime": "2021-03-15T04:53:34Z",
 "result": {
 "lat": -86.5861,
 "lon": 34.7304,
 "alt": 183
 }

OPEN GEOSPATIAL CONSORTIUM 23-002 117

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observation.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationCollection.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaJson.json

}

This third observation has PNG image as a result type that is a PNG image encoded inline as a
data: URL

{
 "id": "fefaig45w46v5186d6w",
 "datastream@id": "f44f85rrt",
 "foi@id": "55f48g48th",
 "phenomenonTime": "2023-04-03T18:45:23Z",
 "resultTime": "2023-04-03T18:45:23Z",
 "result@link": {
 "href": "",
 "title": "Inline PNG image",
 "type": "image/png"
 }
}

16.1.6. ControlStream Representation

REQUIREMENT 99

IDENTIFIER /req/json/controlstream-schema

INCLUDED
IN

Requirements class 9: /req/json

A
A JSON document containing a single ControlStream resource SHALL be valid against the JSON
schema controlStream.json.

B
A JSON document containing a collection of ControlStream resources SHALL be valid against the
JSON schema controlStreamCollection.json.

Example — A Control Stream in JSON format: This is a simple control stream for a camera
accepting PTZ commands in JSON format.

{
 "id": "hf62t0dotfd5k",
 "name": "Garage Video Camera 001 - PTZ Control",
 "inputName": "ptz",
 "system@link": {
 "href": "https://data.example.org/api/systems/4722256",
 "uid": "urn:x-ogc:systems:CAM001",
 "title": "Garage Video Camera 001"
 },
 "issueTime": [
 "2012-06-29T14:32:34Z",
 "2012-06-29T14:37:34Z"
],
 "executionTime": [
 "2012-06-29T14:32:34Z",
 "2012-06-29T14:37:34Z"
],
 "controlledProperties": [
 {

OPEN GEOSPATIAL CONSORTIUM 23-002 118

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/controlStream.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/controlStreamCollection.json

 "definition": "http://sensorml.com/ont/swe/property/PanAngle",
 "label": "Pan Angle"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/TiltAngle",
 "label": "Tilt Angle"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/ZoomFactor",
 "label": "Zoom Factor"
 }
],
 "formats": [
 "application/json"
],
 "live": true,
 "async": false,
 "links": [
 {
 "rel": "commands",
 "href": "https://data.example.org/api/controls/hf62t0dotfd5k/commands"
 }
]
}

16.1.7. Command Schema Representation

When using the application/json media type for commands, two separate schemas are
provided to further describe the content of the parameters and result properties (the result
schema is optional). Both schemas are provided as SWE Common data component tree in JSON
format.

REQUIREMENT 100

IDENTIFIER /req/json/commandschema-schema

INCLUDED
IN

Requirements class 9: /req/json

A
The Command Schema resource for media type application/json SHALL be valid against the
JSON schema commandSchemaJson.json.

Example — Example Command Schemas for the JSON format: This is an example schema for
PTZ commands:

{
 "commandFormat": "application/json",
 "parametersSchema": {
 "type": "DataRecord",
 "fields": [
 {
 "name": "pan",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/PanAngle",
 "label": "Pan Angle",

OPEN GEOSPATIAL CONSORTIUM 23-002 119

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaJson.json

 "description": "Rotation of the camera around its vertical axis (i.e.,
causing the image to translate along its horizontal axis)",
 "uom": {
 "code": "deg"
 }
 },
 {
 "name": "tilt",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/PanAngle",
 "label": "Pan Angle",
 "description": "Rotation of the camera around its horizontal axis (i.e.,
causing the image to translate along its vertical axis)",
 "uom": {
 "code": "deg"
 }
 },
 {
 "name": "zoom",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/ZoomFactor",
 "label": "Zoom Factor",
 "description": "Amount of zoom, 0 being the highest FOV and 100 being
the lowest",
 "uom": {
 "code": "%"
 }
 }
]
 }
}

NOTE: All other command properties are the same for all control streams and thus described in
the static schema provided in Clause 16.1.8.

16.1.8. Command Representation

REQUIREMENT 101

IDENTIFIER /req/json/command-schema

INCLUDED
IN

Requirements class 9: /req/json

A
A JSON document containing a single Command resource SHALL be valid against the JSON schema
command.json.

B
A JSON document containing a collection of Command resources SHALL be valid against the JSON
schema commandCollection.json.

OPEN GEOSPATIAL CONSORTIUM 23-002 120

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/command.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandCollection.json

REQUIREMENT 102

IDENTIFIER /req/json/command-constraints

INCLUDED
IN

Requirements class 9: /req/json

STATEMENT The following constraints apply to Command resources:

A
The value of the issueTime and executionTime properties SHALL be expressed in the UTC time
scale, with an optional time offset.

B
The value of the parameters property SHALL be encoded according to the schema of the parent
ControlStream. The schema is provided by the parametersSchema property of the schema
resource.

C See commandSchemaJson.json.

Example — Command in JSON format: This is an example command used to task a PTZ camera,
encoded in JSON format:

{
 "id": "1125alnna75hafppknk9aefpvs",
 "controlstream@id": "hf62t0dotfd5k",
 "sender": "user01",
 "issueTime": "2021-03-15T04:53:34.248Z",
 "executionTime": [
 "2021-03-15T04:53:34.543Z",
 "2021-03-15T04:53:36.021Z"
],
 "currentStatus": "COMPLETED",
 "parameters": {
 "pan": -10.0,
 "tilt": 23.0,
 "zoom": 0.4
 }
}

16.1.9. Command Status Representation

REQUIREMENT 103

IDENTIFIER /req/json/commandstatus-schema

INCLUDED
IN

Requirements class 9: /req/json

A
A JSON document containing a single CommandStatus resource SHALL be valid against the JSON
schema commandStatus.json.

OPEN GEOSPATIAL CONSORTIUM 23-002 121

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaJson.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandStatus.json

REQUIREMENT 103

B
A JSON document containing a collection of CommandStatus resources SHALL be valid against the
JSON schema commandStatusCollection.json.

Example — Command Status in JSON format: These are example command status reports,
encoded in JSON format:

{
 "id": "rlg2905142qs5uvish4vktotffds2iss8aa0a00",
 "command@id": "1125alnna75hafppknk9aefpvs",
 "reportTime": "2021-03-15T04:53:34.348Z",
 "statusCode": "ACCEPTED"
}

{
 "id": "155rufq7aplr8id10839fc8d6u0ulqfu1bjfumo",
 "command@id": "1125alnna75hafppknk9aefpvs",
 "reportTime": "2021-03-15T04:53:36.021Z",
 "statusCode": "COMPLETED",
 "message": "Camera moved to new position"
}

16.1.10. Command Result Representation

REQUIREMENT 104

IDENTIFIER /req/json/commandresult-schema

INCLUDED
IN

Requirements class 9: /req/json

A
A JSON document containing a single CommandResult resource SHALL be valid against the JSON
schema commandResult.json.

B
A JSON document containing a collection of CommandResult resources SHALL be valid against the
JSON schema commandResultCollection.json.

REQUIREMENT 105

IDENTIFIER /req/json/commandresult-constraints

INCLUDED
IN

Requirements class 9: /req/json

A
If a CommandResult resource includes inline data, the content of the data property SHALL be
encoded according to the schema provided by the parent ControlStream:

B
For regular commands, the schema is provided by the the resultSchema property of the schema
resource.

OPEN GEOSPATIAL CONSORTIUM 23-002 122

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandStatusCollection.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandResult.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandResultCollection.json

REQUIREMENT 105

C
For feasibility requests (i.e., commands received on a feasibility channel), the schema is provided by
the the feasibilityResultSchema property of the schema resource.

D See commandSchemaJson.json.

Example — Command Result in JSON format: These are example command results, encoded in
JSON format:

{
 "data": {
 "mean": "10.51",
 "stdev": "1.23"
 }
}

{
 "observation@link": {
 "href": "https://data.example.org/api/observations/
gss45sdf413s387g49445ssdf55?f=json",
 "title": "Satellite Image",
 "type": "application/json"
 }
}

{
 "datastream@link": {
 "href": "https://data.example.org/api/datastreams/445ssdf55",
 "title": "Plume Simulation Data",
 "type": "application/json"
 }
}

16.1.11. System Event Representation

REQUIREMENT 106

IDENTIFIER /req/json/systemevent-schema

INCLUDED
IN

Requirements class 9: /req/json

A
A JSON document containing a single SystemEvent resource SHALL be valid against the JSON
schema systemEvent.json.

B
A JSON document containing a collection of SystemEvent resources SHALL be valid against the
JSON schema systemEventCollection.json.

OPEN GEOSPATIAL CONSORTIUM 23-002 123

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaJson.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/systemEvent.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/systemEventCollection.json

16.2. Requirements Class “SWE Common JSON
Encoding”

REQUIREMENTS CLASS 10

IDENTIFIER /req/swecommon-json

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.10: /conf/swecommon-json

PREREQUISITE
http://www.opengis.net/spec/SWE/3.0/req/json-
encoding-rules

NORMATIVE STATEMENTS

 Requirement 107: /req/swecommon-json/
mediatype-read
 Requirement 108: /req/swecommon-json/
mediatype-write
 Requirement 109: /req/swecommon-json/
obsschema-schema
 Requirement 110: /req/swecommon-json/
obsschema-mapping
 Requirement 111: /req/swecommon-json/
observation-encoding
 Requirement 112: /req/swecommon-json/
cmdschema-schema
 Requirement 113: /req/swecommon-json/
cmdschema-mapping
 Requirement 114: /req/swecommon-json/command-
encoding

16.2.1. Overview

This requirements class defines JSON encodings for Observation and Command resources based
on SWE Common 3.0.

16.2.2. Media Type

NOTE: Implementations should use application/vnd.ogc.swe+json as a preliminary media
type until the SWE Common 3.0 Standard is stable to avoid confusing future implementations
accessing JSON documents from draft versions of the Standard. The media type application/

OPEN GEOSPATIAL CONSORTIUM 23-002 124

http://www.opengis.net/spec/SWE/3.0/req/json-encoding-rules
http://www.opengis.net/spec/SWE/3.0/req/json-encoding-rules

swe+json will be registered for SWE Common JSON encoding, if and once this Standard is
approved by the OGC Members. This note will be removed before publishing this Standard.

The media type used when using the SWE Common JSON encoding is application/swe+json.

REQUIREMENT 107

IDENTIFIER /req/swecommon-json/mediatype-read

INCLUDED
IN

Requirements class 10: /req/swecommon-json

A
The server SHALL accept resource retrieval (read) requests with media type application/swe
+json for all resource types whose representation is specified in this requirements class.

B
The response to such request SHALL be encoded as specified in the clause corresponding to the
resource type.

REQUIREMENT 108

IDENTIFIER /req/swecommon-json/mediatype-write

INCLUDED
IN

Requirements class 10: /req/swecommon-json

CONDITIONS The server implements Requirements Class “Create/Replace/Delete”.

A
The server SHALL accept resource insertion (write) requests with media type application/swe
+json for all resource types whose representation is specified in this requirements class.

B
The resource representation provided in the request SHALL be encoded as specified in the clause
corresponding to the resource type.

16.2.3. Observation Schema Representation

The observation schema for the application/swe+json media type is a SWE Common data
component tree provided in JSON format.

REQUIREMENT 109

IDENTIFIER /req/swecommon-json/obsschema-schema

INCLUDED
IN

Requirements class 10: /req/swecommon-json

OPEN GEOSPATIAL CONSORTIUM 23-002 125

REQUIREMENT 109

A
The Observation Schema resource for media type application/swe+json SHALL be valid
against the JSON schema observationSchemaSwe.json.

B The encoding property SHALL be set to a JSONEncoding object.

REQUIREMENT 110

IDENTIFIER /req/swecommon-json/obsschema-mapping

INCLUDED
IN

Requirements class 10: /req/swecommon-json

A

The recordSchema property SHALL include at least one Time component corresponding to either
resultTime or phenomenonTime. This Time component SHALL be identified using one of the
following URIs as the definition property.
For phenomenonTime:
http://www.w3.org/ns/sosa/phenomenonTime, or
http://www.opengis.net/def/property/OGC/0/SamplingTime
For resultTime:
http://www.w3.org/ns/sosa/resultTime

B

If the recordSchema property includes a reference to a sampling feature, a Text component SHALL
be used.
The component SHALL be identified using the following URI as the definition property:
http://www.w3.org/ns/sosa/FeatureOfInterest
The value of the component SHALL be the local identifier of the SamplingFeature resource.

16.2.4. Observation Representation

REQUIREMENT 111

IDENTIFIER /req/swecommon-json/observation-encoding

INCLUDED
IN

Requirements class 10: /req/swecommon-json

A
Observation resources SHALL be encoded according to the schema provided by the parent
DataStream, using the encoding rules defined in Clause 10.2: Requirements Class: JSON Encoding
Rules of SWE Common 3.0.

OPEN GEOSPATIAL CONSORTIUM 23-002 126

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaSwe.json
http://www.w3.org/ns/sosa/phenomenonTime
http://www.opengis.net/def/property/OGC/0/SamplingTime
http://www.w3.org/ns/sosa/resultTime
http://www.w3.org/ns/sosa/FeatureOfInterest
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_json
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_json

16.2.5. Command Schema Representation

The command schema for the application/swe+json media type is a SWE Common data
component tree provided in JSON format.

REQUIREMENT 112

IDENTIFIER /req/swecommon-json/cmdschema-schema

INCLUDED
IN

Requirements class 10: /req/swecommon-json

A
The Command Schema resource for media type application/swe+json SHALL be valid against the
JSON schema commandSchemaSwe.json.

B The encoding property SHALL be set to a JSONEncoding object.

REQUIREMENT 113

IDENTIFIER /req/swecommon-json/cmdschema-mapping

INCLUDED
IN

Requirements class 10: /req/swecommon-json

A

If the recordSchema property includes a timestamp to be mapped to the issueTime property of the
CommandResource, a Time component SHALL be used.
The component SHALL be identified using the following URI as the definition property:
http://www.opengis.net/def/property/OGC/0/IssueTime

B

If the recordSchema property includes a reference to a sampling feature, a Text component SHALL
be used.
The component SHALL be identified using the following URI as the definition property:
http://www.w3.org/ns/sosa/FeatureOfInterest
The value of the component SHALL be the local identifier of the SamplingFeature resource.

16.2.6. Command Representation

REQUIREMENT 114

IDENTIFIER /req/swecommon-json/command-encoding

INCLUDED
IN

Requirements class 10: /req/swecommon-json

OPEN GEOSPATIAL CONSORTIUM 23-002 127

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaSwe.json
http://www.opengis.net/def/property/OGC/0/IssueTime
http://www.w3.org/ns/sosa/FeatureOfInterest

REQUIREMENT 114

A
Command resources SHALL be encoded according to the schema provided by the parent
ControlStream, using the encoding rules defined in Clause 10.2: Requirements Class: JSON
Encoding Rules of SWE Common 3.0.

16.3. Requirements Class “SWE Common Text Encoding”

REQUIREMENTS CLASS 11

IDENTIFIER /req/swecommon-text

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.11: /conf/swecommon-text

PREREQUISITE
http://www.opengis.net/spec/SWE/3.0/req/text-
encoding-rules

NORMATIVE STATEMENTS

 Requirement 115: /req/swecommon-text/
mediatype-read
 Requirement 116: /req/swecommon-text/
mediatype-write
 Requirement 117: /req/swecommon-text/
obsschema-schema
 Requirement 118: /req/swecommon-text/
obsschema-mapping
 Requirement 119: /req/swecommon-text/
observation-encoding
 Requirement 120: /req/swecommon-text/
cmdschema-schema
 Requirement 121: /req/swecommon-text/
cmdschema-mapping
 Requirement 122: /req/swecommon-text/command-
encoding

16.3.1. Overview

This requirements class defines text encodings (delimiter separated values, or DSV)
for Observation and Command resources based on the Text Encoding defined in the
SWE Common 3.0 Standard.

OPEN GEOSPATIAL CONSORTIUM 23-002 128

https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_json
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_json
http://www.opengis.net/spec/SWE/3.0/req/text-encoding-rules
http://www.opengis.net/spec/SWE/3.0/req/text-encoding-rules

16.3.2. Media Type

NOTE: Implementations should use application/vnd.ogc.swe+text as a preliminary media
type until the SWE Common 3.0 Standard is stable to avoid confusing future implementations
accessing JSON documents from draft versions of the Standard. The media type application/
swe+text will be registered for SWE Common Text encoding, if and once this Standard is
approved by the OGC Members. This note will be removed before publishing this Standard.

The media type used when using the SWE Common Text encoding is application/swe+text.

REQUIREMENT 115

IDENTIFIER /req/swecommon-text/mediatype-read

INCLUDED
IN

Requirements class 11: /req/swecommon-text

A
The server SHALL accept resource retrieval (read) requests with media type application/swe
+text for all resource types whose representation is specified in this requirements class.

B
The response to such request SHALL be encoded as specified in the clause corresponding to the
resource type.

REQUIREMENT 116

IDENTIFIER /req/swecommon-text/mediatype-write

INCLUDED
IN

Requirements class 11: /req/swecommon-text

CONDITIONS The server implements Requirements Class “Create/Replace/Delete”.

A
The server SHALL accept resource insertion (write) requests with media type application/swe
+text for all resource types whose representation is specified in this requirements class.

B
The resource representation provided in the request SHALL be encoded as specified in the clause
corresponding to the resource type.

16.3.3. Observation Schema Representation

The observation schema for the application/swe+text media type is a SWE Common data
component tree provided in JSON format.

OPEN GEOSPATIAL CONSORTIUM 23-002 129

REQUIREMENT 117

IDENTIFIER /req/swecommon-text/obsschema-schema

INCLUDED
IN

Requirements class 11: /req/swecommon-text

A
The Observation Schema resource for media type application/swe+text SHALL be valid
against the JSON schema observationSchemaSwe.json.

B The encoding property SHALL be set to a TextEncoding object.

REQUIREMENT 118

IDENTIFIER /req/swecommon-text/obsschema-mapping

INCLUDED IN Requirements class 11: /req/swecommon-text

STATEMENT
The recordSchema property SHALL fulfill Requirement 110: /req/swecommon-json/
obsschema-mapping.

16.3.4. Observation Representation

REQUIREMENT 119

IDENTIFIER /req/swecommon-text/observation-encoding

INCLUDED
IN

Requirements class 11: /req/swecommon-text

A
Observation resources SHALL be encoded according to the schema provided by the parent
DataStream, using the encoding rules defined in Clause 10.3: Requirements Class: Text Encoding
Rules of SWE Common 3.0.

16.3.5. Command Schema Representation

The command schema for the application/swe+text media type is a SWE Common data
component tree provided in JSON format.

REQUIREMENT 120

IDENTIFIER /req/swecommon-text/cmdschema-schema

OPEN GEOSPATIAL CONSORTIUM 23-002 130

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaSwe.json
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_text
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_text

REQUIREMENT 120

INCLUDED
IN

Requirements class 11: /req/swecommon-text

A
The Command Schema resource for media type application/swe+text SHALL be valid against the
JSON schema commandSchemaSwe.json.

B The encoding property SHALL be set to a TextEncoding object.

REQUIREMENT 121

IDENTIFIER /req/swecommon-text/cmdschema-mapping

INCLUDED IN Requirements class 11: /req/swecommon-text

STATEMENT
The recordSchema property SHALL fulfill Requirement 113: /req/swecommon-json/
cmdschema-mapping.

16.3.6. Command Representation

REQUIREMENT 122

IDENTIFIER /req/swecommon-text/command-encoding

INCLUDED
IN

Requirements class 11: /req/swecommon-text

A
Command resources SHALL be encoded according to the schema provided by the parent
ControlStream, using the encoding rules defined in Clause 10.3: Requirements Class: Text Encoding
Rules of SWE Common 3.0.

16.4. Requirements Class “SWE Common Binary
Encoding”

REQUIREMENTS CLASS 12

IDENTIFIER /req/swecommon-binary

OPEN GEOSPATIAL CONSORTIUM 23-002 131

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaSwe.json
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_text
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_text

REQUIREMENTS CLASS 12

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.12: /conf/swecommon-binary

PREREQUISITE
http://www.opengis.net/spec/SWE/3.0/req/binary-
encoding-rules

NORMATIVE STATEMENTS

 Requirement 123: /req/swecommon-binary/
mediatype-read
 Requirement 124: /req/swecommon-binary/
mediatype-write
 Requirement 125: /req/swecommon-binary/
obsschema-schema
 Requirement 126: /req/swecommon-binary/
obsschema-mapping
 Requirement 127: /req/swecommon-binary/
observation-encoding
 Requirement 128: /req/swecommon-binary/
cmdschema-schema
 Requirement 129: /req/swecommon-binary/
cmdschema-mapping
 Requirement 130: /req/swecommon-binary/command-
encoding

16.4.1. Overview

This requirements class defines binary encodings of Observation and Command resources based
on the Binary Encoding defined in the SWE Common 3.0 Standard.

The main objective of this encoding is better data size efficiency than text or JSON, thus
allowing for:

• Transfer of observations and commands over very low power / low bandwidth network
links (e.g., LoRa, etc.); and

• Transfer high bandwidth data sets such as raster data (e.g., video, LiDAR, etc.).

For even better efficiency, this encoding can be combined with a transport protocol such as
MQTT.

16.4.2. Media Type

NOTE: Implementations should use application/vnd.ogc.swe+binary as a preliminary media
type until the SWE Common 3.0 Standard is stable to avoid confusing future implementations
accessing JSON documents from draft versions of the Standard. The media type application/

OPEN GEOSPATIAL CONSORTIUM 23-002 132

http://www.opengis.net/spec/SWE/3.0/req/binary-encoding-rules
http://www.opengis.net/spec/SWE/3.0/req/binary-encoding-rules

swe+binary will be registered for SWE Common binary encoding, if and once this Standard is
approved by the OGC Members. This note will be removed before publishing this Standard.

The media type used when using the SWE Common Text encoding is application/swe+binary.

REQUIREMENT 123

IDENTIFIER /req/swecommon-binary/mediatype-read

INCLUDED
IN

Requirements class 12: /req/swecommon-binary

A
The server SHALL accept resource retrieval (read) requests with media type application/swe
+binary for all resource types whose representation is specified in this requirements class.

B
The response to such request SHALL be encoded as specified in the clause corresponding to the
resource type.

REQUIREMENT 124

IDENTIFIER /req/swecommon-binary/mediatype-write

INCLUDED
IN

Requirements class 12: /req/swecommon-binary

CONDITIONS The server implements Requirements Class “Create/Replace/Delete”.

A
The server SHALL accept resource insertion (write) requests with media type application/swe
+binary for all resource types whose representation is specified in this requirements class.

B
The resource representation provided in the request SHALL be encoded as specified in the clause
corresponding to the resource type.

16.4.3. Observation Schema Representation

The observation schema for the application/swe+binary media type is a SWE Common data
component tree provided in JSON format.

REQUIREMENT 125

IDENTIFIER /req/swecommon-binary/obsschema-schema

INCLUDED
IN

Requirements class 12: /req/swecommon-binary

OPEN GEOSPATIAL CONSORTIUM 23-002 133

REQUIREMENT 125

A
The Observation Schema resource for media type application/swe+binary SHALL be valid
against the JSON schema observationSchemaSwe.json.

B The encoding property SHALL be set to a BinaryEncoding object.

REQUIREMENT 126

IDENTIFIER /req/swecommon-binary/obsschema-mapping

INCLUDED IN Requirements class 12: /req/swecommon-binary

STATEMENT
The recordSchema property SHALL fulfill Requirement 110: /req/swecommon-json/
obsschema-mapping.

16.4.4. Observation Representation

REQUIREMENT 127

IDENTIFIER /req/swecommon-binary/observation-encoding

INCLUDED
IN

Requirements class 12: /req/swecommon-binary

A
Observation resources SHALL be encoded according to the schema provided by the parent
DataStream, using the encoding rules defined in Clause 10.4: Requirements Class: Binary Encoding
Rules of SWE Common 3.0.

16.4.5. Command Schema Representation

The command schema for the application/swe+binary media type is a SWE Common data
component tree provided in JSON format.

REQUIREMENT 128

IDENTIFIER /req/swecommon-binary/cmdschema-schema

INCLUDED
IN

Requirements class 12: /req/swecommon-binary

OPEN GEOSPATIAL CONSORTIUM 23-002 134

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaSwe.json
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_text
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_text

REQUIREMENT 128

A
The Command Schema resource for media type application/swe+binary SHALL be valid against
the JSON schema commandSchemaSwe.json.

B The encoding property SHALL be set to a BinaryEncoding object.

REQUIREMENT 129

IDENTIFIER /req/swecommon-binary/cmdschema-mapping

INCLUDED IN Requirements class 12: /req/swecommon-binary

STATEMENT
The recordSchema property SHALL fulfill Requirement 113: /req/swecommon-json/
cmdschema-mapping.

16.4.6. Command Representation

REQUIREMENT 130

IDENTIFIER /req/swecommon-binary/command-encoding

INCLUDED
IN

Requirements class 12: /req/swecommon-binary

A
Command resources SHALL be encoded according to the schema provided by the parent
ControlStream, using the encoding rules defined in Clause 10.4: Requirements Class: Binary
Encoding Rules of SWE Common 3.0.

OPEN GEOSPATIAL CONSORTIUM 23-002 135

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaSwe.json
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_text
https://docs.ogc.org/DRAFTS/24-014.html#encoding_rules_text

A

ANNEX A (NORMATIVE)
CONFORMANCE CLASS
ABSTRACT TEST SUITE

OPEN GEOSPATIAL CONSORTIUM 23-002 136

A ANNEX A
(NORMATIVE)
CONFORMANCE CLASS ABSTRACT TEST
SUITE

A.1. Conformance Class “Common”

CONFORMANCE CLASS A.1

IDENTIFIER /conf/api-common

REQUIREMENTS CLASS Requirements class 1: /req/api-common

PREREQUISITE
http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/conf/api-common

TARGET TYPE Web API

CONFORMANCE TESTS
 Abstract test A.1: /conf/api-common/resources
 Abstract test A.2: /conf/api-common/resource-
collection

ABSTRACT TEST A.1

IDENTIFIER /conf/api-common/resources

REQUIREMENT Requirement 1: /req/api-common/resources

TEST PURPOSE No test required for this requirement as it is tested in other classes.

OPEN GEOSPATIAL CONSORTIUM 23-002 137

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common

ABSTRACT TEST A.2

IDENTIFIER /conf/api-common/resource-collection

REQUIREMENT Requirement 2: /req/api-common/resource-collection

TEST PURPOSE Verify that resource collections are implemented like feature collections.

TEST METHOD

1. For each resource collection available on the server with the property itemType that is
NOT set to feature:

a) Execute the following tests from OGC API — Features — Part 1: Core:
• /conf/core/fc-md-links

• /conf/core/fc-md-items

• /conf/core/fc-md-items-links

• /conf/core/fc-md-extent

• /conf/core/sfc-md-op

• /conf/core/sfc-md-success

• /conf/core/fc-op

• /conf/core/fc-limit-definition

• /conf/core/fc-limit-response

• /conf/core/query-param-invalid

• /conf/core/query-param-unknown

• /conf/core/fc-links

• /conf/core/fc-timeStamp

• /conf/core/fc-numberMatched

• /conf/core/fc-numberReturned

• /conf/core/f-op

• /conf/core/f-success

• /conf/core/f-links

A.2. Conformance Class “Datastreams & Observations”

CONFORMANCE CLASS A.2

IDENTIFIER /conf/datastream

OPEN GEOSPATIAL CONSORTIUM 23-002 138

CONFORMANCE CLASS A.2

REQUIREMENTS CLASS Requirements class 2: /req/datastream

PREREQUISITE Conformance class A.1: /conf/api-common

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.3: /conf/datastream/sf-ref-from-
datastream
 Abstract test A.4: /conf/datastream/foi-ref-
from-datastream
 Abstract test A.5: /conf/datastream/canonical-
url
 Abstract test A.6: /conf/datastream/resources-
endpoint
 Abstract test A.7: /conf/datastream/canonical-
endpoint
 Abstract test A.8: /conf/datastream/ref-from-
system
 Abstract test A.9: /conf/datastream/ref-from-
deployment
 Abstract test A.10: /conf/datastream/collections
 Abstract test A.11: /conf/datastream/schema-op
 Abstract test A.12: /conf/datastream/obs-
canonical-url
 Abstract test A.13: /conf/datastream/obs-
resources-endpoint
 Abstract test A.14: /conf/datastream/obs-
canonical-endpoint
 Abstract test A.15: /conf/datastream/obs-ref-
from-datastream
 Abstract test A.16: /conf/datastream/obs-
collections

ABSTRACT TEST A.3

IDENTIFIER /conf/datastream/sf-ref-from-datastream

REQUIREMENT Requirement 3: /req/datastream/sf-ref-from-datastream

TEST PURPOSE
Validate that Sampling Features associated to a given datastream are available as sub-
resources.

TEST METHOD
1. Retrieve all DataStream resources by executing test http://www.opengis.net/spec/

ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=datastreams.

OPEN GEOSPATIAL CONSORTIUM 23-002 139

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.3

2. For each DataStream resource in the response:
a) Validate that the server implements an Sampling Features resources endpoint at path

{api_root}/datastreams/{dsId}/samplingFeatures using test http://www.
opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/sf/resources-endpoint, where
dsId is the local ID of the DataStream resource.

ABSTRACT TEST A.4

IDENTIFIER /conf/datastream/foi-ref-from-datastream

REQUIREMENT Requirement 4: /req/datastream/foi-ref-from-datastream

TEST PURPOSE
Validate that Features of Interest associated to a given datastream are available as sub-
resources.

TEST METHOD

1. Retrieve all DataStream resources by executing test {part1-spec}/conf/api-common/
canonical-resources with parameter resource-type=datastreams.

2. For each DataStream resource in the response:
a) Issue an HTTP GET request at path {api_root}/datastreams/{dsId}/

featuresOfInterest, where dsId is the local ID of the DataStream resource.

b) Validate that a document was returned with a status code 200.

c) Iterate through the list of resources in the response, following next links as appropriate.

d) If the response content type is application/geo+json, validate the response using the
GeoJSON schema.

ABSTRACT TEST A.5

IDENTIFIER /conf/datastream/canonical-url

REQUIREMENT Requirement 5: /req/datastream/canonical-url

TEST PURPOSE Validate that every DataStream resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the itemType property set to DataStream:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

OPEN GEOSPATIAL CONSORTIUM 23-002 140

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/sf/resources-endpoint
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/sf/resources-endpoint
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

ABSTRACT TEST A.6

IDENTIFIER /conf/datastream/resources-endpoint

REQUIREMENT Requirement 6: /req/datastream/resources-endpoint

TEST PURPOSE
Validate that the server implements a DataStream resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_datastream-
schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.7

IDENTIFIER /conf/datastream/canonical-endpoint

REQUIREMENT Requirement 7: /req/datastream/canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical DataStream resources endpoint.

TEST METHOD
Validate that the server implements a DataStream resources endpoint at path {api_root}/
datastreams using test _conf_datastream_resources-endpoint.

ABSTRACT TEST A.8

IDENTIFIER /conf/datastream/ref-from-system

REQUIREMENT Requirement 8: /req/datastream/ref-from-system

TEST PURPOSE Validate that DataStream resources associated to a System are available as sub-resources.

TEST METHOD

1. Retrieve all System resources by executing test http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=systems.

2. For each System resource in the response:
a) Validate that the server implements a DataStream resources endpoint at path {api_

root}/systems/{sysId}/datastreams using test _conf_datastream_resources-
endpoint, where sysId is the local ID of the System resource.

OPEN GEOSPATIAL CONSORTIUM 23-002 141

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.9

IDENTIFIER /conf/datastream/ref-from-deployment

REQUIREMENT Requirement 9: /req/datastream/ref-from-deployment

TEST PURPOSE Validate that DataStream resources associated to a Deployment are available as sub-resources.

TEST METHOD

1. Retrieve all Deployment resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=deployments.

2. For each Deployment resource in the response:
a) Validate that the server implements a DataStream resources endpoint at path {api_

root}/deployments/{depId}/datastreams using test _conf_datastream_resources-
endpoint, where depId is the local ID of the Deployment resource.

ABSTRACT TEST A.10

IDENTIFIER /conf/datastream/collections

REQUIREMENT Requirement 10: /req/datastream/collections

TEST PURPOSE Validate that DataStream collections are tagged with the proper item type.

TEST METHOD

For every collection advertised by the server with the itemType property set to DataStream:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_datastream-
schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.11

IDENTIFIER /conf/datastream/schema-op

REQUIREMENT Requirement 11: /req/datastream/schema-op

TEST PURPOSE Validate that every DataStream resource has a schema sub-resource.

OPEN GEOSPATIAL CONSORTIUM 23-002 142

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

ABSTRACT TEST A.11

TEST METHOD

1. Retrieve all DataStream resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=datastreams.

2. For each DataStream resource in the response:
a) Retrieve the list of supported observation formats listed in the DataStream resource.

b) For each supported observation format:
step:
Issue an HTTP GET request at path {api_root}/datastreams/{dsId}/schema?
obsFormat={format}, where dsId is the local ID of the DataStream resource, and
format is one of the supported formats.

step: Validate that a document was returned
with a status code 200.

ABSTRACT TEST A.12

IDENTIFIER /conf/datastream/obs-canonical-url

REQUIREMENT Requirement 12: /req/datastream/obs-canonical-url

TEST PURPOSE Validate that every Observation resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the itemType property set to Observation:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.13

IDENTIFIER /conf/datastream/obs-resources-endpoint

REQUIREMENT Requirement 13: /req/datastream/obs-resources-endpoint

TEST PURPOSE
Validate that the server implements a Observation resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

OPEN GEOSPATIAL CONSORTIUM 23-002 143

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

ABSTRACT TEST A.13

a) If the response content type is application/json, execute test _conf_json_
observation-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.14

IDENTIFIER /conf/datastream/obs-canonical-endpoint

REQUIREMENT Requirement 14: /req/datastream/obs-canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical Observation resources endpoint.

TEST METHOD
Validate that the server implements an Observation resources endpoint at path {api_root}/
observations using test _conf_datastream_obs-resources-endpoint.

ABSTRACT TEST A.15

IDENTIFIER /conf/datastream/obs-ref-from-datastream

REQUIREMENT Requirement 15: /req/datastream/obs-ref-from-datastream

TEST PURPOSE Validate that Observation resources associated to a DataStream are available as sub-resources.

TEST METHOD

1. Retrieve all DataStream resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=datastreams.

2. For each DataStream resource in the response:
a) Validate that the server implements an Observation resources endpoint at path {api_

root}/datastreams/{dsId}/observations using test _conf_datastream_obs-
resources-endpoint, where dsId is the local ID of the DataStream resource.

ABSTRACT TEST A.16

IDENTIFIER /conf/datastream/obs-collections

REQUIREMENT Requirement 16: /req/datastream/obs-collections

TEST PURPOSE Validate that Observation collections are tagged with the proper item type.

TEST METHOD For every collection advertised by the server with the itemType property set to Observation:

OPEN GEOSPATIAL CONSORTIUM 23-002 144

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.16

1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_
observation-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

A.3. Conformance Class “Control Streams & Commands”

CONFORMANCE CLASS A.3

IDENTIFIER /conf/controlstream

REQUIREMENTS CLASS Requirements class 3: /req/controlstream

PREREQUISITE Conformance class A.1: /conf/api-common

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.17: /conf/controlstream/sf-ref-
from-controlstream
 Abstract test A.18: /conf/controlstream/foi-ref-
from-controlstream
 Abstract test A.19: /conf/controlstream/canonical-
url
 Abstract test A.20: /conf/controlstream/resources-
endpoint
 Abstract test A.21: /conf/controlstream/canonical-
endpoint
 Abstract test A.22: /conf/controlstream/ref-from-
system
 Abstract test A.23: /conf/controlstream/ref-from-
deployment
 Abstract test A.24: /conf/controlstream/collections
 Abstract test A.25: /conf/controlstream/schema-op
 Abstract test A.26: /conf/controlstream/cmd-
canonical-url
 Abstract test A.27: /conf/controlstream/cmd-
resources-endpoint

OPEN GEOSPATIAL CONSORTIUM 23-002 145

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

CONFORMANCE CLASS A.3

 Abstract test A.28: /conf/controlstream/cmd-
canonical-endpoint
 Abstract test A.29: /conf/controlstream/cmd-ref-
from-controlstream
 Abstract test A.30: /conf/controlstream/cmd-
collections
 Abstract test A.31: /conf/controlstream/status-
resources-endpoint
 Abstract test A.32: /conf/controlstream/command-
status-endpoint
 Abstract test A.33: /conf/controlstream/result-
resources-endpoint
 Abstract test A.34: /conf/controlstream/command-
result-endpoint

ABSTRACT TEST A.17

IDENTIFIER /conf/controlstream/sf-ref-from-controlstream

REQUIREMENT Requirement 17: /req/controlstream/sf-ref-from-controlstream

TEST PURPOSE
Validate that Sampling Features associated to a given control stream are available as sub-
resources.

TEST METHOD

1. Retrieve all ControlStream resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=controlstreams.

2. For each ControlStream resource in the response:
a) Validate that the server implements an Sampling Features resources endpoint at path

{api_root}/controlstreams/{dsId}/samplingFeatures using test http://www.
opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/sf/resources-endpoint, where
dsId is the local ID of the ControlStream resource.

ABSTRACT TEST A.18

IDENTIFIER /conf/controlstream/foi-ref-from-controlstream

REQUIREMENT Requirement 18: /req/controlstream/foi-ref-from-controlstream

TEST PURPOSE
Validate that Features of Interest associated to a given control stream are available as sub-
resources.

TEST METHOD
1. Retrieve all controlstream resources by executing test {part1-spec}/conf/api-common/

canonical-resources with parameter resource-type=controlstreams.

2. For each ControlStream resource in the response:

OPEN GEOSPATIAL CONSORTIUM 23-002 146

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/sf/resources-endpoint
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/sf/resources-endpoint

ABSTRACT TEST A.18

a) Issue an HTTP GET request at path {api_root}/controlstreams/{dsId}/
featuresOfInterest, where dsId is the local ID of the ControlStream resource.

b) Validate that a document was returned with a status code 200.

c) Iterate through the list of resources in the response, following next links as appropriate.

d) If the response content type is application/geo+json, validate the response using the
GeoJSON schema.

ABSTRACT TEST A.19

IDENTIFIER /conf/controlstream/canonical-url

REQUIREMENT Requirement 19: /req/controlstream/canonical-url

TEST PURPOSE Validate that every ControlStream resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the itemType property set to ControlStream:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.20

IDENTIFIER /conf/controlstream/resources-endpoint

REQUIREMENT Requirement 20: /req/controlstream/resources-endpoint

TEST PURPOSE
Validate that the server implements a ControlStream resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_
controlstream-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

OPEN GEOSPATIAL CONSORTIUM 23-002 147

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

ABSTRACT TEST A.21

IDENTIFIER /conf/controlstream/canonical-endpoint

REQUIREMENT Requirement 21: /req/controlstream/canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical ControlStream resources endpoint.

TEST METHOD
Validate that the server implements a ControlStream resources endpoint at path {api_root}/
controlstreams using test _conf_controlstream_resources-endpoint.

ABSTRACT TEST A.22

IDENTIFIER /conf/controlstream/ref-from-system

REQUIREMENT Requirement 22: /req/controlstream/ref-from-system

TEST PURPOSE Validate that ControlStream resources associated to a System are available as sub-resources.

TEST METHOD

1. Retrieve all System resources by executing test http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=systems.

2. For each System resource in the response:
a) Validate that the server implements a ControlStream resources endpoint at path {api_

root}/systems/{sysId}/controlstreams using test _conf_controlstream_resources-
endpoint, where sysId is the local ID of the System resource.

ABSTRACT TEST A.23

IDENTIFIER /conf/controlstream/ref-from-deployment

REQUIREMENT Requirement 23: /req/controlstream/ref-from-deployment

TEST PURPOSE
Validate that ControlStream resources associated to a Deployment are available as sub-
resources.

TEST METHOD

1. Retrieve all Deployment resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=deployments.

2. For each Deployment resource in the response:
a) Validate that the server implements a ControlStream resources endpoint at path {api_

root}/deployments/{depId}/controlstreams using test _conf_controlstream_
resources-endpoint, where depId is the local ID of the Deployment resource.

OPEN GEOSPATIAL CONSORTIUM 23-002 148

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.24

IDENTIFIER /conf/controlstream/collections

REQUIREMENT Requirement 24: /req/controlstream/collections

TEST PURPOSE Validate that ControlStream collections are tagged with the proper item type.

TEST METHOD

For every collection advertised by the server with the itemType property set to ControlStream:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_
controlstream-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.25

IDENTIFIER /conf/controlstream/schema-op

REQUIREMENT Requirement 25: /req/controlstream/schema-op

TEST PURPOSE Validate that every ControlStream resource has a schema sub-resource.

TEST METHOD

1. Retrieve all ControlStream resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=controlstreams.

2. For each ControlStream resource in the response:
a) Retrieve the list of supported command formats listed in the ControlStream resource.

b) For each supported command format:
step:
Issue an HTTP GET request at path {api_root}/controlstreams/{dsId}/schema?
cmdFormat={format}, where dsId is the local ID of the ControlStream resource, and
format is one of the supported formats.

step: Validate that a document was returned
with a status code 200.

ABSTRACT TEST A.26

IDENTIFIER /conf/controlstream/cmd-canonical-url

REQUIREMENT Requirement 26: /req/controlstream/cmd-canonical-url

OPEN GEOSPATIAL CONSORTIUM 23-002 149

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.26

TEST PURPOSE Validate that every Command resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the itemType property set to Command:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.27

IDENTIFIER /conf/controlstream/cmd-resources-endpoint

REQUIREMENT Requirement 27: /req/controlstream/cmd-resources-endpoint

TEST PURPOSE
Validate that the server implements a Command resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_command-
schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.28

IDENTIFIER /conf/controlstream/cmd-canonical-endpoint

REQUIREMENT Requirement 28: /req/controlstream/cmd-canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical Command resources endpoint.

TEST METHOD
Validate that the server implements a Command resources endpoint at path {api_root}/
commands using test _conf_controlstream_cmd-resources-endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 150

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

ABSTRACT TEST A.29

IDENTIFIER /conf/controlstream/cmd-ref-from-controlstream

REQUIREMENT Requirement 29: /req/controlstream/cmd-ref-from-controlstream

TEST PURPOSE Validate that Command resources associated to a ControlStream are available as sub-resources.

TEST METHOD

1. Retrieve all ControlStream resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=controlstreams.

2. For each ControlStream resource in the response:
a) Validate that the server implements a Command resources endpoint at path {api_

root}/controlstreams/{dsId}/commands using test _conf_controlstream_cmd-
resources-endpoint, where dsId is the local ID of the ControlStream resource.

ABSTRACT TEST A.30

IDENTIFIER /conf/controlstream/cmd-collections

REQUIREMENT Requirement 30: /req/controlstream/cmd-collections

TEST PURPOSE Validate that Command collections are tagged with the proper item type.

TEST METHOD

For every collection advertised by the server with the itemType property set to Command:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_command-
schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.31

IDENTIFIER /conf/controlstream/status-resources-endpoint

REQUIREMENT Requirement 31: /req/controlstream/status-resources-endpoint

TEST PURPOSE
Validate that the server implements a CommandStatus resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD
1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

OPEN GEOSPATIAL CONSORTIUM 23-002 151

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

ABSTRACT TEST A.31

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_
commandstatus-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.32

IDENTIFIER /conf/controlstream/command-status-endpoint

REQUIREMENT Requirement 32: /req/controlstream/command-status-endpoint

TEST PURPOSE Validate that every Command resource has a status endpoint

TEST METHOD

1. Retrieve all Command resources by executing test http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=commands.

2. For each Command resource in the response:
a) Validate that the server implements a Command Status resources endpoint at path {api_

root}/commands/{cmdId}/status using test _conf_controlstream_status-resources-
endpoint, where cmdId is the local ID of the Command resource.

ABSTRACT TEST A.33

IDENTIFIER /conf/controlstream/result-resources-endpoint

REQUIREMENT Requirement 33: /req/controlstream/result-resources-endpoint

TEST PURPOSE
Validate that the server implements a CommandResult resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_
commandresult-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

OPEN GEOSPATIAL CONSORTIUM 23-002 152

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.34

IDENTIFIER /conf/controlstream/command-result-endpoint

REQUIREMENT Requirement 34: /req/controlstream/command-result-endpoint

TEST PURPOSE Validate that every Command resource has a result endpoint

TEST METHOD

1. Retrieve all Command resources by executing test http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=commands.

2. For each Command resource in the response:
a) Validate that the server implements a Command Result resources endpoint at path {api_

root}/commands/{cmdId}/result using test _conf_controlstream_result-resources-
endpoint, where cmdId is the local ID of the Command resource.

A.4. Conformance Class “Command Feasibility”

CONFORMANCE CLASS A.4

IDENTIFIER /conf/feasibility

REQUIREMENTS CLASS Requirements class 4: /req/feasibility

PREREQUISITE Conformance class A.3: /conf/controlstream

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.35: /conf/feasibility/canonical-
url
 Abstract test A.36: /conf/feasibility/ref-from-
controlstream
 Abstract test A.37: /conf/feasibility/status-
endpoint
 Abstract test A.38: /conf/feasibility/result-
endpoint
 Abstract test A.39: /conf/feasibility/
collections

OPEN GEOSPATIAL CONSORTIUM 23-002 153

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.35

IDENTIFIER /conf/feasibility/canonical-url

REQUIREMENT Requirement 35: /req/feasibility/canonical-url

TEST PURPOSE Validate that every Command resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the itemType property set to Command:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.36

IDENTIFIER /conf/feasibility/ref-from-controlstream

REQUIREMENT Requirement 36: /req/feasibility/ref-from-controlstream

TEST PURPOSE Validate that Command resources associated to a ControlStream are available as sub-resources.

TEST METHOD

1. Retrieve all ControlStream resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=controlstreams.

2. For each ControlStream resource in the response:
a) Validate that the server implements a Command resources endpoint at path {api_

root}/controlstreams/{dsId}/commands using test _conf_controlstream_cmd-
resources-endpoint, where dsId is the local ID of the ControlStream resource.

ABSTRACT TEST A.37

IDENTIFIER /conf/feasibility/status-endpoint

REQUIREMENT Requirement 37: /req/feasibility/status-endpoint

TEST PURPOSE Validate that every Feasibility resource has a status endpoint

TEST METHOD

1. Retrieve all Feasibility resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=feasibility.

2. For each Feasibility resource in the response:

OPEN GEOSPATIAL CONSORTIUM 23-002 154

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.37

a) Validate that the server implements a Command Status resources endpoint at path
{api_root}/feasibility/{cmdId}/status using test _conf_controlstream_status-
resources-endpoint, where cmdId is the local ID of the Feasibility resource.

ABSTRACT TEST A.38

IDENTIFIER /conf/feasibility/result-endpoint

REQUIREMENT Requirement 38: /req/feasibility/result-endpoint

TEST PURPOSE Validate that every Feasibility resource has a result endpoint

TEST METHOD

1. Retrieve all Feasibility resources by executing test http://www.opengis.net/spec/
ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=feasibility.

2. For each Feasibility resource in the response:
a) Validate that the server implements a Command Result resources endpoint at path

{api_root}/feasibility/{cmdId}/result using test _conf_controlstream_result-
resources-endpoint, where cmdId is the local ID of the Feasibility resource.

ABSTRACT TEST A.39

IDENTIFIER /conf/feasibility/collections

REQUIREMENT Requirement 39: /req/feasibility/collections

TEST PURPOSE Validate that Feasibility collections are tagged with the proper item type.

TEST METHOD

For every collection advertised by the server with the itemType property set to Feasibility:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_command-
schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

A.5. Conformance Class “System Events”

OPEN GEOSPATIAL CONSORTIUM 23-002 155

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

CONFORMANCE CLASS A.5

IDENTIFIER /conf/system-event

REQUIREMENTS CLASS Requirements class 5: /req/system-event

PREREQUISITES
Conformance class A.1: /conf/api-common
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/system

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.40: /conf/system-event/canonical-url
 Abstract test A.41: /conf/system-event/resources-endpoint
 Abstract test A.42: /conf/system-event/canonical-endpoint
 Abstract test A.43: /conf/system-event/ref-from-system
 Abstract test A.44: /conf/system-event/collections

ABSTRACT TEST A.40

IDENTIFIER /conf/system-event/canonical-url

REQUIREMENT Requirement 40: /req/system-event/canonical-url

TEST PURPOSE Validate that every ControlStream resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the itemType property set to ControlStream:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.41

IDENTIFIER /conf/system-event/resources-endpoint

REQUIREMENT Requirement 41: /req/system-event/resources-endpoint

TEST PURPOSE
Validate that the server implements a SystemEvent resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD
1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

OPEN GEOSPATIAL CONSORTIUM 23-002 156

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

ABSTRACT TEST A.41

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_
systemevent-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.42

IDENTIFIER /conf/system-event/canonical-endpoint

REQUIREMENT Requirement 42: /req/system-event/canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical SystemEvent resources endpoint.

TEST METHOD
Validate that the server implements a System Event resources endpoint at path {api_root}/
systemEvents using test _conf_controlstream_resources-endpoint.

ABSTRACT TEST A.43

IDENTIFIER /conf/system-event/ref-from-system

REQUIREMENT Requirement 43: /req/system-event/ref-from-system

TEST PURPOSE Validate that SystemEvent resources associated to a System are available as sub-resources.

TEST METHOD

1. Retrieve all System resources by executing test http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter
resource-type=systems.

2. For each System resource in the response:
a) Validate that the server implements a System Event resources endpoint at path {api_

root}/systems/{sysId}/systemEvents using test _conf_system-event_resources-
endpoint, where sysId is the local ID of the System resource.

ABSTRACT TEST A.44

IDENTIFIER /conf/system-event/collections

REQUIREMENT Requirement 44: /req/system-event/collections

TEST PURPOSE Validate that SystemEvent collections are tagged with the proper item type.

OPEN GEOSPATIAL CONSORTIUM 23-002 157

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.44

TEST METHOD

For every collection advertised by the server with the itemType property set to SystemEvent:
1. Retrieve the collection items as described in test http://www.opengis.net/spec/ogcapi-

connectedsystems-1/1.0/conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/json, execute test _conf_json_
systemevent-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

A.6. Conformance Class “Advanced Filtering”

CONFORMANCE CLASS A.6

IDENTIFIER /conf/advanced-filtering

REQUIREMENTS CLASS Requirements class 6: /req/advanced-filtering

PREREQUISITE Conformance class A.1: /conf/api-common

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.45: /conf/advanced-filtering/datastream-
by-phenomenontime
 Abstract test A.46: /conf/advanced-filtering/datastream-
by-resulttime
 Abstract test A.47: /conf/advanced-filtering/datastream-
by-obsprop
 Abstract test A.48: /conf/advanced-filtering/datastream-
by-foi
 Abstract test A.49: /conf/advanced-filtering/obs-by-
phenomenontime
 Abstract test A.50: /conf/advanced-filtering/obs-by-
resulttime
 Abstract test A.51: /conf/advanced-filtering/obs-by-foi
 Abstract test A.52: /conf/advanced-filtering/
controlstream-by-issuetime
 Abstract test A.53: /conf/advanced-filtering/
controlstream-by-exectime
 Abstract test A.54: /conf/advanced-filtering/
controlstream-by-controlprop

OPEN GEOSPATIAL CONSORTIUM 23-002 158

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/collection-items

CONFORMANCE CLASS A.6

 Abstract test A.55: /conf/advanced-filtering/
controlstream-by-foi
 Abstract test A.56: /conf/advanced-filtering/cmd-by-
issuetime
 Abstract test A.57: /conf/advanced-filtering/cmd-by-
exectime
 Abstract test A.58: /conf/advanced-filtering/cmd-by-
status
 Abstract test A.59: /conf/advanced-filtering/cmd-by-
sender
 Abstract test A.60: /conf/advanced-filtering/cmd-by-foi
 Abstract test A.61: /conf/advanced-filtering/status-by-
statuscode
 Abstract test A.62: /conf/advanced-filtering/event-by-
type

ABSTRACT TEST A.45

IDENTIFIER /conf/advanced-filtering/datastream-by-phenomenontime

REQUIREMENT Requirement 45: /req/advanced-filtering/datastream-by-phenomenontime

TEST PURPOSE Validate that the phenomenonTime query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/datastreams?phenomenonTime=
{datetime} where {datetime} is a time instant or period (see the requirement for the
exact syntax of the parameter).

2. Validate the response using the steps described in test _conf_datastream_resources-
endpoint.

3. For each DataStream resource in the response:
a) Retrieve its phenomenonTime property.

b) Verify that the value of the property intersects the time specified in the request.

ABSTRACT TEST A.46

IDENTIFIER /conf/advanced-filtering/datastream-by-resulttime

REQUIREMENT Requirement 46: /req/advanced-filtering/datastream-by-resulttime

TEST PURPOSE Validate that the resultTime query parameter is processed correctly.

OPEN GEOSPATIAL CONSORTIUM 23-002 159

ABSTRACT TEST A.46

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/datastreams?resultTime=
{datetime} where {datetime} is a time instant or period (see the requirement for the
exact syntax of the parameter).

2. Validate the response using the steps described in test _conf_datastream_resources-
endpoint.

3. For each DataStream resource in the response:
a) Retrieve its resultTime property.

b) Verify that the value of the property intersects the time specified in the request.

ABSTRACT TEST A.47

IDENTIFIER /conf/advanced-filtering/datastream-by-obsprop

REQUIREMENT Requirement 47: /req/advanced-filtering/datastream-by-obsprop

TEST PURPOSE Validate that the observedProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/datastreams?observedProperty=
{idList} where {idList} is a list of one or more local IDs of Property resources.
See test http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-
filtering/id-list-schema

2. Validate the response using the steps described in test _conf_datastream_resources-
endpoint.

3. For each DataStream resource in the response:
a) Retrieve all observed properties listed in the DataStream resource.

b) Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the observedProperty parameter set to a list of one or
more URIs identifying observable properties.

ABSTRACT TEST A.48

IDENTIFIER /conf/advanced-filtering/datastream-by-foi

REQUIREMENT Requirement 48: /req/advanced-filtering/datastream-by-foi

TEST PURPOSE Validate that the foi query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/datastreams?foi={idList} where
{idList} is a list of one or more local IDs of Sampling Feature or Feature resources.
See test http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-
filtering/id-list-schema

OPEN GEOSPATIAL CONSORTIUM 23-002 160

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema

ABSTRACT TEST A.48

2. Validate the response using the steps described in test _conf_datastream_resources-
endpoint.

3. For each DataStream resource in the response:
a) Retrieve the datastreams’s sampling features by issuing an HTTP GET request at {api_

root}/datastreams/{dsId}/samplingFeatures.

b) For each Sampling Feature resource in the returned collection:
1. Follow the sampleOf links to retrieve the target features, recursively. If a link does

not resolve or the link media type is not supported by the testing engine, use the link
target as the identifier of the feature.

c) Verify that at least one of the collected features has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the foi parameter set to a list of one or more UIDs of
Feature resources.

ABSTRACT TEST A.49

IDENTIFIER /conf/advanced-filtering/obs-by-phenomenontime

REQUIREMENT Requirement 49: /req/advanced-filtering/obs-by-phenomenontime

TEST PURPOSE Validate that the phenomenonTime query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/observations?phenomenonTime=
{datetime} where {datetime} is a time instant or period (see the requirement for the
exact syntax of the parameter).

2. Validate the response using the steps described in test _conf_datastream_obs-resources-
endpoint.

3. For each Observation resource in the response:
a) Retrieve its phenomenonTime property.

b) Verify that the value of the property intersects the time specified in the request.

4. Repeat the steps above for every observation resources endpoint nested under a
DataStream resource, that is at endpoints {api_root}/datastreams/{dsId}/
observations where dsId is the local ID of a DataStream resource.

ABSTRACT TEST A.50

IDENTIFIER /conf/advanced-filtering/obs-by-resulttime

REQUIREMENT Requirement 50: /req/advanced-filtering/obs-by-resulttime

TEST PURPOSE Validate that the resultTime query parameter is processed correctly.

OPEN GEOSPATIAL CONSORTIUM 23-002 161

ABSTRACT TEST A.50

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/observations?resultTime=
{datetime} where {datetime} is a time instant or period (see the requirement for the
exact syntax of the parameter).

2. Validate the response using the steps described in test _conf_datastream_obs-resources-
endpoint.

3. For each Observation resource in the response:
a) Retrieve its resultTime property.

b) Verify that the value of the property intersects the time specified in the request.

4. Repeat the steps above for every observation resources endpoint nested under a
DataStream resource, that is at endpoints {api_root}/datastreams/{dsId}/
observations where dsId is the local ID of a DataStream resource.

ABSTRACT TEST A.51

IDENTIFIER /conf/advanced-filtering/obs-by-foi

REQUIREMENT Requirement 51: /req/advanced-filtering/obs-by-foi

TEST PURPOSE Validate that the foi query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/observations?foi={idList} where
{idList} is a list of one or more local IDs of Sampling Feature or Feature resources.
See test http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-
filtering/id-list-schema

2. Validate the response using the steps described in test _conf_datastream_obs-resources-
endpoint.

3. For each Observation resource in the response:
a) Retrieve its samplingFeature property.

b) Follow the sampleOf links to retrieve the sampled features, recursively. If a link does not
resolve or the link media type is not supported by the testing engine, use the link target
as the identifier of the feature.

c) Verify that at least one of the collected features has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the foi parameter set to a list of one or more UIDs of
Feature resources.

5. Repeat the steps above for every observation resources endpoint nested under a
DataStream resource, that is at endpoints {api_root}/datastreams/{dsId}/
observations where dsId is the local ID of a DataStream resource.

ABSTRACT TEST A.52

IDENTIFIER /conf/advanced-filtering/controlstream-by-issuetime

OPEN GEOSPATIAL CONSORTIUM 23-002 162

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema

ABSTRACT TEST A.52

REQUIREMENT Requirement 52: /req/advanced-filtering/controlstream-by-issuetime

TEST PURPOSE Validate that the issueTime query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/controlstreams?issueTime=
{datetime} where {datetime} is a time instant or period (see the requirement for the
exact syntax of the parameter).

2. Validate the response using the steps described in test _conf_controlstream_resources-
endpoint.

3. For each ControlStream resource in the response:
a) Retrieve its issueTime property.

b) Verify that the value of the property intersects the time specified in the request.

ABSTRACT TEST A.53

IDENTIFIER /conf/advanced-filtering/controlstream-by-exectime

REQUIREMENT Requirement 53: /req/advanced-filtering/controlstream-by-exectime

TEST PURPOSE Validate that the executionTime query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/controlstreams?executionTime=
{datetime} where {datetime} is a time instant or period (see the requirement for the
exact syntax of the parameter).

2. Validate the response using the steps described in test _conf_controlstream_resources-
endpoint.

3. For each ControlStream resource in the response:
a) Retrieve its executionTime property.

b) Verify that the value of the property intersects the time specified in the request.

ABSTRACT TEST A.54

IDENTIFIER /conf/advanced-filtering/controlstream-by-controlprop

REQUIREMENT Requirement 54: /req/advanced-filtering/controlstream-by-controlprop

TEST PURPOSE Validate that the controlledProperty query parameter is processed correctly.

TEST METHOD
1. Issue an HTTP GET request at URL {api_root}/controlstreams?

controlledProperty={idList} where {idList} is a list of one or more local IDs of
Property resources.

OPEN GEOSPATIAL CONSORTIUM 23-002 163

ABSTRACT TEST A.54

See test http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-
filtering/id-list-schema

2. Validate the response using the steps described in test _conf_controlstream_resources-
endpoint.

3. For each ControlStream resource in the response:
a) Retrieve all controlled properties listed in the ControlStream resource.

b) Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the controlledProperty parameter set to a list of one or
more URIs identifying controllable properties.

ABSTRACT TEST A.55

IDENTIFIER /conf/advanced-filtering/controlstream-by-foi

REQUIREMENT Requirement 55: /req/advanced-filtering/controlstream-by-foi

TEST PURPOSE Validate that the foi query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/controlstreams?foi={idList} where
{idList} is a list of one or more local IDs of Sampling Feature or Feature resources.
See test http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-
filtering/id-list-schema

2. Validate the response using the steps described in test _conf_controlstream_resources-
endpoint.

3. For each ControlStream resource in the response:
a) Retrieve the control streams’s sampling features by issuing an HTTP GET request at

{api_root}/controlstreams/{dsId}/samplingFeatures.

b) For each Sampling Feature resource in the returned collection:
1. Follow the sampleOf links to retrieve the target features, recursively. If a link does

not resolve or the link media type is not supported by the testing engine, use the link
target as the identifier of the feature.

c) Verify that at least one of the collected features has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the foi parameter set to a list of one or more UIDs of
Feature resources.

ABSTRACT TEST A.56

IDENTIFIER /conf/advanced-filtering/cmd-by-issuetime

REQUIREMENT Requirement 56: /req/advanced-filtering/cmd-by-issuetime

OPEN GEOSPATIAL CONSORTIUM 23-002 164

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema

ABSTRACT TEST A.56

TEST PURPOSE Validate that the issueTime query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/commands?issueTime={datetime}
where {datetime} is a time instant or period (see the requirement for the exact syntax of
the parameter).

2. Validate the response using the steps described in test _conf_controlstream_cmd-resources-
endpoint.

3. For each Command resource in the response:
a) Retrieve its issueTime property.

b) Verify that the value of the property intersects the time specified in the request.

4. Repeat the steps above for every command resources endpoint nested under a
ControlStream resource, that is at endpoints {api_root}/controlstreams/{dsId}/
commands where dsId is the local ID of a ControlStream resource.

ABSTRACT TEST A.57

IDENTIFIER /conf/advanced-filtering/cmd-by-exectime

REQUIREMENT Requirement 57: /req/advanced-filtering/cmd-by-exectime

TEST PURPOSE Validate that the executionTime query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/commands?executionTime=
{datetime} where {datetime} is a time instant or period (see the requirement for the
exact syntax of the parameter).

2. Validate the response using the steps described in test _conf_controlstream_cmd-resources-
endpoint.

3. For each Command resource in the response:
a) Retrieve its executionTime property.

b) Verify that the value of the property intersects the time specified in the request.

4. Repeat the steps above for every command resources endpoint nested under a
ControlStream resource, that is at endpoints {api_root}/controlstreams/{dsId}/
commands where dsId is the local ID of a ControlStream resource.

ABSTRACT TEST A.58

IDENTIFIER /conf/advanced-filtering/cmd-by-status

REQUIREMENT Requirement 58: /req/advanced-filtering/cmd-by-status

TEST PURPOSE Validate that the statusCode query parameter is processed correctly.

OPEN GEOSPATIAL CONSORTIUM 23-002 165

ABSTRACT TEST A.58

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/commands?statusCode={idList}
where {idList} is a list of one or more status codes (see requirement for the possible
values).

2. Validate the response using the steps described in test _conf_controlstream_cmd-resources-
endpoint.

3. For each Command resource in the response:
a) Retrieve its currentStatus property

b) Verify that the value of the property is equal to one of the status codes listed in the
request.

4. Repeat the steps above for every command resources endpoint nested under a
ControlStream resource, that is at endpoints {api_root}/controlstreams/{dsId}/
commands where dsId is the local ID of a ControlStream resource.

ABSTRACT TEST A.59

IDENTIFIER /conf/advanced-filtering/cmd-by-sender

REQUIREMENT Requirement 59: /req/advanced-filtering/cmd-by-sender

TEST PURPOSE Validate that the sender query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/commands?sender={idList} where
{idList} is a list of one or more sender IDs.

2. Validate the response using the steps described in test _conf_controlstream_cmd-resources-
endpoint.

3. For each Command resource in the response:
a) Retrieve its sender property

b) Verify that the value of the property is equal to one of the IDs listed in the request.

4. Repeat the steps above for every command resources endpoint nested under a
ControlStream resource, that is at endpoints {api_root}/controlstreams/{dsId}/
commands where dsId is the local ID of a ControlStream resource.

ABSTRACT TEST A.60

IDENTIFIER /conf/advanced-filtering/cmd-by-foi

REQUIREMENT Requirement 60: /req/advanced-filtering/cmd-by-foi

TEST PURPOSE Validate that the foi query parameter is processed correctly.

TEST METHOD 1. Issue an HTTP GET request at URL {api_root}/commands?foi={idList} where
{idList} is a list of one or more local IDs of Sampling Feature or Feature resources.

OPEN GEOSPATIAL CONSORTIUM 23-002 166

ABSTRACT TEST A.60

See test http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-
filtering/id-list-schema

2. Validate the response using the steps described in test _conf_controlstream_cmd-resources-
endpoint.

3. For each Command resource in the response:
a) Retrieve its samplingFeature property.

b) Follow the sampleOf links to retrieve the sampled features, recursively. If a link does not
resolve or the link media type is not supported by the testing engine, use the link target
as the identifier of the feature.

c) Verify that at least one of the collected features has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the foi parameter set to a list of one or more UIDs of
Feature resources.

5. Repeat the steps above for every commands resources endpoint nested under a
ControlStream resource, that is at endpoints {api_root}/controlstreams/{dsId}/
commands where dsId is the local ID of a ControlStream resource.

ABSTRACT TEST A.61

IDENTIFIER /conf/advanced-filtering/status-by-statuscode

REQUIREMENT Requirement 61: /req/advanced-filtering/status-by-statuscode

TEST PURPOSE Validate that the statusCode query parameter is processed correctly.

TEST METHOD

Retrieve all Command resources by executing test http://www.opengis.net/spec/ogcapi-
connectedsystems-1/1.0/conf/api-common/canonical-resources with parameter resource-
type=commands, then for or every Command resource:

1. Issue an HTTP GET request at URL {api_root}/commands/{cmdId}/status?
statusCode={idList} where {idList} is a list of one or more status codes (see
requirement for the possible values).

2. Validate the response using the steps described in test _conf_controlstream_status-
resources-endpoint.

3. For each Command resource in the response:
a) Retrieve its currentStatus property

b) Verify that the value of the property is equal to one of the status codes listed in the
request.

ABSTRACT TEST A.62

IDENTIFIER /conf/advanced-filtering/event-by-type

OPEN GEOSPATIAL CONSORTIUM 23-002 167

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/advanced-filtering/id-list-schema
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources
http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0/conf/api-common/canonical-resources

ABSTRACT TEST A.62

REQUIREMENT Requirement 62: /req/advanced-filtering/event-by-type

TEST PURPOSE Validate that the eventType query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/systemevents?eventType={type}
where {type} is a list of one or more event types.

2. Validate the response using the steps described in test _conf_system-event_resources-
endpoint.

3. For each SystemEvent resource in the response:
a) Retrieve its type property

b) Verify that the value of the property is equal to one of the types listed in the request.

4. Repeat the steps above for every system event resources endpoint nested under a System
resource, that is at endpoints {api_root}/systems/{sysId}/events where sysId is the
local ID of a System resource.

A.7. Conformance Class “Create/Replace/Delete”

CONFORMANCE CLASS A.7

IDENTIFIER /conf/create-replace-delete

REQUIREMENTS CLASS Requirements class 7: /req/create-replace-delete

PREREQUISITE
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-
replace-delete

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.63: /conf/create-replace-delete/datastream
 Abstract test A.64: /conf/create-replace-delete/
datastream-update-schema
 Abstract test A.65: /conf/create-replace-delete/
datastream-delete-cascade
 Abstract test A.66: /conf/create-replace-delete/
observation
 Abstract test A.67: /conf/create-replace-delete/
observation-schema
 Abstract test A.68: /conf/create-replace-delete/
controlstream
 Abstract test A.69: /conf/create-replace-delete/
controlstream-update-schema

OPEN GEOSPATIAL CONSORTIUM 23-002 168

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

CONFORMANCE CLASS A.7

 Abstract test A.70: /conf/create-replace-delete/
controlstream-delete-cascade
 Abstract test A.71: /conf/create-replace-delete/command
 Abstract test A.72: /conf/create-replace-delete/command-
schema
 Abstract test A.73: /conf/create-replace-delete/command-
status
 Abstract test A.74: /conf/create-replace-delete/command-
result
 Abstract test A.75: /conf/create-replace-delete/
feasibility
 Abstract test A.76: /conf/create-replace-delete/
feasibility-status
 Abstract test A.77: /conf/create-replace-delete/
feasibility-result
 Abstract test A.78: /conf/create-replace-delete/system-
event

ABSTRACT TEST A.63

IDENTIFIER /conf/create-replace-delete/datastream

REQUIREMENT Requirement 63: /req/create-replace-delete/datastream

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
DataStream resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/systems/{sysId}/datastreams (for CREATE)

b) At resource endpoint {api_root}/systems/{sysId}/datastreams/{id} (for
REPLACE and DELETE)

c) At resource endpoint {api_root}/datastreams/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.64

IDENTIFIER /conf/create-replace-delete/datastream-update-schema

REQUIREMENT Requirement 64: /req/create-replace-delete/datastream-update-schema

TEST PURPOSE Validate that the server rejects DataStream REPLACE requests with incompatible schemas.

TEST METHOD 1. Given a DataStream resource with ID dsId that has associated observations:

OPEN GEOSPATIAL CONSORTIUM 23-002 169

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.64

a) Issue an HTTP PUT request at URL {api_root}/datastreams/{dsId} with a different
observation schema.

b) Verify that the server responds with an error code 409.

ABSTRACT TEST A.65

IDENTIFIER /conf/create-replace-delete/datastream-delete-cascade

REQUIREMENT Requirement 65: /req/create-replace-delete/datastream-delete-cascade

TEST PURPOSE Validate that the server implements the cascade query parameter correctly.

TEST METHOD

1. Given a DataStream resource with ID dsId that has observations:
a) Issue an HTTP DELETE request at URL {api_root}/datastreams/{dsId}?cascade=

false.

b) Verify that the server responds with an error code 409.

c) Issue an HTTP DELETE request at URL {api_root}/datastreams/{dsId}?cascade=
true.

d) Verify that the datastream and all its observations have been deleted.

ABSTRACT TEST A.66

IDENTIFIER /conf/create-replace-delete/observation

REQUIREMENT Requirement 66: /req/create-replace-delete/observation

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
Observation resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/datastreams/{dsId}/observations (for
CREATE)

b) At resource endpoint {api_root}/datastreams/{dsId}/observations/{id} (for
REPLACE and DELETE)

c) At resource endpoint {api_root}/observations/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.67

IDENTIFIER /conf/create-replace-delete/observation-schema

OPEN GEOSPATIAL CONSORTIUM 23-002 170

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.67

REQUIREMENT Requirement 67: /req/create-replace-delete/observation-schema

TEST PURPOSE Validate that the server rejects observations with incompatible schemas.

TEST METHOD

1. Given a DataStream resource with ID dsId:
a) Issue an HTTP CREATE request at URL {api_root}/datastreams/{dsId}/

observations with an observation whose result structure is incompatible with the
observation schema registered with the datastream.

b) Verify that the server responds with an error code 400.

ABSTRACT TEST A.68

IDENTIFIER /conf/create-replace-delete/controlstream

REQUIREMENT Requirement 68: /req/create-replace-delete/controlstream

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
ControlStream resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/systems/{sysId}/controlstreams (for
CREATE)

b) At resource endpoint {api_root}/systems/{sysId}/controlstreams/{id} (for
REPLACE and DELETE)

c) At resource endpoint {api_root}/controlstreams/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.69

IDENTIFIER /conf/create-replace-delete/controlstream-update-schema

REQUIREMENT Requirement 69: /req/create-replace-delete/controlstream-update-schema

TEST PURPOSE Validate that the server rejects ControlStream REPLACE requests with incompatible schemas.

TEST METHOD

1. Given a ControlStream resource with ID dsId that has associated commands:
a) Issue an HTTP PUT request at URL {api_root}/controlstreams/{dsId} with a

different observation schema.

b) Verify that the server responds with an error code 409.

OPEN GEOSPATIAL CONSORTIUM 23-002 171

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.70

IDENTIFIER /conf/create-replace-delete/controlstream-delete-cascade

REQUIREMENT Requirement 70: /req/create-replace-delete/controlstream-delete-cascade

TEST PURPOSE Validate that the server implements the cascade query parameter correctly.

TEST METHOD

1. Given a ControlStream resource with ID dsId that has commands:
a) Issue an HTTP DELETE request at URL {api_root}/controlstreams/{dsId}?

cascade=false.

b) Verify that the server responds with an error code 409.

c) Issue an HTTP DELETE request at URL {api_root}/controlstreams/{dsId}?
cascade=true.

d) Verify that the control stream and all its commands have been deleted.

ABSTRACT TEST A.71

IDENTIFIER /conf/create-replace-delete/command

REQUIREMENT Requirement 71: /req/create-replace-delete/command

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for Command
resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/controlstreams/{dsId}/commands (for
CREATE)

b) At resource endpoint {api_root}/controlstreams/{dsId}/commands/{id} (for
REPLACE and DELETE)

c) At resource endpoint {api_root}/commands/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.72

IDENTIFIER /conf/create-replace-delete/command-schema

REQUIREMENT Requirement 72: /req/create-replace-delete/command-schema

TEST PURPOSE Validate that the server rejects commands with incompatible schemas.

TEST METHOD 1. Given a ControlStream resource with ID dsId:

OPEN GEOSPATIAL CONSORTIUM 23-002 172

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.72

a) Issue an HTTP CREATE request at URL {api_root}/controlstreams/{dsId}/
commands with a command whose result structure is incompatible with the command
schema registered with the control stream.

b) Verify that the server responds with an error code 400.

ABSTRACT TEST A.73

IDENTIFIER /conf/create-replace-delete/command-status

REQUIREMENT Requirement 73: /req/create-replace-delete/command-status

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
CommandStatus resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/commands/{cmdId}/status (for CREATE)

b) At resource endpoint {api_root}/commands/{cmdId}/status/{id} (for REPLACE
and DELETE)

ABSTRACT TEST A.74

IDENTIFIER /conf/create-replace-delete/command-result

REQUIREMENT Requirement 74: /req/create-replace-delete/command-result

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
CommandResult resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/commands/{cmdId}/result (for CREATE)

b) At resource endpoint {api_root}/commands/{cmdId}/result/{id} (for REPLACE
and DELETE)

ABSTRACT TEST A.75

IDENTIFIER /conf/create-replace-delete/feasibility

REQUIREMENT Requirement 75: /req/create-replace-delete/feasibility

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
Feasibility resources.

OPEN GEOSPATIAL CONSORTIUM 23-002 173

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.75

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/controlstreams/{dsId}/feasibility (for
CREATE)

b) At resource endpoint {api_root}/controlstreams/{dsId}/feasibility/{id} (for
REPLACE and DELETE)

c) At resource endpoint {api_root}/feasibility/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.76

IDENTIFIER /conf/create-replace-delete/feasibility-status

REQUIREMENT Requirement 76: /req/create-replace-delete/feasibility-status

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
feasibility status.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/feasibility/{cmdId}/status (for CREATE)

b) At resource endpoint {api_root}/feasibility/{cmdId}/status/{id} (for
REPLACE and DELETE)

ABSTRACT TEST A.77

IDENTIFIER /conf/create-replace-delete/feasibility-result

REQUIREMENT Requirement 77: /req/create-replace-delete/feasibility-result

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
feasibility result.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/feasibility/{cmdId}/result (for CREATE)

b) At resource endpoint {api_root}/feasibility/{cmdId}/result/{id} (for
REPLACE and DELETE)

ABSTRACT TEST A.78

IDENTIFIER /conf/create-replace-delete/system-event

OPEN GEOSPATIAL CONSORTIUM 23-002 174

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.78

REQUIREMENT Requirement 78: /req/create-replace-delete/system-event

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly for
SystemEvent resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/systems/{sysId}/events (for CREATE)

b) At resource endpoint {api_root}/systems/{sysId}/events/{id} (for REPLACE
and DELETE)

c) At resource endpoint {api_root}/systemEvents/{id} (for REPLACE and DELETE)

A.8. Conformance Class “Update”

CONFORMANCE CLASS A.8

IDENTIFIER /conf/update

REQUIREMENTS CLASS Requirements class 8: /req/update

PREREQUISITES
Conformance class A.7: /conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.79: /conf/update/datastream
 Abstract test A.80: /conf/update/datastream-update-schema
 Abstract test A.81: /conf/update/observation
 Abstract test A.82: /conf/update/observation-schema
 Abstract test A.83: /conf/update/controlstream
 Abstract test A.84: /conf/update/controlstream-update-schema
 Abstract test A.85: /conf/update/command
 Abstract test A.86: /conf/update/command-schema
 Abstract test A.87: /conf/update/command-status
 Abstract test A.88: /conf/update/command-result
 Abstract test A.89: /conf/update/feasibility
 Abstract test A.90: /conf/update/feasibility-status
 Abstract test A.91: /conf/update/feasibility-result
 Abstract test A.92: /conf/update/system-event

OPEN GEOSPATIAL CONSORTIUM 23-002 175

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.79

IDENTIFIER /conf/update/datastream

REQUIREMENT Requirement 79: /req/update/datastream

TEST PURPOSE Validate that the server implements the UPDATE operation correctly for DataStream resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/
1.0/conf/update at the following endpoints:

a) At resource endpoint {api_root}/systems/{sysId}/datastreams/{id}

b) At resource endpoint {api_root}/datastreams/{id}

ABSTRACT TEST A.80

IDENTIFIER /conf/update/datastream-update-schema

REQUIREMENT Requirement 80: /req/update/datastream-update-schema

TEST PURPOSE Validate that the server rejects DataStream UPDATE requests with incompatible schemas.

TEST METHOD

1. Given a DataStream resource with ID dsId that has associated observations:
a) Issue HTTP UPDATE request at URL {api_root}/datastreams/{dsId} with a

different observation schema.

b) Verify that the server responds with an error code 409.

ABSTRACT TEST A.81

IDENTIFIER /conf/update/observation

REQUIREMENT Requirement 81: /req/update/observation

TEST PURPOSE Validate that the server implements the UPDATE operation correctly for Observation resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

a) At resource endpoint {api_root}/datastreams/{dsId}/observations/{id}

b) At resource endpoint {api_root}/observations/{id}

ABSTRACT TEST A.82

IDENTIFIER /conf/update/observation-schema

OPEN GEOSPATIAL CONSORTIUM 23-002 176

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update

ABSTRACT TEST A.82

REQUIREMENT Requirement 82: /req/update/observation-schema

TEST PURPOSE Validate that the server rejects observations with incompatible schemas.

TEST METHOD

1. Given a DataStream resource with ID dsId:
a) Issue an HTTP PATCH request at URL {api_root}/datastreams/{dsId}/

observations/{id} changing the observation’s result to something incompatible with
the observation schema registered with the datastream.

b) Verify that the server responds with an error code 400.

ABSTRACT TEST A.83

IDENTIFIER /conf/update/controlstream

REQUIREMENT Requirement 83: /req/update/controlstream

TEST PURPOSE
Validate that the server implements the UPDATE operation correctly for ControlStream
resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

a) At resource endpoint {api_root}/systems/{sysId}/controlstreams/{id}

b) At resource endpoint {api_root}/controlstreams/{id}

ABSTRACT TEST A.84

IDENTIFIER /conf/update/controlstream-update-schema

REQUIREMENT Requirement 84: /req/update/controlstream-update-schema

TEST PURPOSE Validate that the server rejects ControlStream UPDATE requests with incompatible schemas.

TEST METHOD

1. Given a ControlStream resource with ID dsId that has associated observations:
a) Issue HTTP UPDATE request at URL {api_root}/controlstreams/{dsId} with a

different command schema.

b) Verify that the server responds with an error code 409.

ABSTRACT TEST A.85

IDENTIFIER /conf/update/command

OPEN GEOSPATIAL CONSORTIUM 23-002 177

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update

ABSTRACT TEST A.85

REQUIREMENT Requirement 85: /req/update/command

TEST PURPOSE Validate that the server implements the UPDATE operation correctly for Command resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/
1.0/conf/update at the following endpoints:

a) At resource endpoint {api_root}/controlstreams/{dsId}/commands/{id}

b) At resource endpoint {api_root}/commands/{id}

ABSTRACT TEST A.86

IDENTIFIER /conf/update/command-schema

REQUIREMENT Requirement 86: /req/update/command-schema

TEST PURPOSE Validate that the server rejects commands with incompatible schemas.

TEST METHOD

1. Given a ControlStream resource with ID dsId:
a) Issue an HTTP PATCH request at URL {api_root}/controlstreams/{dsId}/

commands/{id} changing the command’s parameters to something incompatible with
the command schema registered with the control stream.

b) Verify that the server responds with an error code 400.

ABSTRACT TEST A.87

IDENTIFIER /conf/update/command-status

REQUIREMENT Requirement 87: /req/update/command-status

TEST PURPOSE
Validate that the server implements the UPDATE operation correctly for CommandStatus
resources.

TEST METHOD
1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.

0/conf/update at the following endpoints:
a) At resource endpoint {api_root}/commands/{cmdId}/status/{id}

ABSTRACT TEST A.88

IDENTIFIER /conf/update/command-result

REQUIREMENT Requirement 88: /req/update/command-result

OPEN GEOSPATIAL CONSORTIUM 23-002 178

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update

ABSTRACT TEST A.88

TEST PURPOSE
Validate that the server implements the UPDATE operation correctly for CommandResult
resources.

TEST METHOD
1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.

0/conf/update at the following endpoints:
a) At resource endpoint {api_root}/commands/{cmdId}/result/{id}

ABSTRACT TEST A.89

IDENTIFIER /conf/update/feasibility

REQUIREMENT Requirement 89: /req/update/feasibility

TEST PURPOSE Validate that the server implements the UPDATE operation correctly for Feasibility resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

a) At resource endpoint {api_root}/controlstreams/{dsId}/feasibility/{id}

b) At resource endpoint {api_root}/feasibility/{id}

ABSTRACT TEST A.90

IDENTIFIER /conf/update/feasibility-status

REQUIREMENT Requirement 90: /req/update/feasibility-status

TEST PURPOSE
Validate that the server implements the UPDATE operation correctly for feasibility status
resources.

TEST METHOD
1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.

0/conf/update at the following endpoints:
a) At resource endpoint {api_root}/feasibility/{cmdId}/status/{id}

ABSTRACT TEST A.91

IDENTIFIER /conf/update/feasibility-result

REQUIREMENT Requirement 91: /req/update/feasibility-result

TEST PURPOSE
Validate that the server implements the UPDATE operation correctly for feasibility result
resources.

TEST METHOD 1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

OPEN GEOSPATIAL CONSORTIUM 23-002 179

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update

ABSTRACT TEST A.91

a) At resource endpoint {api_root}/feasibility/{cmdId}/result/{id}

ABSTRACT TEST A.92

IDENTIFIER /conf/update/system-event

REQUIREMENT Requirement 92: /req/update/system-event

TEST PURPOSE Validate that the server implements the UPDATE operation correctly for SystemEvent resources.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

a) At resource endpoint {api_root}/systems/{sysId}/events/{id}

b) At resource endpoint {api_root}/systemEvents/{id}

A.9. Conformance Class “JSON Encoding”

CONFORMANCE CLASS A.9

IDENTIFIER /conf/json

REQUIREMENTS CLASS Requirements class 9: /req/json

PREREQUISITE
http://www.opengis.net/spec/SWE/3.0/conf/json-
record-components

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.93: /conf/json/mediatype-read
 Abstract test A.94: /conf/json/mediatype-write
 Abstract test A.95: /conf/json/datastream-
schema
 Abstract test A.96: /conf/json/obsschema-
schema
 Abstract test A.97: /conf/json/observation-
schema
 Abstract test A.98: /conf/json/observation-
constraints
 Abstract test A.99: /conf/json/controlstream-
schema

OPEN GEOSPATIAL CONSORTIUM 23-002 180

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/SWE/3.0/conf/json-record-components
http://www.opengis.net/spec/SWE/3.0/conf/json-record-components

CONFORMANCE CLASS A.9

 Abstract test A.100: /conf/json/commandschema-
schema
 Abstract test A.101: /conf/json/command-schema
 Abstract test A.102: /conf/json/command-
constraints
 Abstract test A.103: /conf/json/commandstatus-
schema
 Abstract test A.104: /conf/json/commandresult-
schema
 Abstract test A.105: /conf/json/commandresult-
constraints
 Abstract test A.106: /conf/json/systemevent-
schema

ABSTRACT TEST A.93

IDENTIFIER /conf/json/mediatype-read

REQUIREMENT Requirement 93: /req/json/mediatype-read

TEST PURPOSE Verify that the server supports the JSON format on retrieval operations.

TEST METHOD

1. For each supported conformance class:
a) Request resources from the specified resources endpoint with media type

application/json.

b) Verify that the server responds with HTTP code 200.

c) Verify that the Content-Type header of the response is set to application/json.

d) Verify that the response is properly encoded as JSON.

ABSTRACT TEST A.94

IDENTIFIER /conf/json/mediatype-write

REQUIREMENT Requirement 94: /req/json/mediatype-write

TEST PURPOSE Verify that the server advertises support for the JSON format on transactional operations.

TEST METHOD
1. For each supported conformance class:

a) Verify that server advertises support for media type application/json in the API
definition for CREATE or REPLACE operations, for the specified resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-002 181

ABSTRACT TEST A.95

IDENTIFIER /conf/json/datastream-schema

REQUIREMENT Requirement 95: /req/json/datastream-schema

TEST PURPOSE Validate that the JSON representation of DataStream resources is valid.

TEST METHOD

1. Request a single DataStream resource.
a) Issue an HTTP GET request at {api_root}/datastreams/{id} with the Accept

header set to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema dataStream.json using a JSON Schema
validator.

2. Request multiple DataStream resources.
a) Issue an HTTP GET request at {api_root}/datastreams with the Accept header set

to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema dataStreamCollection.json using a JSON
Schema validator.

d) Repeat the steps above for nested DataStream resources endpoints {api_root}/
systems/{sysId}/datastreams.

ABSTRACT TEST A.96

IDENTIFIER /conf/json/obsschema-schema

REQUIREMENT Requirement 96: /req/json/obsschema-schema

TEST PURPOSE Validate that the JSON representation of observation schema resources is valid.

TEST METHOD

For every DataStream resource:
1. Issue an HTTP GET request at {api_root}/datastreams/{id}/schema?obsFormat=

application/json.

2. Validate the document against the schema observationSchemaJson.json using a JSON
Schema validator.

ABSTRACT TEST A.97

IDENTIFIER /conf/json/observation-schema

REQUIREMENT Requirement 97: /req/json/observation-schema

OPEN GEOSPATIAL CONSORTIUM 23-002 182

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/dataStream.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/dataStreamCollection.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaJson.json

ABSTRACT TEST A.97

TEST PURPOSE Validate that the JSON representation of Observation resources is valid.

TEST METHOD

1. Request a single Observation resource.
a) Issue an HTTP GET request at {api_root}/observations/{id} with the Accept

header set to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema observation.json using a JSON Schema
validator.

2. Request multiple Observation resources.
a) Issue an HTTP GET request at {api_root}/observations with the Accept header set

to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema observationCollection.json using a JSON
Schema validator.

d) For each observation in the response, validate it with test _conf_json_observation-
constraints

e) Repeat the steps above for nested Observation resources endpoints {api_root}/
datastreams/{dsId}/observations.

ABSTRACT TEST A.98

IDENTIFIER /conf/json/observation-constraints

REQUIREMENT Requirement 98: /req/json/observation-constraints

TEST PURPOSE Validate that Observation result and parameters are encoded properly.

TEST METHOD

1. Retrieve the schema from the parent DataStream resource.

2. Validate that the Observation result is valid according to the resultSchema.

3. Validate that the Observation parameters, if any, are valid according to the
parametersSchema.

ABSTRACT TEST A.99

IDENTIFIER /conf/json/controlstream-schema

REQUIREMENT Requirement 99: /req/json/controlstream-schema

TEST PURPOSE Validate that the JSON representation of ControlStream resources is valid.

OPEN GEOSPATIAL CONSORTIUM 23-002 183

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observation.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationCollection.json

ABSTRACT TEST A.99

TEST METHOD

1. Request a single ControlStream resource.
a) Issue an HTTP GET request at {api_root}/controlstreams/{id} with the Accept

header set to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema controlStream.json using a JSON Schema
validator.

2. Request multiple ControlStream resources.
a) Issue an HTTP GET request at {api_root}/controlstreams with the Accept header

set to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema controlStreamCollection.json using a JSON
Schema validator.

d) Repeat the steps above for nested ControlStream resources endpoints {api_root}/
systems/{sysId}/controlstreams.

ABSTRACT TEST A.100

IDENTIFIER /conf/json/commandschema-schema

REQUIREMENT Requirement 100: /req/json/commandschema-schema

TEST PURPOSE Validate that the JSON representation of command schema resources is valid.

TEST METHOD

For every ControlStream resource:
1. Issue an HTTP GET request at {api_root}/controlstreams/{id}/schema?

cmdFormat=application/json.

2. Validate the document against the schema commandSchemaJson.json using a JSON Schema
validator.

ABSTRACT TEST A.101

IDENTIFIER /conf/json/command-schema

REQUIREMENT Requirement 101: /req/json/command-schema

TEST PURPOSE Validate that the JSON representation of Command resources is valid.

TEST METHOD

1. Request a single Command resource.
a) Issue an HTTP GET request at {api_root}/commands/{id} with the Accept header

set to application/json.

b) Validate that a document was returned with a status code 200.

OPEN GEOSPATIAL CONSORTIUM 23-002 184

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/controlStream.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/controlStreamCollection.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaJson.json

ABSTRACT TEST A.101

c) Validate the document against the schema command.json using a JSON Schema
validator.

2. Request multiple Command resources.
a) Issue an HTTP GET request at {api_root}/commands with the Accept header set to

application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema commandCollection.json using a JSON
Schema validator.

d) Repeat the steps above for nested Command resources endpoints {api_root}/
controlstreams/{dsId}/commands.

ABSTRACT TEST A.102

IDENTIFIER /conf/json/command-constraints

REQUIREMENT Requirement 102: /req/json/command-constraints

TEST PURPOSE Validate that Command parameters are encoded properly.

TEST METHOD
1. Retrieve the schema from the parent ControlStream resource.

2. Validate that the Command parameters are valid according to the parametersSchema.

ABSTRACT TEST A.103

IDENTIFIER /conf/json/commandstatus-schema

REQUIREMENT Requirement 103: /req/json/commandstatus-schema

TEST PURPOSE Validate that the JSON representation of CommandStatus resources is valid.

TEST METHOD

1. Request a single CommandStatus resource.
a) Issue an HTTP GET request at {api_root}/commands/{cmdId}/status/{id} with

the Accept header set to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema commandStatus.json using a JSON Schema
validator.

2. Request multiple CommandStatus resources.
a) Issue an HTTP GET request at {api_root}/commands/{cmdId}/status with the

Accept header set to application/json.

b) Validate that a document was returned with a status code 200.

OPEN GEOSPATIAL CONSORTIUM 23-002 185

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/command.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandCollection.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandStatus.json

ABSTRACT TEST A.103

c) Validate the document against the schema commandStatusCollection.json using a JSON
Schema validator.

ABSTRACT TEST A.104

IDENTIFIER /conf/json/commandresult-schema

REQUIREMENT Requirement 104: /req/json/commandresult-schema

TEST PURPOSE Validate that the JSON representation of CommandResult resources is valid.

TEST METHOD

1. Request a single CommandResult resource.
a) Issue an HTTP GET request at {api_root}/commands/{cmdId}/result/{id} with

the Accept header set to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema commandResult.json using a JSON Schema
validator.

2. Request multiple CommandResult resources.
a) Issue an HTTP GET request at {api_root}/commands/{cmdId}/result with the

Accept header set to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema commandResultCollection.json using a JSON
Schema validator.

ABSTRACT TEST A.105

IDENTIFIER /conf/json/commandresult-constraints

REQUIREMENT Requirement 105: /req/json/commandresult-constraints

TEST PURPOSE Validate that CommandResult results are encoded properly.

TEST METHOD
1. Retrieve the schema from the parent ControlStream resource.

2. Validate that the CommandResult result field is valid according to the resultSchema.

ABSTRACT TEST A.106

IDENTIFIER /conf/json/systemevent-schema

REQUIREMENT Requirement 106: /req/json/systemevent-schema

OPEN GEOSPATIAL CONSORTIUM 23-002 186

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandStatusCollection.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandResult.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandResultCollection.json

ABSTRACT TEST A.106

TEST PURPOSE Validate that the JSON representation of SystemEvent resources is valid.

TEST METHOD

1. Request a single SystemEvent resource.
a) Issue an HTTP GET request at {api_root}/systemEvents/{id} with the Accept

header set to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema systemEvent.json using a JSON Schema
validator.

2. Request multiple SystemEvent resources.
a) Issue an HTTP GET request at {api_root}/systemEvents with the Accept header set

to application/json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema systemEventCollection.json using a JSON
Schema validator.

d) Repeat the steps above for nested SystemEvent resources endpoints {api_root}/
systems/{sysId}/events.

A.10. Conformance Class “SWE Common JSON
Encoding”

CONFORMANCE CLASS A.10

IDENTIFIER /conf/swecommon-json

REQUIREMENTS CLASS Requirements class 10: /req/swecommon-json

PREREQUISITE
http://www.opengis.net/spec/SWE/3.0/conf/json-encoding-
rules

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.107: /conf/swecommon-json/mediatype-
read
 Abstract test A.108: /conf/swecommon-json/mediatype-
write
 Abstract test A.109: /conf/swecommon-json/obsschema-
schema
 Abstract test A.110: /conf/swecommon-json/obsschema-
mapping

OPEN GEOSPATIAL CONSORTIUM 23-002 187

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/systemEvent.json
https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/systemEventCollection.json
http://www.opengis.net/spec/SWE/3.0/conf/json-encoding-rules
http://www.opengis.net/spec/SWE/3.0/conf/json-encoding-rules

CONFORMANCE CLASS A.10

 Abstract test A.111: /conf/swecommon-json/
observation-encoding
 Abstract test A.112: /conf/swecommon-json/cmdschema-
schema
 Abstract test A.113: /conf/swecommon-json/cmdschema-
mapping
 Abstract test A.114: /conf/swecommon-json/command-
encoding

ABSTRACT TEST A.107

IDENTIFIER /conf/swecommon-json/mediatype-read

REQUIREMENT Requirement 107: /req/swecommon-json/mediatype-read

TEST PURPOSE Verify that the server supports the SWE Common JSON format on retrieval operations.

TEST METHOD

1. For at least one of the Observation and/or Command resources endpoint:
a) Verify that the server advertises support for media type application/swe+json in the

API definition for retrieval operations.

b) Request resources from the resources endpoint with media type application/swe
+json.

c) Verify that the server responds with HTTP code 200.

d) Verify that the Content-Type header of the response is set to application/swe
+json.

e) Verify that the response is properly encoded as JSON.

ABSTRACT TEST A.108

IDENTIFIER /conf/swecommon-json/mediatype-write

REQUIREMENT Requirement 108: /req/swecommon-json/mediatype-write

TEST PURPOSE
Verify that the server advertises support for the SWE Common JSON format on transactional
operations.

TEST METHOD
1. For at least one of the Observation and/or Command resources endpoint:

a) Verify that the server advertises support for media type application/swe+json in the
API definition for CREATE or REPLACE operations.

OPEN GEOSPATIAL CONSORTIUM 23-002 188

ABSTRACT TEST A.109

IDENTIFIER /conf/swecommon-json/obsschema-schema

REQUIREMENT Requirement 109: /req/swecommon-json/obsschema-schema

TEST PURPOSE Validate that the JSON representation of observation schema resources is valid.

TEST METHOD

For every DataStream resource:
1. Issue an HTTP GET request at {api_root}/datastreams/{id}/schema?obsFormat=

application/swe+json.

2. Validate the document against the schema observationSchemaSwe.json using a JSON
Schema validator.

3. Validate that the SWE Common encoding is set to JSONEncoding.

4. Validate the schema using test _conf_swecommon-json_obsschema-mapping

ABSTRACT TEST A.110

IDENTIFIER /conf/swecommon-json/obsschema-mapping

REQUIREMENT Requirement 110: /req/swecommon-json/obsschema-mapping

TEST PURPOSE Verify that the mandatory fields are present in the schema.

TEST METHOD

1. Scan the schema and validate that at least one Time data component is present

2. Validate the the definition field of the Time component is one of:
• http://www.w3.org/ns/sosa/phenomenonTime

• http://www.opengis.net/def/property/OGC/0/SamplingTime

• http://www.w3.org/ns/sosa/resultTime

ABSTRACT TEST A.111

IDENTIFIER /conf/swecommon-json/observation-encoding

REQUIREMENT Requirement 111: /req/swecommon-json/observation-encoding

TEST PURPOSE Validate that the JSON representation of Observation resources is valid.

TEST METHOD

1. For every DataStream that advertises support for the application/swe+json format:
a) Issue an HTTP GET request at {api_root}/datastreams/{dsId}/observations

with the Accept header set to application/swe+json.

b) Validate that a document was returned with a status code 200.

OPEN GEOSPATIAL CONSORTIUM 23-002 189

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaSwe.json
http://www.w3.org/ns/sosa/phenomenonTime
http://www.opengis.net/def/property/OGC/0/SamplingTime
http://www.w3.org/ns/sosa/resultTime

ABSTRACT TEST A.111

c) Validate the response using a SWE Common validator implementing the JSON encoding
rules.

ABSTRACT TEST A.112

IDENTIFIER /conf/swecommon-json/cmdschema-schema

REQUIREMENT Requirement 112: /req/swecommon-json/cmdschema-schema

TEST PURPOSE Validate that the JSON representation of command schema resources is valid.

TEST METHOD

For every ControlStream resource:
1. Issue an HTTP GET request at {api_root}/controlstreams/{id}/schema?

cmdFormat=application/swe+json.

2. Validate the document against the schema commandSchemaSwe.json using a JSON Schema
validator.

3. Validate that the SWE Common encoding is set to JSONEncoding.

4. Validate the schema using test _conf_swecommon-json_cmdschema-mapping

ABSTRACT TEST A.113

IDENTIFIER /conf/swecommon-json/cmdschema-mapping

REQUIREMENT Requirement 113: /req/swecommon-json/cmdschema-mapping

TEST PURPOSE Verify that the mandatory fields are present in the schema.

TEST METHOD

1. Scan the schema and validate that at least one Time data component is present

2. Validate the the definition field of the Time component is one of:
• http://www.opengis.net/def/property/OGC/0/IssueTime

ABSTRACT TEST A.114

IDENTIFIER /conf/swecommon-json/command-encoding

REQUIREMENT Requirement 114: /req/swecommon-json/command-encoding

TEST PURPOSE Validate that the JSON representation of Command resources is valid.

TEST METHOD 1. For every ControlStream that advertises support for the application/swe+json
format:

OPEN GEOSPATIAL CONSORTIUM 23-002 190

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaSwe.json
http://www.opengis.net/def/property/OGC/0/IssueTime

ABSTRACT TEST A.114

a) Issue an HTTP GET request at {api_root}/controlstreams/{dsId}/commands with
the Accept header set to application/swe+json.

b) Validate that a document was returned with a status code 200.

c) Validate the response using a SWE Common validator implementing the JSON encoding
rules.

A.11. Conformance Class “SWE Common Text Encoding”

CONFORMANCE CLASS A.11

IDENTIFIER /conf/swecommon-text

REQUIREMENTS CLASS Requirements class 11: /req/swecommon-text

PREREQUISITE
http://www.opengis.net/spec/SWE/3.0/conf/text-encoding-
rules

TARGET TYPE Web API

CONFORMANCE TESTS

 Abstract test A.115: /conf/swecommon-text/mediatype-
read
 Abstract test A.116: /conf/swecommon-text/mediatype-
write
 Abstract test A.117: /conf/swecommon-text/obsschema-
schema
 Abstract test A.118: /conf/swecommon-text/obsschema-
mapping
 Abstract test A.119: /conf/swecommon-text/
observation-encoding
 Abstract test A.120: /conf/swecommon-text/cmdschema-
schema
 Abstract test A.121: /conf/swecommon-text/cmdschema-
mapping
 Abstract test A.122: /conf/swecommon-text/command-
encoding

ABSTRACT TEST A.115

IDENTIFIER /conf/swecommon-text/mediatype-read

OPEN GEOSPATIAL CONSORTIUM 23-002 191

http://www.opengis.net/spec/SWE/3.0/conf/text-encoding-rules
http://www.opengis.net/spec/SWE/3.0/conf/text-encoding-rules

ABSTRACT TEST A.115

REQUIREMENT Requirement 115: /req/swecommon-text/mediatype-read

TEST PURPOSE Verify that the server supports the SWE Common Text format on retrieval operations.

TEST METHOD

1. For at least one of the Observation and/or Command resources endpoint:
a) Verify that the server advertises support for media type application/swe+binary in

the API definition for retrieval operations.

b) Request resources from the resources endpoint with media type application/swe
+text.

c) Verify that the server responds with HTTP code 200.

d) Verify that the Content-Type header of the response is set to application/swe
+text.

ABSTRACT TEST A.116

IDENTIFIER /conf/swecommon-text/mediatype-write

REQUIREMENT Requirement 116: /req/swecommon-text/mediatype-write

TEST PURPOSE
Verify that the server advertises support for the SWE Common Text format on transactional
operations.

TEST METHOD
1. For at least one of the Observation and/or Command resources endpoint:

a) Verify that the server advertises support for media type application/swe+text in the
API definition for CREATE or REPLACE operations.

ABSTRACT TEST A.117

IDENTIFIER /conf/swecommon-text/obsschema-schema

REQUIREMENT Requirement 117: /req/swecommon-text/obsschema-schema

TEST PURPOSE Validate that the JSON representation of observation schema resources is valid.

TEST METHOD

For every DataStream resource:
1. Issue an HTTP GET request at {api_root}/datastreams/{id}/schema?obsFormat=

application/swe+text.

2. Validate the document against the schema observationSchemaSwe.json using a JSON
Schema validator.

3. Validate that the SWE Common encoding is set to TextEncoding.

4. Validate the schema using test _conf_swecommon-text_obsschema-mapping

OPEN GEOSPATIAL CONSORTIUM 23-002 192

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaSwe.json

ABSTRACT TEST A.118

IDENTIFIER /conf/swecommon-text/obsschema-mapping

REQUIREMENT Requirement 118: /req/swecommon-text/obsschema-mapping

TEST PURPOSE Verify that the mandatory fields are present in the schema.

TEST METHOD Execute test _conf_swecommon-json_obsschema-mapping

ABSTRACT TEST A.119

IDENTIFIER /conf/swecommon-text/observation-encoding

REQUIREMENT Requirement 119: /req/swecommon-text/observation-encoding

TEST PURPOSE Validate that the Text (DSV) representation of Observation resources is valid.

TEST METHOD

1. For every DataStream that advertises support for the application/swe+text format:
a) Issue an HTTP GET request at {api_root}/datastreams/{dsId}/observations

with the Accept header set to application/swe+text.

b) Validate that a document was returned with a status code 200.

c) Validate the response using a SWE Common validator implementing the Text encoding
rules.

ABSTRACT TEST A.120

IDENTIFIER /conf/swecommon-text/cmdschema-schema

REQUIREMENT Requirement 120: /req/swecommon-text/cmdschema-schema

TEST PURPOSE Validate that the JSON representation of command schema resources is valid.

TEST METHOD

For every ControlStream resource:
1. Issue an HTTP GET request at {api_root}/controlstreams/{id}/schema?

cmdFormat=application/swe+text.

2. Validate the document against the schema commandSchemaSwe.json using a JSON Schema
validator.

3. Validate that the SWE Common encoding is set to TextEncoding.

4. Validate the schema using test _conf_swecommon-text_cmdschema-mapping

OPEN GEOSPATIAL CONSORTIUM 23-002 193

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaSwe.json

ABSTRACT TEST A.121

IDENTIFIER /conf/swecommon-text/cmdschema-mapping

REQUIREMENT Requirement 121: /req/swecommon-text/cmdschema-mapping

TEST PURPOSE Verify that the mandatory fields are present in the schema.

TEST METHOD Execute test _conf_swecommon-json_cmdschema-mapping

ABSTRACT TEST A.122

IDENTIFIER /conf/swecommon-text/command-encoding

REQUIREMENT Requirement 122: /req/swecommon-text/command-encoding

TEST PURPOSE Validate that the Text (DSV) representation of Command resources is valid.

TEST METHOD

1. For every ControlStream that advertises support for the application/swe+text
format:

a) Issue an HTTP GET request at {api_root}/controlstreams/{dsId}/commands with
the Accept header set to application/swe+text.

b) Validate that a document was returned with a status code 200.

c) Validate the response using a SWE Common validator implementing the Text encoding
rules.

A.12. Conformance Class “SWE Common Binary
Encoding”

CONFORMANCE CLASS A.12

IDENTIFIER /conf/swecommon-binary

REQUIREMENTS CLASS Requirements class 12: /req/swecommon-binary

PREREQUISITE
http://www.opengis.net/spec/SWE/3.0/conf/binary-encoding-
rules

TARGET TYPE Web API

OPEN GEOSPATIAL CONSORTIUM 23-002 194

http://www.opengis.net/spec/SWE/3.0/conf/binary-encoding-rules
http://www.opengis.net/spec/SWE/3.0/conf/binary-encoding-rules

CONFORMANCE CLASS A.12

CONFORMANCE TESTS

 Abstract test A.123: /conf/swecommon-binary/mediatype-
read
 Abstract test A.124: /conf/swecommon-binary/mediatype-
write
 Abstract test A.125: /conf/swecommon-binary/obsschema-
schema
 Abstract test A.126: /conf/swecommon-binary/obsschema-
mapping
 Abstract test A.127: /conf/swecommon-binary/
observation-encoding
 Abstract test A.128: /conf/swecommon-binary/cmdschema-
schema
 Abstract test A.129: /conf/swecommon-binary/cmdschema-
mapping
 Abstract test A.130: /conf/swecommon-binary/command-
encoding

ABSTRACT TEST A.123

IDENTIFIER /conf/swecommon-binary/mediatype-read

REQUIREMENT Requirement 123: /req/swecommon-binary/mediatype-read

TEST PURPOSE Verify that the server supports the SWE Common Binary format on retrieval operations.

TEST METHOD

1. For at least one of the Observation and/or Command resources endpoint:
a) Verify that the server advertises support for media type application/swe+binary in

the API definition for retrieval operations.

b) Request resources from the resources endpoint with media type application/swe
+binary.

c) Verify that the server responds with HTTP code 200.

d) Verify that the Content-Type header of the response is set to application/swe
+binary.

ABSTRACT TEST A.124

IDENTIFIER /conf/swecommon-binary/mediatype-write

REQUIREMENT Requirement 124: /req/swecommon-binary/mediatype-write

TEST PURPOSE
Verify that the server advertises support for the SWE Common Binary format on transactional
operations.

OPEN GEOSPATIAL CONSORTIUM 23-002 195

ABSTRACT TEST A.124

TEST METHOD
1. For at least one of the Observation and/or Command resources endpoint:

a) Verify that the server advertises support for media type application/swe+binary in
the API definition for CREATE or REPLACE operations.

ABSTRACT TEST A.125

IDENTIFIER /conf/swecommon-binary/obsschema-schema

REQUIREMENT Requirement 125: /req/swecommon-binary/obsschema-schema

TEST PURPOSE Validate that the JSON representation of observation schema resources is valid.

TEST METHOD

For every DataStream resource:
1. Issue an HTTP GET request at {api_root}/datastreams/{id}/schema?obsFormat=

application/swe+binary.

2. Validate the document against the schema observationSchemaSwe.json using a JSON
Schema validator.

3. Validate that the SWE Common encoding is set to BinaryEncoding.

4. Validate the schema using test _conf_swecommon-binary_obsschema-mapping

ABSTRACT TEST A.126

IDENTIFIER /conf/swecommon-binary/obsschema-mapping

REQUIREMENT Requirement 126: /req/swecommon-binary/obsschema-mapping

TEST PURPOSE Verify that the mandatory fields are present in the schema.

TEST METHOD Execute test _conf_swecommon-json_obsschema-mapping

ABSTRACT TEST A.127

IDENTIFIER /conf/swecommon-binary/observation-encoding

REQUIREMENT Requirement 127: /req/swecommon-binary/observation-encoding

TEST PURPOSE Validate that the binary representation of Observation resources is valid.

TEST METHOD 1. For every DataStream that advertises support for the application/swe+binary format:

OPEN GEOSPATIAL CONSORTIUM 23-002 196

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/observationSchemaSwe.json

ABSTRACT TEST A.127

a) Issue an HTTP GET request at {api_root}/datastreams/{dsId}/observations
with the Accept header set to application/swe+binary.

b) Validate that a document was returned with a status code 200.

c) Validate the response using a SWE Common validator implementing the Text encoding
rules.

ABSTRACT TEST A.128

IDENTIFIER /conf/swecommon-binary/cmdschema-schema

REQUIREMENT Requirement 128: /req/swecommon-binary/cmdschema-schema

TEST PURPOSE Validate that the JSON representation of command schema resources is valid.

TEST METHOD

For every ControlStream resource:
1. Issue an HTTP GET request at {api_root}/controlstreams/{id}/schema?

cmdFormat=application/swe+binary.

2. Validate the document against the schema commandSchemaSwe.json using a JSON Schema
validator.

3. Validate that the SWE Common encoding is set to BinaryEncoding.

4. Validate the schema using test _conf_swecommon-binary_cmdschema-mapping

ABSTRACT TEST A.129

IDENTIFIER /conf/swecommon-binary/cmdschema-mapping

REQUIREMENT Requirement 129: /req/swecommon-binary/cmdschema-mapping

TEST PURPOSE Verify that the mandatory fields are present in the schema.

TEST METHOD Execute test _conf_swecommon-json_cmdschema-mapping

ABSTRACT TEST A.130

IDENTIFIER /conf/swecommon-binary/command-encoding

REQUIREMENT Requirement 130: /req/swecommon-binary/command-encoding

OPEN GEOSPATIAL CONSORTIUM 23-002 197

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/schemas/json/commandSchemaSwe.json

ABSTRACT TEST A.130

TEST PURPOSE Validate that the binary representation of Command resources is valid.

TEST METHOD

1. For every ControlStream that advertises support for the application/swe+binary
format:

a) Issue an HTTP GET request at {api_root}/controlstreams/{dsId}/commands with
the Accept header set to application/swe+binary.

b) Validate that a document was returned with a status code 200.

c) Validate the response using a SWE Common validator implementing the Text encoding
rules.

OPEN GEOSPATIAL CONSORTIUM 23-002 198

B

ANNEX B (INFORMATIVE)
EXAMPLES

OPEN GEOSPATIAL CONSORTIUM 23-002 199

B ANNEX B
(INFORMATIVE)
EXAMPLES

More JSON examples are available in the project’s GitHub repository at:

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/examples

OPEN GEOSPATIAL CONSORTIUM 23-002 200

https://schemas.opengis.net/ogcapi/connected-systems/part2/1.0/openapi/examples

C

ANNEX C (INFORMATIVE)
RELATIONSHIP WITH
OTHER OGC/ISO
STANDARDS
(INFORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 23-002 201

C ANNEX C
(INFORMATIVE)
RELATIONSHIP WITH OTHER OGC/ISO
STANDARDS (INFORMATIVE)

See OGC API — Connected Systems — Part 1, Annex C, for a description of relationships with
other Standards.

OPEN GEOSPATIAL CONSORTIUM 23-002 202

D

ANNEX D (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 23-002 203

D ANNEX D
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE EDITOR
PRIMARY CLAUSES
MODIFIED

DESCRIPTION

2023-01-
10

1.0 draft Alex Robin All Initial draft version

2023-04-
21

1.0 draft Alex Robin All Migration to Metanorma

2024-06-
10

1.0 draft Alex Robin All
Added missing sections, alignment
with Part 1

2024-09-
10

1.0 draft Alex Robin All Added ATS

2025-03-
18

1.0 draft
Christian
Autermann

All
Incorporated feedback from public
comments

OPEN GEOSPATIAL CONSORTIUM 23-002 204

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 23-002 205

BIBLIOGRAPHY

[1] Simon Cox: OGC 10-004r3, Topic 20 — Observations and Measurements. Open Geospatial
Consortium (2013). http://www.opengis.net/doc/as/om/2.0.

[2] Katharina Schleidt, Ilkka Rinne: OGC 20-082r4, Topic 20 — Observations, measurements
and samples. Open Geospatial Consortium (2023). http://www.opengis.net/doc/as/om/
3.0.

[3] Mark Burgoyne, David Blodgett, Charles Heazel, Chris Little: OGC 19-086r6, OGC API —
Environmental Data Retrieval Standard. Open Geospatial Consortium (2023). http://www.
opengis.net/doc/IS/ogcapi-edr-1/1.1.0.

[4] Taehoon Kim, Kyoung-Sook Kim, Mahmoud SAKR, Martin Desruisseaux: OGC 22-003r3,
OGC API — Moving Features — Part 1: Core. Open Geospatial Consortium (2024). http://
www.opengis.net/doc/IS/ogcapi-movingfeatures-1/1.0.

[5] Steve Liang, Tania Khalafbeigi, Hylke van der Schaaf: OGC 18-088, OGC SensorThings API
Part 1: Sensing Version 1.1. Open Geospatial Consortium (2021). http://www.opengis.net/
doc/is/sensorthings/1.1.0.

[6] Steve Liang, Tania Khalafbeigi: OGC 17-079r1, OGC SensorThings API Part 2 – Tasking
Core. Open Geospatial Consortium (2019). http://www.opengis.net/doc/IS/sensorthings-
part2-TaskingCore/1.0.0.

[7] Arne Bröring, Christoph Stasch, Johannes Echterhoff: OGC 12-006, OGC® Sensor
Observation Service Interface Standard. Open Geospatial Consortium (2012). http://www.
opengis.net/doc/IS/SOS/2.0.0.

[8] Ingo Simonis, Johannes Echterhoff: OGC 09-000, OGC® Sensor Planning Service
Implementation Standard. Open Geospatial Consortium (2011). https://portal.ogc.org/
files/?artifact_id=38478.

[9] QUDT Quantity Kinds, Version 2.1. https://www.qudt.org/doc/DOC_VOCAB-
QUANTITY-KINDS.html

OPEN GEOSPATIAL CONSORTIUM 23-002 206

http://www.opengis.net/doc/as/om/2.0
http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/IS/ogcapi-edr-1/1.1.0
http://www.opengis.net/doc/IS/ogcapi-edr-1/1.1.0
http://www.opengis.net/doc/IS/ogcapi-movingfeatures-1/1.0
http://www.opengis.net/doc/IS/ogcapi-movingfeatures-1/1.0
http://www.opengis.net/doc/is/sensorthings/1.1.0
http://www.opengis.net/doc/is/sensorthings/1.1.0
http://www.opengis.net/doc/IS/sensorthings-part2-TaskingCore/1.0.0
http://www.opengis.net/doc/IS/sensorthings-part2-TaskingCore/1.0.0
http://www.opengis.net/doc/IS/SOS/2.0.0
http://www.opengis.net/doc/IS/SOS/2.0.0
https://portal.ogc.org/files/?artifact_id=38478
https://portal.ogc.org/files/?artifact_id=38478
https://www.qudt.org/doc/DOC_VOCAB-QUANTITY-KINDS.html
https://www.qudt.org/doc/DOC_VOCAB-QUANTITY-KINDS.html

OPEN GEOSPATIAL CONSORTIUM 23-002 207

	I. Abstract
	II. Keywords
	III. Preface
	IV. Security considerations
	V. Submitting Organizations
	VI. Submitters
	1. Scope
	2. Conformance
	3. Normative references
	4. Terms and definitions
	6. Conventions
	6.1. Identifiers
	6.2. Abbreviated terms

	7. Overview
	7.1. General
	7.2. Design Considerations
	7.3. Resource Types
	7.4. API Endpoints
	7.4.1. Canonical Resources Endpoints
	7.4.2. Canonical Resource Endpoints

	8. Requirements Class “Common”
	8.1. Overview
	8.2. Non-​feature Resources
	8.3. Resource Collections

	9. Requirements Class “Datastreams & Observations”
	9.1. Overview
	9.2. DataStream Resource
	9.2.1. Introduction
	9.2.2. Properties

	9.3. DataStream Canonical URL
	9.4. DataStream Resources Endpoints
	9.4.1. Definition
	9.4.2. Canonical DataStream Resources Endpoint
	9.4.3. Nested DataStream Resources Endpoints

	9.5. DataStream Collections
	9.6. Observation Schemas
	9.7. Observation Resource
	9.7.1. Introduction
	9.7.2. Properties

	9.8. Observation Canonical URL
	9.9. Observation Resources Endpoint
	9.9.1. Definition
	9.9.2. Canonical Observation Resources Endpoint
	9.9.3. Nested Observation Resources Endpoint

	9.10. Observation Collections

	10. Requirements Class “Control Streams & Commands”
	10.1. Overview
	10.2. ControlStream Resource
	10.2.1. Introduction
	10.2.2. Properties

	10.3. ControlStream Canonical URL
	10.4. ControlStream Resources Endpoints
	10.4.1. Definition
	10.4.2. Canonical ControlStream Resources Endpoint
	10.4.3. Nested ControlStream Resources Endpoints

	10.5. ControlStream Collections
	10.6. Command Schemas
	10.7. Command Resource
	10.7.1. Properties

	10.8. Command Canonical URL
	10.9. Command Resources Endpoint
	10.9.1. Definition
	10.9.2. Canonical Command Resources Endpoint
	10.9.3. Nested Command Resources Endpoint

	10.10. Command Collections
	10.11. CommandStatus Resource
	10.11.1. Properties

	10.12. CommandStatus Resources Endpoint
	10.12.1. Definition
	10.12.2. Status Endpoint

	10.13. CommandResult Resource
	10.13.1. Properties

	10.14. CommandResult Resources Endpoint
	10.14.1. Definition
	10.14.2. Result Endpoint

	11. Requirements Class “Command Feasibility”
	11.1. Overview
	11.2. Feasibility Resource
	11.3. Feasibility Canonical URL
	11.4. Feasibility Endpoint
	11.5. Feasibility Status
	11.6. Feasibility Result
	11.7. Feasibility Collections

	12. Requirements Class “System Events”
	12.1. Overview
	12.2. SystemEvent Resource
	12.2.1. Properties

	12.3. SystemEvent Canonical URL
	12.4. SystemEvent Resources Endpoints
	12.4.1. Definition
	12.4.2. Canonical SystemEvent Resources Endpoint
	12.4.3. Nested SystemEvent Resources Endpoints

	12.5. SystemEvent Collections

	13. Requirements Class “Advanced Filtering”
	13.1. Overview
	13.2. DataStream Query Parameters
	13.2.1. Phenomenon Time Filter
	13.2.2. Result Time Filter
	13.2.3. Observed Property Filter
	13.2.4. Feature of Interest Filter

	13.3. Observation Query Parameters
	13.3.1. Phenomenon Time Filter
	13.3.2. Result Time Filter
	13.3.3. Feature of Interest Filter

	13.4. ControlStream Query Parameters
	13.4.1. Issue Time Filter
	13.4.2. Execution Time Filter
	13.4.3. Controlled Property Filter
	13.4.4. Feature of Interest Filter

	13.5. Command Query Parameters
	13.5.1. Issue Time Filter
	13.5.2. Execution Time Filter
	13.5.3. Status Filter
	13.5.4. Sender Filter
	13.5.5. Feature of Interest Filter

	13.6. CommandStatus Query Parameters
	13.6.1. StatusCode Filter

	13.7. SystemEvent Query Parameters
	13.7.1. Event Type Filter

	14. Requirements Class “Create/​Replace/​Delete”
	14.1. Overview
	14.2. DataStreams
	14.3. Observations
	14.4. Control Streams
	14.5. Commands
	14.6. Command Status
	14.7. Command Results
	14.8. Feasibility
	14.9. Feasibility Status
	14.10. Feasibility Results
	14.11. System Events

	15. Requirements Class “Update”
	15.1. Overview
	15.2. DataStreams
	15.3. Observations
	15.4. Control Streams
	15.5. Commands
	15.6. Command Status
	15.7. Command Results
	15.8. Feasibility
	15.9. Feasibility Status
	15.10. Feasibility Results
	15.11. System Events

	16. Requirements Classes for Encodings
	16.1. Requirements Class “JSON Encoding”
	16.1.1. Overview
	16.1.2. Media Type
	16.1.3. DataStream Representation
	16.1.4. Observation Schema Representation
	16.1.5. Observation Representation
	16.1.6. ControlStream Representation
	16.1.7. Command Schema Representation
	16.1.8. Command Representation
	16.1.9. Command Status Representation
	16.1.10. Command Result Representation
	16.1.11. System Event Representation

	16.2. Requirements Class “SWE Common JSON Encoding”
	16.2.1. Overview
	16.2.2. Media Type
	16.2.3. Observation Schema Representation
	16.2.4. Observation Representation
	16.2.5. Command Schema Representation
	16.2.6. Command Representation

	16.3. Requirements Class “SWE Common Text Encoding”
	16.3.1. Overview
	16.3.2. Media Type
	16.3.3. Observation Schema Representation
	16.3.4. Observation Representation
	16.3.5. Command Schema Representation
	16.3.6. Command Representation

	16.4. Requirements Class “SWE Common Binary Encoding”
	16.4.1. Overview
	16.4.2. Media Type
	16.4.3. Observation Schema Representation
	16.4.4. Observation Representation
	16.4.5. Command Schema Representation
	16.4.6. Command Representation

	Annex A (normative) Conformance Class Abstract Test Suite
	A.1. Conformance Class “Common”
	A.2. Conformance Class “Datastreams & Observations”
	A.3. Conformance Class “Control Streams & Commands”
	A.4. Conformance Class “Command Feasibility”
	A.5. Conformance Class “System Events”
	A.6. Conformance Class “Advanced Filtering”
	A.7. Conformance Class “Create/​Replace/​Delete”
	A.8. Conformance Class “Update”
	A.9. Conformance Class “JSON Encoding”
	A.10. Conformance Class “SWE Common JSON Encoding”
	A.11. Conformance Class “SWE Common Text Encoding”
	A.12. Conformance Class “SWE Common Binary Encoding”

	Annex B (informative) Examples
	Annex C (informative) Relationship with other OGC/​ISO standards (Informative)
	Annex D (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Overview of resource types defined by this Standard
	Table 2 — DataStream Attributes
	Table 3 — DataStream Types
	Table 4 — Result Types
	Table 5 — DataStream Associations
	Table 6 — Observation Attributes
	Table 7 — Observation Associations
	Table 8 — ControlStream Attributes
	Table 9 — ControlStream Types
	Table 10 — ControlStream Associations
	Table 11 — Command Attributes
	Table 12 — Command Associations
	Table 13 — Command Status Attributes
	Table 14 — Command Status Codes
	Table 15 — Command Status Associations
	Table 16 — Command Result Attributes
	Table 17 — Command Result Associations
	Table 18 — Feasibility Status Codes
	Table 19 — System Event Attributes
	Table 20 — System Event Types
	Table 21 — System Event Associations

	List of Figures
	Figure 1 — Class diagram of API resources
	Figure 2 — DataStream Resource Diagram
	Figure 3 — Observation Resource Diagram
	Figure 4 — ControlStream Resource Diagram
	Figure 5 — Command Resource Diagram
	Figure 6 — Command Status Resource Diagram
	Figure 7 — Command Result Resource Diagram
	Figure 8 — System Event Diagram

	List of Recommendations
	Requirements class 1
	Requirements class 2
	Requirements class 3
	Requirements class 4
	Requirements class 5
	Requirements class 6
	Requirements class 7
	Requirements class 8
	Requirements class 9
	Requirements class 10
	Requirements class 11
	Requirements class 12
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6
	Requirement 7
	Requirement 8
	Requirement 9
	Requirement 10
	Requirement 11
	Requirement 12
	Requirement 13
	Requirement 14
	Requirement 15
	Requirement 16
	Requirement 17
	Requirement 18
	Requirement 19
	Requirement 20
	Requirement 21
	Requirement 22
	Requirement 23
	Requirement 24
	Requirement 25
	Requirement 26
	Requirement 27
	Requirement 28
	Requirement 29
	Requirement 30
	Requirement 31
	Requirement 32
	Requirement 33
	Requirement 34
	Requirement 35
	Requirement 36
	Requirement 37
	Requirement 38
	Requirement 39
	Requirement 40
	Requirement 41
	Requirement 42
	Requirement 43
	Requirement 44
	Requirement 45
	Requirement 46
	Requirement 47
	Requirement 48
	Requirement 49
	Requirement 50
	Requirement 51
	Requirement 52
	Requirement 53
	Requirement 54
	Requirement 55
	Requirement 56
	Requirement 57
	Requirement 58
	Requirement 59
	Requirement 60
	Requirement 61
	Requirement 62
	Requirement 63
	Requirement 64
	Requirement 65
	Requirement 66
	Requirement 67
	Requirement 68
	Requirement 69
	Requirement 70
	Requirement 71
	Requirement 72
	Requirement 73
	Requirement 74
	Requirement 75
	Requirement 76
	Requirement 77
	Requirement 78
	Requirement 79
	Requirement 80
	Requirement 81
	Requirement 82
	Requirement 83
	Requirement 84
	Requirement 85
	Requirement 86
	Requirement 87
	Requirement 88
	Requirement 89
	Requirement 90
	Requirement 91
	Requirement 92
	Requirement 93
	Requirement 94
	Requirement 95
	Requirement 96
	Requirement 97
	Requirement 98
	Requirement 99
	Requirement 100
	Requirement 101
	Requirement 102
	Requirement 103
	Requirement 104
	Requirement 105
	Requirement 106
	Requirement 107
	Requirement 108
	Requirement 109
	Requirement 110
	Requirement 111
	Requirement 112
	Requirement 113
	Requirement 114
	Requirement 115
	Requirement 116
	Requirement 117
	Requirement 118
	Requirement 119
	Requirement 120
	Requirement 121
	Requirement 122
	Requirement 123
	Requirement 124
	Requirement 125
	Requirement 126
	Requirement 127
	Requirement 128
	Requirement 129
	Requirement 130
	Conformance class A.1
	Conformance class A.2
	Conformance class A.3
	Conformance class A.4
	Conformance class A.5
	Conformance class A.6
	Conformance class A.7
	Conformance class A.8
	Conformance class A.9
	Conformance class A.10
	Conformance class A.11
	Conformance class A.12

