OGC® DOCUMENT: 22-003R3

External identifier of this OGC® document: http:/www.opengis.net/doc/IS/ogcapi-
—m Qyi ngfeatures-1/1.0

o Open
QG Geospatial

Consortium

OGC API - MOVING
FEATURES - PART 1:
CORE

STANDARD
Implementation

APPROVED

Version: 1.0

Submission Date: 2023-05-19

Approval Date: 2024-06-10

Publication Date: 2024-10-24

Editor: Tachoon Kim, Kyoung-Sook Kim, Mahmoud SAKR, Martin Desruisseaux

Notice: This document is an OGC Member approved international standard. This document is available on a royalty free, non-discriminatory
basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware
and to provide supporting documentation.

Open
Geospatial
Consortium

License Agreement

Use of this document is subject to the license agreement at https:/www.ogc.org/license

Suggested additions, changes and comments on this document are welcome and encouraged. Such suggestions may be submitted using the online
change request form on OGC web site: http:/ogc.standardstracker.org/

Copyright notice

Copyright © 2024 Open Geospatial Consortium
To obtain additional rights of use, visithttps:/www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 i

https://www.ogc.org/license
http://ogc.standardstracker.org/
https://www.ogc.org/legal

CONTENTS

L. ABSTRACT ettt et st esae e s e sstessessesstesaesssessesnsesssessesssesseensesssessesnsessssnsesns viii
[l KEYWORDS ...ttt ettt esseetes st essessssssssssesssessesnsessssnsesnsessssnsesssessesnsessssnsenns iX
I, PREFAQCE ...ttt ettt esases e et essesntesssessesssessesnsesssensesssessesnsessssnsesnsensesnsenns X
[V. SECURITY CONSIDERATIONS ..ottt esseereeseessesssessesssesssessesssessesssesssons xi
V. SUBMITTING ORGANIZATIONS ..ottt csre et esssessesssessesssesseessesssesenns xii
VI SUBMITTERS ..ottt et et sse et et ess e s e sssesbesssessesssesssensesssesesnsesssensesnns Xii
T SCOPE ettt ettt s st et e e st s et et e s e b e e bt e at e s bt s st e e bt s e st ae st e s eateesbesatesabesaeeenbens 2
2. CONFORMANCE ..ottt setessatsesteesatesstessaessssesssesessesssesessessasssstessssssssesssssnes 4
3. NORMATIVE REFERENGCES ..ottt e stessstessaessasesssessstesssessssssssessasssssesn 7
4, TERMS AND DEFINITIONS ..ottt eerteetesesteesteesssesssessssesssessssesssessssssssesssssns 10
5. CONVENTIONS .ottt ettt st e saestesatestesssssseestessssssesnsessssssesssessesnsessessesnsessessesns 16
Lo I o LT AT SO 16
5.2, USE Of HTTPS ..ottt ettt ese ettt es et ess b et ess et e st ess et assessesensesssensesssensesensensesens 16
6. OVERVIEW .ttt es st s vt s et s ssasssatsssaessssesassssssssssesassssssessstesssessssessssssssens 18
LY I =T 1] = | OSSOSO 18
.2, SCAICH ettt ettt b et a et et e b e bRt b et e Rttt ea s ebe Rt e s st ensebe b enser et ensere s enserenes 21
6.3. DEPENUENCIES ...ttt ettt ettt et et e bt ebeas s ebess st et esens et eaes st ebessasesesensesesensesesensasesenen 21
7. REQUIREMENTS CLASS “MOVING FEATURE COLLECTION CATALOG" 24
7. L. OVEIVIEW ettt ettt s et e e s st et ess st e st es st essese st ess et ensess s ensese st essessnsessesensessasensesetessesensensasens 24
7.2, INTOrMAtiON RESOUICES ...ttt et et s s ae st e st e ssestesaesaesaesntsnsentessensessessens 24
7.3. RESOUICE COIIECLIONS ...ttt ettt be st sbe b ene st estenessessenssensenessensans 25
7.4, RESOUICE COECTION oottt ettt ettt eb s e b e s ese b ensesebensebensessesensessesensessasan 30
8. REQUIREMENTS CLASS “MOVING FEATURES" ... oeeeeeeeeeeeeeeeeeeeeeeseeseeeeseeseeseens 38
8.1, OVEIVIEW ettt sttt et b st sttt eae s et e st s be st ebe b eat e b e st eatese st ese et sssasessentesessensesentensesensensasens 38
8.2. INTOrMAtION RESOUICES ...ooeeeeeeeicteeeeeetetcteteteee ettt ettt s et ese st essese s essesassessebenseseetensessesensenssens 39
8.3. RESOUICE MOVINGFEATUIES ...ttt ettt a e e aesa s s sannnan 40
8.4. RESOUICE MOVINGFEATUIEeveeeeereteereteeteeete ettt et s b s s es bbb e s s sensesesensesesensasnan 49
8.5. Resource TemporalGEOMELIYSEQUENCEc.oueveveeererererererereee et s sesesesesesese st se s asasasasasene 54

OPEN GEOSPATIAL CONSORTIUM 22-003R3 iii

8.6. Resource TemporalPrimitiVEGEOMELTY ...ttt se s s s ss s e ss s s seaes 61

8.7. TemporalGeometry QUEIY RESOUITEScoocueiieeereieeereeeeeteeeeresesesesesesesesssesesessesesesssesessssesessasaseseanes 64
8.8. ResSoUrce TEMPOIAIPIrOPEITIES ...ttt se e es e s s s sese s sesessesesessasesenn 68
8.9. ResoUrce TEMPOFAIPIOPEITYc.ooveveieveieieteteteeeeeeeeete sttt bbbt et es bbb s bbb esesesesesesesns 75
8.10. Resource TempPOoralPrimitiVEVAIUE ...ttt ettt se s st se s s s sensenenens 82
9. COMMON REQUIREMENTS ..ottt esreteesressesessesesessessesassesseessessesassensesans 86
9.1, PATAMELETS .ttt sttt ettt et st st st st st et b b e b b se s sesasesesesene ettt ettt et esesene 86
9.2, HTTP STAtUS COUES ..ottt a st se bbb be bbb s s et s s s sss s s s ssssss s s esesesesesesesesasesasasas 89
ANNEX A (NORMATIVE) ABSTRACT TEST SUITE ..ot 92
AL INEFOAUCTION ittt ettt ettt ettt s st et sbes s s s se s sssssesesasesesanerenenensnnns 92
A.2. Conformance Class MovingFeature Collection Catalogcccceeeeeieeeieeeeceeeeseeesseeesesese e 92
A.3. Conformance Class MOVINGFEATUIES ...ttt se s s s s s s s s asenene 98

ANNEX B (INFORMATIVE) RELATIONSHIP WITH OTHER OGC/ISO STANDARDS

.. 121
B.1. Static geometries, features and ACCESSESuiiieeereeeiereeeetee e s e b e s s sssesens 121
B.2. Temporal Geometries and MOVING FEALUIESccccvvirieieeiriniieeeeieieeeeeteteseseesssesssssssesssessssseses 126
ANNEX C (INFORMATIVE) REVISION HISTORY ...t sevesenene 130
BIBLIOGRAPHY ...ttt se st e s ese s s se s essesessesassessesassessesansesssensessssensasans 132
LIST OF TABLES
Table 1 — OVErvieW Of RESOUICES ...ttt ss et s s e s s e st s sasanes viii
Table 2 — Conformance Class URIS ...ttt ss s et s n e s sns 4
Table 3 — Moving Features APl Paths ...t eesesesessseese s e ssesesesesnesenees 18
Table 4 — Mapping OGC API — Moving Features Sections to OGC APl — Common, OGC API —
Features, and OGC MF-JSON RequiremMeNnts CIaSSEScuiereeeeereeeereeereeereeereeeresseressesesesessesesseseses 21
Table 5 — Moving Feature Collection Catalog RESOUICESoeieveeeeeeeereeeeeereeereeereeeveeeveeeeenens 25
Table 6 — Table of COlIECTION PrOPEITIES ...ttt ettt eb e b ea s sesens 30
Table 7 — MOVINGFEAtUIES RESOUITESveueeereeereeeteeeeeereeereeesesesessesesseseseesesesesessesessesessesessesessesessene 39
Table 8 — Table of the properties related to the moving featureeeeveeeeeceeceeceeeeeeens 49
Table 9 — Table of the properties related to the TemporalPrimitiveGeometryccoeevvevevenenne. 62
Table 10 — Table Of the QUEINY FESOUICES ...ttt se st s ssesseseesesrensenes 65
Table 11 — Table of the properties related to a temporal property ... 76
Table 12 — Table of the properties related to the temporal primitive valuecccoveveveeveenenene.. 82
Table 13 — Typical HTTP StatuS COUES ..ottt s et as e s s 89
Table A.1 — Schema and Tests for MovingFeature Collections contentcooceveeeeeeeereevenenene. 94
Table A.2 — Schema and Tests for Request Body of {root}/collections POSTccoevveeeevennee. 95

OPEN GEOSPATIAL CONSORTIUM 22-003R3 iv

Table A.3 — Schema and Tests for MovingFeature Collection contentccceeeeeveceeeveeeeeerennnne. 96

Table A.4 — Schema and Tests for MovingFeatures contentcoeeeveeeeeereeeeeeeeeeeeeeeerene 100
Table A.5 — Schema and Tests for Request Body of {root}/collections/{collectionld}/items POST
... 101
Table A.6 — Schema and Tests for MovingFeature CoONtentoccveeeeeerereveeeerereeeerereeeeererene 103
Table A.7 — Schema and Tests for TemporalGeometrySequence contentccccceeeeeeereeverenenee 105
Table A.8 — Schema and Tests for Request Body of {root}/collections/{collectionld}/items/
[MFeatureld}/tZSEQUENCE POST ...ttt st et ss st ssasesesosessanes 106
Table A.9 — Schema and Tests for TemporalProperties contentcceeeveeeveerevererenrereereeerenne 111
Table A.10 — Schema and Tests for Request Body of {root}/collections/{collectionld}/items/
[MFeatureld}/tPropPerti€s POST ...ttt ettt sttt be st st senensaes 112
Table A.11 — Schema and Tests for TemporalProperty contentc.cooeeeeeeeeeeeeceeeeeeveenes 114
Table A.12 — Schema and Tests for Request Body of {root}/collections/{collectionld}/items/
{mFeatureld}/tproperties/{tPropertyName} POST ...ttt seseeestssesssesessssons 114
Table B.1 — A non-exhaustive list of interpolation methods listed by ISO 19107 121
Table C.1 — REVISION NISTOIY .ottt s e s s s s ssessessessesesensensens 130

LIST OF FIGURES

Figure 1 — Class diagram for OGC APl — MoVing FEATUIEScoeeeereeereeercieeeeeeeeveeeveeeevenenes 20
Figure 2 — Example of a response result with a subTrajectory parametercoveveeeeveveeveeevenenn, 42
Figure 3 — Example of a response result with leaf parameter ..., 56
Figure 4 — Example of time-to-distance curve [OGC Moving Features Access]ccccoeerererenenee. 66
Figure B.1 — GM_Object from ISO 19107:2003 fiSUIE 6ceveeereereeeereeerereereeerereereseesessseensens 122
Figure B.2 — General Feature Model from ISO 19109:2009 figure 5veeveeevenrevereeveseeeeenen 124
Figure B.3 — Spatial operators from [SO 19143 fiSUIE 6ueeeeeeeeereeeeeeereeeeeeere e enes 125
Figure B.4 — Trajectory type from ISO 19141 figure 3 ...t 126
Figure B.5 — Temporal geometry from [SO 19141 fiUIE 6 e 127
Figure B.6 — Dynamic attribute from OGC 18-075 figure 3 ...t 127

LIST OF RECOMMENDATIONS

REQUIREMENTS CLASS 1: MOVING FEATURE COLLECTION CATALOGccoeeveurneveerririencnee 24
REQUIREMENTS CLASS 2: MOVING FEATURES ..o 38
REQUIREMENTS CLASS 3: MOVING FEATURES —COMMON ... 86
REQUIREMENT 1 ettt s et nanes 26
REQUIREMENT 2 oottt s s sas s s ssssssassessssenaas 26

OPEN GEOSPATIAL CONSORTIUM 22-003R3 v

REQUIREMENT 3 ottt ss s s sas s s ssssssassssssssnans 27

REQUIREMENT 4 ...t sssss s s sas s sas s sasasnnes 29
REQUIREMENT 5 i 30
REQUIREMENT 6 ...t sssssss s sssssss s sas s ssssssasssssssssses 31
REQUIREMENT 7 ettt bbb s st 32
REQUIREMENT 8 ...ttt sasssssssssssesssssssssssaes 33
REQUIREMENT D oottt sssas s s s sas s sas s s sasassans 33
REQUIREMENT 10 .ttt ssesessesess s s s s ssssssssasssssssssssssssssssans 35
REQUIREMENT 11 oot sssss s ssssas s sssssssssssssasssssssssssssssssssaes 36
REQUIREMENT 12 .ot s s s sssssaenen 41
REQUIREMENT 13 ..ottt s sssssssssssssssssssssssssasssssssssssssssssssses 41
REQUIREMENT 14 oottt s bbbt sssaenes 43
REQUIREMENT 15 oottt ssses s ssssssssss s s ssssssssasssssssssssssssssssaes 43
REQUIREMENT 16 ..ottt sssssssssssssssssssssss s sss s sssassssssssssssssssssnans 46
REQUIREMENT 17 ot sssa e 48
REQUIREMENT 18 ..ottt sssssssssssssssss s sssasssssssssssssssssssaes 50
REQUIREMENT 19 ittt s bbb s aenes 50
REQUIREMENT 20 ...t sssessssesssns 51
REQUIREMENT 21 ..ot sssss s s sas s s sssss s s sssssssssssssssnan 52
REQUIREMENT 22 ...ttt ssses s sses s st sssss st sssssessssesans 53
REQUIREMENT 23 ...t sssss s ssssss s s sss s sssassssassssssssssssssans 55
REQUIREMENT 24 ..ottt bbb 55
REQUIREMENT 25 ..t sssssssss s sssssssssssssasssssssssssssssssssans 57
REQUIREMENT 26 ...ttt ss st s s s ssssesesssssaenes 57
REQUIREMENT 27 .ottt s s sssssss s ssssssssssssssssssssssssssnses 59
REQUIREMENT 28 ...ttt sssssssss s s sssss s s ssssssssssssssssans 61
REQUIREMENT 29 ..ottt ssss e 62
REQUIREMENT 30 ..ot sses 63
REQUIREMENT 31 .ttt s s s s sssaenes 63
REQUIREMENT 32 ..ot sssss s ssans 66
REQUIREMENT 33 ..ot sssss s s s s sssss s ssssssssssssssssans 67
REQUIREMENT 34 ...ttt sssess st sssssessssesans 68
REQUIREMENT 35 ..ot sasss s sss s sssasssssssssssssssssssans 69

OPEN GEOSPATIAL CONSORTIUM 22-003R3 vi

REQUIREMENT 36 ...ttt ssssessssssssssssssssssssssssssssssasssssssssssssssssssans 69

REQUIREMENT 37 oot ssssss s ssssss s s sss s sssassssssssssssssssssnans 70
REQUIREMENT 38 ..ot ss s sssne s 72
REQUIREMENT 39 .ot sssssssss s sas s sssasssssssssssssssssssses 74
REQUIREMENT 40 ...ttt ss s ssssesessssssenen 76
REQUIREMENT 41 ..ot sssss s s ssssssssssss s sssssssssssssssssssssssssssans 77
REQUIREMENT 42 ...ttt ssssss s ssssss s s sssss s s ssssssssssssssssans 78
REQUIREMENT 43 ..ottt seses s st ssssssessssenans 79
REQUIREMENT 44 ...t ssss s sssssssssss s ssss s s ssssssssssssssssaes 80
REQUIREMENT 45 .ottt s s nes 81
REQUIREMENT 46 ... ssses 81
REQUIREMENT 47 ..ottt s st ssssssesessssssenen 83
REQUIREMENT 48 ...ttt ssssssssss s s s sssassssssssssssssssssans 83
REQUIREMENT 49 ..ottt sssss s ssssss s s sssss s ssssssssssssssssssans 84
REQUIREMENT 50 .ottt ssssssenes 86
REQUIREMENT 51 .o sssssssssssssssasssssssssssssssssssssssssssssses 87
REQUIREMENT 52 ..ooiitc ittt s s se s sssaenes 88
PERMISSION T oottt 67
CONFORMANCE CLASS AT .ottt sssss s sssssssssssassssssassas 92
CONFORMANCE CLASS A2 ...ttt sttt ssssessssessssesssssnses 98

OPEN GEOSPATIAL CONSORTIUM 22-003R3 vii

ABSTRACT

Moving feature data can represent various phenomena, including vehicles, people, animals,
weather patterns, etc. The OGC APl — Moving Features Standard defines a standard interface
for querying and accessing geospatial data that changes over time, such as the location and
attributes of moving objects like vehicles, vessels, or pedestrians. The API specified in this
Standard provides a way to manage data representing moving features, which can be helpful

for applications in domains such as transportation management, disaster response, and
environmental monitoring. This Standard also specifies operations for filtering, sorting, and
aggregating moving feature data based on location, time, and other properties. The OGC API —
Moving Features — Part 1: Core Standard specifies a set of RESTful interfaces and data formats
for querying and updating moving feature data over the web. The Standard is part of the OGC
API family of Standards and makes use of the OpenAPI Specification. OGC API Standards define
modular API building blocks that spatially enable Web APlIs in a consistent way. OpenAPI is used
to define the reusable API building blocks with responses in JSON and HTML.

The OGC API family of standards is organized by resource type.

Table 1 — Overview of Resources

HTTP
RESOURCE PATH DOCUMENT REFERENCE
METHOD
Collections metadata /collections GET, POST Resource Collections
GET,
Collection instance metadata /collections/{collectionId} DELETE, Resource Collection
PUT
. /collections/{collectionId}/ .
MovingFeatures i GET, POST Resource MovingFeatures
1tems
. . /collections/{collectionId}/ GET, .
MovingFeature instance . Resource MovingFeature
items/{mFeatureId} DELETE
/collections/{collectionId}/ Resource TemporalGeometry
TemporalGeometrySequence GET, POST
items/{mFeatureId}/tgsequence Sequence
o /collections/{collectionId}/ o
TemporalPrimitiveGeometry . Resource TemporalPrimitive
. items/{mFeatureId}/ DELETE
instance Geometry

tgsequence/{tGeometryId}

collections/{collectionId}/

Queries for TemporalPrimitive items/{mFeatureId}/ GET TemporalGeometry Query
Geometry tgsequence/{tGeometryId}/ Resources
{queryType}
/collections/{collectionId}/
TemporalProperties items/{mFeatureId}/ GET, POST Resource TemporalProperties
tproperties

OPEN GEOSPATIAL CONSORTIUM 22-003R3 viii

HTTP

RESOURCE PATH DOCUMENT REFERENCE
METHOD
1lecti 1lectionId
. (co ections/{collectionId}/ GET, POST.
TemporalProperty instance items/{mFeatureId}/ DELETE Resource TemporalProperty

tproperties/{tPropertyId}

/collections/{collectionId}/

TemporalPrimitiveValue items/{mFeatureId}/
. . DELETE Resource TemporalProperty
instance tproperties/{tPropertyId}/

{tvalueld}

KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, OGC Moving Features, OGC Moving Features JSON, Moving Features
Access, API, OpenAPI, REST, trajectory

OPEN GEOSPATIAL CONSORTIUM 22-003R3

PREFACE

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 22-003R3

SECURITY CONSIDERATIONS

The OGC API — Moving Features — Part 1: Core Standard does not mandate any specific
security controls. However, it was designed to support addition of security controls without
impacting conformance, in a similar way to the OGC APl — Common — Part 1: Core Standard.

This document therefore applies Requirement /req/0as30/security of OGC APl — Common —
Part 1: Core for OpenAPI 3.0 support of security controls.

OPEN GEOSPATIAL CONSORTIUM 22-003R3

Xi

https://docs.ogc.org/is/19-072/19-072.html#_91afaabd-dc29-41eb-805d-15e1afd18825
https://docs.ogc.org/is/19-072/19-072.html#rc_oas30-security

SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGCQ):

Artificial Intelligence Research Center, National Institute of Advanced Industrial Science
and Technology

Université libre de Bruxelles
Geomatys
Central Research Laboratory, Hitachi Ltd.

Feng Chia University

SUBMITTERS

All questions regarding this submission should be directed to the editor or the submitters:

NAME ORGANIZATION

Artificial Intelligence Research Center, National Institute of Advanced Industrial
Taehoon KIM .
Science and Technology

Artificial Intelligence Research Center, National Institute of Advanced Industrial
Kyoung-Sook KIM .
Science and Technology

Mahmoud SAKR Université libre de Bruxelles

Esteban Zimanyi Université libre de Bruxelles

Martin Desruisseaux Geomatys

Akinori Asahara Central Research Laboratory, Hitachi Ltd.
Chen-Yu Hao Feng Chia University

OPEN GEOSPATIAL CONSORTIUM 22-003R3 xii

SCOPE

OPEN GEOSPATIAL CONSORTIUM 22-003R3

SCOPE

The scope of the OGC APl — Moving Features — Part 1: Core Standard is to provide a uniform
way to access, communicate, and manage data about moving features across different
applications, data providers, and data consumers in contexts where the effects of Einstein’s
relativity are not significant. The Standard defines a set of API building blocks that enable clients
to discover, retrieve, and update information about moving features, as well as a data model for
describing moving features and their trajectories.

The OGC API — Moving Features — Part 1: Core Standard defines an API with two goals.

First, to provide access to representations of Moving Features that conform to the OGC
Moving Features JSON Encoding Standard.

Second, to provide functionality comparable to that of the OGC Moving Features Access
Standard.

The OGC API — Moving Features Standard is an extension of the OGC APl — Common and the
OGC API — Features Standards.

OPEN GEOSPATIAL CONSORTIUM 22-003R3

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 22-003R3

CONFORMANCE

This Standard defines multiple requirements classes and conformance classes that describe
different levels of conformance to the Standard. These requirements / conformance classes help
to ensure interoperability between separate implementations of the Standard and enable data
providers to specify which parts of the Standard they support. The standardization targets are
“Web APIs”.

The conformance classes specified in this Standard are:
Collection Catalog
Moving Features

Common Requirements

The conformance class defines the minimum requirements for an APl to be compliant with

the OGC API — Moving Features Standard. This includes support for querying and retrieving
information about moving features using HTTP GET requests. Also, the conformance class
enables clients to add, modify, or delete features from the server using HTTP POST, PUT,

and DELETE requests. Lastly, the conformance class adds support for querying and retrieving
features based on their temporal characteristics, such as their position at a specific time or their
velocity over a given time interval.

Implementers of the OGC APl — Moving Features can choose which conformance classes
they want to support based on the specific needs of their use case and the capabilities of their
software. However, to be considered compliant with the Standard, an implementation shall
support all the conformance classes listed in Table 2.

The URIs of the associated conformance classes are:

Table 2 — Conformance class URIs

CONFORMANCE CLASS URI

MovingFeatures Collection
http:/www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/mf-collection

Catalog
MovingFeatures http:/www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/movingfeatures
Common Requirements http:/www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/common

Conformance with this Standard shall be checked using all the relevant tests specified in
Annex A of this document. The framework, concepts, and methodology for testing, and

the criteria to be achieved to claim conformance are specified in the OGC Compliance
Testing Policies and Procedures and the OGC Compliance Testing website. The schemas and

OPEN GEOSPATIAL CONSORTIUM 22-003R3 4

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/mf-collection
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/movingfeatures
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/common
https://docs.ogc.org/pol/08-134r11.html
https://docs.ogc.org/pol/08-134r11.html
https://cite.ogc.org/teamengine/

example API definition documents specified in this Standard can be found in the OGC Schema
Repository.

OPEN GEOSPATIAL CONSORTIUM 22-003R3

https://schemas.opengis.net/ogcapi/movingfeatures/part1/1.0/
https://schemas.opengis.net/ogcapi/movingfeatures/part1/1.0/

NORMATIVE REFERENCES

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Policy SWG: OGC 08-131r3, The Specification Model — Standard for Modular specifications. Open
Geospatial Consortium (2009).

Hideki Hayashi, Akinori Asahara, Kyoung-Sook Kim, Ryosuke Shibasaki, Nobuhiro Ishimaru:
OGC 16-120r3, OGC Moving Features Access. Open Geospatial Consortium
(2017). http:/www.opengis.net/doc/is/movingfeatures-access/1.0.0.

Kyoung-Sook KIM, Nobuhiro ISHIMARU: OGC 19-045r3, OGC Moving Features Encoding
Extension — JSON. Open Geospatial Consortium (2020). http:/www.opengis.net/
doc/IS/mf-json/1.0.0.

Clemens Portele, Panagiotis (Peter) A. Vretanos, Charles Heazel: OGC 17-069r4, OGC AP| —
Features — Part 1: Core corrigendum. Open Geospatial Consortium (2022). http:/
www.opengis.net/doc/1S/ogcapi-features-1/1.0.1.

Charles Heazel: OGC 19-072, OGC APl — Common — Part 1: Core. Open Geospatial Consortium
(2023). http:/www.opengis.net/doc/is/ogcapi-common-1/1.0.0.

Charles Heazel: OGC APl — Common — Part 2: Geospatial Data (Draft). OGC 20-024, Open
Geospatial Consortium, http:/docs.ogc.org/DRAFTS/20-024.html

Panagiotis A. Vretanos, Clemens Portele: OGC API — Features — Part 4: Create, Replace, Update
and Delete (Draft). http:/docs.ogc.org/DRAFTS/20-002.html

E. Levinson: IETF RFC 2387, The MIME Multipart/Related Content-type. RFC Publisher (1998).
https:/www.rfc-editor.org/info/rfc2387.

E. Rescorla: I[ETF RFC 2818, HTTP Over TLS. RFC Publisher (2000). https:/www.rfc-editor.org/
info/rfc2818.

G. Klyne, C. Newman: IETF RFC 3339, Date and Time on the Internet: Timestamps. RFC Publisher
(2002). https:/www.rfc-editor.org/info/rfc3339.

T. Berners-Lee, R. Fielding, L. Masinter: IETF RFC 3986, Uniform Resource Identifier (URI): Generic
Syntax. RFC Publisher (2005). https:/www.rfc-editor.org/info/rfc3986.

R. Fielding, J. Reschke (eds.): IETF RFC 7230, Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC Publisher (2014). https:/www.rfc-editor.org/info/
rfc7230.

R. Fielding, J. Reschke (eds.): IETF RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC Publisher (2014). https:/www.rfc-editor.org/info/rfc7231.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 7

http://www.opengis.net/doc/is/movingfeatures-access/1.0.0
http://www.opengis.net/doc/IS/mf-json/1.0.0
http://www.opengis.net/doc/IS/mf-json/1.0.0
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
http://www.opengis.net/doc/is/ogcapi-common-1/1.0.0
http://docs.ogc.org/DRAFTS/20-024.html
http://docs.ogc.org/DRAFTS/20-002.html
https://www.rfc-editor.org/info/rfc2387
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231

R. Fielding, J. Reschke (eds.): IETF RFC 7232, Hypertext Transfer Protocol (HTTP/1.1): Conditional
Requests. RFC Publisher (2014). https:/www.rfc-editor.org/info/rfc7232.

R. Fielding, Y. Lafon, J. Reschke (eds.): IETF RFC 7233, Hypertext Transfer Protocol (HTTP/1.1):
Range Requests. RFC Publisher (2014). https:/www.rfc-editor.org/info/rfc7233.

R. Fielding, M. Nottingham, J. Reschke (eds.): IETF RFC 7234, Hypertext Transfer Protocol
(HTTP/1.1): Caching. RFC Publisher (2014). https:/www.rfc-editor.org/info/
rfc7234.

R. Fielding, J. Reschke (eds.): IETF RFC 7235, Hypertext Transfer Protocol (HTTP/1.1):
Authentication. RFC Publisher (2014). https:/www.rfc-editor.org/info/rfc7235.

M. Nottingham, E. Wilde: IETF RFC 7807, Problem Details for HTTP APIs. RFC Publisher (2016).
https:/www.rfc-editor.org/info/rfc7807.

H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub: IETF RFC 7946, The GeoJSON Format.
RFC Publisher (2016). https:/www.rfc-editor.org/info/rfc7946.

M. Nottingham: IETF RFC 8288, Web Linking. RFC Publisher (2017). https:/www.rfc-editor.org/
info/rfc8288.

T. Bray (ed.): IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format. RFC
Publisher (2017). https:/www.rfc-editor.org/info/rfc8259.

Open API Initiative: OpenAPI Specification 3.0.3, https:/github.com/OAIl/OpenAPI-
Specification/blob/main/versions/3.0.3.md

OPEN GEOSPATIAL CONSORTIUM 22-003R3 8

https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7233
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7807
https://www.rfc-editor.org/info/rfc7946
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8259
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.3.md
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.3.md

TERMS AND DEFINITIONS

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

4.1. coordinate

one of a sequence of numbers designating the position of a point

Note 1 to entry: In a spatial coordinate reference system, the coordinate values are qualified by
units.

[source: 1ISO 19111]

4.2. coordinate reference system (CRS)

coordinate system that is related to an object by a datum

Note 1 to entry: Geodetic and vertical datums are referred to as reference frames.

Note 2 to entry: For geodetic and vertical reference frames, the object will be the Earth. In
planetary applications, geodetic and vertical reference frames may be applied to other celestial
bodies.

[source: 1ISO 19111]

4.3. dataset

collection of data, published or curated by a single agent, and available for access or download in
one or more formats
[source: DCAT]

OPEN GEOSPATIAL CONSORTIUM 22-003R3 10

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762
https://www.w3.org/TR/vocab-dcat-2/#Class:Dataset

4.4. datatype

specification of a value domain with operations allowed on values in this domain
Examples: Integer, Real, Boolean, String and Date.

Note 1 to entry: Data types include primitive predefined types and user definable types.
[source: 1ISO 19103]

4.5. distribution

represents an accessible form of a dataset

Note 1 to entry: EXAMPLE: a downloadable file, an RSS feed or a web service that provides the
data.

[source: DCAT]

4.6. dynamic attribute

characteristic of a feature in which its value varies with time
[source: OGC 19-045r3]

4.7. feature

abstraction of a real-world phenomena

Note 1 to entry: A feature can occur as a type or an instance. Feature type or feature instance
should be used when only one is meant.

[source: ISO 19101-1:2014]

4.8. feature attribute

characteristic of a feature

Note 1 to entry: A feature attribute can occur as a type or an instance. Feature attribute type or
feature attribute instance is used when only one is meant.

[source: ISO 19101-1:2014]

OPEN GEOSPATIAL CONSORTIUM 22-003R3 11

https://www.w3.org/TR/vocab-dcat-2/#Class:Distribution
https://docs.ogc.org/is/19-045r3/19-045r3.html#_dynamic_attribute

4.9. feature table

table where the columns represent feature attributes, and the rows represent features
[source: OGC 06-104r4]

4.10. geographic feature

representation of real-world phenomenon associated with a location relative to the Earth
[source: 1ISO 19101-2]

4.11. geometric object

spatial object representing a geometric set
[source: 1ISO 19107:2003]

4.12. leaf

<one parameter set of geometries>
geometry at a particular value of the parameter
[source: 1ISO 19141]

4.13. moving feature

feature whose position changes over time

Note 1 to entry: Its base representation uses a local origin and local coordinate vectors of a
geometric object at a given reference time. [source: ISO 19141]

Note 2 to entry: The local origin and ordinate vectors establish an engineering coordinate
reference system (ISO 19111), also called a local frame or a local Euclidean coordinate system.
[source: 1ISO 19141]

[source: OGC 19-045r3]

OPEN GEOSPATIAL CONSORTIUM 22-003R3

12

https://docs.ogc.org/is/19-045r3/19-045r3.html#_dynamic_attribute

4.14. property

facet or attribute of an object referenced by a name
[source: 1ISO 19143]

4.15. resource

entity that might be identified

Note 1 to entry: The term “resource”, when used in the context of an OGC Web API standard,
should be understood to mean a web resource unless otherwise indicated.

[source: Dublin Core Metadata Initiative — DCMI Metadata Terms]

4.16. resource type

a type of resource

Note 1 to entry: Resource types are re-usable components that are independent of where the
resource resides in the APL.

[source: OGC 19-072]

4.17. trajectory

path of a moving point described by a one parameter set of points
[source: 1ISO 19141]

4.18. web API

API using an architectural style that is founded on the technologies of the Web
[source: W3C Data on the Web Best Practices]

OPEN GEOSPATIAL CONSORTIUM 22-003R3 13

https://docs.ogc.org/is/19-072/19-072.html#iso15836-2
https://docs.ogc.org/is/19-072/19-072.html#resource-type-definition
https://docs.ogc.org/is/19-072/19-072.html#DWBP

4.19. web resource

a resource that is identified by a URI
[source: OGC 17-069r4]

OPEN GEOSPATIAL CONSORTIUM 22-003R3

14

https://docs.ogc.org/is/17-069r4/17-069r4.html#web-resource-def

CONVENTIONS

OPEN GEOSPATIAL CONSORTIUM 22-003R3

15

CONVENTIONS

This section provides details and examples for any conventions used in the document. Examples
of conventions are symbols, abbreviations, use of schema, or special notes regarding how to
read the document.

5.1. Identifiers

The normative provisions in this Standard are denoted by the URI

http:/www.opengis.net/spec/ogcapi-movingfeatures-1/1.0

All requirements and conformance tests that appear in this document are denoted by partial
URIs which are relative to this base.

5.2. Use of HTTPS

For simplicity, this OGC Standard only refers to the HTTP protocol. This is not meant to exclude
the use of HTTPS. This is simply a shorthand notation for “HTTP or HTTPS”. In fact, most servers
are expected to use HTTPS and not HTTP.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 16

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0

OVERVIEW

OPEN GEOSPATIAL CONSORTIUM 22-003R3

17

OVERVIEW

6.1. General

The OGC API — Moving Features Standard extends both the OGC API — Features Standard

and the OGC API — Common Standard. The OGC API — Features Standard enables access to
resources using the HTTP protocol and its associated operations (GET, PUT, POST, DELETE,
etc.). The OGC APl — Common Standard defines a set of capabilities that are applicable to all
implementations of OGC API Standards. Other OGC API Standards extend OGC APl — Common
with capabilities specific to a resource type.

The OGC API — Moving Features — Part 1: Core Standard defines an API with the goal of:

Providing a standard interface for creating (HTTP POST), retrieving (HTTP GET), updating
(HTTP PUT), and deleting (HTTP DELETE) Moving Features, with conformance to the OGC
Moving Features JSON Encoding Standard (OGC 19-045r3).

Resources exposed through an implementation of an OGC API Standard may be accessed via a
Uniform Resource Identifier (URI). The URI representation in this Standard is composed of three
sections:

Dataset distribution API: The endpoint corresponding to a dataset distribution, where
the landing page resource as defined in OGC APl — Common — Part 1: Core is available
(subsequently referred to as Base URI or {root}).

Access Paths: Unique paths to Resources.

Query Parameters: Parameters to adjust the representation of a Resource or Resources
like encoding format or sub-setting.

Access Paths are used to build resource identifiers. This approach is recommended, but not
required. Most resources are also accessible through links to previously accessed resources.
Unique relation types are used for each resource.

Table 3 summarizes the access paths and relation types defined in this Standard.

Table 3 — Moving Features API Paths

PATH TEMPLATE RELATION RESOURCE

Collections

OPEN GEOSPATIAL CONSORTIUM 22-003R3 18

PATH TEMPLATE

{root}/collections

{root}/collections/{collectionld}

{root}/collections/{collectionld} /items

{root}/collections/{collectionld}/items/
{mFeatureld}

{root}/collections/{collectionld}/items/
{mFeatureld}/tgsequence

{root}/collections/{collectionld}/items/
{mFeatureld}/tgsequence/{tGeometryld}

{root}/collections/{collectionld}/items/
{mFeatureld}/tgsequence/{tGeometryld}/

{queryType}

{root}/collections/{collectionld}/items/
{mFeatureld}/tproperties

{root}/collections/{collectionld}/items/
{mFeatureld}/tproperties/{tPropertyName}

{root}/collections/{collectionld}/items/
{mFeatureld}/tproperties/{tProperty
Name}/{tValueld}

Where:

RELATION

data

RESOURCE

Metadata describing the Collection Catalog of data
available from this API.

Metadata describing the Collection Catalog of data which
has the unique identifier {collectionId}

MovingFeatures

items

item

items

item

items

item

{root} = Base URI for the API server

Static information of MovingFeature about available items
in the specified Collection

Static information describing the MovingFeature data
which has the unique identifier {mFeatureId}

Sequence of TemporalPrimitiveGeometry about available
items in the specified MovingFeature

Temporal object describing the TemporalPrimitive
Geometry of data which has the unique identifier
{tGeometryId}

Identifies an Information Resource of type {queryType}
associated with the TemporalPrimitiveGeometry instance

Temporal object information of TemporalProperties about
available items in the specified MovingFeature
Temporal object describing the TemporalProperty of data

which has the unique identifier {tPropertyName}

Temporal object describing the TemporalPrimitiveValue of
data which has the unique identifier {tValueId}

{collectionId} = An identifier for a specific Collection of data

{mFeatureId} = An identifier for a specific MovingFeature of a specific Collection of data

{tGeometryId} = An identifier for a specific TemporalPrimitiveGeometry of a specific

MovingFeature of data

{tPropertyName} = An identifier for a specific TemporalProperty of a specific

MovingFeatures of data

{tvalueId} = An identifier for a specific TemporalPrimitiveValue of a specific

TemporalProperty of data

OPEN GEOSPATIAL CONSORTIUM 22-003R3

19

° {quertyType} = An identifier for the query pattern performed by an implementation
instance of the OGC APl — Moving Features Standard.

«Resources .
Landing Page «Enumerations
+ getf) TemporalPrimitive GometryType
MovingPolnt
path =/ MovingLinestring
lude a link t include a link to MaovingPalygon
| ynclude a fink m MovingPaintCloud
Include a link to sconformancetls1
+data +service-deschf/ 1 i «Enumerations
rees
T IPropertyType
o P Conformance Dedaration emporSIne
Collections AP| Definition + conformanceClasses: URI [0..* mlean
+ o) o + eetl) ;I';::Igu
oS Timage
togs path = fapl path = fconformance
path = fcollections.
| 1 #Enumerations
wEnumerations MaotlonCi
contains | MovingFeatureCollection Catalog H ¥p ueve s
0.* - Discrete
. - aDataTypes Discrate Step
aResources - Leaf Step Linear
Collection + times: date-time [1..*] {ordered) :::;sim g“::"'“c
+ Id: string {id) !
+ title: string [0.1]
d I :string [0.1]
: e:;:l:p:;:;\ts[n_"fl[l updateFrequency’s unit Is «DataTypes +DataTypes
. o milliseconds Orlentation ExternalModel #Resources
+ upda Int [0.1] [P + scales: double [2.3] [sequence} + type:string TemporalPrimitiveValue
+ peti) + angles: double [2.3] {sequence} + href: URI + date-time[1.%]
+ put{cellection: Collection) + wvalues: anyType [1..*] {sequence}
+ delete() + Interpolation: Temp
— [0.1] = "Discrete"
path = fcollections fcollectionld) + delete)
1 = feollectiona/loa L)
include a link to next [ik pé
tem: 1 0.1 & e "
Hiems Vlncludesalmkw /I\D .
#Resources .
tal
MovingFeatures cnr|| "
1
+ get(limit: Int, bbox: Bounding Box, datet me:
Time Intervals, subTrajectory: Boolean) Hnext afesources
+ post{mf-|san-prism: MF-ISON Prism] 0.1 includes a link to TemporalProperty
tags «#Resources _| + name:string {id}
path = fcollections [collectionld}fiterns TemporalProperties + type: TemporalPropertyType
+ form:string [0.1]
1 stproperties |+ get{limit: int, datetime: Time Intervals, 1.9 {order:
t|l propert subTemporalvalue: Boolean) contains : descr Ing [0.1] LLET i
containg + post{tproperty: TemporalProperty) N oe Lol 2 =
.. 1 o < |+ getjdatetime: Time Intervals, |eaf: Leaf,
e path = fcollections /fcol lectionid]items/ . e
MovingFeature e + delete]) E :
+ ld:string {id} togs
+ type:string = "Feature" includes a link to path = /collecti feoll i W
+ geometry: Geometry toroperties/{tP ropertyMame} A
+ properties: Property [1..%] +next
+ :’lb";'l;ml:m;; I?ﬁlh 0.1 includes a link to
+ : Bounding Box [0
+ crs:CRS [0..1] 1 aResources aResourcen
4+ trs:TRS[0.1] TemporalGeometrySequence TemporalPrimitiveGeometry
+ get) + get(limit: int, bbox: Bounding Box, dateti me: Time + ld:string {Id}
+ delets]) MBSEQUENCE | T | ntervals, leaf: Leaf, Boolean) contains |4 type: 7
2 + coordinates: Coerdinates [1.*] {ordered
tags N ”'I‘I“‘::;a 1= . = 1 0ty damﬂm:date—ﬂme[l..‘l[{nrlrad} !
path = fcollections f[collectionld}fitems | togs Interpolation: MotlonCi 1] =" "
{mFeatureld) path = fcollections[collectionld)/items/ e e o
{mFentureld) /g equencs . Orlentation [0.%]
+ delete)
tags
path = fcol lections/fcall 1 M
tgsequence/{tGeometryld}
1
generates generates generates
svelocity 1 &eccderadunv 1 +distance 4/ 1
#Resources #Resources aResources
Velodty Acceleration Distance
+ mname: string = "velocity" + name:string = "acceleration” 4+ name:string = "distance”
+ type: Temporal PropertyType = "TReal™ + type: TemporalPropertyType = "TReal" + type: Temporal PropertyType = *TReal"
+ form:string + form:string + form: string
+ g [1=5] + (i | + [1.7]
{sequence} + description: string + descr ing
string + getldatetime: Time Intervals, leaf: Leaf, + getfleaf: Leaf, datetime: Time Intervals,
+ get[datetime: Time Intervals, leaf: Leaf, Boolean) subTempaoralValue: Boolean)
subTernporalValue: Boolean) e e
tags path = fcollectians/icell I " path = fcol lections/fcall 1 M
path = fcollec lerati tgsequence/{tGeometryldl/distance
tgsequence/{tGeometryld}fvelocity

l

Figure 1 — Class diagram for OGC APl — Moving Features

OPEN GEOSPATIAL CONSORTIUM 22-003R3

20

Figure 1 shows a Unified Modeling Language (UML) class diagram for OGC APl — Moving
Features which represents the basic resources of this Standard, such as Collections, Collection,
MovingFeatures, MovingFeature, TemporalGeometrySequence, TemporalPrimitiveGeometry,
TemporalProperties, TemporalProperty, and TemporalPrimitiveValue. In this Standard, a single
moving feature can have temporal geometries, such as a set of trajectories. Also, a moving
feature can have multiple temporal properties, and each property can have a set of parametric
values.

6.2. Search

The core search capability is based on OGC APl — Common and thus supports:

bounding box searches,
time instant or time period searches, and

equality predicates (i.e. property=value).

OGC API — Moving Features extends these core search capabilities to include:

spatiotemporal queries for accessing TemporalGeometry resources.

6.3. Dependencies

The OGC API — Moving Features Standard is an extension of the OGC APl — Common and the
OGC API — Features Standards. Therefore, an implementation of OGC APl — Moving Features
shall first satisfy the appropriate Requirements Classes from OGC APl — Common and OGC
API — Features. Also, the OGC APl — Moving Features Standard is based on the OGC Moving
Features Encoding Extension — JSON Standard (OGC MF-JSON). Therefore, an implementation
of OGC APl — Moving Features shall satisfy the appropriate Requirements Classes from OGC
MEF-JSON. Table 4 identifies the OGC APl — Common and OGC API — Features Requirements
Classes which are applicable to each section of this Standard. Instructions on when and how to
apply these Requirement Classes are provided in each section.

Table 4 — Mapping OGC APl — Moving Features Sections to OGC APl — Common, OGC API —
Features, and OGC MF-JSON Requirements Classes

APl — MF APl — MF APl — COMMON, API — FEATURES, MF-JSON

SECTION REQUIREMENTS CLASS REQUIREMENTS CLASS

http:/www.opengis.net/spec/ogcapi-common-2/1.

Collections /req/mf-collection .
0/req/collections,

OPEN GEOSPATIAL CONSORTIUM 22-003R3 21

https://ogcapi.ogc.org/common/
https://docs.ogc.org/is/19-045r3/19-045r3.html
https://docs.ogc.org/is/19-045r3/19-045r3.html
http://www.opengis.net/spec/ogcapi-common-2/1.0/req/collections
http://www.opengis.net/spec/ogcapi-common-2/1.0/req/collections

APl — MF

SECTION

MovingFeatures

HTML

JSON

GeoJSON

OpenAPI 3.0

APl — MF
REQUIREMENTS CLASS

/req/movingfeatures

inherit all requirement (no
modification)

inherit all requirement (no
modification)

inherit all requirement (no
modification)

inherit all requirement (no
modification)

OPEN GEOSPATIAL CONSORTIUM 22-003R3

APl — COMMON, API — FEATURES, MF-JSON
REQUIREMENTS CLASS

http:/www.opengis.net/spec/ogcapi-features-4/1.

0/req/create-replace-delete

http:/www.opengis.net/spec/ogcapi-features-1/1.

0/reqg/core,
http:/www.opengis.net/spec/ogcapi-features-4/1.

0/req/create-replace-delete,

http:/www.opengis.net/spec/movingfeatures/

json/1.0/req/trajectory,

http:/www.opengis.net/spec/movingfeatures/

json/1.0/req/prism

http:/www.opengis.net/spec/ogcapi-common-1/1.

0/reqg/html

http:/www.opengis.net/spec/ogcapi-common-1/1.

0/req/json

http:/www.opengis.net/spec/ogcapi-features-1/1.

0/conf/geojson

http:/www.opengis.net/spec/ogcapi-common-1/1.

0/req/0as30

22

http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/movingfeatures/json/1.0/req/trajectory
http://www.opengis.net/spec/movingfeatures/json/1.0/req/trajectory
http://www.opengis.net/spec/movingfeatures/json/1.0/req/prism
http://www.opengis.net/spec/movingfeatures/json/1.0/req/prism
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/oas30
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/oas30

REQUIREMENTS CLASS

“MOVING FEATURE
COLLECTION CATALOG’

e

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

REQUIREMENTS CLASS “MOVING FEATURE
COLLECTION CATALOG”

7.1. Overview

REQUIREMENTS CLASS 1: MOVING FEATURE COLLECTION CATALOG

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/mf-

IDENTIFIER .
collection
TARGET TYPE Web API
CONFORMANCE CLASS Conformance class A.1: http://www.opengis.net/spec/ogcapi-

movingfeatures-1/1.0/conf/mf-collection

http:/www.opengis.net/spec/ogcapi-common-1/1.0/req/core

http:/ .opengis.net/spec/ogcapi-common-2/1.0/req/collections
PREREQUISITES PRSI HECAE . '

http:/www.opengis.net/spec/ogcapi-features-1/1.0/req/core

http:/www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete

Requirement 1: /req/mf-collection/collections-get
Requirement 2: /req/mf-collection/collections-post
Requirement 3: /req/mf-collection/collections-get-success
Requirement 4: /req/mf-collection/collections-post-success

Requirement 5: /req/mf-collection/mandatory-collection
NORMATIVE

STATEMENTS Requirement 6: /req/mf-collection/collection-get

Requirement 7: /req/mf-collection/collection-put

Requirement 8: /req/mf-collection/collection-delete
Requirement 9: /req/mf-collection/collection-get-success
Requirement 10: /req/mf-collection/collection-put-success
Requirement 11: /req/mf-collection/collection-delete-success

The Moving Feature Collection Catalog requirements class defines the requirements for a
moving feature collection. A moving feature collection is an object that provides information
about and access to a set of related Moving Features.

7.2. Information Resources

The two resources defined in this Requirements Class are summarized in Table 5.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 24

Table 5 — Moving Feature Collection Catalog Resources

HTTP
RESOURCE URI DESCRIPTION
METHOD
Get information which describes the set of
GET available collections from the Collections
Collections {root}/collections resource
Add a new resource (Collection) instance to
POST X
a Collections resource
GET Get information about a specific Collection
resource ({collectionld}) of geospatial data
. {root}/collections/ Update information about a specific
Collection] PUT . .
{collectionId} Collection resource ({collectionld})
Delete a specific Collection resource
DELETE

({collectionld})

7.3. Resource Collections

7.3.1. Overview

The Collections resource supports retrieving and creating operations via GET and POST HTTP
methods respectively.

1. A retrieve operation returns a set of metadata which describes the collections
available from this API.

2. A create operation posts a new Collection resource instance to the collections
with this API.
7.3.2. Operation

7.3.2.1. Retrieve

The retrieve operation is defined in the Collections requirements class of OGC API —
Common. No modifications are needed to support MovingFeature resources.

1. Issue a GET request on {root}/collections path

OPEN GEOSPATIAL CONSORTIUM 22-003R3 25

https://docs.ogc.org/DRAFTS/20-024.html#rc-collections-section

Support for the HTTP GET method on the {root}/collections path is specified as a
requirement in OGC APl — Common.

REQUIREMENT 1

IDENTIFIER /req/mf-collection/collections-get

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN mf-collection

A The API SHALL support the HTTP GET operation at the path {root}/collections

The API SHALL support the HTTP GET operation on all links to a Collections Resource that have

B the relation type
http:/www.opengis.net/def/rel/ogc/1.0/data.

7.3.2.2. Create

The create operation is defined in the CREATE section of the “Create/Replace/Delete”
requirements class of OGC API — Features. This operation targets the Collection resource.

1. Issue a POST request on {root}/collections path

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

REQUIREMENT 2

IDENTIFIER /reqg/mf-collection/collections-post

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN mf-collection

The server SHALL support the HTTP POST operation at the resource endpoint({root}/

A .
collections).

B A Content-Type header SHALL be used to declare the media type of the request body containing a
representation of the resource to be added.

C The content of the request body SHALL be based upon the Collection request body schema.

NOTE: See section 8.3 of RFC 9110 for details of content-Type.

type: object
required:
- itemType
properties:
title:
description: human readable title of the collection

OPEN GEOSPATIAL CONSORTIUM 22-003R3 26

http://www.opengis.net/def/rel/ogc/1.0/data
http://docs.ogc.org/DRAFTS/20-002.html#create
https://www.rfc-editor.org/rfc/rfc9110#field.content-type

type: string
updateFrequency:
description: a time interval of sampling location. The unit is millisecond.
type: number
description:
description: any description
type: string
itemType:
description: indicator about the type of the items in the moving features
collection (the default value is 'movingfeature').
type: string
default: "movingfeature"

Listing 1 — Collection Request Body Schema:

The following example adds a new feature (collection information object) to the feature
collections. The feature is encoded as JSON. A pseudo-sequence diagram notation is used,
below, to illustrate the details of the HTTP communication between the client and the server.

Client Server

POST /collections HTTP/1.1
Content-Type: application/json

{
"title": "MovingFeatureCollection_1",
"updateFrequency": 1000,
"description”: "a collection of moving features to manage data
in a distinct (physical or logical) space",
y "itemType": "movingfeature"

HTTP/1.1 201 Created
Location: /collections/mfc_1

Listing 2 — An Example of Creating a New Collection:

7.3.3. Response

7.3.3.1. Retrieve

A successful response to the Collections GET operation is a document that contains summary
metadata for each collection accessible through an instance of an APl implementation. In a

typical deployment of the OGC APl — Moving Features Standard, the Collections GET response
will list collections of all offered resource types. The collections where the value of the itemType

property is movingfeature are collections of moving features.

REQUIREMENT 3

IDENTIFIER /req/mf-collection/collections-get-success

OPEN GEOSPATIAL CONSORTIUM 22-003R3

27

REQUIREMENT 3

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN mf-collection

A A successful execution of the operation SHALL be reported as a response with an HTTP status code
200.

B The content of that response SHALL be based upon the Collections response schema.

C The itemType property of the response schema SHALL be movingfeature.

NOTE: The usage of the itemType property is inherited from the OGC APl — Common item Type
section.

type: object
required:
- collections
- links
properties:
collections:
type: array
items:
$ref: 'collection.yaml'
links:
type: array
items:
$ref: 'https://schemas.opengis.net/ogcapi/features/partl/1.0/openapi/
schemas/link.yaml'

Listing 3 — Collections GET Response Schema (collections.yaml):

The following JSON payload is an example of a response to an OGC API — Moving Features
Collections GET operation.

{
"collections": [
{
"id": "mfc-1",
"title": "MovingFeatureCollection_1",
"description”": "a collection of moving features to manage data in a
distinct (physical or logical) space",
"itemType": "movingfeature",
"updateFrequency": 1000,
"extent": {
"spatial": {
"bbox": [

-180, -90, 190, 90
1,
"crs": "http://www.opengis.net/def/crs/0GC/1.3/CRS84"

},

"temporal": {

"interval": [
"2011-11-11T712:22:112","2012-11-24T12:32:432"
1,
"trs": "http://www.opengis.net/def/uom/IS0-8601/0/Gregorian"
}
b

OPEN GEOSPATIAL CONSORTIUM 22-003R3 28

http://docs.ogc.org/DRAFTS/20-024.html#collection-item-type-section
http://docs.ogc.org/DRAFTS/20-024.html#collection-item-type-section

"links": [

{
"href": "https://data.example.org/collections/mfc-1",
"rel": "self",
"type": "application/json"
]
}
1,
"links": [
{
"href": "https://data.example.org/collections",
"rel": "self",
"type": "application/json"
]
}
Listing 4 — An Example of a Collections JSON Payload:
7.3.3.2. Create

A successful response to the Collections POST operation is an HTTP status code.

REQUIREMENT 4

IDENTIFIER /req/mf-collection/collections-post-success

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN mf-collection

If the operation completes successfully, the server SHALL assign a new, unique identifier within the

A
collection for the newly added resource.

B A successful execution of the operation SHALL be reported as a response with an HTTP status code
201.

C A response with HTTP status code 201 SHALL include a Location header with the URI of the newly
added resource (i.e., path of the resource endpoint).

D If the operation is not executed immediately, but is added to a processing queue, the response SHALL

have an HTTP status code 202.

7.3.4. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 29

7.4. Resource Collection

7.4.1. Overview

A Collection information object is the set of metadata that describes a single collection. An
abbreviated copy of this information is returned for each Collection in the {root}/collections
GET response.

The schema for the collection information object presented in this clause is an extension of the
collection schema defined in OGC APl — Common and OGC API — Features.

Table 6 defines the set of properties that may be used to describe a collection.

Table 6 — Table of collection properties

PROPERTY REQUIREN DESCRIPTION

id M A unique identifier of the collection.
title (@) A human-readable name given to the collection.
description (@) A free-text description of the collection.
link M A list of links for navigating the API (e.g. link to previous or next pages;
inks
links to alternative representations, etc.)
extent (@] The spatiotemporal coverage of the collection.
itemType M Fixed to the value “movingfeature”.
A time interval of sampling location. The time unit of this property is
updateFrequency (@)

millisecond.

NOTE 1: Theid, title, description, links, extent, and itemType properties were inherited from OGC APl —
Common and OGC API — Features.

NOTE 2: An update frequency is one of the most important properties of a moving feature collection.
The update frequency can be used to handle the continuity of the moving feature’s trajectory.

REQUIREMENT 5

IDENTIFIER /req/mf-collection/mandatory-collection

OPEN GEOSPATIAL CONSORTIUM 22-003R3 30

http://docs.opengeospatial.org/DRAFTS/20-024.html#collection-description
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html%23/_collection/_
https://docs.ogc.org/DRAFTS/20-024.html#collection-description
https://docs.ogc.org/DRAFTS/20-024.html#collection-description
https://docs.ogc.org/is/17-069r3/17-069r3.html#_collections_

REQUIREMENT 5

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN mf-collection

A A collection object SHALL contain all the mandatory properties listed in Table 6.

7.4.2. Operation

7.4.2.1. Retrieve

The retrieve operation is defined in the Collection section of the Collections requirements
class of OGC APl — Common. No modifications are required to support MovingFeature
resources.

1. Issue a GET request on the {root}/collections/{collectionId} path

The {collectionId} path parameter is the unique identifier for a single collection offered by
an APl implementation instance. The list of valid values for {collectionId} is provided in the
/collections response.

Support for the {root}/collections/{collectionId} path is required by OGC API —
Common.

REQUIREMENT 6

IDENTIFIER /req/mf-collection/collection-get

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN mf-collection

The APl SHALL support the HTTP GET operation at the path {root}/collections/

A
{collectionId}.

The parameter collectionId is each id property in the collections response (JSONPath: $.

collections[*].1d).

7.4.2.2. Replace

The replace operation is defined in the REPLACE section of the “Create/Replace/Delete”
requirements class of OGC API — Features. This operation targets the Collection resource.

1. Issue a PUT request on {root}/collections/{collectionId} path

OPEN GEOSPATIAL CONSORTIUM 22-003R3 31

https://docs.ogc.org/DRAFTS/20-024.html#collection-description
http://docs.ogc.org/DRAFTS/20-002.html#replace

Support for the HTTP PUT method is specified as a requirement in OGC API — Features.

REQUIREMENT 7

IDENTIFIER /req/mf-collection/collection-put

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN mf-collection
A For every resource in the collection, the server SHALL support the HTTP PUT operation.
B The Content-Type header SHALL be used to indicate the media type of the request body containing

the representation of the new resource content.

The content of the request body SHALL be based upon the Collection request body schema, except
C updateFrequency.
If the updateFrequency is included in the request body, the server SHALL ignore it.

NOTE 1: See section 8.3 of RFC 9110 for details of content-Type.

NOTE 2: Once set, the update frequency cannot be changed.

The following example replaces the feature created by the Create Example with a new feature
(collection metadata without an update frequency). Once again, the replacement feature is
represented as a JSON payload. A pseudo-sequence diagram notation is used to illustrate the
details of the HTTP communication between the client and the server.

Client Server

PUT /collections/mfc_1 HTTP/1.1
Content-Type: application/json

{
"title": "MovingFeatureCollection_2",
"description”: "Title is changed"”

Listing 5 — An Example of Replacing an Existing Collection:

7.4.2.3. Delete

The delete operation is defined in the DELETE section of the “Create/Replace/Delete”
requirements class of OGC API — Features.

1. Issue a DELETE request on {root}/collections/{collectionId} path

Support for the HTTP DELETE method is specified as a requirement in OGC API — Features.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 32

https://www.rfc-editor.org/rfc/rfc9110#field.content-type
http://docs.ogc.org/DRAFTS/20-002.html#delete

REQUIREMENT 8

IDENTIFIER /req/mf-collection/collection-delete

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN mf-collection

For every resource in the collection (path {root}/collections), the server SHALL support the

A
HTTP DELETE operation at the path {root}/collections/{collectionId}.

The parameter collectionId is each id property in the collections response (JSONPath: $.
collections[*].1d).

The following example deletes the feature created by the Create Example and replaced with a
new feature in the Replace Example. A pseudo-sequence diagram notation is used to illustrate
the details of the HTTP communication between the client and the server.

Client Server

DELETE /collections/mfc_1 HTTP/1.1

Listing 6 — An Example of Deleting an Existing Collection:

7.4.3. Response

7.4.3.1. Retrieve

A successful response to the Collection GET operation is a set of metadata that describes the
collection identified by the {collectionId} parameter.

REQUIREMENT 9

IDENTIFIER /req/mf-collection/collection-get-success

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN mf-collection

A successful execution of the operation SHALL be reported as a response with an HTTP status code

A
200.
B The response SHALL only include collection metadata selected by the request.
C The content of that response SHALL be based upon the Collection response schema.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 33

REQUIREMENT 9

D The itemType property of the response schema SHALL be ‘movingfeature’.

type: object
required:
- id
- links
- itemType
properties:
id:
description: identifier of the collection used, for example, in URIs
type: string
example: 'address'
title:
description: human readable title of the collection
type: string
example: 'address'
description:
description: a description of the features in the collection
type: string
example: 'An address.'
links:
type: array
items:
$ref: 'https://schemas.opengis.net/ogcapi/features/partl/1.0/openapi/
schemas/link.yaml'

example:
- href: https://data.example.com/buildings
rel: item

- href: https://example.com/concepts/buildings.html
rel: describedby
type: text/html
extent:
$ref: 'https://schemas.opengis.net/ogcapi/features/partl/1.0/openapi/schemas/
extent.yaml'
itemType:
description: indicator about the type of the items in the collection
type: string
default: 'movingfeature'
crs:
description: the list of coordinate reference systems supported by the
service
type: array
items:
type: string
default:
- 'https://www.opengis.net/def/crs/0GC/1.3/CRS84"
example:
- 'https://www.opengis.net/def/crs/0GC/1.3/CRS84"'
- 'https://www.opengis.net/def/crs/EPSG/0/4326"
updateFrequency:
description: a time interval of sampling location. The unit is millisecond.
type: number

Listing 7 — Collection GET Response Schema (collection.yaml)

The following JSON payload is an example of a response to an OGC API — Moving Features
Collection GET operation.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 34

“id": "m'FC—l",

"title": "moving_feature_collection_sample",
"itemType": "movingfeature",
"updateFrequency": 1000,
"extent": {
"spatial": {
"bbox": [
-180, -90, 190, 90
1,
"crs": [
"http://www.opengis.net/def/crs/0GC/1.3/CRS84"
]
},

"temporal": {
"interval": [
"2011-11-11T12:22:112","2012-11-24T12:32:43Z"

1,
n .t rs n . [
"http://www.opengis.net/def/uom/IS0-8601/0/Gregorian"
}
},
"links": [
"href": "https://data.example.org/collections/mfc-1",
"rel": "self",
"type": "application/json"
]
}
Listing 8 — An Example of Collection GET Operation:
7.4.3.2. Replace

A successful response to the Collection PUT operation is an HTTP status code.

REQUIREMENT 10

IDENTIFIER /req/mf-collection/collection-put-success

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN mf-collection

A successful execution of the operation SHALL be reported as a response with an HTTP status code

A
200 or 204.

B If the operation is not executed immediately, but is added to a processing queue, the response SHALL
have an HTTP status code 202.

C If the representation of the resource submitted in the request body contained a resource identifier,

the server SHALL ignore this identifier.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 35

REQUIREMENT 10

If the target resource does not exist and the server does not support creating new resources using
D PUT, the server SHALL indicate an unsuccessful execution of the operation with an HTTP status code
40Q4.

If the request includes an If-Match header and the resource does not exist, the server SHALL not
E create a new resource and indicate an unsuccessful execution of the operation with an HTTP status
code 412.

7.4.3.3. Delete

A successful response to the Collection DELETE operation is an HTTP status code.

REQUIREMENT 11

IDENTIFIER /req/mf-collection/collection-delete-success

INCLUDED Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN mf-collection

A successful execution of the operation SHALL be reported as a response with an HTTP status code

A
200 or 204.

B If the operation is not executed immediately, but is added to a processing queue, the response
SHALL have an HTTP status code 202.

C If no resource with the identifier exists in the collection, the server SHALL respond with a not-found

exception (404).

7.4.4. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 36

REQUIREMENTS CLASS
“MOVING FEATURES”

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

REQUIREMENTS CLASS “MOVING FEATURES”

8.1. Overview

REQUIREMENTS CLASS 2: MOVING FEATURES

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IDENTIFIER i
movingfeatures
TARGET TYPE Web API
CONFORMANCE Conformance class A.2: http://www.opengis.net/spec/ogcapi-movingfeatures-
CLASS 1/1.0/conf/movingfeatures

http:/www.opengis.net/spec/ogcapi-common-1/1.0/req/core
http:/www.opengis.net/spec/ogcapi-common-2/1.0/req/core
http:/www.opengis.net/spec/ogcapi-features-1/1.0/req/core
PREREQUISITES P Peng! pec/ogeap! :
http:/www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http:/www.opengis.net/spec/movingfeatures/json/1.0/req/trajectory

http:/www.opengis.net/spec/movingfeatures/json/1.0/req/prism

Requirement 12: /req/movingfeatures/param-subtrajectory-definition

Requirement 13: /req/movingfeatures/param-subtrajectory-response

Requirement 14: /req/movingfeatures/features-get

Requirement 15: /req/movingfeatures/features-post

Requirement 16: /req/movingfeatures/features-get-success

Requirement 17: /req/movingfeatures/features-post-success

Requirement 18: /req/movingfeatures/mf-mandatory

Requirement 19: /req/movingfeatures/mf-get

Requirement 20: /req/movingfeatures/mf-delete

Requirement 21: /req/movingfeatures/mf-get-success
NORMATIVE Requirement 22: /req/movingfeatures/mf-delete-success
STATEMENTS Requirement 23: /req/movingfeatures/param-leaf-definition

Requirement 24: /req/movingfeatures/param-leaf-response

Requirement 25: /req/movingfeatures/tgsequence-get

Requirement 26: /req/movingfeatures/tgsequence-post

Requirement 27: /req/movingfeatures/tgsequence-get-success

Requirement 28: /req/movingfeatures/tgsequence-post-success

Requirement 29: /req/movingfeatures/tpgeometry-mandatory

Requirement 30: /req/movingfeatures/tpgeometry-delete

Requirement 31: /req/movingfeatures/tpgeometry-delete-success

Requirement 32: /req/movingfeatures/tpgeometry-query

Requirement 33: /req/movingfeatures/tpgeometry-query-success

OPEN GEOSPATIAL CONSORTIUM 22-003R3

REQUIREMENTS CLASS 2: MOVING FEATURES

Requirement 34: /req/movingfeatures/param-subtemporalvalue-definition
Requirement 35: /req/movingfeatures/param-subtemporalvalue-response
Requirement 36: /req/movingfeatures/tproperties-get

Requirement 37: /req/movingfeatures/tproperties-post

Requirement 38: /req/movingfeatures/tproperties-get-success
Requirement 39: /req/movingfeatures/tproperties-post-success
Requirement 40: /req/movingfeatures/tproperty-mandatory

Requirement 41: /req/movingfeatures/tproperty-get

Requirement 42: /req/movingfeatures/tproperty-post

Requirement 43: /req/movingfeatures/tproperty-delete

Requirement 44: /req/movingfeatures/tproperty-get-success
Requirement 45: /req/movingfeatures/tproperty-post-success
Requirement 46: /req/movingfeatures/tproperty-delete-success
Requirement 47: /req/movingfeatures/tpvalue-mandatory

Requirement 48: /req/movingfeatures/tpvalue-delete

Requirement 49: /req/movingfeatures/tpvalue-delete-success

The MovingFeatures requirements class defines the requirements for a moving feature. A
moving feature is an object that provides information about and access to TemporalGeometry
and TemporalProperties.

8.2. Information Resources

The seven resources defined in this Requirements Class are summarized in Table 7.

Table 7 — MovingFeatures Resources

HTTP
RESOURCE
METHOD
MovingFeatures {root}/collections/{collectionId}/items GET, POST
. {root}/collections/{collectionId}/items/ GET,
MovingFeature
{mfeatureld} DELETE
Te IG t t 1lecti llectionId}/it
emporalGeometry {root}/collections/{collectionId}/items/ GET, POST
Sequence {mFeatureId}/tgsequence

Lo {root}/collections/{collectionId}/items/
TemporalPrimitiveGeometry DELETE
{mFeatureId}/tgsequence/{tGeometryId}

{root}/collections/{collectionId}/items/
TemporalGeometry Query {mFeatureId}/tgsequence/{tGeometryId}/ GET
{queryType}

OPEN GEOSPATIAL CONSORTIUM 22-003R3 39

HTTP

RESOURCE URI
METHOD

. {root}/collections/{collectionId}/items/
TemporalProperties . GET, POST
{mFeatureId}/tproperties

{root}/collections/{collectionId}/items/ GET, POST,

TemporalPropert
= A0S {mFeaturelId}/tproperties/{tPropertiesName} DELETE

{root}/collections/{collectionId}/items/
TemporalPrimitiveValue {mFeatureId}/tproperties/{tPropertiesName}/ DELETE
{tvaluelId}

8.3. Resource MovingFeatures

8.3.1. Overview

The MovingFeatures resource supports retrieving and creating operations via GET and POST
HTTP methods respectively.

1. A retrieve operation returns a set of features which describes the moving feature
available from this API.

2. A create operation posts a new MovingFeature resource instance to a specific
Collection (specified by {collectionId} with this API).

The OGC API — Moving Features Items query is an OGC APl — Features endpoint that may be
used to catalog a pre-existing collection resource, such as one representing moving features.

If a {mFeatureID} is not specified, the query will return a list of the available moving features.
The list of moving features returned to the response can be limited using the bbox, datetime,
limit, and subTrajectory query parameters. This behavior and query parameters for use with
the Items query are specified in OGC API — Features and OGC APl — Common, except the
subTrajectory parameter.

8.3.2. Query Parameters

Query parameters are used in URLs to define the resources which are returned in response to a
GET request.

The query parameters bbox, datetime, and 1imit are inherited from OGC APl — Common.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 40

http://docs.opengeospatial.org/DRAFTS/20-024.html#bbox-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#datetime-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#limit-parameter-requirements

8.3.2.1. Parameter subTrajectory

The subTrajectory query parameter is defined as follows:

REQUIREMENT 12

IDENTIFIER /req/movingfeatures/param-subtrajectory-definition

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

The operation SHALL support a query parameter subTrajectory with the following characteristics

(using an OpenAPI Specification 3.0 fragment):
name: subTrajectory
in: query
A required: false
schema:
type: boolean
style: form
explode: false

B The subTrajectory parameter SHALL be used with a datetime parameter.

If the subTrajecotry parameter is “true”, the datetime parameter SHALL be a bounded interval,
not half-bounded intervals or a date-time.

REQUIREMENT 13

IDENTIFIER /req/movingfeatures/param-subtrajectory-response
INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

The endpoint SHALL return only a subset of the trajectory derived from the temporal primitive
geometry by the subTrajectory operation at a time interval (new start time and new end time) included

A
in the datetime parameter, using interpolated trajectory according to the interpolation property
in TemporalPrimitiveGeometry(Clause 8.6), if the subTrajectory parameter is “true”.

B If the subTrajectory parameter is “true”, the datetime parameter SHALL match all temporal
primitive geometry objects in the moving feature or moving feature collection.

C If the subTrajectory parameter is “true”, the interpolation property in the response SHALL be
the same as the temporal primitive geometry’s interpolation property value.

D Apply subTrajectory only to resources that intersect a bbox parameter, if the subTrajectory
parameter is provided with a bbox parameter.

E The subTrajectory parameter SHALL not be used with the 1eaf(Clause 8.5.2.1) parameter.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 41

The subTrajectory query parameter is used to select a subset of a
TemporalGeometrySequence for the specified time interval. Each MovingFeature in the
MovingFeatures has a TemporalGeometrySequence. The subTrajectory parameter is used

to implement the subTrajectory operation, which is defined in the OGC Moving Feature Access
Standard. This operation requires two timestamps (newStartTime and newEndTime) to represent
a specified time interval. The time interval for the subTrajectory operation is taken from the
datetime parameter.

If the subTrajectory parameter is provided by the client, the endpoint SHALL return only a
subset of the trajectory derived from the temporal primitive geometry by the operation at time
(newStartTime and newEndTime) included in the subTrajectory parameter, using interpolated
trajectory according to the interpolation property in the TemporalPrimitiveGeometry. The
interpolation property in the response shall be the same as the original temporal primitive
geometry.

If subTrajectory = true

If datetime= and datetime=
""2021-09-14T12%3A00%3A152%2F "2021-09-14T12%3A00%3A157%2F
4 t 2021-09-14T12%3A00%3A30Z, then 2021-09-14T12%3A00%3A30Z, then
y 10s 155 20s 305 40s . .))
- - - » <temporal p geometry object> <itemsquery response> <itemsquery response>

{

}

"id": "tgeom",
"type": "MovingPoint",
"datetimes": [

"2021-09-14T12:00:10Z",
"2021-09-14T12:00:20Z",
"2021-09-14T12:00:40Z"

"coordinates": [
[1,1],
[2,2],
[4,2]

]

3
"interpolation": "Linear",

"temporalGeometry":

{

"d": "tgeom",
"type": "MovingPoint",
"datetimes": [

"2021-09-14T12:00:102",
"2021-09-14T12:00:202",
"2021-09-14T12:00:40Z"

1
"coordinates": [
[1.1],
[2,2),
[4.2]
]

A
"interpolation": "Linear",

"temporalGeometry":
{
"id": "tgeom",
"type": "MovingPoint",
"datetimes": [

"'2021-09-14T12:00:152",
"'2021-09-14T12:00:20Z",
"'2021-09-14T12:00:30Z"

1

"coordinates": [
[1.5,1.5],
[2,2],
[3,2]

1

A
"interpolation": "Linear ",

v

(0,0) 1 15 2 3 4 x

Figure 2 — Example of a response result with a subTrajectory parameter

8.3.3. Operation

8.3.3.1. Retrieve

The retrieve operation is defined in the Features section of the ‘Core’ requirements class of
OGC API — Features. Additional support for the subTrajectory query parameter is needed to
support the MovingFeatures resource.

1. Issue a GET request on {root}/collections/{collectionID}/items path

Support for GET on the {root}/collections/{collectionID}/items path is required by OGC
API| — Features.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 42

https://docs.opengeospatial.org/is/16-120r3/16-120r3.html#12
https://docs.opengeospatial.org/is/16-120r3/16-120r3.html#12

REQUIREMENT 14

IDENTIFIER /req/movingfeatures/features-get
INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every moving feature collection identified in the moving feature collections response (path
A {root}/collections), the server SHALL support the HTTP GET operation at the path {root}/
collections/{collectionId}/items.

The parameter collectionld is each id property in the feature collections response (JSONPath: $.
collections[*].1id).

8.3.3.2. Create

The create operation is defined in the CREATE section of the “Create/Replace/Delete”
requirements class of OGC API — Features. This operation targets a single or collection of
MovingFeature resources.

1. Issue a POST request on {root}/collections/{collectionID}/items path

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

REQUIREMENT 15

IDENTIFIER /req/movingfeatures/features-post

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A The server SHALL support the HTTP POST operation at the resource endpoint({root}/
collections/{collectionId}/items).

B A Content-Type header SHALL be used to declare the media type of the request body containing a
representation of the resource to be added.

C The content of the request body SHALL be based upon the MovingFeature object and MovingFeature

Collection object in OGC Moving Features JSON Encoding Standard.

NOTE: See section 8.3 of RFC 9110 for details of content-Type.

The following example adds a new feature (MovingFeature object in MF-JSON) to the specific
Collection. The feature is represented as a MovingFeature object (or MovingFeatureCollection
object) in MF-JSON. A pseudo-sequence diagram notation is used, below, to illustrate the details
of the HTTP communication between the client and the server.

Client Server

POST /collections/mfc_1/items HTTP/1.1

OPEN GEOSPATIAL CONSORTIUM 22-003R3 43

http://docs.ogc.org/DRAFTS/20-002.html#create
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#mfeature
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#mfeaturecollection
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#mfeaturecollection
https://www.rfc-editor.org/rfc/rfc9110#field.content-type
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#mfeature

Content-Type: application/geo+json

{
"type": "Feature",
"id": "mf_1",
"properties": {
"name": "carl",
"state": "testl",
} "video": "http://.../example/video.mpeg"
?
"crs": {
"type": "Name",
"properties": {
y "name": "urn:ogc:def:crs:0GC:1.3:CRS84"
b,
"trs": {
"type": "Link",
"properties": {
"type": "ogcdef",
. "href": "http://www.opengis.net/def/uom/IS0-8601/0/Gregorian"
b,
"temporalGeometry": {
"type": "MovingPoint",
"datetimes": [
"2011-07-14T22:01:01.000Z2",
"2011-07-14T22:01:02.000Z2",
"2011-07-14T22:01:03.000Z2",
"2011-07-14T22:01:04.0002",
"2011-07-14T22:01:05.000Z"
1,
"coordinates": [
[139.757083,35.627701,0.5],
[139.757399,35.627701,2.0],
[139.757555,35.627688,4.0],
[139.757651,35.627596,4.0],
[139.757716,35.627483,4.0]
1,
"interpolation": "Linear",
"base": {
"type": "glTF",
. "href": "http://.../example/car3dmodel.gltf"
"orientations": [
{"scales": [1,1,1],"angles": [0,0,0]},
{"scales": [1,1,1],"angles": [0,355,01},
{"scales": [1,1,1],"angles": [0,0,330]},
{"scales": [1,1,1],"angles": [0,0,300]},
{"scales": [1,1,1],"angles": [0,0,2701},
]
b,

"temporalProperties": [

"datetimes": [
"2011-07-14T22:01:01.4502",
"2011-07-14T23:01:01.4502",
"2011-07-15T00:01:01.450Z2"
1,

"length": {
"type": "Measure",
"form": "http://qudt.org/vocab/quantitykind/Length",
"values": [1,2.4,1],

OPEN GEOSPATIAL CONSORTIUM 22-003R3

44

"interpolation": "Linear",
"description": "descriptionl"”

"discharge": {
"type": "Measure",
Ilformll: IIMQSII'
"values": [3,4,5],

"interpolation": "Step"

}

},
{

"datetimes": [
"2011-07-15T23:01:01.450Z2",
"2011-07-16T00:01:01.450Z"

1,

"camera": {

"type": "Image",

"values": [
"http://.../example/imagel",
"VBORWOKGgoAAAANSUhEU...... "

1,

y "interpolation": "Discrete"

?

"labels": {

"type": "Text",

"values": ["car","human"],

"interpolation": "Discrete"

}

}

HTTP/1.1 201 Created
Location: /collections/mfc_1/items/mf_1

Listing 10 — An Example of Creating a New MovingFeature Object:

8.3.4. Response

8.3.4.1. Retrieve

A successful response to the MovingFeatures GET operation is a document that contains the
static data for a set of moving features.

If the value of the subTrajectory query parameter is provided, the value of the corresponding
temporalGeometry property of each moving feature is calculated using the subTrajectory
parameter value and included in the result, i.e., a MovingFeatureCollection object of MF-JSON.

In a typical deployment of the OGC APl — Moving Features, the MovingFeatures GET response
will list the MovingFeature resources.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 45

https://docs.ogc.org/is/19-045r3/19-045r3.html#mfeaturecollection

REQUIREMENT 16

IDENTIFIER /req/movingfeatures/features-get-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A A successful execution of the operation SHALL be reported as a response with an HTTP status code
200.

B The response SHALL only include moving features selected by the request with 1imit, bbox,
datetime, and subTrajectory parameters.

C Each moving feature in the response SHALL include the mandatory properties listed in Table 8.

type: object
required:
- type
- features
properties:
type:
type: string
enum:
- 'FeatureCollection'
features:
type: array
nullable: true
items:
$ref: 'movingFeature.yaml'
crs:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#t/definitions/crs"
trs:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#/definitions/trs"
bbox:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
jsontt/definitions/bbox"
time:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#t/definitions/time"
links:
type: array
items:
$ref: 'https://schemas.opengis.net/ogcapi/features/partl/1.0/openapi/
schemas/link.yaml'
timeStamp:
type: string
format: date-time
numberMatched:
type: integer
minimum: 0
numberReturned:
type: integer
minimum: 0

Listing 11 — MovingFeatures GET Response Schema (movingFeatureCollection.yaml):

OPEN GEOSPATIAL CONSORTIUM 22-003R3 46

The following JSON payload is an example of a response to an OGC APl — Moving Features
MovingFeatures GET operation.

{
"type": "FeatureCollection",
"features":[
{
"id": "mf-1",
"type": "Feature",
"geometry":{
"type": "LineString",
"coordinates": [

[139.757083, 35.627701, 0.5],
[139.757399, 35.627701, 2.01,
[139.757555, 35.627688, 4.0],
[139.757651, 35.627596, 4.0],
[139.757716, 35.627483, 4.0]
]
}

n

roperties":{

"label": "car",

"state": "testl",

"video": "http://www.opengis.net/spec/movingfeatures/json/1.0/prism/
example/video.mpeg"

1
"bbox": [
139.757083, 35.627483, 0.0,
139.757716, 35.627701, 4.5
]

n imeu:[
"2011-07-14T722:01:012",
"2011-07-15T01:11:22Z2"
1,
n rsll: {
Iltypell: "Name"'
"properties": "urn:ogc:def:crs:0GC:1.3:CRS84"
"trs": {
"type": "Name"'
"properties": "urn:ogc:data:time:1s08601"
}
1,
" rs": {

"type": IlNamell'
"properties": "urn:ogc:def:crs:0GC:1.3:CRS84"

’

"trS": {

"type": IlNamell'

"properties": "urn:ogc:data:time:is08601"
"links": [

{

"href": "https://data.example.org/collections/mfc-1/items",
"rel": "self",
"type": "application/geo+json"

b
{ . . .
"href": "https://data.example.org/collections/mfc-1/items&offset=16limit=
1"'
"rel": "next",
"type": "application/geo+json"
}

OPEN GEOSPATIAL CONSORTIUM 22-003R3 47

1,

"timeStamp": "2020-01-01T12:00:00Z",
"numberMatched": 100,
"numberReturned": 1

Listing 12 — An Example of a MovingFeatures GET Operation:

8.3.4.2. Create

A successful response to the MovingFeatures POST operation is an HTTP status code.

A MovingFeatureCollection object of MF-JSON is a collection of MovingFeature objects. Posting
a collection of resources is the same as posting a single resource consecutively. However,
because the result must be returned in a single response, the Locations header includes a list of
the URIs of the newly added resources.

REQUIREMENT 17

IDENTIFIER /req/movingfeatures/features-post-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A If the operation completes successfully, the server SHALL assign a new, unique identifier within the
collection for each newly added resource.

B A successful execution of the operation SHALL be reported as a response with an HTTP status code
201.

C A response with HTTP status code 201 SHALL include a Locations header with the list of the URIs
of the newly added resources (i.e., path of each moving feature resource endpoint).

D The elements in the Locations header SHALL be in the same order and size as the collection of
resources contained in the body of the POST request.

E If the operation is not executed immediately, but is added to a processing queue, the response SHALL

have an HTTP status code 202.

8.3.5. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 48

https://docs.ogc.org/is/19-045r3/19-045r3.html#mfeaturecollection

8.4. Resource MovingFeature

8.4.1. Overview

A MovingFeature object consists of the set of static information that describes a single moving
feature and the set of temporal objects, such as temporal geometry and temporal properties.
An abbreviated copy of this information is returned for each MovingFeature in the {root}/
collections/{collectionId}/items GET response.

Table 8 defines the set of properties that may be used to describe a moving feature. The schema
for the moving feature object presented in this clause is an extension of the GeoJSON Feature
Object defined in the GeoJSON standard. By default, the properties defined in Table 8 are the
same as the MovingFeature Object in OGC MF-JSON. The semantics of each property are also
the same as those defined in MF-JSON.

However, depending on where this schema is used (i.e., depending on which resource produces
results with which query parameter), there are differences in requirements from the schema
defined in MF-JSON; as sometimes it only needs to have static information, and sometimes

it also has a temporalGeometry. For example, in MF-JSON, type and temporalGeometry are
mandatory, but in this API, id and type are mandatory. This is why the defined schema is
represented in GeoJSON, not MF-JSON.

Table 8 — Table of the properties related to the moving feature

PROPERTY REQUIREM DESCRIPTION

id M A unique identifier to the moving feature.

type M The GeoJSON feature type (i.e., one of ‘Feature’ or ‘FeatureCollection’).
geometry (0] Projective geometry of the moving feature.

properties O A set of properties of GeoJSON.

bbox O Bounding box information for the moving feature.

time (@) Life span information for the moving feature.

crs (@] Coordinate reference system (CRS) information for the moving feature.
trs (@) Temporal reference system information for the moving feature.
temporalGeometry (@) A sequence of TemporalPrimitiveGeometry for the moving feature.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 49

https://datatracker.ietf.org/doc/html/rfc7946#section-3.2
https://docs.ogc.org/is/19-045r3/19-045r3.html#mfeature

PROPERTY REQUIREMN DESCRIPTION

temporalProperties (@) A set of TemporalProperty of the moving feature.
NOTE 1: The properties id, type, geometry, properties, and bbox were inherited from GeoJSON.

NOTE 2: The properties time, crs, trs, temporalGeometry, and temporalProperties were inherited from
OGC MF-JSON

REQUIREMENT 18

IDENTIFIER /req/movingfeatures/mf-mandatory

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures
A A moving feature object SHALL contain all the mandatory properties listed in Table 8.
8.4.2. Operation

8.4.2.1. Retrieve

The retrieve operation is defined in the Feature section of the “Core” requirements class of
OGC API — Features. No modifications are needed to support MovingFeature resources.

1. Issue a GET request on the {root}/collections/{collectionId}/items/
{mFeatureId} path

The {mFeatureId} path parameter is the unique identifier for a single moving feature offered
by the API. The list of valid values for {mFeatureId} is provided in the {root}/collections/
{collectionId}/items GET response.

Support for GET on the {root}/collections/{collectionID}/items/{mFeatureId} pathis
required by OGC API — Features.

REQUIREMENT 19

IDENTIFIER /req/movingfeatures/mf-get

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

OPEN GEOSPATIAL CONSORTIUM 22-003R3 50

https://datatracker.ietf.org/doc/html/rfc7946#section-3.2
https://docs.ogc.org/is/19-045r3/19-045r3.html#mfeature

REQUIREMENT 19

For every moving feature in a moving feature collection (path {root}/collections/
A {collectionId}), the server SHALL support the HTTP GET operation at the path {root}/
collections/{collectionId}/items/{mFeatureId}

The path parameter collectionId is each id property in the Collection(Clause 7.4) GET operation
B response where the value of the itemType property is specified as movingfeature.
The path parameter mFeatureId is an id property of MovingFeatures(Clause 8.3) GET response.

8.4.2.2. Delete

The delete operation is defined in the DELETE section of the “Create/Replace/Delete”
requirements class of OGC API — Features.

1. Issue a DELETE request on {root}/collections/{collectionId}/items/
{mFeatureId} path

Support for the HTTP DELETE method is required by OGC APl — Features.

REQUIREMENT 20

IDENTIFIER /req/movingfeatures/mf-delete

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every moving feature in a moving feature collection (path {root}/collections/
A {collectionId}), the server SHALL support the HTTP DELETE operation at the path {root}/
collections/{collectionId}/items/{mFeatureld}

The path parameter collectionId is each id property in the Collection(Clause 7.4) GET operation
B response where the value of the itemType property is specified as movingfeature.
The path parameter mFeatureId is an id property of MovingFeatures(Clause 8.3) GET response.

8.4.3. Response

8.4.3.1. Retrieve

A successful response to the MovingFeature GET operation is a set of metadata that describes
the moving feature identified by the {mFeatureId} parameter. This response does not include
a set of temporal object information. The temporal object information may be accessed using
TemporalGeometry and TemporalProperties operations.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 51

http://docs.ogc.org/DRAFTS/20-002.html#delete

REQUIREMENT 21

IDENTIFIER /req/movingfeatures/mf-get-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A A successful execution of the operation SHALL be reported as a response with an HTTP status code
200.

B The content of that response SHALL include the set of moving feature metadata as defined in the

response schema.

type: object
required:
- id
- type
properties:
type:
type: string
enum:
- 'Feature'
temporalGeometry:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#t/definitions/temporalGeometry"
temporalProperties:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#/definitions/temporalProperties"
crs:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#t/definitions/crs"
trs:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#/definitions/trs"
bbox:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#t/definitions/bbox"
time:
$ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#t/definitions/time"
geometry:
$ref: 'https://schemas.opengis.net/ogcapi/features/partl/1.0/openapi/schemas/
geometryGeoJSON.yaml'
properties:
type: object
nullable: true
id:
description: 'An identifier for the feature'
oneOf:
- type: string
- type: integer
links:
type: array
items:
$ref: 'https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/
schemas/link.yaml'

Listing 13 — MovingFeature GET Response Schema (movingFeature.yaml):

OPEN GEOSPATIAL CONSORTIUM 22-003R3 52

The time property of the MovingFeature response represents a particular period of moving
feature existence.

The following JSON payload is an example of a response to an OGC API — Moving Features
MovingFeature operation.

{
llidlI: llm_F_llI’
"type": "Feature",
"geometry":{

"type": "LineString",
"coordinates": [
[139.757083, 35.627701,
[139.757399, 35.627701,
[139.757555, 35.627688,
[139.757651, 35.627596,
[139.757716, 35.627483,
]

roperties":{

"name": "carl",

"state": "testl",

"video": "http://www.opengis.net/spec/movingfeatures/json/1.0/prism/example/
video.mpeg"

PP PAENS
[SESESESNE|
L Y Y

}

?
"bbox": [

139.757083, 35.627483, 0.0,

139.757716, 35.627701, 4.5
1,
"time": [
"2011-07-14T22:01:012",
"2011-07-15T01:11:222"
1,
"crs": {

"type": "Name",

"properties": "urn:ogc:def:crs:0GC:1.3:CRS84"

?

"trs": {
"type": "Name",
"properties": "urn:ogc:data:time:is08601"
}
Listing 14 — An Example of a MovingFeature JSON Payload:
8.4.3.2. Delete

A successful response to the Collection DELETE operation is an HTTP status code.

REQUIREMENT 22

IDENTIFIER /req/movingfeatures/mf-delete-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

OPEN GEOSPATIAL CONSORTIUM 22-003R3 53

REQUIREMENT 22

A successful execution of the operation SHALL be reported as a response with an HTTP status code

A
200 or 204.

B If the operation is not executed immediately, but is added to a processing queue, the response
SHALL have an HTTP status code 202.

C If no resource with the identifier exists in the collection, the server SHALL respond with a not-found

exception (404).

8.4.4. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

8.5. Resource TemporalGeometrySequence

8.5.1. Overview

The TemporalGeometrySequence resource supports retrieving and creating operations via GET
and POST HTTP methods respectively.

1. A retrieve operation returns a sequence of TemporalPrimitiveGeometry object
which is included in the MovingFeature that is specified by {mFeatureId}. The
sequence of TemporalPrimitiveGeometry object returned to the response can
be limited using the query parameters 1imit, bbox, datetime, and leaf (or
subTrajectory).

2. A create operation posts a new TemporalPrimitiveGeometry resource to the
MovingFeature that is specified by {mFeatureld}.

8.5.2. Query Parameters

Query parameters are used in URLs to define the resources which are returned on a GET
request.

The query parameters bbox, datetime, and 1imit are inherited from OGC APl — Common.

The subTrajectory query parameter is defined in the MovingFeatures clause.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 54

http://docs.opengeospatial.org/DRAFTS/20-024.html#bbox-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#datetime-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#limit-parameter-requirements

8.5.2.1. Parameter leaf

The leaf query parameter is defined as follows:

REQUIREMENT 23

IDENTIFIER

INCLUDED
IN

/req/movingfeatures/param-leaf-definition

Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
movingfeatures

The operation SHALL support a query parameter leaf with the following characteristics (using an

OpenAPI Specification 3.0 fragment):
name: leaf
in: query
required: false
schema:
type: array
uniqueltems: true
minItems: 1
items:
type: string
format: date-time
style: form
explode: false

The leaf parameter SHALL be a sequence of monotonic increasing instants with date-time strings.

The syntax of date-time is specified by RFC 3339, 5.6.

REQUIREMENT 24

IDENTIFIER /req/movingfeatures/param-leaf-response

INCLUDED
IN

A

Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
movingfeatures

The leaf parameter SHALL match all resources in the moving feature that are associated with
temporal information.

If the Leaf parameter is provided by the client, the endpoint SHALL return only temporal geometry
coordinates (or temporal property values) with the pointAtTime operation at each date-time included
in the leaf parameter, using interpolated trajectory according to the interpolation property.

If the Teaf parameter is provided by the client, the interpolation property in the response SHALL
be ‘Discrete’.

Apply leaf only to resources that intersect a bbox or (and) a datetime parameter, if the leaf
parameter is provided with a bbox or (and) a datetime parameter.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 55

https://datatracker.ietf.org/doc/html/rfc3339#section-5.6

REQUIREMENT 24

E The leaf parameter SHALL not be used with the subTrajectory(Clause 8.3.2.1) parameter.

The leaf parameter is a sequence of monotonic increasing instants represented by date-time
strings (ex. “2018-02-12T23:20:50Z") whose structure adheres to IETF RFC3339. The leaf
parameter consists of a list of the date-time format strings, different from datetime parameter.
The list does not allow the same element value. Listing 16 shows valid expression examples of

the leaf parameter.

(0) "2018-02-12T723:20:

(0) "2018-02-12T23:20:
(0) "2018-02-12T723:20:
(X) "2018-02-12T23:20:
(X) "2018-02-12T23:20:

502"

50z","2018-02-12T23:30:502"

502" ,"2018-02-12T23:30:50Z"

502" ,"2018-02-12T23:20:50Z"

502" ,"2018-02-12T22:40:50Z"

Listing 16 — leaf parameter valid (and invalid) Examples

,"2018-02-12T23:40:502"

If the leaf parameter is provided by the client, the endpoint returns only temporal geometry
coordinate (or temporal property value) with the leaf query at each time included in the leaf
parameter, similar to pointAtTime operation in the OGC Moving Feature Access Standard. The
interpolation property in the response shall be “Discrete”.

If datetime=
"2021-09-14T12%3A00%3A152%2F

If leaf=[
"'2021-09-14T12:00:152",

t 2021-09-14T12%3A00%3A30Z, then ~ "2021-09-14T12:00:30Z1, then
y 10s 155 20s 305 40s o :
1 T > iporal p g y object> <tgseq query resp Igseq query resp
: "id": "tgeom", "geometrySequence": ["geometrySequence": [
"type": "MovingPoint", { {
i "dntetimes" | "ig": "tgeom™, id": "tgeom®,
! "2021-09-14T12:00:10Z", "type": "MovingPoint", "type": "MovingPoint",
i "2021-09-14T12:00:202", "datetimes": ["datetimes": [
2 e ‘ 15021-09-14T12:00:402" "2021-09-14T12:00:102", "2021-09-14T12:00:152",
' 1 "2021-09-14T12:00:20Z", "2021-09-14T12:00:302"
! "coordinates": ["2021-09-14T12:00:402" 1,
1.5 [1,1], 1 "coordinates": [
' [2,21, "coordinates": [[1.5,1.5],
1 [4,2] [1,1], [3,2]
1 (2,2], 1
“interpolation”: "Linear", [4,2] "interpolation": "Discrete",
} 1 b
' : N "interpolation": "Linear",
(0,0) 1 15 2 3 4 x b
Figure 3 — Example of a response result with leaf parameter
o
8.5.3. Operation
8.5.3.1. Retrieve

1. Issue a GET request on the {root}/collections/{collectionId}/items/
{mFeatureId}/tgsequence path

OPEN GEOSPATIAL CONSORTIUM 22-003R3

56

https://datatracker.ietf.org/doc/html/rfc3339
https://docs.opengeospatial.org/is/16-120r3/16-120r3.html#12

REQUIREMENT 25

IDENTIFIER /req/movingfeatures/tgsequence-get

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every moving feature identified in the MovingFeatures(Clause 8.3) GET response (path {root}/
A collections/{collectionId}/items), the server SHALL support the HTTP GET operation at the
path {root}/collections/{collectionId}/items/{mFeatureld}/tgsequence

The path parameter collectionId is each id property in the Collection(Clause 7.4) GET response
where the value of the itemType property is specified as movingfeature.

B
The path parameter mFeatureId is each id property in the MovingFeatures(Clause 8.3) GET
response.

8.5.3.2. Create

The create operation is defined in the CREATE section of the “Create/Replace/
Delete” requirements class of OGC API — Features. This operation targets the
TemporalPrimitiveGeometry resource.

1. Issue a POST request on {root}/collections/{collectionId}/items/
{mFeatureId}/tgsequence path

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

REQUIREMENT 26

IDENTIFIER /req/movingfeatures/tgsequence-post

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A The server SHALL support the HTTP POST operation at the resource endpoint({root}/
collections/{collectionId}/items/{mFeaturelId}/tgsequence).

B A Content-Type header SHALL be used to declare the media type of the request body containing a
representation of the resource to be added.

C The content of the request body SHALL be based upon the TemporalPrimitiveGeometry object in OGC
Moving Features JSON Encoding Standard schema.
The ending date-time instance (t_end) in the temporal geometry object in MovingFeature(Clause 8.4),

D determined by mFeatureId, SHALL be earlier than the beginning date-time instance (t_new) in the

temporal geometry object in the request body, i.e., t_end < t_new.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 57

http://docs.ogc.org/DRAFTS/20-002.html#create
https://docs.ogc.org/is/19-045r3/19-045r3.html#tprimitive

NOTE: See section 8.3 of RFC 9110 for details of Content-Type.

The following example adds a new feature (TemporalPrimitiveGeometry object in MF-JSON) to

the feature created by the Creation a MovingFeature Example. The feature is represented as a
TemporalPrimitiveGeometry object in MF-JSON, which is an extension of the JSON. A pseudo-
sequence diagram notation is used, below, to illustrate the details of the HTTP communication

between the client and the server.
Client

POST /collections/mfc_1/items/mf_1/tgsequence
Content-Type: application/json

{
"id": "tg_1",
"type": "MovingPoint",
"datetimes": [
"2011-07-14T22
"2011-07-14T22
"2011-07-14T22

:01:06.0002",
:01:07.0002",
:01:08.000Z2"
1,

"coordinates": [
[139.757716,35.
[139.757782,35.
[139.757843,35.

627483,4.0],
627483,4.0],
627483 ,4.0]
1,
"interpolation": "Linear",
"base": {
"type": "glTF",
,
"orientations":
{"scales":
{"scales":
{"scales":

,"angles": [0,0,270]},
,"angles": [0,0,270]},
,"angles": [0,0,270]}

[ERNEE Gy
—_t

HTTP/1.1 201 Created

"href": "http://.../example/car3dmodel.gltf"

Location: /collections/mfc_1/items/mf_1/tgsequence/tg_1

Server

HTTP/1.1

Listing 17 — An Example of Creating a New TemporalPrimitiveGeometry Object:

8.5.4. Response

8.5.4.1. Retrieve

A successful response to the TemporalGeometrySequence GET operation is a document that

contains the set of temporal geometry of the moving feature identified by the {mFeaturelId}

parameter.

OPEN GEOSPATIAL CONSORTIUM 22-003R3

58

https://www.rfc-editor.org/rfc/rfc9110#field.content-type
https://docs.ogc.org/is/19-045r3/19-045r3.html#tprimitive

REQUIREMENT 27

IDENTIFIER /req/movingfeatures/tgsequence-get-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A A successful execution of the operation SHALL be reported as a response with an HTTP status code
200.

B The response SHALL only include temporal primitive geometry selected by a request with 1imit,
bbox, datetime, and leaf (or subTrajectory) parameters.

C Each temporal primitive geometry in the response SHALL include the mandatory properties listed in

Table 9.

type: object

required:
- type
- geometrySequence
properties:
type:
type: string
enum:
- "TemporalGeometrySequence"
geometrySequence:
type: array
items:

$ref: 'https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.
json#/definitions/temporalPrimitiveGeometry"
links:
type: array
items:
$ref: 'https://schemas.opengis.net/ogcapi/features/partl/1.0/openapi/
schemas/link.yaml'
timeStamp:
type: string
format: date-time
numberMatched:
type: integer
minimum: 0
numberReturned:
type: integer
minimum: 0

Listing 18 — TemporalGeometrySequence GET
Response Schema (temporalGeometrySequence.yaml):

The following JSON payload is an example of a response to an OGC API — Moving Features
TemporalGeometrySequence GET operation.

{

"type": "TemporalGeometrySequence",
"geometrySequence": [

Ilidll: "tg_]_",
"type": "MovingPoint",

"datetimes": [
"2011-07-14T22:01:022",

OPEN GEOSPATIAL CONSORTIUM 22-003R3 59

"2011-07-14T22:01:032",
"2011-07-14T722:01:042"
1,
"coordinates": [
[139.757399, 35.627701, 2.0],
[139.757555, 35.627688, 4.0],
[139.757651, 35.627596, 4.0]
1,
"interpolation": "Linear",
"base": {
"type": "glTF",
"href": "https://www.opengis.net/spec/movingfeatures/json/1.0/prism/
example/car3dmodel.gltf"

?

"orientations":[

"scales": [1,1,1],
"angles": [0,355,0]

"scales": [1,1,1],
"angles": [0,0,330]

"scales": [1,1,1],
"angles": [0,0,300]
}

?

rs": {

"type": "Name"'

"properties": "urn:ogc:def:crs:0GC:1.3:CRS84"

]

?
"trS": {
"type": IINamell'
"properties": "urn:ogc:data:time:is08601"

}
1,
"links": [

"href": "https://data.example.org/collections/mfc-1/items/mf-1/tgsequence",
"rel": "self",
"type": "application/json"

?

{
"href": "https://data.example.org/collections/mfc-1/items/mf-1/
tgsequencegoffset=1051imit=1",
"rel": "next",
"type": "application/json"

1,
"timeStamp": "2021-09-01T12:00:00Z",

"numberMatched": 100,
"numberReturned": 1

Listing 19 — An Example of a TemporalGeometrySequence GET operation:

OPEN GEOSPATIAL CONSORTIUM 22-003R3 60

8.5.4.2. Create

A successful response to the TemporalGeometrySequence POST operation is an HTTP status
code.

REQUIREMENT 28

IDENTIFIER /req/movingfeatures/tgsequence-post-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A If the operation completes successfully, the server SHALL assign a new, unique identifier within the
collection for the newly added resource.

B A successful execution of the operation SHALL be reported as a response with an HTTP status code
201.

C A response with HTTP status code 201 SHALL include a Location header with the URI of the newly
added resource (i.e., path of the resource endpoint).

D If the operation is not executed immediately, but is added to a processing queue, the response SHALL

have an HTTP status code 202.

8.5.5. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

8.6. Resource TemporalPrimitiveGeometry

8.6.1. Overview

A TemporalPrimitiveGeometry resource represents the movement of a moving feature with
various types of moving geometry, i.e., MovingPoint, MovingLineString, MovingPolygon, and
MovingPointCloud. It can also represent the movement of a 3D object with its orientation.

The schema for the TemporalPrimitiveGeometry presented in this clause is the same as the
TemporalPrimitiveGeometry object defined in MF-JSON. Table 9 defines the set of properties
that may be used to describe a TemporalPrimitiveGeometry.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 61

https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#tprimitive

Table 9 — Table of the properties related to the TemporalPrimitiveGeometry

PROPERTY REQUIREMENT DESCRIPTION

id

type

datetimes

coordinates

interpolation

base

orientations

M

M

A unique identifier to the temporal primitive geometry.

A primitive geometry type of MF-JSON (i.e., one of ‘MovingPoint’, ‘Moving
LineString’, ‘MovingPolygon’, or ‘MovingPointCloud’).

A sequence of monotonically increasing instants.

A sequence of leaf geometries of a temporal geometry, having the same
number of elements as “datetimes”.

A predefined type of motion curve (i.e., one of ‘Discrete’, ‘Step’, ‘Linear,
‘Quadratic’ or ‘Cubic’).

type: A type of 3D file format, such as ‘STL, ‘OBJ’, ‘PLY’, and ‘gITF".

href: A URL to address 3D model data which represents a base geometry of
a 3D shape.

scales: An array value of numbers along the x, y, and z axis in order as three
scale factors.

angles: An array value of numbers along the x, y, and z axis in order as Euler
angles in degree.

NOTE: The detailed information and requirements for each property are described in the OGC Moving

Feature JSON Encoding Standard.

REQUIREMENT 29

IDENTIFIER

INCLUDED
IN

A

movingfeatures

8.6.2. Operation

8.6.2.1. Delete

/req/movingfeatures/tpgeometry-mandatory

Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

A temporal primitive geometry object SHALL contain all the mandatory properties listed in Table 9.

The delete operation is defined in the DELETE conformance class of APl — Features.

OPEN GEOSPATIAL CONSORTIUM 22-003R3

62

http://docs.ogc.org/DRAFTS/20-002.html#delete

1. Issue a DELETE request on {root}/collections/{collectionId}/items/
{mFeatureId}/tgsequence/{tGeometryId} path

The {tGeometryld} parameter is the unique identifier for a single temporal primitive geometry
object offered by the API. The list of valid values for {tGeometryId} is provided in the {root}/
collections/{collectionId}/items/{mFeatureld}/tgsequence GET response.

Support for the HTTP DELETE method is specified as a requirement in OGC APl — Features.

REQUIREMENT 30

IDENTIFIER /req/movingfeatures/tpgeometry-delete

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every temporal geometry in a moving feature (path {root}/collections/{collectionId}/
A items/{mFeaturelId}), the server SHALL support the HTTP DELETE operation at the path {root}/
collections/{collectionId}/items/{mFeaturelId}/tgsequence/{tGeometryId}

The path parameter collectionId is each id property in the Collection GET operation response
where the value of the itemType property is specified as movingfeature.

B

The path parameter mFeatureId is an id property of the moving feature.

The path parameter tGeometryId is an id property of the temporal geometry.
8.6.3. Response
8.6.3.1. Delete

A successful response to the TemporalPrimitiveGeometry DELETE operation is an HTTP status
code.

REQUIREMENT 31

IDENTIFIER /req/movingfeatures/tpgeometry-delete-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A A successful execution of the operation SHALL be reported as a response with an HTTP status code
200 or 204.

B If the operation is not executed immediately, but is added to a processing queue, the response
SHALL have an HTTP status code 202.

C If no resource with the identifier exists in the collection, the server SHALL respond with a not-found

exception (404).

OPEN GEOSPATIAL CONSORTIUM 22-003R3 63

8.6.4. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

8.7. TemporalGeometry Query Resources

8.7.1. Overview

TemporalGeometry Query resources are spatiotemporal queries that support operations for
accessing TemporalPrimitiveGeometry resources. The OGC APl — Moving Features Standard
identifies an initial set of common query types to implement. These are described in this clause.
This list may change as the Standard is used and experience is gained.

Query resources related to the TemporalPrimitiveGeometry resource can be exposed using the
path templates:

{root}/collections/{collectionId}/items/{mFeaturelId}/tgsequence/
{tGeometryId}/{queryType}

Where:
{root} = Base URI for the API server
{collectionId} = An identifier for a specific Collection of data
{mFeatureId} = An identifier for a specific MovingFeature of a specific Collection of data

{tGeometryId} = An identifier for a specific TemporalPrimitiveGeometry of a specific
MovingFeature of data

{quertyType} = An identifier for the query pattern performed by an implementation
instance of the OGC API — Moving Features.

Table 10 provides a mapping of the initial query types proposed for the OGC API — Moving
Features.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 64

Table 10 — Table of the query resources

QUERY
PATH TEMPLATE DESCRIPTION

TYPE
{root}/collections/{collectionId}/items/ Return a graph of the time to distance
{mFeatureId}/tgsequence/{tGeometryId}/ Distance function as a form of the Temporal
distance Property.
{root}/collections/{collectionId}/items/ Return a graph of the time to velocity
{mFeatureId}/tgsequence/{tGeometryId}/ Velocity function as a form of the Temporal
velocity Property.
{root}/collections/{collectionId}/items/ Return a graph of the time to acceleration
{mFeatureId}/tgsequence/{tGeometryId}/ Acceleration function as a form of the Temporal
acceleration Property.

8.7.2. Query parameters

Query parameters are used in URLs to define the resources which are returned on a GET
request.

The datetime query parameter is inherited from OGC API — Common.
The leaf query parameter is defined in the TemporalGeometrySequence clause.

The subTemporalValue query parameter is defined in the TemporalProperties clause.

8.7.3. Distance Query

The Distance query returns a time-to-distance curve of the TemporalPrimitiveGeometry
object as a form of the TemporalProperty. An implementation instance (endpoint) of the
API returns derived time-to-distance curve data from all available time of the specified
TemporalPrimitiveGeometry object in the absence of query parameters.

Figure 4 shows an example of the time-to-distance curve.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 65

http://docs.opengeospatial.org/DRAFTS/20-024.html#datetime-parameter-requirements

Distance

'y

(t3? d3)

> Time

(5. 0)

Figure 4 — Example of time-to-distance curve [OGC Moving Features Access]

8.7.4. Velocity Query

The Velocity query returns a time-to-velocity curve of the TemporalPrimitiveGeometry
object as a form of the TemporalProperty. An implementation instance (endpoint) of the
API returns derived time-to-velocity curve data from all available time of the specified
TemporalPrimitiveGeometry object in the absence of query parameters.

8.7.5. Acceleration Query

The Acceleration query returns a time-to-acceleration curve of the TemporalPrimitiveGeometry
object as a form of the TemporalProperty. An implementation instance (endpoint) of the

API returns derived time-to-acceleration curve data from all available time of the specified
TemporalPrimitiveGeometry object in the absence of query parameters.

8.7.6. Operation Requirements

REQUIREMENT 32

IDENTIFIER /req/movingfeatures/tpgeometry-query
INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every TemporalPrimitiveGeometry identified in the TemporalGeometrySequence(Clause 8.5) GET
response (path {root}/collections/{collectionId}/items/{mFeatureId}/tgsequence),

A
the server SHALL support the HTTP GET operation at the path {root}/collections/
{collectionId}/items/{mFeatureId}/tgsequence/{tGeometryId}/{queryType}

B The path parameter collectionId is each id property in the Collection GET operation response

where the value of the itemType property is specified as movingfeature.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 66

REQUIREMENT 32

The path parameter mFeatureId is an id property of the moving feature.
The path parameter tGeometryId is an id property of the temporal geometry.

The path parameter queryType SHALL be one of the predefined query type (distance, velocity, and
acceleration)

PERMISSION 1

IDENTIFIER /per/movingfeatures/tpgeometry-query

A A distance query GET operation MAY include a datetime, leaf, or subTemporalValue query

parameter.

B A velocity query GET operation MAY include a datetime, leaf, or subTemporalValue query
parameter.

C An acceleration query GET operation MAY include a datetime, leaf, or subTemporalValue query

parameter.

8.7.7. Response Requirements

REQUIREMENT 33

IDENTIFIER /req/movingfeatures/tpgeometry-query-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

A successful execution of the distance, velocity, and acceleration query GET operation SHALL be

A
reported as a response with an HTTP status code 200.

B The content of that response SHALL include the temporal property that is defined in the response
schema.

C The type property SHALL be “TReal”

OPEN GEOSPATIAL CONSORTIUM 22-003R3 67

8.8. Resource TemporalProperties

8.8.1. Overview

A TemporalProperties object consists of the set of TemporalProperty which is included in the
MovingFeature that is specified by {mFeatureld}. The TemporalProperties resource supports the
retrieve and create operations via the HTTP GET and POST methods respectively.

1. A retrieve operation returns a list of the available abbreviated copy
of TemporalProperty object in the specified moving feature. The
TemporalProperties resource returned to the response can be limited using the
guery parameters 1imit, datetime, and subTemporalValue.

2. A create operation posts a new TemporalProperty object to the MovingFeature
that is specified by {mFeatureld}.

8.8.2. Query Parameters

Query parameters are used in URLs to define the resources which are returned on a GET
request.

The query parameters datetime and limit are inherited from OGC APl — Common.

8.8.2.1. Parameter subTemporalValue

The subTemporalValue query parameter is defined as follows:

REQUIREMENT 34

IDENTIFIER /req/movingfeatures/param-subtemporalvalue-definition

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

The operation SHALL support a query parameter subTemporalValue with the following

characteristics (using an OpenAPI Specification 3.0 fragment):
name: subTemporalValue
in: query
A required: false
schema:
type: boolean
style: form
explode: false

OPEN GEOSPATIAL CONSORTIUM 22-003R3 68

http://docs.opengeospatial.org/DRAFTS/20-024.html#datetime-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#limit-parameter-requirements

REQUIREMENT 34

B The subTemporalValue parameter SHALL be used with datetime parameter.

If the subTemporalValue parameter is “true”, the datetime parameter SHALL be a bounded
interval, not half-bounded intervals or a date-time.

REQUIREMENT 35

IDENTIFIER /req/movingfeatures/param-subtemporalvalue-response

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

The endpoint SHALL return only a subset of the temporal primitive values derived from the temporal
property for a specified time interval (new start time and new end time) included in the datetime

A
parameter, using interpolated temporal property values according to the interpolation property in
TemporalProperty(Clause 8.9), if the subTemporalVvalue parameter is “ture”.

B If the subTemporalValue parameter is “true”, the datetime parameter SHALL match all temporal
property objects in the moving feature.

C If the subTemporalValue parameter is “true”, the interpolation property in the response SHALL
be the same as the temporal property’s interpolation property value.

D The subTemporalValue parameter SHALL not be used with the Teaf(Clause 8.5.2.1) parameter.

The subTemporalValue query parameter is used to select a subset of TemporalProperty for the
specified time interval. Each TemporalProperty in the TemporalProperties has a sequence of
TemporalPrimitiveValue objects. The subTemporalValue parameter behaves functionally the
same as the subTrajectory parameter. The difference is that subTrajectory is associated with
temporal geometry, while subTemporalValue is associated with temporal properties.

8.8.3. Operation

8.8.3.1. Retrieve

1. Issue a GET request on the {root}/collections/{collectionId}/items/
{mFeatureld}/tproperties path

REQUIREMENT 36

IDENTIFIER /req/movingfeatures/tproperties-get

OPEN GEOSPATIAL CONSORTIUM 22-003R3 69

REQUIREMENT 36

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every moving feature identified in the MovingFeatures(Clause 8.3) GET response (path {root}/
A collections/{collectionId}/items), the server SHALL support the HTTP GET operation at the
path {root}/collections/{collectionId}/items/{mFeatureId}/tproperties

The path parameter collectionId is each id property in the Collection(Clause 7.4) GET response
where the value of the itemType property is specified as movingfeature.

B
The path parameter mFeatureId is each id property in the MovingFeatures(Clause 8.3) GET
response.

8.8.3.2. Create

The create operation is defined in the CREATE conformance class in the OGC API — Features
Standard. This operation targets a single or a collection of TemporalProperty resources.

1. Issue a POST request on {root}/collections/{collectionId}/items/
{mFeatureld}/tproperties path

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

REQUIREMENT 37

IDENTIFIER /req/movingfeatures/tproperties-post

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A The server SHALL support the HTTP POST operation at the resource endpoint({root}/
collections/{collectionId}/items/{mFeatureld}/tproperties).

B A Content-Type header SHALL be used to declare the media type of the request body containing a
representation of the resource to be added.

C The content of the request body SHALL be based upon a TemporalProperty defined in this APl or a

ParametricValues object defined in OGC Moving Features JSON Encoding Standard.

NOTE: See section 8.3 of RFC 92110 for details of content-Type.

type: object
required:
- name
- type
properties:
name:
type: string
type:
type: string

OPEN GEOSPATIAL CONSORTIUM 22-003R3 70

http://docs.ogc.org/DRAFTS/20-002.html#create
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#pvalues
https://www.rfc-editor.org/rfc/rfc9110#field.content-type

enum:
- 'TBoolean’
- 'TText'
'TInteger'
- 'TReal’
- 'TImage'
form:
oneOf:
- type: string
format: uri
- type: string
minLength: 3
maxLength: 3
valueSequence:
type: array
uniqueltems: true
items:
$ref: 'temporalPrimitivevalue.yaml'
description:
type: string
links:
type: array
items:
$ref: 'https://schemas.opengis.net/ogcapi/features/partl/1.0/openapi/
schemas/link.yaml'

Listing 21 — TemporalProperties Request Body Schema (temporalProperty.yaml):

The following example adds a new feature (TemporalProperty Object and ParametricValues
Object in MF-JSON) to the feature created by the Creation of a MovingFeature Example. The
feature is represented as a JSON payload. A pseudo-sequence diagram notation is used, below,
to illustrate the details of the HTTP communication between the client and the server.

Client Server

POST /collections/mfc_1/items/mf_1/tproperties HTTP/1.1
Content-Type: application/json

{
"name": "speed",
"type": "TReal",
"form": "KMH"
}
___ >
HTTP/1.1 201 Created
Location: /collections/mfc_1/items/mf_1/tproperties/speed
< ___
Listing 22 — An Example of Creating a New TemporalProperty Object:
Client Server

POST /collections/mfc_1/items/mf_1/tproperties HTTP/1.1
Content-Type: application/json

"datetimes": [
"2011-07-14T22:01:06.0002",
"2011-07-14T22:01:07.000Z2",

OPEN GEOSPATIAL CONSORTIUM 22-003R3 71

https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#pvalues
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#pvalues

"2011-07-14T22:01:08.0002",

1,
n peed": {

"type": "Measure",

"form": "KMH",

"values": [65.0, 70.0, 80.0],
y "interpolation": "Linear"

HTTP/1.1 201 Created
Location: /collections/mfc_1/items/mf_1/tproperties/speed

Listing 23 — An Example of Creating a New TemporalProperty
Object with ParametricValues as a MF-JSON encoding:

8.8.4. Response

8.8.4.1. Retrieve

A successful response to the TemporalProperties GET operation is a document that contains
the set of metadata (and static data) of TemporalProperty in the moving feature identified by
the {mFeatureId} parameter. The response result does not include dynamic (and temporal
information).

If the value of the subTemporalvalue query parameter is provided, the temporal value of the
corresponding temporalProperties property of the moving feature is calculated using the
subTemporalValue parameter value and included in the result.

REQUIREMENT 38

IDENTIFIER /req/movingfeatures/tproperties-get-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A A successful execution of the operation SHALL be reported as a response with an HTTP status code
200.

B The response SHALL only include moving features selected by the request with 1imit, datetime,
and subTemporalValue parameters.

C Each temporal property object in the response SHALL include the mandatory properties listed in

Table 11.

type: object
required:
- temporalProperties
properties:
temporalProperties:
oneOf:

OPEN GEOSPATIAL CONSORTIUM 22-003R3 72

- $ref: "https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.
schema. json#/definitions/temporalProperties"

- type: array
items:
$ref: "temporalProperty.yaml"
links:
type: array
items:

$ref: 'https://schemas.opengis.net/ogcapi/features/partl/1.0/openapi/
schemas/link.yaml'

timeStamp:

type: string

format: date-time
numberMatched:

type: integer

minimum: 0
numberReturned:

type: integer

minimum: 0

Listing 24 — TemporalProperties GET Response Schema (TemporalProperties.yaml):

The following JSON payload is an example of a response to an OGC API — Moving Features
TemporalProperties GET operation.

{
"temporalProperties": [
{
"name": "length",
"type": "TReal",
"form": "http://qudt.org/vocab/quantitykind/Length"
b
{
"name": "speed",
"type": "TReal",
"form": "KMH"
}
1,
"links": [
{

"href": "https://data.example.org/collections/mfc-1/items/mf-1/
tproperties"”,

"rel": "self",

"type": "application/json"

?

"href": "https://data.example.org/collections/mfc-1/items/mf-1/
tpropertiesgoffset=2&5limit=2",

"rel": "next",

"type": "application/json"

1,
"timeStamp": "2021-09-01T12:00:00Z",
"numberMatched": 10,
"numberReturned": 2

Listing 25 — An Example of a TemporalProperties GET Operation:

The following JSON payload is an example of a response to an OGC API — Moving Features
TemporalProperties GET operation with query parameter subTemporalvalue.

OPEN GEOSPATIAL CONSORTIUM 22-003R3

73

{

"temporalProperties": [

"datetimes": ["2011-07-14T22:01:06.000Z", "2011-07-14T22:01:07.000Z",
"2011-07-14T22:01:08.000Z"],
"length": {
"type": "Measure",
"form": "http://qudt.org/vocab/quantitykind/Length",
"values": [1.0, 2.4, 1.0],

"interpolation": "Linear"
},
"speed" : {
"type" : "Measure",
"form" : "KMH",
"values" : [65.0, 70.0, 80.0],
"interpolation": "Linear"
}
}
1,
"links": [
{
"href": "https://data.example.org/collections/mfc-1/items/mf-1/
tproperties”,

"rel": "self",
"type": "application/json"

’

"href": "https://data.example.org/collections/mfc-1/items/mf-1/
tpropertiesgoffset=2&5limit=2",

"rel": "next",

"type": "application/json"

1,

"timeStamp": "2021-09-01T12:00:00Z",
"numberMatched": 10,
"numberReturned": 2

Listing 26 — An Example of a TemporalProperties GET Operation with subTemporalValue:

8.8.4.2. Create
A successful response to the TemporalProperties POST operation is an HTTP status code.

A ParametricValues Object in MF-JSON can be a collection of TemporalProperty objects. Posting
a collection of resources is the same as posting a single resource consecutively. However,
because the result must be returned in a single response, the Locations header includes a list of
the URIs of the newly added resources.

REQUIREMENT 39

IDENTIFIER /req/movingfeatures/tproperties-post-success

OPEN GEOSPATIAL CONSORTIUM 22-003R3 74

https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#pvalues

REQUIREMENT 39

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A If the operation completes successfully, the server SHALL assign a new, unique identifier within the
collection for each newly added resource.

B A successful execution of the operation SHALL be reported as a response with an HTTP status code
201.

C A response with HTTP status code 201 SHALL include a Locations header with the list of the URIs
of the newly added resources (i.e., path of each moving feature resource endpoint).

D The elements in the Locations header SHALL be in the same order and size as the collection of
resources contained in the body of the POST request.

E If the operation is not executed immediately, but is added to a processing queue, the response SHALL

have an HTTP status code 202.

8.8.5. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

8.9. Resource TemporalProperty

8.9.1. Overview

The TemporalProperty resource supports the retrieve, create, and delete operations via the
HTTP GET, POST, and DELETE methods respectively.

1. A retrieve operation returns a TemporalProperty resource which is included in the
TemporalProperties that is specified by {tPropertyName}. The TemporalProperty
resource returned to the response can be limited using the parameters datetime,
leaf and subTemporalValue.

2. A create operation posts a new TemporalPrimitiveValue resource to the
TemporalProperties that is specified by {tPropertyName}.

3. A delete operation deletes an existing TemporalProperty resource that is

specified by {tPropertyName}.

A temporal property object is a collection of dynamic non-spatial attributes and their temporal
values with time. An abbreviated copy of this information is returned for each TemporalProperty
in the {root}/collections/{collectionId}/items/{mFeatureId}/tproperties response.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 75

The schema for the temporal property object presented in this clause is an extension of the
ParametricValues Object defined in MF-JSON. Table 11 defines the set of properties that may be
used to describe a temporal property object.

Table 11 — Table of the properties related to a temporal property

PROPERTY REQUIREMENT DESCRIPTION

name M An identifier for the resource assigned by an external entity.

A predefined temporal property type (i.e., one of ‘TBoolean’, ‘TText),

type M ‘Tinteger’, ‘TReal’, and ‘TImage’).
valueSequence M A sequence of temporal primitive value
form (0] A unit of measure.

description (0] A short description.

NOTE: The detailed information and requirements for each property are described in the OGC Moving
Features Encoding Extension — JSON Standard (OGC 19-045r3).

REQUIREMENT 40

IDENTIFIER /req/movingfeatures/tproperty-mandatory

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

A A temporal property object SHALL contain all the mandatory properties listed in Table 11.

8.9.2. Query Parameters

Query parameters are used in URLs to define the resources which are returned on a GET
request.

The datetime query parameter is inherited from OGC APl — Common.
The leaf query parameter is defined in the TemporalGeometrySequence clause.

The subTemporalVvalue query parameter is defined in the TemporalProperties clause.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 76

https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#tproperties
http://docs.opengeospatial.org/DRAFTS/20-024.html#datetime-parameter-requirements

8.9.3. Operation

8.9.3.1. Retrieve

1. Issue a GET request on the {root}/collections/{collectionId}/items/
{mFeatureId}/tproperties/{tPropertyName} path

The {tPropertyName} parameter is the unique identifier for a single temporal property value
offered by an implementation instance (endpoint) of the OGC APl — Moving Features. The list
of valid values for {tPropertyName} is provided in the {root}/collections/{collectionId}/
items/{mFeatureId}/tproperties GET response.

REQUIREMENT 41

IDENTIFIER /req/movingfeatures/tproperty-get
INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every temporal property in a moving feature (path {root}/collections/{collectionId}/
items/{mFeatureId}/tproperties), the server SHALL support the HTTP GET operation at

A
the path {root}/collections/{collectionId}/items/{mFeatureId}/tproperties/
{tPropertyName}
The path parameter collectionId is each id property in the Collection(Clause 7.4) GET response
where the value of the itemType property is specified as a movingfeature object.

B The path parameter mFeatureId is each id property in the MovingFeatures(Clause 8.3) GET

response.
tPropertyName is a local identifier of the temporal property.

8.9.3.2. Create

The create operation is defined in the CREATE conformance class in the OGC API — Features
Standard. This operation targets the new TemporalPrimitiveValue object.

1. Issue a POST request on {root}/collections/{collectionId}/items/
{mFeatureId}/tproperties/{tPropertyName} path

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 77

http://docs.ogc.org/DRAFTS/20-002.html#create

REQUIREMENT 42

IDENTIFIER /req/movingfeatures/tproperty-post

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A The server SHALL support the HTTP POST operation at the resource endpoint({root}/
collections/{collectionId}/items/{mFeatureId}/tproperties/{tPropertyName}).

B A Content-Type header SHALL be used to declare the media type of the request body containing a
representation of the resource to be added.

C The content of the request body SHALL be based upon the TemporalPrimitiveValue schema.
The ending date-time instance (t_end) in the temporal primitive value object in Temporal

D Property(Clause 8.9), determined by tPropertyName, SHALL be earlier than the beginning date-time

instance (t_new) in the temporal primitive value object in the request body, i.e., t_end < t_new.

NOTE: See section 8.3 of RFC 9110 for details of content-Type.

type: object
required:
- datetimes
- values
- interpolation
properties:
datetimes:
type: array
uniqueItems: true
minItems: 2
items:
type: string
format: date-time
values:
oneOf:
- type: number
- type: string
- type: boolean
interpolation:
type: string
enum:
- 'Discrete’
- 'Step’
- 'Linear'
- 'Regression'

Listing 27 — TemporalProperty Request Body Schema (TemporalPrimitiveValue.yaml):
The following example adds a new feature (TemporalPrimitiveValue resource) to the feature
created by Creating a New TemporalProperty Object Example. The feature is represented as a

JSON payload. A pseudo-sequence diagram notation is used, below, to illustrate the details of
the HTTP communication between the client and the server.

Client Server

POST /collections/mfc_1/items/mf_1/tproperties/speed HTTP/1.1
Content-Type: application/json

OPEN GEOSPATIAL CONSORTIUM 22-003R3 78

https://www.rfc-editor.org/rfc/rfc9110#field.content-type

"datetimes": [
"2011-07-14T22:01:09.0002",
"2011-07-14T22:01:010.000Z2",

1,

"values": [

90.0,
95.0,
1

n

?
interpolation": "Linear"

HTTP/1.1 201 Created
Location: /collections/mfc_1/items/mf_1/tproperties/speed

Listing 28 — An Example of Creating a New TemporalPrimitiveValue Object:

8.9.3.3. Delete

The delete operation is defined in the DELETE section of the “Create/Replace/Delete”
requirements class of OGC AP| — Features.

1. Issue a DELETE request on {root}/collections/{collectionId}/items/
{mFeatureId}/tproperties/{tPropertyName} path

Support for the HTTP DELETE method is specified as a requirement in OGC APl — Features.

REQUIREMENT 43

IDENTIFIER /req/movingfeatures/tproperty-delete

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every temporal property in a moving feature (path {root}/collections/{collectionId}/
A items/{mFeaturelId}), the server SHALL support the HTTP DELETE operation at the path {root}/
collections/{collectionId}/items/{mFeatureld}/tproperties/{tPropertyName}

The path parameter collectionId is each id property in the Collection GET operation response
where the value of the itemType property is specified as movingfeature.

The path parameter mFeatureId is an id property of the moving feature.

The path parameter tPropertyName is a local identifier of the temporal property.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 79

http://docs.ogc.org/DRAFTS/20-002.html#delete

8.9.4. Response

8.9.4.1. Retrieve

A successful response to the TemporalProperty GET operation is a temporal property identified
by the {tPropertyName} parameter.

REQUIREMENT 44

IDENTIFIER /req/movingfeatures/tproperty-get-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A A successful execution of the operation SHALL be reported as a response with an HTTP status code
200.

B The response SHALL only include temporal properties selected by the request with leaf and
subTemporalValue parameters.

c The content of that response SHALL include the parametric value that is defined in the response

schema.

The following JSON payload is an example of a response to an OGC API — Moving Features
TemporalProperty GET operation.

{

"temporalProperties": [

"datetimes":[
"2011-07-14T22:01:022",
"2011-07-14T22:01:032",
"2011-07-14T22:01:042"

1,
"values":[
65.0,
70.0,
80.0
1,
"interpolation": "Linear"

"datetimes":[
"2011-07-15T08:00:002",
"2011-07-15T08:00:012",
"2011-07-15T08:00:02Z2"

1,

"values":[

0.0,
20.0,

OPEN GEOSPATIAL CONSORTIUM 22-003R3 80

50.0
1
"interpolation": "Linear"

]

?
inks": [

"href": "https://data.example.org/collections/mfc-1/items/mf-1/tproperties/
speed”,

"rel": "self",
"type": "application/json"

Listing 29 — An Example of TemporalProperty GET Operation:

8.9.4.2. Create

A successful response to the TemporalProperty POST operation is an HTTP status code.

REQUIREMENT 45

IDENTIFIER /req/movingfeatures/tproperty-post-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A If the operation completes successfully, the server SHALL assign a new, unique identifier within the
collection for the newly added resource.

B A successful execution of the operation SHALL be reported as a response with an HTTP status code
201.

c A response with HTTP status code 201 SHALL include a Location header with the URI of the newly
added resource (i.e., path of the resource endpoint).

D If the operation is not executed immediately, but is added to a processing queue, the response SHALL

have an HTTP status code 202.

8.9.4.3. Delete

A successful response to the TemporalProperty DELETE operation is an HTTP status code.

REQUIREMENT 46

IDENTIFIER /req/movingfeatures/tproperty-delete-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

OPEN GEOSPATIAL CONSORTIUM 22-003R3 81

REQUIREMENT 46

A successful execution of the operation SHALL be reported as a response with an HTTP status code

A
200 or 204.

B If the operation is not executed immediately, but is added to a processing queue, the response
SHALL have an HTTP status code 202.

C If no resource with the identifier exists in the collection, the server SHALL respond with a not-found

exception (404).

8.9.5. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

8.10. Resource TemporalPrimitiveValue

8.10.1. Overview

The TemporalPrimitiveValue resource represents the dynamic change of a non-spatial
attribute’s value with time. An abbreviated copy of this information is returned for each
TemporalPrimitiveValue in the {root}/collections/{collectionId}/items/{mFeatureId}/
tproperties/{tPropertyName} response.

The schema for the temporal primitive value object presented in this clause is a part of the
ParametricValues Object defined in MF-JSON. Table 12 defines the set of properties that shall be
used to describe a temporal primitive value.

Table 12 — Table of the properties related to the temporal primitive value

PROPERTY REQUIREMENT DESCRIPTION

id M A unique identifier to the temporal primitive value.
datetimes M A sequence of monotonic increasing instants.

A sequence of dynamic values having the same number of elements as
values M

“datetimes”.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 82

https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#tproperties

PROPERTY REQUIREMENT DESCRIPTION

A predefined type for a dynamic value (i.e., one of ‘Discrete’, ‘Step’, ‘Linear’,

interpolation M . .,
or ‘Regression’).

NOTE: The detailed information and requirements for each property are described in the OGC Moving
Features Encoding Extension — JSON Standard (OGC 19-045r3).

REQUIREMENT 47

IDENTIFIER /req/movingfeatures/tpvalue-mandatory

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

A A temporal primitive value object SHALL contain all the mandatory properties listed in Table 12.

8.10.2. Operation

8.10.2.1. Delete

The delete operation is defined in the DELETE section of the “Create/Replace/Delete”
requirements class of OGC API — Features.

1. Issue a DELETE request on {root}/collections/{collectionId}/items/
{mFeaturelId}/tproperties/{tPropertyName}/{tValueId} path

The {tValueld} parameter is the unique identifier for a single temporal primitive value

object offered by the API. The list of valid values for {tValuelId} is provided in the {root}/
collections/{collectionId}/items/{mFeatureId}/tproperties/{tPropertyName} GET
response.

Support for the HTTP DELETE method is specified as a requirement in OGC APl — Features.

REQUIREMENT 48

IDENTIFIER /req/movingfeatures/tpvalue-delete
INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN movingfeatures

For every temporal primitive value in a temporal property (path {root}/collections/

A
{collectionId}/items/{mFeatureId}/tproperties/{tPropertyName}), the server SHALL

OPEN GEOSPATIAL CONSORTIUM 22-003R3 83

http://docs.ogc.org/DRAFTS/20-002.html#delete

REQUIREMENT 48

support the HTTP DELETE operation at the path {root}/collections/{collectionId}/items/
{mFeatureId}/tproperties/{tPropertyName}/{tValueId}

The path parameter collectionId is each id property in the Collection GET operation response
where the value of the itemType property is specified as movingfeature.
B The path parameter mFeaturelId is an id property of the moving feature.
The path parameter tPropertyName is a local identifier of the temporal property.
The path parameter tValuelId is an id property of the temporal primitive value.

8.10.3. Response

8.10.3.1. Delete

A successful response to the TemporalPrimitiveValue DELETE operation is an HTTP status code.

REQUIREMENT 49

IDENTIFIER /req/movingfeatures/tpvalue-delete-success

INCLUDED Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/

IN movingfeatures

A A successful execution of the operation SHALL be reported as a response with an HTTP status code
200 or 204.

B If the operation is not executed immediately, but is added to a processing queue, the response
SHALL have an HTTP status code 202.

C If no resource with the identifier exists in the collection, the server SHALL respond with a not-found

exception (404).

8.10.4. Error situations

General guidance on HTTP status codes and how they should be handled is provided in
Clause 9.2.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 84

COMMON REQUIREMEN

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

COMMON REQUIREMENTS

REQUIREMENTS CLASS 3: MOVING FEATURES —COMMON

IDENTIFIER http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/common

TARGET TYPE Web API

http:/www.opengis.net/spec/ogcapi-features-1/1.0/req/core
PREREQUISITES http:/www.opengis.net/spec/ogcapi-common-1/1.0/req/core
http:/www.opengis.net/spec/ogcapi-common-2/1.0/req/core

Requirement 50: /req/common/param-limit
NORMATIVE STATEMENTS Requirement 51: /req/common/param-bbox
Requirement 52: /req/common/param-datetime

9.1. Parameters

The query parameters bbox, datetime, and limit are inherited from OGC APl — Common. All
requirements and recommendations in OGC APl — Common regarding these parameters also
apply to OGC APl — Moving Features.

9.1.1. Parameter limit

REQUIREMENT 50

IDENTIFIER /req/common/param-limit

INCLUDED Requirements class 3: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN common

The 1imit parameter SHALL possess the following characteristics (using an OpenAPI Specification

3.0 fragment):
name: limit
in: query
required: false
A schema:
type: integer
minimum: 1
maximum: 10000
default: 10
style: form
explode: false

OPEN GEOSPATIAL CONSORTIUM 22-003R3 86

http://docs.opengeospatial.org/DRAFTS/20-024.html#bbox-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#datetime-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#limit-parameter-requirements

REQUIREMENT 50

If the Timit parameter is provided by the client and supported by the server, then the response

B
SHALL NOT contain more collections than specified by the 1imit parameter.

C If the API definition specifies a maximum value for the 1imit parameter, the response SHALL NOT
contain more collections than this maximum value.

D Only items are counted that are on the first level of the collection. Any nested objects contained

within the explicitly requested items SHALL not be counted.

NOTE: The values for minimum, maximum and default are only examples and MAY be changed.

9.1.2. Parameter bbox

REQUIREMENT 51

IDENTIFIER /req/common/param-bbox

INCLUDED Requirements class 3: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN common

The bbox parameter SHALL possess the following characteristics (using an OpenAPI Specification 3.0

fragment):
name: bbox
in: query
required: false
schema:
type: array
oneOf:
. - minItems:
maxItems:
- minItems:
maxItems:
items:
type: number
style: form
explode: false

[o) e I g o)

The bounding box SHALL be provided as four or six numbers, depending on whether the coordinate

reference system includes a vertical axis (height or depth):
Lower left corner, coordinate axis 1

Lower left corner, coordinate axis 2
Minimum value, coordinate axis 3 (optional)
Upper right corner, coordinate axis 1
Upper right corner, coordinate axis 2

Maximum value, coordinate axis 3 (optional)

OPEN GEOSPATIAL CONSORTIUM 22-003R3 87

REQUIREMENT 51

If the bounding box consists of four numbers, the coordinate reference system of the values SHALL be
C interpreted as WGS 84 longitude/latitude (http:/www.opengis.net/def/crs/OGC/1.3/CRS84) unless a
different coordinate reference system is specified in a parameter bbox-crs.

If the bounding box consists of six numbers, the coordinate reference system of the values SHALL be
D interpreted as WGS 84 longitude/latitude/ellipsoidal height (http:/www.opengis.net/def/crs/OGC/0/
CRS84h) unless a different coordinate reference system is specified in a parameter bbox-crs.

Only features that have a spatial geometry that intersects the bounding box SHALL be part of the

E
result set, if the bbox parameter is provided.

E If a feature has multiple spatial geometry properties, it is the decision of the server whether only a
single spatial geometry property is used to determine the extent or all relevant geometries.

G The bbox parameter SHALL match all features in the collection that are not associated with a spatial
geometry, too.

H The coordinate values SHALL be within the extent specified for the coordinate reference system.

9.1.3. Parameter datetime

REQUIREMENT 52

IDENTIFIER /req/common/param-datetime

INCLUDED Requirements class 3: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
IN common

The datetime parameter SHALL have the following characteristics (using an OpenAPI Specification

3.0 fragment):
name: datetime
in: query

A required: true
schema:

type: string

style: form
explode: false

Only features that have a temporal primitive geometry (and temporal primitive value) that intersects
B the temporal information in the datetime parameter SHALL be part of the result set, if the
parameter is provided.

Temporal primitive geometries (and temporal primitive values) are a half-bounded time interval (i.e.
, (t_s, t_e + updateFrequency]). The parameter value SHALL conform to the following syntax (using

ABNEF):
interval-bounded = date-time "/" date-time
C interval-half-bounded-start = [".."] "/" date-time
interval-half-bounded-end = date-time "/" [".."]
interval = interval-bounded / interval-half-bounded-start
/ interval-half-bounded-end
datetime = date-time / interval

OPEN GEOSPATIAL CONSORTIUM 22-003R3 88

http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/0/CRS84h
http://www.opengis.net/def/crs/OGC/0/CRS84h
https://tools.ietf.org/html/rfc5234

REQUIREMENT 52

D

Server implementations SHALL interpret the date-time as specified by RFC 3339, 5.6 supporting at

least UTC time with the notation ending with a Z (with support for local time offsets optional).

When a double-dot (. .) or an empty string is specified in a time interval, the implementation SHALL
interpret it as a half-bounded or an unbounded interval (open range).

If the datetime parameter is provided by the client and supported by the server, then only
collections whose temporal extent intersects the interval or instant of the datetime parameter and
collections that do not describe a temporal extent SHALL be part of the result set.

9.2. HTTP Status Codes

Table 13 lists the main HTTP status codes that clients should be prepared to receive. This
includes support for specific security schemes or URI redirection. In addition, other error
situations may occur in the transport layer outside of the server.

Table 13 — Typical HTTP status codes

STATUS CODE DESCRIPTION

200

202

204

304

308

400

401

403

A successful request.

The server has fulfilled the operation and a new resource has been created.

A successful request, but the response is still being generated. The response will include a Retry-
After header field giving a recommendation in seconds for the client to retry.

A successful request, but the resource has no data resulting from the request. No additional
content or message body is provided.

An entity tag was provided in the request and the resource has not been changed since the
previous request.

The server cannot process the data through a synchronous request. The response includes a
Location header field which contains the URI of the location the result will be available at once
the query is complete Asynchronous queries.

The server cannot or will not process the request due to an apparent client error. For example, a
query parameter had an incorrect value.

The request requires user authentication. The response includes a WWW-Authenticate header
field containing a challenge applicable to the requested resource.

The server understood the request, but is refusing to fulfill it. While status code 401 indicates
missing or bad authentication, status code 403 indicates that authentication is not the issue, but
the client is not authorized to perform the requested operation on the resource.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 89

https://tools.ietf.org/html/rfc3339#section-5.6

STATUS CODE DESCRIPTION

404

405

406

412

413

415

500

The requested resource does not exist on the server. For example, a path parameter had an
incorrect value.

The request method is not supported. For example, a POST request was submitted, but the
resource only supports GET requests.

Content negotiation failed. For example, the Accept header submitted in the request did not
support any of the media types supported by the server for the requested resource.

The status code indicates that one or more conditions given in the request header fields evaluated
to false when tested by the server.

Request entity too large. For example, the query would involve returning more data than the
server is capable of processing, the implementation should return a message explaining the query
limits imposed by the server implementation.

The server is refusing to service the request because the content is in a format not supported by
this method on the target resource.

An internal error occurred in the server.

The status codes described in Table 13 do not cover all possible conditions. See IETF RFC 7231
for a complete list of HTTP status codes. When a server encounters an error in the processing

of a request, the server may wish to include information in addition to the status code in the
response. Since Web API interactions are often machine-to-machine, a machine-readable report
would be preferred. IETF RFC 7807 addresses this need by providing “Problem Details” response
schemas for both JSON and XML.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 90

ANNEX A (NORMATIVE)
ABSTRACT TEST SUI

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

ANNEX A
(NORMATIVE)
ABSTRACT TEST SUITE

A.1. Introduction

The Abstract Test Suite (ATS) presented in this Annex is a compendium of test assertions
applicable to implementations of the OGC APl — Moving Features — Part 1: Core Standard. An
ATS provides a basis for developing an Executable Test Suite to verify that the implementation
under test conforms to all the relevant functional specifications.

The abstract test cases (assertions) are organized into test groups that correspond to distinct
conformance classes defined in the OGC APl — Moving Features — Part 1: Core Standard.

Implementations of OGC API Standards are not Web Services in the traditional sense. Rather,
they define the behavior and content of a set of Resources exposed through a Web Application
Programming Interface (Web API). Therefore, an APl may expose resources in addition to those
defined by the standard. A test engine shall traverse the API, identify and validate test points,
and ignore resource paths which are not to be tested.

The Conformance Classes addressed by this Abstract Test Suite are the:
MovingFeature Collection Catalog Conformance Class

MovingFeature Conformance Class

A.2. Conformance Class MovingFeature Collection
Catalog

CONFORMANCE CLASS A1

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/mf-

IDENTIFIER .
collection

OPEN GEOSPATIAL CONSORTIUM 22-003R3 92

CONFORMANCE CLASS A1

REQUIREMENTS Requirements class 1: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.
CLASS 0/req/mf-collection
TARGET TYPE Web API

http:/www.opengis.net/spec/ogcapi-common-1/1.0/conf/html
http:/www.opengis.net/spec/ogcapi-common-1/1.0/conf/json

DEPENDENCY . . .
http:/www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections

http:/www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

Abstract test A.1: /conf/mf-collection/collections-get
Abstract test A.2: /conf/mf-collection/collections-get-success
Abstract test A.3: /conf/mf-collection/collections-post
Abstract test A.4: /conf/mf-collection/collections-post-success
CONFORMANCE Abstract test A.5: /conf/mf-collection/collection-get
TESTS Abstract test A.6: /conf/mf-collection/collection-get-success
Abstract test A.7: /conf/mf-collection/collection-put
Abstract test A.8: /conf/mf-collection/collections-put-success
Abstract test A.9: /conf/mf-collection/collection-delete
Abstract test A.10: /conf/mf-collection/collections-delete-success

A.2.1. MovingFeature Collections

A.2.1.1. HTTP GET Operation

ABSTRACT TEST A.1

IDENTIFIER /conf/mf-collection/collections-get

Requirement 1: /req/mf-collection/collections-get
REQUIREMENTS . . .
Requirement 3: /req/mf-collection/collections-get-success

TEST PURPOSE Validate that the MovingFeature Collections can be retrieved from the expected location.

1. Issue an HTTP GET request to the URL {root}/collections

TEST METHOD 2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using Abstract test A.2: /conf/mf-
collection/collections-get-success

OPEN GEOSPATIAL CONSORTIUM 22-003R3 93

http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/json
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.2

IDENTIFIER /conf/mf-collection/collections-get-success
REQUIREMENT Requirement 3: /req/mf-collection/collections-get-success

TEST PURPOSE Validate that the MovingFeature Collections complies with the required structure and contents.

1. Validate that all response documents comply with OGC APl — Common /conf/collections/
rc-md-success

2. Validate the Collections resource for all supported media types using the resources and

TEST METHOD tests identified in Table A.1

3. Verify that the response document contains an itemType property and its value is
‘movingfeature’

The Collections content may be retrieved in a number of different formats. The following table

identifies the applicable schema document for each format and the test to be used to validate
against that schema. All supported formats should be exercised.

Table A.1 — Schema and Tests for MovingFeature Collections content

FORMAT SCHEMA DOCUMENT TEST ID
HTML collections.yaml /conf/html/content
JSON collections.yaml /conf/json/content

A.2.1.2. HTTP POST Operation

ABSTRACT TEST A.3

IDENTIFIER /conf/mf-collection/collections-post

Requirement 2: /req/mf-collection/collections-post
REQUIREMENTS . . .
Requirement 4: /req/mf-collection/collections-post-success

TEST PURPOSE Validate that the MovingFeature Collections can be created at the expected location.

1. Validate that the server complies with OGC API — Features POST operation requirements

2. Validate the body of a POST request, for all supported media types, using the resources

TEST METHOD and tests identified in Table A.2

3. Validate that the request body complies with OGC API — Features POST request body
requirements

OPEN GEOSPATIAL CONSORTIUM 22-003R3 94

http://docs.ogc.org/DRAFTS/20-024.html#_collections_rootcollections_tests
http://docs.ogc.org/DRAFTS/20-024.html#_collections_rootcollections_tests
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body

ABSTRACT TEST A.3

4. Issue an HTTP POST request to the URL {root}/collections

5. Validate the contents of the response using Abstract test A.4: /conf/mf-collection/
collections-post-success

Table A.2 — Schema and Tests for Request Body of {root}/collections POST

FORMAT SCHEMA DOCUMENT TEST ID
HTML collection_requestbody.yaml /conf/html/content
JSON collection_requestbody.yaml /conf/json/content

ABSTRACT TEST A4

IDENTIFIER /conf/mf-collection/collections-post-success

REQUIREMENT Requirement 4: /req/mf-collection/collections-post-success

Validate that the response of the {root}/collections POST request complies with the required
TEST PURPOSE
structure and contents.

1. Validate that a document was returned with a status code 201 or 202

TEST METHOD 2. Validate that all response documents comply with OGC API — Features — Part 4 POST

response requirements

A.2.2. MovingFeature Collection

A.2.2.1. HTTP GET Operation

ABSTRACT TEST A.5

IDENTIFIER /conf/mf-collection/collection-get

Requirement 6: /req/mf-collection/collection-get
REQUIREMENTS . . .
Requirement 9: /req/mf-collection/collection-get-success

TEST PURPOSE Validate that the MovingFeature Collection can be retrieved from the expected location.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 95

https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

ABSTRACT TEST A.5

For every Collection described in the Collections content, issue an HTTP GET request to the URL
{root}/collections/{collectionId} where {collectionId} is the id property for the

collection

lEsrblaule 1. Validate that a Collection was returned with a status code 200

2. Validate the contents of the returned document using Abstract test A.6: /conf/mf-
collection/collection-get-success

ABSTRACT TEST A.6

IDENTIFIER /conf/mf-collection/collection-get-success

Requirement 5: /req/mf-collection/mandatory-collection
REQUIREMENTS . . .
Requirement 9: /req/mf-collection/collection-get-success

TEST PURPOSE Validate that the MovingFeature Collection complies with the required structure and contents.

1. Validate that all response documents comply with OGC APl — Common /conf/collections/
src-md-success
TEST METHOD
2. Validate the Collection resource for all supported media types using the resources and
tests identified in Table A.3 and Table 6

Table A.3 — Schema and Tests for MovingFeature Collection content

FORMAT SCHEMA DOCUMENT TEST ID
HTML collection.yaml /conf/html/content
JSON collection.yaml /conf/json/content

A.2.2.2. HTTP PUT Operation

ABSTRACT TEST A.7

IDENTIFIER /conf/mf-collection/collection-put

Requirement 7: /req/mf-collection/collection-put
REQUIREMENTS . . .
Requirement 10: /req/mf-collection/collection-put-success

TEST PURPOSE Validate that the MovingFeature Collection can be replaced at the expected location.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 96

http://docs.ogc.org/DRAFTS/20-024.html#_collection_rootcollectionscollectionid_tests
http://docs.ogc.org/DRAFTS/20-024.html#_collection_rootcollectionscollectionid_tests
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content

ABSTRACT TEST A.7

1. Validate that the server complies with OGC API — Features — Part 4 PUT operation
requirements

2. Validate the body of a PUT request, for all supported media types, using the resources and
tests identified in Table A.2

TEST METHOD 3. Validate that the request body complies with OGC API — Features — Part 4 PUT request
body requirements

4. Issue an HTTP PUT request to the URL {root}/collections/{collectionId}

5. Validate the contents of the response using Abstract test A.8: /conf/mf-collection/
collections-put-success

ABSTRACT TEST A.8

IDENTIFIER /conf/mf-collection/collections-put-success

REQUIREMENT Requirement 10: /req/mf-collection/collection-put-success

Validate that the response of the {root}/collections/{collectionId} PUT request complies
with the required structure and contents.

TEST PURPOSE

1. Validate that a document was returned with a status code 200, 202, or 204

TEST METHOD 2. Validate that all response documents comply with OGC API — Features PUT response

requirements

A.2.2.3. HTTP DELETE Operation

ABSTRACT TEST A.9

IDENTIFIER /conf/mf-collection/collection-delete

Requirement 8: /req/mf-collection/collection-delete

REQUIREMENTS . . .
Requirement 11: /req/mf-collection/collection-delete-success
TEST PURPOSE Validate that the MovingFeature Collection can be deleted at the expected location.

1. Validate that the server complies with OGC API — Features — Part 4 DELETE operation
requirements

TEST METHOD 2. lssue an HTTP DELETE request to the URL {root}/collections/{collectionId}

3. Validate the contents of the response using Abstract test A.10: /conf/mf-collection/
collections-delete-success

OPEN GEOSPATIAL CONSORTIUM 22-003R3 97

http://docs.ogc.org/DRAFTS/20-002.html#_operation_2
http://docs.ogc.org/DRAFTS/20-002.html#_operation_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2
http://docs.ogc.org/DRAFTS/20-002.html#_response_2
http://docs.ogc.org/DRAFTS/20-002.html#_response_2
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

ABSTRACT TEST A.10

IDENTIFIER /conf/mf-collection/collections-delete-success

REQUIREMENT Requirement 11: /req/mf-collection/collection-delete-success

Validate that the response of the {root}/collections/{collectionId} DELETE request

TEST PURPOSE . . .
complies with the required structure and contents.

1. Validate that a document was returned with a status code 200, 202, or 204

TEST METHOD 2. Validate that all response documents comply with OGC API — Features — Part 4 DELETE

response requirements

A.3. Conformance Class MovingFeatures

CONFORMANCE CLASS A.2

IDENTIFIER http ://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/
movingfeatures

Requirements class 2: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.
REQUIREMENTS 0/req/movingfeatures
CLASS Requirements class 3: http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.
0/req/common

TARGET TYPE Web API

http:/www.opengis.net/spec/ogcapi-common-1/1.0/conf/html

http:/www.opengis.net/spec/ogcapi-common-1/1.0/conf/json

http:/www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections
DEPENDENCY http:/www.opengis.net/spec/ogcapi-common-2/1.0/conf/simple-query

http:/www.opengis.net/spec/ogcapi-features-1/1.0/conf/core

http:/www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson

http:/www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

Abstract test A.11: /conf/movingfeatures/features-get

Abstract test A.12: /conf/movingfeatures/features-get-success
Abstract test A.13: /conf/movingfeatures/features-post

Abstract test A.14: /conf/movingfeatures/features-post-success
Abstract test A.15: /conf/movingfeatures/mf-get

Abstract test A.16: /conf/movingfeatures/mf-get-success
Abstract test A.17: /conf/movingfeatures/mf-delete

Abstract test A.18: /conf/movingfeatures/mf-delete-success
Abstract test A.19: /conf/movingfeatures/tgsequence-get

CONFORMANCE
TESTS

Abstract test A.20: /conf/movingfeatures/tgsequence-get-success
Abstract test A.21: /conf/movingfeatures/tgsequence-post

OPEN GEOSPATIAL CONSORTIUM 22-003R3 98

http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/json
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/simple-query
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

CONFORMANCE CLASS A.2

Abstract test A.22: /conf/movingfeatures/tgsequence-post-success
Abstract test A.23: /conf/movingfeatures/tpgeometry-delete

Abstract test A.24: /conf/movingfeatures/tpgeometry-delete-success
Abstract test A.25: /conf/movingfeatures/tpgeometry-query-distance
Abstract test A.26: /conf/movingfeatures/tpgeometry-query-velocity
Abstract test A.27: /conf/movingfeatures/tpgeometry-query-acceleration
Abstract test A.28: /conf/movingfeatures/tproperties-get

Abstract test A.29: /conf/movingfeatures/tproperties-get-success
Abstract test A.30: /conf/movingfeatures/tproperties-post

Abstract test A.31: /conf/movingfeatures/tproperties-post-success
Abstract test A.32: /conf/movingfeatures/tproperty-get

Abstract test A.33: /conf/movingfeatures/tproperty-get-success

Abstract test A.34: /conf/movingfeatures/tproperty-post

Abstract test A.35: /conf/movingfeatures/tproperty-post-success

Abstract test A.36: /conf/movingfeatures/tproperty-delete

Abstract test A.37: /conf/movingfeatures/tproperty-delete-success
Abstract test A.38: /conf/movingfeatures/tpvalue-delete

Abstract test A.39: /conf/movingfeatures/tpvalue-delete-success

Abstract test A.40: /conf/movingfeatures/param-leaf-definition

Abstract test A.41: /conf/movingfeatures/param-leaf-response

Abstract test A.42: /conf/movingfeatures/param-subtrajectory-definition
Abstract test A.43: /conf/movingfeatures/param-subtrajectory-response
Abstract test A.44: /conf/movingfeatures/param-subtemporalvalue-definition
Abstract test A.45: /conf/movingfeatures/param-subtemporalvalue-response

A.3.1. MovingFeatures

A.3.1.1. HTTP GET Operation

ABSTRACT TEST A.11

IDENTIFIER /conf/movingfeatures/features-get

Requirement 14: /req/movingfeatures/features-get

Requirement 16: /req/movingfeatures/features-get-success
REQUIREMENTS Requirement 50: /req/common/param-limit

Requirement 51: /req/common/param-bbox

Requirement 52: /req/common/param-datetime

Validate that MovingFeatures can be identified and extracted from a MovingFeature Collection
TEST PURPOSE .

using query parameters.

For every MovingFeature Collection identified in MovingFeature Collections, issue an HTTP GET

TEST METHOD
request to the URL {root}/collections/{collectionId}/items where {collectionId}

OPEN GEOSPATIAL CONSORTIUM 22-003R3 99

ABSTRACT TEST A.11

is the id property for a MovingFeature Collection described in the MovingFeature Collections
content
1. Validate that a document was returned with a status code 200

2. Validate the contents of the returned document using Abstract test A.12: /conf/
movingfeatures/features-get-success

Repeat these tests using the following parameter tests that are defined in the OGC API —
Common and OGC API — Moving Features Standards:

- Limit: Limit Tests

- Bounding Box: Bounding Box Tests

- Date-Time: Date-Time Tests

- SubTrajectory: SubTrajectory Definition Test and SubTrajectory Response Test

Execute requests with combinations of the "bbox", "datetime", and "subTrajectory" query
parameters and verify that only features are returned that match both selection criteria.

ABSTRACT TEST A.12

IDENTIFIER /conf/movingfeatures/features-get-success
REQUIREMENT Requirement 16: /req/movingfeatures/features-get-success

TEST PURPOSE Validate that the MovingFeatures comply with the required structure and contents.

1. Validate that all response documents comply with OGC API — Features /conf/core/fc-
response
TEST METHOD
2. Validate the Collections resource for all supported media types using the resources and tests
identified in Table A.4

The MovingFeatures content may be retrieved in a number of different formats. The following

table identifies the applicable schema document for each format and the test to be used to
validate against that schema. All supported formats should be exercised.

Table A.4 — Schema and Tests for MovingFeatures content

FORMAT SCHEMA DOCUMENT TEST ID
HTML movingFeatureCollection.yaml /conf/html/content
GeoJSON movingFeatureCollection.yaml /conf/geojson/content

OPEN GEOSPATIAL CONSORTIUM 22-003R3 100

http://docs.ogc.org/DRAFTS/20-024.html#_limit_tests
http://docs.ogc.org/DRAFTS/20-024.html#_bounding_box_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-response
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-response
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#_geojson_content

A.3.1.2. HTTP POST Operation

ABSTRACT TEST A.13

IDENTIFIER /conf/movingfeatures/features-post

Requirement 15: /req/movingfeatures/features-post
REQUIREMENTS Requirement 17: /req/movingfeatures/features-post-success
Requirement 18: /req/movingfeatures/mf-mandatory

TEST PURPOSE Validate that the MovingFeature can be created at the expected location.

1. Validate that the server complies with OGC API — Features POST operation requirements

2. Validate the body of a POST request, for all supported media types, using the resources
and tests identified in Table A.5 and Table 8

3. Validate that the request body complies with OGC API — Features POST request body
TEST METHOD requirements

4. Issue an HTTP POST request to the URL {root}/collections/{collectionId}/
items

5. Validate the contents of the response using Abstract test A.14: /conf/movingfeatures/
features-post-success

Table A.5 — Schema and Tests for Request Body of {root}/collections/{collectionId}/items

POST
FORMAT SCHEMA DOCUMENT TEST ID
JSON ME-JSON_Prism.schema.json /conf/json/content

ABSTRACT TEST A.14

IDENTIFIER /conf/movingfeatures/features-post-success

REQUIREMENT Requirement 17: /req/movingfeatures/features-post-success

Validate that the response of the {root}/collections/{collectionId}/items POST request
complies with the required structure and contents.

TEST PURPOSE

1. Validate that a document was returned with a status code 201 or 202

TEST METHOD 2. Validate that all response documents comply with OGC API — Features POST response

requirements

OPEN GEOSPATIAL CONSORTIUM 22-003R3 101

http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.json
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

A.3.2. MovingFeature

A.3.2.1. HTTP GET Operation

ABSTRACT TEST A.15

IDENTIFIER /conf/movingfeatures/mf-get

Requirement 19: /req/movingfeatures/mf-get
REQUIREMENTS . .
Requirement 21: /req/movingfeatures/mf-get-success

TEST PURPOSE Validate that the MovingFeature can be retrieved from the expected location.

For every MovingFeature identified in MovingFeature Collection, issue an HTTP GET request
to the URL {root}/collections/{collectionId}/items/{mFeaturesId} where
{collectionId} is the id property for a MovingFeature Collection described in the Moving

TEST METHOD Feature Collections content and {mFeatureId} is the id property for the MovingFeature
1. Validate that a document was returned with a status code 200

2. Validate the contents of the returned document using Abstract test A.16: /conf/
movingfeatures/mf-get-success

ABSTRACT TEST A.16

IDENTIFIER /conf/movingfeatures/mf-get-success
REQUIREMENT Requirement 21: /req/movingfeatures/mf-get-success

TEST PURPOSE Validate that the MovingFeature complies with the required structure and contents.

1. Validate that all response documents comply with OGC API — Features /conf/core/f-
success
TEST METHOD
2. Validate the Collections resource for all supported media types using the resources and tests
identified in Table A.6

The MovingFeature content may be retrieved in a number of different formats. The following

table identifies the applicable schema document for each format and the test to be used to
validate against that schema. All supported formats should be exercised.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 102

https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_f-success
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_f-success

Table A.6 — Schema and Tests for MovingFeature content

FORMAT SCHEMA DOCUMENT TEST ID
HTML movingFeature.yaml /conf/html/content
GeoJSON movingFeature.yaml /conf/geojson/content

A.3.2.2. HTTP DELETE Operation

ABSTRACT TEST A.17

IDENTIFIER /conf/movingfeatures/mf-delete

Requirement 20: /req/movingfeatures/mf-delete
REQUIREMENTS . .
Requirement 22: /req/movingfeatures/mf-delete-success

TEST PURPOSE Validate that the MovingFeature can be deleted at the expected location.

1. Validate that the server complies with OGC API — Features DELETE operation
requirements

2. lIssue an HTTP DELETE request to the URL {root}/collections/{collectionId}/

TEST METHOD items/{mFeatureId}

3. Validate the contents of the response using Abstract test A.18: /conf/movingfeatures/
mf-delete-success

ABSTRACT TEST A.18

IDENTIFIER /conf/movingfeatures/mf-delete-success

REQUIREMENT Requirement 22: /req/movingfeatures/mf-delete-success

Validate that the response of the {root}/collections/{collectionId}/items/

TEST PURPOSE . . .
{mFeatureId} DELETE request complies with the required structure and contents.

1. Validate that a document was returned with a status code 200, 202, or 204

TEST METHOD 2. Validate that all response documents comply with OGC API — Features DELETE response

requirements

OPEN GEOSPATIAL CONSORTIUM 22-003R3 103

https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#_geojson_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

A.3.3. TemporalGeometrySequence

A.3.3.1. HTTP GET Operation

ABSTRACT TEST A.19

IDENTIFIER /conf/movingfeatures/tgsequence-get

Requirement 25: /req/movingfeatures/tgsequence-get

Requirement 27: /req/movingfeatures/tgsequence-get-success
REQUIREMENTS Requirement 50: /req/common/param-limit

Requirement 51: /req/common/param-bbox

Requirement 52: /req/common/param-datetime

Validate that the TemporalGeometrySequence can be identified and extracted from a Moving
TEST PURPOSE . .
Feature object using query parameters.

For every TemporalGeometrySequence identified in MovingFeature, issue an HTTP GET request
to the URL {root}/collections/{collectionId}/items/{mFeatureId}/tgsequence
where {collectionId} is the id property for a MovingFeature Collection described in the

MovingFeature Collection content and {mFeatureId} is the id property for the MovingFeature
1. Validate that a document was returned with a status code 200

2. Validate the contents of the returned document using Abstract test A.20: /conf/
movingfeatures/tgsequence-get-success

TEST METHOD Repeat these tests using the following parameter tests that are defined in the OGC API —
Common and OGC API — Moving Features Standards:
- Limit: Limit Tests
- Bounding Box: Bounding Box Tests
- Date-Time: Date-Time Tests

- Leaf: Leaf Definition Test and Leaf Response Test

- SubTrajectory: SubTrajectory Definition Test and SubTrajectory Response Test

Execute requests with combinations of the "bbox", "datetime", and "leaf" (or
"subTrajectory") query parameters and verify that only features are returned that match both
selection criteria.

ABSTRACT TEST A.20

IDENTIFIER /conf/movingfeatures/tgsequence-get-success

REQUIREMENT Requirement 27: /req/movingfeatures/tgsequence-get-success

OPEN GEOSPATIAL CONSORTIUM 22-003R3 104

http://docs.ogc.org/DRAFTS/20-024.html#_limit_tests
http://docs.ogc.org/DRAFTS/20-024.html#_bounding_box_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests

ABSTRACT TEST A.20

TEST PURPOSE Validate that the TemporalGeometrySequence complies with the required structure and contents.

1. Validate that the type property is present and has a value of MovingGeometryCollection

2. Validate the prism property is present and that it is populated with an array of Temporal
PrimitiveGeometry items

3. Validate that only TemporalPrimitiveGeometry which match the selection criteria are
included in the MovingFeature

4. If the links property is present, validate that all entries comply with OGC API — Features /
conf/core/fc-links
JEarbileiilen 5. If the timeStamp property is present, validate that it complies with OGC API — Features /
conf/core/fc-timeStamp

6. If the numberMatched property is present, validate that it complies with OGC APl —
Features /conf/core/fc-numberMatched

7. If the numberReturned property is present, validate that it complies with OGC API —
Features /conf/core/fc-numberReturned

8. Validate the TemporalGeometry resource for all supported media types using the resources
and tests identified in Table A.7

The TemporalPrimitiveGeometry content may be retrieved in a number of different formats. The

following table identifies the applicable schema document for each format and the test to be
used to validate against that schema. All supported formats should be exercised.

Table A.7 — Schema and Tests for TemporalGeometrySequence content

FORMAT SCHEMA DOCUMENT TEST ID
HTML temporalGeometrySequence.yaml /conf/html/content
JSON temporalGeometrySequence.yaml /conf/json/content

A.3.3.2. HTTP POST Operation

ABSTRACT TEST A.21

IDENTIFIER /conf/movingfeatures/tgsequence-post

Requirement 26: /req/movingfeatures/tgsequence-post
REQUIREMENTS Requirement 28: /req/movingfeatures/tgsequence-post-success
Requirement 29: /req/movingfeatures/tpgeometry-mandatory

OPEN GEOSPATIAL CONSORTIUM 22-003R3 105

https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberMatched
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberReturned
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content

ABSTRACT TEST A.21

TEST PURPOSE Validate that the TemporalPrimitiveGeometry can be created at the expected location.

1. Validate that the server complies with OGC API — Features POST operation requirements

2. Validate the body of a POST request, for all supported media types, using the resources
and tests identified in Table A.8 and Table 9

3. Validate that the request body complies with OGC API — Features POST request body
TEST METHOD requirements

4. Issue an HTTP POST request to the URL {root}/collections/{collectionId}/
items/{mFeaturelId}/tgsequence

5. Validate the contents of the response using Abstract test A.22: /conf/movingfeatures/
tgsequence-post-success

Table A.8 — Schema and Tests for Request Body of {root}/collections/{collectionId}/items/
{mFeatureId}/tgsequence POST

FORMAT SCHEMA DOCUMENT TEST ID

JSON ME-JSON_Prism.schema.json /conf/json/content

ABSTRACT TEST A.22

IDENTIFIER /conf/movingfeatures/tgsequence-post-success

REQUIREMENT Requirement 28: /req/movingfeatures/tgsequence-post-success

Validate that the response of the {root}/collections/{collectionId}/items/

TEST PURPOSE . . .
{mFeatureId}/tgsequence POST request complies with the required structure and contents.

1. Validate that a document was returned with a status code 201 or 202

TEST METHOD 2. Validate that all response documents comply with OGC API — Features POST response

requirements

A.3.4. TemporalPrimitiveGeometry

A.3.4.1. HTTP DELETE Operation

OPEN GEOSPATIAL CONSORTIUM 22-003R3 106

http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.json
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

ABSTRACT TEST A.23

IDENTIFIER /conf/movingfeatures/tpgeometry-delete

Requirement 30: /req/movingfeatures/tpgeometry-delete
REQUIREMENTS . .
Requirement 31: /req/movingfeatures/tpgeometry-delete-success

TEST PURPOSE Validate that the TemporalPrimitiveGeometry can be deleted at the expected location.

1. Validate that the server complies with OGC API — Features DELETE operation
requirements

2. lIssue an HTTP DELETE request to the URL {root}/collections/{collectionId}/

VST Rl o1 items/{mFeatureld}/tgsequence/{tgeometryId}

3. Validate the contents of the response using Abstract test A.24: /conf/movingfeatures/
tpgeometry-delete-success

ABSTRACT TEST A.24

IDENTIFIER /conf/movingfeatures/tpgeometry-delete-success

REQUIREMENT Requirement 31: /req/movingfeatures/tpgeometry-delete-success

Validate that the response of the {root}/collections/{collectionId}/items/
TEST PURPOSE {mFeatureId}/tgsequence/{tGeometryId} DELETE request complies with the required
structure and contents.
1. Validate that a document was returned with a status code 200, 202, or 204
TEST METHOD

2. Validate that all response documents comply with OGC API — Features DELETE response
requirements

A.3.5. TemporalGeometry Query

A.3.5.1. HTTP GET Operation

ABSTRACT TEST A.25

IDENTIFIER /conf/movingfeatures/tpgeometry-query-distance

Permission 1: /per/movingfeatures/tpgeometry-query

Requirement 32: /req/movingfeatures/tpgeometry-quer
REQUIREMENTS q' /req/ : g /tpg y-query

Requirement 33: /req/movingfeatures/tpgeometry-query-success

Requirement 52: /req/common/param-datetime

OPEN GEOSPATIAL CONSORTIUM 22-003R3 107

http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

ABSTRACT TEST A.25

Validate that resources can be identified and extracted from a TemporalPrimitiveGeometry with
TEST PURPOSE . .
a Distance query using query parameters.

IF any of the query parameters are not empty, validate that the query parameters with the
following parameter tests are defined in the OGC APl — Common and OGC API — Moving
Features:

- Date-Time: Date-Time Tests

- Leaf: Leaf Definition Test and Leaf Response Test

- SubTemporalValue: SubTemporalValue Definition Test and SubTemporalValue Response Test

1. Issue an HTTP GET request to the URL {root}/collections/{collectionId}/
items/ {mFeatureId}/tgsequence/{tGeometryId}/distance

TEST METHOD
2. Validate that a document was returned with a status code 200

3. Verify the typeis "TReal"

IF any of the query parameters are not empty: Execute requests with used query parameter and
verify the correctly calculated value is returned.

IF all query parameters are empty: Verify that a time-to-distance curve is correctly returned
according to the specified TemporalPrimitiveGeometry resource by {tGeometryld}.

ABSTRACT TEST A.26

IDENTIFIER /conf/movingfeatures/tpgeometry-query-velocity

Permission 1: /per/movingfeatures/tpgeometry-query

Requirement 32: /req/movingfeatures/tpgeometry-quer
REQUIREMENTS DAL i yrauery

Requirement 33: /req/movingfeatures/tpgeometry-query-success

Requirement 52: /req/common/param-datetime

Validate that resources can be identified and extracted from a TemporalPrimitiveGeometry with

TEST PURPOSE . .
a Velocity query using query parameters.
IF any of the query parameters are not empty, validate that the query parameters with the
following parameter tests are defined in the OGC APl — Common and OGC API — Moving
Features:
- Date-Time: Date-Time Tests
- Leaf: Leaf Definition Test and Leaf Response Test
- SubTemporalValue: SubTemporalValue Definition Test and SubTemporalValue Response Test
1. Issue an HTTP GET request to the URL {root}/collections/{collectionId}/
TEST METHOD items/ {mFeatureId}/tgsequence/{tGeometryId}/distance

2. Validate that a document was returned with a status code 200

3. Verify the typeis "TReal"

IF any of the query parameters are not empty: Execute requests with used query parameter and
verify the correctly calculated value is returned.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 108

http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests

ABSTRACT TEST A.26

IF all query parameters are empty: Verify that a time-to-velocity curve is correctly returned
according to the specified TemporalPrimitiveGeometry resource by {tGeometryld}.

ABSTRACT TEST A.27

IDENTIFIER /conf/movingfeatures/tpgeometry-query-acceleration

Permission 1: /per/movingfeatures/tpgeometry-query

Requirement 32: /req/movingfeatures/tpgeometry-quer
REQUIREMENTS " A i ymanery

Requirement 33: /req/movingfeatures/tpgeometry-query-success

Requirement 52: /req/common/param-datetime

Validate that resources can be identified and extracted from a TemporalPrimitiveGeometry with

TEST PURPOSE . .
an Acceleration query using query parameters.
IF any of the query parameters are not empty, validate that the query parameters with the
following parameter tests are defined in the OGC APl — Common and OGC API — Moving
Features:
- Date-Time: Date-Time Tests
- Leaf: Leaf Definition Test and Leaf Response Test
- SubTemporalValue: SubTemporalValue Definition Test and SubTemporalValue Response Test
1. lIssue an HTTP GET request to the URL {root}/collections/{collectionId}/
items/ {mFeatureId}/tgsequence/{tGeometryId}/distance
TEST METHOD

2. Validate that a document was returned with a status code 200

3. Verify the typeis "TReal"

IF any of the query parameters are not empty: Execute requests with used query parameter and
verify the correctly calculated value is returned.

IF all query parameters are empty: Verify that a time-to-acceleration curve is correctly returned
according to the specified TemporalPrimitiveGeometry resource by {tGeometryld}.

A.3.6. TemporalProperties

A.3.6.1. HTTP GET Operation

ABSTRACT TEST A.28

IDENTIFIER /conf/movingfeatures/tproperties-get

Requirement 36: /req/movingfeatures/tproperties-get
REQUIREMENTS . . .
Requirement 38: /req/movingfeatures/tproperties-get-success

OPEN GEOSPATIAL CONSORTIUM 22-003R3 109

http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests

ABSTRACT TEST A.28

Requirement 50: /req/common/param-1limit
Requirement 52: /req/common/param-datetime

Validate that the TemporalProperties can be identified and extracted from a MovingFeature
TEST PURPOSE . .
object using query parameters.

For every TemporalProperty identified in MovingFeature, issue an HTTP GET request to the
URL {root}/collections/{collectionId}/items/{mFeatureId}/tproperties where
{collectionId} is the id property for a MovingFeature Collection described in the Moving
Feature Collection content and {mFeaturelId} is the id property for the MovingFeature

1. Validate that a document was returned with a status code 200

2. Validate the contents of the returned document using Abstract test A.29: /conf/
movingfeatures/tproperties-get-success
TEST METHOD
Repeat these tests using the following parameter tests that are defined in the OGC API —
Common and OGC API — Moving Features Standards:
- Limit: Limit Tests
- Date-Time: Date-Time Tests
- SubTemporalValue: SubTemporalValue Definition Test and SubTemporalValue Response Test
Execute requests with combinations of the "datetime" and "subTemporalValue" query
parameters and verify that only features are returned that match both selection criteria.

ABSTRACT TEST A.29

IDENTIFIER /conf/movingfeatures/tproperties-get-success
REQUIREMENT Requirement 38: /req/movingfeatures/tproperties-get-success

TEST PURPOSE Validate that the TemporalProperties property complies with the required structure and contents.

1. Validate that the TemporalProperties property is present and that it is populated with an
array of TemporalProperty items

2. Validate that the name and type property is present

3. Validate that the type property is present and its value is one of the predefined values (i.e.,
one of ‘TBoolean’, ‘TText’, ‘Tinteger’, ‘TReal’, and ‘TImage’)
4. If the links property is present, validate that all entries comply with OGC API — Features /
TEST METHOD conf/core/fc-links
5. If the timeStamp property is present, validate that it complies with OGC API — Features /
conf/core/fc-timeStamp

6. If the numberMatched property is present, validate that it complies with OGC APl —
Features /conf/core/fc-numberMatched

7. If the numberReturned property is present, validate that it complies with OGC API —
Features /conf/core/fc-numberReturned

OPEN GEOSPATIAL CONSORTIUM 22-003R3 110

http://docs.ogc.org/DRAFTS/20-024.html#_limit_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberMatched
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberReturned

ABSTRACT TEST A.29

8. Validate the TemporalProperties resource for all supported media types using the resources
and tests identified in Table A.9

The TemporalProperties content may be retrieved in a number of different formats. The

following table identifies the applicable schema document for each format and the test to be
used to validate against that schema. All supported formats should be exercised.

Table A.9 — Schema and Tests for TemporalProperties content

FORMAT SCHEMA DOCUMENT TEST ID
HTML temporalPropertyCollection.yaml /conf/html/content
JSON temporalPropertyCollection.yaml /conf/json/content

A.3.6.2. HTTP POST Operation

ABSTRACT TEST A.30

IDENTIFIER /conf/movingfeatures/tproperties-post

Requirement 37: /req/movingfeatures/tproperties-post
REQUIREMENTS Requirement 39: /req/movingfeatures/tproperties-post-success
Requirement 40: /req/movingfeatures/tproperty-mandatory

TEST PURPOSE Validate that the TemporalProperty can be created at the expected location.

1. Validate that the server complies with OGC API — Features POST operation requirements

2. Validate the body of a POST request using for all supported media types using the
resources and tests identified in Table A.10 and Table 11

3. Validate that the request body complies with OGC API — Features POST request body
TEST METHOD requirements

4. Issue an HTTP POST request to the URL {root}/collections/{collectionId}/
items/{mFeatureId}/tproperties

5. Validate the contents of the response using Abstract test A.31: /conf/movingfeatures/
tproperties-post-success

OPEN GEOSPATIAL CONSORTIUM 22-003R3 111

https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body

Table A.10 — Schema and Tests for Request Body of {root}/collections/{collectionId}/items/
{mFeatureId}/tproperties POST

FORMAT SCHEMA DOCUMENT TESTID

HTML tproperty_requestbody.yaml /conf/html/content
JSON tproperty_requestbody.yaml /conf/json/content
JSON ME-JSON_Prism.schema.json /conf/json/content

ABSTRACT TEST A.31

IDENTIFIER /conf/movingfeatures/tproperties-post-success

REQUIREMENT Requirement 39: /req/movingfeatures/tproperties-post-success

Validate that the response of the {root}/collections/{collectionId}/items/

TEST PURPOSE
{mFeatureId}/tproperties POST request complies with the required structure and contents.

1. Validate that a document was returned with a status code 201 or 202

TEST METHOD 2. Validate that all response documents comply with OGC API — Features POST response

requirements

A.3.7. TemporalProperty

A.3.7.1. HTTP GET Operation

ABSTRACT TEST A.32

IDENTIFIER /conf/movingfeatures/tproperty-get

Requirement 41: /req/movingfeatures/tproperty-get
Requirement 44: /req/movingfeatures/tproperty-get-success

REQUIREMENTS . . /req/ ° / p pertyme
Requirement 50: /req/common/param-1limit

Requirement 52: /req/common/param-datetime

Validate that the TemporalProperty can be identified and extracted from a TemporalProperties
TEST PURPOSE .
using query parameters.

For every TemporalProperty identified in MovingFeature, issue an HTTP GET request to the
TEST METHOD URL {root}/collections/{collectionId}/items/{mFeaturelId}/tproperties/
{tpropertyName} where {collectionId} is the id property for a MovingFeature Collection

OPEN GEOSPATIAL CONSORTIUM 22-003R3 112

https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.json
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

ABSTRACT TEST A.32

described in the MovingFeature Collections content, {mFeaturelId} is the id property for the

MovingFeature, {tpropertyName} is the name property for the TemporalProperty
1. Validate that a document was returned with a status code 200

2. Validate the contents of the returned document using Abstract test A.33: /conf/
movingfeatures/tproperty-get-success

Repeat these tests using the following parameter tests that are defined in the OGC API —
Common and OGC APl — Moving Features Standards:

- Date-Time: Date-Time Tests

- Leaf: Leaf Definition Test and Leaf Response Test

- SubTemporalValue: SubTemporalValue Definition Test and SubTemporalValue Response Test
Execute requests with combinations of the "datetime" and "leaf" (or "subTemporalvalue")
query parameters and verify that only features are returned that match both selection criteria.

ABSTRACT TEST A.33

IDENTIFIER /conf/movingfeatures/tproperty-get-success

REQUIREMENT Requirement 44: /req/movingfeatures/tproperty-get-success

TEST PURPOSE Validate that the TemporalProperty complies with the required structure and contents.

1. Validate that the TemporalProperties property is present and that it is populated with an
array of TemporalPrimitiveValue items

2. If the links property is present, validate that all entries comply with OGC API — Features /
conf/core/fc-links

3. If the timeStamp property is present, validate that it complies with OGC API — Features /
conf/core/fc-timeStamp

TEST METHOD
4. If the numberMatched property is present, validate that it complies with OGC API —
Features /conf/core/fc-numberMatched

5. If the numberReturned property is present, validate that it complies with OGC API —
Features /conf/core/fc-numberReturned

6. Validate the TemporalProperty resource for all supported media types using the resources
and tests identified in Table A.11

The TemporalProperty content may be retrieved in a number of different formats. The following

table identifies the applicable schema document for each format and the test to be used to
validate against that schema. All supported formats should be exercised.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 113

http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberMatched
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberReturned

Table A.11 — Schema and Tests for TemporalProperty content

FORMAT SCHEMA DOCUMENT TEST ID
HTML temporalProperty.yaml /conf/html/content
JSON temporalProperty.yaml /conf/json/content

A.3.7.2. HTTP POST Operation

ABSTRACT TEST A.34

IDENTIFIER /conf/movingfeatures/tproperty-post

Requirement 40: /req/movingfeatures/tproperty-mandatory

Requirement 42: /req/movingfeatures/tproperty-post

REQUIREMENTS " /req/moving /tproperty-p
Requirement 45: /req/movingfeatures/tproperty-post-success

Requirement 47: /req/movingfeatures/tpvalue-mandatory

TEST PURPOSE Validate that the TemporalPrimitiveValue can be created at the expected location.

1. Validate that the server complies with OGC API — Features POST operation requirements

2. Validate the body of a POST request, for all supported media types, using the resources
and tests identified in Table A.12 and Table 12

3. Validate that the request body complies with OGC API — Features POST request body
TEST METHOD requirements

4. Issue an HTTP POST request to the URL {root}/collections/{collectionId}/
items/{mFeatureId}/tproperties/{tPropertyName}

5. Validate the contents of the response using Abstract test A.35: /conf/movingfeatures/
tproperty-post-success

Table A.12 — Schema and Tests for Request Body of {root}/collections/{collectionId}/items/
{mFeatureId}/tproperties/{tPropertyName} POST

FORMAT SCHEMA DOCUMENT TEST ID
HTML tvalue_requestbody.yaml /conf/html/content
JSON tvalue_requestbody.yaml /conf/json/content

OPEN GEOSPATIAL CONSORTIUM 22-003R3 114

https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content

ABSTRACT TEST A.35

IDENTIFIER /conf/movingfeatures/tproperty-post-success

REQUIREMENT Requirement 45: /req/movingfeatures/tproperty-post-success

Validate that the response of the {root}/collections/{collectionId}/items/
TEST PURPOSE {mFeatureId}/tproperties/{tPropertyName} POST request complies with the required
structure and contents.
1. Validate that a document was returned with a status code 201 or 202

TEST METHOD 2. Validate that all response documents comply with OGC API — Features POST response

requirements

A.3.7.3. HTTP DELETE Operation

ABSTRACT TEST A.36

IDENTIFIER /conf/movingfeatures/tproperty-delete

Requirement 43: /req/movingfeatures/tproperty-delete
REQUIREMENTS . .
Requirement 46: /req/movingfeatures/tproperty-delete-success

TEST PURPOSE Validate that the TemporalProperty can be deleted at the expected location.

1. Validate that the server complies with OGC API — Features DELETE operation
requirements

2. lssue an HTTP DELETE request to the URL {root}/collections/{collectionId}/

UEsl Lzl items/{mFeaturelId}/tproperties/{tpropertyName}

3. Validate the contents of the response using Abstract test A.37: /conf/movingfeatures/
tproperty-delete-success

ABSTRACT TEST A.37

IDENTIFIER /conf/movingfeatures/tproperty-delete-success

REQUIREMENT Requirement 46: /req/movingfeatures/tproperty-delete-success

Validate that the response of the {root}/collections/{collectionId}/items/
TEST PURPOSE {mFeatureId}/tproperties/{tpropertyName} DELETE request complies with the required
structure and contents.

1. Validate that a document was returned with a status code 200, 202, or 204
U= Ll o 2. Validate that all response documents comply with OGC API — Features DELETE response
requirements

OPEN GEOSPATIAL CONSORTIUM 22-003R3 115

http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

A.3.8. TemporalPrimitiveValue

A.3.8.1. HTTP DELETE Operation

ABSTRACT TEST A.38

IDENTIFIER /conf/movingfeatures/tpvalue-delete

Requirement 48: /req/movingfeatures/tpvalue-delete
REQUIREMENTS . .
Requirement 49: /req/movingfeatures/tpvalue-delete-success

TEST PURPOSE Validate that the TemporalPrimitiveValue can be deleted at the expected location.

1. Validate that the server complies with OGC API — Features DELETE operation
requirements

2. lIssue an HTTP DELETE request to the URL {root}/collections/{collectionId}/

s blaulo items/{mFeatureId}/tproperties/{tpropertyName}/{tvalueId}

3. Validate the contents of the response using Abstract test A.39: /conf/movingfeatures/
tpvalue-delete-success

ABSTRACT TEST A.39

IDENTIFIER /conf/movingfeatures/tpvalue-delete-success

REQUIREMENT Requirement 49: /req/movingfeatures/tpvalue-delete-success

Validate that the response of the {root}/collections/{collectionId}/items/
TEST PURPOSE {mFeatureId}/tproperties/{tpropertyName}/{tValueId} DELETE request complies with
the required structure and contents.
1. Validate that a document was returned with a status code 200, 202, or 204
TEST METHOD

2. Validate that all response documents comply with OGC API — Features DELETE response
requirements

A.3.9. Parameters

A.3.9.1. Parameter Leaf

OPEN GEOSPATIAL CONSORTIUM 22-003R3 116

http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

ABSTRACT TEST A.40

IDENTIFIER /conf/movingfeatures/param-leaf-definition

REQUIREMENT Requirement 23: /req/movingfeatures/param-leaf-definition

TEST PURPOSE Validate that the leaf query parameter is constructed correctly.

Verify that the leaf query parameter complies with the definition (using an OpenAPI Specification
TEST METHOD
3.0 fragment)

ABSTRACT TEST A.41

IDENTIFIER /conf/movingfeatures/param-leaf-response

Requirement 23: /req/movingfeatures/param-leaf-definition
REQUIREMENTS . .
Requirement 24: /req/movingfeatures/param-leaf-response

TEST PURPOSE Validate that the 1eaf query parameter is processed correctly.

DO FOR each Resource which has a datetimes property:

1. Calculate a temporal geometry coordinate (or temporal property value) with the point
AtTime query at each time included in the leaf parameter, using interpolated trajectory
TEST METHOD according to the interpolation property

2. Verify that the temporal geometry coordinate (or temporal property value) intersects the
interpolated trajectory according to the interpolation property, using datetime value
defined by the leaf parameter

A.3.9.2. Parameter SubTrajectory

ABSTRACT TEST A.42

IDENTIFIER /conf/movingfeatures/param-subtrajectory-definition

REQUIREMENT Requirement 12: /req/movingfeatures/param-subtrajectory-definition

TEST PURPOSE Validate that the subTrajectory query parameter is constructed correctly.

Verify that the subTrajectory query parameter complies with the definition (using an
OpenAPI Specification 3.0 fragment)

TEST METHOD If the subTrajectory parameter is “true”:
1. Verify that the datetime parameter is a bounded interval with a start time and end time.

2. Verify that the leaf parameter is not used if it can be used.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 117

ABSTRACT TEST A.43

IDENTIFIER /conf/movingfeatures/param-subtrajectory-response

Requirement 12: /req/movingfeatures/param-subtrajectory-definition
REQUIREMENTS . . .
Requirement 13: /req/movingfeatures/param-subtrajectory-response

TEST PURPOSE Validate that the subTrajectory query parameter is processed correctly.

If the subTrajectory parameter is “true”, DO FOR each temporal primitive geometry resource:

1. Calculate a temporal geometry coordinate with the subTrajectory query at a time interval
(new start time and new end time) included in the datetime parameter, using interpolated
trajectory according to the interpolation property

TEST METHOD 2. Verify that the calculated temporal geometry coordinate intersects the interpolated
trajectory according to the interpolation property, using the time interval value defined
by the datetime parameter

3. If the bbox parameter is not empty, verify that the calculated temporal geometry
coordinate intersects the bounding box with the bbox parameter

A.3.9.3. Parameter SubTemporalValue

ABSTRACT TEST A.44

IDENTIFIER /conf/movingfeatures/param-subtemporalvalue-definition

REQUIREMENT Requirement 34: /req/movingfeatures/param-subtemporalvalue-definition

TEST PURPOSE Validate that the subTemporalVvalue query parameter is constructed correctly.

Verify that the subTemporalValue query parameter complies with the definition (using an
OpenAPI Specification 3.0 fragment)

TEST METHOD If the subTemporalValue parameter is “true”:
1. Verify that the datetime parameter is a bounded interval with a start time and end time.

2. Verify that the leaf parameter is not used if it can be used.

ABSTRACT TEST A.45

IDENTIFIER /conf/movingfeatures/param-subtemporalvalue-response

Requirement 34: /req/movingfeatures/param-subtemporalvalue-definition
REQUIREMENTS . .
Requirement 35: /req/movingfeatures/param-subtemporalvalue-response

TEST PURPOSE Validate that the subTemporalValue query parameter is processed correctly.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 118

ABSTRACT TEST A.45

If the subTemporalValue parameter is “true”, DO FOR each temporal property resource:
1. Calculate a temporal property value with the subTrajectory query at a time interval (new
start time and new end time) included in the datetime parameter, using interpolated
TEST METHOD trajectory according to the interpolation property

2. Verify that the calculated temporal property value intersects the interpolated trajectory

according to the interpolation property, using the time interval value defined by the
datetime parameter

OPEN GEOSPATIAL CONSORTIUM 22-003R3 119

ANNEX B (INFORMATIVE)
RELATIONSHIP WITH
OTHER OGC/ISO
STANDARDS

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

ANNEX B

(INFORMATIVE)

RELATIONSHIP WITH OTHER OGC/ISO
STANDARDS

This specification is built upon the following OGC/ISO Standards. The geometry concept is
presented first, followed by the feature concept. Note that a feature is not a geometry. However,
a feature often contains a geometry as one of its attributes. However, it is legal to build features
without a geometry attribute, or with more than one geometry attributes.

B.1. Static geometries, features and accesses

The following standards define static objects, without time-varying properties.

B.1.1. Geometry (ISO 19107)

The ISO 19107, Geographic information — Spatial schema standard defines a GM_Object base
type which is the root of all geometric objects. Some examples of GM_0Object subtypes are
GM_Point, GM_Curve, GM_Surface and GM_Solid. A GM_Object instance can be regarded as an
infinite set of points in a particular coordinate reference system. The standard provides a GM_
CurveInterpolation code list to identify how those points are computed from a finite set of
points. Some interpolation methods listed by ISO 19107 are presented in Table B.1.

Table B.1 — A non-exhaustive list of interpolation methods listed by ISO 19107

TERM DEFINITION

linear Positions on a straight line between each consecutive pair of control points.

Positions on a geodesic curve between each consecutive pair of control points.
A geodesic curve is a curve of shortest length.

geodesic
The geodesic shall be determined in the coordinate reference system of the
curve.
For each set of three consecutive control points, a circular arc passing from the
circularArc3Points first point through the middle point to the third point.

Note 1: if the three points are co-linear, the circular arc becomes a straight line.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 121

TERM DEFINITION

For each set of four consecutive control points, an elliptical arc passing from the
first point through the middle points in order to the fourth point.

elliptical
: Note 1: If the four points are co-linear, the arc becomes a straight line.
Note 2: If the four points are on the same circle, the arc becomes a circular one.
. . The control points are interpolated using initial tangents and cubic polynomials,
cubicSpline

a form of degree 3 polynomial spline.

The UML class diagram below shows the GM_0Object base type with its operations (e.g.
distance(..) for computing the distance between two geometries). GM_Curve (not shown in this
UML) is a subtype of GM_Primitive. All operations assume static objects, without time-varying
coordinates or attributes.

<<Interface>> - - - - N
TransfiniteSet<DirectPosition> {dimension() > boundary().dimension}
(from Coordinate geometry) {boundary().notEmpty() implies
boundary().dimension() = dimension() -1}
A T {boundary().isEmpty() = isCycle()}
| :

<<Type>>

GM_Object

+ mbRegion() : GM_Object

+ representativePoint() : DirectPosition
+ boundary() : GM_Boundary

+ closure() : GM_Complex

+ isSimple() : Boolean

+ isCycle() : Boolean

+ distance(geometry : GM_Object) : Distance +object Coordinate Reference System
+ dimension(point : DirectPosition = NULL) : Integer 0..n
+ coordinateDimension() : Integer
+ maximalComplex() : Set<GM_Complex> {Refefrence}
+ transform(newCRS : SC_CRS) : GM_Object 0.1 +CRS
+ envelope() : GM_Envelope
+ centroid() : DirectPosition <<Abstract>>
+ convexHull() : GM_Object SC_CRS
+ buffer(radius : Distance) : GM_Object (from Spatial Referencing by Coordinates)
<<Types>> <<Type>> <<Type>>
GM Primitive GM_Complex GM_Aggregate
(from Geometric primitive) (from Geometric complex) (from Geometric aggregates)

Figure B.1 — GM_Object from ISO 19107:2003 figure 6

OPEN GEOSPATIAL CONSORTIUM 22-003R3 122

Geometry, topology and temporal-objects (GM_Object, TP_Object, TM_Object) are not
abstractions of real-world phenomena. These types can provide types for feature properties as
described in the next section but cannot be specialized to features.

B.1.2. Features (ISO 19109)

The ISO 19109, Geographic information — Rules for application schema standard defines types
for the definition of features. A feature is an abstraction of a real-world phenomena. The terms
“feature type” and “feature instance” are used to separate the following concepts of “feature”:

Feature The whole collection of real-world phenomena classified in a concept. For

type example, the “bridge” feature type is the abstraction of the collection of all
real-world phenomena that is classified into the concept behind the term
“bridge”.

Feature A certain occurrence of a feature type. For example, “Tower Bridge” feature

instance instance is the abstraction of a certain real-world bridge in London.

In object-oriented modelling, feature types are equivalent to classes and feature instances are
equivalent to objects,

The UML class diagram below shows the General Feature Model. FeatureType is a metaclass
that is instantiated as classes that represent individual feature types. A FeatureType instance
contains the list of properties (attributes, associations and operations) that feature instances of
that type can contain. Geometries are properties like any other, without any special treatment.
All properties are static, without time-varying values.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 123

+suparType 0..% ,:

tmeltaclass

Kentiled Type

tmataciass
FaahunTyps

[~

+ lsAbstract :Boalean = false
idantifledTyps

~

A

+abT 0:\\
mbType 0.5~

+ name GensafdcName [0.1] + name :GenercName [0..1] \\
+ dafinition :Loeallsad CharactarSting [1..%] + definitlon :Leeallsad Character3ting [1..1]
+ deggnation :LocalisedCh {arString [0..7] + dedgnatlon LocalisadCharactsr8iring [0..4] emstaclasy
+ demerption :LocallsedChamecterString [0..] + demcrption :LacalisedChamcterSinng [0.."] InharitancaRalation
+ consfralnadBy :CharactarSting [0..%] + constralned By :CharacterSting [0..%] + description :Characlerstring [0.1]
constralnts + name :Characterdfring [0..1]
{name lsmandatory} + unlquelnsance :Boolean [0..1] = ime
+thaFeatureTypa 4 /1..*
tmotaclasm |- .
Val slign +camer0fChameteriglics\|/0..
MentifedType HentifedType
+_'ypo VeluoAuignmonType «metaclasas «metaclassy
PropartyTyps FeatureAssoclafionType
sGodells zkdentifledType =identifledTyps
ValusAssignmentType + name :GenercNama [0..1] + name :GenercName [0..1]
+ amerion + definition :LocalisadCharacterString [1..*] + definilien :LocalisadCharacterSiring [1..*]
+ dedvation + designation :LocalisadCharacter3ting [0-.%] + designation :LocalisedChamcieString [0..%]
+ inheriance + description :LecallsedCharacterSting [0..%] + dascriptlon :LecallsdCharcterString [0..7
+ abservafion + gongtralnedBy :CharaoterStrng [0..] + gonstralnedBy :CheracterSting |0..*]
+pleName
1.2
amelaclass «metaclassn emetaclassy
AtiributeTypa Oparaflion FeatursAsscclationRole
+ valuaType :TypaName + elgnature :CharacterSiring + valusType :TypeName
+ valyeDomaln :CharacterString + cardinallty :Multiplicity
schamolarize 04 |+ cErInallly :Multiplicity pep—
constralnts {nama ls mandatory}
{name |s mandatory}

AtirlbuieOfAttribute

+characterzeBy 4.."

Figure B.2 — General Feature Model from ISO 19109:2009 figure 5

B.1.3. Simple Features SQL

The Simple Feature Access — Part 2: SQL Option Standard describes a feature access

implementation in SQL based on a profile of ISO 19107. This Standard defines feature table as a
table where the columns represent feature attributes, and the rows represent feature instances.
The geometry of a feature is one of its feature attributes.

B.1.4. Filter Encoding (ISO 19143)

The 1ISO 19143, Geographic information — Filter encoding standard (also OGC Standard) provides
types for constructing queries. These objects can be transformed into a SQL “SELECT ... FROM
... WHERE ... ORDER BY ..."” statement to fetch data stored in a SQL-based relational database.
Similarly, the same objects can be transformed into a XQuery expression in order to retrieve

OPEN GEOSPATIAL CONSORTIUM 22-003R3

124

https://portal.ogc.org/files/?artifact_id=25354
https://portal.ogc.org/files/?artifact_id=39968

data from XML document. The UML class diagram below shows the objects used for querying a
subset based on spatial operations such as “contains” or “intersects”.

SpatialOperator {operatorType<>#BBOX implies
operand1->notEmpty() and
operatorType=#BBOX implies

[P operand2.envelope->notEmpty()}
/
~
DistanceOperator BinarySpatialOperator
+ valueReference : ValueReference + operatorType : SpatialOperatorName
+ operatorType : DistanceOperatorName + operand1 [0..1] : ValueReference
+ geometry : GM_Object + operand?2 : SpatialDescription
+ distance : Measure
<<CodelList>> <<CodelList>> <<Union>>
DistanceOperatorName SpatialOperatorName SpatialDescription
+ Beyond + BBOX + geometry : GM_Object
+ DWithin + Equals + envelope : GM_Envelope
+ Disjoint + valueReference : ValueReference
+ Intersects
+ Touches
+ Crosses
+ Within
+ Contains
+ Overlaps

Figure B.3 — Spatial operators from ISO 19143 figure 6

B.1.5. OGC API — Features — Part 1: Core

The OGC 17-069, Features — Part 1: Core Standard specifies the fundamental building blocks for
interacting with features using a Web API pattern. This Standard defines how to get all features
available on a server, or to get feature instances by their identifier.

B.1.6. OGC API — Features — Part 2: Coordinate Reference Systems by
Reference

The OGC API — Features — Part 2: Coordinate Reference Systems by Reference Standard
specifies an extension to the OGC API — Features — Part 1: Core Standard that defines the
behavior of a server that supports the ability to present geometry valued properties in a
response document in one from a list of supported Coordinates Reference Systems (CRS). This
part extends the core capabilities specified in Part 1: Core with the ability to use coordinate
reference system identifiers other than the defaults defined in the core.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 125

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://docs.ogc.org/is/18-058r1/18-058r1.html
https://docs.ogc.org/is/17-069r4/17-069r4.html

B.1.7. OGC API — Features — Part 3: Filtering

The OGC API — Features — Part 3: Filtering Standard (OGC 19-079r2) extends the Web API
defined in OGC API — Features — Part 1: Core with capabilities to encode more sophisticated
queries. The conceptual model is close to ISO 19143.

B.2. Temporal Geometries and Moving Features

B.2.1. Moving Features (ISO 19141)

The ISO 19141, Geographic information — Schema for moving features standard extends the ISO
19107 spatial schema for addressing features whose locations change over time. Despite the
“Moving Features” name, that standard is more about “Moving geometries”. The UML class
diagram below shows how the MF_Trajectory type extends the “static” types from ISO 19107.

<<Type>> <<Type>>
GM_Obiject GM_Curve
(from Geometry root) (from Geometric primitive)
<<Type>> <I <<Type>>
MF_OneParamGeometry MF_Trajectory

<<:Ty pe>> <I <<Type>>
MF_TemporalGeometry MF_TemporalTrajectory

Figure B.4 — Trajectory type from ISO 19141 figure 3

Trajectory inherits operations shown below. Those operations are in addition to the operations
inherited from GM_Object. For example, the distance(..) operation from ISO 19107 is now
completed by a nearestApproach(..) operation.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 126

https://docs.ogc.org/is/19-079r2/19-079r2.html
https://docs.ogc.org/is/17-069r4/17-069r4.html

<<Type>>
MF_OneParamGeometry

<<Type>>
MF_TemporalGeometry

+ leafGeometry(m : TM_Coordinate) : GM_Object

+ trajectory(point : DirectPosition, p : TM_Coordinate) : MF_TemporalTrajectory

+ startTime() : TM_Coordinate

+ endTime() : TM_Coordinate

+ nearestApproach(object : GM_Object, timelnterval : TM_Period) : Distance, TM_GeometricPrimitive[1..%]
+ intersection(object : GM_Object, timelnterval : TM_Period) : TM_TemporalGeometry

<<Type>> <<Type>>
MF_TemoporalTrajectory MF_PrismGeometry
(from Prism Geometry)

Figure B.5 — Temporal geometry from ISO 19141 figure 6

B.2.2. Moving Features XML encoding (OGC 18-075)

The OGC 18-075 Moving Features Encoding Part I: XML Core Standard takes a subset of the
ISO 19141 Standard and defines an XML encoding. That standard also completes ISO 19141
by allowing to specify attributes whose values change over time. This extension to the above
General Feature Model is shown below:

GML Moving Features Type Model /

«metaclass» «metaclass»
1ISO-19101:: <]_ Mov ingFeatureType
GF_FeatureType
0.*
«metaclass»
DynamicAttribute Type

Figure B.6 — Dynamic attribute from OGC 18-075 figure 3

OPEN GEOSPATIAL CONSORTIUM 22-003R3 127

http://docs.opengeospatial.org/is/18-075/18-075.html

B.2.3. Moving Features JSON encoding (OGC 19-045r3)

The OGC 19-045r3 Moving Features Encoding Extension — JSON Standard takes a subset of
the ISO 19141 Standard and defines a JSON encoding. The Standard provides various UML

diagrams summarizing ISO 19141.

OPEN GEOSPATIAL CONSORTIUM 22-003R3 128

http://docs.opengeospatial.org/is/19-045r3/19-045r3.html

ANNEX C (INFORMATIVE
REVISION HISTORY

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

ANNEX C
(INFORMATIVE)
REVISION HISTORY

Table C.1 — Revision history

DATE

2021-
09-14

2022-
03-01

2022-
10-09

2023-
02-21

2023-
05-19

2023-
07-10

2024-
02-14

2024-
07-31

RELEASE EDITOR

0.1

0.2

0.3

0.9

0.9.9

1.0.draft

1.0.draft

1.0

Taehoon Kim, Kyoung-
Sook Kim, and Martin
Desruisseaux

Taehoon Kim, Kyoung-Sook
Kim

Taehoon Kim, Kyoung-Sook
Kim
Taehoon Kim, Kyoung-

Sook Kim, Mahmoud, and
Esteban

Taehoon Kim, Kyoung-
Sook Kim, Mahmoud, and
Esteban

Taehoon Kim, Kyoung-Sook
Kim
Taehoon Kim, Kyoung-Sook
Kim
Taehoon Kim, Kyoung-Sook
Kim

OPEN GEOSPATIAL CONSORTIUM 22-003R3

PRIMARY
CLAUSES
MODIFIED

a

a

a

all

DESCRIPTION

first draft version

revised sections related to
resources to add CRUD
operations

added TemporalGeometry Query

resources

finalize draft version

finalize draft version before OAB

finalize a draft version before
public comment

revised by public comments

final revision before publication

130

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 22-003R3 131

BIBLIOGRAPHY

[1] OGC: OGC APl — Common website, https://ogcapi.ogc.org/common/

[2] OGC: OGC API — Features website, https:/ogcapi.ogc.org/features/

[3] OGC: OGC API website, https:/ogcapi.ogc.org/

(4] OpenAPl initiative website, https:/www.openapis.org/

OPEN GEOSPATIAL CONSORTIUM 22-003R3 132

https://ogcapi.ogc.org/common/
https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/
https://www.openapis.org/

	I. Abstract
	II. Keywords
	III. Preface
	IV. Security considerations
	V. Submitting Organizations
	VI. Submitters
	1. Scope
	2. Conformance
	3. Normative references
	4. Terms and definitions
	5. Conventions
	5.1. Identifiers
	5.2. Use of HTTPS

	6. Overview
	6.1. General
	6.2. Search
	6.3. Dependencies

	7. Requirements Class “Moving Feature Collection Catalog”
	7.1. Overview
	7.2. Information Resources
	7.3. Resource Collections
	7.3.1. Overview
	7.3.2. Operation
	7.3.2.1. Retrieve
	7.3.2.2. Create

	7.3.3. Response
	7.3.3.1. Retrieve
	7.3.3.2. Create

	7.3.4. Error situations

	7.4. Resource Collection
	7.4.1. Overview
	7.4.2. Operation
	7.4.2.1. Retrieve
	7.4.2.2. Replace
	7.4.2.3. Delete

	7.4.3. Response
	7.4.3.1. Retrieve
	7.4.3.2. Replace
	7.4.3.3. Delete

	7.4.4. Error situations

	8. Requirements Class “Moving Features”
	8.1. Overview
	8.2. Information Resources
	8.3. Resource MovingFeatures
	8.3.1. Overview
	8.3.2. Query Parameters
	8.3.2.1. Parameter subTrajectory

	8.3.3. Operation
	8.3.3.1. Retrieve
	8.3.3.2. Create

	8.3.4. Response
	8.3.4.1. Retrieve
	8.3.4.2. Create

	8.3.5. Error situations

	8.4. Resource MovingFeature
	8.4.1. Overview
	8.4.2. Operation
	8.4.2.1. Retrieve
	8.4.2.2. Delete

	8.4.3. Response
	8.4.3.1. Retrieve
	8.4.3.2. Delete

	8.4.4. Error situations

	8.5. Resource TemporalGeometrySequence
	8.5.1. Overview
	8.5.2. Query Parameters
	8.5.2.1. Parameter leaf

	8.5.3. Operation
	8.5.3.1. Retrieve
	8.5.3.2. Create

	8.5.4. Response
	8.5.4.1. Retrieve
	8.5.4.2. Create

	8.5.5. Error situations

	8.6. Resource TemporalPrimitiveGeometry
	8.6.1. Overview
	8.6.2. Operation
	8.6.2.1. Delete

	8.6.3. Response
	8.6.3.1. Delete

	8.6.4. Error situations

	8.7. TemporalGeometry Query Resources
	8.7.1. Overview
	8.7.2. Query parameters
	8.7.3. Distance Query
	8.7.4. Velocity Query
	8.7.5. Acceleration Query
	8.7.6. Operation Requirements
	8.7.7. Response Requirements

	8.8. Resource TemporalProperties
	8.8.1. Overview
	8.8.2. Query Parameters
	8.8.2.1. Parameter subTemporalValue

	8.8.3. Operation
	8.8.3.1. Retrieve
	8.8.3.2. Create

	8.8.4. Response
	8.8.4.1. Retrieve
	8.8.4.2. Create

	8.8.5. Error situations

	8.9. Resource TemporalProperty
	8.9.1. Overview
	8.9.2. Query Parameters
	8.9.3. Operation
	8.9.3.1. Retrieve
	8.9.3.2. Create
	8.9.3.3. Delete

	8.9.4. Response
	8.9.4.1. Retrieve
	8.9.4.2. Create
	8.9.4.3. Delete

	8.9.5. Error situations

	8.10. Resource TemporalPrimitiveValue
	8.10.1. Overview
	8.10.2. Operation
	8.10.2.1. Delete

	8.10.3. Response
	8.10.3.1. Delete

	8.10.4. Error situations

	9. Common Requirements
	9.1. Parameters
	9.1.1. Parameter limit
	9.1.2. Parameter bbox
	9.1.3. Parameter datetime

	9.2. HTTP Status Codes

	Annex A (normative) Abstract Test Suite
	A.1. Introduction
	A.2. Conformance Class MovingFeature Collection Catalog
	A.2.1. MovingFeature Collections
	A.2.1.1. HTTP GET Operation
	A.2.1.2. HTTP POST Operation

	A.2.2. MovingFeature Collection
	A.2.2.1. HTTP GET Operation
	A.2.2.2. HTTP PUT Operation
	A.2.2.3. HTTP DELETE Operation

	A.3. Conformance Class MovingFeatures
	A.3.1. MovingFeatures
	A.3.1.1. HTTP GET Operation
	A.3.1.2. HTTP POST Operation

	A.3.2. MovingFeature
	A.3.2.1. HTTP GET Operation
	A.3.2.2. HTTP DELETE Operation

	A.3.3. TemporalGeometrySequence
	A.3.3.1. HTTP GET Operation
	A.3.3.2. HTTP POST Operation

	A.3.4. TemporalPrimitiveGeometry
	A.3.4.1. HTTP DELETE Operation

	A.3.5. TemporalGeometry Query
	A.3.5.1. HTTP GET Operation

	A.3.6. TemporalProperties
	A.3.6.1. HTTP GET Operation
	A.3.6.2. HTTP POST Operation

	A.3.7. TemporalProperty
	A.3.7.1. HTTP GET Operation
	A.3.7.2. HTTP POST Operation
	A.3.7.3. HTTP DELETE Operation

	A.3.8. TemporalPrimitiveValue
	A.3.8.1. HTTP DELETE Operation

	A.3.9. Parameters
	A.3.9.1. Parameter Leaf
	A.3.9.2. Parameter SubTrajectory
	A.3.9.3. Parameter SubTemporalValue

	Annex B (informative) Relationship with other OGC/​ISO Standards
	B.1. Static geometries, features and accesses
	B.1.1. Geometry (ISO 19107)
	B.1.2. Features (ISO 19109)
	B.1.3. Simple Features SQL
	B.1.4. Filter Encoding (ISO 19143)
	B.1.5. OGC API ​—​ ​Features ​—​ ​Part 1: Core
	B.1.6. OGC API ​—​ ​Features ​—​ ​Part 2: Coordinate Reference Systems by Reference
	B.1.7. OGC API ​—​ ​Features ​—​ ​Part 3: Filtering

	B.2. Temporal Geometries and Moving Features
	B.2.1. Moving Features (ISO 19141)
	B.2.2. Moving Features XML encoding (OGC 18-​075)
	B.2.3. Moving Features JSON encoding (OGC 19-​045r3)

	Annex C (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Overview of Resources
	Table 2 — Conformance class URIs
	Table 3 — Moving Features API Paths
	Table 4 — Mapping OGC API — Moving Features Sections to OGC API — Common, OGC API — Features, and OGC MF-JSON Requirements Classes
	Table 5 — Moving Feature Collection Catalog Resources
	Table 6 — Table of collection properties
	Table 7 — MovingFeatures Resources
	Table 8 — Table of the properties related to the moving feature
	Table 9 — Table of the properties related to the TemporalPrimitiveGeometry
	Table 10 — Table of the query resources
	Table 11 — Table of the properties related to a temporal property
	Table 12 — Table of the properties related to the temporal primitive value
	Table 13 — Typical HTTP status codes
	Table A.1 — Schema and Tests for MovingFeature Collections content
	Table A.2 — Schema and Tests for Request Body of {root}/collections POST
	Table A.3 — Schema and Tests for MovingFeature Collection content
	Table A.4 — Schema and Tests for MovingFeatures content
	Table A.5 — Schema and Tests for Request Body of {root}/collections/{collectionId}/items POST
	Table A.6 — Schema and Tests for MovingFeature content
	Table A.7 — Schema and Tests for TemporalGeometrySequence content
	Table A.8 — Schema and Tests for Request Body of {root}/collections/{collectionId}/items/{mFeatureId}/tgsequence POST
	Table A.9 — Schema and Tests for TemporalProperties content
	Table A.10 — Schema and Tests for Request Body of {root}/collections/{collectionId}/items/{mFeatureId}/tproperties POST
	Table A.11 — Schema and Tests for TemporalProperty content
	Table A.12 — Schema and Tests for Request Body of {root}/collections/{collectionId}/items/{mFeatureId}/tproperties/{tPropertyName} POST
	Table B.1 — A non-exhaustive list of interpolation methods listed by ISO 19107
	Table C.1 — Revision history

	List of Figures
	Figure 1 — Class diagram for OGC API — Moving Features
	Figure 2 — Example of a response result with a subTrajectory parameter
	Figure 3 — Example of a response result with leaf parameter
	Figure 4 — Example of time-to-distance curve [OGC Moving Features Access]
	Figure B.1 — GM_Object from ISO 19107:2003 figure 6
	Figure B.2 — General Feature Model from ISO 19109:2009 figure 5
	Figure B.3 — Spatial operators from ISO 19143 figure 6
	Figure B.4 — Trajectory type from ISO 19141 figure 3
	Figure B.5 — Temporal geometry from ISO 19141 figure 6
	Figure B.6 — Dynamic attribute from OGC 18-075 figure 3

	List of Recommendations
	Requirements class 1: Moving Feature Collection Catalog
	Requirements class 2: Moving Features
	Requirements class 3: Moving Features — Common
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6
	Requirement 7
	Requirement 8
	Requirement 9
	Requirement 10
	Requirement 11
	Requirement 12
	Requirement 13
	Requirement 14
	Requirement 15
	Requirement 16
	Requirement 17
	Requirement 18
	Requirement 19
	Requirement 20
	Requirement 21
	Requirement 22
	Requirement 23
	Requirement 24
	Requirement 25
	Requirement 26
	Requirement 27
	Requirement 28
	Requirement 29
	Requirement 30
	Requirement 31
	Requirement 32
	Requirement 33
	Requirement 34
	Requirement 35
	Requirement 36
	Requirement 37
	Requirement 38
	Requirement 39
	Requirement 40
	Requirement 41
	Requirement 42
	Requirement 43
	Requirement 44
	Requirement 45
	Requirement 46
	Requirement 47
	Requirement 48
	Requirement 49
	Requirement 50
	Requirement 51
	Requirement 52
	Permission 1
	Conformance class A.1
	Conformance class A.2

