
OGC® DOCUMENT: 19-072
External identifier of this OGC® document: http://www.opengis.net/doc/is/ogcapi-
common-1/1.0

OGC API - COMMON -
PART 1: CORE

STANDARD
Implementation

APPROVED

Version: 1.0.0
Submission Date: 2021-08-23
Approval Date: 2022-02-02
Publication Date: 2023-03-28
Editor: Charles Heazel

Notice: This document is an OGC Member approved international standard. This document is available on a royalty free, non-discriminatory
basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware
and to provide supporting documentation.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Suggested additions, changes and comments on this document are welcome and encouraged. Such suggestions may be submitted using the online
change request form on OGC web site: http://ogc.standardstracker.org/

Copyright notice

Copyright © 2023 Open Geospatial Consortium
To obtain additional rights of use, visit https://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 19-072 ii

https://www.ogc.org/license
http://ogc.standardstracker.org/
https://www.ogc.org/legal

CONTENTS

I. ABSTRACT ... viii

II. KEYWORDS ...viii

III. PREFACE ... ix

IV. SECURITY CONSIDERATIONS .. x

V. SUBMITTING ORGANIZATIONS ... xi

VI. SUBMITTERS ... xi

1. SCOPE .. 2

2. CONFORMANCE .. 4
2.1. Core Requirements Class ... 4
2.2. Landing Page Requirements Class ..4
2.3. Encoding Requirements Classes ... 5
2.4. OpenAPI 3.0 Requirements Class ...5
2.5. OGC Building Blocks Registry ...5

3. NORMATIVE REFERENCES ... 7

4. TERMS AND DEFINITIONS ... 9

5. ABBREVIATED TERMS ... 13

6. CONVENTIONS ...15
6.1. Web API Fundamentals ..15
6.2. Identifiers ... 15
6.3. Links .. 17
6.4. Link relations ...18
6.5. Use of HTTPS ...19
6.6. API definition .. 19

7. OVERVIEW ...23
7.1. Evolution from OGC Web Services ...23
7.2. Modular APIs .. 23
7.3. Using APIs ..24

8. CORE REQUIREMENTS CLASS .. 26

OPEN GEOSPATIAL CONSORTIUM 19-072 iii

8.1. HTTP 1.1 .. 26
8.2. HTTP Status Codes ... 26
8.3. Query parameters ..28
8.4. Web Caching ...30
8.5. Support for Cross-Origin Requests ... 31
8.6. String Internationalization ..31
8.7. Resource Encodings ...32
8.8. Parameter Encoding .. 33

9. LANDING PAGE REQUIREMENTS CLASS ...38
9.1. API landing page .. 38
9.2. API Definition ... 40
9.3. Declaration of Conformance Classes ..42

10. ENCODING REQUIREMENTS CLASSES ...45
10.1. Overview ... 45
10.2. Requirement Class “HTML” ...45
10.3. Requirement Class “JSON” ..46

11. OPENAPI 3.0 REQUIREMENTS CLASS .. 49
11.1. Basic requirements ..49
11.2. Complete definition .. 50
11.3. Exceptions ... 50
11.4. Security .. 51
11.5. Query Parameter Definition ... 51
11.6. Further Information ...52

12. MEDIA TYPES ... 54
12.1. Normal Response Media Types ..54
12.2. OpenAPI Media Types ... 54
12.3. Problem Details Media Types ...54

ANNEX A (INFORMATIVE) ABSTRACT TEST SUITE (NORMATIVE) 56
A.1. Introduction ...56
A.2. Conformance Class Core ... 56
A.3. Conformance Class Landing Page ... 62
A.4. Conformance Class JSON ... 65
A.5. Conformance Class HTML .. 66
A.6. Conformance Class OpenAPI 3.0 .. 67

ANNEX B (INFORMATIVE) EXAMPLES (INFORMATIVE) ..71
B.1. Example Landing Pages ..71
B.2. Conformance Examples ..73
B.3. API Definition Examples .. 74
B.4. Service Metadata Examples .. 76

ANNEX C (INFORMATIVE) GLOSSARY ..79

OPEN GEOSPATIAL CONSORTIUM 19-072 iv

ANNEX D (INFORMATIVE) BACKUS-NAUR FORMS ...82
D.1. BNF for URI ..82

ANNEX E (INFORMATIVE) OGC WEB API GUIDELINES .. 85

ANNEX F (INFORMATIVE) REVISION HISTORY ... 89

BIBLIOGRAPHY ...91

LIST OF TABLES

Table ...
Table — Submitters .. xi
Table 1 — Link Relations .. 18
Table 2 — Typical HTTP status codes ...27
Table 3 — Landing Page Resources ... 38
Table A.1 — Schema and Tests for Landing Pages ...63
Table E.1 — OGC Web API Guidelines ...85
Table F.1 — Revision History ...89

LIST OF FIGURES

Figure 1 — Backus-Naur Definition of URI ..16
Figure 2 — Example URI and Components ..16
Figure 3 — Link Relation Schema ...17
Figure 4 — Landing Page Schema ..39
Figure 5 — Conformance Declaration Schema ... 43
Figure 6 — OpenAPI schema for additional "free-form" query parameters 52
Figure 7 — Example "free-form" query parameter ...52
Figure D.1 — Backus-Naur Form for URI ...82

LIST OF RECOMMENDATIONS

REQUIREMENTS CLASS 1 .. 26

REQUIREMENTS CLASS 2 .. 38

OPEN GEOSPATIAL CONSORTIUM 19-072 v

REQUIREMENTS CLASS 3 .. 45

REQUIREMENTS CLASS 4 .. 47

REQUIREMENTS CLASS 5 .. 49

REQUIREMENT 1 .. 26

REQUIREMENT 2 .. 28

REQUIREMENT 3 .. 29

REQUIREMENT 4 .. 33

REQUIREMENT 5 .. 34

REQUIREMENT 6 .. 34

REQUIREMENT 7 .. 35

REQUIREMENT 8 .. 35

REQUIREMENT 9 .. 35

REQUIREMENT 10 ..35

REQUIREMENT 11 ..36

REQUIREMENT 12 ..39

REQUIREMENT 13 ..39

REQUIREMENT 14 ..40

REQUIREMENT 15 ..41

REQUIREMENT 16 ..42

REQUIREMENT 17 ..42

REQUIREMENT 18 ..46

REQUIREMENT 19 ..46

REQUIREMENT 20 ..47

REQUIREMENT 21 ..47

REQUIREMENT 22 ..49

REQUIREMENT 23 ..49

REQUIREMENT 24 ..49

REQUIREMENT 25 ..50

REQUIREMENT 26 ..50

REQUIREMENT 27 ..51

RECOMMENDATION 1 ... 18

RECOMMENDATION 2 ... 27

RECOMMENDATION 3 ... 28

OPEN GEOSPATIAL CONSORTIUM 19-072 vi

RECOMMENDATION 4 ... 28

RECOMMENDATION 5 ... 29

RECOMMENDATION 6 ... 30

RECOMMENDATION 7 ... 30

RECOMMENDATION 8 ... 30

RECOMMENDATION 9 ... 31

RECOMMENDATION 10 ...31

RECOMMENDATION 11 ...32

RECOMMENDATION 12 ...32

RECOMMENDATION 13 ...34

RECOMMENDATION 14 ...36

RECOMMENDATION 15 ...41

RECOMMENDATION 16 ...41

RECOMMENDATION 17 ...46

RECOMMENDATION 18 ...47

CONFORMANCE CLASS A.1 ... 56

CONFORMANCE CLASS A.2 ... 62

CONFORMANCE CLASS A.3 ... 65

CONFORMANCE CLASS A.4 ... 66

CONFORMANCE CLASS A.5 ... 67

OPEN GEOSPATIAL CONSORTIUM 19-072 vii

I ABSTRACT

The OGC has extended its suite of Standards to include Resource Oriented Architectures and
Web APIs. In the course of developing these Standards, some practices proved to be common
across multiple OGC Web API Standards. These common practices are documented in the
OGC API — Common Standard. The OGC API - Common Standard is a multi-part standard that
specifies reusable building-blocks that can be used in the construction of OGC API Standards.
This document presents Part 1, the Core, of the OGC API – Common Standard. Standards
developers will use these building-blocks in the construction of other OGC Standards that relate
to Web APIs. The result is a modular suite of coherent API standards which can be adapted by a
system designer for the unique requirements of their system.

The purpose of the OGC API — Common — Part 1: Core Standard (API-Core) is to define
those fundamental building blocks and requirements which are applicable to all OGC Web API
Standards.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, geographic information, spatial data, API, json, html, OpenAPI, REST,
Common

OPEN GEOSPATIAL CONSORTIUM 19-072 viii

https://en.wikipedia.org/wiki/Resource-oriented_architecture
https://portal.ogc.org/files/?artifact_id=71776&version=1

I I I PREFACE

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 19-072 ix

IV SECURITY CONSIDERATIONS

The OGC API — Common — Part 1: Core Standard does not specify any specific security
controls. However, it was constructed so that security controls can be added without impacting
conformance.

See Clause 11.4 for a discussion of OpenAPI support for security controls.

OPEN GEOSPATIAL CONSORTIUM 19-072 x

V SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• Ecere Corporation

• Heazeltech LLC

• Hexagon

• Interactive Instruments GmbH

• U.K. Met Office

• Universitat Autònoma de Barcelona (CREAF)

• U.S. Army Geospatial Center

• U.S. Geological Survey

• U.S. National Aeronautics and Space Administration (NASA)

• U.S. National Geospatial-Intelligence Agency (NGA)

VI SUBMITTERS

All questions regarding this submission should be directed to the editors or the submitters:

Table — Submitters

NAME AFFILIATION

Charles Heazel (editor) Heazeltech

David Blodgett U.S. Geological Survey

Clemens Portele interactive instruments GmbH

Sylvester Hagler U.S. National Geospatial-Intelligence Agency

Jeffrey Harrison U.S. Army Geospatial Center

Frédéric Houbie Hexagon

OPEN GEOSPATIAL CONSORTIUM 19-072 xi

NAME AFFILIATION

Jérôme Jacovella-St-Louis Ecere Corporation

Chris Little U.K. Met Office

Joan Masó UAB-CREAF

Donald Sullivan NASA

Panagiotis (Peter) A. Vretanos CubeWerx Inc., part of the MariaDB Corporation

OPEN GEOSPATIAL CONSORTIUM 19-072 xii

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 19-072 1

1 SCOPE

The OGC API — Common — Part 1: Core Standard provides the fundamental rules for
implementing a Web API that conforms to OGC API Standards. It seeks to establish a solid
foundation which can be extended by other resource-specific Web API Standards.

First, this OGC Standard establishes rules for the use of HTTP protocols and Uniform Resource
Identifiers (URIs). These requirements seek to provide both API servers and clients a predictable
environment for the exchange of HTTP requests and responses. These rules are applicable
regardless of the resources being accessed.

This OGC Standard then enables discovery operations directed against a Web API
implementation. It identifies the hosted resources, defines conformance classes, and provides
both human and machine-readable documentation of the API design. The requirements
specified in this standard SHOULD be applicable to any Web API implementation.

OPEN GEOSPATIAL CONSORTIUM 19-072 2

2

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 19-072 3

2 CONFORMANCE

Conformance with this Standard shall be checked using the tests specified in Annex A
(normative) of this document. The framework, concepts, and methodology for testing, and
the criteria to claim conformance are specified in the OGC Compliance Testing Policies
and Procedures and the OGC Compliance Testing web site. This Standard addresses one
Standardization Target: Web APIs.

OGC API — Common — Part 1: Core provides a common foundation for OGC Web API
Standards. The assumption is that this Standard will only be implemented through inclusion
in other Standards. Therefore, all the relevant abstract tests in Annex A should be included in
or referenced by the Abstract Test Suite (ATS) in each Standard that implements conformance
classes defined in this Standard.

This Standard identifies five conformance classes. The conformance classes implemented by an
OGC API are advertised through the /conformance resource on the implementation instance
of the API’s landing page. Each conformance class is defined by one requirements class. The
tests in Annex A are organized by Requirements Class. So, an implementation of the Core
conformance class must pass all tests specified in Annex A for the Core requirements class.

2.1. Core Requirements Class

The requirements specified in the Core Requirements Class are applicable to all OGC API
Standards. They assure consistent use of the HTTP protocols, provide rules for the construction
of URIs, and define requirements governing the use and processing of URI query parameters.
Through these requirements, OGC API — Common seeks to assure that implementations of
OGC API Standards will provide a predictable interface for their peers.

The Core requirements class is specified in Clause 8 Core Requirements Class.

2.2. Landing Page Requirements Class

The requirements specified in the Landing Page Requirements Class provide a minimal useful
service interface for an OGC Web API. These resources convey a basic understanding of
the API and provide a starting point for further discovery. The requirements specified in this
requirements class are recommended for all OGC Web APIs.

The Landing Page requirements class is specified in Clause 9 Landing Page Requirements Class.

OPEN GEOSPATIAL CONSORTIUM 19-072 4

https://cite.opengeospatial.org/teamengine/

2.3. Encoding Requirements Classes

The OGC API — Common Standard does not mandate a specific encoding or format for
representations of resources. However, both HTML and JSON are commonly used encodings
for spatial data on the web. The HTML and JSON requirements classes specify the encoding of
resource representations using:

• HTML

• JSON

Neither of these encodings is mandatory. An implementer of the API-Common Standard may
decide to implement other encodings instead of, or in addition to, these two.

The Encoding Requirements Classes are specified in Clause 10 Encoding Requirements Classes.

2.4. OpenAPI 3.0 Requirements Class

The OGC API — Common Standard does not mandate any encoding or format for the formal
definition of the API. The preferred option is the OpenAPI 3.0 specification. The OpenAPI 3.0
requirements class has been specified for APIs implementing OpenAPI 3.0.

The OpenAPI 3.0 Requirements Class is specified in Clause 11 OpenAPI 3.0 Requirements
Class.

2.5. OGC Building Blocks Registry

To facilitate the discovery and management of the building blocks specified in this and other
OGC API Standards, a registry has been established at https://blocks.ogc.org .

OPEN GEOSPATIAL CONSORTIUM 19-072 5

https://blocks.ogc.org

3

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 19-072 6

3 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

E. Rescorla: IETF RFC 2818, HTTP Over TLS. RFC Publisher (2000). https://www.rfc-editor.org/
info/rfc2818.

T. Berners-Lee, R. Fielding, L. Masinter: IETF RFC 3986, Uniform Resource Identifier (URI): Generic
Syntax. RFC Publisher (2005). https://www.rfc-editor.org/info/rfc3986.

J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, D. Orchard: IETF RFC 6570, URI Template.
RFC Publisher (2012). https://www.rfc-editor.org/info/rfc6570.

R. Fielding, J. Reschke (eds.): IETF RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC Publisher (2014). https://www.rfc-editor.org/info/rfc7231.

R. Fielding, J. Reschke (eds.): IETF RFC 7232, Hypertext Transfer Protocol (HTTP/1.1): Conditional
Requests. RFC Publisher (2014). https://www.rfc-editor.org/info/rfc7232.

M. Nottingham, E. Wilde: IETF RFC 7807, Problem Details for HTTP APIs. RFC Publisher (2016).
https://www.rfc-editor.org/info/rfc7807.

M. Nottingham: IETF RFC 8288, Web Linking. RFC Publisher (2017). https://www.rfc-editor.org/
info/rfc8288.

T. Bray (ed.): IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format. RFC
Publisher (2017). https://www.rfc-editor.org/info/rfc8259.

Open API Initiative: OpenAPI Specification, Version 3.0. The latest patch version at the time of
publication of this standard was 3.0.3, available from http://spec.openapis.org/
oas/v3.0.3.

OPEN GEOSPATIAL CONSORTIUM 19-072 7

https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7807
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8259
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3

4

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 19-072 8

4 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Kebab case

A case style where punctuation is removed and spaces are replaced by single hyphens. All letters
are in lower case when used in OGC documentation. (Wikipedia) Example: kebab-case-style

4.2. Landing Page

Any page whose primary purpose is to contain a description of something else. (W3C, URLs in
Data Primer)

Note 1 to entry: Note 1 — Landing pages often provide summaries or additional information
about the thing that they describe. Examples are landing pages for images on Flickr or videos on
YouTube, which are HTML pages that embed the media that they describe and provide access
to comments and other metadata about it. Landing pages for documents are often tables of
contents or abstracts.

Note 2 to entry: Note 2 — A landing page for a Web API serves as the root node of the API
Resource tree and provides the information needed to navigate all the resources exposed
through the API.

OPEN GEOSPATIAL CONSORTIUM 19-072 9

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762
https://en.wikipedia.org/wiki/Letter_case
https://www.w3.org/TR/urls-in-data/
https://www.w3.org/TR/urls-in-data/

4.3. OGC Web API

A Web API that implements one or more Conformance Classes from an OGC API Standard.

4.4. Representation

the current or intended state of a resource encoded for exchange between components. (based
on Fielding 2000)

4.5. Resource

entity that might be identified (Dublin Core Metadata Initiative — DCMI Metadata Terms)

Note 1 to entry: The term “resource”, when used in the context of an OGC Web API standard,
should be understood to mean a Web Resource unless otherwise indicated.

4.6. Resource Type

a type of resource.

Note 1 to entry: Resource types are re-usable components that are independent of where the
resource resides in the API.

4.7. Uniform Resource Identifier (URI)

an identifier consisting of a sequence of characters matching the syntax rule named “<URI>”.
(IETF RFC 3986)

OPEN GEOSPATIAL CONSORTIUM 19-072 10

4.8. Uniform Resource Locator (URL)

the subset of URIs that, in addition to identifying a resource, provide a means of locating the
resource by describing its primary access mechanism (e.g., its network “location”). (IETF RFC
3986)

4.9. Web API

API using an architectural style that is founded on the technologies of the Web. (W3C Data on
the Web Best Practices)

4.10. Web Resource

a resource that is identified by a URI.

OPEN GEOSPATIAL CONSORTIUM 19-072 11

5

ABBREVIATED TERMS

OPEN GEOSPATIAL CONSORTIUM 19-072 12

5 ABBREVIATED TERMS

API Application Programming Interface

CORS Cross-Origin Resource Sharing

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

OGC Open Geospatial Consortium

URI Uniform Resource Identifier

URL Uniform Resource Locator

YAML YAML Ain’t Markup Language

OPEN GEOSPATIAL CONSORTIUM 19-072 13

6

CONVENTIONS

OPEN GEOSPATIAL CONSORTIUM 19-072 14

6 CONVENTIONS

6.1. Web API Fundamentals

The following concepts are critical to understanding OGC Web API Standards.

1. The purpose of a Web API is to provide a uniform interface to resources.

2. Resources are uniquely identified using Uniform Resource Identifiers (URI).

3. A user manipulates a resource through representations of that resource.

4. A representation is the current or intended state of a resource encoded for
exchange between components.

5. The format used to encode a representation is negotiated between the
components participating in the exchange.

6. Representations are exchanged between components using the HTTP protocol
and the operations (GET, PUT, etc.) that HTTP supports.

6.2. Identifiers

The Architecture of the World Wide Web establishes the URI as the single global identification
system for the Web. Therefore, URIs or URI Templates are used in OGC Web API Standards to
identify key entities in those Standards.

In accordance with OGC policy, only the Uniform Resource Locator (URL) form of URIs is used.

The normative provisions in this Standard are denoted by the URI http://www.opengis.net/
spec/ogcapi-common-1/1.0. All Requirements, Requirements Modules and Conformance
Modules that appear in this document are denoted by partial URIs that are relative to this base.

Resources described in this document are denoted by partial URIs that are relative to the root
node of the API. This node serves as the head of the resource tree exposed through an API. In
OpenAPI, the root node is identified by the url field of the Server Object. In this document the
tag {root} designates the root node of a URI.

The partial URIs used to identify Resources in this document are referred to as the resource
path. The purpose of a resource path is to identify the referenced resource within the
context of this Standard. Implementers are encouraged to use these partial URIs in their
implementations, thereby providing a common look and feel to OGC APIs.

OPEN GEOSPATIAL CONSORTIUM 19-072 15

http://www.opengis.net/spec/ogcapi-common-1/1.0
http://www.opengis.net/spec/ogcapi-common-1/1.0
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#server-object

The OGC API — Common — Part 1 Standard defines Resources, which may appear in more than
one place in the API. These Resource Types are identified by name rather than by URI.

Summary for Developers:

RFC 3986 defines a URI in Backus-Naur Form (BNF) as follows:

URI = scheme ":" hier-part ["?" query] ["#" fragment]

 hier-part = "//" authority path-abempty
 / path-absolute
 / path-rootless
 / path-empty

 authority = [userinfo "@"] host [":" port]

 path-abempty = *("/" segment)

 path-absolute = "/" [segment-nz *("/" segment)]

 path-rootless = segment-nz *("/" segment)

 path-empty = 0<pchar>

Figure 1 — Backus-Naur Definition of URI

The following rules should be used when interpreting the BNF for use with this Standard:

• scheme is assumed to be HTTP or HTTPS;

• authority is provided by the API developer;

• {root} designates the scheme, authority, and path to the root node of the API
implementation;

• Only the path-absolute and path-rootless patterns are used;

• Parameters passed as part of an operation are encoded in the query; and

• Parameters passed in HTTP headers or as cookies are out of scope for this Standard.

The following example shows a URI categorized according to RFC 3986 and OGC Web API
Standards.

URI https://example.com:8042/myapi/mydata/?name=roads#centerline
 ____/ _______________/ __________/ _________/ ________/
 | | | | |
3986 scheme authority path query fragment
 ______________________/ __________/ ____________________/
 | | |
OGC {root} path parameters

Figure 2 — Example URI and Components

This document does not restrict the lexical space of URIs used in the API beyond the
requirements of the HTTP and URI Syntax IETF RFCs. If URIs include reserved characters that
are delimiters in the URI subcomponent, these have to be percent-encoded. See Clause 2 of RFC
3986 for details.

OPEN GEOSPATIAL CONSORTIUM 19-072 16

NOTEOGC Web API Standards may include a community-defined identifier as part of a URI (for
example: image id or feature id). Definition of the format of those identifiers is out of scope for
these Standards. Implementers should take care that these identifiers are properly encoded (see
RFC 3986) in the URIs for all hosted resources.

Additional information on this topic is provided in the OGC API — Common — Users Guide.

6.3. Links

OGC Web API Standards use RFC 8288 (Web Linking) to express relationships between
resources. Resource representations defined in these Standards commonly include a “links”
element. A “links” element is an array of individual hyperlink elements. These “links” elements
provide a convention for associating related resources.

The individual hyperlink elements that make up a “links” element are defined using the following
Hyperlink Schema.

type: object
required:
 - href
 - rel
properties:
 href:
 type: string
 description: Supplies the URI to a remote resource (or resource fragment).
 example: http://data.example.com/buildings/123
 rel:
 type: string
 description: The type or semantics of the relation.
 example: alternate
 type:
 type: string
 description: A hint indicating what the media type of the result of
dereferencing the link should be.
 example: application/geo+json
 hreflang:
 type: string
 description: A hint indicating what the language of the result of
dereferencing the link should be.
 example: en
 title:
 type: string
 description: Used to label the destination of a link such that it can be
used as a human-readable identifier.
 example: Trierer Strasse 70, 53115 Bonn
 length:
 type: integer

Figure 3 — Link Relation Schema

NOTEThe href value is not restricted to absolute links. Relative links are also allowed.

OPEN GEOSPATIAL CONSORTIUM 19-072 17

http://www.opengis.net/doc/UG/ogcapi-common/1.0#identifiers-section
http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/link.yaml

In addition, links should be passed in the response using HTTP link headers. These links are
accessible to the client without a need to process the resource.

RECOMMENDATION 1

IDENTIFIER /rec/core/link-header

A
Links included in the payload of a response SHOULD also be included as Link headers in the HTTP
response according to RFC 8288, Clause 3.

B
This recommendation does not apply when there are a large number of links included in a response or
a link is not known when the HTTP headers of the response are created.

Additional information on this topic is provided in the OGC API — Common — Users Guide.

6.4. Link relations

Link relation types identify the semantics of a link. For example, a link with the relation type
“service-meta” indicates that the current link context has service metadata at the link target.

Link relation types are expressed using the “rel” property from the Hyperlink Schema.

The “rel” property is populated using values from the IANA Link Relations Registry wherever
possible. Additional values are registered with the OGC Link Relation Registry. Additional
relation type values can be used if neither of these registers suffice.

The link relationships used in the OGC API — Common — Part 1: Core Standard are described in
Table 1. Additional relation types may be used if the implementation warrants it.

Table 1 — Link Relations

LINK RELATION PURPOSE

alternate

Refers to a substitute for this context [IANA].
Refers to a representation of the current resource that
is encoded using another media type (the media type is
specified in the type link attribute).

http://www.opengis.net/def/rel/ogc/1.0/
data-meta

Identifies general metadata for the context (dataset or
collection) that is primarily intended for consumption by
machines.

http://www.opengis.net/def/rel/ogc/1.0/
conformance

Refers to a resource that identifies the specifications that
the link’s context conforms to. [OGC]

describedby
Refers to a resource providing information about the
link’s context.[IANA]

OPEN GEOSPATIAL CONSORTIUM 19-072 18

http://www.opengis.net/doc/UG/ogcapi-common/1.0#link-relations-section
http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/link.yaml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.opengis.net/def/rel
http://www.opengis.net/def/rel/ogc/1.0/data-meta
http://www.opengis.net/def/rel/ogc/1.0/data-meta
http://www.opengis.net/def/rel/ogc/1.0/conformance
http://www.opengis.net/def/rel/ogc/1.0/conformance

LINK RELATION PURPOSE

Links to external resources that further describe the
subject resource

license Refers to a license associated with this context. [IANA]

self
Conveys an identifier for the link’s context. [IANA]
A link to another representation of this resource.

service-desc
Identifies service description for the context that is
primarily intended for consumption by machines. [IANA]
API definitions are considered service descriptions.

service-doc
Identifies service documentation for the context that is
primarily intended for human consumption. [IANA]

service-meta
Identifies general metadata for the context that is
primarily intended for consumption by machines. [IANA]

Additional information on the use of link relationships is provided in the OGC API — Common —
Users Guide.

6.5. Use of HTTPS

For simplicity, this OGC Standard only refers to the HTTP protocol. This is not meant to exclude
the use of HTTPS. This is simply a shorthand notation for “HTTP or HTTPS”. In fact, most servers
are expected to use HTTPS and not HTTP.

OGC Web API Standards do not prohibit the use of any valid HTTP option. However,
implementers should be aware that optional capabilities that are not in common use could be an
impediment to interoperability.

6.6. API definition

6.6.1. General remarks

This OGC Standard specifies requirements and recommendations for the development of APIs
that share spatial resources while using a Standard way of doing so. In general, APIs will go
beyond the requirements and recommendations stated in this Standard. They will support
additional operations, parameters, and so on, that are specific to the API or the software tool
used to implement the API.

OPEN GEOSPATIAL CONSORTIUM 19-072 19

http://www.opengis.net/doc/UG/ogcapi-common/1.0#link-relations-section
http://www.opengis.net/doc/UG/ogcapi-common/1.0#link-relations-section

So that client developers can more easily learn how to use the API, good documentation
is essential. In the best case, documentation would be available both in HTML for human
consumption and in a machine-readable format that can be processed by software for run-time
binding. The use of OpenAPI is one way to provide that machine-readable documentation.

6.6.2. Role of OpenAPI

This OGC API Standard uses OpenAPI 3.0 fragments in examples and to formally state
requirements. Using OpenAPI 3.0 is not required for implementing an OGC API. Other API
definition languages may be used along with, or instead of, OpenAPI. However, any API
definition language used should have an associated conformance class advertised through the /
conformance path.

This Standard includes a conformance class for OGC API definitions that follow the OpenAPI
specification 3.0. Alternative API definition languages are also allowed. Conformance classes for
additional API definition languages will be added as the OGC API landscape continues to evolve.

6.6.3. References to OpenAPI components in normative statements

Some normative statements (requirements, recommendations and permissions) use a phrase that
a component in the API definition of the server must be “based upon” a schema or parameter
component in the OGC schema repository.

In this case, the following changes to the pre-defined OpenAPI component are permitted.

• If the server supports an XML encoding, xml properties may be added to the relevant
OpenAPI schema components.

• The range of values of a parameter or property may be extended (additional values) or
constrained (if a subset of all possible values is applicable to the server). An example
for a constrained range of values is to explicitly specify the supported values of a string
parameter or property using an enum.

• Additional properties may be added to the schema definition of a Response Object.

• Informative text may be changed or added, like comments or description properties.

For OGC API definitions that do not conform to the OpenAPI Specification 3.0, the normative
statement should be interpreted in the context of the API definition language used.

6.6.4. Reusable OpenAPI components

Reusable components for OpenAPI definitions for an OGC API are referenced from this
document. They are available from the OGC Schemas Registry at http://schemas.opengis.net/
ogcapi/common/part1/1.0.

OPEN GEOSPATIAL CONSORTIUM 19-072 20

http://schemas.opengis.net/ogcapi/common/part1/1.0
http://schemas.opengis.net/ogcapi/common/part1/1.0

Additional information on the use of OpenAPI as an API definition is provided in the OGC API —
Common — Users Guide.

OPEN GEOSPATIAL CONSORTIUM 19-072 21

http://www.opengis.net/doc/UG/ogcapi-common/1.0#oas30-usage-section
http://www.opengis.net/doc/UG/ogcapi-common/1.0#oas30-usage-section

7

OVERVIEW

OPEN GEOSPATIAL CONSORTIUM 19-072 22

7 OVERVIEW

The OGC API — Common — Part 1: Core Standard defines common requirements and
recommendations which are applicable to all OGC Web API Standards.

7.1. Evolution from OGC Web Services

OGC Web Service (OWS) Standards implement a Remote-Procedure-Call-over-HTTP
architectural style using XML for payloads. This was the state-of-the-art when OGC Web
Services (OWS) were originally designed in the late 1990s and early 2000s. However,
technology has evolved. New Resource-Oriented APIs provide an alternative to the Service-
Oriented Approach. New OGC Web API Standards are under development to provide API
alternatives to the OWS Standards.

The OGC API — Common Standard specifies common modules for defining OGC Web API
Standards that follow the current Web architecture. In particular, the recommendations as
defined in the W3C/OGC best practices for sharing Spatial Data on the Web as well as the W3C
best practices for sharing Data on the Web.

A detailed discussion of OGC Web Services and Web APIs can be found in the OGC API —
Common — Users Guide.

7.2. Modular APIs

A goal of OGC API Standards is to provide rapid and easy access to spatial resources. To
meet this goal, the needs of both the resource provider and the resource consumer must be
considered. The approach specified in this Standard is to provide a modular framework of API
components. This framework provides a consistent “look and feel” across all OGC APIs. When
API servers and clients are built from the same set of modules, the likelihood that they will
integrate at run-time is greatly enhanced.

The modular Web API approach adopted by OGC API Standards has several facets.

• A common core that is recommended for all implementations of OGC API Standards. This
OGC API — Common — Part 1: Core Standard defines this core in the Core Requirements
Class.

• Common descriptive resources which allow clients to learn the purpose and capabilities
of an API as well as how they should be used. These resources are defined in the Landing
Page Requirements Class.

OPEN GEOSPATIAL CONSORTIUM 19-072 23

http://www.opengis.net/doc/UG/ogcapi-common/1.0#ug-evolution-from-web-services
http://www.opengis.net/doc/UG/ogcapi-common/1.0#ug-evolution-from-web-services

• Clear separation between common requirements and more resource specific capabilities.
The OGC API — Common Standard specifies the common requirements that may be
relevant to almost anyone who wants to build an API for spatial resources. Resource-
specific requirements are addressed in resource-specific OGC Standards.

• Technologies that change more frequently are decoupled and specified in separate
modules (“conformance classes” in OGC terminology). This enables, for example, the use/
re-use of new encodings for spatial data or API descriptions.

• Modularization is not just about a single “service”. OGC APIs provide building blocks that
can be reused in APIs in general. In other words, a server that implements the OGC API –
Features Standard should not be seen as a standalone service. Rather, this server should
be viewed as a collection of API building blocks that together implement the capabilities
that are specified in OGC API — Features. A corollary of this is that it should be possible
to implement an API that simultaneously conforms to conformance classes from multiple
current or future OGC API Standards.

7.3. Using APIs

OGC API Standards are expected to support two different approaches that clients may use
when accessing an OGC conformant Web API.

In the first approach, clients are implemented with knowledge about the Standard used to build
the API and the associated resource types. The clients navigate the resources based on this
knowledge and based on the responses provided by the API. The API definition may be used
to determine details, e.g., on filter parameters, but this may not be necessary depending on the
needs of the client. These are clients that are in general able to use multiple APIs as long as they
implement OGC API Standards.

The other approach targets developers that are not familiar with OGC API Standards but
want to interact with spatial data provided by an API that happens to implement OGC API
Standards. In this case the developer will study and use the API definition — typically an
OpenAPI document — to understand the API and implement the code to interact with that API.
This assumes familiarity with the API definition language and the related tooling, but it should
not be necessary to study the OGC API Standards.

OPEN GEOSPATIAL CONSORTIUM 19-072 24

8

CORE REQUIREMENTS
CLASS

OPEN GEOSPATIAL CONSORTIUM 19-072 25

8 CORE REQUIREMENTS CLASS

The following requirements and recommendations define protocol-level conventions that should
be applicable to all OGC Web APIs.

REQUIREMENTS CLASS 1

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/req/core

TARGET TYPE Web API

PREREQUISITES
RFC 7231 (HTTP/1.1)
RFC 2818 (HTTP over TLS)
RFC 8288 (Web Linking)

8.1. HTTP 1.1

The standards used for Web APIs are built on the HTTP protocol. Therefore, conformance with
HTTP or a closely related protocol is required.

REQUIREMENT 1

IDENTIFIER /req/core/http

A OGC Web APIs SHALL conform to HTTP 1.1.

B If the API supports HTTPS, then the API SHALL also conform to HTTP over TLS.

8.2. HTTP Status Codes

Table 2 lists the main HTTP status codes that clients should be prepared to receive. This includes
support for specific security schemes or URI redirection. In addition, other error situations may
occur in the transport layer outside of the server.

OPEN GEOSPATIAL CONSORTIUM 19-072 26

Table 2 — Typical HTTP status codes

STATUS CODE DESCRIPTION

200 A successful request.

302
The target resource was found but resides temporarily under a different URI. A 302 response is
not evidence that the operation has been successfully completed.

303
The server is redirecting the user agent to a different resource. A 303 response is not evidence
that the operation has been successfully completed.

304
An entity tag was provided in the request and the resource has not changed since the previous
request.

307
The target resource resides temporarily under a different URI and the user agent MUST NOT
change the request method if it performs an automatic redirection to that URI.

308
Indicates that the target resource has been assigned a new permanent URI and any future
references to this resource ought to use one of the enclosed URIs.

400
The server cannot or will not process the request due to an apparent client error. For example, a
query parameter had an incorrect value.

401
The request requires user authentication. The response includes a WWW-Authenticate header
field containing a challenge applicable to the requested resource.

403
The server understood the request, but is refusing to fulfill it. While status code 401 indicates
missing or bad authentication, status code 403 indicates that authentication is not the issue, but
the client is not authorized to perform the requested operation on the resource.

404
The requested resource does not exist on the server. For example, a path parameter had an
incorrect value.

405
The request method is not supported. For example, a POST request was submitted, but the
resource only supports GET requests.

406
Content negotiation failed. For example, the Accept header submitted in the request did not
support any of the media types supported by the server for the requested resource.

500 An internal error occurred in the server.

The return status codes described in Table 2 do not cover all possible conditions. See IETF RFC
7231 for a complete list of HTTP status codes.

RECOMMENDATION 2

IDENTIFIER /per/core/additional-status-codes

A
Servers MAY implement additional capabilities provided by the HTTP protocol. Therefore, they MAY
return status codes in addition to those listed in Table 2.

OPEN GEOSPATIAL CONSORTIUM 19-072 27

When a server encounters an error in the processing of a request, the server may wish to
include information in addition to the status code in the response. Since Web API interactions
are often machine-to-machine, a machine-readable report would be preferred. IETF RFC 7807
addresses this need by providing “Problem Details” response schemas for both JSON and XML.

RECOMMENDATION 3

IDENTIFIER /rec/core/problem-details

A
An OGC Web API should include a “Problem Details” report in any error response in accordance with
IETF RFC 7807.

8.3. Query parameters

8.3.1. Parameter Names

REQUIREMENT 2

IDENTIFIER /req/core/query-param-name-unknown

A

The server SHALL return a response with the status code 400 IF
1. the request URI includes a query parameter that is not specified in the API definition

2. /per/core/query-param-name-specified does not apply, and

3. /per/core/query-param-name-tolerance does not apply.

The criteria for a parameter to be “specified” in the API definition depends on the API definition
language used, the complexity of the resources exposed, and the ability of the API server to
tolerate errors.

A service implementer should endeavor to provide as much detail in the server’s API definition
as the API definition language allows. However, there is no requirement for the API definition
to list every endpoint for which there is a non-404 behavior, for it to list every possible query
parameter that might affect the behavior of an endpoint, or for it to list every possible value that
each query parameter might accept.

RECOMMENDATION 4

IDENTIFIER /per/core/query-param-name-specified

OPEN GEOSPATIAL CONSORTIUM 19-072 28

RECOMMENDATION 4

A
The specification of a query parameter in the API definition MAY encompass a range of parameter
names. Any query parameter that falls within the specified range can be considered “specified” in the
API definition.

STATEMENT

Examples of a parameter range include:
• A regular expression that defines the valid parameter names,

• A URI Template segment that defines the valid parameter names,

• An indication that all parameter names are accepted (no parameter validation).

RECOMMENDATION 5

IDENTIFIER /per/core/query-param-name-tolerance

A

Servers MAY display tolerance for requests with incorrect query parameter names. These acts of
tolerance include:

• Accept alternate capitalizations, spellings, and/or aliases of parameters,

• Ignore unknown/unrecognized parameters,

• Return a response with a status code of 30x redirecting the client to a more correct version of
the request.

B
Servers should not be excessively tolerant. The response a client receives from the server should be a
reasonable response for the request submitted.

8.3.2. Parameter Values

REQUIREMENT 3

IDENTIFIER /req/core/query-param-value-invalid

A

The server SHALL respond with a response with the status code 400 IF
1. the request URI includes a query parameter that has an invalid value and

2. /per/core/query-param-value-specified does not apply and

3. /per/core/query-param-value-tolerance does not apply.

The criteria for a parameter value to be considered “invalid” varies with the expressiveness of
the API definition language used and the ability of the API server to tolerate errors.

A service implementer should endeavor to provide as much detail in the server’s API definition
as the API definition language allows. However, there is no requirement to list every possible
value that each query parameter might accept. Rather, the API implementation should include a
reasonable degree of error recovery.

OPEN GEOSPATIAL CONSORTIUM 19-072 29

RECOMMENDATION 6

IDENTIFIER /per/core/query-param-value-specified

A
The specification of a query parameter in the API definition should include a definition of the valid
values for that parameter. Any value that meets that criteria can be considered “specified” in the API
definition.

B

The API definition language chosen may not be capable of expressing the desired range of values. In
that case the server SHOULD provide:

1. A definition of the parameter values that best expresses the intended use of that parameter,

2. Additional human readable text documenting the actual range of validity.

RECOMMENDATION 7

IDENTIFIER /per/core/query-param-value-tolerance

A

Servers MAY display tolerance for requests where a parameter has an incorrect value. These acts of
tolerance include:

• substituting default values for invalid ones,

• correcting formatting errors (e.g. convert integers to float).

B
Servers should not be excessively tolerant. The response a client receives from the server should be a
reasonable response for the request submitted.

8.4. Web Caching

Entity tags are a mechanism for web cache validation and for supporting conditional requests to
reduce network traffic. Entity tags are specified by HTTP 1.1 (RFC 7232).

RECOMMENDATION 8

IDENTIFIER /rec/core/etag

A The service SHOULD support entity tags and the associated headers as specified by HTTP 1.1.

OPEN GEOSPATIAL CONSORTIUM 19-072 30

8.5. Support for Cross-Origin Requests

If the data is located on another host than the webpage (“same-origin policy”), access to data
from a HTML page is by default prohibited for security reasons. A typical example is a web-
application accessing feature data from multiple distributed datasets.

RECOMMENDATION 9

IDENTIFIER /rec/core/cross-origin

A
If the server is intended to be accessed from a browser, cross-origin requests SHOULD be supported.
 Note that support can also be added in a proxy layer on top of the server.

Two common mechanisms to support cross-origin requests are:

• Cross-origin resource sharing (CORS)

• JSONP (JSON with padding)

8.6. String Internationalization

If the server supports representing resources in multiple languages, the usual HTTP content
negotiation mechanisms apply. The client states its language preferences in the Accept-
Language header of a request and the server responds with responses that have linguistic text in
the language that best matches the requested languages and the capabilities of the server.

RECOMMENDATION 10

IDENTIFIER /rec/core/string-i18n

A
For encodings that support string internationalization, the server SHOULD include information about
the language for each string value that includes linguistic text.

For example, if JSON-LD is used as an encoding, the built-in capabilities to annotate a string
with its language should be used.

The link object based on RFC 8288 (Web Linking) includes a hreflang attribute that can be
used to state the language of the referenced resource. This can be used to include links to the
same data in, for example, English or French. Just like with multiple encodings, a server that
wants to use language-specific links will have to support a mechanism to mint language-specific
URIs for resources in order to express links to, for example, the same resource in another

OPEN GEOSPATIAL CONSORTIUM 19-072 31

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/JSONP
https://www.w3.org/TR/json-ld/#string-internationalization
https://www.w3.org/TR/json-ld/#string-internationalization
http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/link.yaml

language. Again, this document does not mandate any particular approach how such a capability
is supported by the server.

8.7. Resource Encodings

A Web API provides access to resources through representations of those resources. One
property of a representation is the format used to encode it for transfer. Components negotiate
the encoding format to use through the content negotiation process defined in IETF RFC 7231.

Additional content negotiation techniques are allowed, but support is not required of
implementations conformant to this Standard.

While this Standard does not specify any mandatory encoding, the following encodings are
recommended:

HTML encoding recommendation:

RECOMMENDATION 11

IDENTIFIER /rec/core/html

A
To support browsing an API with a web browser and to enable search engines to crawl and index the
dataset, implementations SHOULD consider supporting an HTML encoding.

JSON encoding recommendation:

RECOMMENDATION 12

IDENTIFIER /rec/core/json

A
To support processing of an API with a web applet, implementations SHOULD consider supporting a
JSON encoding.

Requirement /req/core/http implies that the encoding of a server response is determined
using content negotiation as specified by the HTTP RFC.

The section Media Types includes guidance on media types for encodings that are specified in
this document.

Note that any server that supports multiple encodings will have to support a mechanism
to mint encoding-specific URIs for resources in order to express links, such as, to alternate
representations of the same resource. This Standard does not mandate any particular approach
for how this is supported by the server.

OPEN GEOSPATIAL CONSORTIUM 19-072 32

As clients simply need to dereference the URI of the link, the implementation details and the
mechanism of how the encoding is included in the URI of the link are not important. Developers
interested in the approach of a particular implementation, such as manipulating (“hacking”) URIs
in the browser address bar, can study the API Definition document for that server.

Two common approaches are to use:

• An additional path for each encoding of each resource (this can be expressed, for example,
using format specific suffixes like “.html”);

• An additional query parameter (for example, “accept” or “f”) that overrides the Accept
header of the HTTP request.

8.8. Parameter Encoding

The following sections provide the requirements and guidelines for encoding parameters for use
in an OGC Web API request.

OGC Web API requests are issued using a URI. The URI syntax is defined in IETF RFC 3986.
Rules for building URI Templates can be found in IETF RFC 6570.

The Backus-Naur Form (BNF) definition of a URI is provided in Annex Annex D.1.

8.8.1. Capitalization

IETF RFC 3986 sections 6.2.2.1 and 2.1 provide the requirements for capitalization in URIs.

REQUIREMENT 4

IDENTIFIER /req/core/query-param-capitalization

A Parameter names and values SHALL be case sensitive.

B

IF a parameter name or value includes a percent encoded (escaped) character,
 THEN
the upper case hexadecimal digits (“A” through “F”) of that percent encoded character SHALL be
equivalent to the lower case digits “a” through “f” respectively.

In order to minimize capitalization issues for implementers of OGC Web API standards:

OPEN GEOSPATIAL CONSORTIUM 19-072 33

RECOMMENDATION 13

IDENTIFIER /rec/core/query-param-capitalization

A Query parameter names SHOULD be in kebab case.

B
Query parameter values are usually reflective of the internal structure of the target resource. Unless
otherwise specified, these values SHOULD be in kebab case.

A Web API may allow filtering on properties of the target resource. In that case, the parameter
name would be the name of the resource property. These names are defined by the standards
and specifications defining the resource and cannot be constrained by this Standard.

8.8.2. Parameter Value Lists

Parameters may pass more than one value. These lists of parameter values may be passed in two
ways.

1. Repeated name:value pairs where the parameter name is repeated for each value
in the list

2. A parameter name followed by a delimited list of values.

The following requirements define how to encode a delimited list (case 2) of parameter values.
They do not apply if replication (case 1) is used.

REQUIREMENT 5

IDENTIFIER /req/core/query-param-list-delimiter

A Parameters values containing lists SHOULD specify the delimiter to be used in the API definition.

B The default list item delimiter SHALL be the comma (“,”).

REQUIREMENT 6

IDENTIFIER /req/core/query-param-list-escape

A
Any list item values that include a space or comma SHALL escape the space or comma character using
the URI encoding rules from IETF RFC 3986

OPEN GEOSPATIAL CONSORTIUM 19-072 34

REQUIREMENT 7

IDENTIFIER /req/core/query-param-list-empty

A All empty entries SHALL be represented by the empty string.

Thus, two successive commas indicate an empty item, as does a leading comma or a trailing
comma. An empty list can either be interpreted as a list containing no items or as a list
containing a single empty item, depending on the context.

8.8.3. Numeric and Boolean Values

The Geospatial field is a mathematical discipline. A clear and accurate exchange of mathematical
values is essential. The encoding rules in this section standardize the encoding of numeric and
Boolean primitives when included in a URI. These rules are based on the computer science basic
data types identified by Kernighan and Ritchie.

Boolean values conform to the following requirement.

REQUIREMENT 8

IDENTIFIER /req/core/query-param-value-boolean

A
Boolean values shall be represented by the lowercase strings “true” and “false”, representing Boolean
true and false respectively.

Integer values conform to the following requirement.

REQUIREMENT 9

IDENTIFIER /req/core/query-param-value-integer

A
Integer values SHALL be represented by a finite-length sequence of decimal digits with an optional
leading negative “-” sign. Positive values are assumed if the leading sign is omitted.

Real numbers can be represented using either the decimal or double (exponential) format. The
decimal format is typically used except for very large or small values.

Decimal values conform to the following requirement.

REQUIREMENT 10

IDENTIFIER /req/core/query-param-value-decimal

OPEN GEOSPATIAL CONSORTIUM 19-072 35

REQUIREMENT 10

A

Decimal values SHALL be represented by a finite-length sequence of decimal digits separated by a
period as a decimal indicator.

• An optional leading negative sign (“-”) is allowed.

• If the sign is omitted, positive (“+”) is assumed.

• Leading and trailing zeroes are optional.

• If the fractional part is zero, the period and following zero(es) can be omitted.

Double values conform to the following requirement.

REQUIREMENT 11

IDENTIFIER /req/core/query-param-value-double

A
Double values SHALL be represented by a mantissa followed, optionally, by the character “e”, followed
by an exponent.

B The exponent SHALL be an integer.

C The mantissa SHALL be a decimal number.

D The representations for exponent and mantissa SHALL follow the lexical rules for integer and decimal.

E If the “e” and the following exponent are omitted, an exponent value of 0 SHALL be assumed.

Special values, if supported, should conform to the following recommendation.

RECOMMENDATION 14

IDENTIFIER /rec/core/query-param-value-special

A
The special values positive and negative infinity and not-a-number SHOULD be represented using the
strings inf, -inf and nan, respectively.

OPEN GEOSPATIAL CONSORTIUM 19-072 36

9

LANDING PAGE
REQUIREMENTS CLASS

OPEN GEOSPATIAL CONSORTIUM 19-072 37

9 LANDING PAGE REQUIREMENTS CLASS

REQUIREMENTS CLASS 2

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/req/landing-page

TARGET TYPE Web API

The Landing Page Requirements Class of the OGC API — Common — Part 1: Core Standard
describes how the Landing Page and its associated resources are accessed through an OGC
conformant Web API.

The Landing Page resources are introduced in Table 3. The requirements and recommendations
applicable to these resources are provided in the sections below.

Table 3 — Landing Page Resources

RESOURCE HTTP METHOD DESCRIPTION

Landing Page GET the landing page

API Definition GET the API Definition document for this API

Conformance Declaration GET the conformance information for this API

9.1. API landing page

An OGC Web API has a single landing page on the {root} node.

The purpose of the landing page is to provide clients with a starting point for using the API. Any
resource exposed through an API can be accessed by following paths or links starting from the
landing page.

The landing page includes three metadata elements: title, description, and attribution. These
three elements describe the API as a whole. Clients can expect to encounter metadata that is
more resource-specific as they follow links and paths from the landing page.

While the three metadata elements are defined as text strings, the attribution element is special.
Specifically, the attribution element can contain markup text. Markup allows a text string to

OPEN GEOSPATIAL CONSORTIUM 19-072 38

import images and format text. The capabilities are only limited by the markup language used.
See the example landing page for an example of the use of markup in the attribution element.

9.1.1. Operation

REQUIREMENT 12

IDENTIFIER /req/landing-page/root-op

A The server SHALL support the HTTP GET operation on the URI {root}/.

B
The response to the HTTP GET request issued in A SHALL satisfy requirement /req/landing-page/
root-success.

9.1.2. Response

REQUIREMENT 13

IDENTIFIER /req/landing-page/root-success

A
A successful execution of the operation SHALL be reported as a response with an HTTP status code
200.

B

The content of that response SHALL be based upon the schema landingPage.yaml and include links to
the following resources:

• API Definition (relation type ‘service-desc’ or ‘service-doc’)

• Conformance Declaration (relation type ‘http://www.opengis.net/def/rel/ogc/1.0/conformance’)

The Landing Page returned by this operation is based on the following OpenAPI schema.

type: object
required:
 - links
properties:
 title:
 type: string
 title: The title of the API.
 description: While a title is not required, implementers are strongly
advised to include one.
 example: Buildings in Bonn
 description:
 type: string
 example: Access to data about buildings in the city of Bonn via a Web API
that conforms to the OGC API Common specification.
 attribution:
 type: string
 title: attribution for the API

OPEN GEOSPATIAL CONSORTIUM 19-072 39

http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/landingPage.yaml

 description: The `attribution` should be short and intended for
presentation to a user, for example, in a corner of a map. Parts of the text
can be links to other resources if additional information is needed. The
string can include HTML markup.
 links:
 type: array
 items:
 $ref: link.yaml

Figure 4 — Landing Page Schema

In addition to the required resources, links to additional resources may be included in the
Landing Page.

Examples of OGC API landing pages are provided in Annex B.1.

A JSON schema for the Landing Page resource can be found on the OGC Schema Repository.

9.1.3. Error Situations

See Clause 8.2 for general guidance.

9.2. API Definition

Every API implementation should provide an API Definition resource that describes the
capabilities provided by that API. This resource can be used by client developers to understand
the supported services, by software clients to connect to the server, and by development tools
to support the implementation of servers and clients.

9.2.1. Operation

REQUIREMENT 14

IDENTIFIER /req/landing-page/api-definition-op

A
The server SHALL support the HTTP GET operation on all links from the landing page that have the
relation type service-desc.

B
The server SHALL support the HTTP GET operation on all links from the landing page that have the
relation type service-doc.

C
The responses to all HTTP GET requests issued in A and B SHALL satisfy requirement /req/landing-
page/api-definition-success.

OPEN GEOSPATIAL CONSORTIUM 19-072 40

http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/landingPage.yaml

RECOMMENDATION 15

IDENTIFIER /rec/landing-page/api-definition-op

A The server SHOULD support the HTTP GET operation on the URI {root}/api.

B
The response to the HTTP GET request issued in A SHOULD satisfy requirement /req/landing-page/
api-definition-success.

9.2.2. Response

REQUIREMENT 15

IDENTIFIER /req/landing-page/api-definition-success

A
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200.

B The content of that response SHALL be an API Definition document.

C
The API Definition document SHALL be consistent with the media type identified through HTTP
content negotiation.

NOTEThe -f parameter MAY be used to satisfy this requirement.

RECOMMENDATION 16

IDENTIFIER /rec/landing-page/api-definition-oas

A
If the API definition document uses the OpenAPI Specification 3.0,
 THEN
The document SHOULD conform to the OpenAPI Specification 3.0 requirements class.

9.2.3. Error Situations

See Clause 8.2 for general guidance.

OPEN GEOSPATIAL CONSORTIUM 19-072 41

9.3. Declaration of Conformance Classes

The OGC Web API Standards define a collection of modules that can be assembled into a Web
API. The first question a client will ask when accessing one of these APIs is “what are you?” In
other words, what modules were used to create you? Since implementers have a choice on the
modules to use, there is no simple answer. The best that can be done is to provide a list of the
modules implemented, a declaration of the Conformance Classes.

The list of Conformance Classes is key to understanding and using an OGC Web API. So it is
important that they are easy to access. A simple GET using an easily constructed URI is all that
should be required. Therefore, the path to the Conformance Declaration is fixed.

Ease of access is also supported by the structure of the Conformance Declaration resource. It is
a simple list of URIs. This is a structure that requires almost no parsing and little interpretation
and is designed to be accessible to even the simplest client.

9.3.1. Operation

REQUIREMENT 16

IDENTIFIER /req/landing-page/conformance-op

A The server SHALL support the HTTP GET operation on the URI {root}/conformance.

B
The server SHALL support the HTTP GET operation on all links from the landing page that have the
relation type http://www.opengis.net/def/rel/ogc/1.0/conformance.

C
The responses to all HTTP GET requests issued in A and B SHALL satisfy requirement /req/landing-
page/conformance-success.

9.3.2. Response

REQUIREMENT 17

IDENTIFIER /req/landing-page/conformance-success

A
A successful execution of the operation SHALL be reported as a response with a HTTP status code
200.

B
The content of that response SHALL be based upon the schema confClasses.yaml and list all OGC API
conformance classes that the API conforms to.

OPEN GEOSPATIAL CONSORTIUM 19-072 42

http://www.opengis.net/def/rel/ogc/1.0/conformance
http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/confClasses.yaml

The Conformance Declaration returned by this operation is based on the following OpenAPI
schema.

type: object
required:
 - conformsTo
properties:
 conformsTo:
 type: array
 items:
 type: string
 example: "http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/core"

Figure 5 — Conformance Declaration Schema

A JSON schema for the Landing Page resource can be found on the OGC Schema Repository.

Examples of OGC Conformance Declarations are provided in Annex B.2.

9.3.3. Error situations

See Clause 8.2 for general guidance.

OPEN GEOSPATIAL CONSORTIUM 19-072 43

http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/confClasses.yaml

10

ENCODING REQUIREMENTS
CLASSES

OPEN GEOSPATIAL CONSORTIUM 19-072 44

10 ENCODING REQUIREMENTS CLASSES

10.1. Overview

This clause specifies two requirements classes for encodings that may be used by an OGC
Web API implementation. These encodings are commonly used for spatial data on the web
applications:

• HTML

• JSON

Neither of these encodings are mandatory. An implementation of the OGC API — Common
Standard may implement one, both, or none of them. Other encodings are possible.

10.2. Requirement Class “HTML”

Geographic information that is only accessible in formats such as GeoJSON or GML have two
issues when web application principles are considered:

• The data are not discoverable using Web crawlers and search engines,

• The data cannot be viewed directly in a browser — additional tools are required to view
the data.

Therefore, sharing data on the Web should include publication in HTML. To be consistent with
the Web, this publication should be done in a way that enables users and search engines to
discover and access all of the data.

This is discussed in detail in the W3C/OGC SDW Best Practice. Therefore, the OGC API —
Common Standard recommends supporting HTML as an encoding.

REQUIREMENTS CLASS 3

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/req/html

TARGET TYPE Web API

OPEN GEOSPATIAL CONSORTIUM 19-072 45

REQUIREMENTS CLASS 3

PREREQUISITES
Landing Page Requirements Class
HTML5
Schema.org

REQUIREMENT 18

IDENTIFIER /req/html/definition

A
200-responses of the server SHALL support the text/html media type for the Landing Page and
Conformance resources.

REQUIREMENT 19

IDENTIFIER /req/html/content

A

Every 200-response of the API with the media type “text/html” SHALL be a HTML 5 document that
includes the following information in the HTML body:

• All information identified in the schemas of the Response Object in the HTML <body/>, and

• All links in HTML <a/> elements in the HTML <body/>.

RECOMMENDATION 17

IDENTIFIER /rec/html/schema-org

A A 200-response with the media type text/html, SHOULD include Schema.org annotations.

10.3. Requirement Class “JSON”

JSON is a lightweight data-interchange format designed to facilitate structured data interchange
between applications. JSON is commonly used for Web-based software-to-software
interchanges. Most Web developers are comfortable with using a JSON-based format.
Therefore, support for JSON is recommended for machine-to-machine interactions.

OPEN GEOSPATIAL CONSORTIUM 19-072 46

https://www.w3.org/TR/html5/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#responseObject

REQUIREMENTS CLASS 4

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json

TARGET TYPE Web API

PREREQUISITES
Landing Page Requirements Class
IETF RFC 8259: The JavaScript Object Notation (JSON) Data Interchange Format
JSON Schema

REQUIREMENT 20

IDENTIFIER /req/json/definition

A
200-responses of the server SHALL support the application/json media type for the Landing Page
and Conformance resources.

REQUIREMENT 21

IDENTIFIER /req/json/content

A

Every request to a Landing Page or Conformance resource which:
1. Receives a 200-response

2. with the Content-Type header set to application/json
SHALL include, or link to, a payload encoded according to the JSON Interchange Format

B
The payload for these responses SHALL conform with the JSON Schema specified for the resource in
the Landing Page Requirements Class.

RECOMMENDATION 18

IDENTIFIER /rec/json/problem-details

A
Any OGC Web API implementation instance returning an RFC 7807 “Problem Details” report in JSON
should set the Content-Type header to “application/problem+json” and structure the report using
the JSON Schema here.

An example JSON Schema for the landing page is available at landingPage.yaml.

An example JSON Problem Details report is available at ExceptionExample.yaml.

OPEN GEOSPATIAL CONSORTIUM 19-072 47

https://tools.ietf.org/html/rfc8259
https://github.com/opengeospatial/ogcapi-common/blob/master/core/openapi/schemas/exception.json
http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/landingPage.yaml
http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/examples/ExceptionExample.yaml

11

OPENAPI 3.0
REQUIREMENTS CLASS

OPEN GEOSPATIAL CONSORTIUM 19-072 48

11 OPENAPI 3.0 REQUIREMENTS CLASS

11.1. Basic requirements

APIs conforming to this requirements class are self-documenting using an OpenAPI Document.

REQUIREMENTS CLASS 5

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/req/oas30

TARGET TYPE Web API

PREREQUISITE OpenAPI Specification 3.0

REQUIREMENT 22

IDENTIFIER /req/oas30/oas-definition-1

A
An OpenAPI definition in JSON using the media type application/vnd.oai.openapi
+json;version=3.0 and a HTML version of the API definition using the media type text/html
SHALL be available.

REQUIREMENT 23

IDENTIFIER /req/oas30/oas-definition-2

A The JSON representation SHALL conform to the OpenAPI Specification, version 3.0.

Two example OpenAPI documents are included in Annex B.

REQUIREMENT 24

IDENTIFIER /req/oas30/oas-impl

A The API SHALL implement all capabilities specified in the OpenAPI definition.

OPEN GEOSPATIAL CONSORTIUM 19-072 49

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#oasDocument

11.2. Complete definition

REQUIREMENT 25

IDENTIFIER /req/oas30/completeness

A
The OpenAPI definition SHALL specify for each operation all HTTP Status Codes and Response
Objects that the API uses in responses.

B
This includes the successful execution of an operation as well as all error situations that originate from
the server.

Note APIs that, for example, are access-controlled (see Security), support web cache validation,
support CORS, or that use HTTP redirection will make use of additional HTTP status codes
beyond regular codes such as 200 for successful GET requests and 400, 404 or 500 for error
situations. See Clause 8.2.

Clients should be prepared to receive responses not documented in the OpenAPI definition. For
example, additional errors may occur in the transport layer outside of the server.

11.3. Exceptions

REQUIREMENT 26

IDENTIFIER /req/oas30/exceptions-codes

A
For error situations that originate from an API server, the API definition SHALL cover all applicable
HTTP Status Codes.

Example — An exception response object definition

description: An error occurred.
content:
 application/json:
 schema:
 $ref: http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/
exception.yaml
 text/html:
 schema:
 type: string

OPEN GEOSPATIAL CONSORTIUM 19-072 50

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject

11.4. Security

OpenAPI uses two constructs to describe the security features of an API; Security Requirements
and Security Schemes. Security Requirements are packaged in an array. Only one of the Security
Requirements in the array must be met in-order to authorize a request. Security Requirements
are associated with one or more Security Schemes. Each Security Scheme describes a security
control (ex. HTTP authentication). All of the security schemes associated with a Security
Requirement must be satisfied in order for that Security Requirement to be met.

Security Requirements can be defined at the following levels.

• Root — applicable to the whole API except when overridden by Security Requirements
defined at a lower level of the API.

• Operation — only applicable to this operation. Overrides any requirements defined at the
Root level.

The OpenAPI specification currently supports the following security schemes:

• HTTP authentication;

• An API key (either as a header or as a query parameter);

• OAuth2’s common flows (implicit, password, application and access code) as defined in
RFC6749; and

• OpenID Connect Discovery.

REQUIREMENT 27

IDENTIFIER /req/oas30/security

A
If the operations of the API are access-controlled, the security scheme(s) and requirements SHALL be
documented in the OpenAPI definition.

11.5. Query Parameter Definition

The OpenAPI specification defines query parameters using the Parameter object with the in
property set to “query.” The parameter name is a literal value provided by the name property.
Since the parameter names are literals, each parameter must be described separately.

OPEN GEOSPATIAL CONSORTIUM 19-072 51

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#security-scheme-object

OGC API — Common requires that all query parameters are specified in the API definition. In
the case of a Feature server, this could mean that every property of every feature type must be
described in the API definition, a requirement that few implementers would accept.

The OpenAPI specification provides a capability that allows additional parameters to be
specified without explicitly declaring them. That is, parameters that have not been explicitly
specified in the API definition for the operation will still be considered “specified” for purposes
of validation (see /per/core/query-param-name-specified and /per/core/query-param-name-
tolerance.

in: query
name: freeFormParameters
schema:
 type: object
 additionalProperties: true
style: form

Figure 6 — OpenAPI schema for additional "free-form" query parameters

Note that the name of the parameter does not matter as the actual query parameters are the
names of the object properties. For example, assume that the value of freeFormParameters is
this object:

{
 "my_first_parameter": "some value",
 "my_other_parameter": 42
}

Figure 7 — Example "free-form" query parameter

In the request URI this would be expressed as &my_first_parameter=some%20value&my_
other_parameter=42.

11.6. Further Information

Additional guidance on using OpenAPI in OGC Web API implementations can be found in the
OGC API — Common — Users Guide.

OPEN GEOSPATIAL CONSORTIUM 19-072 52

http://www.opengis.net/doc/UG/ogcapi-common/1.0#oas30-usage-section

12

MEDIA TYPES

OPEN GEOSPATIAL CONSORTIUM 19-072 53

12 MEDIA TYPES

12.1. Normal Response Media Types

The typical media type for all “web pages” in an OGC Web API would be text/html.

The media type that would typically be used in an OGC Web API for machine-to-machine
exchanges would be application/json.

12.2. OpenAPI Media Types

The media types for an OpenAPI definition are application/vnd.oai.openapi
+json;version=3.0 (JSON) and application/vnd.oai.openapi;version=3.0 (YAML).

NOTEThe OpenAPI media type has not been registered yet with IANA and may change.

12.3. Problem Details Media Types

OGC API — Common recommends that implementers use IETF RFC 7807 when constructing
the response body for an error condition. The media types for an RFC 7807 Problem Details
response body are:

• application/problem+json — for responses in JSON

• application/problem+xml — for responses in XML

OPEN GEOSPATIAL CONSORTIUM 19-072 54

A

ANNEX A (INFORMATIVE)
ABSTRACT TEST SUITE
(NORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 19-072 55

A ANNEX A
(INFORMATIVE)
ABSTRACT TEST SUITE (NORMATIVE)

A.1. Introduction

OGC Web APIs are not Web Services in the traditional sense. Rather, they define the behavior
and content of a set of Resources exposed through a Web Application Programming Interface
(Web API). Therefore, an API may expose resources in addition to those defined by the standard.
A test engine must be able to traverse the API, identify and validate test points, and ignore
resource paths that are not to be tested.

A.2. Conformance Class Core

CONFORMANCE CLASS A.1

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/core

SUBJECT http://www.opengis.net/spec/ogcapi-common/1.0/req/core

TARGET TYPE Web API

A.2.1. HTTP

ABSTRACT TEST A.1

IDENTIFIER /conf/core/http

SUBJECT /req/core/http

OPEN GEOSPATIAL CONSORTIUM 19-072 56

ABSTRACT TEST A.1

TEST
PURPOSE

Validate that the resources advertised through the API can be accessed using the HTTP 1.1 protocol
and, where appropriate, TLS.

TEST
METHOD

1. All compliance tests shall be configured to use the HTTP 1.1 protocol exclusively.

2. For APIs that support HTTPS, all compliance tests shall be configured to use HTTP over TLS
(RFC 2818) with their HTTP 1.1 protocol.

A.2.2. Query Parameters

ABSTRACT TEST A.2

IDENTIFIER /conf/core/query-param-name-unknown

SUBJECT /req/core/query-param-name-unknown

TEST
PURPOSE

Validate that an error is returned when a query parameter is used that has not been specified in the
API definition.

TEST
METHOD

DO FOR ALL operations advertised in the API definition
 1. Execute that operation using a query parameter that is not specified in the API definition.
 2. Validate that the operation returns a response with the status code 400.
DONE

NOTE 1The parameter name chosen should not fall within the range allowed by /per/core/
query-param-name-specified or /per/core/query-param-name-tolerance.

ABSTRACT TEST A.3

IDENTIFIER /conf/core/query-param-value-invalid

SUBJECT /req/core/query-param-value-invalid

TEST
PURPOSE

Validate that an error is returned when a query parameter contains a value that is not valid for that
parameter.

TEST
METHOD

DO FOR ALL query parameters advertised in the API definition
 DO FOR ALL operations for which that parameter is valid
 1. Execute that operation using the query parameter with values
 that do not comply with the advertised constraints on those values.
 (Example: exceeding minimum or maximum values)
 2. Validate that the operation returns a response with the status code 400.
 DONE
DONE

OPEN GEOSPATIAL CONSORTIUM 19-072 57

NOTE 2The parameter values chosen should not fall within the range allowed by /per/core/
query-param-value-specified or /per/core/query-param-value-tolerance.

ABSTRACT TEST A.4

IDENTIFIER /conf/core/query-param-capitalization

SUBJECT /req/core/query-param-capitalization

TEST PURPOSE Validate that a parameter name is correctly capitalized

TEST METHOD

DO FOR ALL query parameters advertised in the API definition
 DO FOR ALL operations for which that parameter is valid
 1. Execute that operation using that query parameter
 capitalized as specified in the API definition
 2. Validate that the operation returns a response with the status code 200.
 3. Execute that operation using that query parameter with capitalization
 inverse of that specified in the API definition
 (Example: “Range” vs. “rANGE”)
 4. Validate that the operation returns a response with the status code 400.
 DONE
DONE

ABSTRACT TEST A.5

IDENTIFIER /conf/core/query-param-list-delimiter

SUBJECT /req/core/query-param-list-delimiter

TEST
PURPOSE

For every query parameter where the value may be a list, validate that the server uses the
designated delimiter to parse the items from the list.

TEST
METHOD

DO FOR ALL query parameters advertised in the API definition where the parameter value can be a
list
 DO FOR ALL operations for which that parameter is valid
 1. Generate a request using that parameter and a value that is a delimited
 list of items. Use a delimiter that is:
 a. As advertised in the API definition OR
 b. A comma (“,”) if no delimiter is advertised.
 2. Validate that the server properly interprets that parameter value
 3. Generate a request using that parameter and a value where:
 a. the value is a delimited list AND
 b. the delimiter used to construct the list is not valid for this server
 4. Validate that the server returns a status code 400
 DONE

OPEN GEOSPATIAL CONSORTIUM 19-072 58

ABSTRACT TEST A.5

DONE

ABSTRACT TEST A.6

IDENTIFIER /conf/core/query-param-list-escape

SUBJECT /req/core/query-param-list-escape

TEST
PURPOSE

For every query parameter where the value may be a list, validate that all escaped space and comma
characters that appear in the values are properly processed.

TEST
METHOD

DO FOR ALL query parameters advertised in the API definition where the parameter value can be a
list
 DO FOR ALL operations for which that parameter is valid
 1. Generate a request using that parameter and a value that
 includes an escaped space or comma
 2. Validate that the server properly interprets that parameter value
 3. Generate a request using that parameter and a value that
 includes a non-escaped space or comma
 4. Validate that the server returns a status code 400
 DONE
DONE

ABSTRACT TEST A.7

IDENTIFIER /conf/core/query-param-list-empty

SUBJECT /req/core/query-param-list-empty

TEST
PURPOSE

For every query parameter where the value may be a list, validate that the server interprets an
empty string as an empty list.

TEST
METHOD

DO FOR ALL query parameters advertised in the API definition where the parameter value can be a
list
 DO FOR ALL operations for which that parameter is valid
 1. Generate a request using that parameter and an empty string for the parameter value.
 2. Validate that the server properly interprets that parameter value as an empty list
 DONE
DONE

OPEN GEOSPATIAL CONSORTIUM 19-072 59

ABSTRACT TEST A.8

IDENTIFIER /conf/core/query-param-value-boolean

SUBJECT /req/core/query-param-value-boolean

TEST
PURPOSE

For every query parameter where the value is a boolean, validate that the server correctly interprets
boolean values of “true” and “false”.

TEST
METHOD

DO FOR ALL query parameters advertised in the API definition where the parameter value is a
boolean
 DO FOR ALL operations for which that parameter is valid
 1. Generate a request using that parameter and the string “true” for the parameter value
 2. Validate that the server properly interprets that parameter value as true boolean value
 3. Generate a request using that parameter and the string “false” for the parameter value
 4. Validate that the server properly interprets that parameter value as false boolean value
 DONE
DONE

ABSTRACT TEST A.9

IDENTIFIER /conf/core/query-param-value-integer

SUBJECT /req/core/query-param-value-integer

TEST
PURPOSE

For every query parameter where the value is an integer, validate that the server correctly interprets
properly encoded integer values.

TEST
METHOD

DO FOR ALL query parameters advertised in the API definition where the parameter value is an
integer
 DO FOR ALL operations for which that parameter is valid
 1. Generate a request using that parameter and an unsigned numeric string for the parameter
value
 2. Validate that the server properly interprets that parameter value as an unsigned integer
 3. Generate a request using that parameter and a negative signed numeric string for the
parameter value
 4. Validate that the server properly interprets that parameter value as a signed negative integer
value
 DONE
DONE

ABSTRACT TEST A.10

IDENTIFIER /conf/core/query-param-value-decimal

OPEN GEOSPATIAL CONSORTIUM 19-072 60

ABSTRACT TEST A.10

SUBJECT /req/core/query-param-value-decimal

TEST
PURPOSE

For every query parameter where the value is a decimal, validate that the server correctly interprets
properly encoded decimal values.

TEST
METHOD

DO FOR ALL query parameters advertised in the API definition where the parameter value is a
decimal number
 DO FOR ALL operations for which that parameter is valid
 1. Generate a request using that parameter and a parameter value that is:
 a) an unsigned numeric string preceded by one or more zeros
 b) contains at least two factional digits followed by one or more zeros
 2. Validate that the server properly interprets that parameter value as an unsigned decimal value
 3. Generate a request using that parameter and a parameter value that is:
 a) a signed negative numeric string
 b) contains at least two factional digits followed by one or more zeros
 4. Validate that the server properly interprets that parameter value as a signed negative decimal
value
 5. Generate a request using that parameter and a parameter value that:
 a) is an unsigned numeric string preceded by one or more zeros
 b) does not contain non-numeric characters (“.”)
 6. Validate that the server properly interprets that parameter value as an unsigned decimal value
with a fractional value of zero
 DONE
DONE

ABSTRACT TEST A.11

IDENTIFIER /conf/core/query-param-value-double

SUBJECT /req/core/query-param-value-double

TEST
PURPOSE

For every query parameter where the value is a double, validate that the server correctly interprets
properly encoded double values.

TEST
METHOD

DO FOR ALL query parameters advertised in the API definition where the parameter value is a
double value
 DO FOR ALL operations for which that parameter is valid
 1. Generate a request using that parameter and a parameter value that is:
 a) greater than 4,294,967,296 (“e” and exponent required) and
 b) contains at least two factional digits followed by one or more zeros
 2. Validate that the server properly interprets that parameter value
 3. Generate a request using that parameter and a parameter value that is:
 a) less than -4,294,967,296 (without “e” and exponent) and
 b) contains at least two factional digits followed by one or more zeros
 4. Validate that the server properly interprets that parameter value
 5. Generate a request using that parameter and a parameter value that is:

OPEN GEOSPATIAL CONSORTIUM 19-072 61

ABSTRACT TEST A.11

 a) Less than 4,294,967,296
 b) Greater than -4,294,967,295
 c) Represented as a single decimal number
 6. Validate that the server properly interprets that parameter value
 DONE
DONE

A.3. Conformance Class Landing Page

CONFORMANCE CLASS A.2

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/landing-page

SUBJECT http://www.opengis.net/spec/ogcapi-common/1.0/req/landing-page

PREREQUISITE Core Conformance Class

TARGET TYPE Web API

A.3.1. Landing Page

ABSTRACT TEST A.12

IDENTIFIER /conf/landing-page/root-op

SUBJECT
/req/landing-page/root-op
/req/landing-page/root-success

TEST PURPOSE Validate that a landing page can be retrieved from the expected location.

TEST METHOD

1. Issue an HTTP GET request to the URL {root}/

2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test /conf/landing-page/root-
success.

OPEN GEOSPATIAL CONSORTIUM 19-072 62

ABSTRACT TEST A.13

IDENTIFIER /conf/landing-page/root-success

SUBJECT /req/landing-page/root-success

TEST
PURPOSE

Validate that the landing page complies with the required structure and contents.

TEST
METHOD

Validate the landing page for all supported media types using the resources and tests identified in
Table A.1
For formats that require manual inspection, perform the following:

1. Validate that the landing page includes a “service-desc” and/or “service-doc” link to an API
Definition

2. Validate that the landing page includes a “http://www.opengis.net/def/rel/ogc/1.0/
conformance” link to the conformance class declaration

The landing page may be retrieved in a number of different formats. The following table
identifies the applicable schema document for each format and the test to be used to validate
the landing page against that schema. All supported formats should be exercised.

Table A.1 — Schema and Tests for Landing Pages

FORMAT SCHEMA DOCUMENT TEST ID

HTML landingPage.yaml /conf/html/content

JSON landingPage.yaml /conf/json/content

A.3.2. API Definition

ABSTRACT TEST A.14

IDENTIFIER /conf/landing-page/api-definition-op

SUBJECT
/req/landing-page/api-definition-op
/req/landing-page/api-definition-success

TEST
PURPOSE

Validate that the API Definition document can be retrieved from the expected location.

TEST METHOD

DO FOR EACH service-desc and service-doc link on the landing page:
1. Issue an HTTP GET request for the link

2. Validate that a document was returned with a status code 200

OPEN GEOSPATIAL CONSORTIUM 19-072 63

http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/landingPage.yaml
http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/landingPage.yaml

ABSTRACT TEST A.14

3. Validate the contents of the returned document using test /conf/landing-page/api-
definition-success.

DONE

ABSTRACT TEST A.15

IDENTIFIER /conf/landing-page/api-definition-success

SUBJECT /req/landing-page/api-definition-success

TEST PURPOSE Validate that the API Definition complies with the required structure and contents.

TEST METHOD Validate the API Definition document against an appropriate schema document.

A.3.3. Conformance Declaration

ABSTRACT TEST A.16

IDENTIFIER /conf/landing-page/conformance-op

SUBJECT
/req/landing-page/conformance-op
/req/landing-page/conformance-success

TEST
PURPOSE

Validate that a Conformance Declaration can be retrieved from the expected locations.

TEST
METHOD

DO FOR EACH http://www.opengis.net/def/rel/ogc/1.0/conformance link on the
landing page:

1. Issue an HTTP GET request for the link

2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test /conf/landing-page/conformance-
success.

DONE
1. Issue an HTTP GET request for the {root}/conformance path

2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test /conf/landing-page/conformance-
success.

OPEN GEOSPATIAL CONSORTIUM 19-072 64

http://www.opengis.net/def/rel/ogc/1.0/conformance

ABSTRACT TEST A.17

IDENTIFIER /conf/landing-page/conformance-success

SUBJECT /req/landing-page/conformance-success

TEST
PURPOSE

Validate that the Conformance Declaration response complies with the required structure and
contents.

TEST
METHOD

1. Validate the response document against the schema confClasses.yaml

2. Validate that the document lists all OGC API conformance classes that the API implements.

A.4. Conformance Class JSON

CONFORMANCE CLASS A.3

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/json

SUBJECT http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json

PREREQUISITES
Core Conformance Class
Landing Page Conformance Class

TARGET TYPE Web API

A.4.1. JSON Definition

ABSTRACT TEST A.18

IDENTIFIER /conf/json/definition

SUBJECT
/req/json/definition
/req/json/content

TEST PURPOSE Verify support for JSON

TEST METHOD

DO FOR EACH resource and operation defined in the Landing Page Conformance Class:
1. Execute the operation specifying application/json as the media type

2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test /conf/json/content.

OPEN GEOSPATIAL CONSORTIUM 19-072 65

http://schemas.opengis.net/ogcapi/common/part1/1.0/openapi/schemas/confClasses.yaml

ABSTRACT TEST A.18

DONE

A.4.2. JSON Content

ABSTRACT TEST A.19

IDENTIFIER /conf/json/content

SUBJECT /req/json/content

TEST PURPOSE Verify the content of a JSON document given an input document and schema.

TEST METHOD
1. Validate that the document is a JSON (IETF RFC 8259) document.

2. Validate the document against the schema using a JSON Schema validator.

A.5. Conformance Class HTML

CONFORMANCE CLASS A.4

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/html

SUBJECT http://www.opengis.net/spec/ogcapi-common/1.0/req/html

PREREQUISITES
Core Conformance Class
Landing Page Conformance Class

TARGET TYPE Web API

A.5.1. HTML Definition

ABSTRACT TEST A.20

IDENTIFIER /conf/html/definition

SUBJECT /req/html/definition

OPEN GEOSPATIAL CONSORTIUM 19-072 66

ABSTRACT TEST A.20

/req/html/content

TEST PURPOSE Verify support for HTML

TEST METHOD

DO FOR EACH resource and operation defined in the Landing Page Conformance Class:
1. Execute the operation specifying text/html as the media type

2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test /conf/html/content.

DONE

A.5.2. HTML Content

ABSTRACT TEST A.21

IDENTIFIER /conf/html/content

SUBJECT /req/html/content

TEST PURPOSE Verify the content of an HTML document given an input document and schema.

TEST METHOD
1. Validate that the document is an HTML 5 document

2. Manually inspect the document against the schema.

A.6. Conformance Class OpenAPI 3.0

CONFORMANCE CLASS A.5

IDENTIFIER http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/oas30

SUBJECT http://www.opengis.net/spec/ogcapi-common/1.0/req/oas30

PREREQUISITES
Core Conformance Class
Landing Page Conformance Class

TARGET TYPE Web API

OPEN GEOSPATIAL CONSORTIUM 19-072 67

https://www.w3.org/TR/html5/

ABSTRACT TEST A.22

IDENTIFIER /conf/oas30/completeness

SUBJECT /req/oas30/completeness

TEST
PURPOSE

Verify the completeness of an OpenAPI document.

TEST
METHOD

Verify that for each operation, the OpenAPI document describes all HTTP Status Codes and
Response Objects that the API uses in responses.

ABSTRACT TEST A.23

IDENTIFIER /conf/oas30/exceptions-codes

SUBJECT /req/oas30/exceptions-codes

TEST
PURPOSE

Verify that the OpenAPI document fully describes potential exception codes.

TEST
METHOD

Verify that for each operation, the OpenAPI document describes all HTTP Status Codes that may
be generated.

ABSTRACT TEST A.24

IDENTIFIER /conf/oas30/oas-definition-1

SUBJECT /req/oas30/oas-definition-1

TEST
PURPOSE

Verify that JSON and HTML versions of the OpenAPI document are available.

TEST
METHOD

1. Verify that an OpenAPI definition in JSON is available using the media type application/
vnd.oai.openapi+json;version=3.0 and link relation service-desc

2. Verify that an HTML version of the API definition is available using the media type text/
html and link relation service-doc.

ABSTRACT TEST A.25

IDENTIFIER /conf/oas30/oas-definition-2

SUBJECT /req/oas30/oas-definition-2

OPEN GEOSPATIAL CONSORTIUM 19-072 68

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes

ABSTRACT TEST A.25

TEST PURPOSE Verify that the OpenAPI document is valid JSON.

TEST METHOD Verify that the JSON representation conforms to the OpenAPI Specification, version 3.0.

ABSTRACT TEST A.26

IDENTIFIER /conf/oas30/oas-impl

SUBJECT /req/oas30/oas-impl

TEST
PURPOSE

Verify that all capabilities specified in the OpenAPI definition are implemented by the API.

TEST
METHOD

1. Construct an operation for each OpenAPI Path object including all server URL options, HTTP
operations and enumerated path parameters.

2. Validate that each operation performs in accordance with the API definition.

ABSTRACT TEST A.27

IDENTIFIER /conf/oas30/security

SUBJECT /req/oas30/security

TEST
PURPOSE

Verify that any authentication protocols implemented by the API are documented in the OpenAPI
document.

TEST
METHOD

1. Identify all authentication protocols supported by the API.

2. Validate that each authentication protocol is described in the OpenAPI document by a
Security Schema Object and its use specified by a Security Requirement Object.

OPEN GEOSPATIAL CONSORTIUM 19-072 69

B

ANNEX B (INFORMATIVE)
EXAMPLES (INFORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 19-072 70

B ANNEX B
(INFORMATIVE)
EXAMPLES (INFORMATIVE)

B.1. Example Landing Pages

Example — JSON Landing Page: This example Landing Page response in JSON is for an
implementation of the OGC API-Common Standard that supports:

• HTML

• JSON

• OGC API — Common — Part 2: Geospatial Data

This example also illustrates the self and alternate association types.

{
 "title": "Example API Landing Page",
 "description": "This is an example of an API landing page in JSON format",
 "attribution": "IGN <a href='www.govdata.
de/dl-de/by-2-0'>(c)",
 "links": [
 {
 "rel": "service-desc",
 "type": "application/json",
 "title": "API definition for this endpoint as JSON",
 "href": "http://www.example.com/oapi-c/api?f=application/json"
 },
 {
 "rel": "service-desc",
 "type": "text/html",
 "title": "API definition for this endpoint as HTML",
 "href": "http://www.example.com/oapi-c/api?f=text/html"
 },
 {
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/data-meta",
 "type": "application/xml",
 "title": "ISO 19115 Metadata as XML",
 "href": "http://www.example.com/oapi-c/data-meta?f=application/xml"
 },
 {
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/conformance",
 "type": "application/json",
 "title": "Conformance Declaration as JSON",

OPEN GEOSPATIAL CONSORTIUM 19-072 71

 "href": "http://www.example.com/oapi-c/conformance?f=application/
json"
 },
 {
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/conformance",
 "type": "application/xml",
 "title": "Conformance Declaration as XML",
 "href": "http://www.example.com/oapi-c/conformance?f=application/
xml"
 },
 {
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/conformance",
 "type": "text/html",
 "title": "Conformance Declaration as HTML",
 "href": "http://www.example.com/oapi-c/conformance?f=text/html"
 },
 {
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/data",
 "type": "application/json",
 "title": "Collections Metadata as JSON",
 "href": "http://www.example.com/oapi-c/collections?f=application/
json"
 },
 {
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/data",
 "type": "application/xml",
 "title": "Collections Metadata as XML",
 "href": "http://www.example.com/oapi-c/collections?f=application/
xml"
 },
 {
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/data",
 "type": "text/html",
 "title": "Collections Metadata as HTML",
 "href": "http://www.example.com/oapi-c/collections?f=text/html"
 },
 {
 "rel": "self",
 "type": "application/json",
 "title": "This Document",
 "href": "http://www.example.com/oapi-c?f=application/json"
 },
 {
 "rel": "alternate",
 "type": "application/xml",
 "title": "This Document as XML",
 "href": "http://www.example.com/oapi-c?f=application/xml"
 },
 {
 "rel": "alternate",
 "type": "text/html",
 "title": "This Document as HTML",
 "href": "http://www.example.com/oapi-c?f=text/html"
 }
]
}

The example is presented below in YAML.

title: Example API Landing Page
description: This is an example of an API landing page in JSON format

OPEN GEOSPATIAL CONSORTIUM 19-072 72

attribution: "IGN <a href='www.govdata.de/dl-
de/by-2-0'>(c)"
links:
- rel: service-desc
 type: application/json
 title: API definition for this endpoint as JSON
 href: http://www.example.com/oapi-c/api?f=application/json
- rel: service-desc
 type: text/html
 title: API definition for this endpoint as HTML
 href: http://www.example.com/oapi-c/api?f=text/html
- rel: http://www.opengis.net/def/rel/ogc/1.0/data-meta
 type: application/xml
 title: ISO 19115 Metadata as XML
 href: http://www.example.com/oapi-c/data-meta?f=application/xml
- rel: http://www.opengis.net/def/rel/ogc/1.0/conformance
 type: application/json
 title: Conformance Declaration as JSON
 href: http://www.example.com/oapi-c/conformance?f=application/json
- rel: http://www.opengis.net/def/rel/ogc/1.0/conformance
 type: application/xml
 title: Conformance Declaration as XML
 href: http://www.example.com/oapi-c/conformance?f=application/xml
- rel: http://www.opengis.net/def/rel/ogc/1.0/conformance
 type: text/html
 title: Conformance Declaration as HTML
 href: http://www.example.com/oapi-c/conformance?f=text/html
- rel: http://www.opengis.net/def/rel/ogc/1.0/data
 type: application/json
 title: Collections Metadata as JSON
 href: http://www.example.com/oapi-c/collections?f=application/json
- rel: http://www.opengis.net/def/rel/ogc/1.0/data
 type: application/xml
 title: Collections Metadata as XML
 href: http://www.example.com/oapi-c/collections?f=application/xml
- rel: http://www.opengis.net/def/rel/ogc/1.0/data
 type: text/html
 title: Collections Metadata as HTML
 href: http://www.example.com/oapi-c/collections?f=text/html
- rel: self
 type: application/json
 title: This Document
 href: http://www.example.com/oapi-c?f=application/json
- rel: alternate
 type: application/xml
 title: This Document as XML
 href: http://www.example.com/oapi-c?f=application/xml
- rel: alternate
 type: text/html
 title: This Document as HTML
 href: http://www.example.com/oapi-c?f=text/html

B.2. Conformance Examples

Example — Conformance Response: This example response in JSON is for an implementation
of the OGC API-Common Standard that supports OpenAPI 3.0 for the API definition, as well as
HTML and JSON as encodings for resources.

OPEN GEOSPATIAL CONSORTIUM 19-072 73

{
 "conformsTo": [
 "http://www.opengis.net/spec/ogcapi-common-1/1.0/req/core",
 "http://www.opengis.net/spec/ogcapi-common-1/1.0/req/landing-page",
 "http://www.opengis.net/spec/ogcapi-common-1/1.0/req/oas30",
 "http://www.opengis.net/spec/ogcapi-common-1/1.0/req/html",
 "http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json"
]
}

The example is presented below in YAML.

conformsTo:
- http://www.opengis.net/spec/ogcapi-common-1/1.0/req/core
- http://www.opengis.net/spec/ogcapi-common-1/1.0/req/landing-page
- http://www.opengis.net/spec/ogcapi-common-1/1.0/req/oas30
- http://www.opengis.net/spec/ogcapi-common-1/1.0/req/html
- http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json

B.3. API Definition Examples

Example — JSON API Definition: This is an example of an API Definition response in JSON
(YAML). It describes an implementation of the OGC API — Common — Part 1: Core Standard.
This example also illustrates:

1. Extended metadata (x-keywords),

2. Multiple Servers,

3. The use of tags to associate external documentation,

4. Responses that reference the appropriate JSON schema

openapi: 3.0.2
info:
 title: >-
 A sample API conforming to the draft standard OGC API - Common - Part 1:
 Core
 version: 1.0.0
 description: >-
 'This is a sample OpenAPI definition of the draft standard OGC API -
Common - Part 1: Core.'
 contact:
 name: Acme Corporation
 email: info@example.org
 url: http://example.org/
 license:
 name: CC-BY 4.0 license
 url: https://creativecommons.org/licenses/by/4.0/
 x-keywords:
 - geospatial
 - data
 - api
servers:

OPEN GEOSPATIAL CONSORTIUM 19-072 74

 - url: https://data.example.org/
 description: Production server
 - url: https://dev.example.org/
 description: Development server
tags:
 - name: Capabilities
 description: essential characteristics of this API
 - name: server
 description: Information about the server hosting this API
 externalDocs:
 description: information
 url: https://example.com/sample_api/documentation
paths:
 /:
 get:
 description: >-
 The landing page provides links to the API definition and the
 conformance statements for this API.
 parameters:
 - $ref: '#/components/parameters/f'
 operationId: getLandingPage
 responses:
 '200':
 $ref: 'https://raw.githubusercontent.com/opengeospatial/ogcapi-
common/master/core/openapi/3.0/API-Common-Part-1_1_0.yaml#/components/
responses/LandingPage'
 '400':
 $ref: '#/components/responses/400'
 '500':
 $ref: '#/components/responses/500'
 summary: Landing page
 tags:
 - server
 /api:
 get:
 description: This document
 parameters:
 - $ref: '#/components/parameters/f'
 responses:
 '200':
 $ref: '#/components/responses/200'
 '400':
 $ref: '#/components/responses/400'
 default:
 $ref: '#/components/responses/400'
 summary: This document
 tags:
 - server
 /conformance:
 get:
 description: >-
 A list of all conformance classes specified in a standard that the
 server conforms to.
 parameters:
 - $ref: '#/components/parameters/f'
 operationId: getConformanceDeclaration
 responses:
 '200':
 $ref: 'https://raw.githubusercontent.com/opengeospatial/ogcapi-
common/master/core/openapi/3.0/API-Common-Part-1_1_0.yaml#/components/
responses/ConfClasses'
 '400':
 $ref: '#/components/responses/400'

OPEN GEOSPATIAL CONSORTIUM 19-072 75

 '500':
 $ref: '#/components/responses/500'
 summary: API conformance definition
 tags:
 - server
components:
 parameters:
 f:
 description: >-
 The optional f parameter indicates the output format that the server
 shall provide as part of the response document. The default format is
JSON.
 explode: false
 in: query
 name: f
 required: false
 schema:
 default: json
 enum:
 - json
 - html
 type: string
 style: form
 responses:
 '200':
 description: successful operation
 '400':
 $ref: 'https://raw.githubusercontent.com/opengeospatial/ogcapi-common/
master/core/openapi/3.0/API-Common-Part-1_1_0.yaml#/components/responses/400'
 '500':
 $ref: 'https://raw.githubusercontent.com/opengeospatial/ogcapi-common/
master/core/openapi/3.0/API-Common-Part-1_1_0.yaml#/components/responses/500'

B.4. Service Metadata Examples

Example — Service Metadata: This is an example of how to extend the OpenAPI info object to
include identifying metadata about both the service and the service provider.

info:
 title: My Web API
 version: 1.0.0
 description: This example shows population of an OpenAPI Info element with
identifying
 metadata for both the service and the service provider.
 contact:
 name: Acme Corporation
 email: info@example.org
 url: http://example.org/
 x-OGC-serviceContact:
 individualName: John Smith
 positionName: System Administrator
 role: pointOfcontact
 hoursOfService: 24 Hours
 contractInstructions: None
 onlineResource: http://example.org/contact
 address:
 deliveryPoint: 123 Any Street
 city: Boston

OPEN GEOSPATIAL CONSORTIUM 19-072 76

 administrativeArea: MA
 postalCode: '12345'
 country: USA
 electronicMailAddress: smith.j@example.org
 telephone:
 voice: "+1.123.456.7890"
 facsimile: "+1.123.456.7890 "
 license:
 name: CC-BY 4.0 license
 url: https://creativecommons.org/licenses/by/4.0/
 x-serviceType: http://www.opengis.net/doc/IS/ogcapi-common-1/1.0
 x-serviceTypeVersion: '1.0'
 x-profile: DGIWG
 x-keywords:
 - geospatial
 - data
 - api
 x-fees: None
 x-accessConstraints: None

OPEN GEOSPATIAL CONSORTIUM 19-072 77

C

ANNEX C (INFORMATIVE)
GLOSSARY

OPEN GEOSPATIAL CONSORTIUM 19-072 78

C ANNEX C
(INFORMATIVE)
GLOSSARY

• Conformance Test Module
set of related tests, all within a single conformance test class (OGC 08-131)

NOTE 1When no ambiguity is possible, the word test may be omitted. i.e., conformance
test module is the same as conformance module. Conformance modules may be nested in a
hierarchical way. This term and those associated to it are included here for consistency with ISO
19105.

• Conformance Test Class; Conformance Test Level
set of conformance test modules that must be applied to receive a single certificate of
conformance. (OGC 08-131)

NOTE 2When no ambiguity is possible, the word test may be left out, so conformance test class
may be called a conformance class.

• Executable Test Suite (ETS)
A set of code (e.g. Java and CTL) that provides runtime tests for the assertions defined by
the ATS. Test data required to do the tests are part of the ETS (OGC 08-134)

• Recommendation
expression in the content of a document conveying that among several possibilities one
is recommended as particularly suitable, without mentioning or excluding others, or that a
certain course of action is preferred but not necessarily required, or that (in the negative
form) a certain possibility or course of action is deprecated but not prohibited (OGC
08-131)

NOTE 3“Although using normative language, a recommendation is not a requirement. The usual
form replaces the shall (imperative or command) of a requirement with a should (suggestive or
conditional).” (ISO Directives Part 2)

• Requirement
expression in the content of a document conveying criteria to be fulfilled if compliance
with the document is to be claimed and from which no deviation is permitted (OGC
08-131)

• Requirements Class

OPEN GEOSPATIAL CONSORTIUM 19-072 79

https://portal.opengeospatial.org/files/?artifact_id=55234

aggregate of all requirement modules that must all be satisfied to satisfy a conformance
test class (OGC 08-131)

• Requirements Module
aggregate of requirements and recommendations of a specification against a single
standardization target type (OGC 08-131)

• Standardization Target
entity to which some requirements of a standard apply (OGC 08-131)

NOTE 4The standardization target is the entity that may receive a certificate of conformance for
a requirements class.

OPEN GEOSPATIAL CONSORTIUM 19-072 80

D

ANNEX D (INFORMATIVE)
BACKUS-NAUR FORMS

OPEN GEOSPATIAL CONSORTIUM 19-072 81

D ANNEX D
(INFORMATIVE)
BACKUS-NAUR FORMS

D.1. BNF for URI

The following Augmented Backus-Naur Form (ABNF) is from Appendix A of IETF RFC 3986.

URI = scheme ":" hier-part ["?" query] ["#" fragment]

 hier-part = "//" authority path-abempty
 / path-absolute
 / path-rootless
 / path-empty

 URI-reference = URI / relative-ref

 absolute-URI = scheme ":" hier-part ["?" query]

 relative-ref = relative-part ["?" query] ["#" fragment]

 relative-part = "//" authority path-abempty
 / path-absolute
 / path-noscheme
 / path-empty

 scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")

 authority = [userinfo "@"] host [":" port]
 userinfo = *(unreserved / pct-encoded / sub-delims / ":")
 host = IP-literal / IPv4address / reg-name
 port = *DIGIT

 IP-literal = "[" (IPv6address / IPvFuture) "]"

 IPvFuture = "v" 1*HEXDIG "." 1*(unreserved / sub-delims / ":")

 IPv6address = 6(h16 ":") ls32
 / "::" 5(h16 ":") ls32
 / [h16] "::" 4(h16 ":") ls32
 / [*1(h16 ":") h16] "::" 3(h16 ":") ls32
 / [*2(h16 ":") h16] "::" 2(h16 ":") ls32
 / [*3(h16 ":") h16] "::" h16 ":" ls32
 / [*4(h16 ":") h16] "::" ls32
 / [*5(h16 ":") h16] "::" h16
 / [*6(h16 ":") h16] "::"

 h16 = 1*4HEXDIG

OPEN GEOSPATIAL CONSORTIUM 19-072 82

 ls32 = (h16 ":" h16) / IPv4address
 IPv4address = dec-octet "." dec-octet "." dec-octet "."

 dec-octet = DIGIT ; 0-9
 / %x31-39 DIGIT ; 10-99
 / "1" 2DIGIT ; 100-199
 / "2" %x30-34 DIGIT ; 200-249
 / "25" %x30-35 ; 250-255

 reg-name = *(unreserved / pct-encoded / sub-delims)

 path = path-abempty ; begins with "/" or is empty
 / path-absolute ; begins with "/" but not "//"
 / path-noscheme ; begins with a non-colon segment
 / path-rootless ; begins with a segment
 / path-empty ; zero characters

 path-abempty = *("/" segment)
 path-absolute = "/" [segment-nz *("/" segment)]
 path-noscheme = segment-nz-nc *("/" segment)
 path-rootless = segment-nz *("/" segment)
 path-empty = 0<pchar>

 segment = *pchar
 segment-nz = 1*pchar
 segment-nz-nc = 1*(unreserved / pct-encoded / sub-delims / "@")
 ; non-zero-length segment without any colon ":"

 pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

 query = *(pchar / "/" / "?")

 fragment = *(pchar / "/" / "?")

 pct-encoded = "%" HEXDIG HEXDIG

 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
 reserved = gen-delims / sub-delims
 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

Figure D.1 — Backus-Naur Form for URI

OPEN GEOSPATIAL CONSORTIUM 19-072 83

E

ANNEX E (INFORMATIVE)
OGC WEB API GUIDELINES

OPEN GEOSPATIAL CONSORTIUM 19-072 84

E ANNEX E
(INFORMATIVE)
OGC WEB API GUIDELINES

The following table discusses how this standard addresses the design principles documented in
the OGC Web API Guidelines.

Table E.1 — OGC Web API Guidelines

PRINCIPLE DISCUSSION

1 Don’t reinvent
Great care was taken in the development of this standard to only address
capabilities that were not already standardized and to define how the needed
capabilities integrate into a single API.

2
Keep it simple
and intuitive

OGC Web APIs are developed using a building block approach. Conformance
Classes are defined that encompass requirements sufficient to create a usable
software module and no more. Complex APIs are constructed by assembling the
applicable Conformance Classes.

3
Use well-known
resource types

Except where unique to a specific Conformance Class, all resource types are IANA
or OGC registered types.
OGC Web API standards do not mandate an encoding. The encodings supported
by an API are specified by the corresponding encoding Conformance Classes. All
encodings used to-date are IANA registered media types.

4
Construct

consistent URIs

OGC Web APIs are built from standardized modules using standardized patterns.
 This modular approach assures that the URIs are consistent across OGC Web APIs.
OGC API — Common defines stylistic conventions for query parameters, query
values, identifiers, and path elements used to create OGC Web API URIs.

5
Use HTTP methods

consistent
with RFC 7231

OGC web APIs are restricted to the HTTP methods defined in IETF RFC 7231.

6
Put selection

criteria
behind the ‘?’

Section 6.1 of this Standard defines the conventions to be used when creating URIs
for OGC Web API standards. This includes the use of the “?” to separate query
parameters from the rest of the URI.
Note that this does not preclude the use of resource identifiers (ex. collection
identifiers) as part of the path. However those can be considered identifying criteria
rather than selection criteria.

7
Error handling

and use of HTTP
status codes

This standard identifies the applicable HTTP status codes and under what
conditions they should be returned. Status codes and supporting information are
returned in the HTTP response using a reporting structure based on RFC 7807.

OPEN GEOSPATIAL CONSORTIUM 19-072 85

https://github.com/opengeospatial/OGC-Web-API-Guidelines

PRINCIPLE DISCUSSION

8
Use explicit list of
HTTP status codes

Clause 8.2 provides a list of the HTTP status codes that implementers of this
standard should be prepared to generate and accept. This list is not exhaustive (see
guideline #1).

9
Use of HTTP

header

OGC API — Common does not preclude use of HTTP headers where it is
appropriate to do so.
Only standard HTTP headers are used.
Due to the common use of the HATEOAS pattern in OGC Web APIs, HTTP headers
are not always accessible. The use of query parameter overrides is allowed.

10
Allow flexible

content negotiation

IETF RFC 7231 content negotiation is available on all transactions.
Since the HTTP headers are not always accessible, content negotiation may be
performed through a query parameter (see #9).

11 Pagination

Of the resources defined in OGC API — Common — Part 1: Core only the
conformance resource is “listable”. We do not anticipate the conformance resource
to grow to any size, so support for pagenation would add complexity will little to no
value (violating #2)
If an OpenAPI document is used as the API definition, then pagination could
become an issue for this resource. The question of how to handle large Open
API documents is still an open issue being worked across the Standards Working
Groups.

12
Processing
resources

Processing resources are not addressed by this Standard.

13 Support metadata
Support for metadata is provided through metadata resource links. Examples include
links with the relation type service-desc,service-doc, service-meta, or
data-meta.

14
Consider your
security needs

While not mandated, use of HTTPS vs. HTTP is encouraged throughout this
standard.
Authenitcation is not precluded by this standard, but in keeping with guideline #1,
this standard does not presume to dictate what authentication methods can be
used.
OGC API — Common — Part 1: Core only defines GET requests. The security issues
associated with CRUD are not applicable to this standard.

15 API description
The API definition is available using the service-desc (machine readable) and
service-doc (human readable) associations from the landing page.
OpenAPI is the only API definition type currently supported.

16
Use well-known

identifiers

IANA identifiers are used where they are available. Where no IANA identifiers are
appropriate, OGC registered identifiers are used.
OGC identifiers are only used after they have been reviewed and approved by the
OGC Naming Authority.

17
Use explicit

relations
All relations in this standard are typed using relation types registered in the IANA or
the OGC relation type registers.

OPEN GEOSPATIAL CONSORTIUM 19-072 86

PRINCIPLE DISCUSSION

18
Support W3C
cross-origin

resource sharing
This guideline is addressed in Clause 8.5.

19
Resource
encodings

Conformance classes for both HTML and JSON have been defined. Implementation
of both the HTML and JSON Conformance Classes is recommended.

20
Good APIs are
testable from
the beginning

The Abstract Test Suite (ATS) for this standard is provided in Annex A.
The ATS is defined to sufficient level of detail to validate that it is implementable
and comprehensive

21
Specify whether

operations are safe
and/or idempotent

According to IETF RFC 7231 “the GET, HEAD, OPTIONS, and TRACE methods
are defined to be safe.” and the “PUT, DELETE, and safe request methods are
idempotent”. All request methods in this standard (GET) are both safe and
idempotent.

22
Make resources

discoverable

All resources defined in this standard can be navigated to through resource links and
optional standard paths. All resource links are typed using registered relation types.
These links are encoded using a standard link structure that includes the media type,
language, and title of the resource.

23
Make default

behavior explicit
This Standard defines the proper and allowed responses for any valid or invalid
request.

OPEN GEOSPATIAL CONSORTIUM 19-072 87

F

ANNEX F (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 19-072 88

F ANNEX F
(INFORMATIVE)
REVISION HISTORY

Table F.1 — Revision History

DATE RELEASE EDITOR
PRIMARY
CLAUSES
MODIFIED

DESCRIPTION

2019-10-31
October 2019
snapshot

C. Heazel all Baseline update

2020-04-21 Public Comments C. Heazel all
Separation of Collections from Core plus additional
comment adjudications.

2021-04-12 Public Comments C. Heazel all Second public comment period.

2021-08-01 Final Review C. Heazel all Ready for SWG review and TC vote

2022-11-04 1.0.0 G. Hobona all Final OGC Staff review

OPEN GEOSPATIAL CONSORTIUM 19-072 89

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 19-072 90

BIBLIOGRAPHY

[1] Whiteside, A., Greenwood, J.: OGC Web Services Common Standard, version 2.0, OGC
06-121r9

[2] Open Geospatial Consortium: The Specification Model — A Standard for Modular
specifications, OGC 08-131

[3] Schema.org: http://schema.org/docs/schemas.html

[4] W3C: Architecture of the World Wide Web, Volume One, W3C Recommendation, 15
December 2004, https://www.w3.org/TR/webarch/

[5] W3C: Data Catalog Vocabulary (DCAT) — Version 2, W3C Recommendation, 04
February 2020, https://www.w3.org/TR/vocab-dcat-2/

[6] W3C: Data on the Web Best Practices, W3C Recommendation, 31 January 2017,
https://www.w3.org/TR/dwbp/

[7] W3C/OGC: Spatial Data on the Web Best Practices, W3C Working Group Note, 28
September 2017, https://www.w3.org/TR/sdw-bp/

[8] W3C: HTML5, W3C Recommendation, http://www.w3.org/TR/html5/

[9] W3C Recommendation: XML Schema Part 2: Datatypes Second Edition, 28 October
2004, https://www.w3.org/TR/xmlschema-2/

[10] Fielding, Roy Thomas: Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000, https://
www.ics.uci.edu/fielding/pubs/dissertation/fielding_dissertation.pdf

[11] Kernighan, B., Richie, D.: The C Programming Language, Bell Laboratories, 1978

[12] IANA: Link Relation Types, https://www.iana.org/assignments/link-relations/link-
relations.xml

[13] Fielding, R., Reschke, J.: IETF RFC 7230, Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing, https://tools.ietf.org/rfc/rfc7230.txt

[14] Fielding, R., Reschke, J.: IETF RFC 7235, Hypertext Transfer Protocol (HTTP/1.1):
Authentication, https://tools.ietf.org/rfc/rfc7235.txt

[15] Reschke, J.: IETF RFC 7538, The Hypertext Transfer Protocol Status Code 308
(Permanent Redirect), https://tools.ietf.org/rfc/rfc7538.txt

[16] ISO 15836-2:2019, Information and documentation — The Dublin Core metadata
element set — Part 2: DCMI Properties and classes

OPEN GEOSPATIAL CONSORTIUM 19-072 91

http://portal.opengeospatial.org/files/?artifact_id=38867
http://portal.opengeospatial.org/files/?artifact_id=38867
https://portal.opengeospatial.org/files/?artifact_id=34762
http://schema.org/docs/schemas.html
https://www.w3.org/TR/webarch/
https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/sdw-bp/
http://www.w3.org/TR/html5/
https://www.w3.org/TR/xmlschema-2/
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.iana.org/assignments/link-relations/link-relations.xml
https://www.iana.org/assignments/link-relations/link-relations.xml
https://tools.ietf.org/rfc/rfc7230.txt
https://tools.ietf.org/rfc/rfc7235.txt
https://tools.ietf.org/rfc/rfc7538.txt

[17] json-schema-org: JSON Schema, September 2019, https://json-schema.org/
specification.html

[18] ISO/IEC 14977:1996(E) Information technology – Syntactic metalanguage – Extended
BNF, available from ISO.

OPEN GEOSPATIAL CONSORTIUM 19-072 92

https://json-schema.org/specification.html
https://json-schema.org/specification.html
https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

	I. Abstract
	II. Keywords
	III. Preface
	IV. Security considerations
	V. Submitting Organizations
	VI. Submitters
	1. Scope
	2. Conformance
	2.1. Core Requirements Class
	2.2. Landing Page Requirements Class
	2.3. Encoding Requirements Classes
	2.4. OpenAPI 3.0 Requirements Class
	2.5. OGC Building Blocks Registry

	3. Normative references
	4. Terms and definitions
	5. Abbreviated terms
	6. Conventions
	6.1. Web API Fundamentals
	6.2. Identifiers
	6.3. Links
	6.4. Link relations
	6.5. Use of HTTPS
	6.6. API definition
	6.6.1. General remarks
	6.6.2. Role of OpenAPI
	6.6.3. References to OpenAPI components in normative statements
	6.6.4. Reusable OpenAPI components

	7. Overview
	7.1. Evolution from OGC Web Services
	7.2. Modular APIs
	7.3. Using APIs

	8. Core Requirements Class
	8.1. HTTP 1.1
	8.2. HTTP Status Codes
	8.3. Query parameters
	8.3.1. Parameter Names
	8.3.2. Parameter Values

	8.4. Web Caching
	8.5. Support for Cross-Origin Requests
	8.6. String Internationalization
	8.7. Resource Encodings
	8.8. Parameter Encoding
	8.8.1. Capitalization
	8.8.2. Parameter Value Lists
	8.8.3. Numeric and Boolean Values

	9. Landing Page Requirements Class
	9.1. API landing page
	9.1.1. Operation
	9.1.2. Response
	9.1.3. Error Situations

	9.2. API Definition
	9.2.1. Operation
	9.2.2. Response
	9.2.3. Error Situations

	9.3. Declaration of Conformance Classes
	9.3.1. Operation
	9.3.2. Response
	9.3.3. Error situations

	10. Encoding Requirements Classes
	10.1. Overview
	10.2. Requirement Class “HTML”
	10.3. Requirement Class “JSON”

	11. OpenAPI 3.0 Requirements Class
	11.1. Basic requirements
	11.2. Complete definition
	11.3. Exceptions
	11.4. Security
	11.5. Query Parameter Definition
	11.6. Further Information

	12. Media Types
	12.1. Normal Response Media Types
	12.2. OpenAPI Media Types
	12.3. Problem Details Media Types

	Annex A (informative) Abstract Test Suite (Normative)
	A.1. Introduction
	A.2. Conformance Class Core
	A.2.1. HTTP
	A.2.2. Query Parameters

	A.3. Conformance Class Landing Page
	A.3.1. Landing Page
	A.3.2. API Definition
	A.3.3. Conformance Declaration

	A.4. Conformance Class JSON
	A.4.1. JSON Definition
	A.4.2. JSON Content

	A.5. Conformance Class HTML
	A.5.1. HTML Definition
	A.5.2. HTML Content

	A.6. Conformance Class OpenAPI 3.0

	Annex B (informative) Examples (Informative)
	B.1. Example Landing Pages
	B.2. Conformance Examples
	B.3. API Definition Examples
	B.4. Service Metadata Examples

	Annex C (informative) Glossary
	Annex D (informative) Backus-Naur Forms
	D.1. BNF for URI

	Annex E (informative) OGC Web API Guidelines
	Annex F (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table
	Table — Submitters
	Table 1 — Link Relations
	Table 2 — Typical HTTP status codes
	Table 3 — Landing Page Resources
	Table A.1 — Schema and Tests for Landing Pages
	Table E.1 — OGC Web API Guidelines
	Table F.1 — Revision History

	List of Figures
	Figure 1 — Backus-Naur Definition of URI
	Figure 2 — Example URI and Components
	Figure 3 — Link Relation Schema
	Figure 4 — Landing Page Schema
	Figure 5 — Conformance Declaration Schema
	Figure 6 — OpenAPI schema for additional "free-form" query parameters
	Figure 7 — Example "free-form" query parameter
	Figure D.1 — Backus-Naur Form for URI

	List of Recommendations
	Requirements class 1
	Requirements class 2
	Requirements class 3
	Requirements class 4
	Requirements class 5
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6
	Requirement 7
	Requirement 8
	Requirement 9
	Requirement 10
	Requirement 11
	Requirement 12
	Requirement 13
	Requirement 14
	Requirement 15
	Requirement 16
	Requirement 17
	Requirement 18
	Requirement 19
	Requirement 20
	Requirement 21
	Requirement 22
	Requirement 23
	Requirement 24
	Requirement 25
	Requirement 26
	Requirement 27
	Recommendation 1
	Recommendation 2
	Recommendation 3
	Recommendation 4
	Recommendation 5
	Recommendation 6
	Recommendation 7
	Recommendation 8
	Recommendation 9
	Recommendation 10
	Recommendation 11
	Recommendation 12
	Recommendation 13
	Recommendation 14
	Recommendation 15
	Recommendation 16
	Recommendation 17
	Recommendation 18
	Conformance class A.1
	Conformance class A.2
	Conformance class A.3
	Conformance class A.4
	Conformance class A.5

