
OGC SensorThings API Part 1
Sensing Version 1.1

Open Geospatial Consortium

Submission Date: 2020-04-01

Approval Date: 2020-11-26

Publication Date: 2021-08-04

External identifier of this OGC® document: http://www.opengis.net/doc/is/sensorthings/1.1

URL for this OGC® document: https://docs.ogc.org/is/18-088/18-088.html

Normative Version:

Please refer to the errata for this document,
which may include some normative corrections.

Internal reference number of this OGC® document: 18-088

Version: 1.1

Category: OGC® Implementation Standard

Editors: Steve Liang, Tania Khalafbeigi, Hylke van der Schaaf

OGC SensorThings API Part 1: Sensing Version 1.1

Copyright notice

Copyright © 2021 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document is an OGC Member approved international standard. This document is available on
a royalty free, non-discriminatory basis. Recipients of this document are invited to submit, with
their comments, notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

Document type: OGC® Standard

Document subtype:

Document stage: Approved

Document language: English

1

http://www.opengis.net/doc/is/sensorthings/1.1
https://docs.ogc.org/is/18-088/18-088.html
https://docs.ogc.org/is/18-088/18-088.html
http://docs.opengeospatial.org/is/18-088/errata.html
http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms
set forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal
in the Intellectual Property without restriction (except as set forth below), including without limitation the rights to
implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to
permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to
the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the
above copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or
adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL
PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED
INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of notice
of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property, infringe,
or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you
agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you ,
your licensees or any other party. You agree upon termination of any kind to destroy or cause to be destroyed the
Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks or
other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement is
governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations
Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of
this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid
and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No decision, action or
inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

2

Table of Contents
Table of Figures. 6

Table of Tables. 7

Table of Requirements . 8

Abstract. 10

Keywords . 11

Preface . 12

Changes in version 1.1. 13

Submitting organizations . 14

Submitters . 15

1. Scope . 16

2. Conformance . 17

3. References . 20

4. Terms and Definitions. 21

4.1. Collection . 21

4.2. Entity . 21

4.3. Entity sets . 21

4.4. (Internet of) Thing . 21

4.5. Measurement. 21

4.6. Observation . 21

4.7. Observation Result . 21

4.8. Resource . 22

4.9. REST . 22

4.10. Sensor . 22

5. Conventions . 23

5.1. Presentation of Requirements and Recommendations. 23

5.2. Identifiers . 23

6. Symbols (and abbreviated terms) . 24

7. SensorThings API overview. 26

7.1. Who should use the OGC SensorThings API. 26

7.2. Benefits of the OGC SensorThings API. 26

7.3. SensorThings API Overview. 26

7.4. SensorThings API and ISO/OGC Observations and Measurements . 27

7.5. SensorThings API and OASIS OData. 27

7.6. SensorThings API and OGC Key-Value Pair (KVP) Encodings . 28

7.7. SensorThings API and Security . 28

8. The SensorThings API Sensing Entities. 29

8.1. Common Control Information. 29

8.2. The Sensing Entities . 30

3

8.2.1. Thing . 31

8.2.2. Location. 33

8.2.3. HistoricalLocation . 36

8.2.4. Datastream . 38

8.2.5. Sensor . 42

8.2.6. ObservedProperty. 44

8.2.7. Observation . 46

8.2.8. FeatureOfInterest . 48

9. SensorThings Service Interface . 51

9.1. URI Components . 51

9.2. Resource Path . 51

9.2.1. Usage 1: no resource path. 52

9.2.2. Usage 2: address to a collection of entities . 54

9.2.3. Usage 3: address to an entity in a collection. 55

9.2.4. Usage 4: address to a property of an entity . 56

9.2.5. Usage 5: address to the value of an entity’s property . 56

9.2.6. Usage 6: address to a navigation property (navigationLink) . 57

9.2.7. Usage 7: address to an associationLink . 57

9.2.8. Usage 8: nested resource path . 58

9.3. Requesting Data . 58

9.3.1. Evaluating System Query Options . 60

9.3.2. Specifying Properties to Return. 61

9.3.2.1. $expand . 61

9.3.2.2. $select. 63

9.3.3. Query Entity Sets. 64

9.3.3.1. $orderby . 64

9.3.3.2. $top . 65

9.3.3.3. $skip . 66

9.3.3.4. $count. 66

9.3.3.5. $filter . 67

9.3.3.5.1. Built-in filter operations . 69

9.3.3.5.2. Built-in query functions . 70

9.3.3.6. Server-Driven Paging (nextLink). 72

10. SensorThings Sensing Create-Update-Delete. 73

10.1. Overview . 74

10.2. Create an entity. 74

10.2.1. Request . 76

10.2.1.1. Link to existing entities when creating an entity . 77

10.2.1.2. Create related entities when creating an entity . 78

10.2.2. Response . 80

10.3. Update an entity . 80

4

10.3.1. Request . 81

10.3.2. Response . 82

10.4. Delete an entity . 82

10.4.1. Request . 82

11. Batch Requests . 84

11.1. Introduction. 84

11.2. Batch-processing request . 84

11.2.1. Batch request body example . 85

11.2.2. Referencing new entities in a change set example. 86

11.3. Batch-processing response. 88

11.4. Asynchronous batch requests . 89

12. SensorThings MultiDatastream extension. 92

13. SensorThings Data Array Extension . 100

13.1. Retrieve a Datastream’s Observation entities in dataArray . 100

13.1.1. Request . 100

13.1.2. Response . 101

13.2. Create Observation entities with dataArray . 104

13.2.1. Request . 104

13.2.2. Response . 107

14. SensorThings Sensing MQTT Extension . 108

14.1. Create a SensorThings Observation with MQTT Publish . 108

14.1.1. Link to existing entities when creating an Observation entity . 109

14.1.2. Create related entities when creating an Observation entity (deep insert) 109

14.2. Receive updates with MQTT Subscribe. 109

14.2.1. Receive updates of a SensorThings entity set with MQTT Subscribe. 110

14.2.2. Receive updates of a SensorThings entity with MQTT Subscribe . 110

14.2.3. Receive updates of a SensorThings entity’s property with MQTT Subscribe. 111

14.2.4. Receive updates of the selected properties of the newly created entities or updated

entities of a SensorThings entity set with MQTT Subscribe . 111

Annex A: Conformance Class Abstract Test Suite (Normative) . 112

A.1. SensorThings Read (Core) Tests . 112

A.2. SensorThings API Filtering Extension Tests . 119

A.3. SensorThings API Create-Update-Delete Extension Tests. 123

A.4. SensorThings API Batch Request Extension Tests . 126

A.5. SensorThings API MultipleDatastream Tests . 127

A.6. SensorThings API Data Array Extension . 129

A.7. SensorThings API Observation Creation via MQTT Extension Tests . 130

A.8. SensorThings API Receiving Updates via MQTT Extension Tests. 131

Annex B: Revision history . 133

Annex C: Bibliography . 135

5

Table of Figures
• Figure 1 - IoT Reference Model (adapted from [ITU-T Y.2060])

• Figure 2 - Sensing Entities

• Figure 3 - MultiDatastream Extension Entities

• Figure 4 - Creating Observations using MQTT publish, and receive notifications for Observations
with MQTT

• Figure 5 - Sequence diagram for receiving updates using MQTT subscribe

6

Table of Tables
• Table 1 - SensorThings API Sensing entities and equivalent concepts in O&M 2.0

• Table 2 - Common control information

• Table 3 - Properties of a Thing entity

• Table 4 - Direct relation between a Thing entity and other entity types

• Table 5 - Properties of a Location entity

• Table 6 - Direct relation between a Location entity and other entity types

• Table 7 - List of some code values used for identifying types for the encodingType of the
Location and FeatureOfInterest entity

• Table 8 - Properties of a HistoricalLocation entity

• Table 9 - Direct relation between an HistoricalLocation entity and other entity types

• Table 10 - Properties of a Datastream entity

• Table 11 - Direct relation between a Datastream entity and other entity types

• Table 12 - List of some code values used for identifying types defined in the O&M conceptual
model (OGC 10-004r3 and ISO 19156:2011 Clause 8.2.2)

• Table 13 - Properties of a Sensor entity

• Table 14 - Direct relation between a Sensor entity and other entity types

• Table 15 - List of some code values used for identifying types for the encodingType of the Sensor
entity

• Table 16 - Properties of an ObservedProperty entity

• Table 17 - Direct relation between an ObservedProperty entity and other entity types

• Table 18 - Properties of an Observation entity

• Table 19 - Direct relation between an Observation entity and other entity types

• Table 20 - Properties of a FeatureOfInterest entity

• Table 21 - Direct relation between a FeatureOfInterest entity and other entity types

• Table 22 - Built-in Filter Operators

• Table 23 - Built-in Query Functions

• Table 24 - Integrity constraints when creating an entity

• Table 25 - Integrity constraints when deleting an entity

• Table 26 - Properties of a MultiDatastream entity

• Table 27 - Direct relation between a MultiDatastream entity and other entity types

• Table 28 - Direct relation between an MultiDatastream’s Observation entity and other entity
types

7

Table of Requirements
• Requirement 1 - datamodel/entity-control-information/common-control-information

• Requirement 2 - datamodel/thing/properties

• Requirement 3 - datamodel/thing/relations

• Requirement 4 - datamodel/location/properties

• Requirement 5 - datamodel/location/relations

• Requirement 6 - datamodel/historical-location/properties

• Requirement 7 - datamodel/historical-location/relations

• Requirement 8 - create-update-delete/historical-location-auto-creation

• Requirement 9 - datamodel/datastream/properties

• Requirement 10 - datamodel/datastream/relations

• Requirement 11 - datamodel/sensor/properties

• Requirement 12 - datamodel/sensor/relations

• Requirement 13 - datamodel/observed-property/properties

• Requirement 14 - datamodel/observed-property/relations

• Requirement 15 - datamodel/observation/properties

• Requirement 16 - datamodel/observation/relations

• Requirement 17 - datamodel/feature-of-interest/properties

• Requirement 18 - datamodel/feature-of-interest/relations

• Requirement 19 - resource-path/resource-path-to-entities

• Requirement 20 - request-data/status-code

• Requirement 21 - request-data/query-status-code

• Requirement 22 - request-data/order

• Requirement 23 - request-data/expand

• Requirement 24 - request-data/select

• Requirement 25 - request-data/orderby

• Requirement 26 - request-data/top

• Requirement 27 - request-data/skip

• Requirement 28 - request-data/count

• Requirement 29 - request-data/filter

• Requirement 30 - request-data/built-in-filter-operations

• Requirement 31 - request-data/built-in-query-functions

• Requirement 32 - request-data/pagination

• Requirement 33 - create-update-delete/create-entity

8

• Requirement 34 - create-update-delete/link-to-existing-entities

• Requirement 35 - create-update-delete/deep-insert

• Requirement 36 - create-update-delete/deep-insert-status-code

• Requirement 37 - create-update-delete/update-entity

• Requirement 38 - create-update-delete/delete-entity

• Requirement 39 - batch-request/batch-request

• Requirement 40 - multi-datastream/properties

• Requirement 41 - multi-datastream/relations

• Requirement 42 - multi-datastream/constraints

• Requirement 43 - data-array/data-array

• Requirement 44 - create-observations-via-mqtt/observations-creation

• Requirement 45 - receive-updates-via-mqtt/receive-updates

• Requirement 46 - create-update-delete/historical-location-manual-creation

• Requirement 47 - create-update-delete/update-entity-put

• Requirement 48 - create-update-delete/update-entity-jsonpatch

9

Abstract
The OGC SensorThings API provides an open, geospatial-enabled and unified way to interconnect
the Internet of Things (IoT) devices, data, and applications over the web. At a high level the OGC
SensorThings API provides two main functionalities and each function is handled by a part. The
two parts are the Sensing part and the Tasking part. The Sensing part provides a standard way to
manage and retrieve observations and metadata from heterogeneous IoT sensor systems. This
document is version 1.1 and it is extending the first version of Sensing part.

10

Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, ogc document, iot, internet of things, sensor things, sensors, swe, sensor webs, sensor web
enablement, sensor networks

11

Preface
The OGC SensorThings API provides an open, geospatial-enabled and unified way to interconnect
the Internet of Things devices, data, and applications over the web. The OGC SensorThings API is an
open Standard, and that means it is non-proprietary, platform-independent, and perpetually
royalty-free. Although it is a new Standard, it builds on a rich set of proven-working and widely-
adopted open standards, such as the web protocols and the OGC Sensor Web Enablement (SWE)
Standards, including the OGC/ISO Observation and Measurement data model [OGC 10-004r3 and
ISO 19156:2011]. That also means the OGC SensorThings API is extensible and can be applied to not
only simple but also complex use cases.

At a high level the OGC SensorThings API provides two main functionalities and each function is
handled by a part. The two parts are the Part I - Sensing and the Part II - Tasking. The Sensing part
provides a standard way to manage and retrieve observations and metadata from heterogeneous
IoT sensor systems. The Tasking part provides a standard way for parameterizing - also called
tasking - of task-able IoT devices, such as sensors or actuators.

The Sensing part provides functions similar to the OGC Sensor Observation Service (SOS) and the
Tasking part provides functions similar to the OGC Sensor Planning Service (SPS). The main
difference between the SensorThings API and the OGC SOS and SPS is that the SensorThings API is
designed specifically for the resource-constrained IoT devices and the web developer community.
As a result, the SensorThings API follows the REST principles, the use of an efficient JSON encoding,
the use of MQTT protocol, and the use of the flexible OASIS OData protocol and URL conventions.

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

recipients of this document are requested to submit, with their comments, notification of any relevant
patent claims or other intellectual property rights of which they may be aware that might be infringed
by any implementation of the standard set forth in this document, and to provide supporting
documentation.

12

Changes in version 1.1
Version 1.1 of the SensorThings API is an update to version 1.0 that is (mostly) backwards
compatible with version 1.0. Besides the many small clarifications, the main changes are as follows.

• All entities (except for HistoricalLocation) now have a field of the type JSON Object, named
properties or parameters. In version 1.0 such a field already existed for the Thing entity (named
properties), and for the Observation entity (named parameters). These fields proved to be
extremely useful for storing additional structured meta data used in many domains, that could
also be used in filters. Now, all entities except for HistoricalLocation have such a very useful
property, whereby in the Observation entity it retains the name parameters.

• The service root page now shows the requirements that the server implements and allows
extensions to expose additional settings. This allows users to easily see exactly which extensions
and optional features a server implements. The MQTT extension can now list the MQTT
endpoints on the root page, so that a user can discover those endpoints.

• MQTT topics now must start with the version number of the specification. There were
differences between server implementations, with some requiring the version number prefix
and others not. This change will fix those incompatibilities from this version on.

The first two changes add extra fields to the JSON returned by the server and should not influence
clients made for version 1.0, as most client will ignore any fields they do not know. The second
change may cause some minor issues for some clients that are not using the version prefix in MQTT
topics, but those clients would already have issues connecting to any server that does use the
version prefix in MQTT topics.

This version supersedes the previous version of the OGC SensorThings API Part 1: Sensing (OGC 15-
078r6).

13

Submitting organizations
The following organizations submitted this document to the Open Geospatial Consortium (OGC):

University of Calgary, Canada

SensorUp Inc., Canada

CGI Group Inc., USA

Keys, USA

DataCove e.U., Austria

Fraunhofer-Gesellschaft, Germany

14

Submitters
All questions regarding this submission should be directed to the editors or the submitters:

Name Representing OGC
Member

Steve Liang University of Calgary, Canada / SensorUp Inc. Yes

Tania Khalafbeigi University of Calgary, Canada / SensorUp Inc. Yes

Hylke van der Schaaf Fraunhofer, Germany Yes

Brian Miles CGI Federal Yes

Katharina Schleidt DataCove e.U. Yes

Sylvain Grellet BRGM, France Yes

Mickael Beaufils BRGM, France Yes

Marcus Alzona Keys Yes

15

Chapter 1. Scope
The OGC SensorThings API provides an open Standard-based and geospatial-enabled framework to
interconnect the Internet of Things devices, data, and applications over the web.

16

Chapter 2. Conformance
Conformance with this Standard shall be checked using all the relevant tests specified in annex a
(normative) of this document. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing Policies
and Procedures and the OGC Compliance Testing web site1.

All requirements-classes and conformance-classes described in this document are owned by the
standard(s) identified.

The following table list the requirements classes defined by this Standard.

NOTE

The text in the Requirements class id and Requirements columns in the following
table is the path fragment that, when appended to the URI:
http://www.opengis.net/spec/iot_sensing/1.1/, provides the URI that can be used to
unambiguously identify the requirement and the conformance class.

Requirements class id Requirements Description

req/datamodel/thing • req/datamodel/thing/properties

• req/datamodel/thing/relations

Thing entity

req/datamodel/location • req/datamodel/location/properties

• req/datamodel/location/relations

Location entity

req/datamodel/historic
al-location

• req/datamodel/historical-location/properties

• req/datamodel/historical-location/relations

HistoricalLocation
entity

req/datamodel/datastre
am

• req/datamodel/datastream/properties

• req/datamodel/datastream/relations

Datastream entity

req/datamodel/sensor • req/datamodel/sensor/properties

• req/datamodel/sensor/relations

Sensor Entity

req/datamodel/observe
d-property

• req/datamodel/observed-property/properties

• req/datamodel/observed-property/relations

ObservedProperty
entity

req/datamodel/observa
tion

• req/datamodel/observation/properties

• req/datamodel/observation/relations

Observation entity

req/datamodel/feature-
of-interest

• req/datamodel/feature-of-interest/properties

• req/datamodel/feature-of-interest/relations

FeatureOfInterest
entity

17

Requirements class id Requirements Description

req/datamodel/entity-
control-information

• req/datamodel/entity-control-
information/common-control-information

Entities’ common
control information

req/resource-path • req/resource-path/resource-path-to-entities Addressing to the
entities of the
SensorThings API
service

req/request-data • req/request-data/order

• req/request-data/expand

• req/request-data/select

• req/request-data/status-code

• req/request-data/query-status-code

• req/request-data/orderby

• req/request-data/top

• req/request-data/skip

• req/request-data/count

• req/request-data/filter

• req/request-data/built-in-filter-operations

• req/request-data/built-in-query-functions

• req/request-data/pagination

Requesting data with
system query options

req/create-update-
delete

• req/create-update-delete/create-entity

• req/create-update-delete/link-to-existing-
entities

• req/create-update-delete/deep-insert

• req/create-update-delete/deep-insert-status-
code

• req/create-update-delete/update-entity

• req/create-update-delete/delete-entity

• req/create-update-delete/historical-location-
auto-creation

• req/create-update-delete/update-entity-put

• req/create-update-delete/update-entity-
jsonpatch

Creating, updating, and
deleting entities

18

Requirements class id Requirements Description

req/batch-request • req/batch-request/batch-request Processing multiple
requests with a single
request

req/multi-datastream • req/multi-datastream/properties

• req/multi-datastream/relations

• req/multi-datastream/constraints

Handling complex
observations with
complex results,
especially when the
result is an array.

req/data-array • req/data-array/data-array Serving Observations
with the efficient data
array encoding

req/create-
observations-via-mqtt

• req/create-observations-via-
mqtt/observations-creation

creating observations
through MQTT

req/receive-updates-
via-mqtt

• req/receive-updates-via-mqtt/receive-
updates

Receiving updates
through MQTT

19

Chapter 3. References
The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of the
normative document referred to applies.

• ISO 8601:2004 Data elements and interchange formats – Information interchange -
Representation of dates and times, 2004

• OGC 10-004r3 and ISO 19156:2011(E), OGC Abstract Specification Topic 20: Geographic
information — Observations and Measurements, 2011

• OASIS OData Version 4.0 Part 1: Protocol Plus Errata 02

• OASIS OData Version 4.0 Part 2: URL Conventions Plus Errata 02

• OASIS OData JSON Format Version 4.0 Plus Errata 02

• OASIS OData ABNF Construction Rules Errata 02

• RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

• RFC 2616, Hypertext Transfer Protocol — HTTP/1.1

• RFC 4627, the application/json Media Type for Javascript Object Notation (JSON), July 2006

• Unified Code for Units of Measure (UCUM) – Version 1.9, April 2015

20

Chapter 4. Terms and Definitions
This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this standard.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Collection
Sets of Resources, which can be retrieved in whole or in part. [RFC5023]

4.2. Entity
Entities are instances of entity types. [OASIS OData Version 4.0 Part 1: Protocol Plus Errata 02]

Note: Thing, Sensor, Datastream, Observation are some example entity types of the OGC SensorThings
API.

4.3. Entity sets
Entity sets are named collections of entities (e.g., Sensors is an entity set containing Sensor entities).
An entity’s key uniquely identifies the entity within an entity set. Entity sets provide entry points
into an OGC SensorThings API service. [OASIS OData Version 4.0 Part 1: Protocol Plus Errata 02]

4.4. (Internet of) Thing
A thing is an object of the physical world (physical things) or the information world (virtual things)
that is capable of being identified and integrated into communication networks. [ITU-T Y.2060]

4.5. Measurement
A set of operations having the object of determining the value of a quantity. [OGC 10-004r3 / ISO
19156:2011]

4.6. Observation
Act of measuring or otherwise determining the value of a property. [OGC 10-004r3 / ISO 19156:2011]

4.7. Observation Result
Estimate of the value of a property determined through a known observation procedure. [OGC 10-
004r3 / ISO 19156:2011]

21

http://tools.ietf.org/html/rfc5023#section-1

4.8. Resource
A network-accessible data object or service identified by an URI, as defined in [RFC 2616]

4.9. REST
The Representational State Transfer (REST) style is an abstraction of the architectural elements
within a distributed hypermedia system. REST focuses on the roles of components, the constraints
upon their interaction with other components, and their interpretation of significant data elements.
It encompasses the fundamental constraints upon components, connectors, and data that define the
basis of the Web architecture, and thus the essence of its behavior as a network-based application.
An API that conforms to the REST architectural principles/constraints is called a RESTful API.

4.10. Sensor
An entity capable of observing a phenomenon and returning an observed value. Type of
observation procedure that provides the estimated value of an observed property at its output.
[OGC 12-000]

22

Chapter 5. Conventions
This sections provides details and examples for any conventions used in the document. Examples of
conventions are symbols, abbreviations, use of XML schema, or special notes regarding how to read
the document.

5.1. Presentation of Requirements and
Recommendations
Requirements are presented using the following style:

Req [number]

<requirement text>

<requirement id>

<number> is a unique number within the document.

<requirement text> is the requirement itself. Normative verbs like SHALL are written in capitals.

The text at the bottom of the box <requirement id> is the path and it provides the URI of the
requirement which can be used to unambiguously identify the requirement.

5.2. Identifiers
The normative provisions in this specification are denoted by the URI

http://www.opengis.net/spec/iot_sensing/1.1/

All requirements and conformance tests that appear in this document are denoted by partial URIs
which are relative to this base.

23

http://www.opengis.net/spec/iot_sensing/1.1/

Chapter 6. Symbols (and abbreviated terms)
API

Application Programming Interface

CS-W

Catalog Service Web

CRUD

Create, Read, Update, and Delete

GML

Geography Markup Language

HTML

HyperText Markup Language

HTTP

Hypertext Transfer Protocol

IoT

Internet of Things

ISO

International Organization for Standardization

JSON

JavaScript Object Notation

OData

the Open Data Protocol

OGC

Open Geospatial Consortium

OWS

OGC Web Services

O&M

Observations and Measurements

REST

REpresentational State Transfer

SensorML

Sensor Model Language

24

SOS

Sensor Observation Service

SPS

Sensor Planning Service

SWE

Sensor Web Enablement

UCUM

Unified Code for Units of Measure

UML

Unified Modeling Language

WoT

Web of Things

XML

eXtensible Markup Language

25

Chapter 7. SensorThings API overview

7.1. Who should use the OGC SensorThings API
Organizations that need web-based platforms to manage, store, share, and analyze IoT-based
sensor observation data should use the OGC SensorThings API. The OGC SensorThings API
simplifies and accelerates the development of IoT applications. Application developers can use this
open Standard to connect to various IoT devices and create innovative applications without
worrying the daunting heterogeneous protocols of the different IoT devices, gateways and services.
IoT device manufacturers can also use OGC SensorThings API as the API can be embedded within
various IoT hardware and software platforms, so that the various IoT devices can effortlessly
connect with the OGC Standard-compliant servers around the world. In summary, the OGC
SensorThings API is transforming the numerous disjointed IoT systems into a fully connected
platform where complex tasks can be synchronized and performed.

7.2. Benefits of the OGC SensorThings API
In today’s world, most IoT devices (e.g., sensors and actuators) have proprietary software interfaces
defined by their manufacturers and used selectively. New APIs are often required and developed
on an as-needed basis, often in an environment with resource limitations and associated risks. This
situation requires significant investment on the part of developers for each new sensor or project
involving multiple systems and on the part of the providers of sensors, gateways, and portals or
services where observations and measurements are required.

As a standardized data model and interface for sensors in the WoT and IoT2, the OGC SensorThings
API offers the following benefits: (1) it permits the proliferation of new high value services with
lower overhead of development and wider reach, (2) it lowers the risks, time and cost across a full
IoT product cycle, and (3) it simplifies the connections between devices-to-devices and devices-to-
applications.

7.3. SensorThings API Overview
The OGC SensorThings API data model consists of two parts: (1) the Sensing part and (2) the Tasking
part. The Sensing part allows IoT devices and applications to CREATE, READ, UPDATE, and DELETE
(i.e., HTTP POST, GET, PATCH, and DELETE) IoT data and metadata in a SensorThings service.

The Sensing part is designed based on the OGC/ISO Observation and Measurement (O&M) model
[OGC 10-004r3 and ISO 19156:2011]. The key to the model is that an Observation is modeled as an
act that produces a result whose value is an estimate of a property of the observation target or
FeatureOfInterest. An Observation instance is classified by its event time (e.g., resultTime and
phenonmenonTime), FeatureOfInterest, ObservedProperty, and the procedure used (often a
Sensor). Moreover, Things are also modeled in the SensorThings API, and its definition follows the
ITU-T definition: “an object of the physical world (physical things) or the information world (virtual
things) that is capable of being identified and integrated into communication networks” [ITU-T
Y.2060].

The geographical Locations of Things are useful in almost every application and as a result are

26

included as well. For the Things whose location changed, the HistoricalLocations entities offer the
history of the Thing’s locations. A Thing also can have multiple Datastreams. A Datastream is a
collection of Observations grouped by the same ObservedProperty and Sensor. An Observation is
an event performed by a Sensor that produces a result whose value is an estimate of an
ObservedProperty of the FeatureOfInterest. Details of each above described entity are provided in
Chapter 8.

7.4. SensorThings API and ISO/OGC Observations and
Measurements
Managing and retrieving observations and metadata from IoT sensor systems is one of the most
common use cases. As a result, SensorThings API’s sensing part is designed based on the O&M
model. O&M defines models for the exchange of information describing observation acts, their
results as well as the feature involved in sampling when making observations.

SensorThings API defines eight entities for the IoT sensing applications. base lists each component
and its relationship with O&M. Low-cost and simple sensors are key enablers for the vision of IoT.
As a result, SensorThings API uses the term of Sensor to describe the procedure that is used in
making an Observation, instead of using O&M’s term of procedure.

Table 1. SensorThings API Sensing entities and equivalent concepts in O&M 2.0

SensorThings API Entities O&M 2.0 Concepts

Thing (and Locations, HistoricalLocations) -

Datastream -

Sensor Procedure

Observation Observation

ObservedProperty Observed Property

FeatureOfInterest Feature-Of-Interest

7.5. SensorThings API and OASIS OData
SensorThings API follows OData’s specification for requesting entities. That means the entity
control information, resource path usages, query options, the relevant JSON encodings, and batch-
processing request follow OData 4.0. By using OData’s standard ways for requesting entities,
developers who are familiar with OData can create SensorThings applications easily. However,
SensorThings API does not follow the OData Common Schema Definition Language and as a result
does not follow its metadata service entity model. Thus, SensorThings API should not be seen as an
OData compliant API. SensorThings API’s future work will explore possible harmonization between
SensorThings API and OData.

27

7.6. SensorThings API and OGC Key-Value Pair (KVP)
Encodings
Please note that SensorThings API’s Key-Value Pair (KVP) encoding is different from many existing
OGC service implementation standards, such as SOS or Web Map Service (WMS). The main reason
is that OData offers a complete set of KVP encodings (see Clause 9.3.3.6) that is designed specifically
for RESTful web services, while OGC baseline currently does not have common KVP encodings for
the RESTful binding. As a result, OGC SensorThings API version 1.1 chooses to use OData KVP
encodings only. It is our future work to support OGC KVP encodings as an extension once a common
OGC RESTful binding is available.

7.7. SensorThings API and Security
Things in the Internet of Things are connected to the network. Such ubiquitous network
connectivity results in significant security threats. In the IoT reference model defined by ITU-T
[ITU-T Y.2060] IoT security capabilities are not an independent layer but must be associated with all
layers. The following figure shows the ITU-T IoT reference model. The reference model has four
layers, namely (1) Applications Layer, (2) Service Support and Application Support Layer, (3)
Network Layer, and (4) Device Layer. And security capabilities are a cross-layer component that is
associated with the four layers.

Based on the IoT reference model, SensorThings API falls into the scope of the Service Support and
Application Support Layer and the security issues should be addressed by the cross-cutting security
capabilities. As a result, SensorThings API does not define specific security capabilities. Instead
SensorThings API is designed to leverage the existing and future IoT security capabilities.

Figure 1. IoT Reference Model (adapted from [ITU-T Y.2060])

A service instance that implements security related extensions can notify clients of this by way of
the serverSettings section of the document returned at the service root URI, as described in section
Section 9.2.1. Security related extensions can also use this section to announce any security
requirements to the clients.

28

Chapter 8. The SensorThings API Sensing
Entities
This chapter describes the SensorThings API data model. All data model requirements classes are
grouped in the following requirements class:

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel

Target Type Web Service

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historical-
location

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-
property

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation

Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-
interest

8.1. Common Control Information

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-information

Target Type Web Service

29

Requirements Class

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

Req 1: datamodel/entity-control-information/common-control-information

Each entity SHALL have the following common control information listed in Table 2.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-information/common-
control-information

In SensorThings control information is represented as annotations whose names start with
iot followed by a dot (.). Annotations are name/value pairs that have a dot (.) as part of the
name.

When annotating a name/value pair for which the value is represented as a JSON object, each
annotation is placed within the object and represented as a single name/value pair. In SensorThings
the name always starts with the “at” sign (@), followed by the namespace iot, followed by a dot (.),
followed by the name of the term (e.g., "@iot.id":1).

When annotating a name/value pair for which the value is represented as a JSON array or primitive
value, each annotation that applies to this name/value pair is placed next to the annotated
name/value pair and represented as a single name/value pair. The name is the same as the name of
the name/value pair being annotated, followed by the “at” sign (@), followed by the namespace iot,
followed by a dot (.), followed by the name of the term. (e.g.,
"Locations@iot.navigationLink":"http://example.org/v1.1/Things(1)/Locations")

Table 2. Common control information

Name Definition Data type Multiplicity
and use

id id is the system-generated identifier of an entity.
id is unique among the entities of the same
entity type in a SensorThings service.

Any One
(mandatory)

selfLink selfLink is the absolute URL of an entity that is
unique among all other entities.

URL One
(mandatory)

navigationLink navigationLink is the relative or absolute URL
that retrieves content of related entities.

URL One-to-many
(mandatory)

8.2. The Sensing Entities
The SensorThings API Sensing part’s Entities are depicted in Figure 2.

30

Figure 2. Sensing Entities

In this section, we explain the properties in each entity type and the direct relation to the other
entity types. In addition, for each entity type, we show an example of the associated JSON encoding.

8.2.1. Thing

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/properti
es

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/relation
s

Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

The OGC SensorThings API follows the ITU-T definition, i.e., with regard to the Internet of Things, a
thing is an object of the physical world (physical things) or the information world (virtual things)

31

that is capable of being identified and integrated into communication networks [ITU-T Y.2060].

Req 2: datamodel/thing/properties

Each Thing entity SHALL have the mandatory properties and MAY have the optional properties
listed in Table 3.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/properties

Table 3. Properties of a Thing entity

Name Definition Data type Multiplicity
and use

name A property provides a label for Thing
entity, commonly a descriptive name.

CharacterString One
(mandatory)

description This is a short description of the
corresponding Thing entity.

CharacterString One
(mandatory)

properties A JSON Object containing user-annotated
properties as key-value pairs.

JSON Object Zero-to-one

Req 3: datamodel/thing/relations

Each Thing entity SHALL have the direct relation between a Thing entity and other entity types
listed in Table 4.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/relations

Table 4. Direct relation between a Thing entity and other entity types

Entity type Relation Description

Location Many optional to
many optional

The Location entity locates the Thing. Multiple Things
MAY be located at the same Location. A Thing MAY not
have a Location. A Thing SHOULD have only one Location.

However, in some complex use cases, a Thing MAY have
more than one Location representations. In such case, the
Thing MAY have more than one Locations. These
Locations SHALL have different encodingTypes and the
encodingTypes SHOULD be in different spaces (e.g., one
encodingType in Geometrical space and one
encodingType in Topological space).

32

Entity type Relation Description

HistoricalLocation One mandatory to
many optional

A Thing has zero-to-many HistoricalLocations. A
HistoricalLocation has one-and-only-one Thing.

Datastream One mandatory to
many optional

A Thing MAY have zero-to-many Datastreams.

Example 1 an example of a Thing entity:

{
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/Things(1)",
 "Locations@iot.navigationLink": "Things(1)/Locations",
 "Datastreams@iot.navigationLink": "Things(1)/Datastreams",
 "HistoricalLocations@iot.navigationLink": "Things(1)/HistoricalLocations",

 "name": "Oven",
 "description": "This thing is an oven.",
 "properties": {
 "owner": "Noah Liang",
 "color": "Black"
 }
}

8.2.2. Location

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/prop
erties

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/relati
ons

Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

The Location entity locates the Thing or the Things it associated with. A Thing’s Location entity is
defined as the last known location of the Thing.

A Thing’s Location may be identical to the Thing’s Observations’ FeatureOfInterest. In the context of
the IoT, the principle location of interest is usually associated with the location of the Thing,

33

especially for in-situ sensing applications. For example, the location of interest of a wifi-connected
thermostat should be the building or the room in which the smart thermostat is located. And the
FeatureOfInterest of the Observations made by the thermostat (e.g., room temperature readings)
should also be the building or the room. In this case, the content of the smart thermostat’s location
should be the same as the content of the temperature readings’ feature of interest.

However, the ultimate location of interest of a Thing is not always the location of the Thing (e.g., in
the case of remote sensing). In those use cases, the content of a Thing’s Location is different from
the content of the FeatureOfInterest of the Thing’s Observations. Section 7.1.4 of [OGC 10-004r3 and
ISO 19156:2011] provides a detailed explanation of observation location.

Req 4: datamodel/location/properties

Each Location entity SHALL have the mandatory properties listed in Table 5.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/properties

Table 5. Properties of a Location entity

Name Definition Data type Multiplicity
and use

name A property provides a label for Location
entity, commonly a descriptive name.

CharacterString One
(mandatory)

description The description about the Location. CharacterString One
(mandatory)

encodingType The encoding type of the Location property.
Its value is one of the ValueCode
enumeration (see Table 7).

ValueCode One
(mandatory)

location The location type is defined by
encodingType.

Any (i.e., the type
is depending on
the value of the
encodingType)

One
(mandatory)

properties A JSON Object containing user-annotated
properties as key-value pairs.

JSON Object Zero-to-one

Req 5: datamodel/location/relations

Each Location entity SHALL have the direct relation between a Location entity and other entity
types listed in Table 6.

34

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/relations

Table 6. Direct relation between a Location entity and other entity types

Entity type Relation Description

Thing Many optional to
many optional

Multiple Things MAY locate at the same Location. A Thing
MAY not have a Location.

HistoricalLocation Many mandatory
to many optional

A Location can have zero-to-many HistoricalLocations.
One HistoricalLocation SHALL have one or many
Locations.

Example 2 an example of a Location entity:

{
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/Locations(1)",
 "Things@iot.navigationLink": "Locations(1)/Things",
 "HistoricalLocations@iot.navigationLink": "Locations(1)/HistoricalLocations",

 "name": "CCIT",
 "description": "Calgary Center for Innvative Technologies",
 "encodingType": "application/geo+json",
 "location": {
 "type": "Feature",
 "geometry":{
 "type": "Point",
 "coordinates": [-114.06,51.05]
 }
 }
}

Table 7. List of some code values used for identifying types for the encodingType of the Location and
FeatureOfInterest entity

Location encodingType ValueCode Value

GeoJSON application/geo+json

A thing can be geo-referenced in different spaces. For example, for some applications it is more
suitable to use a topological space model (e.g., IndoorGML) to describe an indoor things’ location
rather than using a geographic space model (e.g., GeoJSON). Currently GeoJSON is the only Location
encodingType of the SensorThings API. In the future we expect to extend SensorThings API’s
capabilities by adding additional encodingType to the code values listed in the above table. For
example, one potential new Location encodingType can be a JSON encoding for IndoorGML.

35

8.2.3. HistoricalLocation

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historical-location

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historical-
location/properties

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historical-
location/relations

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/historical-location-auto-creation

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/historical-location-manual-creation

Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

A Thing’s HistoricalLocation entity set provides the times of the current (i.e., last known) and
previous locations of the Thing.

Req 6: datamodel/historical-location/properties

Each HistoricalLocation entity SHALL have the mandatory properties and MAY have the optional
properties listed in Table 8.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historical-location/properties

Req 7: datamodel/historical-location/relations

Each HistoricalLocation entity SHALL have the direct relation between a HistoricalLocation entity
and other entity types listed in Table 9.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historical-location/relations

Req 8: create-update-delete/historical-location-auto-creation

36

When a Thing has a new Location, a new HistoricalLocation SHALL be created and added to the
Thing automatically by the service. The current Location of the Thing SHALL only be added to this
autogenerated HistoricalLocation automatically by the service, and SHALL not be created as
HistoricalLocation directly by user.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/historical-location-auto-
creation

The HistoricalLocation can also be created, updated and deleted. One use case is to migrate
historical observation data from an existing observation data management system to a
SensorThings API system. Another use case is to track the Location of a Thing, when a permanent
network connection is not available. If the Location of a Thing is changed at a later time, when a
network connection is available again, then the auto-generated Time of the HistoricalLocation
entity would not reflect the time when the Thing was actually at the set Location, but only the time
at which the change was sent to the server. To resolve this, the Location of a Thing can also be
changed by adding a HistoricalLocation. If the time of a manually created HistoricalLocation is later
than the time of all existing HistoricalLocations, then the Location of the Thing is updated to the
Location of this manually created HistoricalLocation.

Req 46: create-update-delete/historical-location-manual-creation

When a user directly adds new HistoricalLocation, and the time of this new HistoricalLocation is
later than the latest HistoricalLocation for the Thing, then the Locations of the Thing are changed
to the Locations of this new HistoricalLocation.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/historical-location-manual-
creation

Table 8. Properties of a HistoricalLocation entity

Name Definition Data type Multiplicity
and use

time The time when the Thing is known at the
Location.

TM_Instant (ISO-
8601 Time String)

One
(mandatory)

Table 9. Direct relation between an HistoricalLocation entity and other entity types

Entity type Relation Description

Location Many optional to
many mandatory

A Location can have zero-to-many HistoricalLocations.
One HistoricalLocation SHALL have one or many
Locations.

Thing Many optional to
one mandatory

A HistoricalLocation has one-and-only-one Thing. One
Thing MAY have zero-to-many HistoricalLocations.

37

Example 3: An example of a HistoricalLocations entity set (e.g., Things(1)/HistoricalLocations)

{
 "value": [
 {
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/HistoricalLocations(1)",
 "Locations@iot.navigationLink": "HistoricalLocations(1)/Locations",
 "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing",
 "time": "2015-01-25T12:00:00-07:00"
 },
 {
 "@iot.id": 2,
 "@iot.selfLink": "http://example.org/v1.1/HistoricalLocations(2)",
 "Locations@iot.navigationLink": "HistoricalLocations(2)/Locations",
 "Thing@iot.navigationLink": "HistoricalLocations(2)/Thing",
 "time": "2015-01-25T13:00:00-07:00"
 }
],
 "@iot.nextLink"
:"http://example.org/v1.1/Things(1)/HistoricalLocations?$skip=2&$top=2"
}

8.2.4. Datastream

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/pr
operties

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/re
lations

Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

Dependency urn:iso:dis:iso:19156:clause:8.2.2

A Datastream groups a collection of Observations measuring the same ObservedProperty and
produced by the same Sensor.

Req 9: datamodel/datastream/properties

38

Each Datastream entity SHALL have the mandatory properties and MAY have the optional
properties listed in Table 10.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/properties

Req 10: datamodel/datastream/relations

Each Datastream entity SHALL have the direct relation between a Datastream entity and other
entity types listed in Table 11.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/relations

Table 10. Properties of a Datastream entity

Name Definition Data type Multiplicity
and use

name A property provides a label for Datastream
entity, commonly a descriptive name.

CharacterString One
(mandatory)

description The description of the Datastream entity. CharacterString One
(mandatory)

unitOfMeasureme
nt

A JSON Object containing three key-value
pairs. The name property presents the full
name of the unitOfMeasurement; the
symbol property shows the textual form of
the unit symbol; and the definition
contains the URI defining the
unitOfMeasurement.

The values of these properties SHOULD
follow the Unified Code for Unit of Measure
(UCUM).

JSON Object One
(mandatory)

Note: When a
Datastream
does not
have a unit of
measuremen
t (e.g., a
OM_TruthOb
servation
type), the
correspondin
g
unitOfMeasu
rement
properties
SHALL have
null values.

39

Name Definition Data type Multiplicity
and use

observationType The type of Observation (with unique
result type), which is used by the service to
encode observations.

ValueCode
see Table 12.

One
(mandatory)

properties A JSON Object containing user-annotated
properties as key-value pairs.

JSON Object Zero-to-one

observedArea The spatial bounding box of the spatial
extent of all FeaturesOfInterest that belong
to the Observations associated with this
Datastream.

GM_Envelope
(GeoJSON
Polygon)

Zero-to-one
(optional)

phenomenonTime The temporal interval of the phenomenon
times of all observations belonging to this
Datastream.

TM_Period (ISO
8601 Time
Interval)

Zero-to-one
(optional)

resultTime The temporal interval of the result times of
all observations belonging to this
Datastream.

TM_Period (ISO
8601 Time
Interval)

Zero-to-one
(optional)

Table 11. Direct relation between a Datastream entity and other entity types

Entity type Relation Description

Thing Many optional to
one mandatory

A Thing has zero-to-many Datastreams. A Datastream
entity SHALL only link to a Thing as a collection of
Observations.

Sensor Many optional to
one mandatory

The Observations in a Datastream are performed by one-
and-only-one Sensor. One Sensor MAY produce zero-to-
many Observations in different Datastreams.

ObservedProperty Many optional to
one mandatory

The Observations of a Datastream SHALL observe the
same ObservedProperty. The Observations of different
Datastreams MAY observe the same ObservedProperty.

Observation One mandatory to
many optional

A Datastream has zero-to-many Observations. One
Observation SHALL occur in one-and-only-one
Datastream.

40

Example 4: A Datastream entity example

{
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/Datastreams(1)",
 "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing",
 "Sensor@iot.navigationLink": "Datastreams(1)/Sensor",
 "ObservedProperty@iot.navigationLink": "Datastreams(1)/ObservedProperty",
 "Observations@iot.navigationLink": "Datastreams(1)/Observations",

 "name": "oven temperature",
 "description": "This is a datastream measuring the air temperature in an oven.",
 "unitOfMeasurement": {
 "name": "degree Celsius",
 "symbol": "°C",
 "definition": "http://unitsofmeasure.org/ucum.html#para-30"
 },
 "observationType": "http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_Measurement",
 "observedArea": {
 "type": "Polygon",
 "coordinates": [[[100,0],[101,0],[101,1],[100,1],[100,0]]]
 },
 "phenomenonTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z",
 "resultTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z"
}

The observationType defines the result types for specialized observations [OGC 10-004r3 and ISO
19156:2011 Table 3]. The following table shows some of the valueCodes that maps the UML classes
in O&M v2.0 [OGC 10-004r3 and ISO 19156:2011] to observationType names and observation result
types.

Table 12. List of some code values used for identifying types defined in the O&M conceptual model (OGC 10-
004r3 and ISO 19156:2011 Clause 8.2.2)

O&M 2.0 Value Code Value (observationType names) Content of
result

OM_CategoryObservation http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_CategoryObservation

URI

OM_CountObservation http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_CountObservation

integer

OM_Measurement http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_Measurement

double

OM_Observation http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_Observation

Any

41

O&M 2.0 Value Code Value (observationType names) Content of
result

OM_TruthObservation http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_TruthObservation

boolean

8.2.5. Sensor

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/proper
ties

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/relatio
ns

Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

A Sensor is an instrument that observes a property or phenomenon with the goal of producing an
estimate of the value of the property3.

Req 11: datamodel/sensor/properties

Each Sensor entity SHALL have the mandatory properties and MAY have the optional properties
listed in Table 13.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/properties

Req 12: datamodel/sensor/relations

Each Sensor entity SHALL have the direct relation between a Sensor entity and other entity types
listed in Table 14.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/relations

Table 13. Properties of a Sensor entity

42

Name Definition Data type Multiplicity
and use

name A property provides a label for Sensor
entity, commonly a descriptive name.

CharacterString One
(mandatory)

description The description of the Sensor entity. CharacterString One
(mandatory)

encodingType The encoding type of the metadata
property. Its value is one of the ValueCode
enumeration (see Table 15 for the available
ValueCode).

ValueCode One
(mandatory)

metadata The detailed description of the Sensor or
system. The metadata type is defined by
encodingType.

Any (depending
on the value of the
encodingType)

One
(mandatory)

properties A JSON Object containing user-annotated
properties as key-value pairs.

JSON Object Zero-to-one

Table 14. Direct relation between a Sensor entity and other entity types

Entity type Relation Description

Datastream One mandatory to
many optional

The Observations of a Datastream are measured with the
same Sensor. One Sensor MAY produce zero-to-many
Observations in different Datastreams.

Table 15. List of some code values used for identifying types for the encodingType of the Sensor entity

Sensor encodingType ValueCode Value

PDF application/pdf

SensorML http://www.opengis.net/doc/IS/SensorML/2.0

HTML text/html

The Sensor encodingType allows clients to know how to interpret metadata’s value. Currently
SensorThings API defines three common Sensor metadata encodingTypes. Most sensor
manufacturers provide their sensor datasheets in a PDF format. As a result, PDF is a Sensor
encodingType supported by SensorThings API. The second Sensor encodingType is SensorML.
Lastly, some sensor datasheets are HTML documents rather than PDFs. Other encodingTypes are
permitted (e.g., text/plain). Note that the metadata property may contain either a URL to metadata
content (e.g., an https://, ftp://, etc. link to a PDF, SensorML, or HTML document) or the metadata
content itself (in the case of text/plain or other encodingTypes that can be represented as valid
JSON). It is up to clients to perform string parsing necessary to properly handle metadata content.

43

Example 5: An example of a Sensor entity

{
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/Sensors(1)",
 "Datastreams@iot.navigationLink": "Sensors(1)/Datastreams",

 "name": "TMP36",
 "description": "TMP36 - Analog Temperature sensor",
 "encodingType": "application/pdf",
 "metadata": "http://example.org/TMP35_36_37.pdf"
}

8.2.6. ObservedProperty

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-property

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-
property/properties

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-
property/relations

Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

An ObservedProperty specifies the phenomenon of an Observation.

Req 13: datamodel/observed-property/properties

Each ObservedProperty entity SHALL have the mandatory properties and MAY have the optional
properties listed in Table 16.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-property/properties

Req 14: datamodel/observed-property/relations

Each ObservedProperty entity SHALL have the direct relation between a ObservedProperty entity
and other entity types listed in Table 17.

44

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-property/relations

Table 16. Properties of an ObservedProperty entity

Name Definition Data type Multiplicity
and use

name A property provides a label for
ObservedProperty entity, commonly a
descriptive name.

CharacterString One
(mandatory)

definition The URI of the ObservedProperty.
Dereferencing this URI SHOULD result in a
representation of the definition of the
ObservedProperty.

URI One
(mandatory)

description A description about the ObservedProperty. CharacterString One
(mandatory)

properties A JSON Object containing user-annotated
properties as key-value pairs.

JSON Object Zero-to-one

Table 17. Direct relation between an ObservedProperty entity and other entity types

Entity type Relation Description

Datastream One mandatory to
many optional

The Observations of a Datastream observe the same
ObservedProperty. The Observations of different
Datastreams MAY observe the same ObservedProperty.

Example 6: an example ObservedProperty entity

{
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(1)",
 "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams",
 "description": "The dewpoint temperature is the temperature to which the
 air must be cooled, at constant pressure, for dew to form.
 As the grass and other objects near the ground cool to
 the dewpoint, some of the water vapor in the atmosphere
 condenses into liquid water on the objects.",
 "name": "DewPoint Temperature",
 "definition": "http://dbpedia.org/page/Dew_point"
}

45

8.2.7. Observation

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/p
roperties

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/r
elations

Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

Dependency urn:iso:dis:iso:19156:clause:7.2.2

An Observation is the act of measuring or otherwise determining the value of a property [OGC 10-
004r3 and ISO 19156:2011]

Req 15: datamodel/observation/properties

Each Observation entity SHALL have the mandatory properties and MAY have the optional
properties listed in Table 18.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/properties

Req 16: datamodel/observation/relations

Each Observation entity SHALL have the direct relation between an Observation entity and other
entity types listed in Table 19.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/relations

Table 18. Properties of an Observation entity

46

Name Definition Data type Multiplicity
and use

phenomenonTime The time instant or period of when the
Observation happens.

Note: Many resource-constrained sensing
devices do not have a clock. As a result, a
client may omit phenonmenonTime when
POST new Observations, even though
phenonmenonTime is a mandatory
property. When a SensorThings service
receives a POST Observations without
phenonmenonTime, the service SHALL
assign the current server time to the value
of the phenomenonTime.

TM_Object (ISO
8601 Time string
or Time Interval
string (e.g., 2010-
12-
23T10:20:00.00-
07:00 or 2010-12-
23T10:20:00.00-
07:00/2010-12-
23T12:20:00.00-
07:00))

One
(mandatory)

result The estimated value of an
ObservedProperty from the Observation.

Any (depends on
the
observationType
defined in the
associated
Datastream)

One
(mandatory)

resultTime The time of the Observation’s result was
generated.

Note: Many resource-constrained sensing
devices do not have a clock. As a result, a
client may omit resultTime when POST
new Observations, even though resultTime
is a mandatory property. When a
SensorThings service receives a POST
Observations without resultTime, the
service SHALL assign a null value to the
resultTime.

TM_Instant (ISO
8601 Time string)

One
(mandatory)

resultQuality Describes the quality of the result. DQ_Element Zero-to-many

validTime The time period during which the result
may be used.

TM_Period (ISO
8601 Time
Interval string)

Zero-to-one

parameters Key-value pairs showing the
environmental conditions during
measurement.

JSON Object Zero-to-One

47

Table 19. Direct relation between an Observation entity and other entity types

Entity type Relation Description

Datastream Many optional to
one mandatory

A Datastream can have zero-to-many Observations. One
Observation SHALL occur in one-and-only-one
Datastream.

FeatureOfInterest Many optional to
one mandatory

An Observation observes on one-and-only-one
FeatureOfInterest. One FeatureOfInterest could be
observed by zero-to-many Observations.

Example 7 An Observation entity example - The following example shows an Observation whose
Datastream has an ObservationType of OM_Measurement. A result’s data type is defined by the
observationType.

{
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/Observations(1)",
 "FeatureOfInterest@iot.navigationLink": "Observations(1)/FeatureOfInterest",
 "Datastream@iot.navigationLink":"Observations(1)/Datastream",

 "phenomenonTime": "2014-12-31T11:59:59.00+08:00",
 "resultTime": "2014-12-31T11:59:59.00+08:00",
 "result": 70.4
}

8.2.8. FeatureOfInterest

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-interest

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-
interest/properties

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-
interest/relations

Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information

An Observation results in a value being assigned to a phenomenon. The phenomenon is a property
of a feature, the latter being the FeatureOfInterest of the Observation [OGC and ISO 19156:2011]. In
the context of the Internet of Things, many Observations’ FeatureOfInterest can be the Location of

48

the Thing. For example, the FeatureOfInterest of a wifi-connect thermostat can be the Location of
the thermostat (i.e., the living room where the thermostat is located in). In the case of remote
sensing, the FeatureOfInterest can be the geographical area or volume that is being sensed.

Req 17: datamodel/feature-of-interest/properties

Each FeatureOfInterest entity SHALL have the mandatory properties listed in Table 20.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-interest/properties

Req 18: datamodel/feature-of-interest/relations

Each FeatureOfInterest entity SHALL have the direct relation between a FeatureOfInterest entity
and other entity types listed in Table 21.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-interest/relations

Table 20. Properties of a FeatureOfInterest entity

Name Definition Data type Multiplicity
and use

name A property provides a label for
FeatureOfInterest entity, commonly a
descriptive name.

CharacterString One
(mandatory)

description The description about the
FeatureOfInterest.

CharacterString One
(mandatory)

encodingType The encoding type of the feature property.

Its value is one of the ValueCode
enumeration (see Table 7 for the available
ValueCode).

ValueCode One
(mandatory)

feature The detailed description of the feature. The
data type is defined by encodingType.

Any One
(mandatory)

properties A JSON Object containing user-annotated
properties as key-value pairs.

JSON Object Zero-to-one

Table 21. Direct relation between a FeatureOfInterest entity and other entity types

49

Entity type Relation Description

Observation One mandatory to
many optional

An Observation observes on one-and-only-one
FeatureOfInterest. One FeatureOfInterest could be
observed by zero-to-many Observations.

Example 8: an example of a FeatureOfInterest entity

{
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/FeaturesOfInterest(1)",
 "Observations@iot.navigationLink": "FeaturesOfInterest(1)/Observations",

 "name": "Weather Station YYC.",
 "description": "This is a weather station located at the Calgary Airport.",
 "encodingType": "application/geo+json",
 "feature": {
 "type": "Feature",
 "geometry":{
 "type": "Point",
 "coordinates": [-114.06,51.05]
 }
 }
}

50

Chapter 9. SensorThings Service Interface
An OGC SensorThings API service exposes a service document resources that describe its data
model. The service document lists the entity sets that can be CRUD. SensorThings API clients can
use the service document to navigate the available entities in a hypermedia-driven fashion.

9.1. URI Components
The OGC SensorThings API service groups the same types of entities into entity sets.Each entity has
a unique identifier and one-to-many properties. Also, in the case of an entity holding a relationship
with entities in other entity sets, this type of relationship is expressed with navigation properties
(i.e., navigationLink and associationLink).

Therefore, in order to perform CRUD actions on the resources, the first step is to address to the
target resource(s) through URI. There are three major URI components used here, namely (1) the
service root URI, (2) the resource path, and (3) the query options. In addition, the service root URI
consists of two parts: (1) the location of the SensorThings service and (2) the version number. The
version number follows the format indicated below:

"v"majorversionnumber + "." + minorversionnumber

Example 9: complete URI example

http://example.org/v1.1/Observations?$orderby=ID&$top=10
_______________________/___________/___________________/
 | | |
 service root URI resource path query options

By attaching the resource path after the service root URI, clients can address to different types of
resources such as an entity set, an entity, a property, or a navigation property. Finally, clients can
apply query options after the resource path to further process the addressed resources, such as
sorting by properties or filtering with criteria.

9.2. Resource Path

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path/resource-
path-to-entities

51

Requirements Class

Dependency

The resource path comes right after the service root URI and can be used to address to different
resources. The following lists the usages of the resource path.

Req 19: resource-path/resource-path-to-entities

An OGC SensorThings API service SHALL support all the resource path usages listed in Section 9.2.

http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path/resource-path-to-entities

9.2.1. Usage 1: no resource path

URI Pattern: SERVICE_ROOT_URI

Response: A JSON object with a property named value and a property named serverSettings. The
value of the property named value SHALL be a JSON Array containing one element for each entity
set of the SensorThings Service. The value of the property named serverSettings SHALL be a JSON
Object describing the features the server supports that can not easily be detected by querying the
service.

Each element of the value array SHALL be a JSON object with at least two name/value pairs, one
with name name containing the name of the entity set (e.g., Things, Locations, Datastreams,
Observations, ObservedProperties and Sensors) and one with name url containing the URL of the
entity set, which may be an absolute or a relative URL.
[Adapted from OData 4.0-JSON-Format section 5]

The serverSettings object SHALL contain the property conformance of the type Array, containing the
URIs of all requirements from this specification and any extensions that the service implements. If
a service implements all requirements from a requirements class, it only needs to list the
requirements class id.

Security extensions can modify the list of requirements to only show those requirements that the
user is allowed to use. For example, if a user is not allowed to delete entities, the security extension
can hide the create-update-delete/delete-entity requirement. In the most extreme case, a security
extension would hide all requirements for a user that is not authenticated, except its own
requirement and the instructions on how to authenticate.

Extensions that need to expose additional server settings may do so in a property of the
serverSettings object that is named after the conformance class URI of the requirement that defines
this setting.

Example 10: a SensorThings request with no resource path

52

Example Request:

http://example.org/v1.1/

Example Response:

{
 "serverSettings": {
 "conformance": [
 "http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path/resource-path-
to-entities",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/request-data",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/create-
entity",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/link-to-
existing-entities",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/deep-
insert",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/deep-
insert-status-code",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/update-
entity",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/delete-
entity",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/historical-location-auto-creation",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-via-
mqtt/observations-creation",
 "http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-via-
mqtt/receive-updates"
],
 "http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-via-mqtt/receive-
updates": {
 "endpoints": [
 "mqtt://server.example.com:1833",
 "ws://server.example.com/sensorThings",
]
 },
 "http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-via-
mqtt/observations-creation": {
 "endpoints": [
 "mqtts://server.example.com:8883",
 "wss://server.example.com:443/sensorThings"
]
 }
 },
 "value": [
 {
 "name": "Things",

53

 "url": "http://example.org/v1.1/Things"
 },
 {
 "name": "Locations",
 "url": "http://example.org/v1.1/Locations"
 },
 {
 "name": "Datastreams",
 "url": "http://example.org/v1.1/Datastreams"
 },
 {
 "name": "Sensors",
 "url": "http://example.org/v1.1/Sensors"
 },
 {
 "name": "Observations",
 "url": "http://example.org/v1.1/Observations"
 },
 {
 "name": "ObservedProperties",
 "url": "http://example.org/v1.1/ObservedProperties"
 },
 {
 "name": "FeaturesOfInterest",
 "url": "http://example.org/v1.1/FeaturesOfInterest"
 }
]
}

9.2.2. Usage 2: address to a collection of entities

To address to an entity set, users can simply put the entity set name after the service root URI. The
service returns a JSON object with a property of value. The value of the property SHALL be a list of
the entities in the specified entity set.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME

Response: A list of all entities (with all the properties) in the specified entity set when there is no
service-driven pagination imposed. The response is represented as a JSON object containing a
name/value pair named value. The value of the value name/value pair is a JSON array where each
element is representation of an entity or a representation of an entity reference. An empty
collection is represented as an empty JSON array.

The count annotation represents the number of entities in the collection. If present, it comes before
the value name/value pair.

When there is service-driven pagination imposed, the nextLink annotation is included in a
response that represents a partial result.

54

[Adapted from OData 4.0-JSON-Format section 12]

Example 11 an example to address an entity set

Example Request:

http://example.org/v1.1/ObservedProperties

Example Response:

{
 "@iot.count":84,
 "value": [
 {
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(1)",
 "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams",
 "description": "The dew point is the temperature at which the water
 vapor in air at constant barometric pressure condenses
 into liquid water at the same rate at which it evaporates.",
 "name": "DewPoint Temperature",
 "definition": "http://dbpedia.org/page/Dew_point"
 },
 {
 "@iot.id ": 2,
 "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(2)",
 "Datastreams@iot.navigationLink": "ObservedProperties(2)/Datastreams",
 "description": "Relative humidity is the ratio of the partial pressure
 of water vapor in an air-water mixture to the saturated
 vapor pressure of water at a prescribed temperature.",
 "name": "Relative Humidity",
 "definition": "http://dbpedia.org/page/Relative_humidity"
 },{…},{…},{…}
],
 "@iot.nextLink":"http://example.org/v1.1/ObservedProperties?$top=5&$skip=5"
}

9.2.3. Usage 3: address to an entity in a collection

Users can address to a specific entity in an entity set by place the unique identifier of the entity
between brace symbol “()” and put after the entity set name. The service then returns the entity
with all its properties.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)

Response: A JSON object of the entity (with all its properties) that holds the specified id in the entity
set.

55

Example 12: an example request that addresses to an entity in a collection

Example Request:

http://example.org/v1.1/Things(1)

9.2.4. Usage 4: address to a property of an entity

Users can address to a property of an entity by specifying the property name after the URI
addressing to the entity. The service then returns the value of the specified property. If the property
has a complex type value, properties of that value can be addressed by further property name
composition.

If the property is single-valued and has the null value, the service SHALL respond with 204 No
Content. If the property is not available, for example due to permissions, the service SHALL
respond with 404 Not Found.

[Adapted from OData 4.0-Protocol 11.2.3]

URI Pattern: SERVICE_ROOT_URI/RESOURCE_PATH_TO_AN_ENTITY/PROPERTY_NAME

Response: The specified property of an entity that holds the id in the entity set.

Example 13: an example to address to a property of an entity

Example Request:

http://example.org/v1.1/Observations(1)/resultTime

Example Response:

{
 "resultTime": "2010-12-23T10:20:00-07:00"
}

9.2.5. Usage 5: address to the value of an entity’s property

To address the raw value of a primitive property, clients append a path segment containing the
string $value to the property URL.

The default format for TM_Object types is text/plain using the ISO8601 format, such as 2014-03-
01T13:00:00Z/2015-05-11T15:30:00Z for TM_Period and 2014-03-01T13:00:00Z for TM_Instant.

URI Pattern:
SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)/PROPERTY_NAME/$value

Response: The raw value of the specified property of an entity that holds the id in the entity set.

56

Example 14: an example of addressing to the value of an entity’s property

Example:

http://example.org/v1.1/Observations(1)/resultTime/$value

Example Response:

 2015-01-12T23:00:13-07:00

9.2.6. Usage 6: address to a navigation property (navigationLink)

As the entities in different entity sets may hold some relationships, users can request the linked
entities by addressing to a navigation property of an entity. The service then returns one or many
entities that hold a certain relationship with the specified entity.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)/LINK_NAME

Response: A JSON object of one entity or a JSON array of many entities that holds a certain
relationship with the specified entity.

Example 15: an example request addressing to a navigational property

http://example.org/v1.1/Datastreams(1)/Observations

returns all the Observations in the Datastream that holds the id 1.

9.2.7. Usage 7: address to an associationLink

As the entities in different entity sets may hold some relationships, users can request the linked
entities’ selfLinks by addressing to an association link of an entity. An associationLink can be used
to retrieve a reference to an entity or an entity set related to the current entity. Only the selfLinks of
related entities are returned when resolving associationLinks.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME(KEY_OF_THE_ENTITY)/LINK_NAME/$ref

Response: A JSON object with a value property. The value of the value property is a JSON array
containing one element for each associationLink. Each element is a JSON object with a name/value
pairs. The name is @iot.selfLink and the value is the selfLink of the related entity.

Example 16: an example of addressing to an association link

Example Request:

http://example.org/v1.1/Datastreams(1)/Observations/$ref

57

returns all the selfLinks of the Observations of Datastream(1).

Example Response:

{
 "value": [
 {
 "@iot.selfLink": "http://example.org/v1.1/Observations(1)"
 },
 {
 "@iot.selfLink": "http://example.org/v1.1/Observations(2)"
 }
]
}

9.2.8. Usage 8: nested resource path

As users can use navigation properties to link from one entity set to another, users can further
extend the resource path with unique identifiers, properties, or links (i.e., Usage 3, 4 and 6).

Example 17: examples of nested resource path

Example Request 1:

http://example.org/v1.1/Datastreams(1)/Observations(1)

returns a specific Observation entity in the Datastream.

Example Request 2:

http://example.org/v1.1/Datastreams(1)/Observations(1)/resultTime

turns the resultTime property of the specified Observation in the Datastream.

Example Request 3:

http://example.org/v1.1/Datastreams(1)/Observations(1)/FeatureOfInterest

returns the FeatureOfInterest entity of the specified Observation in the Datastream.

9.3. Requesting Data

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data

58

Requirements Class

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/order

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/expand

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/select

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/status-code

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/query-
status-code

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/orderby

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/top

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/skip

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/pagination

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/count

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/filter

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-in-
filter-operations

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-in-
query-functions

Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-
complete.html#_Toc406398292

Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-
complete.html#_Toc406398297

Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-
complete.html#_Toc406398299

59

Requirements Class

Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-
complete.html#_Toc406398300

Clients issue HTTP GET requests to OGC SensorThings API services for data. The resource path of
the URL specifies the target of the request. Additional query operators can be specified through
query options that are presented as follows. The query operators are prefixed with a dollar ($)
character and specified as key-value pairs after the question symbol (?) in the request URI. Many of
the OGC SensorThings API’s query options are adapted from OData’s query options. OData
developers should be able to pick up SensorThings API query options very quickly.

Req 20: request-data/status-code

OGC SensorThings API services are hypermedia driven services that return URLs to the client. If a
client subsequently requests the advertised resource and the URL has expired, then the service
SHALL respond with 410 Gone. If this is not feasible, the service SHALL respond with 404 Not
Found.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/status-code

Req 21: request-data/query-status-code

If a service does not support a system query option, it SHALL fail any request that contains the
unsupported option and SHALL return 501 Not Implemented.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/query-status-code

9.3.1. Evaluating System Query Options

Req 22: request-data/order

An OGC SensorThings API service SHALL evaluate the system query options following the order
specified in Section 9.3.1.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/order

The OGC SensorThings API adapts many of OData’s system query options and their usage. These
query options allow refining the request.

The result of the service request is as if the system query options were evaluated in the following
order.

60

Prior to applying any server-driven pagination:

• $filter

• $count

• $orderby

• $skip

• $top

After applying any server-driven pagination:

• $select

• $expand

9.3.2. Specifying Properties to Return

The $select and $expand system query options enable the client to specify the set of properties to be
included in a response.

9.3.2.1. $expand

Req 23: request-data/expand

The $expand system query option indicates the related entities to be represented inline. The value
of the $expand query option SHALL be a comma separated list of navigation property names.
Additionally, each navigation property can be followed by a forward slash and another navigation
property to enable identifying a multi-level relationship.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/expand

Example 18: examples of $expand query option

Example Request 1:

http://example.org/v1.1/Things?$expand=Datastreams

returns the entity set of Things as well as each of the Datastreams associated with each Thing entity.

Example Request 1 Response:

61

{
 "values": [
 {
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/Things(1)",
 "Locations@iot.navigationLink": "Things(1)/Locations",
 "Datastreams@iot.count":1,
 "Datastreams": [
 {
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/Datastreams(1)",
 "name": "oven temperature",
 "description": "This is a datastream measuring the air temperature in an
oven.",
 "unitOfMeasurement": {
 "name": "degree Celsius",
 "symbol": "°C",
 "definition": "http://unitsofmeasure.org/ucum.html#para-30"
 },
 "observationType": "http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_Measurement",
 "observedArea": {
 "type": "Polygon",
 "coordinates": [[[100,0],[101,0],[101,1],[100,1],[100,0]]]
 },
 "phenomenonTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z",
 "resultTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z"
 }
],
 "HistoricalLocations@iot.navigationLink": "Things(1)/HistoricalLocations",
 "description": "This thing is a convection oven.",
 "name": "Oven",
 "properties": {
 "owner": "John Doe",
 "color": "Silver"
 }
 }
]
}

Example Request 2:

http://example.org/v1.1/Things?$expand=Datastreams/ObservedProperty

returns the collection of Things, the Datastreams associated with each Thing, and the
ObservedProperty associated with each Datastream.

Example Request 3:

62

http://example.org/v1.1/Datastreams(1)?$expand=Observations,ObservedProperty

returns the Datastream whose id is 1 as well as the Observations and ObservedProperty associated
with this Datastream.

Query options can be applied to the expanded navigation property by appending a semicolon-
separated list of query options, enclosed in parentheses, to the navigation property name. Allowed
system query options are $filter, $select, $orderby, $skip, $top, $count, and $expand.

[Adapted from OData 4.0- URL 5.1.2]

Example Request 4:

http://example.org/v1.1/Datastreams(1)?$expand=Observations($filter=result eq 1)

returns the Datastream whose id is 1 as well as its Observations with a result equal to 1.

9.3.2.2. $select

Req 24: request-data/select

The $select system query option requests the service to return only the properties explicitly
requested by the client. The value of a $select query option SHALL be a comma-separated list of
selection clauses. Each selection clause SHALL be a property name (including navigation property
names). In the response, the service SHALL return the specified content, if available, along with
any available expanded navigation properties.

[Adapted from OData 4.0-Protocol 11.2.4.1]

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/select

Example 19: examples of $select query option

Example Request 1:

http://example.org/v1.1/Observations?$select=result,resultTime

returns only the result and resultTime properties for each Observation entity.

Example Request 2:

63

http://example.org/v1.1/Datastreams(1)?$select=id&$expand=Observations/FeatureOfIntere
st

returns the id property of the Datastream entity, and all the properties of the entity identified by
the Observations and FeatureOfInterest navigation properties (Expanded items are implicitly
selected).

Example Request 3:

http://example.org/v1.1/Datastreams(1)?$expand=Observations($select=result)

returns the Datastream whose id is 1 as well as the result property of the entity identified by the
Observations navigation property.

9.3.3. Query Entity Sets

9.3.3.1. $orderby

Req 25: request-data/orderby

The $orderby system query option specifies the order in which items are returned from the
service. The value of the $orderby system query option SHALL contain a comma-separated list of
expressions whose primitive result values are used to sort the items. A special case of such an
expression is a property path terminating on a primitive property.

The expression MAY include the suffix asc for ascending or desc for descending, separated from
the property name by one or more spaces. If asc or desc is not specified, the service SHALL order
by the specified property in ascending order.

Null values SHALL come before non-null values when sorting in ascending order and after non-
null values when sorting in descending order.

Items SHALL be sorted by the result values of the first expression, and then items with the same
value for the first expression SHALL be sorted by the result value of the second expression, and so
on.

[Note: Adapted from OData 4.0-Protocol 11.2.5.2]

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/orderby

Example 20: examples of $orderby query option

Example Request 1:

64

http://example.org/v1.1/Observations?$orderby=result

returns all Observations ordered by the result property in ascending order.

Example Request 2:

http://example.org/v1.1/Observations?$expand=Datastream&$orderby=Datastreams/id desc,
phenomenonTime

returns all Observations ordered by the id property of the linked Datastream entry in descending
order, then by the phenomenonTime property of Observations in ascending order.

9.3.3.2. $top

Req 26: request-data/top

The $top system query option specifies the limit on the number of items returned from a
collection of entities. The value of the $top system query option SHALL be a non-negative integer
n. The service SHALL return the number of available items up to but not greater than the specified
value n.

If no unique ordering is imposed through an $orderby query option, the service SHALL impose a
stable ordering across requests that include $top.

[Note: Adapted from OData 4.0-Protocol 11.2.5.3]

In addition, if the $top value exceeds the service-driven pagination limitation (i.e., the largest
number of entities the service can return in a single response), the $top query option SHALL be
discarded and the server-side pagination limitation SHALL be imposed.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/top

Example 21: examples of $top query option

Example Request 1:

http://example.org/v1.1/Things?$top=5

returns only the first five entities in the Things collection.

Example Request 2:

http://example.org/v1.1/Observations?$top=5&$orderby=phenomenonTime%20desc

65

returns the first five Observation entries after sorted by the phenomenonTime property in
descending order.

9.3.3.3. $skip

Req 27: request-data/skip

The $skip system query option specifies the number for the items of the queried collection that
SHALL be excluded from the result. The value of $skip system query option SHALL be a non-
negative integer n. The service SHALL return items starting at position n+1.

Where $top and $skip are used together, $skip SHALL be applied before $top, regardless of the
order in which they appear in the request.

If no unique ordering is imposed through an $orderby query option, the service SHALL impose a
stable ordering across requests that include $skip.

[Note: Adapted from OData 4.0-Protocol 11.2.5.4]

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/skip

Example 22: examples of $skip query option

Example Request 1:

http://example.org/v1.1/Things?$skip=5

returns Thing entities starting with the sixth Thing entity in the Things collection.

Example Request 2:

http://example.org/v1.1/Observations?$skip=2&$top=2&$orderby=resultTime

returns the third and fourth Observation entities from the collection of all Observation entities
when the collection is sorted by the resultTime property in ascending order.

9.3.3.4. $count

Req 28: request-data/count

66

The $count system query option with a value of true specifies that the total count of items within a
collection matching the request SHALL be returned along with the result. A $count query option
with a value of false (or not specified) hints that the service SHALL not return a count.

The service SHALL return an HTTP Status code of 400 Bad Request if a value other than true or
false is specified.

The $count system query option SHALL ignore any $top, $skip, or $expand query options, and
SHALL return the total count of results across all pages including only those results matching any
specified $filter. Clients should be aware that the count returned inline may not exactly equal the
actual number of items returned, due to latency between calculating the count and enumerating
the last value or due to inexact calculations on the service.

[Adapted from OData 4.0-Protocol 11.2.5.5]

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/count

Example 23: examples of $count query option

Example Request 1:

http://example.org/v1.1/Things?$count=true

returns, along with the results, the total number of Things in the collection.

Example Response:

{
 "@iot.count": 2,
 "value": [
 {…},
 {…}
]
}

9.3.3.5. $filter

Req 29: request-data/filter

67

The $filter system query option allows clients to filter a collection of entities that are addressed by
a request URL. The expression specified with $filter is evaluated for each entity in the collection,
and only items where the expression evaluates to true SHALL be included in the response. Entities
for which the expression evaluates to false or to null, or which reference properties that are
unavailable due to permissions, SHALL be omitted from the response.

[Adapted from Data 4.0-URL Conventions 5.1.1]

The expression language that is used in $filter operators SHALL support references to properties
and literals. The literal values SHALL be strings enclosed in single quotes, numbers and boolean
values (true or false) or datetime values represented as ISO 8601 time string.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/filter

Example 24: examples of $filter query option

Example Request 1:

http://example.org/v1.1/Observations?$filter=result lt 10.00

returns all Observations whose result is less than 10.00.

In addition, clients can choose to use the properties of linked entities in the $filter predicate. The
following are examples of the possible uses of the $filter in the data model of the SensorThings
service.

Example Request 2:

http://example.org/v1.1/Observations?$filter=Datastream/id eq 1

returns all Observations whose Datastream’s id is 1.

Example Request 3:

http://example.org/v1.1/Things?$filter=geo.distance(Locations/location,
geography'POINT(-122 43)') gt 1

returns Things that the distance between their last known locations and POINT(-122 43) is greater
than 1.

Example Request 4:

68

http://example.org/v1.1/Things?$expand=Datastreams/Observations/FeatureOfInterest&$fil
ter=Datastreams/Observations/FeatureOfInterest/id eq ‘FOI_1’ and
Datastreams/Observations/resultTime ge 2010-06-01T00:00:00Z and
Datastreams/Observations/resultTime le 2010-07-01T00:00:00Z

returns Things that have any observations of a feature of interest with a unique identifier equals to
’FOI_1’ in June 2010.

9.3.3.5.1. Built-in filter operations

The OGC SensorThings API supports a set of built-in filter operations, as described in the following
table. These built-in filter operator usages and definitions follow the [OData Specification Section
11.2.5.1.1] and [OData Version 4.0 ABNF]. The operator precedence is described in [OData Version
4.0 Part 2: URL Conventions Section 5.1.1.8].

Req 30: request-data/built-in-filter-operations

The built-in filter operators SHALL be as defined in Table 22.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-in-filter-operations

Table 22. Built-in Filter Operators

Operator Description Example

Comparison Operators

eq Equal /Datastreams?$filter=unitOfMeasurement/name eq 'degree
Celsius'

ne Not equal /Datastreams?$filter=unitOfMeasurement/name ne 'degree
Celsius'

gt Greater than /Observations?$filter=result gt 20.0

ge Greater than or equal /Observations?$filter=result ge 20.0

lt Less than /Observations?$filter=result lt 100

le Less than or equal /Observations?$filter=result le 100

Logical Operators

and Logical and /Observations?$filter=result le 3.5 and
FeatureOfInterest/id eq 1

or Logical or /Observations?$filter=result gt 20 or result le 3.5

not Logical negation /Things?$filter=not startswith(description,'test')

Arithmetic Operators

add Addition /Observations?$filter=result add 5 gt 10

sub Subtraction /Observations?$filter=result sub 5 gt 10

mul Multiplication /Observations?$filter=result mul 2 gt 2000

69

http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.html#_Toc399426798
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.html#_Toc399426798
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/odata-abnf-construction-rules.txt
http://docs.oasis-open.org/odata/odata/v4.0/csprd01/part2-url-conventions/odata-v4.0-csprd01-part2-url-conventions.html#_Toc355091904
http://docs.oasis-open.org/odata/odata/v4.0/csprd01/part2-url-conventions/odata-v4.0-csprd01-part2-url-conventions.html#_Toc355091904

Operator Description Example

div Division /Observations?$filter=result div 2 gt 4

mod Modulo /Observations?$filter=result mod 2 eq 0

Grouping Operators

() Precedence grouping /Observations?$filter=(result sub 5) gt 10

9.3.3.5.2. Built-in query functions

The OGC SensorThings API supports a set of functions that can be used with the $filter or $orderby
query operations. The following table lists the available functions and they follows the OData
Canonical function definitions listed in Section 5.1.1.4 of the [OData Version 4.0 Part 2: URL
Conventions] and the syntax rules for these functions are defined in [OData Version 4.0 ABNF].

In order to support spatial relationship functions, SensorThings API defines nine additional
geospatial functions based on the spatial relationship between two geometry objects. The spatial
relationship functions are defined in the OGC Simple Feature Access specification [OGC 06-104r4
part 1, clause 6.1.2.3]. The names of these nine functions start with a prefix st_ following the OGC
Simple Feature Access specification [OGC 06-104r4]. In addition, the Well-Known Text (WKT) format
is the default input geometry for these nine functions.

Req 31: request-data/built-in-query-functions

The built-in query functions SHALL be as defined in Table 23.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-in-query-functions

Table 23. Built-in Query Functions

Function Example

String Functions

bool substringof(string p0, string p1) substringof('Sensor Things',description)

bool endswith(string p0, string p1) endswith(description,'Things')

bool startswith(string p0, string p1) startswith(description,'Sensor')

int length(string p0) length(description) eq 13

int indexof(string p0, string p1) indexof(description,'Sensor') eq 1

string substring(string p0, int p1)
string substring(string p0, int p1, int
p2)

substring(description,1) eq 'ensor Things'
substring(description,2,4) eq 'nsor'

string tolower(string p0) tolower(description) eq 'sensor things'

string toupper(string p0) toupper(description) eq 'SENSOR THINGS'

string trim(string p0) trim(description) eq 'Sensor Things'

70

http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-v4.0-errata01-os-part2-url-conventions-complete.html#_Toc395267133
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/odata-abnf-construction-rules.txt

Function Example

string concat(string p0, string p1) concat(concat(unitOfMeasurement/symbol,', '),
unitOfMeasurement/name) eq 'degree, Celsius'

Date Functions

int year year(resultTime) eq 2015

int month month(resultTime) eq 12

int day day(resultTime) eq 8

int hour hour(resultTime) eq 1

int minute minute(resultTime) eq 0

int second second(resultTime) eq 0

int fractionalseconds second(resultTime) eq 0

int date date(resultTime) ne date(validTime)

time time(resultTime) le validTime

int totaloffsetminutes totaloffsetminutes(resultTime) eq 60

now resultTime ge now()

mindatetime resultTime eq mindatetime()

maxdatetime resultTime eq maxdatetime()

Math Functions

round round(result) eq 32

floor floor(result) eq 32

ceiling ceiling(result) eq 33

Geospatial Functions

double geo.distance(Point p0, Point p1) geo.distance(location, geography'POINT (30 10)')

double geo.length(LineString p0) geo.length(geography'LINESTRING (30 10, 10 30, 40 40)')

bool geo.intersects(Point p0, Polygon
p1)

geo.intersects(location, geography'POLYGON ((30 10, 10
20, 20 40, 40 40, 30 10))')

Spatial Relationship Functions

bool st_equals st_equals(location, geography'POINT (30 10)')

bool st_disjoint st_disjoint(location, geography'POLYGON ((30 10, 10 20,
20 40, 40 40, 30 10))')

bool st_touches st_touches(location, geography'LINESTRING (30 10, 10 30,
40 40)')

bool st_within st_within(location, geography'POLYGON ((30 10, 10 20, 20
40, 40 40, 30 10))')

bool st_overlaps st_overlaps(location, geography'POLYGON ((30 10, 10 20,
20 40, 40 40, 30 10))')

bool st_crosses st_crosses(location, geography'LINESTRING (30 10, 10 30,
40 40)')

71

Function Example

bool st_intersects st_intersects(location, geography'LINESTRING (30 10, 10
30, 40 40)')

bool st_contains st_contains(location, geography'POINT (30 10)')

bool st_relate st_relate(location, geography'POLYGON ((30 10, 10 20, 20
40, 40 40, 30 10))', 'T********')

9.3.3.6. Server-Driven Paging (nextLink)

Req 32: request-data/pagination

Responses that include only a partial set of the items identified by the request URL SHALL contain
a link that allows retrieving the next partial set of items. This link is called a nextLink; its
representation is format-specific. The final partial set of items SHALL NOT contain a nextLink.

The nextLink annotation indicates that a response is only a subset of the requested collection of
entities or collection of entity references. It contains a URL that allows retrieving the next subset
of the requested collection.

SensorThings clients SHALL treat the URL of the nextLink as opaque, and SHALL NOT append
system query options to the URL of a next link. Services may not allow a change of format on
requests for subsequent pages using the next link.

[Adapted from OData 4.0-Protocol 11.2.5.7]

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/pagination

Example 25:

http://example.org/v1.1/Things

returns a subset of the Thing entities of requested collection of Things. The nextLink contains a link
allowing retrieving the next partial set of items.

Example Response:

{
 "value": [
 {…},
 {…}
],
 "@iot.nextLink": "http://examples.org/v1.1/Things?$top=100&$skip=100"
}

72

Chapter 10. SensorThings Sensing Create-
Update-Delete
Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/create-entity

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/link-
to-existing-entities

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/deep-insert

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/deep-insert-status-code

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/update-entity

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/update-entity-put

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/update-entity-jsonpatch

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/delete-entity

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/historical-location-auto-creation

Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-
complete.html#_Toc406398328

Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-
complete.html#_Toc406398329

73

10.1. Overview
As many IoT devices are resource-constrained, the SensorThings API adopts the efficient REST web
service style. That means the Create, Update, Delete actions can be performed on the SensorThings
entity types. The following subsection explains the Create, Update, and Delete protocol.

10.2. Create an entity

Req 33: create-update-delete/create-entity

74

To create an entity in a collection, the client SHALL send a HTTP POST request to that collection’s
URL. The POST body SHALL contain a single valid entity representation.

If the target URL for the collection is a navigationLink, the new entity is automatically linked to
the entity containing the navigationLink.

Upon successful completion, the response SHALL contain a HTTP location header that contains the
selfLink of the created entity.

Upon successful completion the service SHALL respond with either 201 Created, or 204 No
Content.

[Adapted from Data 4.0-Protocol, 11.4.2 Create an Entity]

In addition, the link between entities SHALL be established upon creating an entity. Two use cases
SHALL be considered: (1) link to existing entities when creating an entity, and (2) create related
entities when creating an entity. The requests for these two use cases are described in the
following subsection.

When clients create resources in a SensorThings service, they SHALL follow the integrity
constraints listed in Table 24. For example, a Datastream entity SHALL link to a Thing entity. When
a client wants to create a Datastream entity, the client needs to either (1) create a linked Thing
entity in the same request or (2) link to an already created Thing entity. The complete integrity
constraints for creating resources are shown in the following table.

Special case #1 - When creating an Observation entity that links to a FeatureOfInterest entity:
Sometimes the FeatureOfInterest of an Observation is the Location of the Thing. For example, a
wifi-connected thermostat’s temperature observation’s feature-of-interest can be the location of
the smart thermostat, that is the room where the smart thermostat is located in.

In this case, when a client creates an Observation entity, the client SHOULD omit the link to a
FeatureOfInterest entity in the POST body message and SHOULD not create a related
FeatureOfInterest entity with deep insert. And if the service detects that there is no link to a
FeatureOfInterest entity in the POST body message that creates an Observation entity, the service
SHALL either (1) create a FeatureOfInterest entity by using the location property from the
Location of the Thing entity when there is no FeatureOfInterest whose location property is from
the Location of the Thing entity or (2) link to the FeatureOfInterest whose location property is
from the Location of the Thing entity.

Special case #2: In the context of IoT, many Observations’ resultTime and phenomenonTime
cannot be distinguished or the resultTime is not available. In this case, when a client creates an
Observation entity, the client MAY omit the resultTime and the service SHOULD assign a null value
to the resultTime.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/create-entity

Table 24. Integrity constraints when creating an entity

75

Scenario Integrity Constraints

Create a Thing entity -

Create a Location entity -

Create a Datastream entity SHALL link to a Thing entity.

SHALL link to a Sensor entity

SHALL link to an ObservedProperty entity.

Create a Sensor entity -

Create an ObservedProperty entity -

Create an Observation entity SHALL link to a Datastream entity.

SHALL link to a FeatureOfInterest entity. If no
link specified, the service SHALL create a
FeatureOfInterest entity from the content of the
Location entities.

Create a FeatureOfInterest entity -

10.2.1. Request

HTTP Method

POST

URI Pattern

SERVICE_ROOT_URI/COLLECTION_NAME

Header

Content-Type: application/json

Message Body

A single valid entity representation for the specified collection.

Example 26: create a Thing entity

76

POST /v1.1/Things HTTP/1.1

Host: example.org/
Content-Type: application/json

{
 "name": "thermostat",
 "description":"This is a smart thermostat with WiFi communication capabilities."
}

10.2.1.1. Link to existing entities when creating an entity

Req 34: create-update-delete/link-to-existing-entities

A SensorThings API service, that supports entity creation, SHALL support linking new entities to
existing entities upon creation. To create a new entity with links to existing entities in a single
request, the client SHALL include the unique identifiers of the related entities associated with the
corresponding navigation properties in the request body.

In the case of creating an Observation whose FeatureOfInterest is the Thing’s Location (that means
the Thing entity has a related Location entity), the request of creating the Observation SHOULD
NOT include a link to a FeatureOfInterest entity. The service will first automatically create a
FeatureOfInterest entity from the Location of the Thing and then link to the Observation.

In the complex use case of a Thing has multiple Location representations, the service SHOULD
decide the default Location encoding when an Observation’s FeatureOfInterest is the Thing’s
Location.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/link-to-existing-entities

Example 27: create an Observation entity, which links to an existing Sensor entity (whose id is
1), an existing FeatureOfInterest entity (whose id is 2).

77

POST /v1.1/Observations HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "Datastream": {
 "@iot.id": 1
 },
 "phenomenonTime": "2013-04-18T16:15:00-07:00",
 "result": 124,
 "FeatureOfInterest": {
 "@iot.id": 2
 }
}

10.2.1.2. Create related entities when creating an entity

Req 35: create-update-delete/deep-insert

A request to create an entity that includes related entities, represented using the appropriate
inline representation, is referred to as a "deep insert". A SensorThings service that supports entity
creation SHALL support deep insert.

If the inline representation contains a value for a computed property (i.e., id), the service SHALL
ignore that value when creating the related entity.

On success, the service SHALL create all entities and relate them. On failure, the service SHALL
NOT create any of the entities.

[Adapted from Data 4.0-Protocol 11.4.2.2]

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/deep-insert

Example 28: create a Thing while creating two related Sensors and one related Observation
(which links to an existing FeatureOfInterest entity and an existing ObservedProperty entity).

POST /v1.1/Things HTTP1.1
Host: example.org
Content-Type: application/json

{
 "description": "This an oven with a temperature datastream.",
 "name": "oven",
 "Locations": [
 {
 "name": "CCIT",

78

 "description": "Calgary Centre for Innovative Technologies",
 "encodingType": "application/geo+json",
 "location": {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [10,10]
 }
 }
 }
],
 "Datastreams": [
 {
 "name": "oven temperature",
 "description": "This is a datastream for an oven’s internal temperature.",
 "unitOfMeasurement": {
 "name": "degree Celsius",
 "symbol": "°C",
 "definition": "http://unitsofmeasure.org/ucum.html#para-30"
 },
 "observationType": "http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_Measurement",
 "observedArea": {
 "type": "Polygon",
 "coordinates": [[[100,0], [101,0], [101,1], [100,1], [100,0]]]
 },
 "phenomenonTime": "2009-01-11T16:22:25.00Z/2011-08-21T08:32:10.00Z",
 "Observations": [
 {
 "phenomenonTime": "2012-06-26T03:42:02-0600",
 "result": 70.4,
 "FeatureOfInterest": {
 "name": "CCIT #361",
 "description": "This is CCIT #361, Noah’s dad’s office",
 "encodingType": "application/geo+json",
 "feature": {
 "type": "Feature",
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [[100,50], [10,9], [23,4], [100,50]], [[30,20], [10,4], [4,22], [30
,20]]
]
 }
 }
 }
 }
],
 "ObservedProperty": {
 "name": "DewPoint Temperature",
 "definition":

79

"http://sweet.jpl.nasa.gov/ontology/property.owl#DewPointTemperature",
 "description": "The dewpoint temperature is the temperature to which the air
 must be cooled, at constant pressure, for dew to form. As
 the grass and other objects near the ground cool to the
 dewpoint, some of the water vapor in the atmosphere
 condenses into liquid water on the objects."
 },
 "Sensor": {
 "name": "DS18B20",
 "description": "DS18B20 is an air temperature sensor…",
 "encodingType": "application/pdf",
 "metadata": "http://datasheets.maxim-ic.com/en/ds/DS18B20.pdf"
 }
 }
]
}

10.2.2. Response

Req 36: create-update-delete/deep-insert-status-code

Upon successfully creating an entity, the service response SHALL contain a Location header that
contains the URL of the created entity. Upon successful completion the service SHALL respond
with 201 Created. Regarding all the HTTP status code, please refer to the HTTP Status Code section.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/deep-insert-status-code

10.3. Update an entity

Req 37: create-update-delete/update-entity

To update an entity in a collection a SensorThings service SHALL follow the requirements as
defined in Section 10.3.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/update-entity

Req 47: create-update-delete/update-entity-put

A SensorThings service that supports updates with PUT SHALL follow the requirements as defined
in Section 10.3.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/update-entity-put

80

Req 48: create-update-delete/update-entity-jsonpatch

A SensorThings service that supports updates with the JSON PATCH format SHALL follow the
requirements as defined in Section 10.3.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/update-entity-jsonpatch

10.3.1. Request

In SensorThings PATCH is the preferred means of updating an entity. PATCH provides more
resiliency between clients and services by directly modifying only those values specified by the
client.

The semantics of PATCH, as defined in [RFC5789], are to merge the content in the request payload
with the entity’s current state, applying the update only to those components specified in the
request body. The properties provided in the payload corresponding to updatable properties SHALL
replace the value of the corresponding property in the entity. Missing properties of the containing
entity or complex property SHALL NOT be directly altered.

Services MAY additionally support PUT, but should be aware of the potential for data-loss in round-
tripping properties that the client may not know about in advance, such as open or added
properties, or properties not specified in metadata. Services that do not support PUT SHALL
respond with an HTTP code 501 Not Implemented.

Services that support PUT SHALL replace all values of structural properties with those specified in
the request body. Omitting a non-nullable property with no service-generated or default value from
a PUT request results in a 400 Bad Request error.

Key and other non-updatable properties that are not tied to key properties of the principal entity,
can be omitted from the request. If the request contains a value for one of these properties, the
service SHALL ignore that value when applying the update.

The service ignores the entity id in the payload when applying the update.

The entity SHALL NOT contain related entities as inline content. It MAY contain binding
information for navigation properties. For single-valued navigation properties this replaces the
relationship. For collection-valued navigation properties this adds to the relationship.

On success, the response SHALL be a valid success response.

Services MAY additionally support JSON PATCH format [RFC6902] to express a sequence of
operations to apply to a SensorThings entity.

[Adapted from OData 4.0-Protocol 11.4.3]

HTTP Method

PATCH or PUT

81

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html#RFC5789

URI Pattern

An URI addressing to a single entity.

Header

Content-Type: application/json

Message Body

A single entity representation including a subset of properties for the specified collection.

Example 29: update the Thing whose id is 1.

PATCH /v1.1/Things(1) HTTP1.1
Host: example.org
Content-Type: application/json

{
 "description":"This thing is an oven."
}

10.3.2. Response

On success, the response SHALL be a valid success response. In addition, when the client sends an
update request to a valid URL where an entity does not exist, the service SHALL fail the request.

Upon successful completion, the service must respond with 200 OK or 204 No Content. Regarding all
the HTTP status code, please refer to the HTTP Status Code section.

10.4. Delete an entity

Req 38: create-update-delete/delete-entity

To delete an entity in a collection a SensorThings service SHALL follow the requirements as
defined in Section 10.4.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/delete-entity

10.4.1. Request

A successful DELETE request to an entity’s edit URL deletes the entity. The request body SHOULD be
empty.

Services SHALL implicitly remove relations to and from an entity when deleting it; clients need not
delete the relations explicitly.

Services MAY implicitly delete or modify related entities if required by integrity constraints. Table
25 lists SensorThings API’s integrity constraints when deleting an entity.

82

HTTP Method

DELETE

URI Pattern

An URI addressing to a single entity.

Example 30: delete the Thing with unique identifier equals to 1

DELETE http://example.org/v1.1/Things(1)

Table 25. Integrity constraints when deleting an entity

Scenario Integrity Constraints

Delete a Thing entity Delete all the Datastream and HistoricalLocation
entities linked to the Thing entity.

Delete a Location entity Delete all the HistoricalLocation entities linked
to the Location entity

Delete a Datastream entity Delete all the Observation entities linked to the
Datastream entity.

Delete a Sensor entity Delete all the Datastream entities linked to the
Sensor entity.

Delete an ObservedProperty entity Delete all the Datastream entities linked to the
ObservedProperty entity.

Delete an Observation entity -

Delete a FeatureOfInterest entity Delete all the Observation entities linked to the
FeatureOfInterest entity.

Delete a HistoricalLocation entity entity -

83

Chapter 11. Batch Requests
Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/batch-request

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/batch-request/batch-
request

Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-
complete.html#_Toc406398359

Req 39: batch-request/batch-request

The batch-processing of the SensorThings service SHALL be as defined in Chapter 11.

http://www.opengis.net/spec/iot_sensing/1.1/req/batch-request/batch-request

11.1. Introduction
The SensorThings service interface provides interfaces for users to perform CRUD actions on
resources through different HTTP methods. However, as many IoT devices are resource-
constrained, handling a large number of communications may not be practical. This section
describes how a SensorThings service can support executing multiple operations sent in a single
HTTP request through the use of batch processing. This section covers both how batch operations
are represented and processed. SensorThings batch request extension is adapted from [OData 4.0
Protocol 11.7] and all subsections. The only difference is that the OData-Version header SHOULD be
omitted in SensorThings. Readers are encouraged to read the OData specification section 11.7
before reading the examples below.

11.2. Batch-processing request
A batch request is represented as a Multipart MIME v1.0 message [RFC2046], a standard format
allowing the representation of multiple parts, each of which may have a different content type,
within a single request.

The example below shows a GUID as a boundary and example.org/v1.1/ for the URI of the service.

Batch requests are submitted as a single HTTP POST request to the batch endpoint of a service,
located at the URL $batch relative to the service root (e.g., example.org/v1.1/$batch).

Note: In the example, request bodies are excluded in favor of English descriptions inside <>

84

brackets to simplify the example.

Example 31-1: A Batch Request header example

POST /v1.1/$batch HTTP/1.1
Host: example.org
Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

<BATCH_REQUEST_BODY>

Note: The batch request boundary must be quoted if it contains any of the following special
characters:

 () < > @
 , ; : / " [] ? =

11.2.1. Batch request body example

The following example shows a Batch Request that contains the following operations in the order
listed:

• A query request

• Change Set that contains the following requests:

• Insert entity (with Content-ID = 1)

• Update request (with Content-ID = 2)

• A second query request

Note: For brevity, in the example, request bodies are excluded in favor of English descriptions
inside <> brackets.

Note also that the two empty lines after the Host header of the GET request are necessary: the first
is part of the GET request header; the second is the empty body of the GET request, followed by a
CRLF according to [RFC2046].

Example 31-2: a Batch Request body example

POST /v1.1/$batch HTTP/1.1
Host: host
Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Length: ###

--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: application/http

GET /v1.1/Things(1)
Host: host

85

--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-ID: 1

POST /v1.1/Things HTTP/1.1
Host: host
Content-Type: application/json

Content-Length: ###

<JSON representation of a new Thing>
--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-ID: 2

PATCH /v1.1/Things(1) HTTP/1.1

Host: host
Content-Type: application/json

Content-Length: ###

<JSON representation of Things(1)>
--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--
--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: application/http

GET /v1.1/Things(3) HTTP/1.1
Host: host

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

11.2.2. Referencing new entities in a change set example

Create and update actions inside a change set can reference entities previously created inside the
same change set. To make a created entity referenceable, the POST that creates the entity must have
a Content-ID header, the content of which can be any string. Subsequent requests in the same
change set can now use the value of this header, prefixed with a $, in places where the ID of the
created entity is required. To ensure valid JSON, the resulting value will have to be encoded as a

86

string.

Example 31-3: A Batch Request that contains the following operations in the order listed:

A batch request, containing a single change set that contains the following requests:

1. Insert a new Sensor entity (with Content-ID = sensor1)

2. Insert a new Datastream entity, referencing the previously created Sensor entity as "$sensor1".

POST /v1.1/$batch HTTP/1.1
Host: host
Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd
Content-Type: application/http
Content-ID: sensor1

POST /v1.1/Sensors HTTP/1.1
Host: host
Content-Type: application/json
Content-Length: ###

{
 "name": "DS18B20",
 "description": "DS18B20 is an air temperature sensor",
 "encodingType": "application/pdf",
 "metadata": "http://datasheets.maxim-ic.com/en/ds/DS18B20.pdf"
}
--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd
Content-Type: application/http

POST /v1.1/Things(5)/Datastreams HTTP/1.1
Host: host
Content-Type: application/json
Content-Length: ###

{
 "name": "Temperature Thing 5",
 "description": "The temperature of thing 5",
 "ObservedProperty: {"@iot.id": 12},
 "Sensor": {"@iot.id": "$sensor1"}
}
--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--
--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

87

11.3. Batch-processing response
Example 31-4: referencing the batch request Example 31-2 above, assume all the requests except
the final query request succeed. In this case the response would be:

88

HTTP/1.1
200 Ok
Content-Length: ####
Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 200 Ok
Content-Type: application/json
Content-Length: ###

<JSON representation of the Thing entity with id = 1>
--b_243234_25424_ef_892u748
Content-Type: multipart/mixed;boundary=cs_12u7hdkin252452345eknd_383673037

--cs_12u7hdkin252452345eknd_383673037
Content-Type: application/http
Content-ID: 1

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://host/v1.1/Things(99)
Content-Length: ###

<JSON representation of a new Thing entity>

--cs_12u7hdkin252452345eknd_383673037
Content-Type: application/http
Content-ID: 2

HTTP/1.1 204 No Content
Host: host

--cs_12u7hdkin252452345eknd_383673037--
--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 404 Not Found
Content-Type: application/json
Content-Length: ###

<Error message>
--b_243234_25424_ef_892u748--

11.4. Asynchronous batch requests
Example 31-5: referencing the Example 31-2 above again, assume that when interrogating the

89

monitor URL for the first time only the first request in the batch finished processing and all the
remaining requests except the final query request succeed. In this case the response would be:

HTTP/1.1 200 Ok
Content-Length: ####
Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 200 Ok
Content-Type: application/json
Content-Length: ###

<JSON representation of the Thing entity with id = 1>
--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 202 Accepted
Location: http://service-root/async-monitor
Retry-After: ###

--b_243234_25424_ef_892u748--

Client makes a second request using the returned monitor URL:

90

HTTP/1.1 200 Ok
Content-Length: ####
Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748
Content-Type: multipart/mixed;boundary=cs_12u7hdkin252452345eknd_383673037

--cs_12u7hdkin252452345eknd_383673037
Content-Type: application/http
Content-ID: 1

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://host/v1.1/Things(99)
Content-Length: ###

<JSON representation of a new Thing entity>
--cs_12u7hdkin252452345eknd_383673037
Content-Type: application/http
Content-ID: 2

HTTP/1.1 204 No Content
Host: host

--cs_12u7hdkin252452345eknd_383673037--
--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 404 Not Found
Content-Type: application/json
Content-Length: ###

<Error message>
--b_243234_25424_ef_892u748—

91

Chapter 12. SensorThings MultiDatastream
extension
Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/multi-datastream

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/multi-
datastream/properties

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/multi-
datastream/relations

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/multi-
datastream/constraints

Observation results may have many data types, including primitive types like category or measure,
but also more complex types such as time, location and geometry [OGC 10-004r3 and ISO
19156:2011]. SensorThings’ MultiDatastream entity is an extension to handle complex observations
when the result is an array.

A MultiDatastream groups a collection of Observations and the Observations in a MultiDatastream
have a complex result type.

The MultiDatastream extension entities are depicted in Figure 3.

92

Figure 3. MultiDatastream Extension Entities

Req 40: multi-datastream/properties

Each MultiDatastream entity SHALL have the mandatory properties and MAY have the optional
properties listed in Table 26.

http://www.opengis.net/spec/iot_sensing/1.1/req/multi-datastream/properties

Req 41: multi-datastream/relations

Each MultiDatastream entity SHALL have the direct relation between a MultiDatastream entity
and other entity types listed in Table 27.

http://www.opengis.net/spec/iot_sensing/1.1/req/multi-datastream/relations

Table 26. Properties of a MultiDatastream entity

Name Definition Data type Multiplicity
and use

name A property provides a label for Datastream
entity, commonly a descriptive name.

CharacterString One
(mandatory)

93

Name Definition Data type Multiplicity
and use

description The description of the Datastream entity. CharacterString One
(mandatory)

unitOfMeasureme
nts

A JSON array of JSON objects that
containing three key-value pairs. The name
property presents the full name of the
unitOfMeasurement; the symbol property
shows the textual form of the unit symbol;
and the definition contains the URI
defining the unitOfMeasurement. (see Req
42 for the constraints between
unitOfMeasurement,
multiObservationDataType and result).

A JSON array One
(mandatory)

Note: It is
possible an
observation
does not
have a unit of
measuremen
t. For
example, a
count
observation
does not
have a unit of
measuremen
t.

observationType The type of Observation (with unique
result type), which is used by the service to
encode observations.

ValueCode and its
value SHALL be
OM_ComplexObse
rvation.

One
(mandatory)

multiObservation
DataTypes

This property defines the observationType
of each element of the result of a complex
Observation.

A JSON array of
ValueCode. See
Table 12 for the
available
ValueCodes.

One
(mandatory)

properties A JSON Object containing user-annotated
properties as key-value pairs.

JSON Object Zero-to-one

observedArea The spatial bounding box of the spatial
extent of all FeatureOfInterests that belong
to the Observations associated with this
MultiDatastream.

GM_Envelope
(GeoJSON
Polygon)

Zero-to-one

phenomenonTime The temporal interval of the phenomenon
times of all observations belonging to this
MultiDatastream.

TM_Period (ISO
8601 Time
Interval)

Zero-to-one

94

Name Definition Data type Multiplicity
and use

resultTime The temporal interval of the result times of
all observations belonging to this
MultiDatastream.

TM_Period (ISO
8601 Time
Interval)

Zero-to-one

Table 27. Direct relation between a MultiDatastream entity and other entity types

Entity type Relation Description

Thing Many optional to
one mandatory

A Thing has zero-to-many MultiDatastream. A
MultiDatastream entity SHALL only link to a Thing as a
collection of Observations.

Sensor Many optional to
one mandatory

The Observations in a MultiDatastream are performed by
one-and-only-one Sensor. One Sensor MAY produce zero-
to-many Observations in different MultiDatastreams.

ObservedProperty Many optional to
many mandatory

The Observations of a MultiDatastream SHALL observe
the same ObservedProperties entity set.

Observation One mandatory to
many optional

A MultiDatastream has zero-to-many Observations. One
Observation SHALL occur in one-and-only-one
MultiDatastream.

Table 28. Direct relation between an MultiDatastream’s Observation entity and other entity types

Entity type Relation Description

MultiDatastream Many optional to
one mandatory

A MultiDatastream can have zero-to-many Observations.
One Observation SHALL occur in one-and-only-one
MultiDatastream.

FeatureOfInterest Many optional to
one mandatory

An Observation observes on one-and-only-one
FeatureOfInterst. One FeatureOfInterest could be
observed by one-to-many Observations.

Req 42: multi-datastream/constraints

95

The size and the order of each element of a MultiDatastream’s unitOfMeasurements array (i.e.,
MultiDatastream(id)/unitOfMeasurements) SHALL match the size and the order of each element of
the related ObservedProperties collection (i.e., MultiDatastreams(id)/ObservedProperties).

The size and the order of each element of a MultiDatastream’s unitOfMeasurements array (i.e.,
MultiDatastreams(id)/unitOfMeasurements) SHALL match the size and the order of each element
of all related Observations’ result (i.e., MultiDatastreams(id)/Observations?$select=result).

The size and the order of each element of a MultiDatastream’s unitOfMeasurements array (i.e.,
MultiDatastreams(id)/unitOfMeasurements) SHALL match the size and the order of each element
of the MultiDatastream’s multiObservationDataTypes array (i.e.,
MultiDatastreams(id)/multiObservationDataTypes).

When a complex result’s element does not have a unit of measurement (e.g., a
OM_TruthObservation type), the corresponding unitOfMeasurement element SHALL have null
values.

http://www.opengis.net/spec/iot_sensing/1.1/req/multi-datastream/constraints

Example 32: MultiDatastream entity example 1

96

 {
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/MultiDatastreams(1)",
 "Thing@iot.navigationLink": "MultiDatastreams(1)/Thing",
 "Sensor@iot.navigationLink": "MultiDatastreams(1)/Sensor",
 "ObservedProperty@iot.navigationLink": "MultiDatastreams(1)/ObservedProperties",
 "Observations@iot.navigationLink": "MultiDatastreams/Observations",
 "name": "temperature, RH, visibility",
 "description": "This is a MultiDatastream from a simple weather station measuring
air temperature, relative humidity and visibility",
 "observationType": "http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_ComplexObservation",
 "multiObservationDataTypes": [
 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",
 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",
 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CategoryObservation"
],
 "unitOfMeasurements": [
 {
 "name": "degree Celsius",
 "symbol": "°C",
 "definition": "http://unitsofmeasure.org/ucum.html#para-30"
 },
 {
 "name": "percent",
 "symbol": "%",
 "definition": "http://unitsofmeasure.org/ucum.html#para-29"
 },
 {
 "name": "null",
 "symbol": "null",
 "definition": "null"
 }
],
 "observedArea": {
 "type": "Polygon",
 "coordinates": [
 [
 [100, 0], [101, 0], [101, 1], [100, 1], [100, 0]
]
]
 },
 "phenomenonTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z",
 "resultTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z"
}

Example 33: an example ObservedProperties collection of the above MultiDatastream: Please
note that the order of the elements in the value array match the order of the related
Observations/result array as well as the order of the related unitOfMeasurements array.

97

{
 "value": [
 {
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(1)",
 "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams",
 "MultiDatastreams@iot.navigationLink": "ObservedProperties(1)/
MultiDatastreams",
 "description": "The dew point is the temperature at which the water vapor in a
sample
 of air at constant barometric pressure condenses into liquid
water at the
 same rate at which it evaporates. At temperatures below the dew
point, water
 will leave the air.",
 "name": "Dew point temperature"
 },
 {
 "@iot.id ": 2,
 "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(2)",
 "Datastreams@iot.navigationLink": "ObservedProperties(2)/Datastreams",
 "MultiDatastreams@iot.navigationLink": "ObservedProperties(2)/
MultiDatastreams",
 "description": "Relative humidity (abbreviated RH) is the ratio of the partial
pressure
 of water vapor to the equilibrium vapor pressure of water at the
same
 temperature.",
 "name": "Relative Humidity"
 },
 {
 "@iot.id": 3,
 "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(3)",
 "Datastreams@iot.navigationLink": "ObservedProperties(3)/Datastreams",
 "MultiDatastreams@iot.navigationLink": "ObservedProperties(3)/MultiDatastreams",
 "description": "Visibility is a measure of the distance at which an object or
light can
 be clearly discerned. ",
 "name": "Visibility (Weather)"
 }
]
}

Example 34: an example Observation of the above MultiDatastream: Please note that the
order of the elements in the result array match (1) the order of the related
ObservedProperties (i.e., Observation(id)/MultiDatastreams(id)/ObservedProperties), (2) the
order of the related unitOfMeasurements array (i.e., Observation(id)/
MultiDatastream(id)/unitOfMeasurements) and (3) the order of the related
multiObservationDataTypes (i.e.,

98

Observation(id)/MultiDatastream(id)/multiObservationDataTypes).

{
 "@iot.id": 1,
 "@iot.selfLink": "http://example.org/v1.1/Observations(1)",
 "FeatureOfInterest@iot.navigationLink": "Observations(1)/FeatureOfInterest",
 "MultiDatastream@iot.navigationLink": "Observations(1)/MultiDatastream",
 "phenomenonTime": "2014-12-31T11:59:59.00+08:00",
 "resultTime": "2014-12-31T11:59:59.00+08:00",
 "result": [
 25,
 65,
 "clear"
]
}

99

Chapter 13. SensorThings Data Array
Extension
Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/data-array

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/data-array/data-array

Req 43: data-array/data-array

To support the SensorThings data array extension, a service SHALL support the retrieval and
creation of observations as defined in Chapter 13.

http://www.opengis.net/spec/iot_sensing/1.1/req/data-array/data-array

Similar to the SWE DataArray in the OGC SOS, SensorThings API also provides the support of
dataArray (in addition to formatting every observation entity as a JSON object) to aggregate
multiple Observation entities and reduce the request (e.g., POST) and response (e.g., GET) size.
SensorThings mainly use dataArray in two scenarios: (1) get Observation entities in dataArray, and
(2) create Observation entities with dataArray.

13.1. Retrieve a Datastream’s Observation entities in
dataArray
In SensorThings services, users are able to request for multiple Observation entities and format the
entities in the dataArray format. When a SensorThings service returns a dataArray response, the
service groups Observation entities by Datastream or MultiDatastream, which means the
Observation entities that link to the same Datastream or the same MultiDatastream are aggregated
in one dataArray.

13.1.1. Request

In order to request for dataArray, users must include the query option $resultFormat=dataArray
when requesting Observation entities. For example,
http://example.org/v1.1/Observations?$resultFormat=dataArray. The query options $select, $top,
$skip, $count and $orderby work the same as they would with a non-dataArray request, only the
formatting of the result is different, as the Observations are grouped by (Multi)Datastream. The
result can contain @iot.count and @iot.nextLink fields just like with normal requests for
Observations. The $expand query parameter is not allowed for dataArray requests.

100

13.1.2. Response

The response Observations in dataArray format contains the following properties.

Table 29. Properties of getting Observation entities in dataArray

Name Definition Data type Multiplicity
and use

Datastream or
MultiDatastream

The navigationLink of the Datastream or
the MultiDatastream entity used to group
Observation entities in the dataArray.

navigationLink One
(mandatory)

components An ordered array of Observation property
names whose matched values are included
in the dataArray.

An ordered array
of Observation
property names

One
(mandatory)

dataArray A JSON Array containing Observation
entities. Each Observation entity is
represented by the ordered property
values, which match with the ordered
property names in components.

JSON Array One
(mandatory)

Example 35: an example of getting Observation entities from a Datastream in dataArray
result format:

101

GET /v1.1/Datastreams(1)/Observations?$resultFormat=dataArray
HTTP/1.1 200 OK
Host: www.example.org
Content-Type: application/json

{
 "@iot.nextLink":
"http://example.org/v1.1/Datastreams(1)/Observations?$resultFormat=dataArray&$skip=3",
 "@iot.count": 42,
 "value": [
 {
 "Datastream@iot.navigationLink": "http://example.org/v1.1/Datastreams(1)",
 "components": [
 "id",
 "phenomenonTime",
 "resultTime",
 "result"
],
 "dataArray": [
 [
 1,
 "2005-08-05T12:21:13Z",
 "2005-08-05T12:21:13Z",
 20
],
 [
 2,
 "2005-08-05T12:22:08Z",
 "2005-08-05T12:21:13Z",
 30
],
 [
 3,
 "2005-08-05T12:22:54Z",
 "2005-08-05T12:21:13Z",
 0
]
]
 }
]
}

Example 36: an example of getting Observation entities from a MultiDatastream in dataArray
result format

GET /v1.1/MultiDatastreams(1)/Observations?$resultFormat=dataArray
HTTP/1.1 200 OK
Host: www.example.org
Content-Type: **application/json

102

{
 "@iot.nextLink":
"http://example.org/v1.1/MultiDatastreams(1)/Observations?$resultFormat=dataArray&$ski
p=3",
 "@iot.count": 42,
 "value": [
 {
 "MultiDatastream@iot.navigationLink":
"http://example.org/v1.1/MultiDatastreams(1)",
 "components": [
 "id",
 "phenomenonTime",
 "resultTime",
 "result"
],
 "dataArray": [
 [
 1,
 "2010-12-23T11:20:00-0700",
 "2010-12-23T11:20:00-0700",
 [
 10.2,
 65,
 "clear"
]
],
 [
 2,
 "2010-12-23T11:22:08-0700",
 "2010-12-23T11:20:00-0700",
 [
 11.3,
 63,
 "clear"
]
],
 [
 3,
 "2010-12-23T11:22:54-0700",
 "2010-12-23T11:20:00-0700",
 [
 9.8,
 67,
 "clear"
]
]
]
 }
]
}

103

13.2. Create Observation entities with dataArray
Besides creating Observation entities one by one with multiple HTTP POST requests, there is a need
to create multiple Observation entities with a lighter message body in a single HTTP request. In this
case, a sensing system can buffer multiple Observations and send them to a SensorThings service in
one HTTP request. Here we propose an Action operation CreateObservations.

13.2.1. Request

Users can invoke the CreateObservations action by sending a HTTP POST request to the
SERVICE_ROOT_URL/CreateObservations.

For example, http://example.org/v1.1/CreateObservations.

The message body aggregates Observations by Datastreams, which means all the Observations
linked to one Datastream SHALL be aggregated in one JSON object. The parameters of each JSON
object are shown in the following table.

As an Observation links to one FeatureOfInterest, to establish the link between an Observation and
a FeatureOfInterest, users should include the FeatureOfInterest ids in the dataArray. If no
FeatureOfInterest id presented, the FeatureOfInterest will be created based on the Location entities
of the linked Thing entity by default.

Table 30. Properties of creating Observation entities with dataArray

Name Definition Data type Multiplicity
and use

Datastream The unique identifier of the Datasteam
linking to the group of Observation entities
in the dataArray.

The unique
identifier of a
Datastream

One
(mandatory)

components An ordered array of Observation property
names whose matched values are included
in the dataArray. At least the
phenomenonTime and result properties
SHALL be included. To establish the link
between an Observation and a
FeatureOfInterest, the component name is
"FeatureOfInterest/id" and the
FeatureOfInterest ids should be included in
the dataArray array. If no FeatureOfInterest
id is presented, the FeatureOfInterest will
be created based on the Location entities of
the linked Thing entity by default.

An ordered array
of Observation
property names

One
(mandatory)

104

http://example.org/v1.1/CreateObservations

Name Definition Data type Multiplicity
and use

dataArray A JSON Array containing Observations.
Each Observation is represented by the
ordered property values. The ordered
property values match with the ordered
property names in components.

JSON Array One
(mandatory)

Example 37: example of a request for creating Observation entities in dataArray

105

POST /v1.1/CreateObservations HTTP/1.1
Host: example.org/
Content-Type: application/json

[
 {
 "Datastream": {
 "@iot.id": 1
 },
 "components": [
 "phenomenonTime",
 "result",
 "FeatureOfInterest/id"
],
 "dataArray": [
 [
 "2010-12-23T10:20:00-0700",
 20,
 1
],
 [
 "2010-12-23T10:21:00-0700",
 30,
 1
]
]
 },
 {
 "Datastream": {
 "@iot.id": 2
 },
 "components": [
 "phenomenonTime",
 "result",
 "FeatureOfInterest/id"
],
 "dataArray": [
 [
 "2010-12-23T10:20:00-0700",
 65,
 1
],
 [
 "2010-12-23T10:21:00-0700",
 60,
 1
]
]
 }
]

106

13.2.2. Response

Upon successful completion the service SHALL respond with 201 Created. The response message
body SHALL contain the URLs of the created Observation entities, where the order of URLs must
match with the order of Observations in the dataArray from the request. In the case of the service
having exceptions when creating individual observation entities, instead of responding with URLs,
the service must specify "error" in the corresponding array element.

Example 38: an example of a response of creating Observation entities with dataArray

POST /v1.1/CreateObservations HTTP/1.1
201 Created
Host: example.org
Content-Type: application/json

[
 "http://examples.org/v1.1/Observations(1)",
 "error",
 "http://examples.org/v1.1/Observations(2)"
]

107

Chapter 14. SensorThings Sensing MQTT
Extension
In addition to support HTTP protocol, a SensorThings service MAY support MQTT protocol to
enhance the SensorThings service publish and subscribe capabilities. This section describes the
SensorThings MQTT extension. To help a client find the MQTT endpoints of a SensorThings service,
the endpoints of the service are documented in the serverSettings object of the landing page
described in Section 9.2.1. If the service supports the MQTT extension, then the serverSettings
object SHALL contain properties of type Object, with the names

http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-via-mqtt/receive-
updates
http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-via-
mqtt/observations-creation

These Objects SHALL contain a property named endpoints of type Array. The JSON Array endpoints
SHALL hold a list of URL Schemes that can be used to connect to the MQTT service, as seen in
example 10 in Section 9.2.1. If the service supports both update-notification and observation-
creation over MQTT, it may use different endpoints for the two services.

14.1. Create a SensorThings Observation with MQTT
Publish

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-via-mqtt

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-via-
mqtt/observations-creation

Dependency http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

Req 44: create-observations-via-mqtt/observations-creation

To allow clients to create observations with MQTT Publish, a service SHALL support the creation
of observations with MQTT as defined in Section 14.1.

http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-via-mqtt/observations-
creation

SensorThings MQTT extension provides the capability of creating Observation entity using MQTT

108

protocol. To create an Observation entity in MQTT, the client sends a MQTT Publish request to the
SensorThings service and the MQTT topic is the Observations resource path prefixed with the
service version number (for example, v1.1/Observations). The MQTT application message contains a
single valid Observation entity representation. Figure 4 contains the sequence diagram for creating
Observation using MQTT publish as well as MQTT sending notifications for Observation creation.

Figure 4. Creating Observations using MQTT publish, and receive notifications for Observations with MQTT

If the MQTT topic for the Observation is a navigationLink from Datastream or FeatureOfInterest,
the new Observation entity is automatically linked to that Datastream or FeatureOfInterest
respectively.

Similar to creating Observations with HTTP POST, creating Observations with MQTT Publish follow
the integrity constraints for creating Observation listed in Table 24. The two special cases defined in
Req 33 are also applied in the case of creating Observations with MQTT Publish.

14.1.1. Link to existing entities when creating an Observation entity

To link to existing entities when creating an Observation entity with MQTT, the conditions in Req 34
is applied.

14.1.2. Create related entities when creating an Observation entity (deep
insert)

To create related entities when creating an entity with MQTT, the condition in Req 35 is applied.

14.2. Receive updates with MQTT Subscribe

Requirements Class

http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-via-mqtt

Target Type Web Service

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-via-
mqtt/receive-updates

Dependency http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

Req 45: receive-updates-via-mqtt/receive-updates

To allow clients to receive notifications for the updates of SensorThings entities with MQTT, a
service SHALL support the receiving updates with MQTT Subscribe as defined in Section 14.2.

http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-via-mqtt/receive-updates

109

To receive notifications from a SensorThings service when some entities updated, a client can send
a MQTT Subscribe request to the SensorThings service. SensorThings API defined the following four
MQTT subscription use cases. Figure 5 contains the sequence diagram of receiving updates using
MQTT Subscribe.

Figure 5. Sequence diagram for receiving updates using MQTT subscribe

14.2.1. Receive updates of a SensorThings entity set with MQTT Subscribe

MQTT Control Packet: Subscribe

Topic Pattern: SERVICE_VERSION/RESOURCE_PATH/COLLECTION_NAME

Example Topic: v1.1/Datastreams(1)/Observations

Response: When a new entity is added to the entity set (e.g., a new Observation created) or an
existing entity of the entity set is updated, the service returns a complete JSON representation of the
newly created or updated entity.

14.2.2. Receive updates of a SensorThings entity with MQTT Subscribe

MQTT Control Packet: Subscribe

Topic Pattern: SERVICE_VERSION/RESOURCE_PATH_TO_AN_ENTITY

Example Topic: v1.1/Datastreams(1)

Response:When a property of the subscribed entity is updated, the service returns a complete JSON
representation of the updated entity.

110

14.2.3. Receive updates of a SensorThings entity’s property with MQTT
Subscribe

MQTT Control Packet: Subscribe

Topic Pattern: SERVICE_VERSION/RESOURCE_PATH_TO_AN_ENTITY/PROPERTY_NAME

Example Topic: v1.1/Datastreams(1)/observedArea

Response: When the value of the subscribed property is changed, the service returns a JSON object.
The returned JSON object follows as defined in Section 9.2.4.

Example 39: an example response of receiving updates of an entity’s property with MQTT
Subscribe. The example shows a sample response of the following MQTT topic subscription:
v1.1/Datastreams(1)/description

{
 "description": "This is an updated description of a thing"
}

14.2.4. Receive updates of the selected properties of the newly created
entities or updated entities of a SensorThings entity set with MQTT
Subscribe

MQTT Control Packet: Subscribe

Topic Pattern:
SERVICE_VERSION/RESOURCE_PATH/COLLECTION_NAME?$select=PROPERTY_1,PROPERTY_2,…

Response: When a new entity is added to an entity set or an existing entity is updated (e.g., a new
Observation created or an existing Observation is updated), the service returns a JSON
representation of the selected properties of the newly created or updated entity.

Note: In the case of an entity’s property is updated, it is possible that the selected properties are not
the updated property, so that the returned JSON does not reflect the update.

Example 40: an example response of receiving updates of the selected property of an entity
set with MQTT Subscribe. The example shows a sample response of the following MQTT topic
subscription: v1.1/Datastreams(1)/Observations?$select=phenomenonTime,result

{
 "result": 45,
 "phenonmenonTime": "2015-02-05T17:00:00Z"
}

111

Annex A: Conformance Class Abstract Test
Suite (Normative)

A.1. SensorThings Read (Core) Tests
This section contains the conformance classes for the SensorThings API Read (Core). The
SensorThings API service needs to pass all the conformance tests defined in this section.

A.1.1 Conformance class: SensorThings API Entity Control Information

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-
control-information

Test: Common Control Information

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-
control-information/common-control-information

Requirements 1. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-
control-information/common-control-information

Test purpose Check if each entity has the common control information as defined in
the requirement
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
information/common-control-information.

Test method Inspect the full JSON object of the entity sets (i.e., without $select) to
identify, if each entity has the common control information defined in
the above requirement and the service sends appropriate responses as
defined in this specification.

A.1.2 Conformance class: SensorThings API Thing Entity

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing

Test: Thing Entity

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing/thing-
valid

112

A.1.2 Conformance class: SensorThings API Thing Entity

Requirements 2.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/properti
es
3.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/relation
s

Test purpose Check if each Thing entity has the mandatory properties and mandatory
relations as defined in this specification.

Test method Inspect the full JSON object of the Thing entity sets (i.e., without $select)
to identify, if each entity has the mandatory properties defined in the
corresponding requirement.

Inspect the full JSON object of each Thing entity set (i.e., without using the
$select query option) to identify, if each entity has the mandatory
relations (i.e., @iot.navigationLink) defined in the corresponding
requirement.

A.1.3 Conformance class: SensorThings API Location Entity

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location

Test: Location Entity

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location/loca
tion-valid

Requirements 4.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/prop
erties
5.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/relati
ons

Test purpose Check if each Location entity has the mandatory properties and
mandatory relations as defined in this specification.

113

A.1.3 Conformance class: SensorThings API Location Entity

Test method Inspect the full JSON object of the Location entity sets (i.e., without
$select) to identify, if each entity has the mandatory properties defined in
the corresponding requirement.

Inspect the full JSON object of each Location entity set (i.e., without using
the $select query option) to identify, if each entity has the mandatory
relations (i.e., @iot.navigationLink) defined in the corresponding
requirement.

A.1.4 Conformance class: SensorThings API HistoricalLocation Entity

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-
location

Test: Historicalocation Entity

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-
location/historical-location-valid

Requirements 6. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historical-
location/properties
7. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historical-
location/relations

Test purpose Check if each Historicalocation entity has the mandatory properties and
mandatory relations as defined in this specification.

Test method Inspect the full JSON object of the Historicalocation entity sets (i.e.,
without $select) to identify, if each entity has the mandatory properties
defined in the corresponding requirement.

Inspect the full JSON object of each Historicalocation entity set (i.e.,
without using the $select query option) to identify, if each entity has the
mandatory relations (i.e., @iot.navigationLink) defined in the
corresponding requirement.

A.1.5 Conformance class: SensorThings API Datastream Entity

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream

Test: Datastream Entity

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream/d
atastream-valid

114

A.1.5 Conformance class: SensorThings API Datastream Entity

Requirements 9.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/pr
operties
10.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/re
lations

Test purpose Check if each Datastream entity has the mandatory properties and
mandatory relations as defined in this specification.

Test method Inspect the full JSON object of the Datastream entity sets (i.e., without
$select) to identify, if each entity has the mandatory properties defined in
the corresponding requirement.

Inspect the full JSON object of each Datastream entity set (i.e., without
using the $select query option) to identify, if each entity has the
mandatory relations (i.e., @iot.navigationLink) defined in the
corresponding requirement.

A.1.6 Conformance class: SensorThings API Sensor Entity

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor

Test: Sensor Entity

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor/senso
r-valid

Requirements 11.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/proper
ties
12.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/relatio
ns

Test purpose Check if each Sensor entity has the mandatory properties and mandatory
relations as defined in this specification.

115

A.1.6 Conformance class: SensorThings API Sensor Entity

Test method Inspect the full JSON object of the Sensor entity sets (i.e., without $select)
to identify, if each entity has the mandatory properties defined in the
corresponding requirement.

Inspect the full JSON object of each Sensor entity set (i.e., without using
the $select query option) to identify, if each entity has the mandatory
relations (i.e., @iot.navigationLink) defined in the corresponding
requirement.

A.1.7 Conformance class: SensorThings API ObservedProperty Entity

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-
property

Test: ObservedProperty Entity

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-
property/observed-property-valid

Requirements 13. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-
property/properties
14. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-
property/relations

Test purpose Check if each ObservedProperty entity has the mandatory properties and
mandatory relations as defined in this specification.

Test method Inspect the full JSON object of the ObservedProperty entity sets (i.e.,
without $select) to identify, if each entity has the mandatory properties
defined in the corresponding requirement.

Inspect the full JSON object of each ObservedProperty entity set (i.e.,
without using the $select query option) to identify, if each entity has the
mandatory relations (i.e., @iot.navigationLink) defined in the
corresponding requirement.

A.1.8 Conformance class: SensorThings API Observation Entity

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation

Test: Observation Entity

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation/
observation-valid

116

A.1.8 Conformance class: SensorThings API Observation Entity

Requirements 15.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/p
roperties
16.
http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/r
elations

Test purpose Check if each Observation entity has the mandatory properties and
mandatory relations as defined in this specification.

Test method Inspect the full JSON object of the Observation entity sets (i.e., without
$select) to identify, if each entity has the mandatory properties defined in
the corresponding requirement.

Inspect the full JSON object of each Observation entity set (i.e., without
using the $select query option) to identify, if each entity has the
mandatory relations (i.e., @iot.navigationLink) defined in the
corresponding requirement.

A.1.9 Conformance class: SensorThings API FeatureOfInterest Entity

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-
interest

Test: FeatureOfInterest Entity

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-
interest/feature-of-interest-valid

Requirements 17. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-
interest/properties
18. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-
interest/relations

Test purpose Check if each FeatureOfInterest entity has the mandatory properties and
mandatory relations as defined in this specification.

117

A.1.9 Conformance class: SensorThings API FeatureOfInterest Entity

Test method Inspect the full JSON object of the FeatureOfInterest entity sets (i.e.,
without $select) to identify, if each entity has the mandatory properties
defined in the corresponding requirement.

Inspect the full JSON object of each FeatureOfInterest entity set (i.e.,
without using the $select query option) to identify, if each entity has the
mandatory relations (i.e., @iot.navigationLink) defined in the
corresponding requirement.

A.1.10 Conformance class: SensorThings API Resource Path

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path

Test: Resource Path

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path/resource-
path-to-entities

Requirements 19. http://www.opengis.net/spec/iot_sensing/1.1/req/resource-
path/resource-path-to-entities

Test purpose Check if the service supports all the resource path usages as defined in
the requirement
http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path/resource-
path-to-entities.

Test method Inspect the service to identify, if each resource path usage has been
implemented property.

118

A.2. SensorThings API Filtering Extension Tests
This section contains the conformance classes for the SensorThings API filtering extension. That
means a SensorThings API service that allows clients to further filter data with query options needs
to pass the conformance tests defined in this section.

A.2.1 Conformance class: SensorThings API Request Data with Filters

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data

Dependencies:

1. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information

2. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing

3. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location

4. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location

5. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream

6. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor

7. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property

8. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation

9. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest

10. http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path

A.2.1.1 Test: Query Option Order

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/order

Requirements 22. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/order

Test purpose Check if the results of the service requests are as if the system query
options were evaluated in the order as defined in this specification.

Test method Send a query includes the query options listed in requirement
http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/order, and
check if the results are evaluated according to the order defined in this
specification.

A.2.1.2 Test: Request Data with $expand and $select

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/expand-
and-select

119

http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/order
http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/expand-and-select
http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/expand-and-select

Requirements 23. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/expand
24. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/select

Test purpose Check if the service supports $expand and $select as defined in this
specification.

Test method Send requests with $expand following the different usages as defined in
the requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-
data/expand, check if the server returns appropriate result as defined in
this specification.

Send requests with the $select option following the different usages as
defined in the requirement
http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/select, check
if the server returns appropriate result as defined in this specification.

A.2.1.3 Test: Query Option Response Code

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/status-
codes

Requirements 20. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/status-
code
21. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/query-
status-code

Test purpose Check when a client requests an entity that is not available in the service,
if the service responds with 404 Not Found or 410 Gone as defined in the
requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-
data/status-code

Check when a client use a query option that doesn’t support by the
service, if the service fails the request and responds with 501 NOT
Implemented as defined in the requirement
http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/query-
status-code.

Test method Send a HTTP request for an entity that is not available in the service,
check if the server returns 404 Not Found or 410 Gone.

(If applicable) Send a query with a query option that is not supported by
the service, check if the server returns 501 Not Implemented.

A.2.1.4 Test: Sorting Query Option

120

http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/status-codes
http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/status-codes

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/sorting

Requirements 25. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/orderby

Test purpose Check if the service supports the $orderby query option as defined in this
specification.

Test method Send a query with the $orderby query option, check if the server returns
appropriate result as defined in this specification.

A.2.1.5 Test: Client-driven Pagination Query Option

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/client-
driven-pagination

Requirements 26. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/top 27.
http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/skip 28.
http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/count

Test purpose Check if the service supports the $top, $skip and $count query option as
defined in this specification.

Test method Send a query with the $top query option, check if the server returns
appropriate result as defined in this specification.

Send a query with the $skip query option, check if the server returns
appropriate result as defined in this specification.

Send a query with the $count query option, check if the server returns
appropriate result as defined in this specification.

A.2.1.6 Test: Filter Query Option

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/filter-
query-options

Requirements 29. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/filter 30.
http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-in-
filter-operations 31.
http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-in-
query-functions

121

http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/sorting
http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/client-driven-pagination
http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/client-driven-pagination
http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/filter-query-options
http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/filter-query-options

Test purpose Check if the service supports the $filter query option, the built-in filter
operators, the built-in filter functions and implements the correct
operator precedence as defined in this specification.

Test method Send a query with the $filter query option, check if the server returns
appropriate result as defined in this specification.

Send a query with the $filter query option for each built-in filter
operator, check if the server returns appropriate result as defined in this
specification.

Send a query with the $filter query option for each combination of two
built-in filter operators with adjacent operator precedence, check if the
server returns appropriate result as defined in this specification.

Send a query with the $filter query option for each built-in filter
function, check if the server returns appropriate result as defined in this
specification.

A.2.1.7 Test: Server-driven Pagination

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/server-
driven-pagination

Requirements 32. http://www.opengis.net/spec/iot_sensing/1.1/req/request-
data/pagination

Test purpose Check if the service supports the server-driven pagination as defined in
the requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-
data/pagination.

Test method Send a query to list all entities of an entity set, check if the server returns
a subset of the requested entities as defined in this specification.

122

http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/server-driven-pagination
http://www.opengis.net/spec/iot_sensing/1.1/conf/request-data/server-driven-pagination

A.3. SensorThings API Create-Update-Delete Extension
Tests
This section contains the conformance classes for the SensorThings API create-update-delete
extension. That means a SensorThings API service that allows clients to create/update/delete
entities needs to pass the conformance tests defined in this section.

A.3.1 Conformance class: SensorThings API Create-Update-Delete

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete

Dependencies:

1. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information

2. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing

3. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location

4. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location

5. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream

6. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor

7. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property

8. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation

9. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest

10. http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path

A.3.1.1 Test: Sensing Entity Creation

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/
sensing-entity-creation

Requirements 33. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/create-entity

34. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/link-to-existing-entities

35. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/deep-insert

36. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/deep-insert-status-code

8. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/historical-location-auto-creation

123

http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest
http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/sensing-entity-creation
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/sensing-entity-creation

Test purpose Check if the service supports the creation of entities as defined in this
specification.

Test method For each SensorThings entity type creates an entity instance by following
the integrity constraints of Table 24 and creating the related entities with
a single request (i.e., deep insert), check if the entity instance is
successfully created and the server responds as defined in this
specification.

Create an entity instance and its related entities with a deep insert
request that does not conform to the specification (e.g., missing a
mandatory property), check if the service fails the request without
creating any entity within the deep insert request and responds the
appropriate HTTP status code.

For each SensorThings entity type issue an entity creation request that
does not follow the integrity constraints of Table 24 with deep insert,
check if the service fails the request without creating any entity within
the deep insert request and responds the appropriate HTTP status code.

For each SensorThings entity type creates an entity instance by linking to
existing entities with a single request, check if the server responds as
defined in this specification.

For each SensorThings entity type creates an entity instance that does not
follow the integrity constraints of Table 24 by linking to existing entities
with a single request, check if the server responds as defined in this
specification.

Create an Observation entity for a Datastream without any Observations
and the Observation creation request does not create a new or linking to
an existing FeatureOfInterest, check if the service creates a new
FeatureOfInterest for the created Observation with the location property
of the Thing’s Location entity.

Create an Observation entity for a Datastream that already has
Observations and the Observation creation request does not create a new
or linking to an existing FeatureOfInterest, check if the service
automatically links the newly created Observation with an existing
FeatureOfInterest whose location property is from the Thing’s Location
entity.

Create an Observation entity and the Observation creation request does
not include resultTime, check if the resultTime property is created with a
null value.

Create a Location for a Thing entity, check if the Thing has a
HistoricalLocation created by the service according to the Location entity.

124

A.3.1.2 Test: Sensing Entity Update

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/
update-entity

Requirements 37. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/update-entity

Test purpose Check if the service supports the update of entities as defined in this
specification.

Test method For each SensorThings entity type send an update request with PATCH,
check (1) if the properties provided in the payload corresponding to
updatable properties replace the value of the corresponding property in
the entity and (2) if the missing properties of the containing entity or
complex property are not directly altered.

(Where applicable) For each SensorThings entity type send an update
request with PUT, check if the service responds as defined in Section 10.3.

For each SensorThings entity type send an update request with PATCH
that contains related entities as inline content, check if the service fails
the request and returns appropriate HTTP status code.

For each SensorThings entity type send an update request with PATCH
that contains binding information for navigation properties, check if the
service updates the navigationLink accordingly.

A.3.1.3 Test: Sensing Entity Deletion

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/
sensing-entity-deletion

Requirements 38. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-
delete/delete-entity

Test purpose Check if the service supports the deletion of entities as defined in Section
10.4.

Test method Delete an entity instance, and check if the service responds as defined in
Section 10.4.

125

http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/update-entity
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/update-entity
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/sensing-entity-deletion
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete/sensing-entity-deletion

A.4. SensorThings API Batch Request Extension Tests
This section contains the conformance classes for the SensorThings API batch request extension.
That means a SensorThings API service that allows clients to send a single HTTP request that groups
multiple requests needs to pass the conformance tests defined in this section.

A.4.1 Conformance class: SensorThings API Batch Request

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/batch-request

Dependencies:

1. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information

2. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing

3. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location

4. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location

5. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream

6. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor

7. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property

8. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation

9. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest

10. http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path

A.4.1.1 Test: Batch Request

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/batch-request/batch-
request

Requirements 39. http://www.opengis.net/spec/iot_sensing/1.1/req/batch-request/batch-
request

Test purpose Check if the service supports the batch request as defined in Chapter 11.

Test method Submit batch requests according to the examples listed in Chapter 11,
check if the service responds as defined in this specification.

126

http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest
http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path
http://www.opengis.net/spec/iot_sensing/1.1/conf/batch-request/batch-request
http://www.opengis.net/spec/iot_sensing/1.1/conf/batch-request/batch-request

A.5. SensorThings API MultipleDatastream Tests
This section contains the conformance classes for the SensorThings API MultiDatastream extension.
That means a SensorThings API service that allows clients to group a collection of observations’
results into an array (i.e., a complex result type) needs to pass the conformance tests defined in this
section.

A.5.1 Conformance class: SensorThings API MultiDatastream

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/multi-datastream

Dependencies:

1. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information

2. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing

3. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location

4. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location

5. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream

6. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor

7. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property

8. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation

9. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest

10. http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path

A.5.1.1 Test: SensorThings API MultiDatastream

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/multi-datastream/multi-
datastream-valid

Requirements 40. http://www.opengis.net/spec/iot_sensing/1.1/req/multi-
datastream/properties

41. http://www.opengis.net/spec/iot_sensing/1.1/req/multi-
datastream/relations

42. http://www.opengis.net/spec/iot_sensing/1.1/req/multi-
datastream/constraints

Test purpose Check if the service’s MultiDatastream entity has the mandatory
properties and relations as defined in this specification.

127

http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest
http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path
http://www.opengis.net/spec/iot_sensing/1.1/conf/multi-datastream/multi-datastream-valid
http://www.opengis.net/spec/iot_sensing/1.1/conf/multi-datastream/multi-datastream-valid

Test method Inspect the full JSON object of a MultiDatastream entity (i.e., without
$select) to identify, if each entity has the mandatory properties and
relations, and fulfill the constraints defined in the corresponding
requirements.

128

A.6. SensorThings API Data Array Extension
This section contains the conformance classe for the SensorThings API data array extension. That
means a SensorThings API service that allows clients to request the compact data array encoding
defined in this specification needs to pass the conformance tests defined in this section.

A.6.1 Conformance class: SensorThings API Data Array

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/data-array

Dependencies:

1. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information

2. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing

3. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location

4. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location

5. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream

6. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor

7. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property

8. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation

9. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest

10. http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path

A.6.1.1 Test: SensorThings API Sensing Data Array

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/data-array/data-array-
valid

Requirements 43. http://www.opengis.net/spec/iot_sensing/1.1/req/data-array/data-array

Test purpose Check if the service supports the data array extension as defined in
Chapter 13.

Test method Issue a GET request for Datastreams (and MultiDatastreams if applicable)
that includes the query option "$resultFormat=dataArray", and then
inspect the returned JSON to identify if it fulfills the data array format as
defined in Chapter 13.

Create Observations for at least two Datastreams by using the data array
format as defined in Chapter 13. Inspect the response code and returned
JSON to identify if it fulfills the response as defined in Chapter 13.

129

http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest
http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path
http://www.opengis.net/spec/iot_sensing/1.1/conf/data-array/data-array-valid
http://www.opengis.net/spec/iot_sensing/1.1/conf/data-array/data-array-valid

A.7. SensorThings API Observation Creation via MQTT
Extension Tests
This section contains the conformance class for the SensorThings API Observation creation
extension. That means a SensorThings API service that allows clients to create Observations via
MQTT needs to pass the conformance tests defined in this section.

A.7.1 Conformance class: SensorThings API Observation Creation via MQTT

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/create-observations-via-
mqtt

Dependencies:

1. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information

2. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing

3. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location

4. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location

5. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream

6. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor

7. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property

8. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation

9. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest

10. http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path

11. http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete

A.7.1.1 Test: SensorThings API Observation Creation via MQTT

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/create-observations-via-
mqtt/observation-creation

Requirements 44. http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-
via-mqtt/observations-creation

Test purpose Check if the service supports the creation and update of entities via
MQTT as defined in Section 14.1.

Test method Create an Observation entity instance containing binding information for
navigation properties using MQTT Publish, check if the server responds
as defined in Section 14.1.

130

http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest
http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-observations-via-mqtt/observation-creation
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-observations-via-mqtt/observation-creation

A.8. SensorThings API Receiving Updates via MQTT
Extension Tests
This section contains the conformance class for the SensorThings API receiving updates extension.
That means a SensorThings API service that allows clients to receive notifications regarding
updates of entities via MQTT needs to pass the conformance tests defined in this section.

A.8.1 Conformance class: SensorThings API Receiving Updates via MQTT

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/receive-updates-via-
mqtt

Dependencies:

1. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information

2. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing

3. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location

4. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location

5. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream

6. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor

7. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property

8. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation

9. http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest

10. http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path

11. http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete

A.8.1.1 Test: SensorThings API Receiving Updates via MQTT

Test id http://www.opengis.net/spec/iot_sensing/1.1/conf/receive-updates-via-
mqtt/receive-updates

Requirements 45. http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-via-
mqtt/receive-updates

Test purpose Check if a client can receive notifications for the updates of a
SensorThings entity set or an individual entity with MQTT.

131

http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/entity-control-information
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/thing
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/historical-location
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/datastream
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/sensor
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observed-property
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/observation
http://www.opengis.net/spec/iot_sensing/1.1/conf/datamodel/feature-of-interest
http://www.opengis.net/spec/iot_sensing/1.1/conf/resource-path
http://www.opengis.net/spec/iot_sensing/1.1/conf/create-update-delete
http://www.opengis.net/spec/iot_sensing/1.1/conf/receive-updates-via-mqtt/receive-updates
http://www.opengis.net/spec/iot_sensing/1.1/conf/receive-updates-via-mqtt/receive-updates

Test method Subscribe to an entity set with MQTT Subscribe. Then create a new entity
of the subscribed entity set. Check if a complete JSON representation of
the newly created entity through MQTT is received.

Subscribe to an entity set with MQTT Subscribe. Then update an existing
entity of the subscribed entity set. Check if a complete JSON
representation of the updated entity through MQTT is received.

Subscribe to an entity’s property with MQTT Subscribe. Then update the
property with PATCH. Check if the JSON object of the updated property is
received.

Subscribe to multiple properties of an entity set with MQTT Subscribe.
Then create a new entity of the entity set. Check if a JSON object of the
subscribed properties is received.

Subscribe to multiple properties of an entity set with MQTT Subscribe.
Then update an existing entity of the entity set with PATCH. Check if a
JSON object of the subscribed properties is received.

132

Annex B: Revision history
Date Release Author Paragraph modified Description

2018-10-12 1.1 Steve
Liang

Many Properties field is added to all the
entities.

2018-10-15 1.1 Hylke van
der Schaaf

9.3.3.5.2 Built-in query
functions

Added three-parameter substring
function.

2018-10-16 1.1 Hylke van
der Schaaf

9.3.3.5.1. Built-in filter
operations; A.2.1.6 Test:
Filter Query Option

Specify operator precedence.

2018-12-07 1.1 Hylke van
der Schaaf

9.3.3.1 $orderby Removed reference to ordering by a
"type cast".

2019-04-11 1.1 Hylke van
der Schaaf

9.2.1 Usage 1: no
resource path

Add serverSettings property in
response of SERVICE_ROOT_URI
requests.

2019-04-29 1.1 Brian Miles 10.4. Delete an entity Add integrity contraint between
Things and HistoricalLocations
removal.

2019-04-29 1.1 Brian Miles 9.2.7. Usage 7: address
to an associationLink

Fix inconsistencies in definition of
@iot.selfLink property.

2019-05-02 1.1 Hylke van
der Schaaf

8.2.3.
HistoricalLocation

Location of a Thing can not be
updated 'in the past'.

2019-08-01 1.1 Brian Miles 8.2.2. Location; 8.2.8
FeatureOfInterest

Update GeoJSON MIME type to
application/geo+json.

2019-08-01 1.1 Brian Miles 8.2.2. Location Correct the description of GeoJSON
as using a 'geographic space model'
rather then the more generic
'geometric space model'.

2019-08-01 1.1 Hylke van
der Schaaf

14. SensorThings
Sensing MQTT
Extension

Add version prefix to MQTT topics.

2019-08-22 1.1 Hylke van
der Schaaf

Many Update version number in text and
URIs from 1.0 to 1.1.

133

Date Release Author Paragraph modified Description

2019-08-22 1.1 Hylke van
der Schaaf

13. SensorThings Data
Array Extension

Explain query parameters when
used with dataArray extension;
Changed examples to use absolute
navigation links; Add @iot.nextLink
and @iot.count to the examples;
Fixed wording of test method; Fixed
incorrect relative navigation link;
Removed unexplained
dataArray@iot.count elements from
examples.

2019-08-22 1.1 Hylke van
der Schaaf

2. Conformance Grouped data model related
requirements and conformance
classes into a datamodel class.

2019-09-09 1.1 Brian Miles 8.2.5. Sensor Expand the Sensor encodingType
with a ValueCode for
webpages/URLs.

2019-10-22 1.1 Hylke van
der Schaaf

11. Batch Requests Clarified batch-processing
referencing mechanisms; Remove
example request headers: If-Match,
Content-Transfer-Encoding.

2019-12-04 1.1 Hylke van
der Schaaf

7.7. SensorThings API
and Security

Added implications of conformance
class list for security extensions.

2020-11-03 1.1 Hylke van
der Schaaf

8.2. The Sensing
Entities; 12.
SensorThings
MultiDatastream
extension

Fixed images; HistoricalLocation →
Thing relation name should be
singular.

2020-11-11 1.1 Hylke van
der Schaaf

9.3. Requesting Data Corrected order of system query
options; Expanded items are
implicitly selected.

134

mailto:dataArray@iot.count

Annex C: Bibliography
[1]The GeoJSON Format Specification, January 15, 2015. Available Online:
https://datatracker.ietf.org/doc/draft-butler-geojson/

[2]ITU-T Y.2060 Overview of the Internet of Things, 2012. Available Online:https://www.itu.int/rec/T-
REC-Y.2060-201206-I

[3]OGC and ISO 19156:2001, OGC 10-004r3 and ISO 19156:2011(E), OGC Abstract Specification:
Geographic information — Observations and Measurements. Available Online:
http://portal.opengeospatial.org/files/?artifact_id=41579

[4]OGC 12-000, OGC® SensorML: Model and XML Encoding Standard. Available Online:
http://www.opengeospatial.org/standards/sensorml

[5]RFC 5023, The Atom Publishing Protocol. Available Online: https://www.ietf.org/rfc/rfc5023.txt

[6]RFC 6902, JavaScript Object Notation (JSON) Patch. Available
Online:https://www.ietf.org/rfc/rfc6902.txt

[1]www.opengeospatial.org/cite

[2]The two terms of IoT and WoT are frequently used interchangeably.

[3]In some cases, the Sensor in this data model can also be seen as the Procedure (method,
algorithm, or instrument) defined in [OGC 10-004r3 and ISO 19156:2011].

135

https://datatracker.ietf.org/doc/draft-butler-geojson/
http://portal.opengeospatial.org/files/?artifact_id=41579
http://www.opengeospatial.org/standards/sensorml
https://www.ietf.org/rfc/rfc5023.txt
http://www.opengeospatial.org/cite

	{title}
	Table of Contents
	Table of Figures
	Table of Tables
	Table of Requirements
	Abstract
	Keywords
	Preface
	Changes in version 1.1
	Submitting organizations
	Submitters
	Chapter 1. Scope
	Chapter 2. Conformance
	Chapter 3. References
	Chapter 4. Terms and Definitions
	4.1. Collection
	4.2. Entity
	4.3. Entity sets
	4.4. (Internet of) Thing
	4.5. Measurement
	4.6. Observation
	4.7. Observation Result
	4.8. Resource
	4.9. REST
	4.10. Sensor

	Chapter 5. Conventions
	5.1. Presentation of Requirements and Recommendations
	5.2. Identifiers

	Chapter 6. Symbols (and abbreviated terms)
	Chapter 7. SensorThings API overview
	7.1. Who should use the OGC SensorThings API
	7.2. Benefits of the OGC SensorThings API
	7.3. SensorThings API Overview
	7.4. SensorThings API and ISO/OGC Observations and Measurements
	7.5. SensorThings API and OASIS OData
	7.6. SensorThings API and OGC Key-Value Pair (KVP) Encodings
	7.7. SensorThings API and Security

	Chapter 8. The SensorThings API Sensing Entities
	8.1. Common Control Information
	8.2. The Sensing Entities
	8.2.1. Thing
	8.2.2. Location
	8.2.3. HistoricalLocation
	8.2.4. Datastream
	8.2.5. Sensor
	8.2.6. ObservedProperty
	8.2.7. Observation
	8.2.8. FeatureOfInterest

	Chapter 9. SensorThings Service Interface
	9.1. URI Components
	9.2. Resource Path
	9.2.1. Usage 1: no resource path
	9.2.2. Usage 2: address to a collection of entities
	9.2.3. Usage 3: address to an entity in a collection
	9.2.4. Usage 4: address to a property of an entity
	9.2.5. Usage 5: address to the value of an entity’s property
	9.2.6. Usage 6: address to a navigation property (navigationLink)
	9.2.7. Usage 7: address to an associationLink
	9.2.8. Usage 8: nested resource path

	9.3. Requesting Data
	9.3.1. Evaluating System Query Options
	9.3.2. Specifying Properties to Return
	9.3.2.1. $expand
	9.3.2.2. $select

	9.3.3. Query Entity Sets
	9.3.3.1. $orderby
	9.3.3.2. $top
	9.3.3.3. $skip
	9.3.3.4. $count
	9.3.3.5. $filter
	9.3.3.5.1. Built-in filter operations
	9.3.3.5.2. Built-in query functions

	9.3.3.6. Server-Driven Paging (nextLink)

	Chapter 10. SensorThings Sensing Create-Update-Delete
	10.1. Overview
	10.2. Create an entity
	10.2.1. Request
	10.2.1.1. Link to existing entities when creating an entity
	10.2.1.2. Create related entities when creating an entity

	10.2.2. Response

	10.3. Update an entity
	10.3.1. Request
	10.3.2. Response

	10.4. Delete an entity
	10.4.1. Request

	Chapter 11. Batch Requests
	11.1. Introduction
	11.2. Batch-processing request
	11.2.1. Batch request body example
	11.2.2. Referencing new entities in a change set example

	11.3. Batch-processing response
	11.4. Asynchronous batch requests

	Chapter 12. SensorThings MultiDatastream extension
	Chapter 13. SensorThings Data Array Extension
	13.1. Retrieve a Datastream’s Observation entities in dataArray
	13.1.1. Request
	13.1.2. Response

	13.2. Create Observation entities with dataArray
	13.2.1. Request
	13.2.2. Response

	Chapter 14. SensorThings Sensing MQTT Extension
	14.1. Create a SensorThings Observation with MQTT Publish
	14.1.1. Link to existing entities when creating an Observation entity
	14.1.2. Create related entities when creating an Observation entity (deep insert)

	14.2. Receive updates with MQTT Subscribe
	14.2.1. Receive updates of a SensorThings entity set with MQTT Subscribe
	14.2.2. Receive updates of a SensorThings entity with MQTT Subscribe
	14.2.3. Receive updates of a SensorThings entity’s property with MQTT Subscribe
	14.2.4. Receive updates of the selected properties of the newly created entities or updated entities of a SensorThings entity set with MQTT Subscribe

	Annex A: Conformance Class Abstract Test Suite (Normative)
	A.1. SensorThings Read (Core) Tests
	A.2. SensorThings API Filtering Extension Tests
	A.3. SensorThings API Create-Update-Delete Extension Tests
	A.4. SensorThings API Batch Request Extension Tests
	A.5. SensorThings API MultipleDatastream Tests
	A.6. SensorThings API Data Array Extension
	A.7. SensorThings API Observation Creation via MQTT Extension Tests
	A.8. SensorThings API Receiving Updates via MQTT Extension Tests

	Annex B: Revision history
	Annex C: Bibliography

