
Testbed-12 REST User Guide

Table of Contents
1. Executive Summary . 3

2. Introduction . 8

3. User Guidance. 10

3.1. REST and Open Geospatial Resources . 10

3.2. Principles of REST . 19

3.3. Advantages of REST . 20

3.4. Key Terms . 21

3.4.1. Representational State Transfer (REST) . 21

3.4.2. Hypertext Transfer Protocol (HTTP) . 21

3.4.3. HTTP Method . 21

3.4.4. URI . 21

3.4.5. Resource . 21

3.4.6. Base URL . 21

3.4.7. Capabilities Resource . 22

3.4.8. Hypermedia Controls . 22

3.4.9. Abbreviated Terms . 22

4. Implementer Instructions . 23

4.1. Use Nouns and Don’t Use Verbs . 23

4.2. Use Well-Known Resource Classes . 24

4.3. Use HTTP Status Codes . 25

4.4. Use Well-Known URL Templates and Access Paths . 27

4.4.1. WMTS - URL Templates and Access Paths . 27

4.4.2. WFS - URL Templates and Access Paths . 29

4.4.3. WCS - URL Templates and Access Paths . 30

4.4.4. WPS - URL Templates and Access Paths . 31

4.4.5. WMS - URL Templates and Access Paths . 33

4.5. JSON Examples . 34

4.5.1. JSON and WFS . 34

4.5.2. JSON and WMTS . 43

4.5.3. JSON and WPS . 44

4.5.4. JSON and WMS . 53

4.5.5. JSON and Registry. 57

4.6. API Management . 59

Appendix A: Revision History . 60

Publication Date: 2017-05-16

Approval Date: 2017-02-20

Posted Date: 2016-11-16

Reference number of this document: OGC 16-057r1

Reference URL for this document: http://www.opengis.net/doc/PER/t12-A060

Category: User Guide

Editor: Jeff Harrison

Title: Testbed-12 REST Users Guide

COPYRIGHT

Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of
use, visit http://www.opengeospatial.org/

IMPORTANT

Attention is drawn to the possibility that some of the
elements of this document may be the subject of patent
rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.
Recipients of this document are requested to submit, with
their comments, notification of any relevant patent claims
or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the
standard set forth in this document, and to provide
supporting documentation.

NOTE

This document is a user guide created as a deliverable in the OGC
Innovation Program (formerly OGC Interoperability Program) as a
user guide to the work of that initiative and is not an official
position of the OGC membership. There may be additional valid
approaches beyond what is described in this user guide.

POINTS OF CONTACT

1

http://www.opengis.net/doc/PER/t12-A060
http://www.opengeospatial.org/

Name Organization

Jeff Harrison (Editor) The Carbon Project

Simon Jirka 52°North GmbH

Christoph Stasch 52°North GmbH

Peter Vretanos CubeWerx

Keith Pomakis CubeWerx

Craig Bruce CubeWerx

Charles Heazel Wisc Enterprises

Stephane Fellah Image Matters

Dave Wesloh NGA

2

Chapter 1. Executive Summary
This document presents a User’s Guide for open geospatial REST. It complements Testbed 12
architecture documents to assist enterprise implementers. The content is presented from the
perspective of a person or organization trying to decide to use (or not use) open geospatial REST to
offer data and services.

There are almost as many definitions of REST as people using it. Simply put, REST is a method of
discovering, accessing and updating geospatial content using the standards of the World Wide Web
– Resources, HTTP methods (GET, PUT, DELETE etc.) and hypermedia controls. However, there’s
often confusion in the geospatial community over ‘What is RESTful?’. Lengthy email threads have
discussed whether you must use hypermedia, or structured URLs. Previous efforts have even gone
to great length to list diverse OGC documents with ‘REST’ in the title. These discussions don’t help
the central challenge – how do we make it easy to access open geospatial information, and answer
key questions about the world around us?

To meet this challenge, it’s important to recognize that REST isn’t a single, monolithic approach. It
doesn’t even have to apply only to the Web. However, for the purposes of this guide we limit REST
to the Web (i.e. HTTP) - and then break it down into four Levels. These Levels are derived for the
Richardson Maturity Model (RMM).

The four Levels progress from Services to a focus on geospatial Resources, HTTP Verbs and linking
Resources. A simplified representation of this Services → Resources → Associations progression is
presented in the graphic below. Basic guidance is also provided at each Level. It’s important to
recognize that these Levels aren’t discrete and exclusive – they build upon each other to help
geospatial interoperability.

3

Figure 1. A simplified representation of the Richardson Maturity Model (RMM) progression from
Services to Associations

Starting at Level 0 the focus is on making requests to ‘Services’ using HTTP as a transport system for
our remote interactions, often with XML. Level 0 represents the current state of many OGC Web
Services. At Level 1 an enterprise can start to identify open geospatial Resources and then make
requests to the Resources. An open geospatial Resource is geospatial information, like a feature or
satellite imagery data, that can be identified by a URL.

Since REST is Resource oriented and the standard OGC web architecture is service oriented some
adaptation of prior OGC service model is required. However, rather than completely redefining
OGC Web Services, Testbed 12 has taken an evolutionary approach in developing the REST bindings
that reuse as much of OGC Web Services functions as possible – but update things to work
RESTfully.

At Level 2, a geospatial enterprise may begin using the HTTP ‘verbs’ the same way they are used in
HTTP itself. This means we don’t define unique ‘Operations’ like INSERT, UPDATE, DELETE to
access or modify Features and other open geospatial Resources. Instead, we use HTTP methods like
GET, POST, PUT, DELETE. Using these HTTP methods can make many things easier for API
developers and client applications and, where possible, open geospatial REST strives to HTTP verbs
for each action against a Resource –

• GET

• Retrieve a Resource

4

• POST

• Create a new Resource

• PUT

• Update an existing Resource

• DELETE

• Remove a Resource

With Resources defined and HTTP verbs in use, at Level 3 we begin to focus is on hypermedia and
Associations. That means we start building links between related open geospatial Resources. For
example, hypermedia links may be used to link metadata to different information models or
schemas. In addition, a Map Resource may have Associations to the satellite image data that it
comes from.

It’s also very important to recognize that open geospatial Resources can include very complex
information about the Earth – such as electro-optical, infrared, multispectral, hyperspectral and
radar satellite measurements, map tiles, sensor observations and much more. This means that as
much as we want all Resources to fit neatly into Level 1, 2 or 3, the reality is some open geospatial
Resources are better suited to certain URL structures or Levels.

Figure 2. Types of Geospatial Resources fit better at different Levels

Using the example of a WMTS (Web Map Tile Service), it wouldn’t be practical to navigate to
quattuordecillions of time-varying Tiles via hyperlinks at ‘Level 3’. But a metadata description for
open geospatial Resources may contain many useful hypermedia controls to navigate to different
Resources.

As we consider URL structures another key concept for open geospatial Resources is the URI
Template. A URI template establishes the structure of a URI (Resource URL) by indicating what

5

values (parameters) can be added and what they represent. URI templates are useful at all Levels,
depending on the open geospatial Resource type and access paths needed.

The Capabilities Resource provides a complete metadata document for other Resources offered.
The Capabilities Resource should include hypermedia controls (i.e. links) that let a client
application move from the Capabilities to the other Resources offered. Applications can also go
directly to the Resources if they know how. Current OGC REST documentation describes two ways,
the ‘Base URL’ and ‘Service Root’ to get to the Capabilities Resource. A Service Root is an actual URL
where the Capabilities Resource exists. A Base URL is a URL prefix that the client appends
parameters to in order to arrive at a valid request URL, including a request URL for the Capabilities
Resource. Future open geospatial architectures will need to decide if they will support interfaces
that require appending parameters to a Base URL, or can they just skip the middle-man and deal in
URLs (and/or URI templates) directly – or do both.

At Level 3 we can also begin to look at Resource constructs such as hypermedia controls.
Hypermedia controls allow an application to obtain the URIs for Resources it needs by following
links in the representation of the Resources themselves - not by relying on out-of-band information
like URI patterns given in documentation. For example, the response to a query for features should
include links that tell the client how to get the capabilities document of the service that offers the
feature; of which feature collection the feature is a member; which feature is next in the current
results set; what alternative representations of the feature are available.

Finally, at Level 3 enterprises can start to build Associations between open geospatial Resources. As
of Testbed 12, Associations are just beginning to be defined in open geospatial REST but they are
essentially linkages between Resources. can help break down the ‘stovepipes’ between open
geospatial Resources. Some examples are included in the graphic below.

6

Figure 3. Level 3 Hypermedia - Associations

As a geospatial enterprise begins to implement the four Levels discussed, it is possible to make it
easy to access open geospatial information, and answer key questions about the world around us.

7

Chapter 2. Introduction
In 1999 OGC started developing a suite of web services for geospatial interoperability. These
included web map services (WMS), web map tiling services (WMTS), web feature services (WFS),
web coverage services (WCS), catalogue services (CSW), the Sensor Web services, etc.

For the most part these were developed using HTTP as a tunneling mechanism for remote
interactions, usually sending Key Value Pairs (KVP) or plain old XML (POX) back and forth. As OGC
web services started to use SOAP it was basically the same mechanism, the only difference was the
messages were wrapped in an XML ‘envelope’. All these methods worked, but more and more
specialized tools were required to access and use open geospatial data – costing time and money.

As years passed simpler alternatives became more popular. In particular, an approach called ‘REST’
began to be explored throughout the geospatial community. REST uses the standard language of
the World Wide Web, HTTP, to discover, access and update geospatial resources.

This document presents a User’s Guide for open geospatial REST. It complements Testbed 12
architecture documents to assist enterprise implementers. The content is presented from the
perspective of a person or organization trying to decide to use (or not use) open geospatial REST to
offer data and services.

This document is created as a deliverable in an OGC Interoperability Initiative, Testbed 12. It’s also
not an official position of the OGC membership. This document consists of the following sections:

8

• User Guidance

• REST and Open Geospatial Resources

• Principles and Advantages

• Key Terms

• Implementer Guidance

• Use Nouns and Don’t Use Verbs

• Use Well-Known Resource Classes

• Use HTTP Status Codes

• Use Well-Known URL Templates and Access Paths

• JSON Examples

• API Management

This document IS NOT a technical architecture or an OGC interface specification. The content is
presented from the perspective of a non-technical reader.

9

Chapter 3. User Guidance
This section presents information from the perspective of a person trying to decide to offer
geospatial information and services through REST as open geospatial Resources. This section also
covers the principles and advantages of REST-based geospatial architecture.

3.1. REST and Open Geospatial Resources
There are almost as many definitions of REST as people using it. As stated above, REST is a method
of discovering, accessing and updating geospatial content using the standards of the World Wide
Web – Resources, HTTP methods (GET, PUT, DELETE etc.) and hypermedia controls.

However, there’s often confusion in the geospatial community over ‘What is RESTful?’. Lengthy
email threads have discussed whether you must use hypermedia, structured URLs or whether it is
‘allowed’ to include ‘query parameters’ in a URL. Previous efforts have even gone to great length to
list diverse OGC documents with ‘REST’ in the title.

These discussions don’t help the central challenge – how do we make it easy to access open
geospatial information, and answer key questions about the world around us?

To meet this challenge, it’s important to recognize that REST isn’t a single, monolithic approach. It
doesn’t even have to apply only to the Web. However, for the purposes of this guide we limit REST
to the Web (i.e. HTTP) - and then break it down into four Levels. These Levels are derived for the
Richardson Maturity Model (RMM).

The four Levels progress from Services to a focus on geospatial Resources, HTTP Verbs and linking
Resources. A simplified representation of this Services → Resources → Associations progression is
presented in the graphic below. Basic guidance is also provided at each Level. It’s important to
recognize that these Levels aren’t discrete and exclusive – they build upon each other to help
geospatial interoperability.

10

Figure 4. OGC REST Services Progression - Services→Resources→Associations

Starting at Level 0 the focus is on making requests to ‘Services’ using HTTP as a transport system for
our remote interactions, often with XML. Level 0 represents the current state of many OGC Web
Services.

At Level 1 an enterprise can start to identify open geospatial Resources and then make requests to
the Resources. An open geospatial Resource is geospatial information, like a feature or satellite
imagery data, that can be identified by a URL.

An example of making a request to a Feature Resource is shown below. In this example, an
application needs to get the boundary of the state of California. To do this, it sends an HTTP request
to the Resource at the URL indicated.

11

Figure 5. Making a request to a Feature Service

Since REST is Resource oriented and the standard OGC web architecture is service oriented, some
adaptation of prior OGC service model is required. However, rather than completely redefining
OGC Web Services, Testbed 12 has taken an evolutionary approach in developing the REST bindings
that reuse as much of OGC Web Services functions as possible – but update things to work
RESTfully.

At Level 2, a geospatial enterprise may begin using the HTTP ‘verbs’ the same way they are used in
HTTP itself. This means we don’t define unique ‘Operations’ like INSERT, UPDATE, DELETE to
access or modify Features and other open geospatial Resources. Instead, we use HTTP methods like
GET, POST, PUT, DELETE.

Using HTTP verbs can make many things easier for API developers and client applications. For
example, if an application needs to change something in the California boundary feature it simply
sends an HTTP PUT with information to update the Feature Resource.

12

Figure 6. Sending a Feature update using PUT

So, where possible, open geospatial REST strives to use HTTP verbs for each action against a
Resource –

• GET

• Retrieve a specific Resource from the server

• Retrieve a collection of Resources from the server

• POST

• Create a new Resource on the server

• PUT

• Update an existing Resource on the server

• DELETE

• Remove a Resource from the server

• OPTIONS

• Used to get available options for Resources (what you can do with Resources)

13

HTTP methods are characterized as safe and/or idempotent and servers should be mindful when
processing HTTP requests to not violate the safety and/or idempotence of the requested method.
Safe methods are methods that do not modify the representation of a resource and so their results
can be safely cached. Idempotent methods are methods that can be repeatedly processed but their
effect will always be the same.

HTTP Status Codes like the ‘200 OK’, '400 Invalid Request' or '404 Not Found' are used in accordance
with the HTTP 1.1 specification.

HTTP methods on resources are subject to authentication and access control (e.g. someone who
does not have authorization to create new features would not see the POST methods when
interrogating a resource with the OPTIONS method). Authentication and access control are
envisioned to be layered on top of RESTful resources.

At this point, an enterprise architect may expect that all open geospatial Resources must available
on a server. But this is not the case. Conceptually, and from the client’s perspective, an open
geospatial Resource is available even if serving it involves dynamic generation. For example, in the
case of a REST WMTS it may be more practical to render Tile Resources on-the-fly than creating and
storing billions of small images. This is because to create and store all the possible Resources for a
time-queryable REST WMTS you would have to multiply billions of tile positions by every allowed
open-ended interval to fully pre-generate them. With 19+ digits of freedom on each end of an
arbitrary time interval, you end up with ~10⁴⁷ possible REST Resource URLs, or
quattuordecillions of them. So it may be more practical to generate some Resources ‘on the fly’.

With Resources defined and HTTP verbs in use, at Level 3 we begin to focus is on hypermedia and
Associations. That means we start building links between related open geospatial Resources. For
example, hypermedia links may be used to link metadata to different information models or
schemas. In addition, a Map Resource may have Associations to the satellite image data that it
comes from.

At this point it’s very important to recognize that open geospatial Resources can include very
complex information about the Earth – such as electro-optical, infrared, multispectral,
hyperspectral and radar satellite measurements, map tiles, sensor observations and much more.
This means that as much as we want all Resources to fit neatly into Level 1, 2 or 3, the reality is
some open geospatial Resources are better suited to certain URL structures or Levels.

14

Figure 7. Types of Geospatial Resources fit better at different Levels

Using the example of a WMTS again, it wouldn’t be practical to navigate to quattuordecillions of
time-varying Tiles via hyperlinks at ‘Level 3’. But a metadata description for open geospatial
Resources may contain many useful hypermedia controls to navigate to different Resources.

As we consider URL structures another key concept for open geospatial Resources is the URI
Template. A URI template establishes the structure of a URI (Resource URL) by indicating what
values (parameters) can be added and what they represent. The syntax of a URI template is to
enclose the parameters in braces, like this {{example}}. Another example is provided below…

15

Figure 8. URL example to GET a Map Tile using the URI template

If we examine the URL in the example…

https://tb12b.cubewerx.com/cubewerx/OpenImageMap/tilesets/PolarASAR/PolarASAR/default/interv
al:2012-01-20T11:22:33.444555666—2012-02-06T22:33:44.555666777/smerc/5/6/9.jop

…we can see it is the result of a URI template that’s otherwise fully opaque, which means clients
shouldn’t attempt to construct their own (beyond the prescribed variable substitutions). In this
example the URI template reported by the Capabilities Resource (metadata) is:

https://tb12b.cubewerx.com/cubewerx/OpenImageMap/tilesets/PolarASAR/PolarASAR/default/{QTi
me}/smerc/{TileMatrix}/{TileRow}/{TileCol}

But the URI template could just as well have been:

https://foo.com/foo{TileCol}foo{QTime}foo{TileRow}foo{TileMatrix}

URI templates are useful at all Levels, depending on the open geospatial Resource type and access
paths needed.

Since the client shouldn’t attempt to interpret URI Templates and shouldn’t attempt to construct
their own, whether or not the URL contains a version number or service identification and what its
location and syntax is entirely up to the needs of the server. That’s one of the powers of the URI
Template - the client requires no knowledge of the structures of the URLs beyond the URI Template
variables, and the server is free to use whatever URLs are most convenient for it.

16

https://tb12b.cubewerx.com/cubewerx/OpenImageMap/tilesets/PolarASAR/PolarASAR/default/interval:2012-01-20T11:22:33.444555666—​2012-02-06T22:33:44.555666777/smerc/5/6/9.jop
https://tb12b.cubewerx.com/cubewerx/OpenImageMap/tilesets/PolarASAR/PolarASAR/default/interval:2012-01-20T11:22:33.444555666—​2012-02-06T22:33:44.555666777/smerc/5/6/9.jop
https://tb12b.cubewerx.com/cubewerx/OpenImageMap/tilesets/PolarASAR/PolarASAR/default/{QTime}/smerc/{TileMatrix}/{TileRow}/{TileCol}
https://tb12b.cubewerx.com/cubewerx/OpenImageMap/tilesets/PolarASAR/PolarASAR/default/{QTime}/smerc/{TileMatrix}/{TileRow}/{TileCol}
https://foo.com/foo{TileCol}foo{QTime}foo{TileRow}foo{TileMatrix}

Given this possible variability, a starting point is useful to answer three questions about relevant
open geospatial Resources - "What are they?", "How do I get to them?", and "How do I get the things
they may provide?".

To help answer these questions the Capabilities Resource provides a complete metadata document
for other Resources offered. Interactions with a set of OGC Resources usually commences by
accessing the Capabilities document.

Current OGC REST documentation describes two ways, the ‘Base URL’ and ‘Service Root’ to get to the
Capabilities Resource. A Service Root is an actual URL where the Capabilities Resource exists. A
Base URL is a URL prefix that the client appends parameters to in order to arrive at a valid request
URL, including a request URL for the Capabilities Resource. This situation is the result of
supporting previous methods while being new methods into the interoperability architecture.

The versions supported are also stated in the Capabilities Resource. If a service supports several
versions, these may be advertised in different Capabilities documents provided at different
endpoints, For example, for Resources associated with processing functions this would be -

http://my.url.com/wps-rest/1.0

and

http://my.url.com/wps-rest/2.0

For Resources associated with features this would be -

http://www.someserver.com/wfs/1.0.0

and

http://www.someserver.com/wfs/2.0

and so on.

The Service Root and well-formed Base URLs bring up another key point. OGC Web Services have
long-been criticized because nothing was available at the service URL - unless you appended a
Request=GetCapabilities KVP. The starting points Service Root and well-formed Base URLs address
this issue by providing both human and machine readable information about the Resources
offered.

The Capabilities Resource should include hypermedia controls (i.e. links) that let a client
application move from the Capabilities to the other Resources offered. Applications can also go
directly to the Resources if they know how.

At Level 3 we can also begin to look at Resource constructs such as hypermedia controls in general.
Hypermedia controls allow an application to obtain the URIs for Resources it needs by following
links in the representation of the Resources themselves - not by relying on out-of-band information
like URI patterns given in documentation. For example, the response to a query for features should
include links that tell the client how to get the capabilities document of the service that offers the
feature; of which feature collection the feature is a member; which feature is next in the current
results set; what alternative representations of the feature are available.

17

http://my.url.com/wps-rest/1.0
http://my.url.com/wps-rest/2.0
http://www.someserver.com/wfs/1.0.0
http://www.someserver.com/wfs/2.0

In addition, at Level 3 enterprises can start to build Associations between open geospatial
Resources. As of Testbed 12, Associations are just beginning to be defined in open geospatial REST,
but some examples are included in the graphic below.

Figure 9. Level 3 Hypermedia - Associations

Associations are linkages between Resources, and can help break down the ‘stovepipes’ between
open geospatial Resources. For example, an Association can indicate the source data set for a web
map (the Association below is 'renders') -

<Association rel="http://www.opengis.net/def/associationType/ogc/0/renders">
<Source type="http://www.opengis.net/def/objectType/ogc/0/wms/layer"
xlink:href="https://tb12.cubewerx.com/a011/cubeserv">
<Identifier>USGS.Elev_Contour</Identifier>
</Source>
<Target type="http://www.opengis.net/def/objectType/ogc/0/wfs/featureType"
xlink:href="https://tb12.cubewerx.com/a011/cubeserv?DATASTORE=USGS">
<Identifier
namespace="http://schemas.cubewerx.com/namespaces/null">Elev_Contour</Identifier

Finally, it should be noted that REST is often viewed as synonymous with JSON. But REST does not
restrict data transfer to a single encoding like JSON, or communication to a particular protocol like
HTTP. However, the protocol designated for interface between Components in Testbed 12 is HTTP.

18

Open geospatial REST also allows applications to select the encoding format that is most useful to
their mission. For example, Resources can be represented in different encodings such as XML or
JSON, depending on whether applications need complex analytics or simpler representations like
web display.

Figure 10. Resources may be represented in different encodings

With these key concepts you can begin to understand the basics of open geospatial Resources and
REST. To better understand REST in the context of offering geospatial information and services you
also need to know the Principles of REST and some of its advantages.

3.2. Principles of REST
The term 'REST' was coined by Roy Fielding in Ph.D. dissertation in 2000. Since that document
hundreds of systems architects have tried to establish one definition of a REST Architecture -
usually resulting in an unfinished argument. This is because REST is not an architecture. It’s a set of
principles that guide the development of a system that has resources, resource identifiers (e.g.
URL), representations and connectors (e.g. clients, servers).

One interesting item to note is that the initial version of OGC Web Services were designed before
Roy Fielding published his Ph.D. dissertation in 2000. So the answer to the question of "Why didn’t
OGC Web Services use Fielding’s REST?" is… "Well, it didn’t really exist."

It’s also important to remember that many high-level principles of REST can seem rather Zen-like
when you first read them. However, remember that in Testbed 12 we limit things to HTTP, so things

19

can start to fall into place.

With these considerations in mind, when considering REST for delivering geospatial data and
services some high-level principles of REST include:

• REST does not restrict communication to a particular protocol.

• REST is not a web services pattern.

But before you think that 'Web Services' must be abandoned some other key points are …

• The key abstraction of information in REST is a Resource.

• REST uses a Resource Identifier (e.g. URL) to identify the Resource involved in an interaction.

• REST connectors provide a generic interface for accessing and manipulating the value set of a
Resource. Connectors are client and servers in Testbed 12.

• REST uses various connector types to encapsulate the activities of accessing Resources and
transferring Resource Representations.

• A Representation is a sequence of bytes, plus Representation metadata to describe those bytes.
REST doesn’t say what the format of the Representation is.

• REST does not restrict communication to a particular protocol, but it does constrain the interface
between components, and hence the scope of interaction and implementation assumptions that
might otherwise be made between components. For example, the Web’s primary transfer Protocol
is HTTP.

• The Protocol for interface between Components in Testbed 12 is HTTP.

With these principles in mind, when trying to decide to use (or not use) REST to offer geospatial
information and services it is important to remember that REST is not a 'one size fits all'
proposition. There are different levels of REST ranging from not RESTful to what may be
considered 'fully RESTful'. These were discussed in the previous section as Levels 0 to 3.

3.3. Advantages of REST
With an understanding of Resources, HTTP verbs, principles and levels, enterprises should be
aware of some of the advantages of using REST to offer geospatial information and services. These
advantages include -

1. Use of HTTP methods makes it 'easier' to build applications, saving time and money.

2. Lower barrier to entry, 'easier' for developers to use than SOAP.

3. Simple HTTP used to make calls rather than complex SOAP, POX.

4. Use of HTTP methods makes developing for database transactions 'easier'.

5. Requests sent with a simple URL templates to the server.

6. Easier navigation through hypermedia links.

20

3.4. Key Terms
The following key terms and examples are presented in an order designed help the reader quickly
get a better understanding the basics of REST for geospatial information and services.

3.4.1. Representational State Transfer (REST)

REST is a simple method of discovering, accessing and updating geospatial and other
information. There is no special software to install. A web browser, web application
or a mobile app may be used to access the service directly - using standard HTTP
methods (e.g. GET, PUT, POST, DELETE), resources and hypermedia controls.

3.4.2. Hypertext Transfer Protocol (HTTP)

HTTP is the communications protocol used on the World Wide Web by clients, like a web
browser, and servers. RESTful systems often (but not always) communicate over
Hypertext Transfer Protocol (HTTP).

3.4.3. HTTP Method

HTTP requests tell the server what the client wants and may include different
'methods' in the request such GET, PUT, POST and DELETE. The GET method retrieves
information. The POST method sends information to be stored on the server. The PUT
method sends a new copy of an existing information to the server. The DELETE method
deletes information on a server. REST uses these HTTP methods to access and update
'resources' on the server.

3.4.4. URI

The unique identifier for a resource, structured in conformance with IETF RFC 2396,
etc.

3.4.5. Resource

The key abstraction of information in REST is called a Resource. A Resource is simply
the target of a HTTP method or hypertext reference. In an open geospatial REST
architecture Resources can be maps, features, imagery, analytic processes, etc.

3.4.6. Base URL

21

This is a URL prefix that the client appends parameters to in order to arrive at a
valid request URL, including a request URL for the Capabilities Resource. Typically,
the Base URL contains a protocol identifier (e.g. http://) and a domain name (e.g.
www.someserver.com).

3.4.7. Capabilities Resource

This is a description of the resources offered by a server. The base, or root, URL
of the server resolves to the service metadata document, which means if you click it
in a web browser you should should a description of the services (the OGC Capabilities
document).

3.4.8. Hypermedia Controls

Hypermedia controls are links embedded within a resource representation. They tell a
client what state transition are available and how to perform them.

For the purposes of this guide, the definitions specified in the OWS Common Implementation
Standard [OGC 06-121r9] also apply as needed.

3.4.9. Abbreviated Terms

Frequently used abbreviated terms in this document include:

• HTML	Hypertext Markup Language

• HTTP	Hypertext Transfer Protocol

• URL	Uniform Resource Locator

• API	Application Programming Interface

• COTS	Commercial Off The Shelf

• SOAP	Simple Object Access Protocol

• WSDL	Web Services Definition Language

• JSON Javascript Object Notation

• XML Extensible Markup Language

• POX Plain Old XML

• RMM Richardsen Maturity Model

22

Chapter 4. Implementer Instructions
This section provides guidelines on REST resources and request examples from Testbed 12 to assist
programmers/implementers.

From the perspective of an enterprise considering REST, the different levels offer a transition path
that can reduce technical risks. As a reminder, here is the graphic from the previous section.

Figure 11. OGC REST - Levels of progression reduce risk in transition

This path begins with using HTTP as the transport method for offering geospatial data and services,
perhaps with a single HTTP method and XML descriptions. In the geospatial community this
transition point is analogous to the first generation of OGC Web Services.

Next a geospatial enterprise begin to separate the API into Resources. In open geospatial REST
Resources can be maps, features, imagery, analytic processes, etc. Then, HTTP methods GET, POST,
PUT, DELETE are used to operate on the Resources.

The following sections provide some basic instructions to keep things simple and easy.

4.1. Use Nouns and Don’t Use Verbs
You’ll see this guidance in almost every REST guide, but it’s there for a reason. For every open
geospatial Resource use this guide.

23

Table 1. Noun Guide Table

Resource GET POST PUT DELETE

Retrieve Create Update Remove

/maps Retrieves a list of
maps

Creates a new map Updates all maps Deletes all maps

/maps/10 Retrieves a
specific map

Not allowed (405) Updates a specific
map

Deletes a specific
map

Do not use verbs:

/getmaps

/createmaps

/deletemaps

At this point, most people familiar with geospatial technology will want to add more complexity.
But for many geospatial enterprise APIs it’s not needed.

Many thanks to Stefan Jauker for the inspiration for the above table. Note: The Resource 'maps' is
used for illustrative purposes only.

4.2. Use Well-Known Resource Classes
Testbed 12 defined over 20 open geospatial Resource Classes (below). Geospatial Enterprises should
use these well-known definitions their APIs.

Table 2. Testbed 12 Resource Classes

Resource Definition

Capabilities The complete service metadata document.

Tile A rectangular pictorial representation of
geographic data, often part of a set of such
elements, covering a spatially contiguous extent
and sharing similar information content and
graphical styling, which can be uniquely defined
by a pair of indices for the column and row
along with an identifier for the tile matrix.

FeatureInfo Insert definition here from Wiki when there’s
time.

Schema The complete application schema offered by the
server.

Feature Type A feature type (i.e. a named collection of
features with the same schema)

Feature A feature (i.e. a member of a feature type)

24

Resource Definition

Feature Type Property A named property from the schema of a feature
type.

Feature Property A named property from the schema of a feature.

Query A complex query resource.

Transaction A complex transaction resource.

Process Detailed process description of a single process.

Process Collection List of processes available.

JobCollection List of jobs of a process.

Job Representation of a job (execution of a process)
containing status information.

Process Output Data Resource containing the different process
outputs inline or as reference.

Coverage Full coverage in the format negotiated by the
client and server through the proper HTTP
Headers (e.g. Accept)

Coverage Description Full metadata regarding one specific coverage in
negotiated format.

Coverage Subset A coverage derived on the fly from a subset
operation applied to a persistent coverage. *The
subset of a coverage is still a coverage.

Coverage Range A coverage derived on the fly from a range
subsetting operation applied to a persistent
coverage *The range subset of a coverage is still
a coverage.

Insert definition here from Wiki when there’s
time.

4.3. Use HTTP Status Codes
The HTTP standard provides dozens of status codes to describe return values. These codes let client
applications know when things go wrong, and also when they go right.

Not all HTTP Status Codes may be needed and the table below provides a short list of the most
useful ones for open geospatial REST.

NOTE
The reader is encouraged to consult the individual bindings such as WFS, WCS,
WMTS for specific status code use. The list below is for initial guidance only.

Table 3. HTTP Status Codes

25

HTTP Status Code Meaning

200 OK Standard response for successful HTTP requests.
The actual response will depend on the request
method used. In a GET request, the response will
contain an entity corresponding to the requested
resource. In a POST request, the response will
contain an entity describing or containing the
result of the action.

201 Created The request has been fulfilled, resulting in the
creation of a new resource.

202 Accepted The request has been accepted for processing,
but the processing has not been completed. The
request might or might not be eventually acted
upon, and may be disallowed when processing
occurs.

203 Created The request xxx been fulfilled, resulting in the
creation of a new resource.

204 No Content The server successfully processed the request
and is not returning any content.

400 Bad Request The server cannot or will not process the
request due to an apparent client error.

401 Unauthorized Similar to 403 Forbidden, but specifically for use
when authentication is required and has failed
or has not yet been provided.

403 Forbidden The request was a valid request, but the server
is refusing to respond to it.

404 Not Found The requested resource could not be found but
may be available in the future.

500 Internal Server Error A generic error message, given when an
unexpected condition was encountered and no
more specific message is suitable. .

An example of the HTTP Status Code used after creating a feature Resource is shown below.

26

Figure 12. Status Code response after creating a Feature Resource

4.4. Use Well-Known URL Templates and Access Paths
This section provides examples of REST URL structures and Access Paths from Testbed 12.

4.4.1. WMTS - URL Templates and Access Paths

According to the WMTS Specification (OGC 07-057r7), the resources provided by a WMTS REST
server are listed in the table below.

Table 4. Resources provided by the WMTS REST server

27

http://portal.opengeospatial.org/files/?artifact_id=35326

Resource Class Description Access Path

Capabilities The complete service metadata
document.

{WMTSBaseURL}/1.0.0/WMTSCa
pabilities.xml

Tile A rectangular pictorial
representation of geographic
data which can be uniquely
defined by a pair of indices for
the column and row along with
an identifier for the tile matrix.

{WMTSBaseURL}/{TileMatrixSet
}/{TileMatrix}/{TileRow}/{TileCo
l}.png

FeatureInfo Information related to a
particular pixel of a map that
refers to the geographic data
portrayed on that area.

{WMTSBaseURL}/{TileMatrixSet
}/{TileMatrix}/{TileRow}/{TileCo
l}/{J}/{I}.xml

Notes:

1. {WMTSBaseURL}: The base URL of the WMTS REST endpoint.

2. {TileMatrixSet}: identifier of a set of tile matrizes.

3. {TileMatrix}: identifier to a specific tile matrix.

4. {TileRow}: identifier of a row of a specific tile matrix.

5. TileColumn}: identifier of a column of a specific tile matrix.

6. {J}: Pixel row index in a tile.

7. {I}: Pixel column index in a tile.

Besides the standard resources provided by a WMTS (i.e. tiles), if we define a TileJSON document of
a layer to be a resource in and of itself, then the resource provided is a "TileJSON document".

The TileJSON document is defined by an open specification that can be found here:
https://github.com/mapbox/tilejson-spec/tree/master/2.1.0. The document defines a very simple
encoding for describing the availability of a WMTS Simple profile layer in Web Mercator.

The WMTS is a data portrayal service and as such, the only operation defined is the HTTP GET
method which is used to retrieve the resources provided by the service (i.e. tiles and TileJSON
documents).

A WMS Capabilities document provides links to the TileJSON document of each layer in two
redundant ways:

1. By advertising a service-oriented GetTileJSON operation which takes SERVICE, VERSION,
OPERATION=GetTileJSON and LAYER parameters

2. By advertising a "TileJSON" ResourceURL for each layer

A TileJSON document in turn provides links to a set of tiles by means of tile-URL templates (as
defined by the TileJSON specification).

28

https://github.com/mapbox/tilejson-spec/tree/master/2.1.0

4.4.2. WFS - URL Templates and Access Paths

The resources that are provided by a WFS REST server are listed in the table below and include the
capabilities document of the server, features, queries, transactions and certain metadata.

Table 5. Resources provided by the WFS REST server

Resource Class Description Access Path

Capabilities The complete service metadata
document.

{WfsRESTBaseURL}

Schema The complete application
schema offered by the server.

{schema URL}

Feature Type A feature type (i.e. a named
collection of features with the
same schema)

{ftype schema URL}

Feature A feature (i.e. a member of a
feature type)

{feat URL}

Property of a feature type A named property from the
schema of a feature type

{ftype URL}/{prop} (See note 1)

Property of a feature A named property from the
schema of a feature

{feat URL}/{prop} (See note 1)

Query A complex query resource /query

Transaction A complex transaction resource /transaction

1. The property name is appended before any query parameters

2. {schema URL}: The URL to the application schemas that the service offers; this URL is specified
in the capabilities document of the service using an atom:link element with rel="describedBy"

3. {ftype schema URL}: The URL to a schema document declaring the schema of the specified
feature type; this URL is specified at the first nesting level within the wfs:FeatureType element
in the capabilities document using an atom:link element with rel="describeBy"

4. {ftype URL}: The URL to the collection of feature of this type; it is specified at the first nesting
level within the wfs:FeatureType element in the capabilities document using an atom:link
element with the rel="collection"

5. {feat URL}: The URL of a feature; it is specified in the response to a query within the feature
container element (i.e. wfs:member element for an XML encoded response) using an atom:link
element with rel="self"

6. {prop}: The name of a property of a feature or feature type; appended to the resource URL
before any query parameters.

As discussed in the previous section, at Level 2 a geospatial enterprise may begin using the HTTP
‘verbs’ the same way they are used in HTTP itself. This means we don’t define unique ‘operations’
like GetFeature or Transaction (INSERT, UPDATE, DELETE) to access or modify Features. Instead, we
use HTTP methods like GET, POST, PUT, DELETE. For example, the following table shows a sample of
HTTP 'verbs' mapped to several of the traditional WFS 'operations' like GetFeature and Transaction.

29

Table 6. Sample HTTP 'verbs' mapped to several of the traditional WFS 'operations'

HTTP Method and Action Access Paths Equivalent WFS 'Operation'

GET (Retrieve) /?… {schema URL} {ftype
schema URL} {ftype URL}?…
{query URL}?…

GetCapabilities
DescribeFeatureType
DescribeFeatureType
GetFeature GetFeature

POST (Create) {ftype URL}?… Transaction

PUT (Update) (feat URL}?… {feat
URL}/{prop}?…

Transaction Transaction

DELETE (Remove) {feat URL}?… {feat
URL}/{prop}?…

Transaction Transaction

Additional detailed REST WFS examples and information on WFS is provided in the 'Examples'
section of this document. Overview examples are described in the 'REST and Open Geospatial
Resources' section as the beginnning of this document.

4.4.3. WCS - URL Templates and Access Paths

The resources that are provided by a WCS REST server are listed in the table below and include the
capabilities document of the server, coverages (including subsets) and corresponding metadata

Table 7. Resources provided by the WCS REST server

Resource Class Description Access Path Example

Capabilities The complete service
metadata document. It
contains a list of
available extensions
and all the available
coverage resources

{WCSRestBaseUrl}/capa
bilities

http://ows.rasdaman.or
g/rasdaman/ows/capabi
lities

Coverage Full coverage in the
format negotiated by
the client and server
through the proper
HTTP Headers (e.g.
Accept)

{WCSRestBaseUrl}/cove
rage/{coverageId}

http://ows.rasdaman.or
g/rasdaman/ows/covera
ge/AvgLandTemp

Coverage Description Full metadata
regarding one specific
coverage in the
negotiated format

{WCSRestBaseUrl}/cove
rage/{coverageId}/descr
iption

http://ows.rasdaman.or
g/rasdaman/ows/covera
ge/AvgLandTemp/descr
iption

30

http://ows.rasdaman.org/rasdaman/ows/capabilities
http://ows.rasdaman.org/rasdaman/ows/capabilities
http://ows.rasdaman.org/rasdaman/ows/capabilities
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/description
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/description
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/description
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/description

Resource Class Description Access Path Example

Subset of a coverage A coverage derived on
the fly from a subset
operation applied to a
persistent coverage.
*The subset of a
coverage is still a
coverage

{WCSRestBaseUrl}/cove
rage/{coverageId}/subs
et({subset})

http://ows.rasdaman.or
g/rasdaman/ows/covera
ge/AvgLandTemp/subse
t(Lat(10:20))

Range subset of a
coverage

A coverage derived on
the fly from a range
subsetting operation
applied to a persistent
coverage *The range
subset of a coverage is
still a coverage

{WCSRestBaseUrl}/cove
rage/{coverageId}/rang
esubset({subset})

http://ows.rasdaman.or
g/rasdaman/ows/covera
ge/AvgLandTemp/range
subset(red,green)

Due to the protocol binding only GET operations can be applied on the resources mentioned in the
section above. This follows the REST guidelines as all operations in WCS are idempotent and are
mapped to concrete resources.

Since the first version of the protocol binding draft, the WCS-T extension of WCS (transactional
WCS) was adopted as a standard in OGC, which provides the first non-idempotent operation that a
service serving coverages could implement. It is our opinion that based on this new addition to the
ecosystem two new operations should be defined in a future draft of the protocol that allow PUT
and PATCH operations on a coverage resource. The table below contains this proposal as well.

Table 8. Operations provided by the WCS REST server

HTTP Method Acccess Path Parameters Description

GET {wcsRESTBaseURL} NA Retrieval of Capabilities
resource

PUT {wcsRESTBaseURL}/cov
erage/MyCoverage

A valid coverage in one
of the server supported
formats

Creates a new coverage
identified by the given
url

PATCH {wcsRESTBaseURL}/cov
erage/MyCoverage OR
{wcsRESTBaseURL}/cov
erage/MyCoverage/subs
et(ansi("2012-01-01"))

A valid coverage in one
of the server supported
formats

Updates an existing
coverage or a subset of
it with the given input
coverage

No direct associations are made between the resources as this is a Level 2 implementation.
However a Level 3 implementation should aim to associate the Subset and RangeSubet of a
Coverage with the original coverage in a meaningful way.

4.4.4. WPS - URL Templates and Access Paths

As there is not yet an official REST binding of the WPS available, the REST binding has been
specified in Testbed 12. The resources that are provided by a WPS REST server are listed in the table

31

http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/subset(Lat(10:20)
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/subset(Lat(10:20)
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/subset(Lat(10:20)
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/subset(Lat(10:20)
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/rangesubset(red,green
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/rangesubset(red,green
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/rangesubset(red,green
http://ows.rasdaman.org/rasdaman/ows/coverage/AvgLandTemp/rangesubset(red,green

below and include the capabilities document of the server, the list of processes available
(ProcessCollection and Process), jobs (running processes) and outputs of processes.

Table 9. Resources provided by the WPS REST server

Resource Class Description Access Path Example

Capabilities The complete service
metadata document.

{WpsRESTBaseURL} http://geoprocessing.de
mo.52north.org:8080/w
ps-proxy

ProcessCollection List of processes
available

{WpsRESTBaseURL}/pr
ocesses

http://geoprocessing.de
mo.52north.org:8080/w
ps-proxy/processes

Process Detailed process
description of a single
process

{WpsRESTBaseURL}/pr
ocesses/{process-id}

http://www.maps.bob/e
topo2/default/WholeWo
rld_CRS_84/10m/1/3/86/
132.xml

JobCollection List of jobs of a process {WpsRESTBaseURL}/pr
ocesses/{processID}/job
s/{job-id}

NA

Job Representation of a job
(execution of a process)
containing status
information

{WpsRESTBaseURL}/pr
ocesses/{processID}/job
s/{job-id}

NA

Process Output Data Resource containing
the different process
outputs inline or as
reference.

{WpsRESTBaseURL}/pr
ocesses/{processID}/job
s/{job-id}/outputs

NA

1. {WpsRESTBaseURL}: The base URL of the WPS REST endpoint.

2. {process-id}: identifier of a process.

3. {job-id}: identifier to a job.

In general, the HTTP GET operation is used to provide access to the resources described above.
However, in order to create a new job, the HTTP POST method is used to post a new job by sending
a new job resource represented by an execute request to the server. This results in the operations
listed in the table below.

Table 10. Operations on resources provided by the WPS REST server

HTTP Method Access Path Parameters Description

GET {WpsRESTBaseURL} NA Retrieval of Capabilities
resource

GET {WpsRESTBaseURL}/pr
ocesses

NA Retrieval of
ProcessCollection
resource

32

http://geoprocessing.demo.52north.org:8080/wps-proxy
http://geoprocessing.demo.52north.org:8080/wps-proxy
http://geoprocessing.demo.52north.org:8080/wps-proxy
http://geoprocessing.demo.52north.org:8080/wps-proxy/processes
http://geoprocessing.demo.52north.org:8080/wps-proxy/processes
http://geoprocessing.demo.52north.org:8080/wps-proxy/processes
http://www.maps.bob/etopo2/default/WholeWorld_CRS_84/10m/1/3/86/132.xml
http://www.maps.bob/etopo2/default/WholeWorld_CRS_84/10m/1/3/86/132.xml
http://www.maps.bob/etopo2/default/WholeWorld_CRS_84/10m/1/3/86/132.xml
http://www.maps.bob/etopo2/default/WholeWorld_CRS_84/10m/1/3/86/132.xml

HTTP Method Access Path Parameters Description

GET {WpsRESTBaseURL}/pr
ocesses/{process-id}

NA Retrieval of a Process
resource (process
description)

GET {WpsRESTBaseURL}/pr
ocesses/{processID}/job
s

NA Retrieval of list of jobs
of a specific process
(JobCollection)

GET {WpsRESTBaseURL}/pr
ocesses/{processID}/job
s/{job-id}

NA Retrieval of a single Job
resource

POST {WpsRESTBaseURL}/pr
ocesses/{processID}/job
s

Execute request
(contained in body)

Execution of a process

Notes 1. {WpsRESTBaseURL}: The base URL of the WPS REST endpoint 2. {process-id}: identifier of a
process. 3. {job-id}: identifier to a job.

As stated above in the listing of resources, the basic resources managed by the WPS REST server are
processes, jobs, outputs and its corresponding collections. The Capabilities has an association to the
ProcessCollection that aggregates the single Processes offered by the Web Processing Server. The
process has an association to the collection of jobs (JobCollection) that aggregates single jobs, i.e.
instances that run a certain process.

4.4.5. WMS - URL Templates and Access Paths

The WMS (A040) work item for Testbed 12 involved investigating and implementing the use of
GeoJSON as an output format for the WMS GetFeatureInfo operation as described in OGC 15-053,
“Testbed 11 Implementing JSON/GeoJSON in an OGC Standard Engineering Report”. Specifically,
this work item was concerned with recommendation 28 from OGC 15-053 which proposed
including an encoding for GetFeatureInfo responses based on GeoJSON. Recommendation 28
further proposed replacing the geometry part by a marker of the position of the query and the
position of the returned feature. If the returned objects correspond to simple features, an identifier
is to be included in the response that allows recovering the geometry using an additional WFS
query. The Testbed 12 RFP proposed using the proposed WMS 1.4 draft specification as the base
service standard for this work. The state of the WMS 1.4 draft specification, however, is such that it
would not be possible to implement a service with the WMS 1.4 API within the time and resource
allocated for this work item in Testbed 12. Instead, the existing and more stable WMS 1.3 (OGC 06-
042) server was proposed and used for this work item.

We can infer from the purpose of the GetFeatureInfo operation that the relevant resource is a
“feature” and that a GeoJSON response would be considered a representation of that feature.

NOTE

The current draft WMS 1.4 specification (which seems to deprecate an existing draft
WMS 2.0 version based on the modification dates of the documents) discusses REST
only in a peripheral way and not related to the GetFeatureInfo operation at all.

The WMS is a data portrayal service and as such, the only HTTP method used is the GET method

33

which is used to retrieve the resources provided by the service (i.e. maps and feature info).

4.5. JSON Examples
This section presents Testbed 12 experience using open geospatial REST and JSON.

4.5.1. JSON and WFS

This section presents Testbed 12 experience using open geospatial REST with WFS and JSON. The
resulting JSON WFS REST API was able to represent real world phenomena as open geospatial
features. The features were deployed as open geospatial Resources that can be accessed and
updated using the language of the World Wide Web.

This section consists of the following sub-sections:

• Background - Open Geospatial REST, WFS, NAS GML, GeoJSON

• GeoJSON WFS REST

Background

Technology Integration Experiments in this segment of Testbed 12 by The Carbon Project brought
together four aspects of Testbed 12 -

• Open Geospatial REST

• WFS

• NAS GML

• GeoJSON

Open Geospatial REST

For the purposes of Testbed 12 we limited REST to the Web (i.e. HTTP) - and then broke it down into
four Levels. These Levels are derived for the Richardson Maturity Model (RMM). The four Levels
progress from Services to a focus on geospatial Resources, HTTP Verbs and linking Resources. A
simplified representation of this Services → Resources → Associations progression is presented in
the graphic below. It’s important to recognize that these Levels aren’t discrete and exclusive – they
build upon each other to help geospatial interoperability.

34

Figure 13. A simplified representation of the Richardson Maturity Model (RMM) for Geospatial
Resources

Starting at Level 0 the focus is on making requests to ‘Services’ using HTTP as a transport system for
our remote interactions, often with XML. Level 0 represents the current state of many OGC Web
Services. At Level 1 an enterprise can start to identify open geospatial Resources and then make
requests to the Resources. An open geospatial Resource is geospatial information, like a feature,
that can be identified by a URL.

At Level 2, a geospatial enterprise may begin using the HTTP ‘verbs’ the same way they are used in
HTTP itself. This means we don’t define unique ‘Operations’ like INSERT, UPDATE, DELETE to
access or modify Features. Instead, we use HTTP methods like GET, POST, PUT, DELETE. Using these
HTTP methods can make many things easier for API developers and client applications. Where
possible, WFS REST strives to HTTP verbs for each action against a Resource. For example:

Table 11. HTTP Methods Guide Table

Resource GET POST PUT DELETE

Retrieve Create Update Remove

/featuretypes Retrieves a list of
featuretypes

Creates new
featuretypes

Updates all
featuretypes

Not allowed (405)

35

Resource GET POST PUT DELETE

/featuretypes/Adm
inistrativeSubdivis
ion

Retrieves specific
featuretypes

Creates specfic
featuretypes

Updates specific
featuretypes

Deletes specific
featuretypes

With Resources defined and HTTP verbs in use, at Level 3 we begin to focus is on hypermedia and
Associations. That means we can start building links between related open geospatial Resources.
For example, hypermedia links may be used to link metadata to different information models or
schemas.

WFS

The OGC Web Feature Service (WFS) Implementation Specification allows a client to retrieve
geospatial data encoded in Geography Markup Language (GML) and other formats. The
specification defines operations for data access and manipulation operations on geographic
features, using HTTP as the distributed computing platform. Via these interfaces, a Web user or
service can combine, use and manage geodata — the feature information behind a map image.
Relevant WFS operations for this segment of Testbed 12 include -

• Query operations to allow features or values of feature properties to be retrieved based upon
constraints, defined by the client, on feature properties.

• Transaction operations allow features to be created, changed, replaced and deleted from the
underlying data store.

NAS GML

NSG Application Schema (NAS) is a Platform Independent Model that defines the GEOINT exchange
semantics for the US National System for Geospatial-Intelligence (NSG). For Testbed 12, NAS GML
was provided to test the ability of interoperable components to support GML encodings of the
model, in particular the Entity portion of NAS -

36

Figure 14. NSG Application Schema (NAS) Feature Entity Model

For Testbed 12 Administrative Boundary features in NAS GML were provided to participants for
testing.

GeoJSON

GeoJSON is a geospatial data interchange format based on JavaScript Object Notation (JSON). It
defines several types of JSON objects and the manner in which they are combined to represent data
about geographic features, their properties, and their spatial extents. GeoJSON uses a geographic
coordinate reference system, World Geodetic System 1984, and units of decimal degrees.

GeoJSON objects may represent a region of space (a Geometry), a spatially-bounded entity (a
Feature), or a list of features (a Feature Collection). GeoJSON supports the following geometry
types: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection. Features in GeoJSON contain a geometry object and additional properties, and
a Feature Collection that contains a list of features.

GeoJSON features are this combination of geometry and properties:

{

 "type": "Feature",
 "geometry": {
 "type": "Point"'
 "coordinates": [0, 0]

 },

 "properties": {
 "name": "admin boundary"

 }
}

The properties attached to a feature can be any kind of JSON object.

GeoJSON WFS REST Examples

In Testbed 12 Open Geospatial REST, WFS, NAS GML and GeoJSON were integrated to deploy a
GeoJSON WFS REST. (Note - URLs below are informative. The service is live but The Carbon Project
does not want transactions available until testing is completed)

• GML

http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision

• JSON

http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision?outputFormat=json

37

http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision
http://ows12.azurewebsites.net/wfs/featuretypes/AdministrativeSubdivision?outputFormat=json

Note: In most JSON WFS deployments there may be only JSON output format and the request would
be directed to the Administrative Subdivision feature Resource.

Request GeoJSON

Basic request

GET /featuretypes/AdministrativeSubdivision?outputFormat=json
HTTP/1.1

HTTP/1.1 200 OK
Content-Type:
application/vnd.geo+json

{ "type": "FeatureCollection", "features": [{"type":"Feature","_id":"1",,"geometry":{
"type": "Polygon", "coordinates": [[[-122.438548585768, 37.7527347148009], [-
122.438712218419, 37.7542478576584], [-122.437694850195, 37.75428723271], [-
122.437588133248, 37.7528134664936], [-122.438548585768, 37.7527347148009]]]
},"properties":{
 "nas:uniqueEntityIdentifier": "UUID-1-132904",
 "nas:place": {
 "nas:FeaturePlaceInfo": {
 "nas:uniqueEntityIdentifier": "UUID-1-132904",
 "nas:place": {}
 }
 },
 "nas:restriction": {
 "nas:RestrictionInfo": {
 "nas:uniqueEntityIdentifier": "UUID-1-here",
 "nas:commercialCopyrightNotice": {
 "nas:TextLexUnconMeta": {
 "nas:valueOrReason": "Copyright National Geospatial-Intelligence Agency"
 }
 },
 "nas:securityAccessGroup": {
 "nas:RestrictionInfoSecurityAttributesGroupMeta": {
 "nas:valueOrReason": {
 "attributes": [
 {
 "icism:classification": "U"
 },
 {
 "icism:ownerProducer": "USA"
 }
],
 "value": null
 }
 }
 }

38

 }
 },
 "nas:area": {
 "nas:RealNonNegMeta": {
 "nas:restriction": {
 "nas:RestrictionInfo": {
 "nas:uniqueEntityIdentifier": "UUID-1-here",
 "nas:commercialCopyrightNotice": {
 "nas:TextLexUnconMeta": {
 "nas:valueOrReason": "Copyright National Geospatial-Intelligence Agency"
 }
 },
 "nas:securityAttributesGroup": {
 "nas:RestrictionInfoSecurityAttributesGroupMeta": {
 "nas:valueOrReason": {
 "attributes": [
 {
 "icism:classification": "U"
 },
 {
 "icism:ownerProducer": "USA"
 }
],
 "value": null
 }
 }
 }
 }
 }
 }
 },
 "nas:bgnAdminLevel": {
 "nas:AdministrativeSubdivisionBgnAdminLevelCodeMeta": {
 "nas:valueOrReason":
"http://api.nsgreg.nga.mil/codelist/BgnAdminLevel/firstOrder"
 }
 },
 "nas:designation": {
 "nas:AdminSubdivisionDesig": {
 "nas:uniqueEntityIdentifier": "UUID-1-132904",
 "nas:gencPreferredName": {
 "nas:TextLexUnconMeta": {
 "nas:valueOrReason": "California"
 }
 },
 "nas:gencShortUrnBasedIdentifier": {
 "nas:GencShortUrnBasedIdentifierTextMeta": {
 "nas:valueOrReason": "ge:GENC:3:3-3:US-CA"
 }
 }
 }

39

 },
 "nas:principalSubdivisionOf": {
 "nas:GeopoliticalEntity": {
 "nas:uniqueEntityIdentifier": "ge:GENC:3:3-3:USA",
 "nas:boundary": null,
 "nas:designation": {
 "nas:GeopoliticalEntityDesig": {
 "nas:uniqueEntityIdentifier": "UUID-1-132904",
 "nas:gencShortUrnBasedIdentifier": {
 "nas:GencShortUrnBasedIdentifierTextMeta": {
 "nas:valueOrReason": "ge:GENC:3:3-3:US-CA"
 }
 }
 }
 }
 }
 }
}}]}

In the example above, the response is a combination of geometry and properties, with the geometry
type of Polygon.

Since this is GeoJSON only EPSG code 4326 should be returned.

NAS GML Attributes

There is currently no guidance for representing attributes in a GeoJSON WFS so they were handled
in the following manner:

"nas:valueOrReason": {
 "attributes": [
 {
 "icism:classification": "U"
 },
 {
 "icism:ownerProducer": "USA"
 }
],
 "value": null
 }

Create GeoJSON FeatureType

POST /featuretypes/AdministrativeSubdivision?outputFormat=json
HTTP/1.1
Content-Type:
application/vnd.geo+json

{

40

 "type":"Feature",
 "geometry":{
 "type":"Polygon",
 "coordinates":[
 [
 [
 -122.478531156081,
 37.7394760665792
],
 [
 -122.478795146849,
 37.7409374031664
],
 [
 -122.477965461578,
 37.7409374031664
],
 [
 -122.477739183777,
 37.7394760665792
],
 [
 -122.478531156081,
 37.7394760665792
]
]
]
 },
 "properties":{
 "nas:uniqueEntityIdentifier":"UUID-1-132904",
 "nas:place":{
 "nas:FeaturePlaceInfo":{
 "nas:uniqueEntityIdentifier":"UUID-1-132904",
 "nas:place":{
 "nas:featureEntity":null
 }
 }
 },
 "nas:restriction":{
 "nas:RestrictionInfo":{
 "nas:uniqueEntityIdentifier":"UUID-1-here",
 "nas:commercialCopyrightNotice":{
 "nas:TextLexUnconMeta":{
 "nas:valueOrReason":"Copyright National Geospatial-Intelligence
Agency"
 }
 },
 "nas:securityAttributesGroup":{
 "nas:RestrictionInfoSecurityAttributesGroupMeta":{
 "nas:valueOrReason":null
 }

41

 }
 }
 },
 "nas:area":{
 "nas:RealNonNegMeta":{
 "nas:valueOrReason":"415836540000",
 "nas:restriction":{
 "nas:RestrictionInfo":{
 "nas:uniqueEntityIdentifier":"UUID-1-here",
 "nas:commercialCopyrightNotice":{
 "nas:TextLexUnconMeta":{
 "nas:valueOrReason":"Copyright National Geospatial-
Intelligence Agency"
 }
 },
 "nas:securityAttributesGroup":{
 "nas:RestrictionInfoSecurityAttributesGroupMeta":{
 "nas:valueOrReason":null
 }
 }
 }
 }
 }
 },
 "nas:bgnAdminLevel":{
 "nas:AdministrativeSubdivisionBgnAdminLevelCodeMeta":{

"nas:valueOrReason":"http://api.nsgreg.nga.mil/codelist/BgnAdminLevel/firstOrder"
 }
 },
 "nas:designation":{
 "nas:AdminSubdivisionDesig":{
 "nas:uniqueEntityIdentifier":"UUID-1-132904",
 "nas:gencPreferredName":{
 "nas:TextLexUnconMeta":{
 "nas:valueOrReason":"California"
 }
 },
 "nas:gencShortUrnBasedIdentifier":{
 "nas:GencShortUrnBasedIdentifierTextMeta":{
 "nas:valueOrReason":"ge:GENC:3:3-3:US-CA"
 }
 }
 }
 },
 "nas:principalSubdivisionOf":{
 "nas:GeopoliticalEntity":{
 "nas:uniqueEntityIdentifier":"ge:GENC:3:3-3:USA",
 "nas:boundary":null,
 "nas:designation":{
 "nas:GeopoliticalEntityDesig":{

42

 "nas:uniqueEntityIdentifier":"UUID-1-132904",
 "nas:gencShortUrnBasedIdentifier":{
 "nas:GencShortUrnBasedIdentifierTextMeta":{
 "nas:valueOrReason":"ge:GENC:3:3-3:US-CA"
 }
 }
 }
 }
 }
 }
 }
}

HTTP/1.1 201 Created

Additional examples such as changing the value of a property would use PUT method etc.

Lessons Learned

Based on the experiences of Testbed 12, the GeoJSON WFS API may have significant potential to
represent real world phenomena as open geospatial features as open geospatial REST Resources
that can be accessed and updated using the language of the World Wide Web.

In the future, REST WFS may represent the Capabilities Resource as JSON Schema instead of current
XML. There currently is no guidance for such metadata descriptions.

4.5.2. JSON and WMTS

The TileJSON-generating WMTS server was deployed in Testbed 12 at the following URL:

http://tb12.cubewerx.com/a042/cubeserv/default/wmts/1.0.0/WMTSCapabilities.xml

The following is a RESTful example of accessing a TileJSON document from this server using the
HTTP GET method:

http://tb12.cubewerx.com/a042/cubeserv/default/wmts/1.0.0/tileJSON/National_Land_Cover
.National_Land_Cover

The following TileJSON document is retrieved by this URL (NOTE: Normally, packed JSON output is
generated from by the A042 server but the output has been wrapped in this example to make it
easier to read):

43

http://tb12.cubewerx.com/a042/cubeserv/default/wmts/1.0.0/WMTSCapabilities.xml

{"tilejson":"2.1.0",
 "name":"National Land Cover",
 "tiles":["http://tb12-1.cubewerx.com/a042/OpenImageMap/tilesets/USGS/
 National_Land_Cover/National_Land_Cover/default/
 smerc/{z}/{y}/{x}.jop",
 "http://tb12-2.cubewerx.com/a042/OpenImageMap/tilesets/USGS/
 National_Land_Cover/National_Land_Cover/default/
 smerc/{z}/{y}/{x}.jop",
 "http://tb12-3.cubewerx.com/a042/OpenImageMap/tilesets/USGS/
 National_Land_Cover/National_Land_Cover/default/
 smerc/{z}/{y}/{x}.jop",
 "http://tb12-4.cubewerx.com/a042/OpenImageMap/tilesets/USGS/
 National_Land_Cover/National_Land_Cover/default/
 smerc/{z}/{y}/{x}.jop"],
 "bounds":[-2493045,1317885,-1713555,2497245]
 }

Lessons Learned

This exercise showed that the WMTS specification can be easily extended to support other tile-
access strategies.

TileJSON essentially does what WMTS does, but in a more restrictive way, allowing only the
Spherical Mercator coordinate system, a single layer, a single style, no extra dimensions, no feature-
info querying, etc.. This makes TileJSON clients a bit easier to implement than WMTS clients
(assuming that the restrictions of TileJSON are acceptable).

Adding TileJSON support to a WMTS could help allow a TileJSON client to use the WMTS. However,
it’s not a perfect plug-in solution for TileJSON clients, because the WMTS capabilities document still
needs to be parsed (either by a human or automatically) in order to determine the TileJSON URLs.

4.5.3. JSON and WPS

The 52°North WPS REST API was realized as a proxy to be able to test it with different WPS
implementations during the specification process. The proxy was written in Java using the Spring
framework and Jackson libraries for XML and JSON handling. The WPS requests and responses are
handled using the 52°North WPS 2.0 XMLBeans. The underlying WPS was a 52°North WPS 2.0
instance, wrapping the Hootenanny conflation software.

In the following, example requests and responses for the different operations and resources will be
shown.

Example of HTTP GET request for retrieving JSON WPS Capabilities.

http://tb12.dev.52north.org/wps-rest

44

Example of WPS Capabilities encoded as JSON.

{
 "Capabilities": {
 "ServiceIdentification": {
 "Title": "52°North WPS 4.0.0-SNAPSHOT",
 "Abstract": "Service based on the 52°North implementation of WPS 1.0.0",
 "ServiceType": "WPS",
 "ServiceTypeVersion": ["1.0.0",
 "2.0.0"],
 "Fees": "NONE",
 "AccessConstraints": "NONE"
 },
 "ServiceProvider": {
 "ProviderName": "52North",
 "ProviderSite": {
 "HRef": "http://www.52north.org/"
 },
 "ServiceContact": {
 "IndividualName": "Your name",
 "ContactInfo": {

 }
 }
 },
 "Contents": {
 "ProcessSummaries": [{
 "identifier": "testbed12.fo.DouglasPeuckerAlgorithm",
 "title": "testbed12.fo.DouglasPeuckerAlgorithm",
 "_processVersion": "1.0.0",
 "_jobControlOptions": "sync-execute",
 "_outputTransmission": "value",
 "url": "http://tb12.dev.52north.org:80/wps-
rest/processes/testbed12.fo.DouglasPeuckerAlgorithm"
 },...
]
 },
 "_service": "WPS",
 "_version": "2.0.0"
 }
}

The process summaries in the contents-section contain links to the process description of the
respective process. The standalone list of processes can be requested as follows:

Example of HTTP GET request for retrieving the list of offered processes encoded as JSON.

http://tb12.dev.52north.org/wps-rest/processes

45

Example of WPS Capabilities encoded as JSON.

{
 "ProcessSummaries": [
 {
 "identifier": "testbed12.fo.DouglasPeuckerAlgorithm",
 "title": "testbed12.fo.DouglasPeuckerAlgorithm",
 "_processVersion": "1.0.0",
 "_jobControlOptions": "sync-execute",
 "_outputTransmission": "value",
 "url": "http://tb12.dev.52north.org:80/wps-
rest/processes/testbed12.fo.DouglasPeuckerAlgorithm"
 },...
]
}

Example of HTTP GET request for retrieving the process description of a process encoded in JSON.
(NOTE: Request has been line-wrapped for easier reading).

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm

Example of WPS Capabilities encoded as JSON.(NOTE: Some inputs and formats have been left out for
easier reading).

{
 "ProcessOffering": {
 "Process": {
 "Title": "Hootenanny Conflation Process",
 "Identifier": "testbed12.lsa.HootenannyConflation",
 "Input": [
 {
 "Title": "INPUT1",
 "Identifier": "INPUT1",
 "ComplexData": {
 "Format": [
 {
 "_default": "true",
 "_mimeType": "application/x-zipped-shp"
 },...
]
 },
 "_minOccurs": "1",
 "_maxOccurs": "1"
 },
 {
 "Title": "INPUT1_TRANSLATION",
 "Identifier": "INPUT1_TRANSLATION",
 "ComplexData": {

46

 "Format": [
 {
 "_default": "true",
 "_mimeType": "text/x-script.phyton"
 },
 {
 "_default": "false",
 "_mimeType": "text/plain"
 }
]
 },
 "_minOccurs": "0",
 "_maxOccurs": "1"
 },
 {
 "Title": "INPUT2",
 "Identifier": "INPUT2",
 "ComplexData": {
 "Format": [
 {
 "_default": "true",
 "_mimeType": "application/x-openstreetmap+xml"
 }...
]
 },
 "_minOccurs": "1",
 "_maxOccurs": "1"
 },
 {
 "Title": "CONFLATION_TYPE",
 "Identifier": "CONFLATION_TYPE",
 "LiteralData": {
 "Format": [
 {
 "_default": "true",
 "_mimeType": "text/plain"
 },
 {
 "_default": "false",
 "_mimeType": "text/xml"
 }
],
 "LiteralDataDomain": [
 {
 "AnyValue": null,
 "DataType": {
 "_reference": "xs:string"
 }
 }
]
 },

47

 "_minOccurs": "0",
 "_maxOccurs": "1"
 },...
],
 "Output": [
 {
 "Title": "CONFLATION_OUTPUT",
 "Identifier": "CONFLATION_OUTPUT",
 "ComplexData": {
 "Format": [
 {
 "_default": "true",
 "_mimeType": "application/x-zipped-shp"
 },...
]
 }
 },
 {
 "Title": "CONFLATION_REPORT",
 "Identifier": "CONFLATION_REPORT",
 "ComplexData": {
 "Format": [
 {
 "_default": "true",
 "_mimeType": "text/plain"
 }
]
 }
 }
]
 },
 "_processVersion": "1.0.0",
 "_jobControlOptions": "sync-execute async-execute",
 "_outputTransmission": "value reference",
 "execute-url": "http://tb12.dev.52north.org:80/wps-
rest/processes/testbed12.lsa.HootenannyConflation/jobs"
 }
}

Example of HTTP GET request for getting a list of jobs of a process. (NOTE: Request has been line-
wrapped for easier reading).

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm/jobs

48

Example of a list of jobs for a process encoded as JSON.

{
 "Jobs": [
 "1317c058-cb4d-4ab4-ad21-b78e51229a17",
 "1319d2fc-cac8-4e8d-8039-2c511f55a9d3"
]
}

Example of HTTP POST request for executing a process. (NOTE: Request has been line-wrapped for
easier reading).

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm/jobs

By default, the process will be executed asynchronously. If the process supports synchronous
execution, this can be achieved by appending the following URL-parameter:

Example of HTTP POST request for synchronously executing a process. (NOTE: Request has been line-
wrapped for easier reading).

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm/jobs?sync-execute=true

49

Example of WPS Execute request encoded as JSON.

{
 "Execute": {
 "Identifier": "testbed12.lsa.HootenannyConflation",
 "Input": [
 {
 "Reference": {
 "_mimeType": "application/x-zipped-shp",
 "_href":
"http://geoprocessing.demo.52north.org:8080/data/Trans_RoadSegment-aoi.zip"
 },
 "_id": "INPUT1"
 },
 {
 "Reference": {
 "_mimeType": "text/x-script.phyton",
 "_href":
"http://geoprocessing.demo.52north.org:8080/data/TNM_Roads.py"
 },
 "_id": "INPUT1_TRANSLATION"
 },
 {
 "Reference": {
 "_mimeType": "application/x-openstreetmap+xml",
 "_href":
"http://geoprocessing.demo.52north.org:8080/data/sf_only_roads-aoi.osm"
 },
 "_id": "INPUT2"
 }
],
 "output":[{
 "_mimeType": "application/x-zipped-shp",
 "_id": "CONFLATION_OUTPUT",
 "_transmission": "reference"
 },{
 "_mimeType": "text/plain",
 "_id": "CONFLATION_REPORT",
 "_transmission": "reference"
 }],
 "_service": "WPS",
 "_version": "2.0.0"
 }
}

The direct response to a asynchronously executed process is HTTP status code 201 (created) and the
URL to obtain status information and finally the result. The URL will be returned in a HTTP header
named Location. For synchronous execution, the result document will be returned after the process
has finished.

50

Example of HTTP GET request for retrieving status information about a asynchronously executed
process (NOTE: Request has been line-wrapped for easier reading).

http://tb12.dev.52north.org/wps-rest/processes/
testbed12.fo.DouglasPeuckerAlgorithm/jobs/
c731d14b-1de6-499c-9317-20224e056012

Example of WPS StatusInfo response encoded as JSON. The process is still running.

{
 "StatusInfo": {
 "JobID": "c731d14b-1de6-499c-9317-20224e056012",
 "Status": "Running",
 "Progress": 0
 }
}

After the process has finished, the progress element will be replaced by the URL to obtain the
outputs

Example of WPS StatusInfo response encoded as JSON. The process has finished.

{
 "StatusInfo": {
 "JobID": "c731d14b-1de6-499c-9317-20224e056012",
 "Status": "Succeeded",
 "Output": "http://tb12.dev.52north.org/wps-
rest/processes/testbed12.lsa.HootenannyConflation/jobs/c731d14b-1de6-499c-9317-
20224e056012/outputs"
 }
}

51

Example of WPS Result response encoded as JSON.

{
 "Result": {
 "JobID": "c731d14b-1de6-499c-9317-20224e056012",
 "Output": [
 {
 "ID": "CONFLATION_OUTPUT",
 "Reference": {
 "_mimeType": "application/x-zipped-shp",
 "_href":
"http://tb12.dev.52north.org:80/wps/RetrieveResultServlet?id=c731d14b-1de6-499c-9317-
20224e056012CONFLATION_OUTPUT.b1172b1c-c9aa-495a-aa8b-62220ac93605"
 }
 },
 {
 "ID": "CONFLATION_REPORT",
 "Reference": {
 "_mimeType": "text/plain",
 "_href":
"http://tb12.dev.52north.org:80/wps/RetrieveResultServlet?id=c731d14b-1de6-499c-9317-
20224e056012****CONFLATION_REPORT.220391a6-4357-44e2-b5f3-c0a0983cedae"
 }
 }
]
 }
}

Lessons Learned

The WPS REST API simplifies the interaction between servers and clients. The HTTP methods with
its clear semantics ease to understand the interface and its communication pattern. The usage of
hypermedia encoded as JSON allows clients to browse from the Capabilities to the processes
available, to navigate from these processes to jobs (running instances of these processes) and, once
a job is finished, to browse to the resulting outputs of a job.

One difficulty encountered is the description of the API using the Capabilities document. In general,
in order to interact with an HTTP based RESTful API, clients need to know

• which resources are offered and

• which HTTP methods need to be applied in order to retrieve or manipulate these resources

While the information about the resources offered can be easily embedded in the Contents section
of the Capabilities document, the integration of the description about which HTTP methods are
applicable on which resources is not straightforward. Usually, the OperationsMetadata section
would be used for describing the operations offered, the endpoints and the operation parameter.
However, since the OperationsMetadata have been defined for Web Services in Service-oriented
Architectures, the description of REST APIs is not straightforward for the following reasons:

52

•

Only HTTP GET and POST are supported.

• There is no way to describe on which resources the HTTP methods, e.g. HTTP GET, can be
applied.

For this reason, we omitted the OperationsMetadata section and described the application of the
HTTP methods in the specification draft. In future, it would be desirable to also offer a machine-
readable description of the API relying upon existing description language, e.g. the OpenAPI
specification [OpenAPI_2016].

4.5.4. JSON and WMS

A WMS 1.3 server supporting GeoJSON as a GetFeatureInfo output format was deployed for Testbed
12 here:

http://tb12.cubewerx.com/a040/cubeserv?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilitie
s

The following example retrieves GeoJSON output in response to a GetFeatureInfo request:

Example of HTTP GET request for retrieving a feature info resource (NOTE: Request has been line-
wrapped for easier reading).

http://tb12.cubewerx.com/a040/cubeserv?SERVICE=WMS&
 VERSION=1.3.0&
 LANGUAGE=en-CA,en&
 REQUEST=GetFeatureInfo&
 CRS=EPSG%3A3857&
 BBOX=-13641185.826,4546529.053,-13601935.412,4575116.502&
 WIDTH=1027&HEIGHT=748&
 LAYERS=USGS.Struct_Point&
 FORMAT=image%2Fx-jpegorpng&
 QUERY_LAYERS=USGS.Struct_Point&
 FEATURE_COUNT=10&
 I=812&
 J=345&
 INFO_FORMAT=application%2Fjson

The following GeoJSON document is retrieved by this URL:

Example of a feature info resource encoded as GeoJSON.

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "fsetName": "Struct_Point",
 "geometry": {
 "type": "Point",
 "coordinates": [

53

http://tb12.cubewerx.com/a040/cubeserv?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities
http://tb12.cubewerx.com/a040/cubeserv?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities

 -122.2622829998311,
 37.87610699954206
]
 },
 "properties": {
 "PERMANENT_": "{F154F04D-FD02-4D8E-9B8E-E122331C931C}",
 "SOURCE_FEA": "115214",
 "SOURCE_DAT": "{B04D081F-2258-4584-B950-3659EE6688B8}",
 "SOURCE_D_1": "Schools ORNL nationwide schools dataset USGS provisional load",
 "SOURCE_ORI": "Oak Ridge National Laboratory, Geographic Information Sciences
and Technology Group",
 "DATA_SECUR": 5,
 "DISTRIBUTI": "E3",
 "LOADDATE": "2011-12-20 00:00:00.000 +00:00",
 "FTYPE": 730,
 "FCODE": 73006,
 "NAME": "Graduate Theological Union",
 "ISLANDMARK": 2,
 "POINTLOCAT": 1,
 "ADMINTYPE": null,
 "ADDRESSBUI": null,
 "ADDRESS": "2400 Ridge Rd",
 "CITY": "Berkeley",
 "STATE": "CA",
 "ZIPCODE": "94709-",
 "GNIS_ID": null,
 "FOOT_ID": null,
 "COMPLEX_ID": null
 }
 },
 {
 "type": "Feature",
 "fsetName": "Struct_Point",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -122.2614299998325,
 37.87587699954241
]
 },
 "properties": {
 "PERMANENT_": "{D8BFD704-2104-4EC2-A725-6CB66A6E7B97}",
 "SOURCE_FEA": "112127",
 "SOURCE_DAT": "{B04D081F-2258-4584-B950-3659EE6688B8}",
 "SOURCE_D_1": "Schools ORNL nationwide schools dataset USGS provisional load",
 "SOURCE_ORI": "Oak Ridge National Laboratory, Geographic Information Sciences
and Technology Group",
 "DATA_SECUR": 5,
 "DISTRIBUTI": "E3",
 "LOADDATE": "2011-12-20 00:00:00.000 +00:00",
 "FTYPE": 730,

54

 "FCODE": 73006,
 "NAME": "Church Divinity School of the Pacific",
 "ISLANDMARK": 2,
 "POINTLOCAT": 1,
 "ADMINTYPE": null,
 "ADDRESSBUI": null,
 "ADDRESS": "2451 Ridge Road",
 "CITY": "Berkeley",
 "STATE": "CA",
 "ZIPCODE": "94709-1211",
 "GNIS_ID": null,
 "FOOT_ID": null,
 "COMPLEX_ID": null
 }
 },
 ...
],
 "bbox": [
 -122.2624979998308,
 37.875506999543,
 -122.2614299998325,
 37.87680799954097
]
}

NOTE
Normally, packed JSON output is generated from by the A040 server but the output
presented here has been wrapped and truncated to make it easier to read.

Lessons Learned

Providing a GeoJSON response for WMS GetFeatureInfo requests makes a lot of sense, since more
and more client applications are web-browser based and JSON is the more natural representation
in this environment. However, OGC 15-053 imposes certain complications that were questioned,
and ultimately discarded, in the implementation of A040.

OGC 15-053 states that "we are not recommending returning the full geometry description because
we assume that this is the work of a WFS GetFeature operation using identifiers recovered by the
GetFeatureInfo request". The justification for suggesting that returning a geometry is out of scope
for a WMS GetFeatureInfo response was not clear. The entire point of having a WMS
GetFeatureInfo request is to:

1. give a WMS client the ability to query information about a feature without having to implement
any WFS logic

2. give a WMS server the ability to provide information about a feature without having to
implement a companion WFS

If a WMS client is interested in the geometry of a feature, it’s likely for the purpose of plotting it on
the map to highlight the feature(s) that the user has clicked on. Wouldn’t it be convenient if the
GeoJSON GetFeatureInfo response could include the geometry as part of the response? Of course,

55

GeoJSON can do exactly that so we saw no reason for needlessly complicating the situation by
bringing a WFS into the picture.

Furthermore, returning a vector pointing from the user click location (which client already
knows) to "a point that is in the interior or the border of the returned feature" is completely useless
to the client. Then requiring the client to somehow determine the association to the appropriate
WFS server and WFS feature type (see discussion below), formulate and issue an appropriate WFS
GetFeature request, and be equipped to handle the WFS response, is a lot to ask of a simple WMS
client especially in the case where the client simply wants to highlight a feature on the map.

The requirements imposed on a WMS server by this aspect of requirement 28 are also overly
onerous. The requirement is basically suggesting that if a WMS wants to be able to serve
geometries to its client — so that it can highlight them on a map for example — then the WMS must
also include an implementation of a WFS server to handle that. This all seems very heavyweight
for no good reason, especially since GeoJSON responses are naturally equipped to return the
geometries right from the start.

If the concern is that returning geometries in a WMS GetFeatureInfo response uses unnecessary
bandwidth for client applications that don’t require the geometries, then our position is that using a
bit of extra bandwidth like this is a small price to pay for the simplicity of the interface. The
addition of two optional GetFeatureInfo parameters (Table 6) is proposed to streamline this:

Table 12. Additional proposed GetFeatureInfo request parameters

Parameter Name Values Description

GET_GEOMETRIES Boolean Indicates whether or not
geometries should be returned
in the GetFeatureInfo response.
If FALSE, then (at least in the
case of GeoJSON output) the
geometry should be returned as
null. If unspecified, it’s at the
server’s discretion. The server
is not obligated to honor this
parameter.

SIMPLIFY_GEOMETRIES Boolean Indicates whether or not
geometries returned in
GetFeatureInfo response should
be simplified to the resolution
of the corresponding GetMap
request. If unspecified, the
default value is FALSE. The
server is not obligated to honor
this parameter.

The deployed TB12 implementation of the GetFeatureInfo operation includes these two parameters.

Finally, none of this is to say that returning the WFS feature identifier of the feature as part of the
WMS GetFeatureInfo response is necessarily a bad thing. In fact, it might be useful to complex
clients that really do need full WFS access to the feature (for example, to perform updates on it,

56

etc.). It’s worth noting that a WFS feature identifier alone is not enough. The client application
would have to also know:

1. The base URL of the association WFS server (it’s not necessarily the same as the base URL of the
WMS server being accessed)

2. The name of the associated WFS feature type (it’s not necessarily the same as the name of the
WMS layer being accessed)

3. The namespace of the associated WFS feature type (there is not way to deduce this from the
WMS interface)

The mechanism(s) to allow the determination of these associations was certainly beyond the scope
of OGC 15-053r1. However, OGC 16-043, "Testbed-12 Web Integration Service Engineering Report",
proposes just such a mechanism in Clause 6, "GetAssociations operation”.

4.5.5. JSON and Registry

Testbed 12 deployed an instance of the Image Matters Semantic Registry (previously named DCAT
Rest Service). The service implements by default a Level 3 REST API (HAL+JSON). It also provides
responses in Level 2 (JSON-LD) and as Linked Data (RDF, TTL, N-TRIPLES). HAL is a format based on
JSON that establishes conventions for representing links and a brief examples of HAL+JSON in the
HAL browser is shown below.

A sample response in JSON is shown below.

200 OK

Content-Type: application/hal+json;charset=UTF-8
Content-Length: 1158

57

ETag: "0918af3efbcb9bacd99fbbc03fd139ae4"

{
 "type": "srim:Service",
 "title": "Semantic Registry Service",
 "description": "Semantic Registry Service prototype for OGC Testbed12",
 "category": [
 "http://www.opengis.net/specs/testbed12/semanticRegistry"
],
 "publisher": [
 {
 "name": "Image Matters LLC",
 "uri": "http://www.imagemattersllc.com",
 "type": "org:Organization"
 }
],
 "version": "0.1",
 "_links": {
 "registry:capabilities": {
 "href": "http://54.208.90.94/registry/capabilities"
 },
 "registry:items": {
 "href": "http://54.208.90.94/registry/items"
 },
 "registry:sparql": {
 "href": "http://54.208.90.94/registry/sparql"
 },
 "registry:jsonldContext": {
 "href": "http://54.208.90.94/registry/context"
 },
 "registry:registers": {
 "href": "http://54.208.90.94/registry/registers"
 },
 "registry:harvester": {
 "href": "http://54.208.90.94/registry/harvesters"
 },
 "self": {
 "href": "http://54.208.90.94/registry"
 },
 "curies": [
 {
 "href": "http://www.opengis.net/rels/registry/{rel}",
 "name": "registry",
 "templated": true
 }
]
 }
}

58

4.6. API Management
API management is a crucial software engineering functions for any organization trying to decide
whether to use open geospatial REST to offer data and services. As the popularity of REST APIs has
grown in the past few years, so too have the tools, best practices and consulting services that
support organizations in API management. While these tools were initially developed for
organizations to manage their organization-specific APIs, the tools can also be considered for use in
API design in an open standards context. In particular, Testbed 12 participants have found the
OpenAPI Specification, formerly known as the Swagger specification, to be helpful.

Documenting APIs can be aided by using the approach of the OpenAPI Initiative (OAI). OAI is
focused on defining a vendor neutral API Description Format based on the Open API Specification
(OAS). The approach will allow specification of REST APIs using modular sub-elements.
Subelements can then live on their own and be shared by multiple APIs.

Providing complete documentation of your API using OpenAPI is a W3C Data on the Web Best
Practice. This best practice for APIs is being discussed in the OGC/W3C Spatial Data on the Web
Working Group.

It is recommended that enterprises make use of automated API documentation where possible.
These can often be synched directly with an implementation version, which helps to minimize
divergence. Some also provide interactive (e.g. Swagger) documentation that allows inline requests
to be made. This helps to lower the barrier of entry for developers and quickly builds
understanding of the REST API.

59

Appendix A: Revision History
Table 13. Revision History

Date Release Editor Primary
clauses
modified

Descriptions

April 15, 2016 .1 Jeff Harrison All Initial Outline

June 30, 2016 .2 Jeff Harrison All First Draft

September 30,
2016

.31 Jeff Harrison All Second Draft

October 7, 2016 .35 Jeff Harrison Updated
examples from
Testbed 12 ERs

Third Draft

October 13, 2016 .36 Jeff Harrison Refined
examples from
Testbed 12

Fourth Draft

60

	Testbed-12 REST User Guide
	Table of Contents
	Chapter 1. Executive Summary
	Chapter 2. Introduction
	Chapter 3. User Guidance
	3.1. REST and Open Geospatial Resources
	3.2. Principles of REST
	3.3. Advantages of REST
	3.4. Key Terms
	3.4.1. Representational State Transfer (REST)
	3.4.2. Hypertext Transfer Protocol (HTTP)
	3.4.3. HTTP Method
	3.4.4. URI
	3.4.5. Resource
	3.4.6. Base URL
	3.4.7. Capabilities Resource
	3.4.8. Hypermedia Controls
	3.4.9. Abbreviated Terms

	Chapter 4. Implementer Instructions
	4.1. Use Nouns and Don’t Use Verbs
	4.2. Use Well-Known Resource Classes
	4.3. Use HTTP Status Codes
	4.4. Use Well-Known URL Templates and Access Paths
	4.4.1. WMTS - URL Templates and Access Paths
	4.4.2. WFS - URL Templates and Access Paths
	4.4.3. WCS - URL Templates and Access Paths
	4.4.4. WPS - URL Templates and Access Paths
	4.4.5. WMS - URL Templates and Access Paths

	4.5. JSON Examples
	4.5.1. JSON and WFS
	4.5.2. JSON and WMTS
	4.5.3. JSON and WPS
	4.5.4. JSON and WMS
	4.5.5. JSON and Registry

	4.6. API Management

	Appendix A: Revision History

