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Abstract

The WFS 2.0 CITE and Reference Implementation (RI) Installation User Guide
documents the results of the WFS 2.0 Reference Implementation development in
the OGC Testbed 12 Compliance (CMP) thread.

The following content is covered by this engineering report:

• WFS 2.0 capabilities document and conformance classes

• Installation Guide for Deegree 3 as WFS 2.0 RI

• Best practices to implement WFS 2.0

• Installation and integration with CITE validation tools

Importance to OGC WFS Working Groups and CITE SC

Within the OGC Testbed 12 Compliance (CMP) thread, the WFS 2.0 test suite and
a WFS 2.0 reference implementation were enhanced for a complete coverage of
the WFS 2.0 requirements. It is expected that this activity will yield insight into
specific compliance capabilities and help discover issues in implementations of
software for WFS 2.0. The following test suite requirements were advanced:

• Transactional WFS – Ability to create and update capabilities. The current
test already supports transactions, which is restricted to features.

• Locking WFS – Ability to allow multiple users to update simultaneously the
data provided bv the WF

• Response Paging – Paging is supported in CSW and Content Discovery and
Retrieval (CDR) applications. The test was advanced to be consistent with the
WFS 2.0 standard and to be compatible and consistent with CDR.

• Standard Joins – ComparisonOperators can be used for joins. The test and
reference implementation include the case of multi-source integration.

• Spatial Joins – SpatialOperators can be used for joins. The test and reference
implementation include the case of multi-source integration.

• Temporal Joins – TemporalOperators can be used for joins. The test and
reference implementation include multi-source integration.

• Feature Versions – The test and reference implementation test Object Based
Production, which is producing feature objects and versioning them.

• Manage Stored Queries - Stored Queries can be created and dropped.
Creation of illegal Stored Queries is prevented.
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Chapter 1. WFS 2.0 capabilities document
and conformance classes
A product implementing WFS 2.0 needs to advertise the conformance classes in the capabilities
document. If the capability (e.g. Spatial Joins) is not advertises by the server, clients (e.g. the OGC
TEAM Engine validation tool) will not know that the server has implemented that conformance
class.

The WFS 2.0 reference implementation is compliant to the following conformance classes. All
conformance classes are described in  "OpenGIS Web Feature Service 2.0 Interface Standard (also
ISO 19142)" (document 09-025r1).

• Transactional WFS (Chapter "A.1.3 Transactional WFS", page 101)

• Locking WFS (Chapter "A.1.4 Locking WFS", page 102)

• Response Paging (Chapter "A.1.10 Response Paging", page 103)

• Standard Joins (Chapter "A.1.11 Standard Joins", page 103)

• Spatial Joins (Chapter "A.1.12 Spatial Joins", page 103)

• Temporal Joins (Chapter "A.1.13 Temporal Joins", page 104)

• Feature Versions (Chapter "A.1.14 Feature Versions", page 104)

• Manage Stored Queries (Chapter "A.1.15 Manage Stored Queries", page 104)

All features and interfaces work as described in the "OpenGIS Web Feature Service 2.0 Interface
Standard (also ISO 19142)".
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Chapter 2. Installation Guide for Deegree 3
as WFS 2.0 RI
The WFS 2.0 RI is based on the deegree software. The deegree software provides workspaces that
are preconfigured for ease of use. A deegree workspace was made available configured with test
data from Iceland supporting all features required for WFS 2.0 (See bellow).

A general installation guide for deegree can be found in the handbook. Restrictions regarding the
operating system, third party software and other dependencies are also documented there.

It is recommended to use a Debian based operating system Ubuntu. The following chapters
regarding the installation assume that a Debian based operating system is used.

The following software components have to be installed and configured to setup and run the
reference implementation.

• Java SE

• Apache Tomcat

• PostgreSQL

• PostGIS

• deegree

• deegree workspace

2.1. Java SE
Recommended Version: Oracle Java 8 (JDK)

Download and install.

2.2. Apache Tomcat
Recommended Version: Apache 7

Install Apache Tomcat via the packaging managing system of the operation system:

apt-get install tomcat7

2.3. PostgreSQL
Recommended Version: PostgreSQL 9.4

Install PostgreSQL via the packaging managing system of the operation system:
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apt-get install postgresql-9.4

2.4. PostGIS
Recommended Version: PostGIS 2.1 or 2.2

Install PostGIS via the packaging managing system of the operation system:

apt-get install postgis

2.5. deegree
deegree artifact is provided via a  Nexus repository

Download the war file, rename it to deegree.war and put it into the webapps folder of the Apache
Tomcat:

wget -O deegree.war ${deegree.download.url}
mv deegree.war ${tomcat}/webapps

After starting the tomcat deegree will be available at:

http://HOST:PORT/deegree.

2.6. deegree workspace
deegree workspace artifact is provided via a Nexus repository

Download the deegree workspace and unzip it into the DEEGREE_WORKSPACE_ROOT folder
(should be /home/USER/.deegree):

wget -O workspace-iceland.zip ${workspace.download.url}
unzip workspace-iceland.zip -d ${DEEGREE_WORKSPACE_ROOT}

Import the test data as described below and activate the workspace via the deegree console at:

http://HOST:PORT/deegree

Import of the testdata:

1. Switch to the directory sql in the workspace folder (should be /home/USER/.deegree/workspace-
iceland)
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2. Execute the script install-db.sh

./install-db.sh

TIP
If you are the user 'postgres' and the PostgreSQL database is installed with default
settings, the script will work without any adjustments.

2.7. Short introduction into usage of deegree
Open deegree in your web browser by typing:

http://HOST:PORT/deegree

You can see the deegree console which can be used to configure deegree and to find out all relevant
information about the configured services (e.g. endpoint URLs).

For the RI the most important basics of deegree are:

• How to initialize a workspace.

• How to determine endpoint URLs.

• How the configuration concept of deegree works in general.

How to initialize a workspace:

Go to menu item 'workspaces'. In the list 'Available workspaces' all existing workspaces are shown.
Choose a workspace and click on 'Start'. In case you want to activate the WFS 2.0 RI workspace pick
'workspace-iceland'. deegree is now initializing and starting the selected workspace which can take
a couple of seconds. Finally, on the top of the deegree console the active workspace is shown (e.g.
'Active workspace: workspace-iceland').

How to determine endpoint URLs:

Go to menu item 'services'. There you see a list of services (in case the WFS 2.0 RI workspace is
active only one), each with the button 'Capabilities'. Click on the button and the Capabilities
document of the service opens in a new tab. This URL is important for the CITE test execution later.

How the configuration concept of deegree works in general:

All configuration files of deegree are written in XML. They can be accessed via following menu
items (list just contains configuration files which are important for a WFS 2.0): services, feature and
databases.
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Chapter 3. Best practices to implement WFS
2.0
The process of implementing the WFS 2.0 reference implementation with deegree led to several
outcomes regarding the process itself.

This chapter describes the lessons learned by formulating best practices.

3.1. Coordination with test developer for proper
interpretation of standard
Coordination and communication with other Testbed 12 participants, in particular the test
developer is important. Implementers can be challenged with the task of interpreting the
specification, as it is sometimes not precise enough for software developers, especially for more
advanced features. In this case various communication channels (e.g. conversation at the issue
tracker, mailing lists, text chats, voice chats) can be used to coordinate and to lead discussions with
users, other developers and maintainers of the corresponding CITE test suite.

The process of communication leads to a better understanding of a feature for all sides. It also helps
implementers of the reference implementation and of the executable test suite to improve the
quality of their products. Users contribute the view how a feature is used in cases of application
which should absolutely be incorporated by developers. The outcome of the communication
process is a better understanding of the specification and a feature for all sides.

A GitHub issue tracker was used to keep track of the issues and the discussions around those issues.
The weekly meetings served as a venue to further discuss and reach a solution faster.

A good example that required further clarification for the WFS 2.0 reference implementation was
test 'updateSupersededVersion' that is part of the  Feature Versions conformance class. See GitHub
discussion for more details.

3.2. Do not underestimate low-level conformance
classes
If low-level conformance classes (e.g. Simple or Basic) are not implemented very accurate and
specific, more specialized conformance classes (e.g. Joins) cannot be passed.

A good example regarding the WFS 2.0 are the filter conformance classes which are an important
dependency for the joins conformance classes. So, if the reference implementation does not pass
the filter conformance classes it will never pass the joins conformance classes.
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3.3. Process of implementing a reference
implementation also improves quality of
corresponding CITE test suite
During the implementation process of the WFS 2.0 reference implementation several bugs and
incompleteness were detected in the ETS. Bug issues were created for that which help the
participant developing the ETS WFS 2.0.

By this, the implementation process of the reference implementation improves the quality of an
executable test suite as well. So, there is helpful feedback in both directions. The executable test
suite improves the quality of the reference implementation and vice versa.

3.4. Joins
When implementing joins two aspects have to be kept in mind:

• All operators which are required by filter conformance classes must be supported by joins as
well. This requirement derives from the fact that operators listed in the capabilities document
cannot be linked directly to filter and/or join functionality. Thus, all listed operators have to be
supported by filters and joins.

• Self joins are a requirement and have to be considered during implementation. A self join is a
join operation with two times the same FeatureType.

3.5. Complex Properties
It is necessary to make complex properties available when developing a reference implementation.
A time period property has to be introduced to pass the temporal filter and Temporal Joins
conformance classes. This property is mandatory for the During operator, which is required by the
minimal temporal filter conformance class.

The deegree reference implementation uses the type "gml:TimePeriodPropertyType" to meet this
requirement. It can be enabled by adding a complex element to the SQLFeatureStore configuration
in deegree.

Example:
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    <Complex path="app:period">
      <Complex path="gml:TimePeriod">
        <Primitive path="@gml:id" mapping="osm_timestamp_modified_id" />
        <Primitive path="gml:beginPosition" mapping="osm_timestamp" type="dateTime">
          <CustomConverter
class="de.latlon.ogctestbed12.sql.converter.UtcTimeConverter" />
        </Primitive>
        <Primitive path="gml:endPosition" mapping="osm_timestamp_modified"
type="dateTime">
          <CustomConverter
class="de.latlon.ogctestbed12.sql.converter.UtcTimeConverter" />
        </Primitive>
      </Complex>
    </Complex>

Another complex property is, of course, introduced by any geometry element (e.g.
gml:PointPropertyType or gml:SurfacePropertyType).

3.6. Time Zones
To ensure the possible passing of all temporal related tests, the WFS 2.0 implementation must
support time zones in temporal data.

There are two dimensions of this requirement:

• The service implementation must consider time zones when processing a request. This means
that time zones must be read from data source and be used for all internal algorithms.

• The GML output of a GetFeature response must include time zones.

Prior to the Testbed 12 project deegree just supported the first dimension of the requirement. The
second demand was implemented during this project. The main challenge here was how to deal
with time data which do not provide a time zone in data source. For processing deegree uses the
default time zone of the server. This behaviour does not satisfy the GML output issue as a user does
not want to retrieve time data with the time zone of the server.

Thus, it was implemented that the display of time zones can be configured in the SQLFeatureStore
of the deegree workspace. By using the UtcTimeConverter, which was developed for Testbed 12, the
display of output of time zones can be controlled.

Example:

    <Primitive path="app:osm_timestamp" mapping="osm_timestamp">
      <CustomConverter class="de.latlon.ogctestbed12.sql.converter.UtcTimeConverter"
/>
    </Primitive>

This solution satisfies both needs of this requirement.
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3.7. deegree configuration options must be understood
In the following a few important configuration options of deegree are explained with regard to the
implementation of a WFS 2.0 reference implementation. All of them are described in the handbook.

Table 1. deegree configuration options

configuration option Value Description WFS RI

EnableTransactions true Enables WFS-T Required for
Transactional and
Locking WFS CC

EnableResponseBufferi
ng

true Enables buffering of
the full response before
writing it to the
response stream

Otherwise invalid
exception messages are
returned

EnableResponsePaging true Enables Response
Paging

Required for Response
Paging CC

GMLFormat/
GetFeatureResponse/
DisableStreaming

true Enables collecting of
matching features

Otherwise the number
of features in a feature
collection is unknown
as well as the bbox.
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Chapter 4. Installation and integration with
CITE validation tools
The WFS 2.0 reference implementation can be tested with the WFS 2.0 test suite executable by the
TEAM Engine.

The OGC Compliance Program (CITE) advertises those test suites in the OGC validation website.

4.1. Installation and setup of TEAM Engine and WFS 2.0
test suite
An installation guide for the TEAM Engine and how to integrate test suites can be found at the
TEAM Engine guides.

4.1.1. Requirements

The TEAM Engine needs a similar software setup like deegree. Java SE and Apache Tomcat have to
be installed. For details see chapter "Documentation of WFS RI installation".

In addition, the Maven tool has to be installed.

All requirement for TEAM Engine are existent, when those three software components are
installed.

4.1.2. Installation of TEAM Engine

Do a git clone of the TEAM Engine Source Code:

git clone https://github.com/opengeospatial/teamengine.git

Checkout the desired version of TEAM Engine. We recommend the newest release (currently 4.8):

git checkout ${project.version}

Build the source code with Maven:

mvn clean install -Dmaven.site.skip=true

Go to 'target' folder of 'teamengine-web' module:

cd teamengine-web/target/

Unzip 'teamengine-common-libs.zip' to 'lib' folder of tomcat:
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unzip -o teamengine-common-libs.zip -d ${tomcat}/lib

Copy 'teamengine.war' to 'webapps' folder of tomcat:

cp teamengine.war ${tomcat}/webapps

Go to 'target' folder of 'teamengine-console' module:

cd teamengine-console/target/

Unzip 'te_base' folder to home directory:

unzip -o teamengine-console-*-base.zip -d ~/te_base

Set java property TE_BASE pointing to te_base folder:

vim ${tomcat}/bin/setenv.sh

Add following content to the file:
export JAVA_OPTS='-DTE_BASE=/home/USER/te_base'

Now, start the tomcat.

The TEAM Engine installation can be accessed via http://HOST:PORT/teamengine

4.1.3. Installation of WFS 2.0 test suite

Stop the tomcat.

Do a git clone of the ETS WFS 2.0 Source Code:

git clone https://github.com/opengeospatial/ets-wfs20.git

Checkout the desired version of ETS WFS 2.0. We recommend the newest release (currently 1.24):

git checkout ${project.version}

Build the source code with Maven:

clean install -Djava.awt.headless=true -DskipTests -Dmaven.compiler.target=1.7
-Dmaven.compiler.source=1.7
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Go to 'target' folder:

cd target/

Unzip 'ets-wfs20-ctl.zip' to 'scripts' folder of 'te_base' directory:

unzip -o ets-wfs20-*-ctl.zip -d ~/te_base/scripts

Unzip 'ets-wfs20-deps.zip' to 'lib' folder of TEAM Engine webapp:

unzip -o ets-wfs20-*-deps.zip -d ${tomcat}/webapps/teamengine/WEB-INF/lib

Start the tomcat again.

The WFS 2.0 test suite is now listed on the main page of TEAM Engine
(http://HOST:PORT/teamengine).

4.2. Test WFS 2.0 reference implementation with WFS
2.0 test suite
After having set up the WFS 2.0 reference implementation and the WFS 2.0 test suite, the reference
implementation can be tested for compliance.

It is important that the TEAM Engine can reach the reference implementation via HTTP.

4.2.1. Execute a test of the reference implementation

1. Open http://HOST:PORT/teamengine with a web browser.

2. Click on button 'Create an account'.

3. Fill in a 'Username' and 'Password' and check the warning.

4. Click on 'Start Testing'.

5. Fill in your 'Username' and 'Password'.

6. Click on 'Create a new session'.

7. Select Organization 'OGC' and Specification 'WFS 2.0'.

8. Click on 'Start a new test session'.

9. Enter the capabilities URL of the tested RI (e.g.
http://HOST:PORT/deegree/services/wfs?service=WFS&request=GetCapabilities).

10. Click on 'Start'.

11. Click on 'detailed test report'.

12. Inspect test results.
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4.2.2. Examine the results of the test run

On the left hand side all test categories are displayed. They represent a conformance class of the
WFS 2.0 specification, a related specification (e.g. filter conformance class of Filter Encoding
specification) or any other groupable tests (e.g. Preconditions).

A category which is passed successfully is marked with green and a category with any test failures
is marked with red.

You can click on any of the categories to see more details. If you do so, all test cases are displayed on
the right hand side. For each test case the test name, a description including a reference to the
relevant part of the specification, a start and duration time of the test is shown. You can click on
'Details' to view a description of the executed test.

In case a test is marked as failed (it is displayed in red) a reason for the test failure is printed. Click
on the test name to see a more detailed description of the test execution. For example, the sent
request and the received response are listed there.

With all those given information you should be able to interpret test failures. To really provide a
reference implementation you should be able to fix all failures in the service implementation. This
is sometimes located on the code side or the configuration of the software must be adjusted.
Alternatively, you should be able to interpret and explain all existing failures and argue why your
implementation does not break the specification.
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Chapter 5. Suggestions for change requests
deriving from realization of reference
implementation
During the work on the WFS 2.0 reference implementation following uncertainties and
shortcomings were discovered in the WFS 2.0 and FES 2.0 specification.

These findings are documented in following table and could be the basis for change requests.

Table 2. Uncertainties and shortcomings discovered in WFS 2.0 and FES 2.0 specification (suggestions
for change requests)

Affected
specification

Change

WFS 2.0.2 It is not possible to specify which operators (listed under ComparisonOperator,
SpatialOperator and TemporalOperator in capabilities; for example Equals,
Within, During) can be used for filters and/or joins functionalities in capabilities
document.

WFS 2.0.2 It is not possible to specify which unit codes (e.g. RI or UCUM) can be used for
units of measures (UOM) in capabilities document.

FES 2.0.2 The version action tokens described in the specification text (document 09-026r2,
p. 33) list LATEST as a possible value. In the corresponding schema
(http://schemas.opengis.net/filter/2.0/filter.xsd) LATEST is not included as possible
value for VersionActionTokens but LAST is listed instead. The LATEST string in the
specification text should be replaced with LAST.

WFS 2.0.2 In 15.3.5 (UpdateResults element) and 15.3.6 (ReplaceResults element) the
attribute oldRid from FES 2.0.2 is referenced. The attribute is named previousRid
in FES 2.0.2 and the corresponding schema
(http://schemas.opengis.net/filter/2.0/filter.xsd). The string oldRid should be
replaced with previousRid.
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Appendix A: Revision history
Version Author Date Comments

0.1 D. Stenger 2016-04 Created IER.

0.2 D. Stenger 2016-06 Created chapter structure and filled each section with first
content.

0.3 L. Goltz 2016-08 Added installation details and description of some deegree
configuration options required for WFS RI.

0.4 D. Stenger 2016-09 Filled all chapters with final content.

0.5 L. Goltz 2016-09 Made minor improvements regarding chapter content.

0.6 L.
Bermudez

2016-10 Luis B review, typos and suggestions for other sections.

0.7 D. Stenger 2016-10 Added suggestions of reviews to ER and added new chapters.

1.0 D. Stenger 2016-10 Improved layout, updated metadata of document and filled
index chapter with content. Completed DER.

OGC 16-
025r2

L.
Bermudez

2017-03 Moved history to appendix, updated note and title, cleaned
abstract, created prefix.adoc to separate from main content,
changed footnotes for hyperlinks, added bullet lists when
missing, and other minor edits
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