
OGC® DOCUMENT: 23-040
External identifier of this OGC® document: http://www.opengis.net/doc/dp/
guidance_model-driven_standards

OGC GUIDANCE FOR
THE DEVELOPMENT
OF MODEL-DRIVEN
STANDARDS

DISCUSSION PAPER
General

PUBLISHED

Submission Date: 2023-06-01
Approval Date: 2023-06-08
Publication Date: 2024-07-01

Notice: This document is not an OGC Standard. This document is an OGC Discussion Paper and is therefore not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an OGC Standard.
Further, an OGC Discussion Paper should not be referenced as required or mandatory technology in procurements.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Copyright notice

Copyright © 2024 Open Geospatial Consortium
To obtain additional rights of use, visit https://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 23-040 ii

https://www.ogc.org/license
https://www.ogc.org/legal

CONTENTS

I. ABSTRACT ...x

II. KEYWORDS .. x

III. PREFACE ...xi

IV. SECURITY CONSIDERATIONS .. xii

V. SUBMITTERS .. xii

1. SCOPE .. 2

2. CONFORMANCE .. 4

3. NORMATIVE REFERENCES ... 6

4. TERMS AND DEFINITIONS ... 8

5. INTRODUCTION ...12

6. DEVELOPING AN MDS .. 15
6.1. General ... 15
6.2. Data sources ... 16
6.3. Principles ..18
6.4. Export ... 19
6.5. Authoring ... 19
6.6. Data parsing .. 19
6.7. Integrating ..20
6.8. Rendering ...20

7. TECHNOLOGY AND TOOLS ...23
7.1. General ... 23
7.2. Conceptual models described using UML Class Diagrams .. 23
7.3. UML profiles for geospatial models .. 24
7.4. Sparx Systems Enterprise Architect .. 29
7.5. Metanorma for OGC ...29
7.6. LutaML information model interface .. 31
7.7. Metanorma LutaML plugin .. 32

8. BASICS OF ENTERPRISE ARCHITECT ..34

OPEN GEOSPATIAL CONSORTIUM 23-040 iii

8.1. Launch screen ...34
8.2. Using the Browser pane ...35
8.3. Diagrams .. 37
8.4. Packages ...39
8.5. Classes .. 41
8.6. Attributes ... 46
8.7. Data type ... 50
8.8. Enumeration .. 52
8.9. Enumeration value ...54

9. BASICS OF METANORMA ...58
9.1. General ... 58
9.2. Encoding ...58
9.3. Building the document ... 64

10. SPECIFYING REQUIREMENTS ..67
10.1. General ...67
10.2. Background ... 67
10.3. ModSpec models ... 68
10.4. ModSpec instantiation ... 69
10.5. Encoding of ModSpec instances ..70
10.6. Cross-referencing ModSpec instances ... 83
10.7. Rendering of ModSpec instances .. 89

11. RENDER UML MODELS ...93
11.1. Render UML models with LutaML ..93
11.2. Exporting an MDS-readable model from EA .. 93
11.3. Basic usage ..98
11.4. Configuration file ...99
11.5. Customization options ... 106
11.6. Manual rendering (advanced) ...110
11.7. Cross-referencing UML document elements ..112

12. REQUIREMENTS ON DOCUMENT ...115
12.1. General .. 115
12.2. Specification of metadata ... 115
12.3. UML integration .. 116
12.4. UML render configuration .. 116
12.5. UML cross-references ..116
12.6. ModSpec instances ...117

13. REQUIREMENTS ON UML MODEL ... 119
13.1. General .. 119
13.2. Package ..120
13.3. Diagram ... 121
13.4. Class ... 122
13.5. Property ...125

OPEN GEOSPATIAL CONSORTIUM 23-040 iv

13.6. Data type .. 127
13.7. Enumeration ... 128
13.8. Enumeration values .. 129
13.9. Relationships .. 130

ANNEX A (NORMATIVE) ABSTRACT TEST SUITE ... 133
A.1. Core .. 133
A.2. Document ... 134
A.3. Specification of metadata ... 135
A.4. UML ..136

ANNEX B (INFORMATIVE) CHECKLISTS TO COMPLETE .. 146

ANNEX C (INFORMATIVE) EXAMPLE OGC MDS DOCUMENT148

BIBLIOGRAPHY .. 150

LIST OF TABLES

Table B.1 .. 146

LIST OF FIGURES

Figure 1 — Manual process for iterating a model-driven standard .. 12
Figure 2 — One-step automated process for iterating a model-driven standard13
Figure 3 — Model-driven standard detailed publication flow ... 15
Figure 4 — Model-driven standard information components ..17
Figure 5 — ISO 19103:2015 stereotypes and keywords ..26
Figure 6 — Summary of ISO 19109:2015 profile of UML ... 27
Figure 7 — Models used in Metanorma ... 30
Figure 8 — Launch screen of Enterprise Architect .. 34
Figure 9 — Example of expanding the UML model hierarchy (source: MUDDI) 35
Figure 10 — Browser item types ..36
Figure 11 — UML diagram in EA ... 37
Figure 12 — UML diagram in EA with Properties pane open ... 37
Figure 13 — EA Diagram Properties pane ... 39
Figure 14 — EA UML package Notes pane ... 40
Figure 15 — EA UML package Properties pane ... 40
Figure 16 — EA UML class Notes pane ... 41

OPEN GEOSPATIAL CONSORTIUM 23-040 v

Figure 17 — EA UML class Properties pane ..42
Figure 18 — EA UML Class Stereotypes: UML Standard Profile .. 43
Figure 19 — EA UML Class Stereotypes: GML ...44
Figure 20 — EA UML Class multiplicity ..45
Figure 21 — EA UML Class constraints ..46
Figure 22 — EA UML attribute Notes pane .. 47
Figure 23 — EA UML attribute Properties pane .. 48
Figure 24 — EA UML Attribute multiplicity .. 49
Figure 25 — EA UML attribute constraints ... 50
Figure 26 — EA UML data type Notes pane ...51
Figure 27 — EA UML data type Properties pane ...51
Figure 28 — EA UML Enumeration Notes pane ...52
Figure 29 — EA UML Enumeration Properties pane ...53
Figure 30 — EA UML Enumerated Value Notes pane ...54
Figure 31 — EA UML Enumerated Value Properties pane ...55
Figure 32 — EA UML Enumerated Value Properties popup ..56
Figure 33 — Document title syntax (from OGC MUDDI Conceptual Model)58
Figure 34 — Document attribute syntax (from OGC MUDDI Conceptual Model) 59
Figure 35 — Metanorma instruction attributes (from OGC MUDDI Conceptual Model)59
Figure 36 — Document type attributes (from OGC MUDDI Conceptual Model) 60
Figure 37 — Document status attributes (from OGC MUDDI Conceptual Model) 60
Figure 38 — Document identification attributes (from OGC MUDDI Conceptual Model) 60
Figure 39 — Document provenance attributes (from OGC MUDDI Conceptual Model) 60
Figure 40 — Document date attributes (from OGC MUDDI Conceptual Model) 61
Figure 41 — OGC keyword (from OGC MUDDI Conceptual Model) .. 61
Figure 42 — Preface sections in Metanorma AsciiDoc ...62
Figure 43 — Scope in Metanorma AsciiDoc ..62
Figure 44 — Conformance in Metanorma AsciiDoc .. 63
Figure 45 — Normative references in Metanorma AsciiDoc ... 63
Figure 46 — Terms and definitions in Metanorma AsciiDoc ..63
Figure 47 — Content body in Metanorma AsciiDoc ..64
Figure 48 — Example of generating both OGC and ISO flavors using a site manifest64
Figure 49 ..65
Figure 50 ..70
Figure 51 ..70
Figure 52 — ModSpec requirement with hierarchical test-method steps .. 71
Figure 53 ..75
Figure 54 ..76
Figure 55 ..77
Figure 56 ..82
Figure 57 ..84

OPEN GEOSPATIAL CONSORTIUM 23-040 vi

Figure 58 — Location of the "Publish As…" button ... 94
Figure 59 — Generation options for an XMI that works with Metanorma 94
Figure 60 — Example of failed EA exported SVG ..96
Figure 60-1 — EA-generated SVG file containing inaccurate layout ... 96
Figure 60-2 — EA-generated PNG file with correct layout ... 97
Figure 61 — Basic usage of the lutaml_uml_datamodel_description block 98
Figure 62 — Configuring behavior of the lutaml_uml_datamodel_description block 99
Figure 63 — YAML configuration for lutaml_uml_datamodel_description command99
Figure 64 — Rendering style default used in OGC 20-040r3 (ISO 19170)102
Figure 65 — Rendering style entity_list table of contents used in OGC 20-010103
Figure 66 — Rendering style entity_list body contents used in OGC 20-010103
Figure 67 — Rendering style data_dictionary table of contents used in OGC 20-010104
Figure 68 — Rendering style data_dictionary body content part 1 used in OGC 20-010105
Figure 69 — Rendering style data_dictionary body content part 2 used in OGC 20-010105
Figure 70 — Including diagrams in the lutaml_uml_datamodel_description block106
Figure 71 ... 108
Figure 72-1 ... 109
Figure 72-2 ... 109
Figure 73 ... 110
Figure 74 — Rendering of a UML package under LutaML .. 111
Figure 75 ... 112
Figure 76 ... 113
Figure 77 ... 120
Figure 78 ... 123
Figure 79 — Assignment of AbstractValueType to represent an unspecified value type (from:
MUDDI Conceptual Model) ..126

LIST OF RECOMMENDATIONS

REQUIREMENTS CLASS 1: IDENTIFICATION OF SOURCE COMPONENTS OF THE MODEL-
DRIVEN STANDARD .. 17

REQUIREMENTS CLASS 2: DOCUMENT REQUIREMENTS FOR THE MODEL-DRIVEN
STANDARD ... 115

REQUIREMENTS CLASS 3: COMPLETION OF UML MODEL ANNOTATIONS FOR THE
MODEL-DRIVEN STANDARD ..119

REQUIREMENT 1: READINESS OF OGC DOCUMENT INFORMATION USED BY THE MODEL-
DRIVEN STANDARD .. 18

REQUIREMENT 2: READINESS OF UML MODEL INFORMATION USED BY THE MODEL-
DRIVEN STANDARD .. 18

OPEN GEOSPATIAL CONSORTIUM 23-040 vii

REQUIREMENT 3: READINESS OF OGC DOCUMENT METADATA INFORMATION USED BY
THE MODEL-DRIVEN STANDARD ...18

REQUIREMENT 4: MODEL-BASED DOCUMENT: METADATA VALUES 115

REQUIREMENT 5: MODEL-BASED DOCUMENT: UML INTEGRATION116

REQUIREMENT 6: MODEL-BASED DOCUMENT: UML RENDER CONFIGURATION116

REQUIREMENT 7: MODEL-BASED DOCUMENT: UML CROSS-REFERENCES 116

REQUIREMENT 8: MODEL-BASED DOCUMENT: MODSPEC INSTANCES117

REQUIREMENT 9: PACKAGE: ASSIGNMENT OF UNIQUE NAMES ...120

REQUIREMENT 10: PACKAGE: ASSIGNMENT OF DESCRIPTION ... 121

REQUIREMENT 11: PACKAGE: FREE OF EXTERNAL DEPENDENCIES 121

REQUIREMENT 12: DIAGRAM: ASSIGNMENT OF GLOBALLY UNIQUE NAME121

REQUIREMENT 13: DIAGRAM: ASSIGNMENT OF DESCRIPTION ...122

REQUIREMENT 14: DIAGRAM: TYPE OF CLASS .. 122

REQUIREMENT 15: CLASS: ASSIGNMENT OF UNIQUE NAME ... 122

REQUIREMENT 16: CLASS: ASSIGNMENT OF DESCRIPTION ..123

REQUIREMENT 17: CLASS: ASSIGNMENT OF STEREOTYPE ..123

REQUIREMENT 18: CLASS: ABSTRACT STATUS ...124

REQUIREMENT 19: CLASS: ENCODING OF CLASS CONSTRAINTS ... 124

REQUIREMENT 20: PROPERTY: ASSIGNMENT OF UNIQUE NAME ...125

REQUIREMENT 21: PROPERTY: ASSIGNMENT OF DESCRIPTION ... 125

REQUIREMENT 22: PROPERTY: ASSIGNMENT OF STEREOTYPE ... 125

REQUIREMENT 23: PROPERTY: ASSIGNMENT OF MULTIPLICITY ... 126

REQUIREMENT 24: PROPERTY: ASSIGNMENT OF VALUE TYPE .. 126

REQUIREMENT 25: PROPERTY: ENCODING OF PROPERTY CONSTRAINTS 127

REQUIREMENT 26: DATA TYPE: ASSIGNMENT OF UNIQUE NAME ... 127

REQUIREMENT 27: DATA TYPE: ASSIGNMENT OF DESCRIPTION .. 128

REQUIREMENT 28: ENUMERATION: ASSIGNMENT OF UNIQUE NAME 128

REQUIREMENT 29: ENUMERATION: ASSIGNMENT OF DESCRIPTION129

REQUIREMENT 30: ENUMERATION VALUE: ASSIGNMENT OF UNIQUE NAME 129

REQUIREMENT 31: ENUMERATION VALUE: ASSIGNMENT OF DESCRIPTION129

REQUIREMENT 32: ENUMERATION VALUE: ASSIGNMENT OF TYPE130

REQUIREMENT 33: RELATIONSHIP: COMPLETE SPECIFICATION ... 130

REQUIREMENT 34: RELATIONSHIP: COMPLETE SPECIFICATION ... 131

OPEN GEOSPATIAL CONSORTIUM 23-040 viii

CONFORMANCE CLASS A.1: IDENTIFICATION OF SOURCE COMPONENTS OF THE MODEL-
DRIVEN STANDARD .. 133

CONFORMANCE CLASS A.2: DOCUMENT REQUIREMENTS FOR THE MODEL-DRIVEN
STANDARD ... 134

CONFORMANCE CLASS A.3: COMPLETION OF UML MODEL ANNOTATIONS FOR THE
MODEL-DRIVEN STANDARD ..136

OPEN GEOSPATIAL CONSORTIUM 23-040 ix

I ABSTRACT

This OGC Discussion Paper provides guidelines on how to create a specification of a conceptual
model through use of a Unified Modeling Language (UML) editor and an AsciiDoc compiler.
This document references Sparx Systems Enterprise Architect and the Metanorma AsciiDoc
toolchain in examples that implement the OGC model-driven standards process, described in
OGC 21-035r1.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, MDA, model-driven

OPEN GEOSPATIAL CONSORTIUM 23-040 x

I I I PREFACE

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 23-040 xi

IV SECURITY CONSIDERATIONS

No security considerations have been made for this document.

V SUBMITTERS

All questions regarding this document should be directed to the editor or the contributors:

NAME ORGANIZATION ROLE

Ronald Tse Ribose Limited Editor

Carsten Roensdorf Ordnance Survey Editor

Allan Jamieson Ordnance Survey Editor

Gobe Hobona Open Geospatial Consortium (OGC) Contributor

Josh Lieberman Open Geospatial Consortium (OGC) Contributor

Nick Nicholas Ribose Limited Editor

Jeffrey Lau Ribose Limited Editor

The editors also wish to acknowledge the support of the MUDDI (Model for Underground Data
Definition and Integration) Standards Working Group and the feedback from the Conceptual
Modeling Subgroup of the Architecture Domain Working Group.

OPEN GEOSPATIAL CONSORTIUM 23-040 xii

https://github.com/opengeospatial/conceptual-modeling-group/issues/5

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 23-040 1

1 SCOPE

This Discussion Paper focuses on the development of Model-Driven Standards (MDS) using
Sparx Systems Enterprise Architect and the Metanorma AsciiDoc toolchain. However, the
guidelines could also be adapted for use with other UML and Asciidoc tools.

Development of this document was led by the MUDDI Standards Working Group, with the
support of an Ordnance Survey-funded project in which this document served as Deliverable
D1. The Scope of the guidelines, however, is not limited to underground data as many of the
guidelines have been previously applied to other OGC Standards (e.g., CityGML).

OPEN GEOSPATIAL CONSORTIUM 23-040 2

2

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 23-040 3

2 CONFORMANCE

Conformance with this document shall be checked using all of the tests specified in Annex A of
this document.

OPEN GEOSPATIAL CONSORTIUM 23-040 4

3

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 23-040 5

3 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Policy SWG: OGC 08-131r3, The Specification Model — Standard for Modular specifications. Open
Geospatial Consortium (2009).

Ronald Tse, Nick Nicholas: OGC 21-035r1, OGC Testbed-17: Model-Driven Standards Engineering
Report. Open Geospatial Consortium (2022). http://www.opengis.net/doc/PER/
t17-D022.

OMG UML 2.5, Unified Modeling Language. (2015). https://www.omg.org/spec/UML/2.5/About-
UML.

OMG XMI 2.5.1, XML Metadata Interchange. (2015). https://www.omg.org/spec/XMI/2.5.1/
About-XMI.

OMG OCL 2.4, Object Constraint Language. (2014). https://www.omg.org/spec/OCL/2.4/About-
OCL.

OPEN GEOSPATIAL CONSORTIUM 23-040 6

http://www.opengis.net/doc/PER/t17-D022
http://www.opengis.net/doc/PER/t17-D022
https://www.omg.org/spec/UML/2.5/About-UML
https://www.omg.org/spec/UML/2.5/About-UML
https://www.omg.org/spec/XMI/2.5.1/About-XMI
https://www.omg.org/spec/XMI/2.5.1/About-XMI
https://www.omg.org/spec/OCL/2.4/About-OCL
https://www.omg.org/spec/OCL/2.4/About-OCL

4

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 23-040 7

4 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

4.1. conceptual model

CM ALTERNATIVE

model that defines concepts of a universe of discourse

[SOURCE: ISO 19101-1, Clause 4.1.5]

4.2. conceptual schema

formal description of a conceptual model (Clause 4.1)

[SOURCE: ISO 19101-1, Clause 4.1.6]

4.3. model-driven standard

MDS ALTERNATIVE

standard created using a model-driven architecture

[SOURCE: OGC 21-035r1, Clause 2.1.4]

OPEN GEOSPATIAL CONSORTIUM 23-040 8

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

4.4. model-driven architecture

MDA ALTERNATIVE

software design approach for development of software systems centered around data models

[SOURCE: OMG UML 2.5]

4.5. model authoring tool

software used for authoring a conceptual model (Clause 4.1)

[SOURCE: OGC 21-035r1]

4.6. platform-independent model

PIM ALTERNATIVE

data model that does not contain platform-specific concerns

[SOURCE: OGC 21-035r1]

4.7. platform-specific model

PSM ALTERNATIVE

data model that contains platform-specific concerns

[SOURCE: OGC 21-035r1]

4.8. logical model

implementation of one or more conceptual models (Clause 4.1) intended for a logical domain

OPEN GEOSPATIAL CONSORTIUM 23-040 9

4.9. model transformation

model conversion from one form to another which may not preserve all semantics

[SOURCE: OGC 21-035r1]

4.10. model conversion

process that converts a data model in one format into another format that preserves all model
semantics

[SOURCE: OGC 21-035r1]

4.11. stereotype

extension of an existing UML metaclass that enables the use of platform or domain specific
terminology or notation in place of, or in addition to, those used for the extended metaclass

[SOURCE: OMG UML 2.5]

4.12. tagged value

attribute on a stereotype used to extend a UML model element

[SOURCE: OMG UML 2.5]

4.13. UML profile

predefined set of stereotypes, tagged values, constraints, and notation icons that collectively
specialize and tailor UML for a specific domain or process

[SOURCE: ISO/IEC 19501]

OPEN GEOSPATIAL CONSORTIUM 23-040 10

5

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 23-040 11

5 INTRODUCTION

The MDS process described in OGC 21-035r1 enables standardized documentation of
conceptual models in UML, which could be platform-independent models (PIMs) or platform-
specific models (PSMs).

In the past, UML modeling activity and the OGC authoring process used disparate tools, causing
OGC authors and editors much difficulty in the synchronization of changes originating from
either activity, as illustrated in Figure 1.

OGC 21-041r2 also discusses a number of challenges involved in UML modeling.

Figure 1 — Manual process for iterating a model-driven standard

As studied in OGC Testbed-17, OGC 21-035r1 has investigated several options in model-driven
authoring, in which the OGC MUDDI SWG has decided to adopt and sponsor development of a
particular approach that utilizes the following combination of tools:

• Enterprise Architect (from Sparx Systems) in the creation and maintenance of UML
models, and

• Metanorma (from Ribose) in the authoring of OGC deliverables.

This combination of tools can provide a streamlined development environment for OGC working
groups developing conceptual model standards.

OPEN GEOSPATIAL CONSORTIUM 23-040 12

• By maintaining standards content in the model, simplifying and decoupling the model
maintenance process is possible.

• Storing annotations and guidance about the model together with the actual model enables
a single source of truth that can streamline the standards authoring process.

This document is meant to describe best practices that enable achievement of these benefits.

By utilizing described practices of this document, the streamlined automated MDS process can
be achieved as shown in Figure 2.

Figure 2 — One-step automated process for iterating a model-driven standard

OPEN GEOSPATIAL CONSORTIUM 23-040 13

6

DEVELOPING AN MDS

OPEN GEOSPATIAL CONSORTIUM 23-040 14

6 DEVELOPING AN MDS

6.1. General

The creation of an MDS must be planned. An MDS involves the synthesis of multiple data
sources into a single one, therefore the MDS creator must be aware of the integration points
and limitations of such synthesis process.

While the MDS process is meant to be a streamlined, automated process, it is nonetheless
dependent on the interaction of multiple state-of-the-art technologies and requires the MDS
creator to have a thorough understanding of the MDS technologies and techniques involved.

The full process is shown in Figure 3.

Figure 3 — Model-driven standard detailed publication flow

OPEN GEOSPATIAL CONSORTIUM 23-040 15

6.2. Data sources

Before embarking on an MBS, it is necessary for the MDS creator to know what kind of
components there are.

In OGC, a model-driven standard is typically created with the following components:

• OGC document information in Metanorma AsciiDoc (scope, bibliography, etc.);

• UML model information in OMG XMI format (the EA UML models with annotations); and

• OGC ModSpec information in Metanorma AsciiDoc format (requirements, conformance
tests).

These components read into Metanorma using a defined processing configuration, and are then
combined in Metanorma to form the MDS.

The resulting MDS represented in the Metanorma format will be expressed in the models
provided in Figure 4.

OPEN GEOSPATIAL CONSORTIUM 23-040 16

Figure 4 — Model-driven standard information components

REQUIREMENTS CLASS 1: IDENTIFICATION OF SOURCE COMPONENTS OF THE MODEL-
DRIVEN STANDARD

IDENTIFIER /req/core

TARGET TYPE Model-driven standard

CONFORMANCE CLASS Conformance class A.1: /conf/core

DESCRIPTION
The source components of the model-driven standard has to be
identified and understood.

NORMATIVE STATEMENT Requirement 1: /req/core/document

OPEN GEOSPATIAL CONSORTIUM 23-040 17

REQUIREMENT 1: READINESS OF OGC DOCUMENT INFORMATION USED BY THE
MODEL-DRIVEN STANDARD

IDENTIFIER /req/core/document

INCLUDED IN Requirements class 1: /req/core

STATEMENT
The OGC document information used in the model-driven standard is completed
and made available to the model-driven standard in the Metanorma AsciiDoc
format.

REQUIREMENT 2: READINESS OF UML MODEL INFORMATION USED BY THE MODEL-
DRIVEN STANDARD

IDENTIFIER /req/core/uml

STATEMENT
The UML model used in the model-driven standard is completed and made
available to the model-driven standard in the OMG XMI format.

REQUIREMENT 3: READINESS OF OGC DOCUMENT METADATA INFORMATION USED BY
THE MODEL-DRIVEN STANDARD

IDENTIFIER /req/core/metadata

STATEMENT
The OGC document metadata used in the model-driven standard is completed
and made available to the model-driven standard in the Metanorma AsciiDoc
format.

6.3. Principles

OGC 21-035r1 states that generation of an MDS involves the following steps:

• Export: Making the information model available for processing;

• Authoring: Making the supplementary truth available for processing;

• Data parsing: Parsing the truth of the model into derived truth in the document;

• Integrating: Merging derived and supplementary truth into the target document; and

• Rendering: Generating human-consumable presentations of the target document.

This document provides practices that allow the MDS author to plan out how the MDS
automation process looks like across all these stages.

OPEN GEOSPATIAL CONSORTIUM 23-040 18

6.4. Export

Making source data available for the MDS involves exporting the information models in a
standardized interoperable format from the model authoring tool.

For an OGC MDS document:

• the primary truth is typically a set of UML models; the initial step in processing is to export
these UML models into interoperable XMI files; and

• the secondary set of source data are the UML diagrams accompanying the UML models;
these diagrams provide visual representations of UML classes described in the XMI files.

6.5. Authoring

This information is written in Metanorma, using the OGC flavor of the Metanorma AsciiDoc
markup language.

Supplementary information in an MDS normally includes the following.

• Material such as bibliographies, terminological definitions, tutorial guidance, annexes, and
prefatory material, which form part of a document presenting and explaining the model.

• Metadata about the document, such as keywords and identifiers.

• Requirements conforming to OGC ModSpec.

Where the supplementary information references specific model artifacts (annotating them),
cross-references from Metanorma to the model become necessary; those cross-references are
part of the integration of derived and supplementary truth.

6.6. Data parsing

Processing the XMI file is done under the Metanorma approach to MDA by LutaML. LutaML
returns to Metanorma an array of objects, one for each of the objects in the source file parsed
by LutaML, with a plugin structure to deal with the range of formats LutaML is called on to
process (lutaml-xmi, in this instance).

Metanorma then uses Liquid directives to iterate through those objects, and insert information
from them into Metanorma AsciiDoc templates. These templates are how information from the
model is incorporated into the MDS as derived truth.

OPEN GEOSPATIAL CONSORTIUM 23-040 19

By using LutaML commands inside Metanorma, such as the lutaml_uml_datamodel_
description command, UML class information is parsed from a nominated XMI file and
transformed into Metanorma AsciiDoc.

Configuration files were used to specify which packages to render for each command call, in
which sequence, and how to display them.

For complex documents such as CityGML 3.0 that require a non-default way of rendering,
additional configuration can be used to achieve such results.

6.7. Integrating

A wide range of information is integrated into the target document.

This information is typically organized into separate directories in the source repository.

• The main Metanorma AsciiDoc document (nn-mmm.adoc), containing document metadata
and directives to include sections contained in the document.

• The Metanorma AsciiDoc documents for each section in the standard (sections/*.adoc).

• Generic ModSpec requirements (not specific to the information models), each expressed
as a separate file of Metanorma AsciiDoc, are included into the section documents at the
appropriate point (abstract_test, recommendations, requirements).

• Non-model-generated images (images) and figures (figures) are included in the document
as supplementary truths, as distinct from the UML diagrams exported into /xmi-full/
Images as derived truths.

Supplementary truth is incorporated into the target document through standard AsciiDoc
commands:

• image:: for images and figures

• include:: for content.

6.8. Rendering

Once the Metanorma AsciiDoc source is assembled out of its component truths, it can then be
rendered using Metanorma into a number of output formats.

• Metanorma Semantic XML, capturing the structure and meaning of the standards
document, and following the document model in ISO/AWI 36100.

OPEN GEOSPATIAL CONSORTIUM 23-040 20

https://www.metanorma.org/author/topics/building/output-formats/

• Metanorma Presentation XML, denormalizing the structure of the standards document
in preparation for rendering, including resolving cross-references and generating auto-
numbering.

• HTML

• PDF

• Microsoft Word

OPEN GEOSPATIAL CONSORTIUM 23-040 21

7

TECHNOLOGY AND TOOLS

OPEN GEOSPATIAL CONSORTIUM 23-040 22

7 TECHNOLOGY AND TOOLS

7.1. General

Practices described in this document are meant for OGC working group participants fluent in the
development of:

• Conceptual models described using UML Class Diagrams; and

• OGC authoring practices.

This document does not delve into details of those areas — readers may wish to consult other
literature for the full understanding of the practices described.

7.2. Conceptual models described using UML Class
Diagrams

7.2.1. General

ISO/IEC 19501 specifies the UML modelling language, a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system.

UML specifies a set of methodologies for developing technical artifacts used in the design of
a software system, ranging from business processes and system functions to programming
language statements, database schemas, and reusable software components. UML is often used
to develop domain-specific models (e.g., geospatial information) used in system development.

The usage of UML in MDS lies with two aspects:

• For model definition, the definition of information models and their relationships, that
contain human- and machine-readable components; and

• For class diagrams, the visual arrangement of UML class relationships intended for human
consumption only.

OPEN GEOSPATIAL CONSORTIUM 23-040 23

7.2.2. Modeling elements

A detailed description of UML modelling capabilities can be found in OGC 21-035r1, Clause 5.1.

UML provides 3 basic modeling elements.

Package A package is a defined collection of interrelated classes.

Class A class is an abstract representation of a real-world object, which contains
properties.

Property A property represents an aspect of a class.

UML allows additional modeling extensions in the following 3 ways:

Stereotype A defined set of properties that a Class can adopt as a whole, commonly
representing a platform-specific or domain-specific concern. More than
one stereotype can be adopted by a single Class.

Tagged
Value

A structured key-value pair defined for a UML element, allowing the
attachment of additional (custom) information to the UML element.

Constraint A string that limits possible value assignments to the property.

The UML “Profile” is another mechanism that allows for the easy application of stereotypes.

Profile A profile contains multiple UML stereotypes that a UML model can adopt.

7.3. UML profiles for geospatial models

7.3.1. General

A number of common UML profiles are used for geospatial UML modeling.

7.3.2. UML Standard Profile

The UML Standard Profile is provided by the UML standard (OMG UML 2.5).

It provides the following stereotypes for Classes.

«Auxiliary» A class that supports another class.

«Focus» A class that specifies core logic or control with auxiliary classes
that provide subordinate mechanisms.

OPEN GEOSPATIAL CONSORTIUM 23-040 24

«ImplementationClass» An implementation class of a class.

«Metaclass» A UML element that is meant to be extended.

«Realization» A realization of an abstract UML element.

«Specification» A specialization of a UML element.

«Type» A data type.

«Utility» A class that supports functionality of more than one class.

7.3.3. GML

In the geospatial domain, stereotypes from the Geography Markup Language (GML) standard
(OGC 07-036r1) are often applied to geospatial UML elements.

The GML standard provides the following Stereotypes that apply to Classes.

«CodeList» A list of enumerated codes. Practically an enumeration.

«DataType» A basic type of information.

«FeatureType» A type of feature.

«Type» A type of information.

«Union» A union of two classes.

The GML standard provides the following Stereotypes that apply to Properties:

«property» A basic property.

7.3.4. ISO 19100-series profile: Conceptual schema language (ISO
19103:2015)

ISO 19103:2015 provides rules and guidelines for the use of a conceptual schema language to
model geographic information, and specifies a profile of UML.

It includes 6 stereotypes.

«Interface» (formerly «Type») is an abstract classifier with operations, attributes
and associations, which can only inherit from or be inherited by other
interfaces (or types).

«DataType» is a set of properties that lack identity (independent existence and the
possibility of side effects). A data type is a classifier with no operations,
whose primary purpose is to hold information.

OPEN GEOSPATIAL CONSORTIUM 23-040 25

«Union» is a type consisting of one and only one of several alternative datatypes
(listed as member attributes); this is similar to a discriminated union in
many programming languages.

«Enumeration» is a fixed list of valid identifiers of named literal values. Attributes
whose range type is an enumeration may only take values from the
fixed list.

«CodeList» is a flexible enumeration that uses string values for expressing a list of
potential values. The allowed values are often held and managed using
an online register.

«Leaf» is a package that contains only classes (packages are disallowed).

The ISO 19103:2015 profile of UML also includes one tagged value:

• codeList, applies to stereotype «CodeList»: Code lists managed by a single external
authority may carry a tagged value “codeList” whose value references the actual external
code list. If the tagged value is set, only values from the referenced code list are valid.

The ISO 19103:2015 profile of UML is summarized in Figure 5.

Figure 5 — ISO 19103:2015 stereotypes and keywords

7.3.5. ISO 19100-series profile: Rules for application schema (ISO
19109:2015)

ISO 19109:2015 defines rules for creating and documenting application schemas (conceptual
schemas for data required by one or more applications), including principles for the definition
of features, a fundamental unit of geographic information. As part of the general rules for
application schemas it specifies the “General Feature Model” (GFM), the meta-model for
application schemas.

The ISO 19109:2015 profile of UML that is used as the conceptual schema language for
application schemas adds 2 stereotypes and 3 tagged values.

OPEN GEOSPATIAL CONSORTIUM 23-040 26

«ApplicationSchema» (package) stereotype

«FeatureType» (class) stereotype

The following 3 tagged values apply to both of these stereotypes.

designation Natural language designator for the element to complement the name.
Optional, with multiple designations allowed in order to support different
languages.

definition Concise definition of the element. One definition is mandatory. Additional
definitions can be provided in multiple languages if required.

description Description of the element, including information beyond that required
for concise definition but which may assist in understanding its scope
and application. Optional, with multiple descriptions allowed in order to
support different languages.

The ISO 19109:2015 profile of UML is summarized in Figure 6:

Figure 6 — Summary of ISO 19109:2015 profile of UML

OPEN GEOSPATIAL CONSORTIUM 23-040 27

7.3.6. ISO 19118:2011 Geographic information — Encoding

ISO 19118:2011 specifies the requirements for defining encoding rules for use in the
interchange of data that conform to the geographic information in the set of International
Standards known as the “ISO 19100 series.” It specifies requirements for creating encoding
rules based on UML schemas, requirements for creating encoding services, and requirements
for XML-based encoding rules for neutral interchange of data. It specifies a profile of UML
that includes eight stereotypes, two of which are not previously defined similarly by either
ISO 19103:2015 or ISO 19109:2015.

The profile provides the following stereotypes for Classes.

«BasicType» “Defines a basic data type that has defined a canonical encoding.
” (ISO 19118:2011, Clause C.2.1.2)
Additionally stated is that: “This canonical encoding may define how to
represent values of the type as bits in a memory location or as characters
in a textual encoding. Examples of simple types are integer, float and
string.”

NOTE 1: For translation into XML, ISO 19118:2011, Clause C.5.2.1.1
states: “A class stereotyped «BasicType» shall be converted to
a simpleType declaration in XML Schema. Any of the data types
defined in XML Schema can be used as building blocks to define user-
defined basic types. The encoding of the basic types shall follow the
canonical representation defined in XML Schema Part 2: Datatypes
(W3C xmlschema-2).”

NOTE 2: The different types are not clearly defined in ISO/
TS 19103:2005 and neither is the «BasicType» stereotype used. The
following declarations, therefore, follow a subset of the data type
definitions in W3C xmlschema-2. Declared are the types: Number,
Integer, Decimal, Real, Vector, Character, CharacterString, Date, Time,
DateTime, Boolean, Logical, Probability, Binary, and UnlimitedInteger
(where the symbol “*” is used to represent the infinite value).

«Interface» “Defines a service interface and shall not be encoded.” (ISO 19118:2011,
Clause C.2.1.2)
This definition is inconsistent with that of the subsequently published
ISO 19103:2015. While this inconsistency may be useful in contexts
where it is clear which definition applies, in general it is undesirable to
overload the meanings of stereotypes within the OGC community, and
in particular thereby coming into conflict with a stereotype specified in
ISO 19103:2015.
While the stereotype «Interface» as defined in ISO 19118:2011 can
be (and is here) subsequently ignored, the stereotype «BasicType» is
used in the CityGML 3.0 Conceptual Model where it results in difficulties
given its tie to a specific encoding technology — XML Schema — and thus
lack of true platform independence. The CityGML 3.0 Conceptual Model

OPEN GEOSPATIAL CONSORTIUM 23-040 28

redefines the stereotype «BasicType» to mean “defines a basic data
type”, which is both circular and differs from that of ISO 19118:2011.

7.4. Sparx Systems Enterprise Architect

Sparx Systems Enterprise Architect (EA) is widely used in OGC and ISO/TC 211 for the
authoring and management of UML models.

EA Version 16 is a Windows application, it can be run in 32-bit or 64-bit mode on Windows, and
can be run on other platforms using CrossOver (which is based on WINE technology) with 32-bit
emulation.

7.5. Metanorma for OGC

Metanorma is an open-source framework for creating and publishing standardization artifacts
with the focus on semantic authoring and flexible output support.

“Metanorma for OGC” is an OGC-specific implementation that has been approved as an official
way to publish new OGC Standard documents since 2021-09-17. Metanorma-based document
templates have been approved by the OGC Document SubCommittee on 2022-02-25.

Metanorma for OGC documents are created in the Metanorma AsciiDoc format. Metanorma
AsciiDoc is a textual syntax for preparing a ISO/AWI 36100 compliant document model tree
which can be rendered in a variety of presentation formats.

At its core, Metanorma provides a model-based documentation system and prioritizes
automation, through the following features:

• a set of standard document metamodels (according to ISO/AWI 36100) that allows
different standardization bodies to create their own standardized deliverable model, which
in turn relies on the following standardized models:

• ISO/PWI 36200 standards metadata specification metamodels;

• ISO 690 bibliographic and citation item models;

• ISO 10241-1 and ISO 704 concept organization and terminology models;

• a standard XML serialization (ISO/PWI 36300) for machine-readable standardization
documents; and

• an open-source publishing toolchain that enables editors of standard documents to handle
their documents from authoring to publishing in an end-to-end, “author-to-publish”
fashion.

OPEN GEOSPATIAL CONSORTIUM 23-040 29

For OGC usage, it provides the following additional features:

• Rendering outputs in PDF, HTML, Microsoft Word, and ISO/AWI 36100 XML formats;

• Support for specification of OGC Standards metadata, including document types, stages,
identifiers and authorship;

• Support for specification of OGC ModSpec (OGC 08-131r3) model instances through a
specialized syntax; and

• For OGC MDS usage, Metanorma supports navigation for information models in the
OMG UML/XMI format (OMG UML within OMG XMI in XML format, OMG UML 2.5,
OMG XMI 2.5.1) generated from Enterprise Architect, through the LutaML information
model parser.

Figure 7 shows the range of models used in Metanorma, including the OGC-specific use of OGC
ModSpec.

Figure 7 — Models used in Metanorma

OPEN GEOSPATIAL CONSORTIUM 23-040 30

7.6. LutaML information model interface

LutaML is an initiative grown out of Metanorma that allows parsing various machine-
interpretable information models. LutaML adopts an extensible processing architecture to allow
parsing different information model languages, through LutaML extensions.

Supported LutaML extensions include the following.

• EXPRESS, as specified in ISO 10303-11, is used heavily in smart manufacturing, Industry
4.0 use cases and in BIM, where EXPRESS itself served as the foundation of the IFC
classes. The LutaML EXPRESS extension is available at: https://github.com/lutaml/lutaml-
express.

• OMG UML in OMG XMI, which is the canonical format of representing UML models
within XMI, an XML language defined by OMG OMG XMI 2.5.1. The LutaML XMI
extension is available at: https://github.com/lutaml/lutaml-xmi.

• Sparx Systems Enterprise Architect XMI, the proprietary extension of Sparx Systems
Enterprise Architect for the representation of UML. The LutaML Enterprise Architect-
specific XMI extension is implemented within the LutaML XMI extension.

• LutaML UML, which is an ASCII syntax used to author OMG UML-compliant UML models
with the possibility to be exported into OMG XMI format. The LutaML UML extension is
available at: https://github.com/lutaml/lutaml-uml.

NOTE: The LutaML UML language is documented at https://github.com/lutaml/lutaml-
uml/blob/master/LUTAML.adoc

LutaML supports the dynamic referencing of elements from within a UML model. For example,
individual UML classes, attributes, stereotypes, Enterprise Architect diagrams, can all be
referenced through the unified interface provided by LutaML.

Collection filtering, such as to find UML classes that match certain UML stereotype, is also
supported.

LutaML-XMI is the LutaML extension that parses OMG XMI 2.5.1 into a LutaML-UML model.

Of course, each format that it reads in requires a separate plug-in to be written to process it, and
the processing of different formats can be highly specialized work. That makes it important for
MDA to coalesce around standard ways of expressing models as much as possible, to minimize
the up-front effort of developing a new plug-in to read a new model format.

The LutaML-XMI plug-in supports parsing the proprietary XMI files generated by Sparx Systems
Enterprise Architect, incorporating details only available in the vendor proprietary XML portion
of the XMI file.

This plug-in has been successful in recognizing the classes it expresses, their attributes, and the
relations between classes, as documented in OGC 21-035r1.

OPEN GEOSPATIAL CONSORTIUM 23-040 31

https://github.com/lutaml/lutaml-express
https://github.com/lutaml/lutaml-express
https://github.com/lutaml/lutaml-xmi
https://github.com/lutaml/lutaml-uml
https://github.com/lutaml/lutaml-uml/blob/master/LUTAML.adoc
https://github.com/lutaml/lutaml-uml/blob/master/LUTAML.adoc

7.7. Metanorma LutaML plugin

Metanorma interfaces with information models through the Metanorma LutaML plugin (https://
github.com/metanorma/metanorma-plugin-lutaml). This plugin is used to render information
models in human-readable formatting for MDS.

The plugin provides a set of commands to be used within a Metanorma authoring context that
invokes LutaML processing of a specified file, which generates a representation of that data
usable within Metanorma.

Model navigation, dynamic referencing and collection filtering capabilities to UML models are
accessible within a Metanorma document through the corresponding LutaML commands.

By default, LutaML is invoked to parse an external information model through a Metanorma
AsciiDoc block command, which requires the input of the following information:

• as an argument, name of the source information model file;

• as an argument, the named context, which is the object variable name into which the data
file contents are parsed, as object attributes, recursively; and

• as the contents of the block, a template, in Metanorma AsciiDoc format with the Liquid
template language (https://shopify.github.io/liquid/).

In effect, this provides a “meta-authoring” environment from within Metanorma. In particular,
the template language allows the attributes parsed by LutaML to be incorporated in the block
under the command.

OPEN GEOSPATIAL CONSORTIUM 23-040 32

https://github.com/metanorma/metanorma-plugin-lutaml
https://github.com/metanorma/metanorma-plugin-lutaml
https://shopify.github.io/liquid/

8

BASICS OF ENTERPRISE
ARCHITECT

OPEN GEOSPATIAL CONSORTIUM 23-040 33

8 BASICS OF ENTERPRISE ARCHITECT

8.1. Launch screen

Once the EA application is launched with a model file, the screen is shown as in Figure 8.

Figure 8 — Launch screen of Enterprise Architect

There are 4 basic panes in this screen.

• Browser: where the UML packages, models and properties are shown and can be
navigated.

• Main pane: the area in the middle (labelled with the tab “Start Page”). It is typically used to
show and work with diagrams.

• Properties: shows all properties and attributes of the selected UML element, whether it is
a figure, package, class or property.

OPEN GEOSPATIAL CONSORTIUM 23-040 34

• Notes: shows textual annotations made to the selected UML element.

Relevant best practices:

• In the Notes pane, enter plain text in the Metanorma AsciiDoc format. While the pane
supports rich-text entry, the text is encoded in HTML based on the antiquated Microsoft
RTF format, and makes it difficult to perform any post processing upon extraction.

8.2. Using the Browser pane

The top-level package in the Enterprise Architect file can be expanded and drilled-down into.

Figure 9 shows how the hierarchy looks like.

Figure 9 — Example of expanding the UML model hierarchy (source: MUDDI)

OPEN GEOSPATIAL CONSORTIUM 23-040 35

Figure 10 — Browser item types

In the Browser, there are 4 (basic) types of elements seen in its hierarchy (see Figure 10).

• Packages: UML packages.

• The top-level item shown in Figure 9 is a UML package called “Model”.

• The second item is a UML package called “Conceptual Model”.

• Diagrams: UML diagrams.

• The 3rd and 4th items named: “fig: MUDDI Conceptual Model” and “MUDDI Core
Conceptual Model” are figures.

• Classes: UML classes.

• The 5th to 8th items are all UML classes.

• Property: UML element property.

• The 9th to 10th items are UML properties that belong to the class “Annotation”.

OPEN GEOSPATIAL CONSORTIUM 23-040 36

8.3. Diagrams

When opening a diagram from the Browser pane, a tab will be opened in the middle pane
showing the UML diagram (see Figure 11).

NOTE: The UML diagram can be zoomed into via the "View" action in the ribbon tab.

Figure 11 — UML diagram in EA

When a diagram is selected in the Browser, the Properties and Notes panes will be changed to
reflect information about the selected diagram.

Figure 12 — UML diagram in EA with Properties pane open

OPEN GEOSPATIAL CONSORTIUM 23-040 37

The MDS process uses the following information from an EA UML Class Diagram.

• Graphics of the diagram: is exported in the vector format and included in the OGC
deliverable.

• Title of the diagram: as the caption of the Figure in the OGC deliverable.

• Notes of the diagram: contents of the Notes (seen in the Notes pane) is used as a “NOTE
to Figure” in the OGC deliverable.

The title of the diagram is edited within the Properties pane when the diagram is selected. See
Figure 13.

Model authors commonly create multiple diagrams but only wish to selectively include diagrams
in the MDS process.

By default, all diagrams are included as figures. In order to skip a diagram, the prefix “Spare: ”
or “old: ” can be given to the diagram name to exclude the diagram from the MDS generation
process.

OPEN GEOSPATIAL CONSORTIUM 23-040 38

Figure 13 — EA Diagram Properties pane

8.4. Packages

On selection of a UML Package, the Properties and Notes panes will reflect the selected item.

The MDS process incorporates information of the UML Package, including:

• Notes of the UML Package: as the definition (description) of the UML Package (as in the
Notes pane) (see Figure 14);

• Name of the UML Package: name of the UML Package is used as the clause heading in the
OGC deliverable (see Figure 15); and

OPEN GEOSPATIAL CONSORTIUM 23-040 39

• Package details:

• URI: Identifier in URI format; and

• “Visibility”: Public, Private, Protected or Package visibility.

Figure 14 — EA UML package Notes pane

Figure 15 — EA UML package Properties pane

OPEN GEOSPATIAL CONSORTIUM 23-040 40

8.5. Classes

On selection of a UML Class in the Browser pane, the Properties and Notes panes will reflect
the selected item.

The MDS process incorporates information of the UML Class, including:

• Notes of the UML class: as the definition (description) of the UML Class (as in the Notes
pane) (see Figure 16);

• Name of the UML class: name of the UML class, used as a clause heading in the OGC
deliverable (see Figure 17);

• Stereotype of the UML class: stereotype of the UML class, wrapped with « and »
characters in the OGC deliverable; and

• Class properties:

• “Abstract” status: whether it is an Abstract class; and

• “Visibility”: Public, Private, Protected or Package visibility.

Figure 16 — EA UML class Notes pane

OPEN GEOSPATIAL CONSORTIUM 23-040 41

Figure 17 — EA UML class Properties pane

To set Stereotypes, click on the “…” to the right of the Stereotypes row in the Properties pane. A
dialog box will be opened to allow selection of Stereotypes.

For geospatial modeling, EA supports setting Stereotypes from the following profiles:

• UML Standard Profile (see Figure 18)

• GML Profile (see Figure 19)

OPEN GEOSPATIAL CONSORTIUM 23-040 42

Figure 18 — EA UML Class Stereotypes: UML Standard Profile

OPEN GEOSPATIAL CONSORTIUM 23-040 43

Figure 19 — EA UML Class Stereotypes: GML

Multiplicity requirements at the UML Class level are set using the “Properties” popup window,
under the “Details” tab on the right side, as seen in Figure 20.

OPEN GEOSPATIAL CONSORTIUM 23-040 44

Figure 20 — EA UML Class multiplicity

Constraints on an UML Class are set via the “Properties” popup window, under the
“Responsibilities > Constraints” menu item.

• The top left “Constraint:” box is the description of the constraint.

• The box below “Constraint:” is for entering constraint conditions in the constraint
language. While EA supports rich text inside the constraint conditions box, it is crucial that
the constraints are entered in plain text for the MDS process.

• The top right box “Properties” contains a “Type” item that is used for stating the type of
the constraint language. In OGC, model constraints shall be set using OCL, and that “OCL”
shall be selected in the “Type” item.

Multiple constraints can be set on an UML class, which they can be individually saved and listed
in the bottom pane.

OPEN GEOSPATIAL CONSORTIUM 23-040 45

Figure 21 — EA UML Class constraints

8.6. Attributes

On selection of a UML Attribute (under a UML Class), the Properties and Notes panes will
reflect the selected item.

The MDS process incorporates information of the UML Attribute, including:

• Notes of the UML Attribute: as the definition (description) of the UML Attribute (as in the
Notes pane) (see Figure 22);

• Name of the UML Attribute: name of the UML Attribute, used as a clause heading in the
OGC deliverable (see Figure 23);

• Stereotype of the UML Attribute: stereotype of the UML Attribute, wrapped with « and »
characters in the OGC deliverable; and

• Attribute details:

• Initial value: default value if not specified; and

• Multiplicity: 0, 1, 0..1, 0.., 1.., *.

OPEN GEOSPATIAL CONSORTIUM 23-040 46

Figure 22 — EA UML attribute Notes pane

OPEN GEOSPATIAL CONSORTIUM 23-040 47

Figure 23 — EA UML attribute Properties pane

Multiplicity requirements at the UML Attribute level are set using the “Properties” pane at the
“Multiplicity” item. The “…” at that item opens an additional popup where detailed multiplicity
requirements can be set, as seen in Figure 24.

OPEN GEOSPATIAL CONSORTIUM 23-040 48

Figure 24 — EA UML Attribute multiplicity

Constraints on an UML Attribute are set via the “Properties” popup window, under the
“Constraints” menu item.

• The top left “Constraint:” box is the description of the constraint.

• The top right “Type:” box is a selection for the constraint language.

• The second pane from the top is for entering constraint conditions in the constraint
language. In OGC, model constraints shall be set using OCL, and the language selection
box shall be set to “OCL”.

Multiple constraints can be set on a UML attribute, which they can be individually saved and
listed in the lowest pane.

OPEN GEOSPATIAL CONSORTIUM 23-040 49

Figure 25 — EA UML attribute constraints

8.7. Data type

A data type is a UML model that define data values and has no operations.

The operations that can be done on a UML Data Type are nearly identical to that of the UML
Class.

The MDS process incorporates information of the UML Data Type, including:

• Notes of the UML Data Type: as the definition (description) of the UML Data Type (as in
the Notes pane) (see Figure 26);

• Name of the UML Data Type: name of the UML Data Type, used as a clause heading in the
OGC deliverable (see Figure 27);

• Stereotype of the UML Data Type: stereotype of the UML class, wrapped with « and »
characters in the OGC deliverable; and

• Data Type properties:

• “Abstract” status: whether it is an Abstract Data Type; and

• “Visibility”: Public, Private, Protected or Package visibility.

OPEN GEOSPATIAL CONSORTIUM 23-040 50

Figure 26 — EA UML data type Notes pane

Figure 27 — EA UML data type Properties pane

The method to set the following properties of UML Data Type are identical to that of UML
Classes:

• stereotypes;

• multiplicity;

OPEN GEOSPATIAL CONSORTIUM 23-040 51

• constraints.

8.8. Enumeration

An enumeration is a UML model used to define data values.

The operations that can be done on an UML Enumeration are nearly identical to that of the UML
Data Type.

The MDS process incorporates information of the UML Enumeration, including:

• Notes of the UML Enumeration: as the definition (description) of the UML Enumeration (as
in the Notes pane) (see Figure 28);

• Name of the UML Enumeration: name of the UML Enumeration, used as a clause heading
in the OGC deliverable (see Figure 29);

• Stereotype of the UML Enumeration: stereotype of the UML class, wrapped with « and »
characters in the OGC deliverable; and

• Enumeration properties:

• “Abstract” status: whether it is an Abstract Enumeration; and

• “Visibility”: Public, Private, Protected or Package visibility.

Figure 28 — EA UML Enumeration Notes pane

OPEN GEOSPATIAL CONSORTIUM 23-040 52

Figure 29 — EA UML Enumeration Properties pane

The method to set the following properties of UML Enumeration are identical to that of UML
Classes:

• stereotypes;

• multiplicity; and

• constraints.

OPEN GEOSPATIAL CONSORTIUM 23-040 53

8.9. Enumeration value

Enumerations can contain Enumerated Values.

The operations that can be done on an UML Enumerated Value are nearly identical to that of the
UML Attribute.

The MDS process incorporates information of the UML Enumerated Value, including:

• Notes of the UML Enumerated Value: as the definition (description) of the UML
Enumerated Value (as in the Notes pane) (see Figure 30);

• Name of the UML Enumerated Value: name of the UML Enumerated Value, used as a
clause heading in the OGC deliverable (see Figure 31); and

• Stereotype of the UML Enumerated Value: stereotype of the UML class, wrapped with «
and » characters in the OGC deliverable.

Figure 30 — EA UML Enumerated Value Notes pane

OPEN GEOSPATIAL CONSORTIUM 23-040 54

Figure 31 — EA UML Enumerated Value Properties pane

The method to set the following properties of UML Enumerated Value are identical to that of
UML Attributes:

• stereotypes;

• multiplicity; and

• constraints.

OPEN GEOSPATIAL CONSORTIUM 23-040 55

An Enumerated Value can be assigned a data type in the “Properties” popup, under the menu
item “Attribute”, as shown in Figure 32.

Figure 32 — EA UML Enumerated Value Properties popup

OPEN GEOSPATIAL CONSORTIUM 23-040 56

9

BASICS OF METANORMA

OPEN GEOSPATIAL CONSORTIUM 23-040 57

9 BASICS OF METANORMA

9.1. General

Metanorma uses a syntax called Metanorma AsciiDoc, which is based on the AsciiDoc format
with a number of extensions.

An OGC Metanorma document is composed of two parts:

• Metadata

• Content body

9.2. Encoding

9.2.1. Metadata

9.2.1.1. General

The metadata portion is composed of the document header and attributes.

In Metanorma AsciiDoc, the metadata portion is made up of two types of information, the
preamble and document attributes.

The preamble is the section from the first line in the document until the first document attribute.

The document title is the first line of the document prefixed with one = (equal) sign.

= OGC MUDDI Conceptual Model

Figure 33 — Document title syntax (from OGC MUDDI Conceptual Model)

While typical AsciiDoc supports author information, revision date and a version number in the
preamble, their usage is discouraged in Metanorma because of the limited semantics supported.
Metanorma AsciiDoc instead uses document attributes to encode such information.

A document attribute represents a piece of metadata in the document that is not immediately
rendered. They can be thought of variable assignments or arguments in the document that are
needed for a particular document type.

OPEN GEOSPATIAL CONSORTIUM 23-040 58

A document attribute is a variable composed of alphanumeric characters, the _ (underscore) or -
(hyphen) symbols, wrapped between the : (colon) symbol.

The following syntax demonstrates assigning the mandatory attributes called the :doctype:
and :docsubtype:, which defines the type and subtype of the OGC deliverable. For a full list
of supported (mandatory and optional) attributes, please refer to the Metanorma for OGC
reference.

:doctype: standard
:docsubtype: conceptual-model

Figure 34 — Document attribute syntax (from OGC MUDDI Conceptual Model)

An example of a complete metadata portion is shown below.

Example — Sample Metanorma AsciiDoc metadata (from OGC MUDDI Conceptual Model)

= OGC MUDDI Conceptual Model
:doctype: standard
:docsubtype: conceptual-model
:language: en
:status: draft
:committee: technical
:docnumber: 22-999
:received-date: 2023-01-01
:issued-date: 2023-01-01
:published-date: 2023-01-01
:external-id: http://www.opengis.net/doc/XXX/YYYYY
:keywords: ogcdoc, OGC document, MDA, model-driven
:mn-document-class: ogc
:imagesdir: images
:mn-output-extensions: xml,html,pdf,doc,rxl

9.2.1.2. Metanorma instructions

The following lines specify that this document is an OGC document, and it should render the
various specified types of output, including XML, HTML, PDF, Word and RXL. RXL refers to the
Relaton XML format which is used for encoding bibliographic information, and is required for the
Metanorma site generation functionality.

The :imagesdir: attribute indicates that all images are located under that path, when using the
image::{path}[] directive.

:mn-document-class: ogc
:mn-output-extensions: xml,html,pdf,doc,rxl
:imagesdir: images

Figure 35 — Metanorma instruction attributes (from OGC MUDDI Conceptual Model)

9.2.1.3. Document type and sub-types

OGC has an extensive list of document types and some of them require specification of sub-
types.

OPEN GEOSPATIAL CONSORTIUM 23-040 59

Please refer to Metanorma for a full list of these values. If there is no sub-type for the document
type, do not specify a sub-type.

:doctype: standard
:docsubtype: conceptual-model

Figure 36 — Document type attributes (from OGC MUDDI Conceptual Model)

9.2.1.4. Document status

OGC document types are processed through different approval procedures, and this attribute
encodes the status of a document.

Please refer to Metanorma for the list of statuses available for the particular document type.
Invalid statuses will result in warnings during document generation.

:status: draft

Figure 37 — Document status attributes (from OGC MUDDI Conceptual Model)

9.2.1.5. Document identification

OGC documents are uniquely identified via two aspects.

• OGC document number. This unique number is obtained from the OGC portal through a
reservation process, in a pattern of nn-mmm.

NOTE: nn refers to the year when the document number is reserved, and mmm is a
sequential number reflecting the number of documents in that year prior to reservation.

• OGC unique identifier. This identifier is called the external-id in Metanorma. This
identifier typically has the pattern like xxx/yyy, and is required to be unique across OGC.

:docnumber: 22-999
:external-id: http://www.opengis.net/doc/XXX/YYYYY

Figure 38 — Document identification attributes (from OGC MUDDI Conceptual Model)

9.2.1.6. Document provenance

An OGC document is typically developed under the scope of the OGC Technical Committee.

:committee: technical

Figure 39 — Document provenance attributes (from OGC MUDDI Conceptual Model)

OPEN GEOSPATIAL CONSORTIUM 23-040 60

9.2.1.7. Document dates

The OGC standards development process specifies several approval related dates. These dates
need to be encoded as they pass through those stages.

:received-date: 2023-01-01
:issued-date: 2023-01-01
:published-date: 2023-01-01

Figure 40 — Document date attributes (from OGC MUDDI Conceptual Model)

9.2.1.8. OGC keywords

OGC requires all documents to have keywords specified for the purpose of enabling user
discovery.

:keywords: ogcdoc, OGC document, MDA, model-driven

Figure 41 — OGC keyword (from OGC MUDDI Conceptual Model)

9.2.2. Body

9.2.2.1. General

An OGC document has certain fixed and mandatory sections.

For a conceptual model document, it includes the following clauses:

• Prefatory sections

• Clause 1: Scope

• Clause 2: Conformance

• Clause 3: Normative references

• Clause 4: Terms and definitions

• Clause 5 onwards: content body

• Annexes (optional)

• Bibliography

OPEN GEOSPATIAL CONSORTIUM 23-040 61

9.2.2.2. Prefatory sections

An OGC deliverable mandates the following prefatory sections.

Abstract a short summary describing the information provided in the OGC
deliverable.

Preface introductory material that provides the reader with sufficient background
on the OGC deliverable.

Submitters lists out OGC member organizations and their representatives that support
the adoption of the OGC deliverable, listed with their respective roles in
the development of the OGC deliverable.

The prefatory sections are encoded as shown in Figure 42.

[abstract]
== Abstract

Enter the abstract for this document.

== Preface

Enter the preface for this document.

== Submitters

All questions regarding this document should be directed to the editor or the
contributors:

[options="header"]
|===
| Name | Organization | Role

| Given-name-1 Last-name-1 | Organization-1 | Editor
| Given-name-2 Last-name-2 | Organization-2 | Editor
| Given-name-3 Last-name-3 | Organization-3 | Editor

|===

Figure 42 — Preface sections in Metanorma AsciiDoc

9.2.2.3. Scope

The scope describes the purpose of the document in succinct terms.

== Scope

This OGC Standard provides...

Figure 43 — Scope in Metanorma AsciiDoc

OPEN GEOSPATIAL CONSORTIUM 23-040 62

9.2.2.4. Conformance

The conformance section describes the conformance classes provided by the OGC deliverable.
This section is used to list out the titles of all conformance classes provided by the deliverable,
and provides cross-references to the individual conformance classes as defined in the content
body.

== Conformance

This OGC Standard provides the following requirements...

Figure 44 — Conformance in Metanorma AsciiDoc

9.2.2.5. Normative references

The normative references section describes information resources necessary for the
implementation of the document. The bibliographic items are encoded in the Metanorma
AsciiDoc bibliography format (see Metanorma for OGC for reference syntax).

== Normative references

* [[[OGC_08-131,OGC 08-131r3]]], OGC ModSpec

Figure 45 — Normative references in Metanorma AsciiDoc

9.2.2.6. Terms and definitions

The terms and definitions section defines the terms used in the document, which could be
defined by the document or imported from other resources.

The terms and definitions section can encode complex concepts and relations, for detailed
documentation please refer to the Metanorma website.

== Terms and definitions <1>

==== conceptual model <2>
alt:[CM] <3>

model that defines concepts of a universe of discourse <4>

[.source]
<<ISO_19101-1,clause=4.1.5>> <5>

==== logical model

model that implements a {{conceptual model}} at a logical level <6>

Key

<1> Mandatory clause title

<2> Term for concept

<3> Alternate term for concept

OPEN GEOSPATIAL CONSORTIUM 23-040 63

<4> Definition of concept

<5> Source of concept

<6> Concept mention of a defined term in the same document

Figure 46 — Terms and definitions in Metanorma AsciiDoc

9.2.2.7. Content body

The content body is used to describe the conceptual model and is composed of one or more
clauses.

In an OGC MDS document, it is necessary to utilize one or more sections to describe the
information model. Typically, the Metanorma LutaML plugin is used to render the conceptual
model in XMI format. Information on how to use this automated process is described in
Clause 11.3.

== Model overview

=== Design requirements

The development of MUDDI has been motivated by a number of specific design
requirements...

Figure 47 — Content body in Metanorma AsciiDoc

9.3. Building the document

9.3.1. Single document

The command to build a document is: metanorma {filename}.

Example — Example of running the metanorma compile command: This command compiles the
Metanorma AsciiDoc file my-ogc-standard.adoc into an HTML document.

$ metanorma my-ogc-standard.adoc

9.3.2. Site

Metanorma supports a site build feature that is useful when multiple outputs are expected.

A site manifest needs to be created at metanorma.yml, where it internally specifies the
component documents of this site. An example is shown in Figure 48.

metanorma:
 source:
 files:

OPEN GEOSPATIAL CONSORTIUM 23-040 64

 - sources/as21-dggs/20-040r3.adoc
 - sources/as21-dggs/iso-19170-1-is-en-sections.adoc

 collection:
 organization: "OGC"
 name: "OGC TB 17 D144 DGGS XMI model-driven standard"

Figure 48 — Example of generating both OGC and ISO flavors using a site manifest

Assuming that the metanorma.yml file exists at the current path, the command to generate a
site is:

$ metanorma site generate

Figure 49

The resulting site will be built at _site which contains the entry point of _site/index.html.

OPEN GEOSPATIAL CONSORTIUM 23-040 65

10

SPECIFYING
REQUIREMENTS

OPEN GEOSPATIAL CONSORTIUM 23-040 66

10 SPECIFYING REQUIREMENTS

10.1. General

This clause describes best practices on how OGC requirements are encoded adhering to the
OGC Modular Specification (OGC 08-131r3), also called the “ModSpec”, in an OGC deliverable.

OGC ModSpec specifies a requirements model scheme where requirements are expressed
through a set of UML models, with description on how these models are to be treated and
presented in OGC standards.

According to the OGC Policy Directives, OGC standards that contain requirements must have
those requirements conform to OGC 08-131r3.

As OGC utilizes the Metanorma toolchain for publishing its standards, it is necessary for the
OGC author to understand how ModSpec instances are encoded in the Metanorma format.

10.2. Background

Metanorma provides a special syntax for the encoding and embedding of requirements
compliant to the OGC ModSpec, for the exporting of machine-readable requirements as well as
ModSpec-compliant rendering.

Specifically, the following models in the ModSpec are supported in Metanorma:

• Conformance class

• Conformance test

• Requirements class

• Normative statements

• Requirement

• Recommendation

• Permission (not specified in ModSpec but allowed in ISO 19105:2020, see
OGC 08-131r3, Clause 4.20)

NOTE 1: The “Conformance suite”, “Conformance module”, “Requirements module” models are not yet
supported in Metanorma. Please contact OGC DocTeam if support is required.

OPEN GEOSPATIAL CONSORTIUM 23-040 67

https://www.ogc.org/ogc/policies/directives
https://www.ogc.org/projects/groups/docteam

In this document, we refer to “recommendations”, “requirements” and “permissions” collectively
using the generic term “requirement”.

NOTE 2: In some instances, the naming of terms that Metanorma uses in general is used in
Metanorma markup instead of the nomenclature used in the ModSpec:

• Metanorma uses target to refer to what the requirement is about, rather than the
more specific language of the ModSpec, to ensure that requirements are represented
consistently within Metanorma.

• The different types of requirement expressed by Metanorma for ModSpec are
about different things, and the more abstract types of requirement are about other
requirements.

10.3. ModSpec models

10.3.1. General

A basic understanding of ModSpec is crucial in order to understand how to encode ModSpec-
compliant models.

This clause describes ModSpec models in simplified terms (see OGC 08-131r3, Annex C).

10.3.2. Requirements class

A “Requirements class” consists of multiple “Requirements”.

All “Requirements” within a “Requirements class” are about the same standardization target type.

10.3.3. Requirement

A “Requirement” is a condition to be satisfied by a single standardization target type.

10.3.4. Conformance class

A “Conformance class” consists of multiple “Conformance tests”.

A “Conformance class” is associated with a single corresponding “Requirements class”.

Each “Conformance test” within the “Conformance class” corresponds to a set of “Requirements”
within the corresponding “Requirements class”.

OPEN GEOSPATIAL CONSORTIUM 23-040 68

10.3.5. Conformance test

A “Conformance test” checks if a set of “Requirements” is met by a single standardization target
(an entity).

A “Conformance test” has a many-to-many relation with “Requirements”.

A “Conformance test” is about a single standardization target.

10.3.6. Conformance test suite

A “Test suite” is “a collection of identifiable conformance classes” (see
OGC 08-131r3, Clause 6.4)

A “Conformance test suite” contains only “Conformance classes”.

An “Abstract test suite” contains only “Conformance classes” of the “abstract” kind. Such
conformance class can only contain Abstract tests.

NOTE 1: ModSpec (OGC 08-131r3, Clause 4.7) defines a conformance test as a “test, abstract
or real, of one or more requirements contained within a standard, or set of standards”.

NOTE 2: The OGC Compliance Program has used the term “Executable test suite” for a realized
“Abstract test suite” in an implementation. ISO 19105:2020 also uses the term “Executable test
suite”.

NOTE 3: A standard document typically does not contain an Executable test suite. Typically,
executable tests are not specified in standard documents but are implemented in compliance
testing tools instead. This interpretation is also supported by ISO 19105:2020.

10.4. ModSpec instantiation

ModSpec models are defined as classes. In order to create ModSpec models inside an OGC
deliverable, it is necessary to “instantiate” them into ModSpec instances.

OPEN GEOSPATIAL CONSORTIUM 23-040 69

10.5. Encoding of ModSpec instances

10.5.1. General

A ModSpec instance is encoded in the Metanorma AsciiDoc markup language, via tagged blocks
with definition lists, containing other tagged example blocks and open blocks.

NOTE 1: Metanorma also supports the OGC legacy “block attribute” syntax, but it is not
described in this document since it is no longer recommended for the flexibility in the newer
syntax.

This syntax requires specification of a [%metadata] definition list within a ModSpec instance,
which provides the necessary information for the specified model. Values given in the definition
list syntax can be fully-formatted Metanorma AsciiDoc text.

A ModSpec model instance is encoded with one of these block types:

• [requirement] for Requirement

• [recommendation] for Recommendation

• [permission] for Permission

• [requirements_class] for Requirements class

• [conformance_test] for Conformance test

• [conformance_class] for Conformance class

• [abstract_test] for Abstract test

NOTE 2: These ModSpec types are available from [added in Metanorma OGC version v1.4.3]

In addition, if the Metanorma generic [requirements] block is used, these values are to be used
in the type attribute.

The following two encodings are equivalent:

[conformance_test]

Figure 50

[requirement,type=conformance_test]

Figure 51

Attributes that can take rich textual input (Metanorma AsciiDoc input), such as part,
conditions, and guidance, are components of requirements in Metanorma.

OPEN GEOSPATIAL CONSORTIUM 23-040 70

These can be encoded within the definition list, or in the block attributes syntax using the [.
component] role within the ModSpec instance block, on open blocks or example blocks.

Example 1 — Example of encoding a ModSpec requirement “part” within the definition list

[requirement]
====
[%metadata]
identifier:: /req/world/hello
part:: Part A of the requirement.
====

Example 2 — Example of encoding a ModSpec requirement “part” in an open block syntax

[requirement]
====
[%metadata]
identifier:: /req/world/hello

[.component,class=part]
--
Part A of the requirement.
--
====

Example 3 — Example of encoding a ModSpec requirement “part” in an example block syntax

[requirement]
=====
[%metadata]
identifier:: /req/world/hello

[.component,class=part]
====
Part A of the requirement.
====
=====

The %metadata definition list may contain embedded levels [added in Metanorma OGC version
v1.4.3]; this is needed specifically for steps embedded within a test method.

If you need to insert a cross-reference to a component, for example referencing a specific part of
a requirement elsewhere, you can only use the block attributes sequence (as illustrated above).

[requirement]
.Encoding of logical models
====
[%metadata]
identifier:: /spec/waterml/2.0/req/xsd-xml-rules
subject:: system
part:: Metadata models faithful to the original UML model.
description:: Logical models encoded as XSDs should be faithful to the original
UML conceptual models.

test-method::
step::: Step 1
step::: Step 2
step:::: Step 2a
step:::: Step 2b
step::: Step 3

OPEN GEOSPATIAL CONSORTIUM 23-040 71

====

Figure 52 — ModSpec requirement with hierarchical test-method steps

When using ModSpec within other documents that, by default, uses another requirements
model scheme (such as non-OGC flavors), it is necessary to specify the instance with the model
attribute.

Example 4 — Encoding a ModSpec instance within a document that uses another requirements
model scheme

[requirement,model=ogc]
====
[%metadata]
identifier:: /req/iso-nnnnn/considerations

This is an OGC ModSpec requirement within an ISO document.
====

10.5.2. Instance attributes

Attributes accepted by a ModSpec instance are as follows:

identifier (mandatory) Identifier of the requirement, such as a URI or a URN. Plain
text.
This must be unique in the document (as required by ModSpec), and is
also used for referencing and cross-linking between ModSpec instances.

NOTE 1: The identifier was previously encoded as label until
Metanorma OGC version v2.2.0 .

subject (optional) Subject that the model refers to. Plain text.

obligation (optional) Accepted values are one of:

requirement (default) The instance is a requirement.

recommendation The instance is a recommendation.

permission The instance is a permission.

description (optional) The descriptive text for this instance.

NOTE 2: In a normative statement, the description key is treated as a
synonym of statement, which forms the statement of compliance itself
instead of informative, descriptive, text. [added in mn-requirements
version v0.2.1].

target (conditional: only for conformance-related models) The “target” that is
being tested against, specified with the identifier of the requirement or
requirements class. (Replaces subject in that context).

OPEN GEOSPATIAL CONSORTIUM 23-040 72

NOTE 3: The target is only supported in definition list syntax. [added in
Metanorma OGC version v2.2.0]

• When in a conformance test (or an abstract test), specify the
corresponding identifier of the requirement that is being tested.

• When in a conformance class, specify the corresponding identifier
of the Requirements class that is being tested.

Differentiated types of ModSpec models allow additional attributes.

10.5.3. Normative statement: requirement, recommendation, permission

Metanorma ModSpec supports the following normative statement types:

• Requirement (requirement)

• Recommendation (recommendation)

• Permission (permission)

The type of normative statement can be specified by using the above values as block types, or
by setting the type attribute of a block.

It supports the following attributes in addition to base ModSpec attributes:

statement (mandatory) The statement to which compliance applies within
this provision.

NOTE 1: Prior to mn-requirements v0.2.1, the key description is
used. description is now a synonym for statement in a provision
instance [added in mn-requirements version v0.2.1].

conditions (optional) Conditions on where this requirement applies. Accepts
rich text.

part (optional) A requirement can contain multiple parts of sub-
requirements. Accepts rich text. Labelled with a capital alphabetic
letter.

NOTE 2: A part is distinct from a step (as appears in Clause
10.5.6): a part is a component of a requirement, which is
itself a requirement. A step is a stage in a process of testing a
requirement: it only makes sense within a test method.

guidance (optional) Guidance on how to apply the requirement. Used to
avoid numbering of notes or examples as part of the overall
document. Accepts rich text. Guidance is always rendered last in
ModSpec. [added in mn-requirements version v0.1.4]

OPEN GEOSPATIAL CONSORTIUM 23-040 73

inherit (optional) A requirement can inherit from one or more
requirements (direct dependency in ModSpec terms). Accepts
identifiers of other requirements: multiple values are semicolon-
delimited. Can be repeated in definition list syntax.

indirect-
dependency

(optional) A requirement can inherit indirectly from one or more
Requirements classes, which have a different standardization
target from that of the requirement. That Requirements class
is used, produced, or associated with the current requirement,
 but its requirements are not inherited by this requirement. Only
supported in definition list syntax. [added in Metanorma OGC
version v2.2.1]

implements (optional) A requirement can implement another requirement.
Accepts identifiers of other requirements. Can be repeated in
definition list syntax [added in mn-requirements version v0.1.9].

classification (optional) Classification of this requirement. The classification
attribute is marked up as in the rest of Metanorma: key1=
value1;key2=value2…, where value is either a single string, or a
comma-delimited list of values.

requirement,
permission,
recommendation

A requirement, permission, or recommendation contained within
a requirement. The value of the element is its identifier. Only
supported in definition list syntax.

conformance-test, abstract-test, conformance-class, requirement-class
recommendation-class, permission-class:: A requirement, permission, or recommendation of
those categories, contained within a requirement. The value of the element is its identifier. Only
supported in definition list syntax. [added in mn-requirements version v0.1.6]

NOTE 3: The conditions, part parameters were not supported in older versions of Metanorma
OGC [added in Metanorma OGC version v1.4.2].

NOTE 4: In the default rendering of ModSpec, the statement attribute, descriptions are labelled
as Statement for requirements, recommendations, permissions. They are left as Description for all
other kinds of ModSpec instances.

Example 1 — OGC CityGML 3.0 sample requirement with two parts (definition list)

[requirement]
====
[%metadata]
identifier:: /req/relief/classes
statement:: For each UML class defined or referenced in the Relief Package:
part:: The Implementation Specification SHALL contain an element which
represents the
same concept as that defined for the UML class.
part:: The Implementation Specification SHALL represent associations with the
same
source, target, direction, roles, and multiplicities as those of the UML class.
====

This renders as:

OPEN GEOSPATIAL CONSORTIUM 23-040 74

REQUIREMENT 1

Identifier /req/relief/classes

Statement For each UML class defined or referenced in the Relief Package:

A
The Implementation Specification SHALL contain an element which represents the same concept as that
defined for the UML class.

B
The Implementation Specification SHALL represent associations with the same source, target, direction,
roles, and multiplicities as those of the UML class.

Example 2 — OGC CityGML 3.0 sample requirement with two parts (block attributes)

[requirement,identifier="/req/relief/classes"]
====
For each UML class defined or referenced in the Relief Package:

[.component,class=part]
--
The Implementation Specification SHALL contain an element which represents the
same concept as that defined for the UML class.
--

[.component,class=part]
--
The Implementation Specification SHALL represent associations with the same
source, target, direction, roles, and multiplicities as those of the UML class.
--
====

renders as:

Figure 53

Example 3 — OGC CityGML 3.0 sample requirement with two parts

[requirement]
====
[%metadata]
identifier:: /req/core/encoding

All target implementations SHALL conform to the appropriate GroundWaterML2
Logical Model UML defined in Section 8.

OPEN GEOSPATIAL CONSORTIUM 23-040 75

====
OGC GroundWaterML 2.0 sample requirement

renders as:

Figure 54

10.5.4. Requirements class

A “Requirements class” is encoded as a block of requirements_class or using type equals to
requirements_class.

A Requirements class is cross-referenced and captioned as a “{Requirement} class {N}” [added in
Metanorma OGC version v0.2.11].

NOTE 1: Classes for Recommendations will be captioned as “Recommendations class {N}”,
similarly for “Requirements class {N}” and “Permissions class {N}”.

Requirements classes allow the following attributes in addition to the base ModSpec attributes:

Name (mandatory) Name of the requirements class should be
specified as the block caption.

subject (mandatory) The Target Type. Rendered as Target Type.

inherit (optional) Dependent requirements classes. See Requirement,
recommendation, permission.

indirect-dependency (optional) Indirect dependent requirements classes. See
Requirement, recommendation, permission.

guidance (optional) Guidance on Requirements class. See Requirement,
recommendation, permission.

Embedded
requirements (optional)

Requirements contained in a class are marked up as nested
requirements.

Example 1 — Example from OGC CityGML 3.0

[requirements_class]
====
[%metadata]
identifier:: http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-building
subject:: Implementation Specification
inherit:: /req/req-class-core
inherit:: /req/req-class-construction
====

OPEN GEOSPATIAL CONSORTIUM 23-040 76

Renders as:

Figure 55

NOTE 2: In this example, both block attributes and definition list syntax is used; the inherit
attribute has two values, which are expressed in the definition list.

A requirements class can contain multiple requirements, specified with embedded requirements.

The contents of these embedded requirements may be specified within the requirements class,
or specified outside of the requirements class (referenced using the identifier). If the requirement
is specified within a definition list, the definition list value is interpreted as the requirement
identifier.

Example 2 — Example from OGC GroundWaterML 2.0

[requirements_class]
.GWML2 core logical model
====
[%metadata]
identifier:: http://www.opengis.net/spec/waterml/2.0/req/xsd-xml-rules[*req/
core*]
obligation:: requirement
subject:: Encoding of logical models
inherit:: urn:iso:dis:iso:19156:clause:7.2.2
inherit:: urn:iso:dis:iso:19156:clause:8
inherit:: http://www.opengis.net/doc/IS/GML/3.2/clause/2.4
inherit:: O&M Abstract model, OGC 10-004r3, clause D.3.4
inherit:: http://www.opengis.net/spec/SWE/2.0/req/core/core-concepts-used
requirement:: /req/core/encoding
requirement:: /req/core/quantities-uom
====

renders as:

Requirements class 1
GWML2 core logical model

req/core

Obligation Requirement

Target Type Encoding of logical models

OPEN GEOSPATIAL CONSORTIUM 23-040 77

http://www.opengis.net/spec/waterml/2.0/req/xsd-xml-rules

Dependency urn:iso:dis:iso:19156:clause:7.2.2

Dependency urn:iso:dis:iso:19156:clause:8

Dependency http://www.opengis.net/doc/IS/GML/3.2/clause/2.4

Dependency O&M Abstract model, OGC 10-004r3, clause D.3.4

Dependency http://www.opengis.net/spec/SWE/2.0/req/core/core-concepts-used

Requirement /req/core/encoding

Requirement /req/core/quantities-uom

Embedded requirements (such as are found within Requirements classes) will automatically
insert cross-references to the non-embedded requirements with the same identifier [added in
Metanorma OGC version v1.0.8].

Example 3 — Example of specifying embedded requirements within a ModSpec instance

[requirements_class,identifier="/req/conceptual"]
.GWML2 core logical model
====

[requirement,identifier="/req/core/encoding"]
======
======

====

[requirement,identifier="/req/core/encoding"]
====
Encoding requirement
====

renders as:

Requirements class 3: GWML2 core logical model
/req/conceptual

Requirement 1 /req/core/encoding

Requirement 1 /req/core/encoding

Encoding requirement

OPEN GEOSPATIAL CONSORTIUM 23-040 78

http://www.opengis.net/doc/IS/GML/3.2/clause/2.4
http://www.opengis.net/spec/SWE/2.0/req/core/core-concepts-used

10.5.5. Conformance class

Specified by setting the block as conformance_class or by using type as conformance_class.

A Conformance class is cross-referenced and captioned as “Conformance class {N}”, and is
otherwise rendered identically to a “Requirements class” [added in Metanorma OGC version
v1.0.4].

Conformance classes support the following attributes in addition to base ModSpec attributes:

target (mandatory) Associated Requirements class. Populated with the
identifier of the Requirements class. Rendered as Requirements Class.

inherit (optional) Dependencies of the conformance class. Accepts multiple
values, which are the identifiers of other requirements. See
Requirement, recommendation, permission.

indirect-
dependency

(optional) Indirect dependent requirements classes. See Requirement,
recommendation, permission.

Conformance classes also feature:

Name (optional) Specified as the block caption.

Nesting (optional) Conformance tests contained in a conformance class are encoded
as conformance tests within the conformance class block, marked as
conformance-test. See Requirements class.

NOTE: Conformance classes do not have a Target Type (as specified in ModSpec). If one
must be encoded, it should be encoded as a classification key-value pair.

Example — Example of encoding a conformance class

[conformance_class]
====
[%metadata]
identifier:: http://www.opengis.net/spec/ogcapi-features-2/1.0/conf/crs
target:: http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-building
indirect-dependency:: http://www.opengis.net/doc/IS/ogcapi-features-1/1.0#ats_
core
classification:: Target Type:Web API
====

renders as:

CONFORMANCE CLASS 1

http://www.opengis.net/spec/ogcapi-features-2/1.0/conf/crs

Requirements Class Requirements Class ‘Coordinate Reference Systems by Reference’

OPEN GEOSPATIAL CONSORTIUM 23-040 79

http://www.opengis.net/spec/ogcapi-features-2/1.0/conf/crs

CONFORMANCE CLASS 1

Dependency http://www.opengis.net/doc/IS/ogcapi-features-1/1.0#ats_core

Target Type Web API

10.5.6. Conformance test and Abstract test

A “Conformance test” can be “concrete” or “abstract” depending on the type of conformance
test suite (see OGC 08-131r3, Clause 6.4).

NOTE 1: A implementation of a test in executable form is called an “executable test”. A standard
typically does not include executable tests.

The OGC author should identify whether a standard requires an “Abstract test suite” or a
“Conformance test suite” in order to decide the encoding of “Conformance tests” versus
“Abstract tests”.

• A conformance test is specified by creating a conformance_test block or using type as
conformance_test. It is cross-referenced as “Conformance test {N}”.

• An abstract test is specified by creating an abstract_test block or using type as
abstract_test, or conformance_test together with abstract=true. It is cross-
referenced as “Abstract test {N}” [added in Metanorma OGC version v1.0.4].

Conformance tests support the following attributes and components in addition to base
ModSpec attributes:

target The associated requirement. Populated with the identifier of the
requirement. Multiple semicolon-delimited values may be provided.
Rendered as Requirement.

inherit (optional) Dependencies. Accepts multiple values, which are the
identifiers of other requirements. See Requirement, recommendation,
permission.

• indirect-dependency (optional). Indirect dependent requirements
classes. See Requirement, recommendation, permission.

Components (optional) Components of the conformance test. Accepts rich text. [added
in Metanorma OGC version v1.4.0]. Allows the following classes:

test-
purpose

(optional) Purpose of the test. Rich text. Presented
as Test Purpose [added in Metanorma OGC version
v1.4.2]

test-
method

(optional) Method of the test. Rich text. Presented
as Test Method [added in Metanorma OGC version
v1.4.2]

OPEN GEOSPATIAL CONSORTIUM 23-040 80

http://www.opengis.net/doc/IS/ogcapi-features-1/1.0#ats_core

step (optional) Step of the test method. Is expected
to be embedded within test-method, and may
contain substeps of its own. Rich text. Presented as
a numbered list. added in Metanorma OGC version
v1.4.2].
Steps can be nested, the nested list order is: arabic,
then alphabetic, then roman.

test-
method-
type

(optional) Method of the test. Rich text. Presented as
Test Method Type [added in Metanorma OGC version
v1.4.3]

reference (optional) Purpose of the test. Rich text. Presented
as Reference.

Test type The test type of a Conformance test is encoded as a classification
key-value pair.

Conformance tests also feature:

• Name (optional). Specified as the requirement’s block caption.

NOTE 2: Conformance Tests are excluded from the “Table of Requirements” in Word output [added in
Metanorma OGC version v0.2.10].

Example 1 — Example of Abstract test from CityGML 3.0

[abstract_test]
====
[%metadata]
identifier:: /conf/core/classes

target:: /req/core/classes

test-purpose:: To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

test-method-type:: Manual Inspection

description:: For each UML class defined or referenced in the Core Package:

part:: Validate that the Implementation Specification contains a data element
which represents the same concept as that defined for the UML class.

part:: Validate that the data element has the same relationships with other
elements as those defined for the UML class. Validate that those relationships
have the same source, target, direction, roles, and multiplicities as those
documented in the Conceptual Model.
====

renders as:

OPEN GEOSPATIAL CONSORTIUM 23-040 81

Figure 56

Example 2 — Example of Abstract test from DGGS

[abstract_test]
====
[%metadata]
identifier:: /conf/crs/crs-uri
target:: /req/crs/crs-uri
target:: /req/crs/fc-md-crs-list-A
target:: /req/crs/fc-md-storageCrs
target:: /req/crs/fc-md-crs-list-global
classification:: Test Type:Basic
test-purpose:: Verify that each CRS identifier is a valid value
test-method::
+
--
For each string value in a `crs` or `storageCrs` property in the collections
and collection objects,
validate that the string conforms to the generic URI syntax as specified by
https://tools.ietf.org/html/rfc3986#section-3[RFC 3986, section 3].

. For http-URIs (starting with `http:`) validate that the string conforms to
the syntax specified by RFC 7230, section 2.7.1.

. For https-URIs (starting with `https:`) validate that the string conforms to
the syntax specified by RFC 7230, section 2.7.2.
--
reference:: <<ogc_07_147r2,clause=15.2.2>>
====

renders as:

ABSTRACT TEST 1

/conf/crs/crs-uri

OPEN GEOSPATIAL CONSORTIUM 23-040 82

ABSTRACT TEST 1

Requirement
/req/crs/crs-uri, /req/crs/fc-md-crs-list A, /req/crs/fc-md-storageCrs, /req/
crs/fc-md-crs-list-global

Test Purpose Verify that each CRS identifier is a valid value

Test Method

For each string value in a crs or storageCrs property in the collections
and collection objects, validate that the string conforms to the generic
URI syntax as specified by RFC 3986, section 3.

1. For http-URIs (starting with http:) validate that the string
conforms to the syntax specified by RFC 7230, section 2.7.1.

2. For https-URIs (starting with https:) validate that the string
conforms to the syntax specified by RFC 7230, section 2.7.2.

Reference OGC-07-147r2: cl. 15.2.2

Test Type Basic

10.6. Cross-referencing ModSpec instances

10.6.1. General

Similar to when specifying attributes for ModSpec instances, it is preferred to refer to other
instances using identifiers, rather than the numbered labels allocated by default.

Example: In OGC, it is preferred to show the identifier of a ModSpec instance in a cross-
reference, like http://www.example.com/req/crs/crs-uri instead of Requirements class 6.

10.6.2. Referencing using predefined anchors

This can be extended to cross-references. If the anchor of the requirement is known, a normal
cross-reference can be marked up, as shown below.

Example — Cross-reference to a ModSpec instance using a predefined anchor

<<id1,http://www.example.com/req/crs/crs-uri>>

Renders (assuming that this is the 10th Requirement):

Requirement 10

OPEN GEOSPATIAL CONSORTIUM 23-040 83

https://tools.ietf.org/html/rfc3986#section-3
http://www.example.com/req/crs/crs-uri

10.6.3. Referencing using instance identifiers

However, not all ModSpec instances are assigned predefined anchors, especially when using
model-based generation. It also precludes automated manipulation of the identifier base path.

For that reason, Modspec in Metanorma supports anchor aliasing: the identifier of the
requirement can be used in cross-references as an alias of the anchor.

Metanorma will automatically map the anchor it allocates to requirements to identifiers, to that
end: users do not need to supply the anchor alias mappings manually.

So for a requirement such as:

[[id1]]
[requirement]
====
identifier:: http://www.example.com/req/crs/crs-uri
====

Figure 57

It is possible to reference a ModSpec instance using its identifier instead of the anchor, as
follows.

Example 1 — Cross-reference to a ModSpec instance using its identifier, displaying the
instance’s name

xref:http://www.example.com/req/crs/crs-uri[]

Renders (assuming that this is the 10th Requirement):

Requirement 10

Metanorma treats them as fully equivalent, and will render them in the same way, as a
numbered label (Requirements class 6).

NOTE: As a limitation of syntax, URIs cannot be processed correctly within \<< >>. The xref:…[]
command needs to be used instead.

To make the cross-reference render the identifier value of the instance itself, while still
hyperlinking to the correct identifier, you can specify style=id% as the cross-reference text, as
follows.

Example 2 — Cross-reference to a ModSpec instance using its identifier, displaying the
instance’s identifier

xref:http://www.example.com/req/crs/crs-uri[style=id%]

Renders as:

http://www.example.com/req/crs/crs-uri

This will also highlight the URI text as subject to truncation, with reference to identifier bases.

OPEN GEOSPATIAL CONSORTIUM 23-040 84

https://www.metanorma.org/author/topics/document-format/xrefs/#anchor-aliasing
http://www.example.com/req/crs/crs-uri

10.6.4. Identifier base pattern

NOTE 1: This functionality is first implemented in [added in mn-requirements version v0.2.1].

A ModSpec instance can be cross-referenced from other parts of the document, with the
reference text used to identify the ModSpec instance named either according to its:

• instance label (e.g., “Requirement 3”); or

• identifier (e.g., http://www.opengis.net/spec/waterml/2.0/req/xsd-xml-rules).

ModSpec instances need to be assigned unique identifiers, which are typically either URIs, URNs
or URLs.

These identifier types utilize a hierarchical pattern. If two identifiers share a common prefix, it
means that the two identifiers can be grouped semantically at some level.

In well-structured standards (in OGC and others), ModSpec instances often share a common
identifier prefix. For example, a defined, document-wide identifier prefix is used as the “base” for
all ModSpec identifiers.

Example 1 — Document-wide identifier prefix with ModSpec instances using that prefix: OGC
WaterML 2.0 applies a document identifier prefix:

• document identifier prefix: http://www.opengis.net/spec/waterml/2.0

• sample of a ModSpec instance identifier in the document: http://www.opengis.net/spec/
waterml/2.0/req/xsd-xml-rules

When cross-referencing a ModSpec instance using its identifier, the references can be lengthy to
read.

If a document-wide identifier “base prefix” is defined, Metanorma will omit the base prefix in the
rendering of ModSpec instances when using the identifier as reference text.

There are the following ways of specifying an identifier base prefix:

Document-wide The document attribute :modspec-identifier-base: is used to
specify the identifier base prefix for the entire document.

ModSpec class
instance

An identifier base prefix can be defined inside a ModSpec class
instance (e.g., Requirements class), using the definition list tag
identifier-base.

ModSpec
instance

An identifier base prefix can be defined inside a ModSpec instance (e.
g., Requirement), using the definition list tag identifier-base.

The behavior is specified as follows:

• If an identifier base prefix is specified document-wide:

OPEN GEOSPATIAL CONSORTIUM 23-040 85

http://www.opengis.net/spec/waterml/2.0/req/xsd-xml-rules
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Name
https://en.wikipedia.org/wiki/URL
http://www.opengis.net/spec/waterml/2.0
http://www.opengis.net/spec/waterml/2.0/req/xsd-xml-rules
http://www.opengis.net/spec/waterml/2.0/req/xsd-xml-rules

• When a ModSpec instance or class instance is cross-referenced using its identifier, the
identifier base prefix will be removed from the identifier in the reference text.

• If an identifier base prefix is specified on a ModSpec class instance (e.g., Requirements
class):

• This identifier base prefix overrides any value specified in :modspec-identifier-
base:, if any;

• The identifier base prefix specified will apply to all its ModSpec instances (e.g.,
Requirements in the Requirements class) unless overridden; and

• When a ModSpec class instance is cross-referenced using its identifier, the identifier
base prefix will be removed from the identifier in the reference text.

• If an identifier base prefix is specified on a ModSpec instance (e.g., Requirement):

• The identifier base prefix specified on the instance overrides all higher level identifier
base prefixes;

• The identifier base prefix specified on the instance’s class (e.g., Requirements class)
overrides any value specified in :modspec-identifier-base:, if any; and

• When the instance is cross-referenced using its identifier, the identifier base prefix will
be removed from the identifier in the reference text.

NOTE 2: An identifier base specified on a requirement applies to all ModSpec requirement cross-
references rendered within that requirement. The identifier base truncation is applied to cross-
references rendered as just the identifier (style=id%), but it is also applied to the identifiers
incorporated inside of normal cross-references, and to the identifier labels of requirements.

Example 2 — Setting a document-wide identifier base prefix

:modspec-identifier-base: http://www.example.com

Refer to
xref:http://www.example.com/req/class1[] and
xref:http://www.example.com/req/class1/req1[style=id%].

[requirements_class]

identifier http://www.example.com/req/class1

requirement http://www.example.com/req/class1/req1

description Some description.

Example 3:

identifier http://www.example.com/req/class1/req1

statement A requirement.

OPEN GEOSPATIAL CONSORTIUM 23-040 86

http://www.example.com/req/class1
http://www.example.com/req/class1/req1
http://www.example.com/req/class1/req1

Example 4

Renders as:

Refer to
/req/class1 and /req/class1/req1.

|===
2+| Requirements class 1

h| Identifier | `/req/class1/`
h| Normative statement | Requirement 1: `/req/class1/req1`
h| Description | Some description.
|===

|===
2+| Requirement 1

h| Identifier | `/req/class1/req1`
h| Included in | Requirements class 1: `/req/class1`
h| Statement | A requirement.
|===

Example 5 — Setting a identifier base prefix at a class instance

[requirement,type=requirements_class]

identifier http://www.example.com/req/class1

identifier-base http://www.example.com/req

requirement http://www.example.com/req/class1/req1

description Some description.

Example 6:

identifier http://www.example.com/req/class1/req1

statement A requirement.

Example 7

Renders as:

|===
2+| Requirements class 1

h| Identifier | `/class1/`
h| Normative statement | Requirement 1: `/class1/req1`
h| Description | Some description.
|===

|===
2+| Requirement 1

OPEN GEOSPATIAL CONSORTIUM 23-040 87

http://www.example.com/req/class1
http://www.example.com/req
http://www.example.com/req/class1/req1
http://www.example.com/req/class1/req1

h| Identifier | `/class1/req1`
h| Included in | Requirements class 1: `/class1`
h| Statement | A requirement.
|===

Example 8 — Setting identifier base prefixes for document-wide and at the class instance level

:modspec-identifier-base: http://www.example.com

[requirement-class]

identifier:: http://www.example.com/req/class1
identifier-base:: http://www.example.com/req
requirement:: http://www.example.com/req/class1/req1

[requirement-class]

identifier:: http://www.example.com/req/class2
requirement:: http://www.example.com/req/class2/req2

[requirement]

identifier:: http://www.example.com/req/class1/req1
statement:: See also xref:http://www.example.com/req/class2/req2[style=id%].

[requirement]

identifier:: http://www.example.com/req/class2/req2
statement:: See also xref:http://www.example.com/req/class1/req1[].

Renders as:

REQUIREMENTS CLASS 1

IDENTIFIER /class1

NORMATIVE STATEMENT Requirement 1: /class1/req1

REQUIREMENTS CLASS 2

IDENTIFIER /req/class2

NORMATIVE STATEMENT Requirement 2: /req/class2/req2

OPEN GEOSPATIAL CONSORTIUM 23-040 88

REQUIREMENT 1

IDENTIFIER /class1/req1

INCLUDED IN Requirements class 1: /class1

STATEMENT See also /class2/req2

REQUIREMENT 2

IDENTIFIER /req/class2/req2

INCLUDED IN Requirements class 2: /req/class2

STATEMENT See also Requirement 1: /req/class1/req1

10.7. Rendering of ModSpec instances

ModSpec instances are rendered in a table format.

NOTE 1: This rendering method is consistent with prior OGC ModSpec practice.

• For HTML rendering, the CSS class of the ModSpec specification table is the type
attribute of the requirement.

The following types are recognized:

• No value for Requirements

• conformance_test for Conformance tests

• abstract_test for Abstract tests

• requirements_class for Requirements classes

• conformance_class for Conformance classes

NOTE 2: The default CSS class currently assigned for HTML rendering is recommend.

• The heading of the table (spanning two columns) is its name (the role or style of the
requirement, e.g., [permission] or [.permission]), optionally followed by its title (the
caption of the requirement, e.g., .Title).

• The title of the table (spanning two columns) is its identifier attribute.

OPEN GEOSPATIAL CONSORTIUM 23-040 89

• The initial rows of the body of the table give metadata about the requirement and includes
the following.

• The obligation attribute of the requirement, if given: Obligation followed by the
attribute value.

• The subject attribute of the requirement, if given: Subject, followed by the attribute.
The subject attribute can be marked up as a cross-reference to another requirement
given in the same document. If there are multiple values of the subject, they are
semicolon delimited [added in https://github.com/metanorma/metanorma-standoc/
releases/tag/v1.10.4].

• The inherit attribute of the requirement, if given: Dependency followed by the
attribute value. If there are multiple values of the attribute, they are semicolon
delimited.

• The indirect-dependency attribute of the requirement, if given: Indirect Dependency
followed by the attribute value. If there are multiple values of the attribute, they are
semicolon delimited.

• The classification attributes of the requirement, if given: the classification tag (in
capitals), followed by the classification value.

• The remaining rows of the requirement are the remaining components of the requirement,
encoded as table rows instead of as a definition table (as they are by default in
Metanorma).

• These include the explicit component components of the requirement [added
in Metanorma OGC version v1.4.0], which capture internal components of the
requirement defined in ModSpec.

These are divided into two categories.

• Components with a class attribute other than part are extracted in order, with
the class name normalised (title case), followed by the component contents. So a
component with a class attribute of conditions will be rendered as Conditions
followed by the component contents. In the foregoing, we have seen components
defined in ModSpec: test-purpose, test-method, test-method-type,
 conditions, reference. However the block attribute syntax allows open-ended
component names.

• Components with the class attribute part are extracted and presented in
order: each Part is rendered as an incrementing capital letter (A, B, C and so on),
followed by the component contents. Any cross-references to part components will
automatically be labelled with the identifier of their parent requirement, followed
by their ordinal letter.

• Components can include descriptive text (description), which is interleaved with
other components.

OPEN GEOSPATIAL CONSORTIUM 23-040 90

https://github.com/metanorma/metanorma-standoc/releases/tag/v1.10.4
https://github.com/metanorma/metanorma-standoc/releases/tag/v1.10.4

• Components can include open blocks marked with role attributes. That includes the
legacy Metanorma components:

• [.specification]

• [.measurement-target]

• [.verification]

• [.import]

OPEN GEOSPATIAL CONSORTIUM 23-040 91

11

RENDER UML MODELS

OPEN GEOSPATIAL CONSORTIUM 23-040 92

11 RENDER UML MODELS

11.1. Render UML models with LutaML

OGC uses the Metanorma toolchain for publishing standards. The steps involved in transforming
UML models into an MDS can be as simple as the conversion from UML models into Metanorma
syntax.

This clause describes in detail how this conversion step is performed.

OGC (through Testbed-17) has developed an automated workflow that provides a default UML
rendering template set to render each UML class and package in the same way. This workflow
uses the LutaML plugin to render the UML model’s contents into document elements, called the
[lutaml_uml_datamodel_description] block.

The [lutaml_uml_datamodel_description] block is used to iterate through a sequence
of UML packages, rendering each in a consistent way. The rendering template for each type
of UML element is predefined. Users do not have to supply their own template text unless
overriding is needed.

NOTE: LutaML uses Liquid as its templating language.

11.2. Exporting an MDS-readable model from EA

In order to make its information accessible to the MDA process, the UML models and associated
information needs to be exported into an interoperable format.

Enterprise Architect version 16 onwards uses a proprietary binary format called qea, which is
not readable outside of the application itself.

The interoperable format used in the OGC MDS process is the OMG UML format exported as
OMG XMI (XML Model Interchange) (OMG XMI 2.5.1) format, as an XML file with the extension
of xmi.

To export a UML Package (top-level package or one of the packages), first select the UML
Package to be exported, then click on “Publish As…” as shown in Figure 58.

OPEN GEOSPATIAL CONSORTIUM 23-040 93

Figure 58 — Location of the "Publish As…" button

Clicking on the “Publish As…” button opens a dialog box with the options shown in Figure 59.

Figure 59 — Generation options for an XMI that works with Metanorma

The user will need to export the file with the following configuration set:

• Filename change the file extension to use .xmi in the “…” dialog box

• XML Type set to “UML 2.4.1 (XMI 2.4.2)”

OPEN GEOSPATIAL CONSORTIUM 23-040 94

• Check the following boxes in “General Options”:

• Export Diagrams

• Format XML Output

• Generate Diagram Images, set Format to “SVG”

• Click on “Export”

NOTE: The Format “SVG” option is supported from EA version 16.1. Prior to 16.1, EMF was the only
vector image format.

When these steps are followed the exported XMI will be at the path specified, ready to serve as
input for the MDS process.

The resulting output will be placed in the selected directory as seen in Example 1. Note that
the UML diagrams will be exported under a new directory called Images/ under the selected
directory.

Example 1 — Example of EA-exported XMI with SVG images

working-directory/
+- xmi-v2-4-2-default.xmi
+- UML_EA.dtd
+- Images/
 +- EAID_40625194_4483_46b2_80CF_2756F08865D8.svg
 +- EAID_76FDCDFB_19E5_47b6_9D21_E6450814059F.svg
 +- EAID_9499129E_BD74_4df2_9AC5_680582E4CD47.svg

For typical UML diagrams, the “SVG” format exports into *.svg files, and work best since
they are vector images. SVG images allow for perfect scaling in PDF output and in HTML web
browsers.

However, the EA SVG export functionality can occasionally fail to produce accurate results,
especially for complex UML diagrams that involve custom relationships and lines.

OPEN GEOSPATIAL CONSORTIUM 23-040 95

GML MUDDI Core Conceptual Model

«FeatureType»
Network

«property»
+ commodityType: AbstractValueType

«FeatureType»
NetworkConveyance

«FeatureType»
NetworkAccessory

«FeatureType»
NetworkLink

«FeatureType»
NetworkNode

«FeatureType»
ServiceArea

«FeatureType»
Site

«FeatureType»
MUDDIEvent

«property»
+ validTime: AbstractValueType

«FeatureType»
MUDDIObject

{root}

«property»
+ objectID {id}

«FeatureType»
MUDDIAsset

«property»
+ assetOwnerID: AbstractValueType

«FeatureType»
NetworkAsset

«property»
+ utilityType: AbstractValueType

«FeatureType»
MUDDISpace

«property»
+ extent: AbstractValueType

SubNetwork

featureOfInterest

linkedTo

partOf

to

servicedBy

from

SubordinateNetwork

enclosedBy

partOf

Figure 60-1 — EA-generated SVG file containing inaccurate layout

OPEN GEOSPATIAL CONSORTIUM 23-040 96

Figure 60-2 — EA-generated PNG file with correct layout

Figure 60 — Example of failed EA exported SVG

In this case, the following additional steps will also export PNG images in the same directory:

• Filename change the file extension to use .xmi in the “…” dialog box

• XML Type set to “UML 2.4.1 (XMI 2.4.2)”

• Check the following boxes in “General Options”:

• Export Diagrams

• Format XML Output

• Generate Diagram Images, set Format to “PNG”

• Click on “Export”

OPEN GEOSPATIAL CONSORTIUM 23-040 97

If one specifies the same location for exporting PNG images, they will be placed alongside the
previously generated SVG images as shown in Example 2.

Example 2 — Example of EA-exported XMI with mixed SVG and PNG images

working-directory/
+- xmi-v2-4-2-default.xmi
+- UML_EA.dtd
+- Images/
 +- EAID_40625194_4483_46b2_80CF_2756F08865D8.svg
 +- EAID_40625194_4483_46b2_80CF_2756F08865D8.png
 +- EAID_76FDCDFB_19E5_47b6_9D21_E6450814059F.svg
 +- EAID_76FDCDFB_19E5_47b6_9D21_E6450814059F.png
 +- EAID_9499129E_BD74_4df2_9AC5_680582E4CD47.svg
 +- EAID_9499129E_BD74_4df2_9AC5_680582E4CD47.png

11.3. Basic usage

Basic usage of the [lutaml_uml_datamodel_description] command is given in Figure 61.

[lutaml_uml_datamodel_description,path/to/example.xmi]
--
--

Figure 61 — Basic usage of the lutaml_uml_datamodel_description block

lutaml_uml_datamodel_description declares the type of this block; path/to/example.xmi is
the path to the OMG XMI file.

This command generates a Metanorma representation of the UML elements contained in the
XMI file path/to/example.xmi.

By default, this block will iterate through the entire XMI file:

• Including all diagrams as figures in the MDS; and

• Rendering all UML elements hierarchically in the order of Package, Classes, Attributes,
Associations, etc.

OPEN GEOSPATIAL CONSORTIUM 23-040 98

11.4. Configuration file

11.4.1. General

The behavior of the lutaml_uml_datamodel_description can be customized through
providing a configuration file in YAML, as shown in Figure 62.

[lutaml_uml_datamodel_description,path/to/example.xmi,config.yaml]
--
--

Figure 62 — Configuring behavior of the lutaml_uml_datamodel_description block

config.yaml is the path to a YAML config file for the lutaml_uml_datamodel_description
block.

The config.yaml parameter is optional. The nominated YAML file specifies which packages to
process in the command, in which order; rendering style instructions; and the location of the
root package.

The syntax of the YAML file is described in Figure 63.

packages: <1>
 # includes these packages
 - "Package *"
 - two*
 - three
 # skips these packages
 - skip: four
render_style: data_dictionary <2>
section_depth: 2 <3>
package_root_level: 2 <4>

Key

<1> The packages key.

<2> The render_style key.

<3> The section_depth key.

<4> The package_root_level key.

Figure 63 — YAML configuration for lutaml_uml_datamodel_description command

All keys in the configuration files are optional.

OPEN GEOSPATIAL CONSORTIUM 23-040 99

11.4.2. Package inclusion

The packages key accepts an array of package name specifications that describes which
packages to be included or excluded. The filter execution order is in the sequence of
specification.

Specifically, any package that matches the given pattern (supporting regular expression matches)
will be included in output.

Example 1: The regular expression “three” will only match the package name “three”, which will
be included in the rendered output.

Example 2: The regular expression Package * will match “Package 1”, “Package X” and “Package
This-And-That”.

To exclude packages, a syntax of skip: {name} is used for the package name specification. If a
package was included in one of the matches, a skip rule that matches will cause that package to
be skipped.

Example 3: The specification “skip: four” will specifically skip the package named “four” even if it
was included in one of the matches prior to the skip rule.

11.4.3. Rendering style

11.4.3.1. General

The render_style value indicates the automated generation style to be used.

The generation style affects:

• the clause hierarchical structure; and

• the content rendered from the generated UML models.

There are 3 types of UML rendering styles:

• default: the default manner to render UML packages and classes in an OGC deliverable;

• entity_list: the entity list style provides a high level summary of all elements in a
package; and

• data_dictionary: the data dictionary style provides detailed definitions to describe
elements in a package.

OPEN GEOSPATIAL CONSORTIUM 23-040 100

In practice, the entity list and the data dictionary styles are commonly meant to be used
together in a single document. This combination should only used when there is an unexcusable
need to deviate from the default style, such as for:

• highly-modularized documents, where models are packaged in multiple modules;

• backwards compatibility for deliverables that have previously adopted the entity list + data
dictionary structure; and

• models with a deep hierarchy, which the default style would lead to very deep clause
hierarchies.

Example 1: The default style is used for OGC 20-040r3.

Example 2: The entity list + data dictionary style is used for OGC 20-010.

11.4.3.2. Default style

The default style is considered the style to use for new MDS documents as it provides an OGC
accepted order and rendering of UML components.

In the default style, the following steps are taken:

1. For every UML package (“package-name”):

a) Render an overview subclause for the package, titled “{package-name}
overview”, with the following content:

i) If this package contains subpackages, render the following:

• “The {package-name} package is organized into {sub-package-
count} packages:”

• Each sub-package is then listed out

ii) Figures included in the top-most level of the package are
rendered.

b) For every sub-packages, recurse as per step 1.

c) Render defining tables for every element in this package (in the order of
Class / Interface / Union / DataType) according to this list of information:

• Name

• Definition

• Stereotype

• Inheritance from (optional)

OPEN GEOSPATIAL CONSORTIUM 23-040 101

• Generalization of (optional)

• Abstract

• Associations: Association with; Obligation; Maximum occurrence;
Provides

• Public attributes: Name; Definition; Derived; Obligation; Maximum
occurrence; Data type

• Constraints

An example of the default style is shown in Figure 64.

Figure 64 — Rendering style default used in OGC 20-040r3 (ISO 19170)

11.4.3.3. Entity list style

The entity list style provides an overview listing of all UML components within a UML package.
It provides a high-level overview of the UML package and is meant to be used together with the
data dictionary style.

This style was originally developed from OGC 20-010 and is only recommended for MDS
experts to tailor the MDS experience.

An example of the entity_list style is shown in Figure 65 and Figure 66.

OPEN GEOSPATIAL CONSORTIUM 23-040 102

Figure 65 — Rendering style entity_list table of contents used in OGC 20-010

Figure 66 — Rendering style entity_list body contents used in OGC 20-010

OPEN GEOSPATIAL CONSORTIUM 23-040 103

11.4.3.4. Data dictionary style

The data dictionary style provides a detailed listing of all UML components within a UML
package. It provides a detailed-level inspection of the UML package and is meant to be used
together with the entity list style.

This style was originally developed from OGC 20-010 and is only recommended for MDS
experts to tailor the MDS experience.

An example of the data_dictionary style is shown in Figure 67, Figure 68 and Figure 69.

Figure 67 — Rendering style data_dictionary table of contents used in OGC 20-010

OPEN GEOSPATIAL CONSORTIUM 23-040 104

Figure 68 — Rendering style data_dictionary body content part 1 used in OGC 20-010

Figure 69 — Rendering style data_dictionary body content part 2 used in OGC 20-010

OPEN GEOSPATIAL CONSORTIUM 23-040 105

11.4.4. Section depth

The section_depth value specifies the clause depth intended for the automated rendering to
occur in Metanorma.

Example: The section_depth value of 2 specifies that the location of the lutaml_uml_datamodel_
description command is at the second level of depth, used to maintain the hierarchy of
generated AsciiDoc sections.

11.4.5. Package root depth

The package_root_depth value indicates the depth of the automated inclusion process from
the root UML package block (an OMG XMI file starts with a UML package as root).

Example: The package_root_level value of 2 specifies that the automatic inclusion iterative
process starts with UML packages at depth 2 of the XMI.

11.5. Customization options

11.5.1. General

The [lutaml_uml_datamodel_description] block allows specification of multiple overriding
hooks for users to insert content within the automated rendering process.

11.5.2. Diagrams

The [.diagram_include_block] block inside [lutaml_uml_datamodel_description] is used
to import images generated from EA into the automated rendering process.

The process described Clause 11.2 allows extraction of UML diagrams directly from EA. These
UML diagrams however exported into image files named according to an EA-proprietary unique
ID, such as EAID_40625194_4483_46b2_80CF_2756F08865D8.svg, which are difficult to work
with.

The [.diagram_include_block] block allows [lutaml_uml_datamodel_description] to find
the correct figure files through this syntax:

[.diagram_include_block, base_path="working-directory/Images", format="svg"]
<1>
....
Text <2>

OPEN GEOSPATIAL CONSORTIUM 23-040 106

....

Key

<1> base_path specifies the path of the EA-generated images, format specifies the file extension
of the EA-generated images.

<2> Metanorma AsciiDoc text prior to appearance of the image.

Figure 70 — Including diagrams in the lutaml_uml_datamodel_description block

The base_path parameter is a mandatory value that specifies the path of the EA-generated
images. The path here is relative to the source file location where the [lutaml_uml_datamodel_
description] block is defined.

For example, this is how a typical OGC MDS directory looks like:

Example 1 — Example of OGC MDS document directory with SVG images

+- sources/
 +- images/
 +- document.adoc
 +- model/
 +- export.xmi
 +- UML_EA.dtd
 +- Images/
 +- EAID_40625194_4483_46b2_80CF_2756F08865D8.svg
 +- EAID_76FDCDFB_19E5_47b6_9D21_E6450814059F.svg

Using this OGC MDS directory, the following block specification will include the EA-generated
images.

Example 2 — Example to include EA-generated SVG images in the lutaml_uml_datamodel_
description block

[.diagram_include_block, base_path="model/Images", format="svg"]
....
....

If the EA-generated SVG images are generated with undesired artefacts, the png format option
can be used. Simply re-generate the images using the “PNG” output format in EA in the same
directory.

Example 3 — Example of OGC MDS document directory with PNG images

+- sources/
 +- images/
 +- document.adoc
 +- model/
 +- export.xmi
 +- UML_EA.dtd
 +- Images/
 +- EAID_40625194_4483_46b2_80CF_2756F08865D8.png
 +- EAID_76FDCDFB_19E5_47b6_9D21_E6450814059F.png

Using this OGC MDS directory, the following block specification will include the EA-generated
images.

OPEN GEOSPATIAL CONSORTIUM 23-040 107

Example 4 — Example to include EA-generated PNG images in the lutaml_uml_datamodel_
description block

[.diagram_include_block, base_path="model/Images", format="png"]
....
....

11.5.3. Before and after blocks

The [.before] and [.after] blocks in the [lutaml_uml_datamodel_description] block
allows specifying text before or after every described UML class.

When used by itself, it means that this block applies before or after all packages have been
iterated through ([.before], [.after]).

A package parameter can be given to this block to specify that the block only applies to before
or after a particular package in the loop ([.before, package="Another"], [.after, package=
"CityGML"]).

Example — Example of using before and after blocks

[.before]
....
Text applies before first package is inspected.
....

[.before, package="CityGML"]
....
Text applies immediately before the CityGML package is inspected.
....

[.after, package="CityGML"]
....
Text applies immediately after the CityGML package is inspected.
....

[.after]
....
Text applies after all packages have been inspected.
....

11.5.4. Include block

The [.include_block] block allows dynamic insertion of an external file according to the UML
package name being inspected.

The syntax is:

[.include_block, position="before", base_path="requirements/requirements_class_
"]
--
--

Figure 71

OPEN GEOSPATIAL CONSORTIUM 23-040 108

Where,

base_path specifies where to find the dynamic file being inserted;

position= (optional) specifies either before or after;

package= (optional) specifies the UML package match condition.

NOTE: Only before and after are currently defined as values for position.

To use the include block it is necessary to know how the package name is translated into a file
name, which file is to be included.

The package name to file name conversion takes these steps:

1. The package name is lowercased;

2. The symbols -, : and ` ` (whitespace) is converted into _; and

3. The resulting name is prefixed with an underscore (_), appended with the .adoc
or .liquid extension, and the specified base_path=.

For example, the UML package name of “MUDDI Core: packages” will be transformed into
{base_path}_muddi_core__packages.[adoc|liquid].

The include_block is useful for including per UML package content, such as ModSpec
requirements, conformance tests and structured content.

This is additional text that will be included after the inclusion
of the `spec/fixtures/{include_package_name}` file for every UML
package evaluated.

Figure 72-1

This is additional text that will be included after the inclusion of
the `spec/fixtures/{include_package_name}` file before the `Another`
package.

Figure 72-2

11.5.5. Package block

The [.package_text] block in the [lutaml_uml_datamodel_description] block allows
specifying a block to insert at a particular clause index.

The [.package_text] block can take the following forms.

To specify text to be interpolated in predefined positions within each package, use the
position= and package= parameters ([.package_text, position="after", package=
"Another"]).

OPEN GEOSPATIAL CONSORTIUM 23-040 109

The syntax is:

[.package_text, index="1", position="before", package="Another"]
--
--

Figure 73

Where,

package= specifies the UML package match condition;

position= (optional) specifies either before or after;

index= (optional) if there are multiple package_text blocks, define the order of
the inserted blocks.

NOTE: Only before and after are currently defined as values for position.

The package_block is useful for injecting particular texts or files to the automatically generated
content.

Example

[.package_text, index="1", position="before", package="Common Spatio-temporal
Classes"]
....
include::clause_7_1_common.adoc[]
....

[.package_text, index="2", position="before", package="Temporal and Zonal
Geometry"]
....
include::clause_7_2_temporal.adoc[]
....

[.package_text, index="1", position="after", package="Temporal and Zonal
Geometry"]
....
=== Defining tables

include::../tables/TAB_cc-st-g-t-i.adoc[]

include::../tables/TAB_cc-st-g-t.adoc[]

The following requirement applies:

include::../requirements/REQ_cc-temporal-geometry.adoc[]
....

11.6. Manual rendering (advanced)

For the advanced user who wishes to access data elements beyond the automated process,
LutaML provides the [lutaml] command that can be used individually to build up an MDS.

OPEN GEOSPATIAL CONSORTIUM 23-040 110

NOTE: Using the [lutaml] command for MDS will be highly repetitive and require in-depth
understand of Liquid templating.

Figure 74 shows an instance of the [lutaml] command in Metanorma, which instructs LutaML
to process the file in path/to/file.xmi, and pass the results of the parse into the object
package.

The body of the command then iterates through the contents of package, and generates
Metanorma AsciiDoc using values from the variable.

[lutaml,path/to/filelocation.xmi,package]
--
{% for diagram in package.diagrams %}
[[figure-{{ diagram.xmi_id }}]]
.{{ diagram.name }}
image::{{ base_path }}/{{ diagram.xmi_id }}.{{ format | default: 'png' }}[]

{% if diagram.definition %}
{{ diagram.definition | html2adoc }}
{% endif %}
{% endfor %}
--

Figure 74 — Rendering of a UML package under LutaML

• The directives in {% … %} are Liquid processing directives, including loops and
conditionals.

• The variables referenced in the directives, and invoked through {{ … }}, are attributes
parsed by LutaML from the given source files. For example, package.diagrams is the list
of all diagrams under the current package, and diagram is a loop variable containing the
parsed information for one such diagram.

• The variable diagram contains attributes of its own which LutaML has parsed; the XMI ID
attribute for the diagram:

• {{ diagram.xmi_id }} is used in conjunction with the LutaML parameter {{ image_
base_path }} in order to define the file location of the associated image file;

• {{ diagram.xmi_id }} is also used with the prefix figure- to define the anchor for
the image ([[…]]), to be used in cross-references; and

• The markup .{{ diagram.name }} is used to insert the name attribute of the diagram
as the image caption.

OPEN GEOSPATIAL CONSORTIUM 23-040 111

11.7. Cross-referencing UML document elements

11.7.1. General

Metanorma provides several commands to enable cross-referencing of MDS-generated
document elements.

These particular commands work out of the box when the default style of UML rendering is
applied.

When using the entity-list and data-dictionary UML rendering styles, these commands
only work under manual circumstances.

11.7.2. UML diagrams

The [lutaml_figure] command provides a reference anchor to a figure defined in the XMI file,
using its XMI ID for reference.

The syntax is as follows:

lutaml_figure::[package="{package-name}",name="{diagram-name}"]

Figure 75

Where:

package-name (optional) name of the package where the UML diagram resides in.

diagram-name name of the UML diagram.

If the diagram name is not globally unique across the OMG XMI export, the package name has
to be provided for a unique reference.

Example — Usage of lutaml_figure (from OGC MUDDI Conceptual Model)

The MUDDI core conceptual models are illustrated in
lutaml_figure::[name="MUDDI Conceptual Model",package="Conceptual Model"].

When using the entity-list and data-dictionary UML rendering styles, which do not
include any UML diagrams, the figures have to be manually encoded as normal Metanorma
figures.

11.7.3. UML definition tables

The [lutaml_table] command provides a reference anchor to the definition tables of a
particular package, class, enumeration or data type object in the XMI.

OPEN GEOSPATIAL CONSORTIUM 23-040 112

The definition tables are automatically generated by the [lutaml_uml_datamodel_
description] command in the default and data dictionary rendering styles.

NOTE: The entity-list rendering style does not produce any definition tables, and therefore
does not support the [lutaml_table] command.

The syntax is as follows:

lutaml_table::[package="{package-name}"] <1>
lutaml_table::[package="{package-name}",class="{class-name}"] <2>
lutaml_table::[package="Wrapper root package",enum="{enum-name}"] <3>
lutaml_table::[package="Wrapper root package",data_type="{datatype-name}"] <4>

Key

<1> Referencing the definition table for a package.

<2> Referencing the definition table for a class of a package.

<3> Referencing the definition table for an enumeration of a package.

<4> Referencing the definition table for a data type of a package.

Figure 76

Where:

package-name name of the referenced package.

class-name name of the class.

enum-name name of the enumeration.

datatype-name name of the data type.

Example — Usage of lutaml_table

This is lutaml_table::[package="Wrapper root package"] package
This is lutaml_table::[package="Wrapper root package", class="my name"] class
This is lutaml_table::[package="Wrapper root package", enum="my name"]
enumeration
This is lutaml_table::[package="Wrapper root package", data_type="my name"]
data type

OPEN GEOSPATIAL CONSORTIUM 23-040 113

12

REQUIREMENTS ON
DOCUMENT

OPEN GEOSPATIAL CONSORTIUM 23-040 114

12 REQUIREMENTS ON DOCUMENT

12.1. General

The MDS process places certain quality requirements on the document encoding.

REQUIREMENTS CLASS 2: DOCUMENT REQUIREMENTS FOR THE MODEL-DRIVEN
STANDARD

IDENTIFIER /req/document

TARGET TYPE MDS document

CONFORMANCE CLASS Conformance class A.2: /conf/document

DESCRIPTION
The Metanorma document used for the model-driven standard meets the
MDS requirements.

NORMATIVE STATEMENTS

Requirement 4: /req/document/metadata
Requirement 5: /req/document/uml-integration
Requirement 6: /req/document/uml-render-configuration
Requirement 7: /req/document/uml-cross-references
Requirement 8: /req/document/modspec

12.2. Specification of metadata

The MDS document shall be encoded with correct metadata suitable for the OGC model
standard.

REQUIREMENT 4: MODEL-BASED DOCUMENT: METADATA VALUES

IDENTIFIER /req/document/metadata

INCLUDED IN Requirements class 2: /req/document

STATEMENT
The document shall provide suitable metadata for an OGC deliverable that describes
an information model.

OPEN GEOSPATIAL CONSORTIUM 23-040 115

12.3. UML integration

The MDS document shall integrate with the UML model via an OMG XMI interface.

REQUIREMENT 5: MODEL-BASED DOCUMENT: UML INTEGRATION

IDENTIFIER /req/document/uml-integration

INCLUDED IN Requirements class 2: /req/document

STATEMENT The document shall integrate with the UML model via an OMG XMI file.

12.4. UML render configuration

The MDS document shall specify the render conditions and configuration of the UML model.

REQUIREMENT 6: MODEL-BASED DOCUMENT: UML RENDER CONFIGURATION

IDENTIFIER /req/document/uml-render-configuration

INCLUDED IN Requirements class 2: /req/document

STATEMENT
The document shall specify the render conditions and configuration of the
UML model.

12.5. UML cross-references

The MDS document shall utilize methods provided in this document to create cross-references
for document elements generated by the automated UML rendering process.

REQUIREMENT 7: MODEL-BASED DOCUMENT: UML CROSS-REFERENCES

IDENTIFIER /req/document/uml-cross-references

OPEN GEOSPATIAL CONSORTIUM 23-040 116

REQUIREMENT 7: MODEL-BASED DOCUMENT: UML CROSS-REFERENCES

INCLUDED IN Requirements class 2: /req/document

STATEMENT
The document shall utilize methods provided in this document to create cross-references
for document elements generated by the automated UML rendering process.

12.6. ModSpec instances

The MDS document shall encode its requirements in a manner compliant with the ModSpec
(OGC 08-131r3).

REQUIREMENT 8: MODEL-BASED DOCUMENT: MODSPEC INSTANCES

IDENTIFIER /req/document/modspec

INCLUDED IN Requirements class 2: /req/document

STATEMENT
The document shall encode its requirements in a manner compliant with the
ModSpec.

OPEN GEOSPATIAL CONSORTIUM 23-040 117

13

REQUIREMENTS ON UML
MODEL

OPEN GEOSPATIAL CONSORTIUM 23-040 118

13 REQUIREMENTS ON UML MODEL

13.1. General

The MDS process places certain quality requirements on the involved UML model authored in
Sparx Systems Enterprise Architect. This clause describes those requirements.

REQUIREMENTS CLASS 3: COMPLETION OF UML MODEL ANNOTATIONS FOR THE
MODEL-DRIVEN STANDARD

IDENTIFIER /req/uml

TARGET TYPE UML model

CONFORMANCE CLASS Conformance class A.3: /conf/uml

DESCRIPTION
The UML model input for the model-driven standard has been fully
annotated to the MDS requirements.

NORMATIVE STATEMENTS

Requirement 9: /req/uml/package-name
Requirement 10: /req/uml/package-description
Requirement 11: /req/uml/package-completeness
Requirement 12: /req/uml/diagram-name
Requirement 13: /req/uml/diagram-description
Requirement 14: /req/uml/diagram-type
Requirement 15: /req/uml/class-name
Requirement 16: /req/uml/class-description
Requirement 17: /req/uml/class-stereotype
Requirement 18: /req/uml/class-abstract
Requirement 19: /req/uml/class-constraints
Requirement 20: /req/uml/property-name
Requirement 21: /req/uml/property-description
Requirement 22: /req/uml/property-stereotype
Requirement 23: /req/uml/property-multiplicity
Requirement 24: /req/uml/property-type
Requirement 25: /req/uml/property-constraints
Requirement 26: /req/uml/datatype-name
Requirement 27: /req/uml/datatype-description
Requirement 28: /req/uml/enumeration-name
Requirement 29: /req/uml/enumeration-description
Requirement 30: /req/uml/enumeration-value-name
Requirement 31: /req/uml/enumeration-value-description
Requirement 32: /req/uml/enumeration-value-type

OPEN GEOSPATIAL CONSORTIUM 23-040 119

REQUIREMENTS CLASS 3: COMPLETION OF UML MODEL ANNOTATIONS FOR THE
MODEL-DRIVEN STANDARD

Requirement 33: /req/uml/relationship-specification
Requirement 34: /req/uml/relationship-multiplicity

13.2. Package

13.2.1. Name

The package should have a unique name.

REQUIREMENT 9: PACKAGE: ASSIGNMENT OF UNIQUE NAMES

IDENTIFIER /req/uml/package-name

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML package that serves as input to the MDS process is assigned a unique
package name as in the EA “Name” property.

13.2.2. Description

The package description should be filled in.

Figure 77

OPEN GEOSPATIAL CONSORTIUM 23-040 120

REQUIREMENT 10: PACKAGE: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /req/uml/package-description

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML package that serves as input to the MDS process has its description encoded
in the EA “Notes” pane in plain text.

13.2.3. Uniqueness

A UML package used in the MDS process should be free of external dependencies, unless
remidies are specifically stated in the configuration file.

REQUIREMENT 11: PACKAGE: FREE OF EXTERNAL DEPENDENCIES

IDENTIFIER /req/uml/package-completeness

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML package that serves as input to the MDS process is fully contained in the exported
OMG XMI file, and does not depend on any external package not available to the MDS
process, unless those external dependencies are configured in the MDS configuration file.

13.3. Diagram

13.3.1. Name

A diagram used in the MDS process has a unique name to enable cross-referencing.

REQUIREMENT 12: DIAGRAM: ASSIGNMENT OF GLOBALLY UNIQUE NAME

IDENTIFIER /req/uml/diagram-name

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML diagram that serves as input to the MDS process is assigned a unique name
in the EA “Name” property, global to the scope of the MDS model.

OPEN GEOSPATIAL CONSORTIUM 23-040 121

13.3.2. Description

REQUIREMENT 13: DIAGRAM: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /req/uml/diagram-description

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML diagram that serves as input to the MDS process has its description encoded
in the EA “Notes” pane in plain text.

13.3.3. Type

Sparx Systems Enterprise Architect supports multiple diagram types. In the MDS process, all
diagrams are of the “Class” type.

REQUIREMENT 14: DIAGRAM: TYPE OF CLASS

IDENTIFIER /req/uml/diagram-type

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML diagram that serves as input to the MDS process is encoded according to the
“Class” diagram type in EA.

13.4. Class

13.4.1. Name

The class should have a unique name within the package it belongs to.

REQUIREMENT 15: CLASS: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /req/uml/class-name

INCLUDED IN Requirements class 3: /req/uml

OPEN GEOSPATIAL CONSORTIUM 23-040 122

REQUIREMENT 15: CLASS: ASSIGNMENT OF UNIQUE NAME

STATEMENT
Every UML class that serves as input to the MDS process has its name encoded in the
EA “Name” attribute in plain text.

13.4.2. Description

The class description should be filled in the Notes pane.

Figure 78

REQUIREMENT 16: CLASS: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /req/uml/class-description

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML class that serves as input to the MDS process has its description encoded in
the EA “Notes” pane in plain text.

13.4.3. Stereotype

The class stereotype, if any, shall be encoded in the UML class.

REQUIREMENT 17: CLASS: ASSIGNMENT OF STEREOTYPE

IDENTIFIER /req/uml/class-stereotype

INCLUDED IN Requirements class 3: /req/uml

OPEN GEOSPATIAL CONSORTIUM 23-040 123

REQUIREMENT 17: CLASS: ASSIGNMENT OF STEREOTYPE

STATEMENT
Every UML class that serves as input to the MDS process, that belongs to a particular
stereotype, shall have its stereotype encoded in the EA model.

13.4.4. Abstract

If a class is an abstract class, the abstract status in the UML model should reflect that status.

REQUIREMENT 18: CLASS: ABSTRACT STATUS

IDENTIFIER /req/uml/class-abstract

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML class that serves as input to the MDS process if is intended to be abstract shall
encode its abstract status in the EA model.

13.4.5. Constraints

UML class constraints should be encoded in the OMG OCL 2.4 language accompanied with
an adequate description. This is achieved in Sparx Systems Enterprise Architect through the
“Properties” popup, in the “Responsiblities > Constraints” context item.

The version of OCL syntax used shall be documented in the resulting conceptual model and in
the OGC deliverable.

REQUIREMENT 19: CLASS: ENCODING OF CLASS CONSTRAINTS

IDENTIFIER /req/uml/class-constraints

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML class that serves as input to the MDS process that contain constraints shall have
those constraints encoded in the OCL language with a corresponding description in plain
text.

OPEN GEOSPATIAL CONSORTIUM 23-040 124

13.5. Property

13.5.1. Name

The property should have a unique name within the class it belongs to.

REQUIREMENT 20: PROPERTY: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /req/uml/property-name

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML property that serves as input to the MDS process has its name encoded in
the EA “Name” attribute in plain text.

13.5.2. Description

The property description is entered in the Notes pane.

REQUIREMENT 21: PROPERTY: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /req/uml/property-description

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML property that serves as input to the MDS process has its description
encoded in the EA “Notes” pane in plain text.

13.5.3. Stereotype

The property stereotype, if any, shall be encoded in the UML property.

REQUIREMENT 22: PROPERTY: ASSIGNMENT OF STEREOTYPE

IDENTIFIER /req/uml/property-stereotype

INCLUDED IN Requirements class 3: /req/uml

OPEN GEOSPATIAL CONSORTIUM 23-040 125

REQUIREMENT 22: PROPERTY: ASSIGNMENT OF STEREOTYPE

STATEMENT
Every UML property that serves as input to the MDS process, that belongs to a particular
stereotype, shall have its stereotype encoded in the EA model.

13.5.4. Multiplicity

The multiplicity requirements of the property shall be encoded.

REQUIREMENT 23: PROPERTY: ASSIGNMENT OF MULTIPLICITY

IDENTIFIER /req/uml/property-multiplicity

INCLUDED IN Requirements class 3: /req/uml

STATEMENT

Every UML property that serves as input to the MDS process that has multiplicity requirements
shall have its multiplicity requirements encoded in the Multiplicity attribute group, including
the lower bound, upper bound, whether duplicates are allowed and whether the multiplicity is
ordered.

13.5.5. Value types

The value type for a property shall be specified in the UML property.

If there is no value type specified for an property, create an “AbstractValueType” data type with
the GML Stereotype “Type”, and assign it to the property (see Figure 79).

Figure 79 — Assignment of AbstractValueType to represent
an unspecified value type (from: MUDDI Conceptual Model)

REQUIREMENT 24: PROPERTY: ASSIGNMENT OF VALUE TYPE

IDENTIFIER /req/uml/property-type

OPEN GEOSPATIAL CONSORTIUM 23-040 126

REQUIREMENT 24: PROPERTY: ASSIGNMENT OF VALUE TYPE

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML property that serves as input to the MDS process shall be assigned a value type. If
the value type of the property is meant to be abstract (to be implemented by a realization of the
property), the UML Class “AbstractValueType” shall be used as its value type.

13.5.6. Constraints

UML property constraints should be encoded in the OMG OCL 2.4 language accompanied with
an adequate description. This is achieved in Sparx Systems Enterprise Architect through the
“Properties” popup, in the “Responsiblities > Constraints” context item.

The version of OCL syntax used shall be documented in the resulting conceptual model and in
the OGC deliverable.

REQUIREMENT 25: PROPERTY: ENCODING OF PROPERTY CONSTRAINTS

IDENTIFIER /req/uml/property-constraints

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML property that serves as input to the MDS process that contain constraints shall
have those constraints encoded in the OCL language with a corresponding description in
plain text.

13.6. Data type

13.6.1. Name

The data type should have a unique name within the package it belongs to.

REQUIREMENT 26: DATA TYPE: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /req/uml/datatype-name

INCLUDED IN Requirements class 3: /req/uml

OPEN GEOSPATIAL CONSORTIUM 23-040 127

REQUIREMENT 26: DATA TYPE: ASSIGNMENT OF UNIQUE NAME

STATEMENT
Every UML data type that serves as input to the MDS process has its name encoded in
the EA “Name” attribute in plain text.

13.6.2. Description

The data type description is entered in the Notes pane.

REQUIREMENT 27: DATA TYPE: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /req/uml/datatype-description

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML data type that serves as input to the MDS process has its description
encoded in the EA “Notes” pane in plain text.

13.7. Enumeration

13.7.1. Name

The enumeration should have a unique name within the package it belongs to.

REQUIREMENT 28: ENUMERATION: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /req/uml/enumeration-name

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML enumeration that serves as input to the MDS process has its name
encoded in the EA “Name” attribute in plain text.

13.7.2. Description

The Enumeration description is entered in the Notes pane.

OPEN GEOSPATIAL CONSORTIUM 23-040 128

REQUIREMENT 29: ENUMERATION: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /req/uml/enumeration-description

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML enumeration that serves as input to the MDS process has its description
encoded in the EA “Notes” pane in plain text.

13.8. Enumeration values

13.8.1. Name

The enumeration value should have a unique name within the package it belongs to.

REQUIREMENT 30: ENUMERATION VALUE: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /req/uml/enumeration-value-name

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML enumeration value that serves as input to the MDS process has its name
encoded in the EA “Name” attribute in plain text.

13.8.2. Description

The enumeration value description is entered in the Notes pane.

REQUIREMENT 31: ENUMERATION VALUE: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /req/uml/enumeration-value-description

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML enumeration value that serves as input to the MDS process has its
description encoded in the EA “Notes” pane in plain text.

OPEN GEOSPATIAL CONSORTIUM 23-040 129

13.8.3. Type

The enumeration value type, if any, shall be encoded in UML.

REQUIREMENT 32: ENUMERATION VALUE: ASSIGNMENT OF TYPE

IDENTIFIER /req/uml/enumeration-value-type

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML enumeration value that serves as input to the MDS process, that has a
particular value type, shall have its value type encoded in the EA model.

13.9. Relationships

13.9.1. General

UML elements can be set with multiple relationships. In Sparx Systems Enterprise Architect they
are created either as Connectors or Associations.

The following UML Class relationships are often described in a model-driven standard:

Generalization the target class will be described as a “superclass”, and the source class
will be listed as a “subclass” of the target class.

Dependency the source class will be listed as a “dependency” of the target.

Realization EA creates Realization relationships from every UML class to the class
itself, and these are not rendered in the MDA process.

13.9.2. Specification

REQUIREMENT 33: RELATIONSHIP: COMPLETE SPECIFICATION

IDENTIFIER /req/uml/relationship-specification

INCLUDED IN Requirements class 3: /req/uml

OPEN GEOSPATIAL CONSORTIUM 23-040 130

REQUIREMENT 33: RELATIONSHIP: COMPLETE SPECIFICATION

STATEMENT
Every UML relationship that serves as input to the MDS process shall be fully specified in
the EA model with directionality, type and name.

13.9.3. Multiplicity

REQUIREMENT 34: RELATIONSHIP: COMPLETE SPECIFICATION

IDENTIFIER /req/uml/relationship-multiplicity

INCLUDED IN Requirements class 3: /req/uml

STATEMENT
Every UML relationship that serves as input to the MDS process shall have be fully specified
in the EA model: generalizations, dependencies, realizations, with their names.

OPEN GEOSPATIAL CONSORTIUM 23-040 131

A

ANNEX A (NORMATIVE)
ABSTRACT TEST SUITE

OPEN GEOSPATIAL CONSORTIUM 23-040 132

A ANNEX A
(NORMATIVE)
ABSTRACT TEST SUITE

A.1. Core

CONFORMANCE CLASS A.1: IDENTIFICATION OF SOURCE COMPONENTS OF THE
MODEL-DRIVEN STANDARD

IDENTIFIER /conf/core

SUBJECT Model-driven standard

REQUIREMENTS CLASS Requirements class 1: /req/core

DESCRIPTION
Validate that the source components of the model-driven standard
are identified and understood.

CONFORMANCE TESTS
Abstract test A.1: /conf/core/document
Abstract test A.2: /conf/core/uml
Abstract test A.3: /conf/core/metadata

ABSTRACT TEST A.1: READINESS OF OGC DOCUMENT INFORMATION USED BY THE
MODEL-DRIVEN STANDARD

IDENTIFIER /conf/core/document

REQUIREMENT Requirement 1: /req/core/document

TEST METHOD Manual inspection

DESCRIPTION
Validate that the OGC document information used in the model-driven standard
is completed and made available to the model-driven standard in the Metanorma
AsciiDoc format.

OPEN GEOSPATIAL CONSORTIUM 23-040 133

ABSTRACT TEST A.2: READINESS OF UML MODEL INFORMATION USED BY THE MODEL-
DRIVEN STANDARD

IDENTIFIER /conf/core/uml

REQUIREMENT Requirement 2: /req/core/uml

TEST METHOD Manual inspection

DESCRIPTION
Validate that the UML model used in the model-driven standard is completed
and made available to the model-driven standard in the OMG XMI format.

ABSTRACT TEST A.3: READINESS OF OGC DOCUMENT METADATA INFORMATION USED
BY THE MODEL-DRIVEN STANDARD

IDENTIFIER /conf/core/metadata

REQUIREMENT Requirement 3: /req/core/metadata

TEST METHOD Manual inspection

DESCRIPTION
Validate that the OGC document metadata used in the model-driven standard
is completed and made available to the model-driven standard in the
Metanorma AsciiDoc format.

A.2. Document

CONFORMANCE CLASS A.2: DOCUMENT REQUIREMENTS FOR THE MODEL-DRIVEN
STANDARD

IDENTIFIER /conf/document

SUBJECT MDS document

REQUIREMENTS CLASS Requirements class 2: /req/document

DESCRIPTION
Validate that the Metanorma document used for the model-driven standard
meets the MDS requirements.

CONFORMANCE TESTS

Abstract test A.4: /conf/document/metadata
Abstract test A.5: /conf/document/uml-integration
Abstract test A.6: /conf/document/uml-render-configuration
Abstract test A.7: /conf/document/uml-cross-references
Abstract test A.8: /conf/document/modspec

OPEN GEOSPATIAL CONSORTIUM 23-040 134

A.3. Specification of metadata

The MDS document shall be encoded with correct metadata suitable for the OGC model
standard.

ABSTRACT TEST A.4: MODEL-BASED DOCUMENT: METADATA VALUES

IDENTIFIER /conf/document/metadata

REQUIREMENT Requirement 4: /req/document/metadata

TEST METHOD Manual inspection

DESCRIPTION
Check that the document shall provide suitable metadata for an OGC deliverable
that describes an information model.

ABSTRACT TEST A.5: MODEL-BASED DOCUMENT: UML INTEGRATION

IDENTIFIER /conf/document/uml-integration

REQUIREMENT Requirement 5: /req/document/uml-integration

TEST METHOD Manual inspection

DESCRIPTION
Check that the document shall integrate with the UML model via an OMG XMI
file.

ABSTRACT TEST A.6: MODEL-BASED DOCUMENT: UML RENDER CONFIGURATION

IDENTIFIER /conf/document/uml-render-configuration

REQUIREMENT Requirement 6: /req/document/uml-render-configuration

TEST METHOD Manual inspection

DESCRIPTION
Check that the document shall specify the render conditions and
configuration of the UML model.

OPEN GEOSPATIAL CONSORTIUM 23-040 135

ABSTRACT TEST A.7: MODEL-BASED DOCUMENT: UML CROSS-REFERENCES

IDENTIFIER /conf/document/uml-cross-references

REQUIREMENT Requirement 7: /req/document/uml-cross-references

TEST METHOD Manual inspection

DESCRIPTION
Check that the document shall utilize methods provided in this document to create
cross-references for document elements generated by the automated UML rendering
process.

ABSTRACT TEST A.8: MODEL-BASED DOCUMENT: MODSPEC INSTANCES

IDENTIFIER /conf/document/modspec

REQUIREMENT Requirement 8: /req/document/modspec

TEST METHOD Manual inspection

DESCRIPTION
Check that the document shall encode its requirements in a manner compliant
with the ModSpec.

A.4. UML

CONFORMANCE CLASS A.3: COMPLETION OF UML MODEL ANNOTATIONS FOR THE
MODEL-DRIVEN STANDARD

IDENTIFIER /conf/uml

REQUIREMENTS CLASS Requirements class 3: /req/uml

DESCRIPTION
The UML model input for the model-driven standard is validated to fully
provide annotations that suit MDS requirements.

CONFORMANCE TESTS

Abstract test A.9: /conf/uml/package-name
Abstract test A.10: /conf/uml/package-description
Abstract test A.11: /conf/uml/package-completeness
Abstract test A.12: /conf/uml/diagram-name
Abstract test A.13: /conf/uml/diagram-description
Abstract test A.14: /conf/uml/diagram-type
Abstract test A.15: /conf/uml/class-name
Abstract test A.16: /conf/uml/class-description

OPEN GEOSPATIAL CONSORTIUM 23-040 136

CONFORMANCE CLASS A.3: COMPLETION OF UML MODEL ANNOTATIONS FOR THE
MODEL-DRIVEN STANDARD

Abstract test A.17: /conf/uml/class-stereotype
Abstract test A.18: /conf/uml/class-abstract
Abstract test A.19: /conf/uml/class-constraints
Abstract test A.20: /conf/uml/property-name
Abstract test A.21: /conf/uml/property-description
Abstract test A.22: /conf/uml/property-stereotype
Abstract test A.23: /conf/uml/property-multiplicity
Abstract test A.24: /conf/uml/property-type
Abstract test A.25: /conf/uml/property-constraints
Abstract test A.26: /conf/uml/datatype-name
Abstract test A.27: /conf/uml/datatype-description
Abstract test A.28: /conf/uml/enumeration-name
Abstract test A.29: /conf/uml/enumeration-description
Abstract test A.30: /conf/uml/enumeration-value-name
Abstract test A.31: /conf/uml/enumeration-value-description
Abstract test A.32: /conf/uml/enumeration-value-type
Abstract test A.33: /conf/uml/relationship-specification
Abstract test A.34: /conf/uml/relationship-multiplicity

ABSTRACT TEST A.9: TEST PACKAGE: ASSIGNMENT OF UNIQUE NAMES

IDENTIFIER /conf/uml/package-name

REQUIREMENT Requirement 9: /req/uml/package-name

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML package that serves as input to the MDS process is assigned a
unique package name as in the EA “Name” property.

ABSTRACT TEST A.10: TEST PACKAGE: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /conf/uml/package-description

REQUIREMENT Requirement 10: /req/uml/package-description

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML package that serves as input to the MDS process has its
description encoded in the EA “Notes” pane in plain text.

OPEN GEOSPATIAL CONSORTIUM 23-040 137

ABSTRACT TEST A.11: TEST PACKAGE: FREE OF EXTERNAL DEPENDENCIES

IDENTIFIER /conf/uml/package-completeness

REQUIREMENT Requirement 11: /req/uml/package-completeness

TEST METHOD Manual inspection

DESCRIPTION

Check that every UML package that serves as input to the MDS process is fully contained
in the exported OMG XMI file, and does not depend on any external package not available
to the MDS process, unless those external dependencies are configured in the MDS
configuration file.

ABSTRACT TEST A.12: TEST DIAGRAM: ASSIGNMENT OF GLOBALLY UNIQUE NAME

IDENTIFIER /conf/uml/diagram-name

REQUIREMENT Requirement 12: /req/uml/diagram-name

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML diagram that serves as input to the MDS process is assigned a
unique name in the EA “Name” property, global to the scope of the MDS model.

ABSTRACT TEST A.13: TEST DIAGRAM: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /conf/uml/diagram-description

REQUIREMENT Requirement 13: /req/uml/diagram-description

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML diagram that serves as input to the MDS process has its
description encoded in the EA “Notes” pane in plain text.

ABSTRACT TEST A.14: TEST DIAGRAM: TYPE OF CLASS

IDENTIFIER /conf/uml/diagram-type

REQUIREMENT Requirement 14: /req/uml/diagram-type

TEST METHOD Manual inspection

OPEN GEOSPATIAL CONSORTIUM 23-040 138

ABSTRACT TEST A.14: TEST DIAGRAM: TYPE OF CLASS

DESCRIPTION
Check that every UML diagram that serves as input to the MDS process is encoded
according to the “Class” diagram type in EA.

ABSTRACT TEST A.15: TEST CLASS: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /conf/uml/class-name

REQUIREMENT Requirement 15: /req/uml/class-name

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML class that serves as input to the MDS process has its name
encoded in the EA “Name” attribute in plain text.

ABSTRACT TEST A.16: TEST CLASS: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /conf/uml/class-description

REQUIREMENT Requirement 16: /req/uml/class-description

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML class that serves as input to the MDS process has its description
encoded in the EA “Notes” pane in plain text.

ABSTRACT TEST A.17: TEST CLASS: ASSIGNMENT OF STEREOTYPE

IDENTIFIER /conf/uml/class-stereotype

REQUIREMENT Requirement 17: /req/uml/class-stereotype

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML class that serves as input to the MDS process, that belongs to a
particular stereotype, shall have its stereotype encoded in the EA model.

OPEN GEOSPATIAL CONSORTIUM 23-040 139

ABSTRACT TEST A.18: TEST CLASS: ABSTRACT STATUS

IDENTIFIER /conf/uml/class-abstract

REQUIREMENT Requirement 18: /req/uml/class-abstract

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML class that serves as input to the MDS process if is intended to be
abstract shall encode its abstract status in the EA model.

ABSTRACT TEST A.19: TEST CLASS: ENCODING OF CLASS CONSTRAINTS

IDENTIFIER /conf/uml/class-constraints

REQUIREMENT Requirement 19: /req/uml/class-constraints

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML class that serves as input to the MDS process that contain
constraints shall have those constraints encoded in the OCL language with a
corresponding description in plain text.

ABSTRACT TEST A.20: TEST PROPERTY: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /conf/uml/property-name

REQUIREMENT Requirement 20: /req/uml/property-name

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML property that serves as input to the MDS process has its name
encoded in the EA “Name” attribute in plain text.

ABSTRACT TEST A.21: TEST PROPERTY: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /conf/uml/property-description

REQUIREMENT Requirement 21: /req/uml/property-description

TEST METHOD Manual inspection

OPEN GEOSPATIAL CONSORTIUM 23-040 140

ABSTRACT TEST A.21: TEST PROPERTY: ASSIGNMENT OF DESCRIPTION

DESCRIPTION
Check that every UML property that serves as input to the MDS process has its
description encoded in the EA “Notes” pane in plain text.

ABSTRACT TEST A.22: TEST PROPERTY: ASSIGNMENT OF STEREOTYPE

IDENTIFIER /conf/uml/property-stereotype

REQUIREMENT Requirement 22: /req/uml/property-stereotype

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML property that serves as input to the MDS process, that belongs
to a particular stereotype, shall have its stereotype encoded in the EA model.

ABSTRACT TEST A.23: TEST PROPERTY: ASSIGNMENT OF MULTIPLICITY

IDENTIFIER /conf/uml/property-multiplicity

REQUIREMENT Requirement 23: /req/uml/property-multiplicity

TEST METHOD Manual inspection

DESCRIPTION

Check that every UML property that serves as input to the MDS process that has multiplicity
requirements shall have its multiplicity requirements encoded in the Multiplicity attribute
group, including the lower bound, upper bound, whether duplicates are allowed and whether
the multiplicity is ordered.

ABSTRACT TEST A.24: TEST PROPERTY: ASSIGNMENT OF VALUE TYPE

IDENTIFIER /conf/uml/property-type

REQUIREMENT Requirement 24: /req/uml/property-type

TEST METHOD Manual inspection

DESCRIPTION

Check that every UML property that serves as input to the MDS process shall be assigned a
value type. If the value type of the property is meant to be abstract (to be implemented by
a realization of the property), the UML Class “AbstractValueType” shall be used as its value
type.

OPEN GEOSPATIAL CONSORTIUM 23-040 141

ABSTRACT TEST A.25: TEST PROPERTY: ENCODING OF PROPERTY CONSTRAINTS

IDENTIFIER /conf/uml/property-constraints

REQUIREMENT Requirement 25: /req/uml/property-constraints

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML property that serves as input to the MDS process that
contain constraints shall have those constraints encoded in the OCL language with a
corresponding description in plain text.

ABSTRACT TEST A.26: TEST DATA TYPE: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /conf/uml/datatype-name

REQUIREMENT Requirement 26: /req/uml/datatype-name

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML data type that serves as input to the MDS process has its
name encoded in the EA “Name” attribute in plain text.

ABSTRACT TEST A.27: TEST DATA TYPE: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /conf/uml/datatype-description

REQUIREMENT Requirement 27: /req/uml/datatype-description

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML data type that serves as input to the MDS process has its
description encoded in the EA “Notes” pane in plain text.

ABSTRACT TEST A.28: TEST ENUMERATION: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /conf/uml/enumeration-name

REQUIREMENT Requirement 28: /req/uml/enumeration-name

TEST METHOD Manual inspection

OPEN GEOSPATIAL CONSORTIUM 23-040 142

ABSTRACT TEST A.28: TEST ENUMERATION: ASSIGNMENT OF UNIQUE NAME

DESCRIPTION
Check that every UML enumeration that serves as input to the MDS process has its
name encoded in the EA “Name” attribute in plain text.

ABSTRACT TEST A.29: TEST ENUMERATION: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /conf/uml/enumeration-description

REQUIREMENT Requirement 29: /req/uml/enumeration-description

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML enumeration that serves as input to the MDS process has its
description encoded in the EA “Notes” pane in plain text.

ABSTRACT TEST A.30: TEST ENUMERATION VALUE: ASSIGNMENT OF UNIQUE NAME

IDENTIFIER /conf/uml/enumeration-value-name

REQUIREMENT Requirement 30: /req/uml/enumeration-value-name

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML enumeration value that serves as input to the MDS process
has its name encoded in the EA “Name” attribute in plain text.

ABSTRACT TEST A.31: TEST ENUMERATION VALUE: ASSIGNMENT OF DESCRIPTION

IDENTIFIER /conf/uml/enumeration-value-description

REQUIREMENT Requirement 31: /req/uml/enumeration-value-description

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML enumeration value that serves as input to the MDS process
has its description encoded in the EA “Notes” pane in plain text.

OPEN GEOSPATIAL CONSORTIUM 23-040 143

ABSTRACT TEST A.32: TEST ENUMERATION VALUE: ASSIGNMENT OF TYPE

IDENTIFIER /conf/uml/enumeration-value-type

REQUIREMENT Requirement 32: /req/uml/enumeration-value-type

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML enumeration value that serves as input to the MDS process, that
has a particular value type, shall have its value type encoded in the EA model.

ABSTRACT TEST A.33: TEST RELATIONSHIP: COMPLETE SPECIFICATION

IDENTIFIER /conf/uml/relationship-specification

REQUIREMENT Requirement 33: /req/uml/relationship-specification

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML relationship that serves as input to the MDS process shall be
fully specified in the EA model with directionality, type and name.

ABSTRACT TEST A.34: TEST RELATIONSHIP: COMPLETE SPECIFICATION

IDENTIFIER /conf/uml/relationship-multiplicity

REQUIREMENT Requirement 34: /req/uml/relationship-multiplicity

TEST METHOD Manual inspection

DESCRIPTION
Check that every UML relationship that serves as input to the MDS process shall have
be fully specified in the EA model: generalizations, dependencies, realizations, with their
names.

OPEN GEOSPATIAL CONSORTIUM 23-040 144

B

ANNEX B (INFORMATIVE)
CHECKLISTS TO COMPLETE

OPEN GEOSPATIAL CONSORTIUM 23-040 145

B ANNEX B
(INFORMATIVE)
CHECKLISTS TO COMPLETE

This is a simple checklist for authors and editors of model-driven standards to ensure that the
source model is suitable for the model-driven standards generation process.

Table B.1

DESCRIPTION DONE?

For the UML model, please verify that the conformance class in Annex A is satisfied. …

Follow the OMG XMI export instructions to generate a compliant XMI for the MDS process. …

Decide on the UML rendering style. Does this MDS document need to deal with backwards compatibility?
If not, please utilize the default option.

…

If the MDS document contain requirements, those requirements have to conform to the ModSpec. …

Does the MDS document use OCL? If so, ensure that the MDS document include a specification of the
OCL version.

…

OPEN GEOSPATIAL CONSORTIUM 23-040 146

C

ANNEX C (INFORMATIVE)
EXAMPLE OGC MDS
DOCUMENT

OPEN GEOSPATIAL CONSORTIUM 23-040 147

C ANNEX C
(INFORMATIVE)
EXAMPLE OGC MDS DOCUMENT

An example document, derived from the OGC MUDDI Conceptual Model, will be provided at
the following location:

• http://github.com/opengeospatial/

OPEN GEOSPATIAL CONSORTIUM 23-040 148

http://github.com/opengeospatial/

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 23-040 149

BIBLIOGRAPHY

[1] Clemens Portele: OGC 07-036r1, OpenGIS Geography Markup Language (GML) Encoding
Standard — with corrigendum. Open Geospatial Consortium (2018).

[2] Robert Gibb: OGC 20-040r3, Topic 21 — Discrete Global Grid Systems — Part 1 Core
Reference system and Operations and Equal Area Earth Reference System. Open Geospatial
Consortium (2021). http://www.opengis.net/doc/AS/dggs/2.0.

[3] Josh Lieberman: OGC 17-090r1, Model for Underground Data Definition and
Integration (MUDDI) Engineering Report. Open Geospatial Consortium (2019). http://
www.opengis.net/doc/PER/MUDDI-ER.

[4] Clemens Portele, Panagiotis (Peter) A. Vretanos, Charles Heazel: OGC 17-069r3,
OGC API — Features — Part 1: Core. Open Geospatial Consortium (2019). http://
www.opengis.net/doc/IS/ogcapi-features-1/1.0.0.

[5] Thomas H. Kolbe, Tatjana Kutzner, Carl Stephen Smyth, Claus Nagel, Carsten Roensdorf,
Charles Heazel: OGC 20-010, OGC City Geography Markup Language (CityGML)
Part 1: Conceptual Model Standard. Open Geospatial Consortium (2021). http://
www.opengis.net/doc/IS/CityGML-1/3.0.0.

[6] Sam Meek: OGC 21-041r2, OGC Conceptual Modeling Discussion Paper. Open Geospatial
Consortium (2022). http://www.opengis.net/doc/DP/conceptual-modeling.

[7] Josh Lieberman, Andy Ryan: OGC 17-048, OGC Underground Infrastructure Concept Study
Engineering Report. Open Geospatial Consortium (2017). http://www.opengis.net/doc/
PER/uicds.

[8] ISO: ISO 690, Information and documentation — Guidelines for bibliographic references and
citations to information resources. International Organization for Standardization, Geneva
https://www.iso.org/standard/72642.html.

[9] ISO: ISO 704, Terminology work — Principles and methods. International Organization for
Standardization, Geneva https://www.iso.org/standard/79077.html.

[10] ISO: ISO 8601-1, Date and time — Representations for information interchange — Part 1:
Basic rules. International Organization for Standardization, Geneva https://www.iso.org/
standard/70907.html.

[11] ISO: ISO 10241-1, Terminological entries in standards — Part 1: General requirements and
examples of presentation. International Organization for Standardization, Geneva https://
www.iso.org/standard/40362.html.

[12] ISO: ISO 10303-11, Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: The EXPRESS language
reference manual. International Organization for Standardization, Geneva https://
www.iso.org/standard/38047.html.

OPEN GEOSPATIAL CONSORTIUM 23-040 150

http://www.opengis.net/doc/AS/dggs/2.0
http://www.opengis.net/doc/PER/MUDDI-ER
http://www.opengis.net/doc/PER/MUDDI-ER
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.0
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.0
http://www.opengis.net/doc/IS/CityGML-1/3.0.0
http://www.opengis.net/doc/IS/CityGML-1/3.0.0
http://www.opengis.net/doc/DP/conceptual-modeling
http://www.opengis.net/doc/PER/uicds
http://www.opengis.net/doc/PER/uicds
https://www.iso.org/standard/72642.html
https://www.iso.org/standard/79077.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/40362.html
https://www.iso.org/standard/40362.html
https://www.iso.org/standard/38047.html
https://www.iso.org/standard/38047.html

[13] ISO: ISO 19101-1, Geographic information — Reference model — Part 1: Fundamentals.
International Organization for Standardization, Geneva https://www.iso.org/
standard/59164.html.

[14] ISO: ISO 19103:2015, Geographic information — Conceptual schema language.
International Organization for Standardization, Geneva (2015). https://www.iso.org/
standard/56734.html.

[15] ISO: ISO/TS 19103:2005, Geographic information — Conceptual schema language.
International Organization for Standardization, Geneva (2005). https://www.iso.org/
standard/37800.html.

[16] ISO: ISO 19105:2020, ISO (2020).

[17] ISO: ISO 19109:2015, Geographic information — Rules for application schema.
International Organization for Standardization, Geneva (2015). https://www.iso.org/
standard/59193.html.

[18] ISO: ISO 19118:2011, Geographic information — Encoding. International Organization for
Standardization, Geneva (2011). https://www.iso.org/standard/44212.html.

[19] ISO/IEC: ISO/IEC 19501, Information technology — Open Distributed Processing
— Unified Modeling Language (UML) Version 1.4.2. International Organization for
Standardization, International Electrotechnical Commission, Geneva https://
www.iso.org/standard/32620.html.

[20] ISO/AWI: ISO/AWI 36100, ISO, AWI

[21] ISO/PWI: ISO/PWI 36200, Standardization documents — Metadata. International
Organization for Standardization, Geneva. ISO, PWI

[22] ISO/PWI: ISO/PWI 36300, Standardization documents — Representation in XML.
International Organization for Standardization, Geneva. ISO, PWI

[23] W3C: W3C xmlschema-2, XML Schema Part 2: Datatypes Second Edition. World Wide
Web Consortium https://www.w3.org/TR/xmlschema-2/.

[24] Ribose Inc. Metanorma. https://www.metanorma.org

[25] Ribose Inc. Metanorma for OGC. https://www.metanorma.org/author/ogc/

[26] Sparx Systems, Enterprise Architect. https://sparxsystems.com/products/ea/

OPEN GEOSPATIAL CONSORTIUM 23-040 151

https://www.iso.org/standard/59164.html
https://www.iso.org/standard/59164.html
https://www.iso.org/standard/56734.html
https://www.iso.org/standard/56734.html
https://www.iso.org/standard/37800.html
https://www.iso.org/standard/37800.html
https://www.iso.org/standard/59193.html
https://www.iso.org/standard/59193.html
https://www.iso.org/standard/44212.html
https://www.iso.org/standard/32620.html
https://www.iso.org/standard/32620.html
https://www.w3.org/TR/xmlschema-2/
https://www.metanorma.org
https://www.metanorma.org/author/ogc/
https://sparxsystems.com/products/ea/

	I. Abstract
	II. Keywords
	III. Preface
	IV. Security considerations
	V. Submitters
	1. Scope
	2. Conformance
	3. Normative references
	4. Terms and definitions
	5. Introduction
	6. Developing an MDS
	6.1. General
	6.2. Data sources
	6.3. Principles
	6.4. Export
	6.5. Authoring
	6.6. Data parsing
	6.7. Integrating
	6.8. Rendering

	7. Technology and tools
	7.1. General
	7.2. Conceptual models described using UML Class Diagrams
	7.2.1. General
	7.2.2. Modeling elements

	7.3. UML profiles for geospatial models
	7.3.1. General
	7.3.2. UML Standard Profile
	7.3.3. GML
	7.3.4. ISO 19100-​series profile: Conceptual schema language (ISO 19103:2015)
	7.3.5. ISO 19100-​series profile: Rules for application schema (ISO 19109:2015)
	7.3.6. ISO 19118:2011 Geographic information ​—​ ​Encoding

	7.4. Sparx Systems Enterprise Architect
	7.5. Metanorma for OGC
	7.6. LutaML information model interface
	7.7. Metanorma LutaML plugin

	8. Basics of Enterprise Architect
	8.1. Launch screen
	8.2. Using the Browser pane
	8.3. Diagrams
	8.4. Packages
	8.5. Classes
	8.6. Attributes
	8.7. Data type
	8.8. Enumeration
	8.9. Enumeration value

	9. Basics of Metanorma
	9.1. General
	9.2. Encoding
	9.2.1. Metadata
	9.2.1.1. General
	9.2.1.2. Metanorma instructions
	9.2.1.3. Document type and sub-​types
	9.2.1.4. Document status
	9.2.1.5. Document identification
	9.2.1.6. Document provenance
	9.2.1.7. Document dates
	9.2.1.8. OGC keywords

	9.2.2. Body
	9.2.2.1. General
	9.2.2.2. Prefatory sections
	9.2.2.3. Scope
	9.2.2.4. Conformance
	9.2.2.5. Normative references
	9.2.2.6. Terms and definitions
	9.2.2.7. Content body

	9.3. Building the document
	9.3.1. Single document
	9.3.2. Site

	10. Specifying requirements
	10.1. General
	10.2. Background
	10.3. ModSpec models
	10.3.1. General
	10.3.2. Requirements class
	10.3.3. Requirement
	10.3.4. Conformance class
	10.3.5. Conformance test
	10.3.6. Conformance test suite

	10.4. ModSpec instantiation
	10.5. Encoding of ModSpec instances
	10.5.1. General
	10.5.2. Instance attributes
	10.5.3. Normative statement: requirement, recommendation, permission
	10.5.4. Requirements class
	10.5.5. Conformance class
	10.5.6. Conformance test and Abstract test

	10.6. Cross-​referencing ModSpec instances
	10.6.1. General
	10.6.2. Referencing using predefined anchors
	10.6.3. Referencing using instance identifiers
	10.6.4. Identifier base pattern

	10.7. Rendering of ModSpec instances

	11. Render UML models
	11.1. Render UML models with LutaML
	11.2. Exporting an MDS-​readable model from EA
	11.3. Basic usage
	11.4. Configuration file
	11.4.1. General
	11.4.2. Package inclusion
	11.4.3. Rendering style
	11.4.3.1. General
	11.4.3.2. Default style
	11.4.3.3. Entity list style
	11.4.3.4. Data dictionary style

	11.4.4. Section depth
	11.4.5. Package root depth

	11.5. Customization options
	11.5.1. General
	11.5.2. Diagrams
	11.5.3. Before and after blocks
	11.5.4. Include block
	11.5.5. Package block

	11.6. Manual rendering (advanced)
	11.7. Cross-​referencing UML document elements
	11.7.1. General
	11.7.2. UML diagrams
	11.7.3. UML definition tables

	12. Requirements on document
	12.1. General
	12.2. Specification of metadata
	12.3. UML integration
	12.4. UML render configuration
	12.5. UML cross-​references
	12.6. ModSpec instances

	13. Requirements on UML model
	13.1. General
	13.2. Package
	13.2.1. Name
	13.2.2. Description
	13.2.3. Uniqueness

	13.3. Diagram
	13.3.1. Name
	13.3.2. Description
	13.3.3. Type

	13.4. Class
	13.4.1. Name
	13.4.2. Description
	13.4.3. Stereotype
	13.4.4. Abstract
	13.4.5. Constraints

	13.5. Property
	13.5.1. Name
	13.5.2. Description
	13.5.3. Stereotype
	13.5.4. Multiplicity
	13.5.5. Value types
	13.5.6. Constraints

	13.6. Data type
	13.6.1. Name
	13.6.2. Description

	13.7. Enumeration
	13.7.1. Name
	13.7.2. Description

	13.8. Enumeration values
	13.8.1. Name
	13.8.2. Description
	13.8.3. Type

	13.9. Relationships
	13.9.1. General
	13.9.2. Specification
	13.9.3. Multiplicity

	Annex A (normative) Abstract test suite
	A.1. Core
	A.2. Document
	A.3. Specification of metadata
	A.4. UML

	Annex B (informative) Checklists to complete
	Annex C (informative) Example OGC MDS document
	Bibliography
	—————
	List of Tables
	Table B.1

	List of Figures
	Figure 1 — Manual process for iterating a model-driven standard
	Figure 2 — One-step automated process for iterating a model-driven standard
	Figure 3 — Model-driven standard detailed publication flow
	Figure 4 — Model-driven standard information components
	Figure 5 — ISO 19103:2015 stereotypes and keywords
	Figure 6 — Summary of ISO 19109:2015 profile of UML
	Figure 7 — Models used in Metanorma
	Figure 8 — Launch screen of Enterprise Architect
	Figure 9 — Example of expanding the UML model hierarchy (source: MUDDI)
	Figure 10 — Browser item types
	Figure 11 — UML diagram in EA
	Figure 12 — UML diagram in EA with Properties pane open
	Figure 13 — EA Diagram Properties pane
	Figure 14 — EA UML package Notes pane
	Figure 15 — EA UML package Properties pane
	Figure 16 — EA UML class Notes pane
	Figure 17 — EA UML class Properties pane
	Figure 18 — EA UML Class Stereotypes: UML Standard Profile
	Figure 19 — EA UML Class Stereotypes: GML
	Figure 20 — EA UML Class multiplicity
	Figure 21 — EA UML Class constraints
	Figure 22 — EA UML attribute Notes pane
	Figure 23 — EA UML attribute Properties pane
	Figure 24 — EA UML Attribute multiplicity
	Figure 25 — EA UML attribute constraints
	Figure 26 — EA UML data type Notes pane
	Figure 27 — EA UML data type Properties pane
	Figure 28 — EA UML Enumeration Notes pane
	Figure 29 — EA UML Enumeration Properties pane
	Figure 30 — EA UML Enumerated Value Notes pane
	Figure 31 — EA UML Enumerated Value Properties pane
	Figure 32 — EA UML Enumerated Value Properties popup
	Figure 33 — Document title syntax (from OGC MUDDI Conceptual Model)
	Figure 34 — Document attribute syntax (from OGC MUDDI Conceptual Model)
	Figure 35 — Metanorma instruction attributes (from OGC MUDDI Conceptual Model)
	Figure 36 — Document type attributes (from OGC MUDDI Conceptual Model)
	Figure 37 — Document status attributes (from OGC MUDDI Conceptual Model)
	Figure 38 — Document identification attributes (from OGC MUDDI Conceptual Model)
	Figure 39 — Document provenance attributes (from OGC MUDDI Conceptual Model)
	Figure 40 — Document date attributes (from OGC MUDDI Conceptual Model)
	Figure 41 — OGC keyword (from OGC MUDDI Conceptual Model)
	Figure 42 — Preface sections in Metanorma AsciiDoc
	Figure 43 — Scope in Metanorma AsciiDoc
	Figure 44 — Conformance in Metanorma AsciiDoc
	Figure 45 — Normative references in Metanorma AsciiDoc
	Figure 46 — Terms and definitions in Metanorma AsciiDoc
	Figure 47 — Content body in Metanorma AsciiDoc
	Figure 48 — Example of generating both OGC and ISO flavors using a site manifest
	Figure 49
	Figure 50
	Figure 51
	Figure 52 — ModSpec requirement with hierarchical test-method steps
	Figure 53
	Figure 54
	Figure 55
	Figure 56
	Figure 57
	Figure 58 — Location of the "Publish As…​" button
	Figure 59 — Generation options for an XMI that works with Metanorma
	Figure 60 — Example of failed EA exported SVG
	Figure 60-1 — EA-generated SVG file containing inaccurate layout
	Figure 60-2 — EA-generated PNG file with correct layout
	Figure 61 — Basic usage of the lutaml_uml_datamodel_description block
	Figure 62 — Configuring behavior of the lutaml_uml_datamodel_description block
	Figure 63 — YAML configuration for lutaml_uml_datamodel_description command
	Figure 64 — Rendering style default used in OGC 20-040r3 (ISO 19170)
	Figure 65 — Rendering style entity_list table of contents used in OGC 20-010
	Figure 66 — Rendering style entity_list body contents used in OGC 20-010
	Figure 67 — Rendering style data_dictionary table of contents used in OGC 20-010
	Figure 68 — Rendering style data_dictionary body content part 1 used in OGC 20-010
	Figure 69 — Rendering style data_dictionary body content part 2 used in OGC 20-010
	Figure 70 — Including diagrams in the lutaml_uml_datamodel_description block
	Figure 71
	Figure 72-1
	Figure 72-2
	Figure 73
	Figure 74 — Rendering of a UML package under LutaML
	Figure 75
	Figure 76
	Figure 77
	Figure 78
	Figure 79 — Assignment of AbstractValueType to represent an unspecified value type (from: MUDDI Conceptual Model)

	List of Recommendations
	Requirements class 1: Identification of source components of the model-driven standard
	Requirements class 2: Document requirements for the model-driven standard
	Requirements class 3: Completion of UML model annotations for the model-driven standard
	Requirement 1: Readiness of OGC document information used by the model-driven standard
	Requirement 2: Readiness of UML model information used by the model-driven standard
	Requirement 3: Readiness of OGC document metadata information used by the model-driven standard
	Requirement 4: Model-based document: metadata values
	Requirement 5: Model-based document: UML integration
	Requirement 6: Model-based document: UML render configuration
	Requirement 7: Model-based document: UML cross-references
	Requirement 8: Model-based document: ModSpec instances
	Requirement 9: Package: assignment of unique names
	Requirement 10: Package: assignment of description
	Requirement 11: Package: free of external dependencies
	Requirement 12: Diagram: assignment of globally unique name
	Requirement 13: Diagram: assignment of description
	Requirement 14: Diagram: type of Class
	Requirement 15: Class: assignment of unique name
	Requirement 16: Class: assignment of description
	Requirement 17: Class: assignment of stereotype
	Requirement 18: Class: abstract status
	Requirement 19: Class: encoding of class constraints
	Requirement 20: Property: assignment of unique name
	Requirement 21: Property: assignment of description
	Requirement 22: Property: assignment of stereotype
	Requirement 23: Property: assignment of multiplicity
	Requirement 24: Property: assignment of value type
	Requirement 25: Property: encoding of property constraints
	Requirement 26: Data type: assignment of unique name
	Requirement 27: Data type: assignment of description
	Requirement 28: Enumeration: assignment of unique name
	Requirement 29: Enumeration: assignment of description
	Requirement 30: Enumeration value: assignment of unique name
	Requirement 31: Enumeration value: assignment of description
	Requirement 32: Enumeration value: assignment of type
	Requirement 33: Relationship: complete specification
	Requirement 34: Relationship: complete specification
	Conformance class A.1: Identification of source components of the model-driven standard
	Conformance class A.2: Document requirements for the model-driven standard
	Conformance class A.3: Completion of UML model annotations for the model-driven standard

