Best Practice for OGC - UML to JSON
Encoding Rules

Abstract

This best practice document on UML to JSON encoding rules is an initiative
of Geonovum. The aim is to come to a standardized encoding from UML to JSON,
in order to achieve technical interoperability in the chain from conceptual models
to JSON implementation. In this document, JSON implementation includes plain
JSON, GeoJSON and JSON-FG.

Application schemas in UML are used to model geospatial information for a given
domain, as part of data specifications defining information and data content of a
relevant universe of discourse. In the geospatial domain, UML profiles are defined
by [ISO 19103:2015] and [ISO 19109:2015]. These profiles are also used in this
document. Application schemas operate at the conceptual level. At the
implementation or data level, J]SON is one of the major data encodings used by
current web applications. The UML to JSON encoding rules defined in the context
of this document is a best practice. Eventually, this document may also support the
development of an international standard for the conversion of UML to JSON

(Schema) in the geospatial domain.

To facilitate a proper JSON encoding, an extension of the ISO 19103 and 19109
UML profiles is proposed, resulting in a UML-JSON encoding profile.

The encoding rules are structured in 40 requirements and a number of
recommendations, subdivided into 18 core requirements, 1 requirement specific
for plain JSON schema format, 5 for GeoJSON format, 5 for J[SON-FG Schema
format, 3 requirements for binding and referencing of elements, 2 for union
constructs, 5 for code lists and 1 for encoding a dedicated entity property in JSON.
The requirement classes are supported by UML examples and subsequent [SON
encodings.

Preface

The project leading to this document was initiated by Geonovum. In collaboration with Interactive
Instruments a best practice is developed on encoding UML to JSON. The project team consisted of
the following persons:

* Clemens Portele (Interactive Instruments)

* Johannes Echterhoff (Interactive Instruments)

* Linda van den Brink (Geonovum)

* Paul Janssen (Geonovum)

e Pieter Bresters (Geonovum)

Wilko Quak (Geonovum).

This document defines how a conceptual schema in UML, compliant to [ISO 19103:2015] and [ISO
19109:2015], can be encoded in JSON. A number of requirements classes are defined, which contain
the necessary requirements and technical details.

JSON is one of the major data encodings used by current web applications. In order to achieve a
high level of interoperability when exchanging JSON encoded data between such applications,
especially when the applications are developed by different entities, the semantics and structure of
the data need to be well defined. In the geospatial domain, conceptual schemas are used to define
application relevant information. Typically, some additional schema language is used to define the
structures for encoding the information. For JSON encoded data, such a schema language is JSON
Schema. Ideally, the JSON Schema constructs can automatically be derived from a conceptual
schema. For that task, a set of encoding rules is needed.

Within the OGC, the UML-to-GML Application Schema Pilot 2020 (UGAS-2020) was the first
innovation initiative that produced a comprehensive set of encoding rules, for the conversion of
ISO 19109 compliant application schemas in UML to JSON Schema. The UGAS-2020 Engineering
Report documents the findings of that initiative.

This document is based on and extends the results of UGAS-2020 regarding JSON Schema encoding
rules. It defines the conversion behavior in an implementation agnostic way, adhering to the
requirements defined in [OGC 08-131r3] for writing OGC standards. This document thus represents
the next step on the way to standardizing JSON Schema encoding rules in the geospatial domain.

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

https://www.ogc.org/projects/initiatives/ugas-2020

Security Considerations

No security considerations have been made for this document.

Scope

This document defines requirements for encoding application schemas in UML, which conform to
the UML profile defined by [ISO 19103:2015] and potentially also [ISO 19109:2015], as JSON
schemas. The requirements classes cover the creation of JSON schemas for:

 aplain JSON encoding;
* a GeoJSON-compliant encoding; and
* aJSON encoding compliant to JSON-FG 0.1

Additional requirements classes support encoding choices for unions, code list valued properties,
property values given by reference, and entity types.

Conformance

This Best Practice defines a number of requirements classes, which specify encoding (elements of)
an application schema in UML in JSON (Schema). The standardization target for all these classes are
JSON (Schema) documents. Requirements classes for encoding an application schema in UML as a
JSON Schema provides an overview of the requirements classes, together with their dependencies.

Basic encodings
el Il Encoding rule for a plain JSON Schema format
I
I
I
: Encoding rule for a GeoJSON compliant JSON
: r-= Schema format
I
: GeoJSON Formats :
I
(R I
: : Encoding rule for a JSON-FG compliant JSON
: L- Schema format
I
I
I
I
I
: By-reference encodings
I
I
: By-reference encoding of property values using a
| oo plain URI
: Basics for the by- |
Cors :_ _ _|_| reference encoding I _i
I of property values H
<---- _! ! _| By-reference encoding of property values using a
I link object
I
I
I
I
I
: Union encodings
I
I
l JSON Schema encoding for unions representing type
:‘ S discriminators
I
I
I
I
I
: JSON Schema encoding for unions representing
:' S property choices
I
I
I
I
I
| Code list encodings
I
: r- JSON Schema encoding for code lists - literal
! Basic JSON Schema :
! encoding for code !
:‘ - lift):’ <= - ——— - JSON Schema encoding for code lists - URI
I
I Lo
: JSON Schema encoding for code lists - link object
I
I
I
I
I
: Additional requirements classes
I
I
e e it bty Encoding of an additional entityType property

Figure 1. Requirements classes for encoding an application schema in UML as a JSON Schema

Common encoding behavior is defined in the core requirements class (Requirements class: Core).
Additional requirements classes exist, which serve different purposes:
» Three requirements classes for basic JSON encodings are defined:
o a plain encoding (Requirements class: Encoding rule for a plain JSON Schema format),

o a GeoJSON encoding (Requirements class: Encoding rule for a GeoJSON compliant JSON

Schema format), and

> a JSON-FG encoding (Requirements class: Encoding rule for a JSON-FG compliant JSON
Schema format).

» There are two requirements classes that represent options for realizing a by-reference encoding
of property values, one using URIs (Requirements class: by-reference encoding of property
values using a plain URI reference, and one using link objects Requirements class: by-reference
encoding of property values using a link object).

Requirements classes also exist for the two ways in which «union» types are used in practice: as
type discriminator (Requirements class: JSON Schema encoding for unions representing type
discriminators) and as property choice (Requirements class: JSON Schema encoding for unions
representing property choices).

Code list valued properties can be represented in one of three ways, defined by requirements
classes: as a literal (Requirements class: JSON Schema encoding for code lists - literal), as URI
(Requirements class: JSON Schema encoding for code lists - URI), and as link object
(Requirements class: JSON Schema encoding for code lists - link object).

Finally, an additional requirements class supports the encoding of a JSON member for storing
the name of the conceptual type that a JSON object encodes (Requirements class: Encoding of an

additional entityType property).

A community can combine these requirements classes as needed to achieve a full JSON Schema
encoding, which satisfies their specific JSON encoding requirements. For example, a community
might choose a GeoJSON compliant encoding, together with the property choice encoding for

unions, as well as using link objects for by-reference encoding and code values.

Requirements classes overview lists all requirements classes defined by this specification.

Table 1. Requirements classes overview
Requirements class

[http://www.opengis.net/spec/uml2json/1.0/
req/core]

[http://www.opengis.net/spec/uml2json/1.0/
req/plain]

[http://www.opengis.net/spec/uml2json/1.0/
reqg/geojson-formats]

[http://www.opengis.net/spec/uml2json/1.0/
req/geojson]

[http://www.opengis.net/spec/uml2json/1.0/
req/jsonfg]

[http://www.opengis.net/spec/uml2json/1.0/
req/by-reference-basic]

[http://www.opengis.net/spec/uml2json/1.0/
req/by-reference-uri]

Clause

Requirements class: Core

Requirements class: Encoding rule for a
plain JSON Schema format

Requirements class: GeoJSON Formats

Requirements class: Encoding rule for a
Geo]SON compliant JSON Schema format

Requirements class: Encoding rule for a
JSON-FG compliant JSON Schema format

Requirements class: basics for the by-
reference encoding of property values

Requirements class: by-reference encoding
of property values using a plain URI
reference

Requirements class

[http://www.opengis.net/spec/uml2json/1.0/
req/by-reference-link-object]

[http://www.opengis.net/spec/uml2json/1.0/
req/union-type-discriminator]

[http://www.opengis.net/spec/uml2json/1.0/
req/union-property-choice]

[http://www.opengis.net/spec/uml2json/1.0/
req/codelists-basic]

[http://www.opengis.net/spec/uml2json/1.0/
req/codelists-literal]

[http://www.opengis.net/spec/uml2json/1.0/
req/codelists-uri]

[http://www.opengis.net/spec/uml2json/1.0/
req/codelists-link-object]

[http://www.opengis.net/spec/uml2json/1.0/
req/entitytype]

Clause

Requirements class: by-reference encoding
of property values using a link object

Requirements class: JSON Schema encoding
for unions representing type discriminators

Requirements class: JSON Schema encoding
for unions representing property choices

Requirements class: Basic JSON Schema
encoding for code lists

Requirements class: JSON Schema encoding
for code lists - literal

Requirements class: JSON Schema encoding
for code lists - URI

Requirements class: JSON Schema encoding
for code lists - link object

Requirements class: Encoding of an
additional entityType property

This document does not define conformance classes. Such classes become relevant if and when this
specification moves on in the OGC standardization process, i.e., if the document type changes from
Best Practice to Standard. It is expected that the standardization process will involve further review
and discussion, and may lead to changes within the specification. Once the specification has
reached a stable state during that process, that would be a good time to define conformance classes.

All requirements-classes described in this document are owned by the document(s) identified.

References

= [IETF RFC 8259]IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format
= [IETF RFC 7946]IETF RFC 7946, The GeoJSON Format
= [IETF RFC 6901]IETF RFC 6901, JavaScript Object Notation (JSON) Pointer

= [IETF I-D.draft-bhutton-json-schema-01]Internet Engineering Task Force (IETF). Draft draft-
bhutton-json-schema-01: JSON Schema: A Media Type for Describing JSON Documents

= [IETF I-D.draft-bhutton-json-schema-validation-01]Internet Engineering Task Force (IETF). Draft
draft-bhutton-json-schema-validation-01: JSON Schema Validation: A Vocabulary for Structural
Validation of JSON

= [ISO 8601-2:2019]ISO 8601-2:2019, Date and time — Representations for information
interchange — Part 1: Extensions

= [ISO 19103:2015]ISO 19103:2015, Geographic information — Conceptual schema language
= [ISO 19107:2003]ISO 19107:2003, Geographic information — Spatial schema
= [ISO 19109:2015]ISO 19109:2015, Geographic information — Rules for application schema

= [ECMA-262]ECMA-262, 11th edition specification, June 2020, https://www.ecma-
international.org/ecma-262/11.0/index.html

= [OGC 21-045]OGC Features and Geometries JSON - Part 1: Core, draft 0.2.2, https://github.com/
opengeospatial/ogc-feat-geo-json/releases/tag/v0.2.2

= [OGC 08-131r3]The Specification Model - A Standard for Modular specifications

Terms, definitions and abbreviated terms

Terms and definitions

linked data

Linked data is the data format that supports the Semantic Web. The basic rules for linked data are
defined as:

* Use Uniform Resource Identifiers (URIs) to identify things;

» Use HTTP URIs so that these things can be referred to and looked up ("dereferenced") by people
and user agents;

* Provide useful information about the thing when its URI is dereferenced, using standard
formats such as RDF/XML; and

* Include links to other, related URIs in the exposed data to improve discovery of other related
information on the Web.

Source: W3C Semantic Web Wiki

feature type

A feature type as defined by the General Feature Model (see [ISO 19109:2015]). In an application
schema, a feature type is typically modeled using stereotype «FeatureType», or a stereotype that
maps to that stereotype.

object type

An object type is an interface or class. An object type is not a feature type. In an application schema,
an object type is an interface, or a class with no stereotype, stereotype «Type», or a stereotype that
maps to one of the two options.

data type

As defined by [ISO 19103:2015], section 6.10, a data type is a class with stereotype «DataType» (or a
stereotype that maps to that stereotype), which is a set of properties that lacks identity.

type with identity

A class that is a feature type or an object type.

https://www.ecma-international.org/ecma-262/11.0/index.html
https://www.ecma-international.org/ecma-262/11.0/index.html
https://github.com/opengeospatial/ogc-feat-geo-json/releases/tag/v0.2.2
https://github.com/opengeospatial/ogc-feat-geo-json/releases/tag/v0.2.2
https://www.w3.org/2001/sw/wiki/Semantic_Web_terminology#linked_data

Abbreviated terms

API

Application Programming Interface

ECMA

European association for standardizing information and communication systems

GML
Geography Markup Language

HTTP

Hypertext Transfer Protocol

IETF

Internet Engineering Task Force

INSPIRE

Infrastructure for spatial information in Europe

IRI

Internationalized Resource Identifier

ISO

International Organization for Standardization

JSON
JavaScript Object Notation

JSON-FG
OGC Features and Geometries JSON

JSON-LD
JSON for Linked Data

OCL

Object Constraint Language

0GC

Open Geospatial Consortium

OWL
Web Ontology Language

RDF

Resource Description Framework

RDFS
RDF Schema

UGAS
UML to GML Application Schema

UML
Unified Modeling Language

URI

Uniform Resource Identifier

URL

Unform Resource Locator

W3C
World Wide Web Consortium

XML
Extensible Markup Language

Conventions

General

This section provides details and examples for any conventions used in the document. Examples of
conventions are symbols, abbreviations, use of XML schema, or special notes regarding how to read
the document.

Identifiers

The normative provisions in this document are denoted by the URI
http://www.opengis.net/spec/uml2json/1.0

All requirements and conformance tests that appear in this document are denoted by partial URIs
which are relative to this base.

JSON Schema URLs

This document uses the following base URLs for relevant JSON Schema files:

* GeoJSON: https://geojson.org/schema
* JSON-FG: https://beta.schemas.opengis.net/json-fg

« UML2JSON (defined by this specification): https://register.geostandaarden.nl/jsonschema/
uml2json/0.1

http://www.opengis.net/spec/uml2json/1.0
https://geojson.org/schema
https://beta.schemas.opengis.net/json-fg
https://register.geostandaarden.nl/jsonschema/uml2json/0.1
https://register.geostandaarden.nl/jsonschema/uml2json/0.1

The JSON-FG schemas have not been published at https://beta.schemas.opengis.net/
json-fg yet (as of Dec 12, 2022). The schema definition from this specification - see

NOTE JSON Schema definitions - has been published at a temporary location. In both
cases, the schema locations are expected to change during the OGC publication
process.

Stereotype Names

Stereotype names within figures are written in lowerCamelCase, whereas stereotype names in the
text are written in UpperCamelCase. In a future version of this document, all stereotype names
should be written in UpperCamelCase, to follow UML 2 practice.

Overview

ISO / TC 211 defines Standards in the field of digital geographic information. A couple of these
Standards, especially ISO 19109, are used by the geospatial community to define so called
application schemas. An application schema is a conceptual schema for data required by one or
more applications. It is typically defined using the Unified Modeling Language (UML).

OGC 07-036r1 defines rules for encoding an application schema in XML. The result is an XML
Schema, which defines the structure for encoding application data in XML. Applications would use
this XML as a format for interoperable information exchange.

JSON is a prominent format for encoding and exchanging data on the web. JSON Schema can be
used to validate syntactical constraints for - i.e., the structure of - a specific JSON format. This
document defines a set of requirements classes for encoding an application schema in UML in JSON
Schema. The UML profiles defined by [ISO 19103:2015] and [ISO 19109:2015] are used as the base
UML profile in this document.

The results and findings from [OGC 20-012] have been an important foundation for

NOTE
the UML to JSON Schema encoding requirements defined in this specification.

UML to JSON Schema Encoding

Introduction

This chapter defines requirements classes for the encoding of application schemas in UML as JSON
Schema, and likewise for the encoding of application data as JSON data.

UML profile

The stereotypes as well as tagged values that are relevant for JSON Schema encodings are listed in
Stereotypes relevant for JSON Schema encodings and Tagged values relevant for JSON Schema
encodings.

10

https://beta.schemas.opengis.net/json-fg
https://beta.schemas.opengis.net/json-fg

Table 2. Stereotypes relevant for JSON Schema encodings

Stereotype / keyword

applicationSchema

schema

featureType

Model element

Package

Package

Class

Description

A conceptual schema for
data required by one or
more applications. Source:
[ISO 19109:2015], especially
chapter 8.2.

This stereotype is typically
used in abstract schemas
defined by ISO TC 211. For
further details on abstract
schemas, see [ISO
19103:2015], chapter 6.2 and
figure 4. An abstract schema
and an application schema
are both conceptual
schemas, but they are on
different levels of
abstraction. The stereotype
«Schema» has been
introduced for schemas that
conform to ISO 19103, but
do not follow the rules for
application schemas from
ISO 19109, but still need a
stereotype on the schema
package for adding tagged
values.

A feature type as defined by
[ISO 19109:2015].

11

Stereotype / keyword

interface

dataType

union

12

Model element

Interface

DataType

Class

Description

An abstract classifier with
operations, attributes and
associations, which can only
inherit from or be inherited
by other interfaces. Other
classifiers may realize an
interface by implementing
its operations and
supporting its attributes and
associations (at least
through derivation). Source:
[ISO 19103:2015] This
stereotype is typically used
in conceptual schemas from
ISO TC 211. It should not be
used in application schemas,
as these are on a different
conceptual level than
classifiers with this
stereotype.

A set of properties that lack
identity (independent
existence and the possibility
of side effects). A data type is
a classifier with no
operations, whose primary
purpose is to hold
information. Source: [ISO
19103:2015]

Either used as A structured
data type without identity
where exactly one of the
properties of the type is
present in an instance
(property choice) or type
consisting of one and only
one of several alternative
datatypes (type
discriminator; source: [ISO
19103:2015]) - in both cases
the options are listed as
member attributes.

Stereotype / keyword Model element Description

enumeration Enumeration A fixed list of valid
identifiers of named literal
values. Attributes of an
enumerated type may only
take values from this list.
Source: [ISO 19103:2015]

codeList Class A flexible enumeration that
uses string values for
expressing a list of potential
values. Source: [ISO
19103:2015]

property Property (attribute [not of A property of a schema type
an enumeration or code list] which is not an enumeration
or association role) or code list.
NOTE Communities may use aliases for the stereotypes listed above.

For backwards-compatibility to UML 1 schemas (that comply with earlier versions
NOTE of [ISO 19103:2015]), a class with stereotype «Type» can be used instead of an
interface.

Some conceptual schemas and application schemas do not make use of the
stereotypes «property», but still attach certain tagged values to according properties
in their UML model. That approach is supported by some UML modeling tools, even
though tagged values typically belong to a certain stereotype. For the purposes of

NOTE this specification, the stereotype «property» is assumed to be applied in schemas
that shall be converted from UML to JSON Schema. Nevertheless, it is allowed for
schemas to omit the stereotypes, and just use the associated tagged values (see
below) on according model elements. This kind of use implies the presence of an ad-
hoc stereotype, which is considered to represent the «property» stereotype.

Tagged values relevant for JSON Schema encodings lists the tagged values relevant for the JSON
Schema encodings, together with the stereotype(s) they apply to, as well as relevant requirements
class(es).

Table 3. Tagged values relevant for JSON Schema encodings

13

Applicable
stereotype(s)

Tagged value

«applicationSchema» jsonDocument

and «schema»

«Enumeration» and
«CodeList»

14

jsonld

literalEncodingType

Relevant
requirements
class(es)

[http://www.opengis.

net/spec/uml2json/1.
O/req/core]

[http://www.opengis.

net/spec/uml2json/1.
O/req/core]

[http://www.opengis.

net/spec/uml2json/1.
O/reqg/core] and

[http://www.opengis.

net/spec/uml2json/1.
0/reqg/codelists-
literal]

Comment

see Definitions
schema

see Enumeration and
Requirements class:
JSON Schema
encoding for code
lists - literal

Applicable
stereotype(s)

«property»

Tagged value

Relevant
requirements
class(es)

Comment

15

net/spec/uml2json/1.
0/req/jsonfg]

Applicable Paggedyinlasal Relevamtvw.opengis.
stereotype(s) nequiremerfgson/1.
olass(es)hfg]
unit [http://www.opengis.
net/spec/uml2json/1.
O/reqg/core]

Requirements class: Core

16

temporal
information

Comment

see External types

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core

target
JSON (Schema) documents

inherit
[IETF I-D.draft-bhutton-json-schema-01]

inherit
[IETF I-D.draft-bhutton-json-schema-validation-01]

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/definitions-schema

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/schema-references

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/iso19103-primitive-types

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/iso19103-measure-types

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/class-name

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/abstract-types

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/generalization

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/feature-and-object-types

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/data-types

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/enumerations

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/basic-types

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/properties

17

http://www.opengis.net/spec/uml2json/1.0/req/core
http://www.opengis.net/spec/uml2json/1.0/req/core/definitions-schema
http://www.opengis.net/spec/uml2json/1.0/req/core/schema-references
http://www.opengis.net/spec/uml2json/1.0/req/core/iso19103-primitive-types
http://www.opengis.net/spec/uml2json/1.0/req/core/iso19103-measure-types
http://www.opengis.net/spec/uml2json/1.0/req/core/class-name
http://www.opengis.net/spec/uml2json/1.0/req/core/abstract-types
http://www.opengis.net/spec/uml2json/1.0/req/core/generalization
http://www.opengis.net/spec/uml2json/1.0/req/core/feature-and-object-types
http://www.opengis.net/spec/uml2json/1.0/req/core/data-types
http://www.opengis.net/spec/uml2json/1.0/req/core/enumerations
http://www.opengis.net/spec/uml2json/1.0/req/core/basic-types
http://www.opengis.net/spec/uml2json/1.0/req/core/properties

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/property-inline

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/property-multiplicity

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/property-fixed-readonly

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/property-derived

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/property-initial-value

requirement

http://www.opengis.net/spec/uml2json/1.0/req/core/association-class

recommendation

http://www.opengis.net/spec/uml2json/1.0/req/core/id-characteristics

recommendation

http://www.opengis.net/spec/uml2json/1.0/req/core/format-and-pattern

Definitions schema

Schema packages have the stereotype «applicationSchema», «schema», or an alias (e.g., using a
specific language, like in German: «anwendungsschema»). An «applicationSchema» package
represents an application schema according to ISO 19109. The stereotype «schema» has been
introduced for packages that should be treated like application schemas, but do not contain feature

types.

18

http://www.opengis.net/spec/uml2json/1.0/req/core/property-inline
http://www.opengis.net/spec/uml2json/1.0/req/core/property-multiplicity
http://www.opengis.net/spec/uml2json/1.0/req/core/property-fixed-readonly
http://www.opengis.net/spec/uml2json/1.0/req/core/property-derived
http://www.opengis.net/spec/uml2json/1.0/req/core/property-initial-value
http://www.opengis.net/spec/uml2json/1.0/req/core/association-class
http://www.opengis.net/spec/uml2json/1.0/req/core/id-characteristics
http://www.opengis.net/spec/uml2json/1.0/req/core/format-and-pattern

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/definitions-schema

A UML application schema and its classes shall be converted into a single definitions schema.
NOTE A definitions schema is a JSON Schema that uses the "$defs" keyword.

The file name of the definitions schema shall be constructed as follows: If tagged value
jsonDocument is set on the application schema package, with a value that is not blank (i.e.,
purely whitespace characters), then the tag value shall be used as the file name of the
definitions schema. Otherwise, the package name shall be used as fallback, replacing all spaces
and forward slashes with underscores, and appending ".json'.

The "$schema" keyword shall be added to the definitions schema. Its value shall be
"https://json-schema.org/draft/2020-12/schema".

The definitions schema shall have an "$id" member, whose value is the value of tag jsonld, as
defined on the application schema package.

The "$defs" keyword shall have a JSON object as value, where each member represents the
JSON Schema definition of a class from the application schema.

When encoding the content of an application schema in a single definitions schema,
it is straightforward to assign the JSON Schema URL whenever such a reference is
required for one of the application schema classes. If the content of the application
schemas was distributed over multiple definitions schema files, it would be
necessary to maintain a mapping for each application schema class, to the URL of
the JSON Schema that contains the definition of that class.

NOTE

The "$id" identifies the schema resource with its canonical URI. The URI is an
NOTE identifier and not necessarily a resolvable URL. If the "$id" is a URL, there is no
expectation that the JSON Schema can be downloaded at that URL.

If the value of tag jsonld is a URI with a path to a named file, then the file name
given in tag jsonDocument should match the file name in tag jsonld. It is not
required to do so, because the JSON Schema file can be re-named during the
publication process.

NOTE

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/id-characteristics

statement

It is recommended that the "$id" URI should be stable, persistent, and globally unique.

19

http://www.opengis.net/spec/uml2json/1.0/req/core/definitions-schema
http://www.opengis.net/spec/uml2json/1.0/req/core/id-characteristics

JSON Schema example of a definitions schema

{
"$schema": "http://json-schema.org/draft/2020-12/schema",

"$id": "http://example.org/some-definitions-schema.json",
"$defs": {
"Class1": {
"type": "object",
"properties": {
"prop1": {"type": "string"}
}
s
"Class2": {
"type": "object",
"properties": {
"prop2": {"type": "number"}

equired": ["prop1"]

}

equired": ["prop2"]

The "$id" of the definitions schema has been omitted in some examples within this
chapter. Declaring an absolute, non-existent URL as "$id" in these examples can
prevent the examples from working, when testing them using certain JSON Schema
validators, for instance on https://www.jsonschemavalidator.net/.

NOTE

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/schema-references

statement

References from types of the application schema to other types - within the same or within
an external schema - shall be encoded as references to the according definitions schemas,
using the JSON Schema keyword "$ref" - see References between JSON Schemas using $ref
with JSON pointers as values.

20

https://www.jsonschemavalidator.net/
http://www.opengis.net/spec/uml2json/1.0/req/core/schema-references

6efinitions Schema: \ ﬁefinitions Schema: \

schemaA.json schemaB.json
Sdefs: - Sdefs:
Class1:{ | Class3: {
Sref: #/Sdefs/Class?2 Sref: schemaA.json#/Sdefs/Class1 |

Class2:{ .

N / \ - /

Figure 2. References between J[SON Schemas using $ref with JSON pointers as values

It is up to the encoder to use an absolute or relative URI for a reference to a schema definition
within an external JSON Schema file. A reference to a schema definition within the same JSON
Schema file should be encoded as a relative URL that consists of a fragment identifier, either using
a JSON Pointer (e.g., #/$defs/XYZ) or an anchor (e.g., #XYZ).

A link to a particular definition within a definitions schema requires the use of a JSON Pointer or an
anchor in the fragment identifier of the link URL. J[SON Pointer, chapter 6, explicitly states that the
media type in which a JSON value is provided needs to support this kind of fragment identifier, and
that this is not the case for the media type application/json. If a JSON Schema was published with
this media type, then it is possible that the application ignores a fragment identifier (because the
media type does not support fragment identifiers). If a JSON Schema is published with media type
application/schema+json, using anchors and JSON Pointers as fragment identifiers is supported.

The JSON Schema should be published with media type application/schema+json - which is defined
by the JSON Schema specification. The media type application/schema+json supports JSON Pointers
and plain names as fragment identifiers. For further details, see JSON Schema core, chapter 5.

21

https://tools.ietf.org/html/draft-handrews-json-schema-02#section-5

The JSON Schema with which to validate a JSON document cannot be identified
within that document itself. In other words, JSON Schema does not define a concept
like an xsi:schemaLocation, which is typically used in an XML document to
reference the applicable XML Schema(s). Instead, JSON Schema uses link headers
and media type parameters to tie a JSON Schema to a JSON document (for further
details, see J[SON Schema core, section 9.5).

Specific formats may encode such links in the JSON data itself. Also see https://ietf-

NOTE wg-httpapi.github.io/mediatypes/draft-ietf-httpapi-rest-api-mediatypes.html and the
"schema" parameter defined there. Some tools (e.g., the oXygen editor) use a
"$schema” member in JSON (instance) data to reference the applicable JSON
Schema. However, that is a tool-specific approach. In principle, tool-specific
approaches are allowed. However, the choice of re-using the "$schema" keyword in
that way is problematic, since it does not reflect the intent of "$schema" as defined
by JSON Schema core, section 8.1.1. The relationship between a JSON document and
the JSON Schema for validation can also be defined explicitly by an application, i.e.,
in an application specific way.

Documentation

Descriptive information of application schema elements (packages, classes, attributes and
association roles) may be encoded via JSON Schema annotations.

Annotations represent one category of JSON Schema keywords (for further details,
see JSON Schema core, section 7). Annotations attach information that applications

NOTE can use as they see fit. The other categories are assertions, which validate that a
JSON instance satisfies constraints, and applicators, which apply subschemas to
parts of the instance and combine their results.

The documentation of an application schema element may be encoded using the JSON Schema
"description” annotation. Additional annotations, such as "title" and "examples”, may be used as
well, where applicable.

Potential reasons for NOT using JSON Schema annotations are:

1. Omitting the documentation will result in significantly smaller J[SON Schema
documents. The reduction of file size is preferable for processes that need to
download the schema in order to apply validation. This is even more important

NOTE if cross-references between JSON Schemas exist.

2. When validating JSON data against a JSON Schema, a JSON Schema validator
typically focuses on the JSON Schema assertions and applicators, and will ignore
most JSON Schema annotations - especially meta-data annotations, such as "title"
and "description.”

Types

22

https://ietf-wg-httpapi.github.io/mediatypes/draft-ietf-httpapi-rest-api-mediatypes.html
https://ietf-wg-httpapi.github.io/mediatypes/draft-ietf-httpapi-rest-api-mediatypes.html
https://tools.ietf.org/html/draft-handrews-json-schema-02#section-7
https://tools.ietf.org/html/draft-handrews-json-schema-validation-02#section-9

External types

Application schemas typically use types from other schemas, for example the types defined by ISO
19103 and ISO 19107. External types can be used as value types of properties, and as supertypes for
types defined in the application schema that is being converted.

Whenever an external type is used, its JSON Schema definition is needed. Either an external type is
implemented as one of the simple JSON value types (e.g., string - maybe with a certain format or
pattern), or it is defined by a particular JSON Schema. In case of a JSON Schema, the URL of that
schema needs to be known during the encoding process. If the schema is a definitions schema, then
the URL typically needs to be augmented with a fragment identifier that includes a JSON Pointer or
an anchor reference within the schema.

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/iso19103-primitive-types

statement

If a UML property is encoded in JSON Schema, and the value type is one of the ISO 19103
primitive types listed in JSON Schema implementation of ISO 19103 primitive types, then
the simple JSON Schema type as well as the JSON Schema keywords listed in JSON Schema
implementation of ISO 19103 primitive types shall be used in the JSON Schema definition of
the property.

Table 4.]SON Schema implementation of ISO 19103 primitive types

UML class JSON Schema simple type JSON Schema keywords
Boolean boolean

CharacterString string

Date string format=date
DateTime string format=date-time
Decimal number

Integer integer

Number number

Real number

Time string format=time

URI string format=uri

Some JSON Schema validators do not support or ignore the JSON Schema keyword "format". That
can be an issue, especially if a JSON Schema definition represented a choice (e.g., using the JSON
Schema keyword "oneOf") between simple JSON Schema types. In that case, such a validator might
complain that the choice cannot be made because both options match the simple type definition.
The following recommendation is meant to prevent that issue.

23

http://www.opengis.net/spec/uml2json/1.0/req/core/iso19103-primitive-types

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/format-and-pattern

Statement

Whenever an external type is implemented by a simple JSON Schema type with specific
"format", it is recommended that the type definition be accompanied by a "pattern"
member, whose value should contain a regular expression that is sufficient to represent the
intended format.

Regular expressions for some ISO 19103 types, to be used in the JSON Schema 'pattern’
keyword provides a list of regular expressions for a number of types from [ISO 19103:2015]. If
the "pattern” keyword is used, these expressions should be used. However, applications may
also use different regular expressions. For example, a community may choose to only allow
date time values in Zulu time (i.e., requiring the time zone designator to always be 'Z’).

Table 5. Regular expressions for some ISO 19103 types, to be used in the JSON Schema 'pattern’
keyword

UML class Regular expression for use in JSON
Schema 'pattern' keyword

Date
Md{4}-\d{2}-\d{2}$

DateTime
A\d{4}-\d{2}-
\d{23T\d{2} :\d{2} :\d{2}(\.\d)?(Z]| ((
\+]-)\d{2}:\d{2}))$

Time
M2} \d{2} :\d{2F\N A\ ?(Z| ((\+] -
)\d{2}:\d{2}))$

URI

ACCIA: 728 1+) D)2\ ([N 24]1%)) 2 ([A?
#1)(\2([M1%))2(#(.%)) 78

24

http://www.opengis.net/spec/uml2json/1.0/req/core/format-and-pattern

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/iso19103-measure-types

Statement

If a UML property is encoded in JSON Schema, and the value type is one of the ISO 19103
measure types (e.g., Measure, Length, Speed, Angle, Area, or Volume), then the JSON Schema
definition of the property shall be constructed as follows:

part

If tagged value unit is defined on the UML property, with a non-blank value, then member
"type" with value "number"”, and member "unit", with value being the value of tag unit, shall
be encoded in the definition. If the multiplicity upper bound of the UML property is greater
than 1, then as defined by [http://www.opengis.net/spec/uml2json/1.0/req/core/property-
multiplicity], "type": "number" will be moved into the "items" member; however, the "unit"
member shall still be encoded in the definition schema for the UML property, and not in the
"items" member.

part

Otherwise, i.e., tag unit is undefined on the property, member "$ref" shall be added to the
definition, with value
"https://register.geostandaarden.nl/jsonschema/uml2json/0.1/schema_definitions.json#/$def
s/Measure" (the JSON Schema for measure is defined in JSON Schema definitions).

Tag unit identifies that the UML property has a fixed unit of measure. Having a
fixed unit for a given property is highly beneficial for practical applications, for
example when writing queries and filter statements. Note that it is perfectly valid
for an application schema to still use a measure type for an attribute with a fixed

NOTE unit, instead of just type 'Number' or 'Real'. The reason is that the application
schema is defined on the conceptual level. From that point of view, a measure typed
attribute with a fixed unit still has a measure as value type, not just a number. It is
on the implementation level that the simplification of just using a number value for
a measure typed property with fixed unit makes sense.

If ISO TC 211 defines a JSON Schema for ISO 19103 measure types, then that JSON

NOTE
Schema definition can be used.
If an external type is not covered by the mapping tables defined in this document,
then a suitable mapping needs be found on a case by case basis. For example, if
NOTE CI_Citation from ISO 19115 was used by an application schema, a reference to a

suitable JSON Schema definition needs to be identified. Such a schema definition
could be created manually, or (semi-) automatically, for example using the encoding
behavior defined in this specification.

http://www.opengis.net/spec/uml2json/1.0/req/core/iso19103-measure-types

Class name

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/class-name

statement

The name of a class shall be encoded as value of an "$anchor" member in the schema
definition of the class (within the definitions schema).

Schema definitions that have an "$anchor" can be referenced using the plain text
NOTE value of the anchor as fragment identifier, instead of using a more complex JSON
Pointer.

Example of a JSON Schema with $anchor members

{
"$schema": "http://json-schema.org/draft/2020-12/schema"”,
"$defs": {
"TypeA": {
"$anchor": "TypeA",
b
"TypeB": {
"$anchor": "TypeB",
}
}
}

Examples of referring to the schema definition of "TypeA" from a "$ref" member:

» within the JSON schema itself:

o using the "$anchor" value: "$ref" = "#TypeA"

o using a JSON Pointer: "$ref" = "#/$defs/TypeA"
* from another JSON Schema:

o using the "$anchor” value: "$ref"”
"https://example.org/schemas/schema_definitions.json#TypeA"

o using JSON Pointer: "$ref"
"https://example.org/schemas/schema_definitions.json#/$defs/TypeA"

= NOTE: If the referenced schema is a draft 07 JSON Schema, the JSON Pointer would have
to change as follows: https://example.org/schemas/schema_definitions.json#/definitions/

TypeA

26

http://www.opengis.net/spec/uml2json/1.0/req/core/class-name
https://example.org/schemas/schema_definitions.json#/definitions/TypeA
https://example.org/schemas/schema_definitions.json#/definitions/TypeA

Keep in mind that the use of a fragment identifier with anchor or JSON Pointer
NOTE value in $ref references can depend upon the media type with which the referenced
JSON schema is published, as is explained in more detail here.

Abstractness

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/abstract-types

Sstatement

An abstract class shall be encoded like a non-abstract class.

NOTE JSON Schema does not directly support abstractness.

Encoding an abstract class as a schema definition allows that definition to be referenced from the
schema definitions that are created for the subclasses of the abstract class.

Inheritance

JSON Schema does not support the concept of inheritance itself. In practice, an inheritance
relationship is important in two areas:

* when defining the structure of a subtype, which inherits the properties of its supertypes
through the generalization relationships to those supertypes, and

* when using a supertype as UML property value; in that case, subtypes can be used as property
value, too, and validation is typically expected to check a value based upon its actual type -
especially if a subtype is used as value.

Generalization can be represented in JSON Schemas. Validation of property values that are

subtypes of the defined property value type cannot fully be represented in JSON Schema.

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/generalization

Sstatement

The generalization relationship of a subtype to its supertype shall be encoded by combining
the structural constraints of the subtype and its supertype using the "allOf" JSON Schema
keyword in the JSON Schema definition of the subtype.

Multiple inheritance is supported by adding all supertypes as elements of "allOf."

27

http://www.opengis.net/spec/uml2json/1.0/req/core/abstract-types
http://www.opengis.net/spec/uml2json/1.0/req/core/generalization

«featureType»
TypeA

«property»
+ propertyA: Number

A

«featureType»
TypeB

«property»
+ propertyB: CharacterString

Figure 3. Example of type inheritance

28

JSON Schema example for realizing generalization using "allOf"

{
"$schema": "http://json-schema.org/draft/2020-12/schema",

"$defs": {
"TypeA": {
"properties": {
"propertyA": {
"type": "number"
}
}

equired": [
"propertyA"
]
b
"TypeB": {
"al10f": [
{
"$ref": "#/$defs/TypeA"
H
{
"type": "object",
"properties": {
"propertyB": {
"type": "string"
}
lis
"required": [
"propertyB"
]
}
]
}

H
"$ref": "#/$defs/TypeB"

This JSON object is valid against the schema:

{
"propertyA": 2,

"propertyB": "x
}

This JSON object is invalid (because "propertyA" is missing) against the schema:

{
"propertyB": "x"

}

NOTE This also works for an encoding where the properties of a class are nested within a
key-value pair (like "properties” for a GeoJSON encoding).
The case where a property from a supertype is redefined by a property from the
subtype is supported. Redefinition in UML requires that the value type of the

NOTE subtype property is "kind of" the type of the redefined property of the supertype.

Therefore, the property value, when encoded in JSON, would satisfy the JSON
Schema constraints defined by both the subtype property and the redefined

supertype property.
This approach to converting a generalization relationship has the following restrictions.

* The JSON Schema keyword "additionalProperties" cannot be set to false in the definitions of
both the super- and the subtype.

» The approach is only defined for generalization relationships of feature, object, and data types.
For unions, enumerations, and code lists, generalization relationships are not defined by [ISO
19103:2015].

* It only converts the generalization relationship from subtype to supertype. It does not support
the other direction of an inheritance relationship, i.e., specialization. Given a JSON object that
encodes a subtype, and the JSON Schema of the supertype, then by validating the JSON object
against that JSON Schema, only the constraints of the supertype are checked, but not all the
constraints that apply to the subtype. That is an issue when encoding a UML property whose
value type is or could be a supertype (via a subtype that is added by an external, so far
unknown schema). Conceptually, the actual value of that property can be a supertype object, but
it could just as well be an object whose type is a subtype of that supertype. This issue can only
be solved to a certain degree with JSON Schema, as explained in [OGC 20-012], section Class
Specialization and Property Ranges.

Common base schema

It is often useful to encode all classes that have a certain stereotype with a common base type. The
generalization relationship to such a base type is often implied with the stereotype, for a given
encoding. In GML, for example, the common base type for classes with stereotype «FeatureType» is
gml:AbstractFeature. Rather than explicitly modeling such a base type (e.g., AnyFeature defined by
ISO 19109), as well as explicitly modeling generalization relationships to the base type, the encoding
rule typically takes care of adding that relationship to relevant schema types. Requirements class
[http://www.opengis.net/spec/uml2json/1.0/req/core] does not declare specific common base types.
That is left to other requirements classes.

Feature and object type

In the conceptual model, feature and object types represent objects that have identity. That

30

https://docs.ogc.org/per/20-012.html#jsonschema_schemaconversionrules_types_inheritance_specialization
https://docs.ogc.org/per/20-012.html#jsonschema_schemaconversionrules_types_inheritance_specialization

differentiates these types from, for example, data types. Other than that, feature and object types -
in the following summarily called types with identity - are encoded as JSON objects, just like a data

type.

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/feature-and-object-types

Sstatement

The feature and object types of an application schema shall be converted to JSON Schema
definitions of JSON objects. These definitions shall be added to the definitions schema, using
the type name as definition key.

NOTE ISO 19109 requires class names to be unique within the scope of an application
schema.

The conversion of the class properties is defined in Properties. General type conversion rules, such

as those documented in Class name, may apply.

The conceptual model of a type with identity often does not contain an identifier property (a UML
property whose value for field "isId" is set to true), whose value is used by applications to identify
objects of that type. Instead, the according information is added or defined in platform specific
encodings. For example, a GML application schema offers the gml:id attribute as well as the
gml:identifier element to encode identifying information. In a web publishing context, the URI at
which a JSON object is published can be used as its identifier. Requirements class
[http://www.opengis.net/spec/uml2json/1.0/req/core] does not declare any specific mechanism for
adding an identifier property. That could be achieved through the definition of a common base
schema (see Common base schema). However, requirements regarding such a base schema are left
to other requirements classes. Likewise, this requirements class does not define any requirements
regarding the number and characteristics of identifier properties. Again, that is left to other
requirements classes.

Data type

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/data-types

statement

A «DataType» shall be converted to a JSON Schema definition of a JSON object. That
definition shall be added to the definitions schema, using the type name as definition key.

Enumeration

31

http://www.opengis.net/spec/uml2json/1.0/req/core/feature-and-object-types
http://www.opengis.net/spec/uml2json/1.0/req/core/data-types

The literal encoding type is one of the types from ISO 19103, which are implemented as a simple

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/enumerations

An «Enumeration» shall be converted to a JSON Schema definition with a type defined by

evaluating tagged value literalEncodingType on the enumeration.

The tagged value literalEncodingType identifies the conceptual type that applies to the
enumeration values. If the tagged value is not set on the enumeration, or has an empty value,

then the literal encoding type is defined to be CharacterString.

The JSON Schema definition shall use the "enum" keyword to restrict the value to one of the
enums from the enumeration. The "enum” value shall be an array with one element per enum
defined by the enumeration. For each enum, the array element shall be the initial value of the

enum, if defined, otherwise it shall be the name of the enum.

JSON Schema type - see Literal encoding type.

Table 6. Literal encoding type

Conceptual type from ISO 19103

CharacterString

Real, Number

Integer

«enumeration»

Enumerationl
enuml =-5
enum? =0

enum3 =55

tags
literalEncodingType = Real

Figure 4. «<Enumeration» example

32

simple JSON Schema type
string
number

integer

«enumeration»
Enumeration2

A
B

http://www.opengis.net/spec/uml2json/1.0/req/core/enumerations

Example of enumerations encoded in JSON Schema

{
"$schema": "http://json-schema.org/draft/2020-12/schema",
"$defs": {
"Enumeration1": {
"type": "number",
"enum": [-5, 0, 5.5]
s
"Enumeration2": {
"type": "string",
"enum": ["A","B","C"]
}
}
}
Basic Type

If a direct or indirect supertype of an application schema class is represented in JSON Schema by
one of the simple JSON Schema types string, number, integer, or boolean, then that class represents
a so called basic type. A basic type does not define a JSON object. It represents a simple data value,
e.g., a string. The JSON Schema definition of a basic type thus defines a simple JSON Schema type.

33

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/basic-types

If the direct supertype of a basic type is implemented as one of the simple JSON Schema types,
then the JSON Schema definition of the basic type shall have a "type" member with that simple
JSON Schema type as value, and potentially additional JSON Schema keywords - especially
"format" - which may be defined for the JSON Schema implementation of the supertype (for
further details, see External types). Otherwise, the JSON Schema definition of the basic type
shall reference the JSON Schema definition of its supertype using the "$ref" member.

If an official JSON Schema was published for the types defined in [ISO
NOTE 19103:2015], then the definitions of that schema could be referenced, instead of
creating a "type" member.

For each tag listed in Basic type restrictions, add the corresponding JSON Schema keyword (as
defined in the table) to the JSON Schema definition of the basic type, with the tag value as
value, if all of the following conditions are met:

» The tag is defined on the basic type and has a non-blank value.

* The simple JSON Schema type with which the basic type (or its direct or indirect supertype)
is implemented is one of the simple JSON Schema types for which the JSON Schema
keyword is applicable (as defined in Basic type restrictions).

If one or more JSON Schema keywords listed in Basic type restrictions are added to the JSON
Schema definition of the basic type, and that definition does not declare a "type" member - i.e.,
it references the JSON Schema definition of its supertype via "$ref" - then an "allOf" keyword
shall be used to combine the referenced schema definition and the list of additional JSON
Schema keywords.

Table 7. Basic type restrictions

tagged value (to define a JSON Schema keyword applicable JSON Schema
restriction) type(s)

jsonFormat format string, number, integer
maxLength maxLength string

minLength minLength string

jsonPattern pattern string

mininclusive minimum number, integer
minExclusive exclusiveMinimum number, integer
maxInclusive maximum number, integer
maxExclusive exclusiveMaximum number, integer

34

http://www.opengis.net/spec/uml2json/1.0/req/core/basic-types

The JSON Schema keyword "format" is defined in chapter 7 of JSON Schema
Validation: A Vocabulary for Structural Validation of JSON. The formats defined

NOTE
there (e.g., "date-time", "uri", and "json-pointer") apply to JSON values of type string.
Custom formats could apply to JSON values of type number and integer.
JSON Schema Validation: A Vocabulary for Structural Validation of JSON defines the
JSON Schema keyword "pattern”. According to that specification, the value of the
NOTE keyword should be a regular expression according to the [ECMA-262] regular

expression dialect. JSON Schema: A Media Type for Describing JSON Documents
defines a number of recommendations for writing regular expressions in JSON
Schema.

If the "format" keyword is used to restrict the structure of a JSON string, so that it
matches a certain regular expression, then it is useful to add the "pattern” keyword
as well, explicitly defining that regular expression (given that the regular
expression follows an [ECMA-262] regular expression dialect). The reason is that the
"format" is first and foremost an annotation, so can be ignored by JSON Schema

NOTE validators, whereas the "pattern" keyword will be evaluated by a JSON Schema
validator. JSON Schema validators may treat the "format" keyword like an assertion,
but that is not guaranteed. In any case, the "format" keyword helps to convey more
information about the specific type of a JSON value (e.g., "date" instead of just
"string"), and thus should not be omitted if a certain, well-known (i.e., defined by a
JSON Schema vocabulary) format is applicable to a JSON value.

Basic types example provides a detailed example that illustrates a number of cases. The JSON
Schema encoding is shown in Example of basic types encoded in JSON Schema.

35

«type»
External Schema::
CharacterString

/d

R

«type»
String10

tags

«type»

MyCharacterString

maxLength = 10

s

«type»

External Schema::Real

7

«type»

MyNumber

«type»
StringPattern

«type»

EmailAddress

tags

jsonPattern = ~[abc]{3}$

tags

jsonFormat = email

Figure 5. Basic types example

Example of basic types encoded in J[SON Schema

«type» «type»
NumberOther NumberMinus180toPlus180
tags
maxInclusive = 180
% minlnclusive = -180
«type»
NumberNonNegative
tags
mininclusive = 0

«type»
Number0to360

tags
maxInclusive = 360

"$schema": "http://json-schema.org/draft/2020-12/schema",

:

"$ref": "#/$defs/MyCharacterString"

{
"$defs": {
"EmailAddress"”
"allof": [

{

+

{
"format"

}

]
}

: "email"

yCharacterString": {

"type": "string"

H
"MyNumber": {

36

"type": "number"
+
"Number@to360": {
"allof": [

{

"$ref": "#/$defs/NumberNonNegative"

j¥
{
"maximum": 360.0
}
]
+
"NumberMinus180toPlus180": {
"allof": [
{
"$ref": "#/$defs/MyNumber"
I
{
"minimum": -180.0,
"maximum": 180.0
}
]
Iy
“NumberNonNegative": {
"allof": [
{
"$ref": "#/$defs/NumberOther"
I
{
"minimum": 0.0
}
]
Iy,
"NumberOther": {
"$ref": "#/$defs/MyNumber"
+
"String10": {
"allof": [
{
"type": "string"
I
{
"maxLength": 10
}
]
Jis
"StringPattern": {
"allof": [
{
"$ref": "#/$defs/MyCharacterString”
H

37

{
"pattern”: "A[abc]{3}$"

Properties

General

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/properties

Statement

A UML property shall be converted to a member of a JSON object - unless the encoding rule
defines a different behavior for the type that owns the property (e.g., for enumerations,
unions, and code lists).

By default, UML properties are converted to keys within the "properties" member of
the JSON Schema definition for the type that owns the property. Additional

NOTE requirements may override this encoding (e.g., the type discriminator encoding of
«union» properties), or augment the encoding (e.g., encoding the properties under
the "properties" member of a GeoJSON-based feature).

The default result of converting a UML property, therefore, is a key within the "properties" key of
the JSON Schema definition for the type that owns the property, with the key name being the name
of the UML property, and the value being a JSON Schema with constraints and annotations that
define the property (value type, multiplicity, etc).

The following figure and listing provide an example: UML type used to exemplify JSON Schema
encoding of UML properties shows a feature type with a number of properties. Encoding UML
properties in JSON Schema illustrates how the UML properties are represented within the
"properties"” of the JSON Schema that defines that type.

wdataTypex
TypeX

wproperty»
+ propertyl: CharacterString
+ property2: Integer

Figure 6. UML type used to exemplify JSON Schema encoding of UML properties

38

http://www.opengis.net/spec/uml2json/1.0/req/core/properties

Encoding UML properties in JSON Schema

{
"$schema": "http://json-schema.org/draft/2020-12/schema",

"$defs": {
"TypeX": {
"type": "object",
"properties": {
"property1": {"type": "string"},
"property2": {"type": "number"}
}

"required": [
"property1", "property2"
]
}
}

}

Value Type

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/property-inline

statement

The value type of a UML property shall be encoded as a JSON Schema constraint, as follows:

part

If the value type of a UML property is an external type, and the JSON Schema definition of
that external type is a simple JSON value type, i.e., "string", "number", "integer", or
"boolean", then a "type" key shall be added to the JSON Schema definition of the property,
with the simple JSON value type as value;

part

Otherwise, a "$ref" key shall be added to the JSON Schema that constrains the property. The
"$ref" value shall be a reference to the JSON Schema definition of the value type, within a
particular definitions schema. The reference can be absolute or relative, and typically
contains a fragment identifier to identify the definition of the value type.

Examples:
* using the "$anchor" value "TypeX" as fragment identifier: https://example.org/schemas/
schema_definitions.json#TypeX

* using JSON Pointer as fragment identifier: https://example.org/schemas/
schema_definitions.json#/$defs/TypeX

o NOTE: If the referenced schema is a draft 07 JSON Schema, the JSON Pointer would have to
change as follows: https://example.org/schemas/schema_definitions.json#/definitions/TypeX

39

http://www.opengis.net/spec/uml2json/1.0/req/core/property-inline
https://example.org/schemas/schema_definitions.json#TypeX
https://example.org/schemas/schema_definitions.json#TypeX
https://example.org/schemas/schema_definitions.json#/$defs/TypeX
https://example.org/schemas/schema_definitions.json#/$defs/TypeX
https://example.org/schemas/schema_definitions.json#/definitions/TypeX

Keep in mind that the use of a fragment identifier with anchor or JSON Pointer
NOTE value in $ref references can depend upon the media type with which the referenced
JSON schema is published, as is explained in more detail here.

The behavior described in [http:/www.opengis.net/spec/uml2json/1.0/req/core/property-inline]
covers the case of an inline encoding of the property value. That is sufficient for simple application
schemas. For more complex schemas, typically ones that contain associations between feature
types, it can be necessary or desired to encode property values by-reference, i.e., using links.
However, multiple options exist for realizing a by-reference encoding. These options are defined in
separate requirements classes - see Additional requirements classes for the by-reference encoding
of property values. A particular JSON Schema encoding of a given application schema needs to
choose one of these options, in order to enable by-reference encoding for relevant properties.

«featureType» «featureTypen
Example schema A::Classl Example schema B::Class3
«property» +rolel 3 «property»
+ attBoolean: Boolean [0..1] + attCharaderString: CharaderString [0..1]
0.1

+role2 1 0.1

«featureType»
Example schema A::Class2

«property»
+ attinteger: Integer [0..1]

Figure 7. Examples of classes from two application schemas with properties that are implemented as simple
JSON Schema types and as schema references

40

Example schema A, encoded as J[SON Schema

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$id": "http://example.org/schema/schemaA.json",
"$defs": {
"Class1": {
"$anchor": "Class1",
"type": "object",
"properties": {
"attBoolean": {
"type": "boolean"
I
"role2 1": {
"$ref": "#/$defs/Class2"
}
}
I
"Class2": {
"$anchor": "Class2",
"type": "object",
"properties": {
"attInteger": {
"type": "integer"

Example schema B, encoded as J[SON Schema

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$§id": "http://example.org/schema/schemaB.json",
"$defs": {
"Class3": {
"$anchor": "Class3",
"type": "object",
"properties": {
"rolel 3": {
"$ref": "schemaA.jsontt/$defs/Class1"
Iy
"attCharacterString": {
"type": "string"
}
}
}
}
}

41

This JSON object is valid against the definition of "Class1" from Example schema A, encoded as JSON
Schema:

{
"attBoolean": true,
"role2_1": {
"attInteger": 2
}
}

This JSON object is invalid (because "attInteger" has a string value, where an integer value is
expected) against the schema from Example schema A, encoded as JSON Schema:

{
"attBoolean": true,
"role2_1": {
"attInteger": "X"
}
}
Multiplicity
identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/property-multiplicity

If the multiplicity lower bound of a UML property is 1 or greater, and the class that owns the
property is not a «union», then the property shall be listed under the "required" properties of
the JSON object to which the property belongs.

In addition, if the multiplicity upper bound of the property is greater than 1, then the JSON
Schema definition for the property shall be created as follows.

* The "type" of the JSON property is set to "array", with the "items" keyword containing the
JSON Schema constraints that are created to represent the value type of the property.

» If the multiplicity lower bound is greater than 0, it is encoded using the "minItems"
keyword.

 If the multiplicity upper bound is not unbounded, it is encoded using the "maxItems"
keyword.

 If the values of the property are defined to be unique (which is the default for UML
properties), then that is represented by adding "uniqueltems": true.

42

http://www.opengis.net/spec/uml2json/1.0/req/core/property-multiplicity

«featureTypes
Type

«propertys
+ property: CharacterString [1..2]

Figure 8. UML type used to exemplify JSON Schema encoding of multiplicity

Example for encoding multiplicity in JSON Schema

{
"$schema": "http://json-schema.org/draft/2020-12/schema",
"$defs": {
"Type": {
"type": "object",
"properties": {
"property": {
"type": "array",
"minItems": 1,
"maxItems": 2,
"items": {
"type": "string"
5
"uniqueltems": true
}
b
"required": [
"property"
1
}
¥
"$ref": "#/$defs/Type"
}

This JSON object is valid against the schema from Example for encoding multiplicity in JSON
Schema:

{
"property": ["a","b"]
}

This JSON object is invalid (because "property" has three values, which exceeds the maximum
amount of allowed values) against the schema from Example for encoding multiplicity in JSON
Schema:

43

{
llproperty": [“a“,“b“,“c“]
}

All arrays in JSON are ordered, thus that the values of a UML property are ordered
is always represented, and that the values of such a property are unordered cannot
be represented. However, the latter should not matter to an application that does
not expect ordered values for a certain property.

NOTE

Fixed / readOnly

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/property-fixed-readonly

statement

The JSON Schema definition of a UML property that is marked as read only or fixed shall
include the "readOnly" annotation with JSON value true.

«featureType»
FeatureTypel

«property»
+ attribute: CharacterString [0..1] {readOnly}

Figure 9. UML type used to exemplify JSON Schema encoding of a readOnly property

44

http://www.opengis.net/spec/uml2json/1.0/req/core/property-fixed-readonly

Example for encoding a readOnly property in JSON Schema

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$defs": {
"FeatureType1": {
"$anchor": "FeatureTypel",
"type": "object",
"properties": {
"attribute": {
"type": "string",
"readOnly": true

Derived

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/property-derived

statement

The JSON Schema definition of a UML property that is marked as derived shall include the
"readOnly" annotation with JSON value true.

«featureType»
FeatureType2

«property»
+ [attribute: CharacerString [0..1]

Figure 10. UML type used to exemplify [SON Schema encoding of a derived property

http://www.opengis.net/spec/uml2json/1.0/req/core/property-derived

Example for encoding a derived property in JSON Schema

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$defs": {
"FeatureType2": {
"$anchor": "FeatureType2",
"type": "object",
"properties": {
"attribute": {
"type": "string",
"readOnly": true
}
}
}
}
}
Initial Value
identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/property-initial-value

statement

A UML attribute that has an initial value, is owned by a type with identity or a «DataType»,
and whose value type is encoded as one of the simple JSON Schema types "string",

"number", "integer", or "boolean", shall be encoded as follows:

The JSON Schema definition of the UML attribute shall include the "default" annotation with
the initial value as value.

The value of the annotation can have any JSON value type. The initial value shall be encoded
accordingly:

* quoted, if the JSON Schema type is "string";

* unquoted if the JSON Schema type is "number" or "integer"; and

¢ true if the JSON Schema type is "boolean" and the initial value is equal to, ignoring case,
"true"; otherwise the value is false.

Theoretically, the default value can also be a JSON array or object, but that cannot

NOTE . .
be represented in UML and thus is not a relevant use case.

46

http://www.opengis.net/spec/uml2json/1.0/req/core/property-initial-value

«featureType»
FeatureType3

«property»
+ attBoolean: Boolean [0..1] = true
+ attCharaderString: CharacterString [0..1] = xyz

«dataType»
DataType

«property»
+ attinteger: Integer [0..1] =1
+ attNumber: Number [0..1] = 2.2

Figure 11. UML type used to exemplify JSON Schema encoding of properties with initial value

Example for encoding properties with initial value in JSON Schema

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$defs": {
"DataType": {
"$anchor": "DataType",
"type": "object",
"properties": {
"attInteger": {
"type": "integer",
"default": 1
b
"attNumber": {
"type": "number",
"default": 2.2
}
}

}

"FeatureType3": {
"$anchor": "FeatureType3",
"type": "object",
"properties": {

"attBoolean": {
"type": "boolean",
"default": true

I#

"attCharacterString": {
"type": "string",
"default": "xyz"

Association class

Standard UML supports the concept of association class, i.e., an association that has properties.
There is no native representation for association classes in JSON or JSON Schema. Association
classes therefore need to be converted to "intermediate" classes, before being serialized to JSON
Schema. The conversion is illustrated in the following figures, with Model with association classes
showing the original conceptual model, and Association classes transformed to intermediate classes
showing the conversion result.

48

Figure 12. Model with association classes

«featureType» +role2_1 «featureType»
Featurel «property» Feature2

| >

: a..b

|

I

|

I

«featureType»
F12
«featureType» +rol 93;:1 +roled 3 «featureType»
Feature3 “property» «property» Feature4
|
c..d : o f

I

I

|

I

«featureType»
F34

49

«featureType» +role2 1 «featureType» wrole2_1 «featureType»
Featurel “property» F12 “property» Feature2
a.b 1
«featureType» +role3 4 +role4_3 «featureType» +role3 4 +role4_3 «featureType»
Feature3 «property» «property» F34 «property» «property» Featured
1 e.f c..d 1

Figure 13. Association classes transformed to intermediate classes

identifier

http://www.opengis.net/spec/uml2json/1.0/req/core/association-class

statement

Before applying the conversion to JSON Schema, a UML association class that is a type with
identity shall be transformed as follows (in the following description the source class of the
association is called S and the target class is called T):

» The association class A is transformed into a regular class with the same name,
stereotype, tagged values, constraints, attributes, and relationships.

» The association is replaced by two associations, one from S to A ("SA"), and one from A
to T ("AT").

» The characteristics of the association end (in particular role name, navigability,
multiplicity, documentation) of the original association class at T are used for
association ends at A of SA and at T of AT, with the exception that the multiplicity at the
association end at T of association AT is set to 1.

» The characteristics of the association end of the original association class at S are used
for association ends at S of SA and at A of AT, with the exception that the multiplicity at
the association end at S of association SA is set to 1.

Constraints

OCL constraints can be used to enrich a conceptual model with requirements that cannot be
expressed in UML alone. However, this specification does not define any requirements for
converting OCL constraints to JSON Schema definitions, or to any other format with which the
constraints can be checked on a JSON dataset.

Conceptual model transformations

The conceptual schema may need to be transformed, in order to deal with model elements:

50

http://www.opengis.net/spec/uml2json/1.0/req/core/association-class

* that cannot be represented in a certain JSON format (e.g., a Solid - a 3D geometry type - as value
for the "geometry" member of a GeoJSON feature); or

* that are not (well) supported by client software (e.g., complex attribute values for styling,
processing, and filtering).

No specific model transformation requirements and recommendations are defined in this
document. Examples of model transformations are given in [OGC 20-012] and in the GitHub
repository with model transformation rules by the INSPIRE community.

Primary geometry

[OGC 23-058r1] defines the concept of primary geometry:
primary geometry

the geometry that the publisher considers as the most important spatial
characteristic of a feature

A feature can be described by multiple spatial properties. For
example, a radio tower can have a property with a point value
that describes the location of the tower and another property

NOTE with a multi-polygon value that describes the area of
coverage. Some feature formats can represent only a single
geometry per feature. In those cases, the primary geometry
will be used when the feature is encoded in such a format.

The primary geometry of a feature can also vary depending
on the zoom level. At a smaller scale, the primary geometry
could be a point while a polygon could be used at a larger
scale.

NOTE

— OGC API - Features - Part 5: Schemas, ref_ogcapifeatures_part5_schemas,section=4.1

The concept is generally applicable to feature types. Examples of data formats to which the concept
applies are GeoJSON and JSON-FG. Requirements regarding the encoding of the primary geometry
are defined in the according requirements classes
([http://www.opengis.net/spec/uml2json/1.0/req/geojson] and
[http://www.opengis.net/spec/uml2json/1.0/req/jsonfg]).

In order to identify the UML property that represents the primary geometry of a feature type, the
following approach is used in this specification:

* If a single (direct or inherited, but ignoring redefined) UML property of the feature type has tag
"primaryGeometry" with value equal to and ignoring case "true", then that property is the
primary geometry of the feature type.

31

https://github.com/INSPIRE-MIF/model-transformation-rules
https://github.com/INSPIRE-MIF/model-transformation-rules

* Otherwise, if the set of (direct and inherited, but ignoring redefined) UML properties of the
feature type only contains a single UML property with a geometric type, and that property is
directly owned by the feature type, and that property does not have tag "primaryGeometry"
with value equal to, ignoring case, "false", then that property is the primary geometry of the
feature type.

* Otherwise, no primary geometry is defined for the feature type.

A feature type that has multiple UML properties with tag "primaryGeometry" = true

NOTE
is not modeled correctly.
Setting tagged value "primaryGeometry" = false can be useful in cases of geometric
properties of classes that are (expected to be) subtyped, with the subtypes defining
NOTE their own primary geometry properties. If the supertype had a geometric property

without such a tagged value, the second part of the rule (for determining the
primary geometry) would apply, thereby incorrectly identifying the supertype
property as primary geometry. That can lead to undesired JSON Schema constraints.

Primary temporal information

[OGC 23-058r1] defines the concept of primary temporal information:
primary temporal information

the time instant or time interval that the publisher considers as the most
important temporal characteristic of a feature

A feature can be described by multiple temporal properties.
For example, an event can have a property with an instant or
interval when the event occurred or will occur and another

NOTE property when the event was recorded in the dataset. The
primary temporal information can also be built from two
properties, e.g., when the feature has two properties
describing the start and end instants of an interval.

— OGC API - Features - Part 5: Schemas, ref_ogcapifeatures_part5_schemas,section=4.1

The concept is generally applicable to feature types. An example of a data format to which the
concept applies is JSON-FG. Requirements regarding the encoding of primary temporal information
are defined in the according requirements class
([http://www.opengis.net/spec/uml2json/1.0/req/jsonfg]).

In order to identify the UML property that represents the primary geometry of a feature type, the
following approach is used in this specification:

* A UML property that is owned by the feature type and that has tag "primaryInstant” with value
equal to and ignoring case "true" is the primary-instant of the feature type.

32

* A UML property that is owned by the feature type and that has tag "primaryInterval" with value
equal to and ignoring case:

o "interval" is the primary-interval of the feature type.
o "start" is the primary-interval-start of the feature type.

- "end" is the primary-interval-end of the feature type.

The value types of UML properties that represent or contribute to the primary
interval should be compatible with that use. For example, properties marked as

NOTE primary-interval-start or primary-interval-end can have value type "Date",
"DateTime", or "TM_Instant", whereas a property marked as primary-interval can
have value type "TM_Period".

A feature type that does not satisfy the following conditions is not modeled
correctly:

* At most one of the (direct or inherited, but ignoring redefined) properties has
tag "primarylnterval" = "interval".

* At most one of the (direct or inherited, but ignoring redefined) properties has
tag "primarylnterval” = "start".

NOTE * At most one of the (direct or inherited, but ignoring redefined) properties has
tag "primarylnterval" = "end".

* The use of "interval" and "start"/"end" are mutually exclusive within the (direct
or inherited, but ignoring redefined) properties of the feature type:

o If one property has tag "primarylnterval" = "interval", then no other
property has tag "primaryInterval" equal to "start" or "end".

o Likewise, if one property has tag "primaryInterval” equal to "start" or "end",
then no other property has tag "primaryInterval” = "interval".

Requirements class: Encoding rule for a plain JSON
Schema format

33

identifier

http://www.opengis.net/spec/uml2json/1.0/req/plain

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/core

inherit
[IETF RFC 7946]

recommendation

http://www.opengis.net/spec/uml2json/1.0/req/plain/iso19107-types

An example of an application schema encoded in plain JSON Schema format is

NOTE
given in Example schema in plain JSON encoding.

Common base schema

As described in the core requirements class, common base types or - for the purposes of this
encoding rule - common JSON Schema definitions can be added to the schema definition of certain
kinds of classes, for example, all feature types. This requirements class does not specify any such
common JSON Schema definitions. As a consequence, if the types with identity defined by an
application schema do not contain attributes that convey the identity of an actual object, according
JSON objects cannot be identified using information from property values. Additional requirements
classes, which depend on [http:/www.opengis.net/spec/uml2json/1.0/req/plain], may add
requirements regarding a common base.

Implementation of ISO 19107 types

identifier

http://www.opengis.net/spec/uml2json/1.0/req/plain/iso19107-types

statement
If a UML property is encoded in JSON Schema, and the value type is one of the ISO 19107
geometry types listed in the first column of J[SON Schema implementation of types defined
by ISO 19107 for the plain JSON Schema encoding rule, then it is recommended that the
JSON schema definition in the second column of that table be used in the JSON Schema
definition of the property.

Table 8. JSON Schema implementation of types defined by ISO 19107 for the plain [SON Schema
encoding rule

54

http://www.opengis.net/spec/uml2json/1.0/req/plain
http://www.opengis.net/spec/uml2json/1.0/req/core
http://www.opengis.net/spec/uml2json/1.0/req/plain/iso19107-types
http://www.opengis.net/spec/uml2json/1.0/req/plain/iso19107-types

UML class JSON Schema reference

GM_Point https://geojson.org/schema/Point.json

GM_Curve https://geojson.org/schema/LineString.json

GM_Surface https://geojson.org/schema/Polygon.json

GM_MultiPoint https://geojson.org/schema/MultiPoint.json

GM_MultiCurve https://geojson.org/schema/
MultiLineString.json

GM_MultiSurface https://geojson.org/schema/
MultiPolygon.json

GM_Aggregate https://geojson.org/schema/

GeometryCollection.json

GM_Object https://geojson.org/schema/Geometry.json

JSON Schema implementation of types defined by ISO 19107 for the plain JSON
Schema encoding rule uses geometry types defined by [ISO 19107:2003]. While this
specification does not define mapping tables for newer versions of ISO 19107,
application schemas may use geometry types from a newer version of ISO 19107.
The mappings would then need to be adjusted accordingly (finding correct
replacements for the types mentioned in the first column of the table).

NOTE

For geometry typed properties whose value type is not covered in JSON Schema
NOTE implementation of types defined by ISO 19107 for the plain JSON Schema encoding
rule, a suitable mapping needs to be defined, as explained in External types.

Other geometry encodings are allowed for the plain JSON Schema format, for
NOTE example a WKT string or a JSON-FG geometry. Such geometry encodings may be
useful in application scenarios where tools do not (only) support GeoJSON.

Identifier property

This requirements class does not define a means to add an identifier property - i.e., a UML property
that is modeled with "isId" = true - to the JSON Schema encoding of a feature type, if that type does
not declare such a property. The application schema would need to be transformed, in order to add
an identifier property, where necessary.

Requirements class: GeoJSON Formats

55

https://geojson.org/schema/Point.json
https://geojson.org/schema/LineString.json
https://geojson.org/schema/Polygon.json
https://geojson.org/schema/MultiPoint.json
https://geojson.org/schema/MultiLineString.json
https://geojson.org/schema/MultiLineString.json
https://geojson.org/schema/MultiPolygon.json
https://geojson.org/schema/MultiPolygon.json
https://geojson.org/schema/GeometryCollection.json
https://geojson.org/schema/GeometryCollection.json
https://geojson.org/schema/Geometry.json

identifier

http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/core

inherit
[IETF RFC 7946]

requirement

http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/identifier

requirement

http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/nesting-feature-type-
properties

Identifier property

identifier

http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/identifier

statement

If at least one UML property of a feature type is modeled with "isId" = true, then the top-
level "id" member of GeoJSON features that encode instances of the feature type shall have
a value.

A UML property of a feature type which is modeled with "isId" = true, is mapped to
the "id" member of a GeoJSON feature. The mapping algorithm is community-
specific. If a feature type has multiple UML properties where "isId" = true, or if the

NOTE value type of such a property is not a simple type, some community specific
conversion mechanism needs to be defined, for mapping the identifier value(s) to a
simple string or number, which can be used as value of the "id" member of a
GeoJSON feature.

The UML properties with "isId" = true are encoded as any other property, in
addition to being mapped to the top-level "id" member. That is especially useful in
case multiple such properties exist in a feature type, because applications that know
the conceptual schema can read these dedicated properties directly, in order to
gather information about the ID of a given feature, rather than having to decode the
"id" member.

NOTE

36

http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats
http://www.opengis.net/spec/uml2json/1.0/req/core
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/identifier
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/nesting-feature-type-properties
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/nesting-feature-type-properties
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/identifier

Nesting feature type properties

identifier

http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/nesting-feature-type-
properties

statement

Properties of a feature type shall be encoded within the GeoJSON "properties" member, i.e.,
within a nested "properties” member.

Additional requirements can override this behavior, by omitting certain UML
NOTE properties or by mapping certain UML properties to first-level members of the
resulting JSON object. An example is the identifier property.

Properties of object types are encoded as first-level properties of the resulting JSON
object. If object types should be encoded as feature types, then the object types
would need to be transformed accordingly, before a JSON Schema encoding is
created.

NOTE

Requirements class: Encoding rule for a GeoJSON
compliant JSON Schema format

identifier

http://www.opengis.net/spec/uml2json/1.0/req/geojson

target
JSON (Schema) documents

inherit
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats

requirement

http://www.opengis.net/spec/uml2json/1.0/req/geojson/common-base

requirement

http://www.opengis.net/spec/uml2json/1.0/req/geojson/iso19107-types-for-geometry-member

requirement

http://www.opengis.net/spec/uml2json/1.0/req/geojson/primary-geometry

An example of an application schema encoded in GeoJSON compliant JSON Schema

NOTE L . . : .
format is given in Example schema in GeoJSON-compliant encoding.

57

http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/nesting-feature-type-properties
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats/nesting-feature-type-properties
http://www.opengis.net/spec/uml2json/1.0/req/geojson
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats
http://www.opengis.net/spec/uml2json/1.0/req/geojson/common-base
http://www.opengis.net/spec/uml2json/1.0/req/geojson/iso19107-types-for-geometry-member
http://www.opengis.net/spec/uml2json/1.0/req/geojson/primary-geometry

Common base schema

As described in the core requirements class, common base types or - for the purposes of this
encoding rule - common JSON Schema definitions can be added to the schema definition of certain
kinds of classes, for example, all feature types.

identifier

http://www.opengis.net/spec/uml2json/1.0/req/geojson/common-base

statement

All feature types shall use the GeoJSON Feature definition - https://geojson.org/schema/
Feature.json - as common base.

part

The relationship to the GeoJSON Feature definition schema shall be implemented by
converting a feature type to a JSON Schema that consists of an "allOf" with two subschemas:
the first being a "$ref” with value "https://geojson.org/schema/Feature.json"”, the second
being the schema produced by applying the other conversion rules to the feature type.
However, if one of the supertypes of the feature type already has the GeoJSON Feature
definition in its JSON Schema definition, then the JSON Schema definition of the feature
type itself shall not define it again.

part

If the feature type is encoded with an "allOf" for the GeoJSON Feature definition, then the
"$anchor" member (see Class name) shall be encoded in the schema that contains the
"allOf", instead of within the second subschema.

NOTE No common base schema is defined for object types. Such types need to be

transformed to feature types if they should be encoded as GeoJSON features.
Example of a feature type hierarchy in an application schema illustrates a feature type hierarchy,
and Example for encoding the common base schema for feature types shows how these feature
types are encoded in JSON Schema using the common base schema. Note that the definitions of the
individual feature types still state "type": "object" in order to illustrate the place where object
properties would be defined. However, such properties have been omitted in the example to avoid
unnecessary complexity.

38

http://www.opengis.net/spec/uml2json/1.0/req/geojson/common-base
https://geojson.org/schema/Feature.json
https://geojson.org/schema/Feature.json

«featureType»
Parcel

«featureTypen
Building_Core

«featureType»
Building

«featureType»
BuildingPart

Figure 14. Example of a feature type hierarchy in an application schema

Example for encoding the common base schema for feature types

{

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$§id": "http://example.org/schema/infra.json",

"$defs": {
"Building": {
"$anchor": "Building",
"all0f": [
{
"$ref": "#/$defs/Building_Core"
+
{
"type": "object"
}
]
+
"BuildingPart": {
"$anchor": "BuildingPart",

"allof": [
{
"$ref": "#/$defs/Building_Core"
+
{
"type": "object"
}
]

}
"Building_Core": {

"$anchor": "Building_Core",
"allof": [

{

"$ref": "https://geojson.org/schema/Feature.json"

}I
{

39

"type": "object"
}
]
}
"Parcel": {
"$anchor": "Parcel",
"allof": [

{

"$ref": "https://geojson.org/schema/Feature.json"
}

{
"type": "object"

Implementation of ISO 19107 types for the "geometry" member

identifier

http://www.opengis.net/spec/uml2json/1.0/req/geojson/iso19107-types-for-geometry-member

statement

If a UML property is encoded in JSON Schema, in the "geometry" top-level member of a
JSON object that represents a type width identity, and the value type is one of the ISO 19107
geometry types listed in the first column of J[SON Schema implementation of types defined
by ISO 19107, for the "geometry" member in the GeoJSON encoding rule, then the JSON
schema definition in the second column of that table shall be used in the JSON Schema
definition of the property.

Table 9.]SON Schema implementation of types defined by ISO 19107, for the "geometry" member
in the GeoJSON encoding rule

UML class JSON Schema reference

GM_Point https://geojson.org/schema/Point.json

GM_Curve https://geojson.org/schema/LineString.json

GM_Surface https://geojson.org/schema/Polygon.json

GM_MultiPoint https://geojson.org/schema/MultiPoint.json

GM_MultiCurve https://geojson.org/schema/
MultiLineString.json

GM_MultiSurface https://geojson.org/schema/
MultiPolygon.json

GM_Aggregate https://geojson.org/schema/

GeometryCollection.json

60

http://www.opengis.net/spec/uml2json/1.0/req/geojson/iso19107-types-for-geometry-member
https://geojson.org/schema/Point.json
https://geojson.org/schema/LineString.json
https://geojson.org/schema/Polygon.json
https://geojson.org/schema/MultiPoint.json
https://geojson.org/schema/MultiLineString.json
https://geojson.org/schema/MultiLineString.json
https://geojson.org/schema/MultiPolygon.json
https://geojson.org/schema/MultiPolygon.json
https://geojson.org/schema/GeometryCollection.json
https://geojson.org/schema/GeometryCollection.json

UML class
GM_Object

JSON Schema reference

https://geojson.org/schema/Geometry.json

JSON Schema implementation of types defined by ISO 19107, for the "geometry"
member in the GeoJSON encoding rule uses geometry types defined by [ISO
19107:2003]. While this specification does not define mapping tables for newer

NOTE versions of ISO 19107, application schemas may use geometry types from a newer
version of ISO 19107. The mappings would then need to be adjusted accordingly
(finding correct replacements for the types mentioned in the first column of the
table).

NOTE For geometry typed properties that are not mapped to the "geometry" top-level
member, a suitable mapping needs to be defined, as explained in External types.

Primary geometry
identifier

http://www.opengis.net/spec/uml2json/1.0/req/geojson/primary-geometry

If a feature type has a primary geometry property (identified following the rules in Primary
geometry), and that property is directly owned by the feature type, and the JSON Schema
implementation of the property type is one of the GeoJSON geometry schemas (i.e., one of the
JSON Schema references listed in JSON Schema implementation of types defined by ISO 19107,
for the "geometry" member in the GeoJSON encoding rule), then:

* In the JSON Schema definition of the feature type, the primary geometry property shall be
encoded as a type restriction for the top-level "geometry" member. If the primary geometry
property is optional, then the schema restriction for the "geometry" member shall define a
choice - using the "oneOf" JSON Schema keyword - between a null value and the geometry
schema definition for the value type of the geometry property. The primary geometry
property shall not be encoded within the "properties” member.

* In instance data, the value of the primary geometry property shall be encoded within the
top-level "geometry” member of the JSON object that represents the feature type.

NOTE

UML properties of other kinds of classes - object types, data types, and unions - are
not considered by this requirement. Object types are not encoded as GeoJSON
features. Data types and unions may be used by other classes, which prevents a
general exclusive mapping to the GeoJSON top-level "geometry” member. Only a
direct property of a «FeatureType» can be mapped in this way.

61

https://geojson.org/schema/Geometry.json
http://www.opengis.net/spec/uml2json/1.0/req/geojson/primary-geometry

«featureType»

Parcel Attribute 'extent’ has tagged value

_______ primaryGeometry = true
«property»
+ extent: GM_Surface

Figure 15. Example of a feature type with an attribute designated as primary geometry

Example for encoding a feature type with primary geometry

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$defs": {
"Parcel": {
"$anchor": "Parcel",
"allof": [
{
"$ref": "https://geojson.org/schema/Feature.json"
o
{
"type": "object",
"properties": {
"geometry": {
"$ref": "https://geojson.org/schema/Polygon.json"

Requirements class: Encoding rule for a JSON-FG
compliant JSON Schema format

62

identifier

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg

target
JSON (Schema) documents
inherit
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats
inherit
http://www.opengis.net/spec/json-fg-1/0.1/req/core

requirement

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/common-base

requirement

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/iso19107-types-for-place-member

requirement

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/primary-geometry

requirement

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/primary-temporal-information

An example of an application schema encoded in JSON-FG compliant JSON Schema

NOTE L
format is given in Example schema in JSON-FG-compliant encoding.

Common base schema

As described in the core requirements class, common base types or - for the purposes of this
encoding rule - common JSON Schema definitions can be added to the schema definition of certain
kinds of classes, for example, all feature types.

63

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg
http://www.opengis.net/spec/uml2json/1.0/req/geojson-formats
http://www.opengis.net/spec/json-fg-1/0.1/req/core
http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/common-base
http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/iso19107-types-for-place-member
http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/primary-geometry
http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/primary-temporal-information

identifier

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/common-base

Statement

All feature types shall use the JSON-FG Feature definition - https://beta.schemas.opengis.net/
json-fg/feature.json - as common base.

part

The relationship to the JSON-FG Feature definition schema shall be implemented by
converting a feature type to a JSON Schema that consists of an "allOf" with two subschemas:
the first being a "$ref” with value "https://beta.schemas.opengis.net/json-fg/feature.json", the
second being the schema produced by applying the other conversion rules to the feature
type. However, if one of the supertypes of the feature type already has the JSON-FG Feature
definition in its JSON Schema definition, then the JSON Schema definition of the feature
type itself shall not define it again.

part

If the feature type is encoded with an "allOf" for the JSON-FG Feature definition, then the
"$anchor" member (see Class name) shall be encoded in the schema that contains the
"allOf", instead of within the second subschema.

No common base schema is defined for object types. Such types need to be

NOTE
transformed to feature types if they should be encoded as JSON-FG features.

An example of encoding feature types with a common base schema is given in Common base

schema. It can easily be adapted to match
[http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/common-base] by exchanging
"https://geojson.org/schema/Feature.json" with "https://beta.schemas.opengis.net/json-

fg/feature.json".

Implementation of ISO 19107 types for the "place" member

identifier

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/iso19107-types-for-place-member

Statement

If a UML property is encoded in JSON Schema, in the "place" top-level member of a JSON
object that represents a type with identity, and the value type is one of the ISO 19107
geometry types listed in the first column of JSON Schema implementation of types defined
by ISO 19107, for the "place"” member, then the JSON schema definition in the second
column of that table shall be used in the JSON Schema definition of the property.

Table 10. JSON Schema implementation of types defined by ISO 19107, for the "place” member

64

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/common-base
https://beta.schemas.opengis.net/json-fg/feature.json
https://beta.schemas.opengis.net/json-fg/feature.json
http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/iso19107-types-for-place-member

UML class
GM_Point

GM_Curve

GM_Surface

GM_Solid

GM_MultiPoint

GM_MultiCurve

GM_MultiSurface

GM_MultiSolid

GM_Aggregate

GM_Object

JSON Schema implementation of types defined by ISO 19107, for the "place"
member uses geometry types defined by [ISO 19107:2003]. While this specification
does not define mapping tables for newer versions of ISO 19107, application
schemas may use geometry types from a newer version of ISO 19107. The mappings
would then need to be adjusted accordingly (finding correct replacements for the

NOTE

JSON Schema reference

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/Point

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/LineString

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/Polygon

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/Polyhedron

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/MultiPoint

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/
MultiLineString

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/MultiPolygon

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/
MultiPolyhedron

https://beta.schemas.opengis.net/json-fg/
geometry-objects.json#/$defs/
GeometryCollection

https://beta.schemas.opengis.net/json-fg/
geometry.json

types mentioned in the first column of the table).

NOTE

For geometry typed properties that are not mapped to the "place" top-level member,

a suitable mapping needs to be defined, as explained in External types.

Primary geometry

65

https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/Point
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/Point
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/LineString
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/LineString
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/Polygon
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/Polygon
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/Polyhedron
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/Polyhedron
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiPoint
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiPoint
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiLineString
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiLineString
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiLineString
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiPolygon
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiPolygon
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiPolyhedron
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiPolyhedron
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/MultiPolyhedron
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/GeometryCollection
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/GeometryCollection
https://beta.schemas.opengis.net/json-fg/geometry-objects.json#/$defs/GeometryCollection
https://beta.schemas.opengis.net/json-fg/geometry.json
https://beta.schemas.opengis.net/json-fg/geometry.json

identifier

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/primary-geometry

If a feature type has a primary geometry property (identified following the rules in Primary
geometry), and that property is directly owned by the feature type, and the JSON Schema
implementation of the property type is one of the JSON-FG geometry schemas (i.e., one of the
JSON Schema references listed in JSON Schema implementation of types defined by ISO 19107,
for the "place" member), then:

* In the JSON Schema definition of the feature type, the primary geometry property shall be
encoded as a type restriction for the top-level "place” member. The schema restriction for
the "place" member shall define a choice - using the "oneOf" JSON Schema keyword -
between a null value and the geometry schema definition for the value type of the UML
property. The primary geometry property shall not be encoded within the "properties"
member.

In instance data, the value of such a property is typically encoded within the (JSON-
FG) top-level "place" member of the JSON object that represents the «FeatureType».
However, there can also be cases where the value is encoded in the top-level
"geometry" member. For further details, see [OGC 21-045], section "7.5 Geometry".

NOTE

UML properties of other kinds of classes - object types, data types, and unions - are
not considered by this requirement. Object types are not encoded as JSON-FG

NOTE features. Data types and unions may be used by other classes, which prevents a
general exclusive mapping to the JSON-FG top-level "place” member. Only a direct
property of a «FeatureType» can be mapped in this way.

Building Core

«featureType»
BuildingPart Attribute extent has
| taggedvalue
«property» primary Geometry = true.

+ extent: GM_Solid

Figure 16. Example of a feature type with an attribute designated as primary place

66

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/primary-geometry

Example for encoding a feature type with primary place

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$defs": {
"BuildingPart": {
"$anchor": "BuildingPart",
"allof": [
{
"$ref": "http://example.org/schema/infra.json#Building_Core"
b
{
"type": "object",
"properties": {
"place": {
"one0f": [
{
"type": "null"
}
{
"$ref": "https://beta.schemas.opengis.net/json-fg/geometry-
objects.json#t/$defs/Polyhedron”

Primary temporal information

identifier

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/primary-temporal-information

In the JSON Schema definition of a feature, the primary-instant, primary-interval, primary-
interval-start, and primary-interval-end properties (identified following the rules in Primary
temporal information) shall not be encoded within the "properties" member.

In instance data, the value of such a property shall be encoded within the (JSON-FG) "time"
member of the JSON object that represents the feature type.

67

http://www.opengis.net/spec/uml2json/1.0/req/jsonfg/primary-temporal-information

UML properties of other kinds of classes - object types, data types, and unions - are
not considered by this requirement. Object types are not encoded as JSON-FG

NOTE features. Data types and unions may be used by other classes, which prevents a
general exclusive mapping to the JSON-FG top-level "time" member. Only a direct
property of a feature type can be mapped in this way.

«featureType»

Attribute
dateOfConstruction has
| taggedvalue

Building_Core

«property»

+ dateOfConstruction: Date primarylnstant = true.

Figure 17. Example of a feature type with an attribute designated as primary instant

Example for encoding a feature type with primary instant

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$defs": {
"Building_Core": {
"$anchor": "Building_Core",
"allof": [
{
"$ref": "https://beta.schemas.opengis.net/json-fg/feature.json"
b
{
"type": "object"
}
]
}
}
}

Additional requirements classes for the by-reference
encoding of property values

Overview

Requirements class [http:/www.opengis.net/spec/uml2json/1.0/req/core] specifies an inline
encoding of property values. In the case that the value type of a UML property is a type with
identity (that is not implemented as a simple JSON Schema type), it can be preferable and maybe
even necessary to encode the value by reference. In other cases, both options should be offered.

68

That is similar to what the GML Application Schema encoding rules support (for further details, see
OGC 07-036r1, Annex E, section E.2.4.11).

An example where a reference to an object is needed, is when the object is the value
of properties from multiple other objects that are encoded within the same JSON

NOTE document. For example, a feature referenced from several other features. In such a
situation, it is often desirable not to encode the object inline multiple times -
especially if that object also references other objects.

Some applications may prefer to reference types with identity using a code (of type
string or number) instead of using a URI. That code could be seen as a foreign key.

NOTE In such cases, a model transformation should be applied first, which, for all relevant
properties whose value type is a type with identity, replaces the value type with
CharacterString or Number.

Multiple options exist for realizing the by-reference encoding of property values. A requirements
class is available for each option:

* [http://www.opengis.net/spec/uml2json/1.0/req/by-reference-uri] - by-reference encoding of
property values using a plain URI (reference, i.e., an absolute or relative URI)

¢ [http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object] - by-reference encoding
of property values using a link object

The conversion behavior does not support by reference encoding for value types
NOTE that are data types. In general, a data type does not have identity, and therefore a
data type value should always be encoded inline, not by reference.

Requirements class: basics for the by-reference encoding of property values
identifier

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/core

requirement

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic/inline-or-by-reference-tag

69

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic
http://www.opengis.net/spec/uml2json/1.0/req/core
http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic/inline-or-by-reference-tag

identifier

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic/inline-or-by-reference-tag

Statement

For a UML property, whose value type is a type with identity that is not implemented as a
simple JSON Schema type, the tag inlineOrByReference, if set, shall have one of three values:
inlineOrByReference, byReference, or inline. If the tag is not set on a UML property, or has an
empty value, then the following value shall be assumed as default value:

* inline, in case that the UML property is an attribute

* byReference, in case that the UML property is an association role

The default value for tag inlineOrByReference is different in GML. For the JSON
Schema encoding, the default values have been chosen in order to reduce the
degrees of freedom and to reduce the schema complexity. The separation into
default value inline for UML attributes, and byReference for UML association roles
has been made since that reflects the typical modeling approach, where association
roles have a value type that is usually encoded by reference, and attributes have a
value type that is usually encoded inline - especially if the attribute value type is a
type with identity (e.g., an ISO 19107 geometry type).

NOTE

Requirements class: by-reference encoding of property values using a plain
URI reference

identifier
http://www.opengis.net/spec/uml2json/1.0/req/by-reference-uri

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic

requirement

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-uri/encoding

70

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic/inline-or-by-reference-tag
http://www.opengis.net/spec/uml2json/1.0/req/by-reference-uri
http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic
http://www.opengis.net/spec/uml2json/1.0/req/by-reference-uri/encoding

identifier

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-uri/encoding

Statement

If the value of tag inlineOrByReference of a UML property - whose value type is a type with

identity that is not implemented as a simple JSON Schema type - is not inline:

part

If the tag value is byReference, then the JSON Schema definition of the property shall
contain a "type" member with value "string", as well as a "format" member with value "uri-

reference";

part

Otherwise - the tag value is inlineOrByReference - the inline and by-reference encoding cases
shall be combined in the JSON Schema definition of the property using the "oneOf"

keyword.

The result is an XOR type of check, i.e., a value can either be given inline or by
reference, but not both. This is different to GML, where in the case of
inlineOrByReference and a type with identity as value type, a value can be encoded

NOTE

both inline and by reference.

«featureType»
Parcel

+OWnNs

+owner

Figure 18. Example of an association between two feature types, where the association roles are to be

encoded by reference

0.*

1.%

«featureType»
Person

The JSON Schema encoding for the example in Example of an association between two feature
types, where the association roles are to be encoded by reference, using URIs to realize by-
reference encoding of property values, is given in Example for encoding association roles by-

reference using URIs.

71

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-uri/encoding

Example for encoding association roles by-reference using URIs

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,

"$defs": {
"Parcel": {
"$anchor": "Parcel",
"type": "object",
"properties": {
"owner": {
"type": "array",
"minItems": 1,
"items": {
"type": "string",
“format": "uri-reference"
b
"uniqueltems": true
}
+
"required": [
"owner"
]
Iy
"Person": {
"$anchor": "Person",
"type": "object",
"properties": {
"owns": {
"type": "array",
"items": {
"type": "string",
"format": "uri-reference"
b

"uniqueltems": true

This JSON object is valid against the schema definition of "Parcel" from Example for encoding
association roles by-reference using URIs:

{
"owner": ["http://example.org/Person/d024i42s1"]

}

72

Requirements class: by-reference encoding of property values using a link
object

identifier

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic

requirement

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object/encoding

identifier

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object/encoding

statement

If the value of tag inlineOrByReference of a UML property - whose value type is a type with
identity that is not implemented as a simple JSON Schema type - is not inline:

part

If the tag value is byReference, then the JSON Schema definition of the property shall
contain a "$ref" member with value
"https://register.geostandaarden.nl/jsonschema/uml2json/0.1/schema_definitions.json#/$def
s/LinkObject" (the JSON Schema for that link object is defined in JSON Schema definitions);

part

Otherwise - the tag value is inlineOrByReference - the inline and by-reference encoding cases
shall be combined in the JSON Schema definition of the property using the "oneOf"
keyword.

The result is an XOR type of check, i.e.,, a value can either be given inline or by
reference, but not both. This is different to GML, where in the case of
inlineOrByReference and a type with identity as value type, a value can be encoded
both inline and by reference.

NOTE

The JSON Schema encoding for the example in Example of an association between two feature
types, where the association roles are to be encoded by reference, using link objects to realize by-
reference encoding of property values, is given in Example for encoding association roles by-
reference using link objects.

73

http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object
http://www.opengis.net/spec/uml2json/1.0/req/by-reference-basic
http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object/encoding
http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object/encoding

Example for encoding association roles by-reference using link objects

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,

"$defs": {
"Parcel”: {
"$anchor": "Parcel",
"type": "object",
"properties": {
"owner": {
"type": "array",
"minItems": 1,
"items": {
"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"
3
"uniqueltems": true
}
b
"required": [
"owner"
]
)
"Person": {
"$anchor": "Person",
"type": "object",
"properties": {
"owns": {
"type": "array",
"items": {
"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"
¥

"uniqueltems": true

This JSON object is valid against the schema definition of "Parcel" from Example for encoding
association roles by-reference using link objects:

74

"owner": [

{
"title": "John Doe",
"href": "http://example.org/Person/d024i42s1"

}
]
}

Additional requirements classes for the encoding of
union types

Overview
Application schemas have two ways of using types with stereotype «union».

* According to ISO 19103:2015, a «union» type consists "of one and only one of several alternative
datatypes (listed as member attributes). This is similar to a discriminated union in many
programming languages". According to this definition, only the types of the UML attributes
defined for a «union» are of interest.

* In practice, unions defined in application schemas are also used differently, defining a choice
between a number of options, where each option is modeled as a UML attribute. In other words,
the attribute itself has meaning - not just its value type. Multiple options can have the same
value type. Options can have different maximum multiplicity (especially greater than 1). The
UML-to-GML application schema encoding rules support this way of using unions (see OGC 07-
036r1, section E.2.4.10).

The following sections document requirements classes for union encodings that support these two
approaches.

Requirements class: JSON Schema encoding for unions representing type
discriminators

identifier

http://www.opengis.net/spec/uml2json/1.0/req/union-type-discriminator

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/core

requirement

http://www.opengis.net/spec/uml2json/1.0/req/union-type-discriminator/encoding

75

http://www.opengis.net/spec/uml2json/1.0/req/union-type-discriminator
http://www.opengis.net/spec/uml2json/1.0/req/core
http://www.opengis.net/spec/uml2json/1.0/req/union-type-discriminator/encoding

identifier

http://www.opengis.net/spec/uml2json/1.0/req/union-type-discriminator/encoding

A «union» shall be encoded as a JSON Schema definition that represents a choice between the
value types of the union properties.

« If the value types are only simple, without a specific format definition or other restrictions
defined by JSON Schema keywords, then the JSON Schema shall only contain a "type"
member, with an array of the simple types.

* Otherwise, a "oneOf" member shall be added to the JSON Schema definition, with:
o one "$ref" per non-simple type,
- one "type" for all simple types without specific keywords, and

o one "type" per simple type with specific keywords.

The result of applying this encoding to the unions from Example of type discriminator unions is
shown in Example of a JSON Schema for unions, encoding them as type discriminators.

«union» «union»
Union_TypeDiscriminator Union_TypeDiscriminator_SimpleTypes
«property» «property»
+ byCharacerString: CharacterString + byCharacterString: CharacterString
+ bylnteger: Integer + bylnteger: Integer
+ byPoint: GM_Point

«union»
Union_TypeDiscriminator_OtherTypes

«property»
+ byCurve: GM_Curve
+ byPoint: GM_Point

Figure 19. Example of type discriminator unions

76

http://www.opengis.net/spec/uml2json/1.0/req/union-type-discriminator/encoding

Example of a JSON Schema for unions, encoding them as type discriminators

{
"$schema": "http://json-schema.org/draft/2020-12/schema",
"$defs": {
"Union_TypeDiscriminator": {
"oneOf": [
{
"type": [
"string",
"integer"
]
b
{
"$ref": "https://geojson.org/schema/Point.json"
}
1
¥
"Union_TypeDiscriminator_OtherTypes": {

"oneOf": [

{
"$ref": "https://geojson.org/schema/LineString.json"

}I

{
"$ref": "https://geojson.org/schema/Point.json"
}
]
I
“Union_TypeDiscriminator_SimpleTypes": {
"type": [
"string",
"integer"
]
}
}
}

Care must be taken, that the type choices of a type discriminator union are
separate value spaces. Otherwise, validation may fail, if an actual value
matches more than one of the type choices. That would break the rule of the
"oneOf" JSON Schema keyword, that one and only one of its component
schemas is satisfied. If, for example, the "Union_TypeDiscriminator" in
Example of a JSON Schema for unions, encoding them as type discriminators
had another option for a date value ("type": "string", "format": "date"), and
value "2022-12-09" was validated against the resulting JSON Schema definition,
validation would fail - because that value matches both the string-or-number
case and the string-with-format-date case.

WARNING

Requirements class: JSON Schema encoding for unions representing
property choices

identifier

http://www.opengis.net/spec/uml2json/1.0/req/union-property-choice

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/core

requirement

http://www.opengis.net/spec/uml2json/1.0/req/union-property-choice/encoding

identifier

http://www.opengis.net/spec/uml2json/1.0/req/union-property-choice/encoding

part

A «union» shall be encoded as a JSON Schema definition of a JSON object, where each union
option is represented as an optional member of the JSON object.

part

The choice between the options defined by the union shall be encoded using
"maxProperties" = "minProperties" = 1. That is, the number of members that are allowed for
the JSON object is restricted to exactly one.

part

An "additionalProperties": false shall be used to prevent any undefined properties.

The result of applying this encoding to the union from «union» example is shown in Example of a
JSON Schema for a «union» class, representing the property choice using "minProperties” and
"maxProperites".

wunion»
Uniond

«property»
+ optionl:CharacterString
+ optionZ: Number

Figure 20. «union» example

78

http://www.opengis.net/spec/uml2json/1.0/req/union-property-choice
http://www.opengis.net/spec/uml2json/1.0/req/core
http://www.opengis.net/spec/uml2json/1.0/req/union-property-choice/encoding
http://www.opengis.net/spec/uml2json/1.0/req/union-property-choice/encoding

Example of a JSON Schema for a «union» class, representing the property choice using "minProperties” and
"maxProperites”

{
"$schema": "http://json-schema.org/draft/2020-12/schema",

"$defs": {
"UnionA": {
"type": "object",
"properties": {
"option1": {
"type": "string"
b
"option2": {
"type": "number"
}
s

"additionalProperties": false,
"minProperties": 1,
"maxProperties": 1

}
+
"$ref": "#/$defs/UnionA"

}

An alternative approach would be using the "oneOf" keyword, with one subschema
per union property, which only defines that property, and requires it (but does not
perform any other checks). This option is more verbose, harder to read and
understand and, therefore, not recommended.

NOTE

This JSON object is valid against the schema:

{
"option1": "x"

}

This JSON object is invalid (because "option2" has a string value, rather than a numeric value)
against the schema:

{
"option2": "x"

}

Additional requirements classes for the encoding of
code list types

79

Overview

This specification defines three approaches for encoding the values of properties that have a
«CodeList» as value type:

* using a simple literal value, e.g., a string or number that represents a code,

» using a URI as code value, and

 using a link object to link to a code representation.
The following sections document requirements classes for code list encodings that support these

three approaches. All of them inherit requirements from a common requirements class, which is
defined in Requirements class: Basic JSON Schema encoding for code lists.

Requirements class: Basic JSON Schema encoding for code lists

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/core

requirement

http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic/schema-definition

requirement

http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic/codelist-tag

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic/schema-definition

statement

A «CodeList» shall be converted to a JSON Schema definition of a JSON object. That
definition shall be added to the definitions schema, using the type name as definition key.

80

http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic
http://www.opengis.net/spec/uml2json/1.0/req/core
http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic/schema-definition
http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic/codelist-tag
http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic/schema-definition

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic/codelist-tag

statement
If the «CodeList» has tag codeList (which is defined by [ISO 19103:2015]), with a non-blank

value, then a "codeList" member shall be added to the JSON Schema definition of the code
list, with the tag value as value.

«codelist»
SomeCodelist

tags
codelist = https://example.org/codelists/SomeCodelist

Figure 21. Example of a «CodeList» type with tagged value 'codeList’

Example of the basic JSON Schema encoding of a «CodeList» type with tagged value 'codeList’

{
"$schema": "http://json-schema.org/draft/2020-12/schema"”,
"$defs": {
"SomeCodelist": {

"codelList": "http://example.org/codelists/SomeCodelist",

Requirements class: JSON Schema encoding for code lists - literal

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-literal

target
JSON (Schema) documents

inherit
http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic

requirement

http://www.opengis.net/spec/uml2json/1.0/req/codelists-literal/type

81

http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic/codelist-tag
http://www.opengis.net/spec/uml2json/1.0/req/codelists-literal
http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic
http://www.opengis.net/spec/uml2json/1.0/req/codelists-literal/type

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-literal/type

Statement

The JSON Schema definition of a «CodeList» shall have a "type" member defined by
evaluating tagged value literalEncodingType. The tagged value literalEncodingType identifies
the conceptual type that applies to the code values. If the tagged value is not set on the code
list, or has an empty value, then the literal encoding type is defined to be CharacterString.

The literal encoding type is one of the types from ISO 19103, which are implemented as a simple
JSON Schema type - see Literal encoding type in Enumeration.

«codeList» «codeList»
CodelistNumeric CodelistString
tags

literal EncodingType = Number

Figure 22. Example of «CodeList» types

Example of the JSON Schema encodings of «CodeList» types

{
"$schema": "http://json-schema.org/draft/2020-12/schema",

"$defs": {
"CodelistNumeric": {
"type": "number"
Iy
"CodelistString": {
"type": "string"
}
}
}

Requirements class: JSON Schema encoding for code lists - URI

82

http://www.opengis.net/spec/uml2json/1.0/req/codelists-literal/type

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-uri

target
JSON (Schema) documents

inherit
http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic

requirement

http://www.opengis.net/spec/uml2json/1.0/req/codelists-uri/type

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-uri/type

Sstatement

The JSON Schema definition of a «CodeList» shall have a "type" member with value "string",
as well as a "format" member with value "uri".

Example of the J[SON Schema encodings of a «CodeList» type with the JSON Schema "type" being a URI

{
"$schema": "http://json-schema.org/draft/2020-12/schema",
"$defs": {
"CodelistUriFormat": {
"type": "string",
“format": "uri"
}
}
}

Requirements class: JSON Schema encoding for code lists - link object

83

http://www.opengis.net/spec/uml2json/1.0/req/codelists-uri
http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic
http://www.opengis.net/spec/uml2json/1.0/req/codelists-uri/type
http://www.opengis.net/spec/uml2json/1.0/req/codelists-uri/type

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-link-object

target
JSON (Schema) documents

inherit

http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic

requirement

http://www.opengis.net/spec/uml2json/1.0/req/codelists-link-object/schema-ref

identifier

http://www.opengis.net/spec/uml2json/1.0/req/codelists-link-object/schema-ref

Sstatement

The JSON Schema definition of a «CodeList» shall have a "$ref" member with value
"https://register.geostandaarden.nl/jsonschema/uml2json/0.1/schema_definitions.json#/$def
s/LinkObject".

That means that a code value is essentially encoded as a "link object" as specified by IETF RFC 8288
and implemented in the OGC API standards. The link object provides "href" and "title" members
like the simple Xlinks in GML.

Requirements class: Encoding of an additional
entityType property

84

identifier

http://www.opengis.net/spec/uml2json/1.0/req/entitytype

target
JSON (Schema) documents

inherit
http://www.opengis.net/spec/uml2json/1.0/req/core

requirement

http://www.opengis.net/spec/uml2json/1.0/req/entitytype/member

permission

http://www.opengis.net/spec/uml2json/1.0/req/entitytype/json-fg-feature-type

http://www.opengis.net/spec/uml2json/1.0/req/codelists-link-object
http://www.opengis.net/spec/uml2json/1.0/req/codelists-basic
http://www.opengis.net/spec/uml2json/1.0/req/codelists-link-object/schema-ref
http://www.opengis.net/spec/uml2json/1.0/req/codelists-link-object/schema-ref
http://www.opengis.net/spec/uml2json/1.0/req/entitytype
http://www.opengis.net/spec/uml2json/1.0/req/core
http://www.opengis.net/spec/uml2json/1.0/req/entitytype/member
http://www.opengis.net/spec/uml2json/1.0/req/entitytype/json-fg-feature-type

identifier

http://www.opengis.net/spec/uml2json/1.0/req/entitytype/member

part

If the class C that is being converted is a feature type, an object type, or a data type, then the
JSON member "entityType" shall be added to the properties of the JSON object that
represents the class. If, however, the JSON Schema encoding of any of the potentially
existing supertypes of the class already defines the "entityType" member, then the
"entityType" member shall not be added to the JSON representation of class C.

part

The "entityType" member shall be required and string-valued.

part

The "entityType" member shall be used to encode the name of the conceptual type (i.e., the
class) that is represented by the JSON object.

identifier

http://www.opengis.net/spec/uml2json/1.0/req/entitytype/json-fg-feature-type

Statement

For a feature type that is encoded as a JSON-FG feature, the "entityType" member may be
omitted. That is due to the fact that a JSON-FG feature already has a top-level "featureType"
member, which serves the same purpose as the "entityType" member.

By default, the property value is not restricted using "const", because doing so
would prevent JSON Schema constraints that support inheritance-related checks.
However, if the application schema did not use inheritance, then such restrictions
could be defined.

NOTE

Encoding the type name in JSON objects can be useful, since, as described in chapter
6 of the OGC Testbed-14: Application Schemas and JSON Technologies Engineering

NOTE Report, having a key within a JSON object with a string value that identifies the type
of the object allows that object to be mapped to RDF. More specifically, the string
value can be mapped to an IRI that identifies the type of an RDFS resource.

Encoding a JSON object that represents an abstract type, with the "entityType"
having the abstract type name as value, would be useful with regards to linked data
applications, and conversion of JSON data to RDF using JSON-LD. Abstractness is

NOTE also not supported in RDF/OWL, so RDF resources can define the RDFS/OWL class or
datatype, which represent an abstract type from the conceptual model, as their
type. That makes sense for cases in which the exact type of a resource or "thing" is
not known yet, but a more general type is.

85

http://www.opengis.net/spec/uml2json/1.0/req/entitytype/member
http://www.opengis.net/spec/uml2json/1.0/req/entitytype/json-fg-feature-type
http://docs.opengeospatial.org/per/18-091r2.html#JSON_LD
http://docs.opengeospatial.org/per/18-091r2.html#JSON_LD
http://docs.opengeospatial.org/per/18-091r2.html#JSON_LD

JSON Schema example with property "entityType" used for identifying the type of a JSON object

{
"$schema": "http://json-schema.org/draft/2020-12/schema",
"$defs": {
"Person": {
"properties": {
"entityType": {
"type": "string"
e
"name": {
"type": "string"
}
o
"required": [
"entityType", "name"
1
}
}
"$ref": "#/$defs/Person”
¥

The following JSON instance is valid against the schema:

{
"entityType": "Person",
"name": "John Doe"

}

Annex A: Conformance Class Abstract Test
Suite

Conformance classes can be defined when this specification moves on in the OGC

NOTE o
standardization process.

Annex B: Example application schema

Overview

This Annex illustrates the results of applying the JSON Schema encoding rules on the application
schema example shown in Example application schema in UML.

86

true.

Attribute area has tagged
value unit=m?2.

Attribute extent has tagged
value primaryGeometry =

«featureType»
Building_Core

Antribute dateOfConstruction

«property»
+ dateOfConstruction: Date

7 has tagged value
primarylnstant = true.

«enumeration»
BuildingType

/

+belongsTo

N

+consistsOf

«featureType»
BuildingPart

literals
school
residential house
mixed
other

«featureType» «featureType»
Parcel Building
+hasBuilding
((property» : :-. <(pr0perly))
+ area: Area ot address: Address -
+ extent: GM_Surface + type: BuildingType
+owns | 0.%
«dataType»
Address
+owner 1.*
«property»
«featureType» + street: CharacterString [0..1]
Person + housenumber: CharacterString [0..1]
+ poBox: CharacterString [0..1]
«property» + city: CharacterString
+ firstName: CharadterString + postalCode: CharacterString
+ lastName: CharacterString + country: CharacterString [0..1]

Figure 23. Example application schema in UML

NOTE

The schema uses fixed units of measure for BuildingPart.clearanceHeight and
Parcel.area. The units are defined in tagged value unit, using UCUM codes.
BuildingPart.clearanceHeight has unit "m" (meter), and Parcel.area has unit "m2"

(square meter).

0.*

«property»
+ type: BuildingPartType
+ clearanceHeight: length [0..1]
+ extent: GM_Solid

«enumeration»

BuildingPartType

AN

Attribute clearanceHeight has
tagged value unit=m.

Attribute extent has tagged value
primaryGeometry = true.

literals
story = 1000
cellar = 2000
underground parking = 2100
building thoroughfare = 3000
other = 9999

tags
literalEncodingType = Integer

Example schema in plain JSON encoding

The JSON Schema shown in JSON Schema for the example application schema - plain JSON
was
[http://www.opengis.net/spec/uml2json/1.0/req/plain]
[http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object].

encoding

created

by

applying

JSON Schema for the example application schema - plain J[SON encoding

"$schema": "https://json-schema.org/draft/2020-12/schema",

"§id": "http://example.org/schema/infra.json",

"$defs": {
"Address": {
"$anchor": "Address",
"type": "object",
"properties": {
"street": {
"type": "string"

}I

"housenumber™: {
"type": "string"

}

"poBox'

|:{

"type": "string"

requirements

class

and

87

88

¥
"city": {

"type": "string"
I
"postalCode": {

"type": "string"

j¥
"country": {
"type": "string"
}
I
"required": [
"city",
"postalCode”
]
Iy
"Building": {
"$anchor": "Building",
"allof": [
{
"$ref": "#/$defs/Building_Core"
H
{
"type": "object",
"properties": {
"address": {
"$ref": "#/$defs/Address"
b
"type": {
"$ref": "#/$defs/BuildingType"
}
Iy
"required": [
"address",
"type"
]
}
]
b

"BuildingPart": {
"$anchor": "BuildingPart",
"allof": [
{
"$ref": "#/$defs/Building_Core"
Jis
{
"type": "object",
"properties": {
"type": {
"$ref": "#/$defs/BuildingPartType"
s

"clearanceHeight": {
“type": "number",
"unit": "m"

}

"extent": {

"$ref": "https://beta.schemas.opengis.net/json-fg/geometry-
objects.json#/$defs/Polyhedron”
3
"belongsTo": {
"type": "array",
"items": {

"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

I#
"uniqueltems": true
}
¥
"required": [
"extent",
"type"
1
}
]
b
"BuildingPartType": {
"$anchor": "BuildingPartType",
"type": "integer",
"enum": [
1000,
2000,
2100,
3000,
9999
]
Ifs
"BuildingType": {
"$anchor": "BuildingType",
"type": "string",
"enum": [
"school",
"residential house",
"mixed",
"other"
]
¥
"Building_Core": {
"$anchor": "Building_Core",
"type": "object",
"properties": {
"dateOfConstruction": {

89

"type": "string",
"format": "date",
"pattern”: "M\\d{4}-\\d{2}-\\d{2}$"

}
b
"required": [
"dateOfConstruction”
]
s
"Parcel": {
"$anchor": "Parcel",
"type": "object",
"properties": {
"area": {
"type": "number",
"unit": "m2"
I
"extent": {
"$ref": "https://geojson.org/schema/Polygon.json"
b
"hasBuilding": {
"type": "array",
"items": {

"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

3
"uniqueltems": true
I
"owner": {
"type": "array",
"minItems": 1,
"items": {

"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

3
"uniqueltems": true
}
b
"required": [
"area",
"extent",
"owner"
]
¥
"Person": {

"$anchor": "Person",

"type": "object",

"properties": {
"firstName": {

"type": "string"

e

"lastName": {
"type": "string"

I

"owns": {
"type": "array",
"items": {

"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

¥
"uniqueltems": true
}

H

"required": [
"firstName",
"lastName"

]

}
}
}

Example schema in GeoJSON-compliant encoding

The JSON Schema shown in JSON Schema for the example application schema - GeoJSON-compliant
encoding was created by applying requirements class
[http://www.opengis.net/spec/uml2json/1.0/req/geojson] and
[http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object].

JSON Schema for the example application schema - GeoJ]SON-compliant encoding

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$§id": "http://example.org/schema/infra.json",
"$defs": {
"Address": {
"$anchor": "Address",
"type": "object",
"properties": {
"street": {
"type": "string"
Iy
"housenumber": {
"type": "string"
Jis
"poBox": {
"type": "string"
e
"city": {

91

92

"type": "string"
e
"postalCode": {

"type": "string"
}

ountry": {
"type": "string"
}

I,

"required": [
"city",
"postalCode"

]

}
"Building": {
"$anchor": "Building",
"allof": [
{
"$ref": "#/%$defs/Building_Core"
I
{
"type": "object",
"properties": {
“properties": {
"type": "object",
"properties": {
"address": {
"$ref": "#/$defs/Address"”
I
"type": {
"$ref": "#/$defs/BuildingType"
}
I
"required": [
"address",
"type"
]
}
lis
"required": [
"properties"
]
}
]
Iy,
"BuildingPart": {
"$anchor": "BuildingPart",
"allof": [
{
"$ref": "#/$defs/Building_Core"
H

{
"type": "object",
"properties": {
"properties": {
"type": "object",
"properties": {
"type": {
"$ref": "#/$defs/BuildingPartType"
s
"clearanceHeight": {
"type": "number",
"unit": "m"
b
"extent": {
"$ref": "https://beta.schemas.opengis.net/json-fg/geometry-
objects.json#t/$defs/Polyhedron”
¥
"belongsTo": {
"type": "array",
"items": {

"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

},
"uniqueltems": true
}
}

equired": [
"extent",
"type"
]
}
o
"required": [
"properties”
]
}
]
lis
"BuildingPartType": {
"$anchor": "BuildingPartType",
"type": "integer",
"enum": [
1000,
2000,
2100,
3000,
9999
]
}

uildingType": {

93

94

"$anchor": "BuildingType",
"type": "string",
"enum": [
"school",
"residential house",
"mixed",
"other"
]
Iy,
"Building_Core": {
"$anchor": "Building_Core",
"al10f": [
{
"$ref": "https://geojson.org/schema/Feature.json"
H
{
"type": "object",
"properties": {
"properties": {
"type": "object",
"properties": {
"dateOfConstruction": {
"type": "string",
"format": "date",
"pattern": "M\d{4}-\\d{2}-\\d{2}$"
}
}

equired": [
"dateOfConstruction”
]
}
0
"required": [
"properties"
1
}
]
I
"Parcel": {
"$anchor": "Parcel",
"allof": [
{
"$ref": "https://geojson.org/schema/Feature.json"
I
{
"type": "object",
"properties": {
"geometry": {
"$ref": "https://geojson.org/schema/Polygon.json”

}

roperties": {

"type": "object",
"properties": {

"area": {
"type": "number",
"unit": "m2"

Iy

"hasBuilding": {
"type": "array",
"items": {
"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

+

"uniqueltems": true
+
"owner": {

"type": "array",
"minItems": 1,
"items": {

"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

}
}
H
"required": [
"area",
"owner"
]
}
by
"required": [
"properties"
1
}
]
I
"Person": {
"$anchor": "Person",
"allof": [
{
"$ref": "https://geojson.org/schema/Feature.json"
Jis
{
"type": "object",
"properties": {
“properties": {
"type": "object",
"properties": {
"firstName": {

niqueltems": true

95

"type": "string"
b
"lastName": {
"type": "string"
¥
"owns": {
"type": "array",
"items": {

"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

},
"uniqueltems": true
}

I#

"required": [
“firstName",
"lastName"

]

}

by

"required": [
"properties”

Example schema in JSON-FG-compliant encoding

The JSON Schema shown in JSON Schema for the example application schema - JSON-FG-compliant
encoding was created by applying requirements class
[http://www.opengis.net/spec/uml2json/1.0/req/jsonfg] and
[http://www.opengis.net/spec/uml2json/1.0/req/by-reference-link-object].

JSON Schema for the example application schema - JSON-FG-compliant encoding

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"§id": "http://example.org/schema/infra.json",
"$defs": {
"Address": {
"$anchor": "Address",
"type": "object",
"properties": {
"street": {
"type": "string"
Iy

96

"housenumber": {

"type": "string"
H
"poBox": {

"type": "string"
I
"city": {

"type": "string"
iy
"postalCode": {

"type": "string"

I¥

"country": {

"type": "string"
}
I
"required": [
"city",
"postalCode”
]
Iy,
"Building": {
"$anchor": "Building",
"al10f": [
{
"$ref": "#/$defs/Building_Core"
H
{
"type": "object",
"properties": {
"properties": {
"type": "object",
"properties": {
"address": {
"$ref": "#/%$defs/Address"”
+
"type": {
"$ref": "#/$defs/BuildingType"
}
I
"required": [
"address",
"type"
]
}
s
"required": [
"properties"
]
}
]

97

b
"BuildingPart": {
"$anchor": "BuildingPart",
"allof": [
{
"$ref": "#/$defs/Building_Core"
},
{
"type": "object",
"properties": {
"place": {
"oneOf": [
{
"type": "null"
b
{
"$ref": "https://beta.schemas.opengis.net/json-fg/geometry-
objects.json#t/$defs/Polyhedron”
}
]
by

roperties": {
"type": "object",
“properties": {
"type": {
"$ref": "#/%$defs/BuildingPartType"
b
"clearanceHeight": {
"type": "number",
"unit": "m"
)
"belongsTo": {
"type": "array",
"items": {
"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

H
"uniqueltems": true
}
Vs
"required": [
"type"
]
}
s
"required": [
"properties"
]

}
]

98

}I

"BuildingPartType": {
"$anchor": "BuildingPartType",
"type": "integer",

"enum"
1000
2000
2100
3000
9999

]

+

t L
.
I
I
I

I

"BuildingType": {
"$anchor": "BuildingType",
"type": "string",

llenum"

d L

"school”,
"residential house",
"mixed",
"other"

]
}I

"Building_Core": {
"$anchor": "Building_Core",
"al10f": [

{

"$ref": "https://beta.schemas.opengis.net/json-fg/feature.json"

}I
{

"type": "object"

}
]
}I

"Parcel"

"$anchor":

: o

"allof": [

{

"Parcel",

"$ref": "https://beta.schemas.opengis.net/json-fg/feature.json"

}I
{

"type": "object",

"properties": {

"place": {
"one0f": [

{

}I
{

"type": |InU11ll

"$ref": "https://beta.schemas.opengis.net/json-fg/geometry-

objects.json#/$defs/Polygon”

}

99

]
}

roperties": {
"type": "object",
"properties": {

"area": {
"type": "number",
"unit": "m2"

H

"hasBuilding": {
"type": llarray",
"items": {

"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

}

H
"owner": {
"type": "array",
"minltems": 1,
"items": {
"$ref":
"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"

niqueltems": true

I
"uniqueltems": true
}
}

"required": [
"area",
"owner"

]
}
Iy
"required": [
"properties”
]
}
]
)
"Person": {
"$anchor": "Person",
"allof": [
{
"$ref": "https://beta.schemas.opengis.net/json-fg/feature.json"
Iy
{
"type": "object",
"properties": {
"properties": {

100

lltypell: "Object"'
"properties": {
"firstName": {
lltype": Ilstr_ing"

I

"lastName": {
"type": "string"

Jr

"owns": {
"type": "array",
"items": {

"$ref":

"https://register.geostandaarden.nl/jsonschema/uml2json/@.1/schema_definitions.json#/$
defs/LinkObject"
h
"uniqueltems": true
}
H
"required": [
"firstName",
"lastName"
]
}
}
"required": [
"properties”

Annex C: JSON Schema definitions

The following JSON Schema defines the schema for link object and measure, which are used in this
specification.

JSON Schema for link object and measure

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
ll$_idll:
"https://register.geostandaarden.nl/jsonschema/uml2json/0.1/schema_definitions.json",
"$defs": {

"LinkObject": {
"$anchor": "LinkObject",
"title": "link object",
"description”: "definition of a link object",
"type": "object",

101

"required": ["href"],
"properties": {
"href": {
"type": "string",
"description": "Supplies the URI to a remote resource (or resource
fragment).",
"example": "http://data.example.com/buildings/123"
I
"rel": {
"type": "string",
"description": "The type or semantics of the relation.",
"example": "related"
)
"type": {
"type": "string",
"description”: "A hint indicating what the media type of the result of
dereferencing the link should be.",
"example": "application/geo+json”
}
"hreflang": {
"type": "string",
"description”: "A hint indicating what the language of the result of
dereferencing the link should be.",
"example": "en"
)
"title": {
"type": "string",
"description": "Used to label the destination of a link such that it can be
used as a human-readable identifier.",
"example": "Trierer Strasse 70, 53115 Bonn"
}
"length": {"type": "integer"}
}
)
"Measure": {
"$anchor": "Measure",
"title": "measure object",
"description”: "definition of a measure object",
"type": "object",
"required": [
"value",

]I

"properties": {
"value": {"type": "number"},
"uom": {"type": "string"}

}

}
}
}

102

Annex D: JSON Schema definitions for
collections

This specification defines requirements for the creation of schema definitions with the JSON
Schema constraints to validate a JSON object that represents a type with identity. The specification
does not define requirements (classes) with which to define the schema for collections of such
types. There are different aspects to consider, when defining such collections. The following
sections document considerations and ideas regarding these aspects, to be used as input for future
discussion and possibly standardization work.

Scope and naming of collection definitions

In practice, uniform as well as mixed collections are possible. A uniform collection contains
features of a single specific type, whereas a mixed collection can have objects of different type.
JSON Schema definitions for uniform collections could be defined with name being {type name} +
Collection, whereas a single definition with name FeatureCollection could cover the case of all
mixed collections (at least for all types with identity defined by the application schema).

Structure of collection definitions

The definition for a uniform collection would ensure that the collection members are all valid
against a single type definition.

The definition for the general FeatureCollection would use either an anyOf or oneOf, with a choice
of schema definitions for all types with identity. Cases in which an object is valid against more than
one of these definitions can be problematic:

* In case of anyOf, maybe the schema definition for a more general type matches, causing the
validator to stop the validation process, thus potentially not checking constraints for the specific
schema definition for a given type.

* In case of oneOf, the validator does not stop at the first matching schema definition, but
continues validation against all options, until it has ensured that either all other definitions do
not match, or one more does match. The latter case would result in the overall validation to fail.
However, that can easily happen in case of similar class structures, or in case of inheritance
hierarchies, where an object matches the schema defined by a supertype as well as that of a
subtype.

Performance

It is unclear how performant the validation against the general FeatureCollection would be in
practice, in case of a large or complex application schema. Then again, validation time may not be
that critical to an application that wants to ensure that data within a collection is valid.

103

Abstract types

It is unclear if collection definitions should be created for or include abstract types. It may be useful
to create such definitions for "uniform" collections of abstract types, even if that implies that actual
collections may have objects of different subtypes of the abstract type. Definitions for abstract types
should not be included in the general FeatureCollection.

Base schemas

Another aspect is which base schema to use for the collections. GeoJSON and JSON-FG both define
schemas for feature collections (see https://geojson.org/schema/FeatureCollection.json and
https://github.com/opengeospatial/ogc-feat-geo-json/blob/main/core/schemas/featurecollection.json).
These schemas should be used as base in according encodings. For the plain JSON encoding, a
simple JSON array could be used.

Requirements classes

Requirements for the generation of collections could be defined in the three encoding requirements
classes. However, it may be better to create additional requirements classes that depend on them,
since communities may want to create different schema definitions for collections. It would even be
possible to have separate requirements classes for uniform collections and the general collection,
since communities may or may not want to use both types of collections.

Annex E: Title ({Normative/Informative})

Place other Annex material in sequential annexes beginning with "B" and leave

NOTE
final two annexes for the Revision History and Bibliography

Annex F: Revision History

Date Release Editor Primary Description
clauses
modified
2022-12-13 0.1 Johannes all initial version
Echterhoff for internal
review
2024-04-25 0.2 Johannes all solving a
Echterhoff number of
issues

Bibliography

= [OGC 07-036r1]Open Geospatial Consortium (OGC). OGC 07-036r1: OpenGIS Geography Markup

104

https://geojson.org/schema/FeatureCollection.json
https://github.com/opengeospatial/ogc-feat-geo-json/blob/main/core/schemas/featurecollection.json

Language (GML) Encoding Standard, Version 3.2.2

= [OGC 20-012]0pen Geospatial Consortium (OGC). OGC 20-012: UML-to-GML Application Schema
Pilot (UGAS-2020) Engineering Report

= [OGC 23-058r1]Open Geospatial Consortium (OGC). OGC 23-058r1: OGC API - Features - Part 5:
Schemas Implementation Specification

105

	Best Practice for OGC - UML to JSON Encoding Rules
	Preface
	Security Considerations
	Scope
	Conformance
	References
	Terms, definitions and abbreviated terms
	Terms and definitions
	Abbreviated terms

	Conventions
	General
	Identifiers
	JSON Schema URLs
	Stereotype Names

	Overview
	UML to JSON Schema Encoding
	Introduction
	UML profile
	Requirements class: Core
	Requirements class: Encoding rule for a plain JSON Schema format
	Requirements class: GeoJSON Formats
	Requirements class: Encoding rule for a GeoJSON compliant JSON Schema format
	Requirements class: Encoding rule for a JSON-FG compliant JSON Schema format
	Additional requirements classes for the by-reference encoding of property values
	Additional requirements classes for the encoding of union types
	Additional requirements classes for the encoding of code list types
	Requirements class: Encoding of an additional entityType property

	Annex A: Conformance Class Abstract Test Suite
	Annex B: Example application schema
	Overview
	Example schema in plain JSON encoding
	Example schema in GeoJSON-compliant encoding
	Example schema in JSON-FG-compliant encoding

	Annex C: JSON Schema definitions
	Annex D: JSON Schema definitions for collections
	Scope and naming of collection definitions
	Structure of collection definitions
	Performance
	Abstract types
	Base schemas
	Requirements classes

	Annex E: Title ({Normative/Informative})
	Annex F: Revision History
	Bibliography

